

Hacking Gmail™

Ben Hammersley

01_59611x ffirs.qxp 11/28/05 11:09 PM Page iii

Hacking Gmail™

01_59611x ffirs.qxp 11/28/05 11:09 PM Page i

01_59611x ffirs.qxp 11/28/05 11:09 PM Page ii

Hacking Gmail™

Ben Hammersley

01_59611x ffirs.qxp 11/28/05 11:09 PM Page iii

For general information on our other products and services or to obtain technical support, please contact our Customer Care Department
within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Hammersley, Ben.
Hacking Gmail / Ben Hammersley.

p. cm.
Includes index.
ISBN-13: 978-0-7645-9611-7 (paper/website)
ISBN-10: 0-7645-9611-X (paper/website)
1. Gmail (Electronic resource) 2. Electronic mail systems. 3. Internet programming. I. Title.
TK5105.74.G55H36 2006
004.692—dc22

2005029719

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. ExtremeTech and the ExtremeTech logo are trademarks of Ziff
Davis Publishing Holdings, Inc. Used under license. All rights reserved. Gmail is a trademark of Google, Inc. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Hacking Gmail™

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-9611-7
ISBN-10: 0-7645-9611-X

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RU/RS/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN
46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the
accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of
fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies
contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional
person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be
aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read.

01_59611x ffirs.qxp 11/28/05 11:09 PM Page iv

www.wiley.com

Meanwhile, back in Florence, Anna, Lucy, Mischa, and Pico ignored
the swearing and kept me fed. Love, as ever, to them.

01_59611x ffirs.qxp 11/28/05 11:09 PM Page v

01_59611x ffirs.qxp 11/28/05 11:09 PM Page vi

About the Author
Armed only with a PowerBook and some fine pipe tobacco, Ben Hammersley is a
journalist, writer, explorer, and an errant developer and explainer of semantic web
technology. He’s also liable to spread his dirty, dirty words over at The Guardian.

As an Englishman of the clichéd sort, Ben’s angle brackets always balance, and his
tweed is always pressed. He’s not worn trousers for six months now. Ask him
about it sometime.

01_59611x ffirs.qxp 11/28/05 11:09 PM Page vii

01_59611x ffirs.qxp 11/28/05 11:09 PM Page viii

Credits
Executive Editor
Chris Webb

Development Editor
Brian Herrmann

Technical Editor
Justin Blanton

Production Editor
Kenyon Brown

Copy Editor
Nancy Rapoport

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator
Michael Kruzil

Graphics and Production Specialists
Carrie A. Foster
Lynsey Osborn
Melanee Prendergast

Quality Control Technicians
Leeann Harney, Jessica Kramer,
Charles Spencer, Brian H. Walls

Proofreading and Indexing
TECHBOOKS Production Services

Cover Design
Anthony Bunyan

01_59611x ffirs.qxp 11/28/05 11:09 PM Page ix

Contents at a Glance
Acknowledgments . xvii
Introduction . xix

Part I: Starting to Use Gmail . 1
Chapter 1: Desktop Integration . 3
Chapter 2: Integrating Your Existing Mail. 11
Chapter 3: Gmail Power Tips . 15

Part II: Getting Inside Gmail . 27
Chapter 4: Skinning Gmail . 29
Chapter 5: How Gmail Works . 53
Chapter 6: Gmail and Greasemonkey . 91
Chapter 7: Gmail Libraries . 117
Chapter 8: Checking for Mail . 137
Chapter 9: Reading Mail . 151
Chapter 10: Sending Mail . 161

Part III: Conquering Gmail . 167
Chapter 11: Dealing with Labels . 169
Chapter 12: Addressing Addresses . 177
Chapter 13: Building an API from the HTML-Only Version of Gmail. 183
Chapter 14: Exporting Your Mail. 197
Chapter 15: Using Gmail to . 203
Chapter 16: Using GmailFS . 213

Appendix: Long Code Listings . 223

Index . 275

02_59611x ftoc.qxp 11/28/05 11:05 PM Page x

Contents
Acknowledgments . xvii

Introduction . xix

Part I: Starting to Use Gmail 1

Chapter 1: Desktop Integration . 3
New Mail Notification . 3

Windows . 3
Mac OS X . 5
Linux, etc. 5

Redirecting mailto: . 6
Windows . 7
Multiplatform/Mozilla . 7
OS X . 8
GmailerXP . 8

And Now . 9

Chapter 2: Integrating Your Existing Mail 11
Importing Your Mail into Gmail . 11

Gmail Loader . 11
Setting Up Pop Access Inside Gmail . 12
Setting Up Pop Within an Application . 13
IMAP for Gmail. 14
And Now 14

Chapter 3: Gmail Power Tips. 15
Keyboard Shortcuts . 15
Plus Addressing and Filtering . 20

Other Addressing Tips . 21
Quickly Mark a Group of E-Mails . 23
Send Executables as Attachments . 23
Advanced Searching . 24
And Now 26

02_59611x ftoc.qxp 11/28/05 11:05 PM Page xi

Part II: Getting Inside Gmail 27

Chapter 4: Skinning Gmail . 29
Deconstructing Gmail . 29

The Top Section . 33
The Navigation Menu . 35
The Activity Area . 38
The Bottom Section . 42

Applying a New Style . 44
Creating Gmail Lite . 44
Walking Through the Style Sheet . 45
Removing Google’s Advertising . 51
And Now 51

Chapter 5: How Gmail Works . 53
What the Devil Is Going On? . 53

Preloading the Interface. 54
Introducing XMLHttpRequest . 55

Using XMLHttpRequest Yourself . 55
Finding XMLHttpRequest within the Gmail code 61

Sniffing the Network Traffic. 62
Firing Up Tcpflow . 62

Prodding Gmail to Hear It Squeak . 67
Preparing to Watch the Gmail Boot Sequence 67
Cleaning Up the Log . 68

Stepping Through the Gmail Boot Sequence . 68
Logging In . 69
The First Cookie . 71
Loading the Inbox . 74
Reading an Individual Mail . 81

And Now 89

Chapter 6: Gmail and Greasemonkey . 91
What Is Greasemonkey?. 91
The Userscripts . 92

Displaying Bloglines Within Gmail . 92
How It Works . 100
Add a Delete Button. 101
GmailSecure . 108
MailtoComposeInGmail . 110

Other Userscripts . 114
Mark Read Button . 114
Multiple Signatures . 115
Hide Invites . 115
Random Signatures . 115

And Now . 115

xii Contents

02_59611x ftoc.qxp 11/28/05 11:05 PM Page xii

Chapter 7: Gmail Libraries . 117
PHP — Gmailer . 118

Getting and Installing the Library. 118
How to Use It . 119

Perl — Mail::Webmail::Gmail . 127
Getting and Installing the Library. 127
Using the Library . 128

Python — Libgmail . 131
Getting and Installing the Library. 131
How to Use It . 132
Reading the First Message in the Inbox . 134

Setting Yourselves Up for the Remaining Chapters 135
And Now . 136

Chapter 8: Checking for Mail . 137
The Basics in Perl . 137
The Basics in PHP . 139
The Basics in Python . 140
Building on the Basics . 142

New Mail Count in RSS . 142
New Mail Count to AOL Instant Messenger 144

And Now . 149

Chapter 9: Reading Mail . 151
Reading Mail with Perl. 151

The Basics . 151
Accessing All the Data of a Message . 152
Listing the Mail and Displaying a Chosen Message 153
Dealing with Attachments. 155
Making an RSS Feed of Your Inbox . 155

And Now . 159

Chapter 10: Sending Mail. 161
Sending Mail with Gmail SMTP . 161

Sending Mail with Perl . 162
And Now . 166

Part III: Conquering Gmail 167

Chapter 11: Dealing with Labels . 169
Listing the Existing Labels . 169
Setting New Labels. 173

Creating a New Label . 175
Removing Labels . 175
And Now . 176

xiiiContents xiii

02_59611x ftoc.qxp 11/28/05 11:05 PM Page xiii

Chapter 12: Addressing Addresses . 177
The Contacts List . 177
Importing Contacts. 178
Showing Your Current Contacts . 180
Exporting Contacts. 181
And Now . 182

Chapter 13: Building an API from the HTML-Only Version of Gmail . . . 183
A First Look at the HTML Version . 183
Introducing Basic Scraping. 186

HTML::TokeParser . 186
Parsing the Inbox . 188
Retrieving the Individual Page. 192
Dealing with Threads . 195
Dealing with Other Folders . 195

And Now . 196

Chapter 14: Exporting Your Mail . 197
Exporting as a Massive Text File . 197
Converting to Mbox . 199
Appending to IMAP . 200
And Now . 201

Chapter 15: Using Gmail to . 203
Using Gmail as a To-Do List . 203

Using Filters . 203
Using gmtodo . 205

Using Gmail to Find Information in RSS Feeds. 205
Using Gmail to Find Torrent Files . 206

Using Gmail as a Notepad . 207
Using Gmail as a Spam Filter . 209

An Even Simpler Way of Doing It . 210
Using Gmail as Storage for a Photo Gallery . 210
And Now . 211

Chapter 16: Using GmailFS . 213
The Underlying Idea . 213
Installing GmailFS . 213

The Correct Python . 213
Installing FUSE . 215
Installing Libgmail. 215
Installing GmailFS . 215

Using GmailFS . 216
Mounting GmailFS from the Command Line 216
Mounting GmailFS from fstab . 217
Passing Commands to the File System . 217

xiv Contents

02_59611x ftoc.qxp 11/28/05 11:05 PM Page xiv

How GmailFS Works . 218
What Makes Up a File? . 218
Representing All of This in E-Mail . 220
The Actual Data in Action . 220

And Now . 221

Appendix: Long Code Listings . 223

Index . 275

xvContents

02_59611x ftoc.qxp 11/28/05 11:05 PM Page xv

02_59611x ftoc.qxp 11/28/05 11:05 PM Page xvi

Acknowledgments
Books of this nature are tremendously difficult to write. Without support from
Google (we didn’t ask, admittedly) and with Gmail being in perpetual Beta
throughout the writing process, we often found ourselves with chapters being
made obsolete overnight. Deadlines passed, were rescheduled, passed again.
Editors wept salt tears. Publishers, that sainted breed, were patient and handsome
and generally lovely. Chris Webb and Brian Herrmann, both of the Wiley clan,
stood by the project so faithfully that their names will be forever legend. Men of
the Far North will sing songs to their honor. Justin Blanton, the technical editor,
managed to combine a Law Degree with the task: there’s not enough beer in the
world to pay him back. Thanks to all of them, and everyone else at Wiley.

03_59611x flast.qxp 11/28/05 11:04 PM Page xvii

03_59611x flast.qxp 11/28/05 11:04 PM Page xviii

Introduction
Welcome to Hacking Gmail. Thanks for buying this book. If you haven’t bought it,
you should. It’s very good, and once you buy it you can stop loitering around the
bookstore stacks. Go on: Buy it, sit down, have a coffee. See? Comfier isn’t it? Ah.
Hacking Gmail. It’s a manly hobby, and this book will tell you how. Sorry? What’s
Gmail, you ask? Well, let me tell you . . .

What’s Gmail?
March 31, 2004. A watershed in human history. Google’s web-based e-mail ser-
vice, still now at the time of this writing in Beta, and available only to people
invited by other existing users, was launched. Offering a gigabyte of storage, an
incredibly advanced JavaScript interface, and a series of user interface innovations,
Gmail was an instant hit among those who could get access to the system. Today,
more than a year later, Gmail is proving to be one of the flagship applications on
the web—a truly rich application within the browser, combined with the server-
based power of the world’s leading search engine.

Hacking Gmail?
Of course, all that power just begs to be abused. Power corrupts, as they say,
and hackers are nothing but a corrupt bunch: Almost as soon as Gmail was
launched, hackers were looking at ways to use those capabilities for other purposes.
They investigated the incredibly rich interface, and saw how much of the process-
ing is done on the user’s own machine; they burrowed into the communication
between the browser and the server; and they developed a series of interfaces for
scripting languages to allow you to control Gmail from your own programs.

This book shows what they did, how to do it yourself, and what to do after you’ve
mastered the techniques. Meanwhile, you’ll also learn all about Ajax, the terribly
fashionable JavaScript technique that Gmail brought into the mainstream. Two
topics for the price of one!

What’s in This Book?
There are three parts to this book, each lovingly crafted to bring you, young Jedi,
to the peak of Gmailing excellence. They are:

03_59611x flast.qxp 11/28/05 11:04 PM Page xix

Part I: Starting to Use Gmail
Where you learn to use Gmail like a professional. A professional Gmail user, no
less. A really skilled professional Gmail user. With a degree in Gmail. A Gmail
ninja. A Gmail ninja with a black belt in Gmail from the secret Gmail training
school on Mount Gmail. You might actually be part Gmail. Perhaps you’ve named
your first born child after Gmail. You live in the Google Headquarters. You are
Larry Page. You get the idea.

Part II: Getting Inside Gmail
Where you find out how Gmail works, and how you can use modern scripting
languages to control it.

Part III: Conquering Gmail
Where you put these new skills to the test, wrangling Gmail into fiendishly clever
uses, totally unlike those Google intended.

Whom Is This Book For?
You. Of course it is. If you picked up a book called Hacking Gmail, you’re very
likely to want it. If you’re a programmer looking to use Gmail in wacky ways, this
book is for you. If you’re a power user looking to hack together scripts to do dan-
gerously efficient things with your mail, this book is for you. If you’re the parent,
best friend, or lover of someone who answers to that description, this book is for
them, and you should buy two copies. Really. It’s great. And the shiny cover looks
cool, no? I tell you, metallic covers are all the thing.

Hacking Carefully
It must be said here in plain English, and elsewhere by a battalion of scary lawyer
folk, that I take no responsibility whatsoever for anything anyone does after reading
this book. If you lose data; get folded, spindled, or mutilated; or have your Gmail
account suspended, it is not my fault. The fine folks at Google, it has to be said,
have played no part in the writing of this book, and most likely do not approve of
the contents within. They may have me killed. Either way, I take no responsibility
for anything. You’re on your own, kiddo. As am I.

Companion Website
For links and updates, please visit this book’s companion website at www.wiley
.com/go/extremetech.

xx Introductionxx

03_59611x flast.qxp 11/28/05 11:04 PM Page xx

Hacking Gmail™

03_59611x flast.qxp 11/28/05 11:04 PM Page xxi

03_59611x flast.qxp 11/28/05 11:04 PM Page xxii

Starting to
Use Gmail

First things first, then. Before you get into the deeper work-
ings of Gmail, you need to get yourself up to scratch with
the more public side of the application. Being able to hack

Gmail is one thing, but it’s very helpful to have a full understand-
ing of how the system is meant to work before taking it apart and
doing silly things with it.

In this part, therefore, you look at how to integrate Gmail
with your desktop (Chapter 1). Then in Chapter 2 you look at
merging your existing mail into the application, and finally in
Chapter 3 you look at some of the cunning ways people use
Gmail to its utmost.

Chapter 1
Desktop Integration

Chapter 2
Integrating Your
Existing Mail

Chapter 3
Gmail Power Tips

in this part

part

04_59611x pt01.qxp 11/28/05 11:07 PM Page 1

04_59611x pt01.qxp 11/28/05 11:07 PM Page 2

Desktop Integration

The first part of this book really highlights its entire theme:
that the Gmail service, although ostensibly a website, can
be dragged over to touch the desktop in ways that make

new and exciting applications possible.

The first five chapters deal with this on a very basic level, allow-
ing you to use Gmail to its limits before delving into the nitty
gritty of code and some rather extreme uses of the system.

This chapter deals with the situations that arise when you con-
tinue to use Gmail within the browser but want to use it as your
day-to-day e-mail system. There are two areas to cover: new mail
notification and mailto: link redirection.

New Mail Notification
Gmail’s great features have inspired many early adopters to move
their entire e-mail regime over to the service. But unlike other
e-mail clients, Gmail requires you to have your web browser open
to see if you have any new mail. Even with tabbed browsing, this
is annoying. The alternative is to use a new-mail notifier applica-
tion. This section details some of the best notifiers, grouped by
platform. This is not a definitive list even at the time of this writ-
ing. By the time you read this, there will be even more options.
But this is a good start.

Windows
Perhaps not the operating system of choice for the readers of this
book, but certainly one with a lot of users, Windows is gifted with
a wide range of Gmail integration products.

˛ New mail
notification

˛ Available
applications

˛ Redirecting mailto:

chapter

in this chapter

05_59611x ch01.qxp 11/28/05 11:11 PM Page 3

4 Part I — Starting to Use Gmail

Google Gmail Notifier
The first and most obvious application comes from Google itself. Their Gmail
Notifier sits in the system tray, and displays an unread mail count, and the subject
line, sender, and a synopsis of newly arriving mail, all shown in Figure 1-1. At
the time of writing, it, like Gmail itself, is in beta. Get the Gmail Notifier from
http://toolbar.google.com/gmail-helper/.

FIGURE 1-1: Google’s own Gmail Notifier in action

Mozilla Extension Gmail Notifier
Technically, this will work on any platform that can run Mozilla-based browsers, but
I’ll put Doron Rosenberg’s Gmail Notifier browser extension here (see Figure 1-2).
Although it doesn’t provide the same level of interface as a taskbar-based applica-
tion, for people who spend a lot of time in their web browser, the Mozilla extension
is very convenient.

You can find the extension at http://nexgenmedia.net/extensions/.

FIGURE 1-2: Mozilla
Gmail Notifier in the
Firefox status bar

05_59611x ch01.qxp 11/28/05 11:11 PM Page 4

5Chapter 1 — Desktop Integration

Mac OS X
OS X users have a choice of two applications, both very similar to each other, and
doing pretty much the same thing: placing the mail notification in the menu bar
at the top of the screen.

GmailStatus
Carsten Guenther’s GmailStatus (http://homepage.mac.com/carsten.
guenther/GmailStatus/) is a good example. It displays new mail counts for the
Inbox, and each individual label you might have set up, adds a hotkey to launch
Gmail in your browser, supports Growl notifications (see http://growl.info/
for more on that), and gives a hotkey to write a new message in Gmail (see Fig-
ure 1-3).

FIGURE 1-3: GmailStatus in action, with Growl notification

gCount
Nathan Spindel’s gCount (www.ocf.berkeley.edu/~natan/gcount/), shown
in Figure 1-4, is very similar indeed to GmailStatus in terms of functionality, with
perhaps two interesting additions. First, you can have a new mail count in the
dock, and second, it takes your Gmail username and password from the keychain.
This is a nice touch.

Linux, etc.
People using Linux, or any other Unix-style operating system with the option to
compile things, have a whole series of potential Gmail applications to choose
from. Linux users will also find the scripting done in the later stages of this book
to be very simple to implement.

05_59611x ch01.qxp 11/28/05 11:12 PM Page 5

6 Part I — Starting to Use Gmail

FIGURE 1-4: gCount, showing the preference menu

Mail Notification
Jean-Yves Lefort’s Mail Notification system for Linux desktops supports Gmail
as well as most of the other common e-mail systems. You can get it from www.
nongnu.org/mailnotify/ where it is released under the GPL. According to
Lefort, it works with system trays implementing the freedesktop.org System
Tray Specification, such as the Gnome Panel Notification Area, the Xfce
Notification Area, and the KDE System Tray.

Wmgmail
Remarkably useful for the clarity of its Python-based code, Pasi Savolainen’s
Wmgmail is intended for use with WindowMaker or fluxbox window managers
on the operating system of your choice. (If that sentence means nothing to you,
this is not for you, in other words.)

It’s a standard new mail notification app, with new mail preview added in, but it
also has one very nice feature that is perfect for the hacker: You can set it to run
another program whenever new mail arrives.

You can find Wmgmail at http://osx.freshmeat.net/projects/wmgmail/.

Redirecting mailto:
Now that you have your desktop telling you when you have new mail within your
Gmail account, the only remaining integration is to ensure that clicking on a
mailto: link on a web page opens Gmail instead of your operating system’s
default e-mail client.

05_59611x ch01.qxp 11/28/05 11:12 PM Page 6

7Chapter 1 — Desktop Integration

Windows
Again, as with new mail notification, Windows users have the pick of the crop.
The Google-authored Gmail Notifier, as mentioned previously, gives you the
option to redirect mailto: links when you install it.

If you really want to, you can manually edit the Windows Registry to enact the
same effect. The website www.rabidsquirrel.net/G-Mailto/ gives a rundown
of just how to do this.

Multiplatform/Mozilla
Other than the Mozilla extension, at the time of this writing there is no mailto:
link diversion for the Linux desktop. But happily, by far the best way of repurpos-
ing mailto: links is to do it in the browser, and specifically in a Mozilla-based
browser, which runs on all of the platforms used in this book: Windows, OS X,
and Linux. The platforms can use Jed Brown’s WebMailCompose extension (see
Figure 1-5), installable from http://jedbrown.net/mozilla/extensions/
#WebMailCompose.

FIGURE 1-5: WebMailCompose in action in Firefox 1.0 on OS X

05_59611x ch01.qxp 11/28/05 11:12 PM Page 7

8 Part I — Starting to Use Gmail

This extension also allows mailto: links to point to many other web-based
e-mail systems, should you tire of all of this coolness.

OS X
GmailStatus, mentioned earlier, also has the effect of changing mailto: links
to launch Gmail instead of Mail.app. But if you don’t want to use GmailStatus,
a good example for OS X users is Gmailto, found at http://gu.st/code/
Gmailto/. Gmailto is simple to use: Just download and run it, and then go to
Mail.app’s preference panel to change the default reader application to Gmailto
(displayed in Figure 1-6) instead of Mail.app. Why the preference panel is inside
the application you no longer wish to use is beyond the reckoning of mortal men.

FIGURE 1-6: Selecting Gmailto in Mail.app’s preferences

GmailerXP
Well worth its own section, if only because it’s really weird, the Windows software
GmailerXP — http://gmailerxp.sourceforge.net— does all of the above
but adds in a desktop version of all of the other Gmail features as well: labels,
stars, setting filters and contacts, and so on (see Figure 1-7). I’m not sure when
you would use it, but it is a brilliant example of a Gmail hack.

The second half of this book looks at how applications such as GmailerXP work
and how to make your own.

05_59611x ch01.qxp 11/28/05 11:12 PM Page 8

9Chapter 1 — Desktop Integration

FIGURE 1-7: GmailerXP in action

And Now . . .
By now you should be happily using Gmail, with new mail showing up on your
desktop and mailto: links on the web causing Gmail to open, not the default
mail reader you got with the operating system. In the next chapter, you look at
using the POP interface to pull your Gmail mail down into that very reader.

05_59611x ch01.qxp 11/28/05 11:12 PM Page 9

05_59611x ch01.qxp 11/28/05 11:12 PM Page 10

Integrating Your
Existing Mail

Gmail is probably not your first e-mail account, but its fea-
tures may well make it your best. Certainly it’s likely to be
the one with the biggest amount of storage available and

such an exemplary search system.

Importing Your Mail into Gmail
The most important thing for me, when starting to use Gmail
properly, was getting all of my existing mail into the Gmail sys-
tem. Alas, Gmail doesn’t have an import facility, so in this chapter
you have to make use of someone else’s hack to get your existing
mail into the system. There are a few applications available to do
this, but none are as good as the one concentrated on in the fol-
lowing section: Gmail Loader.

Gmail Loader
Mark Lyon’s Gmail Loader (shown in Figure 2-1), which you can
find at www.marklyon.org/gmail/default.htm, does the
trick very nicely indeed. It’s available in versions for Windows,
OS X, and Linux, and in a source-code version. To quote the
author, “The GMail Loader is a graphical, cross-platform,
Python-based utility that supports two mBox formats (Netscape,
Mozilla, Thunderbird, Most Other Clients), MailDir (Qmail,
others), MMDF (Mutt), MH (NMH), and Babyl (Emacs
RMAIL). Eventually, I plan to add support for direct sending of
IMAP accounts, and am working on a library that can read and
export Microsoft Outlook PST files.” (This was in December
2004. That addition may well have happened by now.)

˛ Importing your mail

˛ Using Pop3 with
Gmail

˛ Imap for Gmail?

chapter

in this chapter

06_59611x ch02.qxp 11/28/05 11:10 PM Page 11

12 Part I — Starting to Use Gmail

FIGURE 2-1: Gmail Loader on Windows

Mark Lyon’s own instructions (www.marklyon.org/gmail/instruction.htm)
are perfectly good, so you don’t need to walk through them here. There are some
general problems to point out, however, which are a result of the shortcomings of
the way the system has to work. Because there is no direct method to import mail
into the system, Gmail Loader (and its clones) rely on just forwarding the mail
from your existing account. This means that all date information is based on the
time the mail was received by Gmail, not on the time you originally received it
elsewhere. There’s no real way around this, although it can be worked around if
you want to find mail from, say, one particular month: Just use the search box to
look for it, or create a filter.

Setting Up Pop Access Inside Gmail
Log in to Gmail and click on the settings link at the top-right of the screen. Once
there, click on Forwarding and Pop. You should see a screen similar to Figure 2-2.

06_59611x ch02.qxp 11/28/05 11:10 PM Page 12

13Chapter 2 — Integrating Your Existing Mail

FIGURE 2-2: The Pop mail settings inside Gmail

Setting Up Pop Within an Application
Full instructions on setting up the Pop mail access within individual e-mail
applications are available directly from Gmail at http://gmail.google.com/
support/bin/answer.py?answer=12103

For expert users, the settings, shown in Table 2-1, are very simple indeed.

06_59611x ch02.qxp 11/28/05 11:10 PM Page 13

14 Part I — Starting to Use Gmail

Table 2-1 Pop Settings in Gmail

The Setting What You Set It To

Incoming Mail (POP3) Server requires SSL pop.gmail.com
Use SSL: Yes
Port: 995

Outgoing Mail (SMTP) Server requires TLS smtp.gmail.com (use authentication)
Use Authentication: Yes
Use STARTTLS: Yes (some clients call this SSL)
Port: 465 or 587

Account Name Your Gmail username (including @gmail.com)

E-mail Address Your full Gmail e-mail address (username@gmail.com)

Password Your Gmail password

IMAP for Gmail
Gmail’s features, the labeling and stars specifically, do not have counterparts in the
standard e-mail world. There’s no facility within any e-mail format to apply labels,
for example, to your mail. It’s not surprising, therefore, that there is no existing
mail application that could understand or use them. Mail exported from Gmail
does not take its label with it.

Nor once the mail has been exported can the exported copy have any effect on the
original. Moving an exported mail into a different locally stored folder doesn’t
change anything on Gmail itself.

Both of these facts are, in my view, great disadvantages to the idea of offline work-
ing with Gmail. The first is a difficult problem, but the second can be solved by
replacing the Pop interface with one based on another standard: IMAP.

Gmail does not support IMAP at the time of this writing. No matter: The second
half of this book looks at building a Gmail-to-IMAP proxy server.

And Now . . .
In this chapter, you have moved your existing mail over to Gmail, integrated
Gmail into your desktop, and looked at settings that will allow you to access
Gmail from other applications and devices. Altogether, this means that Gmail can
now be used as your primary e-mail application.

In the next chapter, you look at ways to improve how you use Gmail itself: power
tips and the tricks of the advanced user. Once you know those, you can move on
to reverse engineering Gmail and use it to power your own applications.

06_59611x ch02.qxp 11/28/05 11:10 PM Page 14

Gmail Power Tips

Now you’ve integrated Gmail into your desktop and moved
all of your mail over into it, but before you start to rip the
application apart, you should look at the ways to use

Gmail to its limits. This chapter does just that. This book is not
just about using Gmail itself but rather hacking the application to
do other things. Nevertheless, you’ll need the techniques you are
about to discover in later chapters. They are also all very useful in
their own right.

Keyboard Shortcuts
The keyboard shortcuts available within Gmail are, without any
doubt, the quickest route to speedy productivity within the appli-
cation. The time investment in learning the keyboard shortcuts of
all of your computer’s applications always pays off, as you are able
to navigate your system much more quickly than before. Instead
of reaching off the keyboard, grasping the mouse, moving it to
the right place and clicking, keyboard shortcuts allow you to press
just one button. You don’t lift your hands off the keyboard, and
when you’re really good at typing, you don’t even need to look at
the screen.

Activating the keyboard shortcuts is simple. Go to the Settings
page and turn them on there, as shown in Figure 3-1.

˛ Keyboard shortcuts

˛ Plus addressing

˛ Filters

˛ Advanced searching

chapter

in this chapter

07_59611x ch03.qxp 11/28/05 11:11 PM Page 15

16 Part I — Starting to Use Gmail

FIGURE 3-1: The keyboard shortcuts checkbox

Save the settings, and you will find that the bottom of your Inbox screen has
changed to show some of the keyboard shortcut commands, as shown in Figure 3-2.

FIGURE 3-2: The bottom of the Inbox with keyboard
shortcuts turned on

To see what keyboard shortcuts are about, press the c key now. Immediately, the
page changes to the Compose Message window, with your cursor in the To:
addressing area. Type an e-mail address, and then press Tab. Your cursor moves to
the Subject line. Type something, and hit Tab again, and you’re in the message
box. So far so good. Now a snag. Hit Tab again, and then Enter, and in Internet
Explorer your message is sent. In any other browser — Firefox, say — the final tab
puts your cursor up into the search box. Hitting Enter brings up a warning box
(shown in Figure 3-3) asking if you are willing to lose the newly typed, and
unsaved, message.

FIGURE 3-3: You’re about to lose your work. Eek!

You most likely don’t want to do that.

07_59611x ch03.qxp 11/28/05 11:11 PM Page 16

17Chapter 3 — Gmail Power Tips

If you’re not using Internet Explorer — and for the sake of this book, at least, I rec-
ommend you do not, and employ Firefox (as I am in this chapter’s screenshots) or
Mozilla instead — this is a drawback to the keyboard shortcuts. Grasp your mouse,
and click the Send button instead.

The keyboard shortcuts come into their own when dealing with spam. Figure 3-4
shows my Inbox full of the stuff.

FIGURE 3-4: An Inbox full of spam

(I have to be honest here — Gmail’s spam filters caught all of this before it hit my
Inbox. I just moved it out there for the sake of this demonstration.)

If you wake to find an Inbox full of such nastiness, it’s easy to get rid of. Press o to
open a message, and when it has opened, press the exclamation point (!) to mark it
as spam. By using my left hand to press the Shift+1 to make the exclamation point,
and my right hand to press o, I find I can get quite a satisfying rhythm going and
my Inbox clear in little to no time. Making “Pow!” noises is also recommended.

You can, of course, use the mouse to select the ones you want and then hit an
exclamation point.

07_59611x ch03.qxp 11/28/05 11:11 PM Page 17

18 Part I — Starting to Use Gmail

The keyboard shortcuts are many and various, and are all good to know about.
But they’re also very simple. By now you should have the hang of their power.
Here then, before moving on, in Table 3-1 is a complete rundown of the keyboard
shortcuts available at the time of this writing.

Table 3-1 Gmail’s Keyboard Shortcuts

Key Definition Action

c Compose Allows you to compose a new message. Shift+c
allows you to compose a message in a new
window.

/ Search Puts your cursor in the search box.

k Move to newer conversation Opens or moves your cursor to a more recent
conversation. You can hit Enter to expand a
conversation.

j Move to older conversation Opens or moves your cursor to the next oldest
conversation. You can hit Enter to expand a
conversation.

n Next message Moves your cursor to the next message. You
can hit Enter to expand or collapse a message.
(Applicable only in Conversation View.)

p Previous message Moves your cursor to the previous message.
You can hit Enter to expand or collapse a
message. (Applicable only in Conversation
View.)

Enter Open Opens your conversation. Also expands or
collapses a message if you are in Conversation
View.

u Return to conversation list Refreshes your page and returns you to the
Inbox, or list of conversations.

y Archive (Remove from current view) Automatically removes the message or
conversation from your current view.
From Inbox, y means Archive.
From Starred, y means Unstar.
From Spam, y means Unmark as spam and
move to Inbox.
From Trash, y means move to Inbox.
From any label, y means Remove the label.
Pressing y has no effect if you’re in Sent or
All Mail.

07_59611x ch03.qxp 11/28/05 11:11 PM Page 18

19Chapter 3 — Gmail Power Tips

Key Definition Action

x Select conversation Automatically checks and selects a
conversation so you can archive, apply a label,
or choose an action from the drop-down menu
to apply to that conversation.

s Star a message or conversation Adds a star to or removes a star from a
message or conversation. Stars allow you to
give a message or conversation a special status.

! Report spam Marks a message as spam and removes it from
your conversation list.

r Reply Reply to the message sender. Shift+r allows
you to reply to a message in a new window.
(Applicable only in Conversation View.)

a Reply all Reply to all message recipients. Shift+a allows
you to reply to all message recipients in a new
window. (Applicable only in Conversation View.)

f Forward Forward a message. Shift+f allows you to
forward a message in a new window.
(Applicable only in Conversation View.)

esc Escape from input field Removes the cursor from your current input
field.

Now that you’re familiar with Gmail’s keyboard shortcuts, Table 3-2 outlines the
combo-key shortcuts.

Table 3-2 Combo-Keys Shortcuts

Shortcut Key Definition Action

Tab then Enter Send message After composing your message, use this combination to
automatically send it. (Supported in Internet Explorer
only.)

y then o Archive and next Archive your conversation and move to the next one.

g then a Go to All Mail Takes you to All Mail, the storage place for all the mail
you’ve ever sent or received, but haven’t deleted.

g then s Go to Starred Takes you to all of the conversations that you’ve starred.

g then c Go to Contacts Takes you to your Contacts list.

g then d Go to Drafts Takes you to all the drafts that you’ve saved.

g then i Go to Inbox Takes you back to the Inbox.

07_59611x ch03.qxp 11/28/05 11:11 PM Page 19

20 Part I — Starting to Use Gmail

Moving on from the keyboard shortcuts, the next section shows you how you can
avoid them altogether by using filters.

Plus Addressing and Filtering
One little-known feature of the more old school e-mail systems is the one called
plus addressing. It can be exceptionally useful both in Gmail and in your other
e-mail systems, and I use it extensively for things such as mailing lists and weblog
commenting.

In a nutshell, Gmail ignores anything in the first half of an e-mail address after a
plus sign. So ben.hammersley+chapter_three_comments@gmail.com is treated
in exactly the same way as ben.hammersley@gmail.com. It is not, as you might
expect, a different address. You can put anything after the plus sign except for a
space or an at (@) sign, and it always gets delivered to your real Inbox. Figure 3-5
should prove that it works.

FIGURE 3-5: Plus addressing in action

Plus addressing is remarkably useful, as it enables you to set up filters for your
incoming mail. In order to do set up filters, click the “Create a filter” link to the
right of the search bar. You will be presented with a screen containing something
very much like Figure 3-6.

07_59611x ch03.qxp 11/28/05 11:11 PM Page 20

21Chapter 3 — Gmail Power Tips

FIGURE 3-6: The first stage in setting up a filter

Copy, as shown, the address into the To: box, and click the Next Step button. Of
course, this is how you create filters for any other part of the message as well. I’ll
leave it to the reader’s intelligence to see how this works. Figure 3-7 shows the
next stage.

FIGURE 3-7: Selecting the action you want Gmail to take when a
message arrives

A filter can move, star, directly archive, label, forward, trash, or a combination of
the five, any message that triggers it. Select the actions you want, and click the
Create Filter button. Figure 3-8 shows the final result.

Because plus addressing effectively gives you an unlimited number of e-mail
addresses to the same Gmail inbox, it allows you to assign one to each mailing list,
website, and so on that you subscribe to. You can also use it to track which e-mail
addresses have been sold to spammers, and send those to Trash automatically.

Other Addressing Tips
Gmail has a few other features to its addressing. First, the dot in the middle
of most people’s Gmail addresses is entirely optional. As Figure 3-9 shows,
benhammersley@gmail.com is exactly the same as ben.hammersley@gmail.com.

07_59611x ch03.qxp 11/28/05 11:11 PM Page 21

22 Part I — Starting to Use Gmail

FIGURE 3-8: A filter, set up

FIGURE 3-9: Receiving mail from anti-dot fanatic

Indeed, as Figure 3-10 shows, the dot is basically ignored. Put it anywhere you
like or leave it out entirely: yet another way to produce filterable e-mail addresses
inside Gmail.

07_59611x ch03.qxp 11/28/05 11:11 PM Page 22

23Chapter 3 — Gmail Power Tips

FIGURE 3-10: The blessing of the
wandering dot

One final thing about addressing: If you are sending a mail to someone else’s
Gmail account, you needn’t add the @gmail.com section of the address. Just type
the first half and it is delivered perfectly well.

Quickly Mark a Group of E-Mails
Like most desktop applications, Gmail actually allows you to mark a group of
items without having to select each one individually (by mark, I mean to put a
check in the checkbox next to an e-mail when you are presented with a list of
e-mails). With Gmail, if you’d like to select a group of consecutive messages with-
out marking each one separately, you simply need to check the first one in the list,
and then hold down the Shift key and check the last one you want to include in
the group of marked messages — the two e-mails you checked and all of the
e-mails between them will now be marked. You can use the same method to un-
mark e-mails and to star or unstar them. Note, however, that this might not work
in all browsers.

Send Executables as Attachments
When you receive an e-mail from an address that doesn’t end in @gmail.com,
Gmail looks at attachments for file extensions known to be executable (such as
.dll, .exe, .vbs, and so forth), so if someone sends you one of these file types, their
message will bounce back. This goes for files within ZIP archives as well — Gmail
looks inside these for executable extensions and the e-mail bounces back to the
sender if it contains any. Gmail doesn’t look inside other archive formats, such as
RAR or ACE, so you might want to use one of these formats instead of going
through the hassle of the following workaround.

To get around this annoyance, you can use the same trick that has been used for
years. Simply tell the sender to rename the extension of the file to something
Gmail will allow (such as .jpg), and when you receive the file, rename it back to
the type it really is (for example, change file.jpg to file.exe).

07_59611x ch03.qxp 11/28/05 11:11 PM Page 23

24 Part I — Starting to Use Gmail

It seems that Gmail will allow you to send and receive executable attachments
between Gmail accounts and from Gmail to outside accounts.

Advanced Searching
Gmail is run by Google, so it’s obvious that its built-in search engine is going to
be extremely powerful indeed. Everyone is used to the ordinary search technique
of putting keywords into the box and pressing Enter, but not everyone is aware of
the additional operators you can use. Table 3-3 gives a rundown.

Table 3-3 Gmail’s Search Operators

Operator Definition Example(s)

from: Used to specify the sender. Example: from:amy
Meaning: Messages from Amy.

to: Used to specify a recipient. Example: to:david
Meaning: All messages that were sent to
David (by you or someone else).

subject: Search for words in the Example: subject:dinner
subject line. Meaning: Messages that have the word

“dinner” in the subject.

OR Search for messages matching Example: from:amy OR from:david
term A or term B. Meaning: Messages from Amy or from
OR must be in all caps. David.

- Used to exclude messages Example: dinner-movie
(hyphen) from your search. Meaning: Messages that contain the word

“dinner” but do not contain the word
“movie”.

label: Search for messages by label. Example: from:amy label:friends
There isn’t a search operator Meaning: Messages from Amy that have the
for unlabeled messages. label “friends”.

Example: from:david label:my-family
Meaning: Messages from David that have
the label My Family.

has:attachment Search for messages with Example: from:david has:attachment
an attachment. Meaning: Messages from David that have

an attachment.

07_59611x ch03.qxp 11/28/05 11:11 PM Page 24

25Chapter 3 — Gmail Power Tips

Operator Definition Example(s)

filename: Search for an attachment Example: filename:physicshomework.txt
by name or type. Meaning: Messages with an attachment

named physicshomework.txt.
Example: label:work filename:pdf
Meaning: Messages labeled work that also
have a PDF file as an attachment.

“ “(quotes) Used to search for an exact Example: “i’m feeling lucky”
phrase. Meaning: Messages containing the phrase
Capitalization isn’t taken into “i’m feeling lucky” or “I’m feeling lucky”.
consideration. Example: subject:”dinner and a movie”

Meaning: Messages containing the phrase
“dinner and a movie” in the subject.

() Used to group words. Example: from:amy(dinner OR movie)
Used to specify terms that Meaning: Messages from Amy that contain
shouldn’t be excluded. either the word “dinner” or the word

“movie”.
Example: subject:(dinner movie)
Meaning: Messages in which the subject
contains both the word “dinner” and the
word “movie”.

in:anywhere Search for messages Example: in:anywhere subject:movie
anywhere in your account. Meaning: Messages in All Mail, Spam, and
Messages in Spam and Trash Trash that contain the word “movie”.
are excluded from searches
by default.

in:inbox Search for messages in Inbox, Example: in:trash from:amy
in:trash Trash, or Spam. Meaning: Messages from Amy that are in
in:spam the trash.

is:starred Search for messages that are Example: is:read is:starred from:David
is:unread starred, unread, or read. Meaning: Messages from David that have
is:read been read and are marked with a star.

cc: Used to specify recipients Example: cc:david
bcc: in the cc: or bcc: fields. Meaning: Messages that were cc-ed to

Search on bcc: cannot retrieve David.
messages on which you were
blind carbon copied.

after: Search for messages after or Example: after:2004/04/17
before: before a certain date. before:2004/04/18

Date must be in yyyy/mm/dd Meaning: Messages sent on April 17, 2004.
format. More precisely: Messages sent on or after

April 17, 2004, but before April 18, 2004.

07_59611x ch03.qxp 11/28/05 11:11 PM Page 25

26 Part I — Starting to Use Gmail

The operators detailed in Table 3-3 are all self-explanatory and can be combined.
For example, consider the following search parameters:
in:inbox from:BenHammersley “fancy a pint?”

This search would result in any message from my Gmail account, in your Inbox,
suggesting a visit to the pub. In order to bring any unread mail sent before New
Year’s Eve 2004, with an attachment, and the subject line New Year’s Eve
Invitation, you would conduct the following search:
is:unread before:2004/12/31has:attachment subject:”New Years Eve
Invitation”

Very simple indeed.

For more information on advanced searching with Google, a good place to start is
Google For Dummies.

And Now . . .
You’ve reached the end of Chapter 3. You should feel confident using Gmail itself,
in getting your mail into and out of the system, and in using the system with some
sort of flair. From the next chapter onward, you’re going to delve into Gmail’s
inner workings. Things get much more technical from now on. Let’s go.

07_59611x ch03.qxp 11/28/05 11:11 PM Page 26

Getting Inside Gmail

So, by now you should be up to speed with actually using
Gmail. It’s time to get a bit dirtier. Time to get under the
hood, so to speak, and fiddle with the application. In this

part, you look at how Gmail works and how to make it work
for you.

First, you look at skinning Gmail in Chapter 4. Making Gmail
look different might seem to be a strange thing to do, but it’s
both fun and educational. The knowledge you pick up there, and
in Chapter 5 where you investigate the JavaScript-ybased work-
ings of the application, will enable you to fully understand how
Gmail works. In Chapter 6, you learn how Greasemonkey and
Firefox can be used to radically improve your Gmail experience
and to build your own Greasemonkey scripts.

In Chapter 7, you encounter the various programming language
libraries available for use with Gmail, and you start to use them:
writing scripts to check for and read mail (Chapters 8 and 9), and
to send replies (Chapter 10). By the end of that chapter, you’ll be
writing little mini applications that use Gmail as their remote
processing system. Exciting? Oh yes!

Chapter 4
Skinning Gmail

Chapter 5
How Gmail Works

Chapter 6
Gmail and Greasemonkey

Chapter 7
Gmail Libraries

Chapter 8
Checking for Mail

Chapter 9
Reading Mail

Chapter 10
Sending Mail

in this part

part

08_59611x pt02.qxp 11/28/05 11:13 PM Page 27

08_59611x pt02.qxp 11/28/05 11:13 PM Page 28

Skinning Gmail

Being a web-based application, and written by people who
understand modern practices, Gmail is skinnable using a
user-side CSS file. This chapter analyzes Gmail’s HTML

layout, and shows you how to create and use CSS files that will
give the application a whole new look. It won’t change the way
that Gmail works, only the way it looks, but you will learn a lot
about the way Gmail has been built: knowledge that will prove
invaluable in the following chapters.

Besides, it’s really cool.

Deconstructing Gmail
In order to pack most of its functionality into a browser-side
application, Gmail employs an extremely complex page structure.
It does use CSS very heavily, happily making the styling of the
page quite simple once you understand the names of the ele-
ments, but it also consists of at least nine iframes inside a frame-
set. To make things worse, much of the markup is dynamically
created by JavaScript, meaning that just viewing the source won’t
help you.

Before you can get onto reskinning Gmail, then, you need to
deconstruct it, and see how it is put together. Only then can you
think about messing around with it.

To do that, you should use the Mozilla Firefox browser (at the
time of this writing version 1.0), and the extremely popular
Web Developer Extension, written by Chris Pederick. These
are both highly recommended, and using them will help you
to follow along at home with the rest of this section. Go to
www.mozilla.org and www.chrispederick.com/work/
firefox/webdeveloper/, respectively, and download the
applications.

˛ Gmail’s layout

˛ The user interface

˛ Changing colors

˛ Changing layout

chapter

in this chapter

09_59611x ch04.qxp 11/28/05 11:12 PM Page 29

30 Part II — Getting Inside Gmail

Once you’ve downloaded the applications, you can start. Figure 4-1 shows my
own Gmail Inbox with a single message inside.

The first thing to do is open up Firefox’s DOM inspector, which tells you what
the browser itself is seeing. Half expanded, it looks like Figure 4-2.

The figure shows you that the application is made up of a single document (obvi-
ously), containing a frameset and some markup. That tiny amount of markup,
shown in Figure 4-2 as the NOSCRIPT section, is simply a message that displays
only if you’re trying to look at Gmail with JavaScript turned off, telling you that
you’re out of luck without JavaScript. The frameset is where it’s at. It contains two
frames, the first of which has 12 divs in its body, while the second frame has a
large script element, but nothing of note in the body. Further exploration, not
shown here, will point out that the second frame contains a vast amount of
JavaScript and nothing else. That, as you will see in later chapters, makes up the
real client-side workings of Gmail. For your purposes now, however, you can con-
centrate on the first frame.

So, working with the first frame, you see it is made up of 12 divs, each with its
own class name, as illustrated in Figure 4-3.

FIGURE 4-1: A simple Gmail Inbox

09_59611x ch04.qxp 11/28/05 11:12 PM Page 30

31Chapter 4 — Skinning Gmail

FIGURE 4-2: What the DOM
inspector tells you about the Inbox

FIGURE 4-3: The first frame’s structure showing
class names

There’s a great deal going on here, much of which will be revisited over the
course of this book. For now, you need to keep drilling down to the interface itself.

09_59611x ch04.qxp 11/28/05 11:12 PM Page 31

32 Part II — Getting Inside Gmail

To see which of these divs is the mother lode, use the Web Developer Extension
to Firefox to turn off the styling (click on the Disable menu, the first on the left,
and then Disable Styles), outline the block level elements in red, and display
their names. Doing this, you get the horrible Figure 4-4.

It’s very plain from Figure 4-4 that the div called d_tlist2 is the one you’re
really interested in. It’s the one that isn’t empty, which is something of a giveaway.
Using the DOM inspector, you can drill down further. Notice that d_tlist2
contains an iframe, called tlist, and that that iframe, when opened in a new
DOM inspector, looks like Figure 4-5.

You can also see from the DOM inspector that the iframe that makes
up this interface is addressed as follows: http://gmail.google.
com/gmail?search=inbox&view=tl&start=0&init=1&zx=3177c401850460
90895581735.

FIGURE 4-4: Gmail with no styling . . . quite ugly

09_59611x ch04.qxp 11/28/05 11:12 PM Page 32

33Chapter 4 — Skinning Gmail

FIGURE 4-5: Gmail’s Inbox exposed in
the DOM inspector

Ferret that bit of information away for the moment. It will come in handy.
Meanwhile, back at the browser, you can dump the contents of this page from
the DOM inspector to a text editor. Remember that although this all seems a bit
long-winded, you cannot do it just by using View Source: Most of the markup is
created by JavaScript, and you’ll get to see only some of the JavaScript if you do
that. You needed to use the DOM inspector to get to the actual code that the
browser is rendering and displaying on your screen. Rather than subject you, dear
readers, to the horrors of 14 pages of HTML here, I’ve placed the entire listing in
Appendix A. Before moving on to the style sheet’s nuts and bolts, consider turn-
ing to Appendix A and perusing Listing A-1 first.

To make things a bit easier, let me strip out the JavaScript and isolate the style
sheet, tidy the whole thing up a bit, and walk through the document showing you
what each section does. From the top, then.

The Top Section
Figure 4-6 shows the top section of the Gmail Inbox, with the table elements arti-
ficially outlined with dotted lines.

FIGURE 4-6: The Gmail Inbox’s top section, showing table elements

09_59611x ch04.qxp 11/28/05 11:12 PM Page 33

34 Part II — Getting Inside Gmail

In the code, the top section of the Inbox is produced by the following HTML,
shown in Listing 4-1.

Listing 4-1: The Top Section of the Gmail Inbox in HTML

<body>
<table width=”100%” cellspacing=”0” cellpadding=”0”>
<tbody>
<tr>
<td width=”149” valign=”top” rowspan=”2”>

<div id=”ds_inbox” style=”padding-top: 1ex;” class=”h”>
<img width=”143” height=”59” src=
“/gmail/help/images/logo.gif”></div></td>

<td valign=”top” align=”right”>
<div class=”s” style=”padding-bottom: 2px; text-align:
right;”>
ben.hammersley@gmail.com | <span id=”prf_g” class=
“lk”>Settings | <a target=”_blank” href=”/support/”

class=”lc” id=”help”>Help | <a target=”_top” onclick=
“return top.js._Main_OnLink(window,this,event)” class=”lk”

href=“?logout”>Sign out</div></td></tr>

<tr>
<td valign=”bottom”>
<div class=”s” id=”mt1”>
<table cellspacing=”0” cellpadding=”0”>
<tbody>
<tr>
<td valign=”bottom”>
<form onsubmit=”return top.js._MH_OnSearch(window,0)” style=
“padding-bottom: 5px; white-space: nowrap;” class=”s” id=”s”>
<input value=”” name=”q” maxlength=”2048” size=”28”>
<input type=”submit” value=”Search Mail”>

<input type=”submit” onclick=
“return top.js._MH_OnSearch(window,1)” value=
“Search the Web”> </form></td>

<td>
<table cellspacing=”0” cellpadding=”0” style=
“vertical-align: top; padding-bottom: 4px;”>
<tbody>
<tr>
<td><span id=”mt_adv” style=”font-size: 65%;” class=
“lk”>Show search options
 </td></tr>
<tr>

09_59611x ch04.qxp 11/28/05 11:12 PM Page 34

35Chapter 4 — Skinning Gmail

<td><span id=”mt_cf1” style=”font-size: 65%; vertical-align:
top;”
class=
“lk”>Create a filter</td></tr></tbody></table
></td></tr></tbody></table></div>
<div style=
“height: 2.1ex; padding-right: 149px; visibility: hidden;”

class=”nt” id=”nt1”></td></tr></tbody></table>

As you can see, the HTML uses tables, divs, and spans, and takes its styling from
both the style sheet and some inline styling as well. This means that you must
forcibly override some of their styling using the !important modifier. More on
that in a few pages.

So, going from left to right, the Gmail logo is marked up with a div with an id of
ds_inbox and a class of h. Looking in the style sheet, notice that this class merely
changes the shape of your mouse pointer when you mouse over it. No styling there
as such, but plenty of opportunity to remove the Gmail logo and add your own.

Moving over, my e-mail address and the links to the Settings, Help, and Sign Out
buttons are all contained within an unnamed div, with a class of s. From the style
sheet, you can see that s simply sets the font size to 80 percent. So there’s scope
here for styling, but not specifically this section. Nor can you really move it around.

That row is the top half of a table. The bottom half of the table has another table
nesting inside it (and another nesting inside that one, as you shall see).

The outermost of those tables is split in two, with the left-hand side containing
the search form, and the right-hand side containing the innermost table, which
splits it into two rows. The top row, a span called mt_adv, acts as a link, showing
the search options. The cunning way in which this JavaScript works is dealt with
in Chapter 5.

The bottom row is another span called mt_cf1, which opens the filter creation
box. After that, the code closes the table and the surrounding div.

The Navigation Menu
After two divs with no content, we come to the div called nav, which contains the
entire navigation menu from the left of the screen, as in Figure 4-7.

09_59611x ch04.qxp 11/28/05 11:12 PM Page 35

36 Part II — Getting Inside Gmail

FIGURE 4-7: The Gmail
navigation menu

The code that produces this import part of the page is here, in Listing 4-2.

Listing 4-2: The HTML That Produces the Gmail Navigation Menu

<div style=”padding-bottom: 1px;” id=”mt2”>
<div class=”nt” id=”nt2” style=”display: none;”>
<div id=”nav” style=”position: absolute; left: 1ex; width:
14ex;”>
<div class=”nl”>Compose
Mail</div>
<div style=”padding-top: 9px;”>
<table cellspacing=”0” cellpadding=”0” border=”0” style=
“background: rgb(195, 217, 255) none repeat scroll 0%; -moz-
background-clip: initial; -moz-background-origin: initial;
-moz-background-inline-policy: initial;”

class=”cv”>
<tbody>
<tr height=”2”>
<td width=”8” class=”tl”></tr>
<tr>
<td>
<td>Inbox
(1)</td></tr>
<tr height=”2”>
<td class=”bl”></tr></tbody></table>
<div class=”nl”>Starred

<img width=”13” height=”13” src=
“/gmail/images/star_on_sm_2.gif” id=”_ss”></div>

09_59611x ch04.qxp 11/28/05 11:12 PM Page 36

37Chapter 4 — Skinning Gmail

<div class=”nl”>Sent
Mail</div>
<div class=”nl”><span id=”ds_drafts”
class=”lk”>Drafts</div>
<div class=”nl”>All
Mail</div>
<div class=”nl”><span id=”ds_spam”
class=”lk”>Spam</div>
<div class=”nl”><span id=”ds_trash” class=
“lk”>Trash</div></div>
<div style=”padding-top: 8px;”>
<div class=”nl”><span id=”cont” class=
“lk”>Contacts</div></div>
<div id=”nb_0” style=”padding-top: 8px;”>
<div style=”width: 95%;”>
<table width=”100%” cellspacing=”0” cellpadding=”0” bgcolor=
“#B5EDBC”>
<tbody>
<tr height=”2”>
<td class=”tl”>
<td class=”tr”></tr></tbody></table>
<div style=
“padding: 0pt 3px 1px; background: rgb(181, 237, 188) none
repeat scroll 0%; -moz-background-clip: initial; -moz-
background-origin: initial; -moz-background-inline-policy:
initial;”>
<div id=”nt_0” class=”s h”><img width=”11” height=”11” src=
“/gmail/images/opentriangle.gif”> Labels</div>
<table cellspacing=”2” class=”nb”>
<tbody>
<tr>
<td>
<div align=”right” id=”prf_l” class=”lk cs”>
Edit labels</div></td></tr></tbody></table></div>
<table width=”100%” cellspacing=”0” cellpadding=”0” bgcolor=
“#B5EDBC”>
<tbody>
<tr height=”2”>
<td class=”bl”>
<td class=”br”></tr></tbody></table></div></div>
<div id=”nb_2” style=”padding-top: 7px;”>
<div style=”padding-top: 7px;” class=”s”><span style=
“color: rgb(170, 0, 0);” class=”ilc” id=”il”>Invite 4
friends

to Gmail </div></div>

09_59611x ch04.qxp 11/28/05 11:12 PM Page 37

38 Part II — Getting Inside Gmail

You’ll notice when you read through this code that what look like links (the
Inbox, Starred, Sent Mail, and so on) actually aren’t. They’re just plain text
wrapped in spans that provide just enough styling to make them look like links:
They’re underlined, the mouse pointer changes, and so on. This is just another
symptom of how cunning the Gmail application is. I’ll be explaining all of this in
Chapter 5. Just so you know.

The styling is simple here. After the Compose Message link (that’s not, as I just
said, a link in the sense of but rather just the plain text styled
up to look like one), there’s a table containing only the Inbox link and new mail
count and then a succession of divs with class nl, containing spans with each of
the menu options.

Then there’s another non-link link to the Contacts functionality, and another table
used to produce the label box. With labels defined, as you will see later, this table
has more content. Finally, after the table, is a div called il containing the invitation
link. (My bet is that il stands for Invitation Link, but ignorance of such things
is the mark of the reverse engineer.) As you will have noticed by now, Gmail is
built with very small names for all of the divs and spans. This is also true of the
JavaScript functions covered in the next chapter. This is because Gmail is serving
these pages millions of times a day, and the bandwidth saved by dropping every-
thing down to one- or two-letter variable names is well worth the obfuscation.

Onward, then, to the real meat of the page.

The Activity Area
Right in the middle of the page, surrounded with a blue border, is what I’ll call
the central activity area. It’s in this section that the majority of your work within
Gmail is done: writing and reading mail, for example. It looks like Figure 4-8.

FIGURE 4-8: The central activity area

09_59611x ch04.qxp 11/28/05 11:12 PM Page 38

39Chapter 4 — Skinning Gmail

The central activity area is controlled by the code in Listing 4-3.

Listing 4-3: The Central Activity Area in HTML

<div style=”margin-left: 14ex;” id=”co”>
<div id=”tc_top”>
<table width=”100%” cellspacing=”0” cellpadding=”0” bgcolor=
“#C3D9FF”>
<tbody>
<tr height=”2”>
<td class=”tl”>
<td class=”tr”></tr></tbody></table>
<table width=”100%” cellspacing=”0” cellpadding=”0” style=
“background: rgb(195, 217, 255) none repeat scroll 0%; -moz-
background-clip: initial; -moz-background-origin: initial;
-moz-background-inline-policy: initial;”

class=”th”>
<tbody>
<tr>
<td width=”8”>
<td><button style=”font-weight: bold;” id=”ac_rc_^i”
class=”ab”
type=”button”>Archive</button> <button style=
“width: 8em; text-align: center;” id=”ac_sp” class=”ab”

type=”button”>Report Spam</button> <select
id=

“tamu” onchange=
“top.js._TL_OnActionMenuChange(window,this)” onfocus=
“return

top.js._TL_MaybeUpdateActionMenus(window,this)”
onmouseover=
“return

top.js._TL_MaybeUpdateActionMenus(window,this)”
style=”vertical-align: middle;”>

<option style=”color: rgb(119, 119, 119);” id=”mac”>More
Actions
...</option>
<option style=”color: rgb(119, 119, 119);” disabled id=”nil”>
--------</option>
<option style=”color: rgb(119, 119, 119);” disabled
id=”al”>Apply
label:</option>
<option value=”new”> New
label...</option></select> <span id=”refresh”

class=”lk”>Refresh</td>
<td align=”right”> <span style=

Continued

09_59611x ch04.qxp 11/28/05 11:12 PM Page 39

40 Part II — Getting Inside Gmail

Listing 4-3 (continued)

“white-space: nowrap;”>1 - 1 of
1</td>
<td width=”4”></tr>
<tr>
<td>
<td valign=”bottom” style=”padding-top: 3px;”
colspan=”2”>Select:
All , <span id=”sl_r” class=
“l”>Read , Unread ,
Starred , <span id=”sl_t”

class=”l”>Unstarred , <span id=”sl_n” class=
“l”>None</td></tr>

<tr height=”3”>
<td></tr></tbody></table></div>
<div style=”border-left: 9px solid rgb(195, 217, 255);”>
<div id=”tbd”>
<form target=”hist” method=”post” name=”af” action=
“/gmail?search=inbox&view=tl&start=0”><input
type=”hidden”
name=”act”> <input type=”hidden” name=”at”> <input
type=”hidden”
name=”vp”>
<table width=”100%” cellspacing=”0” cellpadding=”1” id=”tb”

class=”tlc”>
<col style=”width: 31px; text-align: right;”>
<col style=”width: 20px;”>
<col style=”width: 24ex;”>
<col style=”width: 2ex;”>
<col>
<col style=”width: 17px;”>
<col style=”width: 8ex;”>
<tbody>
<tr id=”w_0” class=”ur”>
<td align=”right”><input type=”checkbox”></td>
<td></td>
<td>Ben
Hammersley (2)</td>
<td> </td>
<td>Skinning Gmail? That’s so cool! -
BEGIN
PGP SIGNED MESSAGE-- Hash: SHA1 la la la --BEGIN PGP
SIGNATURE--
Version: GnuPG v1 …</td>
<td> </td>
<td>2:29pm</td></tr></tbody></table></form>

09_59611x ch04.qxp 11/28/05 11:12 PM Page 40

41Chapter 4 — Skinning Gmail

<div style=”padding: 0pt 20px;” class=”s c”>

</div></div></div>
<img width=”9” height=”11” src=”/gmail/images/chevron.gif”

style=”position: absolute; display: none;” id=”ar”>
<div id=”tc_bot”>
<table width=”100%” cellspacing=”0” cellpadding=”0” style=
“background: rgb(195, 217, 255) none repeat scroll 0%; -moz-
background-clip: initial; -moz-background-origin: initial;
-moz-background-inline-policy: initial;”

class=”th”>
<tbody>
<tr height=”2”>
<td></tr>
<tr>
<td width=”8”>
<td>Select: All , <span
id=”sl_r”
class=”l”>Read , <span id=”sl_u”
class=”l”>Unread ,
Starred , <span id=”sl_t”

class=”l”>Unstarred , <span id=”sl_n” class=
“l”>None</td></tr>

<tr height=”4”>
<td></tr>
<tr>
<td>
<td><button style=”font-weight: bold;” id=”ac_rc_^i”
class=”ab”
type=”button”>Archive</button> <button style=
“width: 8em; text-align: center;” id=”ac_sp” class=”ab”

type=”button”>Report Spam</button> <select
id=

“bamu” onchange=
“top.js._TL_OnActionMenuChange(window,this)” onfocus=
“return

top.js._TL_MaybeUpdateActionMenus(window,this)”
onmouseover=
“return

top.js._TL_MaybeUpdateActionMenus(window,this)”
style=”vertical-align: middle;”>

<option style=”color: rgb(119, 119, 119);” id=”mac”>More
Actions

Continued

09_59611x ch04.qxp 11/28/05 11:12 PM Page 41

42 Part II — Getting Inside Gmail

Listing 4-3 (continued)

...</option>
<option style=”color: rgb(119, 119, 119);” disabled id=”nil”>
--------</option>
<option style=”color: rgb(119, 119, 119);” disabled
id=”al”>Apply
label:</option>
<option value=”new”> New
label...</option></select></td>
<td align=”right”>1
-
1 of 1</td>
<td width=”4”></tr></tbody></table>
<table width=”100%” cellspacing=”0” cellpadding=”0” bgcolor=
“#C3D9FF”>
<tbody>
<tr height=”2”>
<td class=”bl”>
<td class=”br”></tr></tbody></table></div></div>

This code is also quite complicated, but working through it is just a matter of
looking through the code for the class and id attributes and noting the tables in
the middle. By now, you should be quite good at this, so you won’t do that here.
The next section, after all, provides a map of all of the classes and ids you need.

The Bottom Section
Now we come to the last remaining section of the Gmail screen: the bottom of
the screen, as shown in Figure 4-9. Again, the drudgework is left out here; you
see only the code. In the tradition of software textbooks, the figuring out of the
names of the divs and spans within the bottom section is left as an exercise to the
reader. Listing 4-4 shows you the code if you want to do this, or you can skip past
Listing 4-4 to Figure 4-10, which outlines the whole page’s structure in CSS.

FIGURE 4-9: The bottom section of the screen

09_59611x ch04.qxp 11/28/05 11:12 PM Page 42

43Chapter 4 — Skinning Gmail

Listing 4-4: The Bottom Section of the Screen in HTML

<div style=”padding: 0ex 14ex;” id=”ft”>
<div style=”margin-top: 20px;” class=”c s”>Use the <span
id=”fsb”
style=
“color: rgb(0, 0, 204); text-decoration: underline; cursor:
pointer; white-space: nowrap;”>
search box or <span id=”mt_adv” style=
“color: rgb(0, 0, 204); text-decoration: underline; cursor:
pointer; white-space: nowrap;”>
search options to find messages quickly!</div>
<div style=”margin-top: 12px; color: rgb(0, 102, 51);” class=
“c s b”>You are currently using 0 MB (0%) of your 1000
MB.</div>
<div style=”margin-top: 4px;” class=”c xs”>
<div><a href=”/gmail/help/terms_of_use.html” target=”_blank”

class=”lc”>Terms of Use - <a href=
“/gmail/help/privacy.html” target=”_blank” class=
“lc”>Privacy Policy - <a href=
“/gmail/help/program_policies.html” target=”_blank” class=
“lc”>Program Policies - <a href=
“http://www.google.com/” target=”_blank” class=”lc” id=
“googh”>Google Home</div>

<div style=”color: rgb(68, 68, 68); margin-top: 4px;”>
©2004 Google</div></div></div>
<script type=”text/javascript”>
var fp=’9cf0974955f546da’;
</script><script type=”text/javascript”>
var loaded=true;D([‘e’]);
</script><script type=”text/javascript”>
try{top.js.L(window,45,’f4ba224ac4’);}
catch(e){}

</script>
<div id=”tip” style=
“border-style: outset; border-width: 1px; padding: 2px;
background: rgb(255, 255, 221) none repeat scroll 0%;
position: absolute; -moz-background-clip: initial; -moz-
background-origin: initial; -moz-background-inline-policy:
initial; left: 309px; top: 125px; display: none;”>
<center><small>ben@benhammersley.com</small></center></div>
</body>
</html>

09_59611x ch04.qxp 11/28/05 11:12 PM Page 43

44 Part II — Getting Inside Gmail

So, now you have worked your way through each of the separate sections of the
Gmail layout, and you should have a good idea of the structure of the page and
how it is produced by the HTML.

Why, you might ask have you just gone through 20 pages of gritty DOM inspec-
tion and poring over code? Because, and you have to trust me on this, Gmail’s
workings are almost entirely contained in that ungodly lump of framesets and
JavaScript. Over the majority of the rest of the book, you will spend your time
embedded in the depths of this code, so it’s extremely useful to jump off into the
deep end, as it were.

Applying a New Style
Now that you’ve slogged your way through the structure of the Gmail markup,
you can use this knowledge to give the application a new look. First, however, you
will need to install another extension to Firefox. You need the URIid extension
written by Chris Neale, found at http://extensionroom.mozdev.org/more-
info/uriid.

Once that is installed, go to your Profile folder. With Firefox, which is the browser
I’m recommending for this chapter, the location of the Profile folder changes per
operating system. Look at www.mozilla.org/support/firefox/edit.
html#profile for the official reference. Once inside the Profile folder, you will be
adding the CSS you are about to write to the userContent.css file inside the
chrome subdirectory.

Open the userContent-example.css file, and rename it as userContent.css.
You can now add any CSS you like, and have it affect the pages you are applying
them to. You differentiate between the sites you want it to act upon by appending
the base URL as a class. For example, to apply styles to Gmail, the ID gmail-
google-com will be added to the body. The style sheet can then use the
#gmail-google-com selector to apply styles only to that site. Once the CSS
file is saved, restart Firefox, and your styles will take hold.

Creating Gmail Lite
During the course of my working day, I spend most of my time looking at my
computer’s screen. After a while, I yearn for calmer pages, with less to focus on.
As I use Gmail a lot of the time, it’s good to use the knowledge worked out in the
preceding text to restyle the page into something easier to look at after a hard day.
Figure 4-10 shows this newly styled Gmail, Gmail Lite.

09_59611x ch04.qxp 11/28/05 11:12 PM Page 44

45Chapter 4 — Skinning Gmail

FIGURE 4-10: Gmail Lite

As you can see, it’s a much simpler page layout, with no images, a muted color
scheme, and without the labels, invitation link, and other superfluous material that
just irritates after a day’s writing. It’s a minimalist Gmail whose styles are covered
in the next section.

Walking Through the Style Sheet
The effects you see in Figure 4-10 are simple to achieve with a style sheet, and
certainly much more impressive ones can be achieved by someone with more
design skill than myself.

Begin with the following CSS:
body#gmail-google-com {

background-color: #ffffff !important;
}

body#gmail-google-com img{
display: none !important;

}

/* regular links */

09_59611x ch04.qxp 11/28/05 11:12 PM Page 45

46 Part II — Getting Inside Gmail

body#gmail-google-com span.lk,
body#gmail-google-com a.lc,
body#gmail-google-com a.lk
{

text-decoration: none !important;
color: #191b4c !important;

}

/* The Search Form */
body#gmail-google-com div#mt1 form{
display: none !important;
}

body#gmail-google-com div#mt1 table{
display: none !important;
}

This code starts by declaring the background color of the whole page to be white,
and then turning off any images by setting them to display:none. This CSS
command is extremely useful for stripping sites of dullness, as you can see, after
the section giving the links and pseudo-links on the page a nice dark blue color.

From the previous section, you already know that the Gmail logo and the search
box are held in a table and a form, inside a div called mt1. By setting both of these
to display:none, you remove them entirely.

The next section of CSS is as follows:
/*--
*/
/*The Navigation Menu */

body#gmail-google-com span#comp {
font-family: cursive;
}

/* sidebar links */
body#gmail-google-com div#nav table.cv,
body#gmail-google-com div#nav table.cv td {

background: #ffffff !important;
}

body#gmail-google-com table.cv td.tl,
body#gmail-google-com table.cv td.bl {

height: 0 !important;

09_59611x ch04.qxp 11/28/05 11:12 PM Page 46

47Chapter 4 — Skinning Gmail

}

/* both current and other */
body#gmail-google-com table.cv td span.lk,
body#gmail-google-com div.nl span.lk{

display: block !important;
background: #ffffff !important;
color: #191b4c;
border: none !important;
padding: 2px !important;
margin-right: 5px !important;

}

/* Override the background color for the unselected options*/
body#gmail-google-com div.nl span.lk {

background: #ffffff !important;
border: none !important;

}

/* For the mouse-over color change */
body#gmail-google-com div.nl span.lk:hover {

background: #d3cbb8 !important;
border-color: #fef759 !important;

}

/* hide “New!” super-script */
body#gmail-google-com div#nav sup {

display: none !important;
}

/* remove the colored left border of the inbox */
body#gmail-google-com div#co div {

border: 0 !important;
}

/*---*/

This section of the CSS file deals with the navigation sidebar. It did look like
Figure 4-7, but now it’s a great deal simpler. The link color change at the top of
the CSS takes care of the color, so the first thing you do is restyle the font for
the Compose Mail link. You know that this has an id of comp, so you set the
font-family: cursive. This will, in compatible browsers, choose the default
cursive typeface.

Next you override the background colors and borders of the menu items and
finally remove the light blue edge of the application area that stretches from the

09_59611x ch04.qxp 11/28/05 11:12 PM Page 47

48 Part II — Getting Inside Gmail

active menu option in the normal view. It’s much simpler now. Having manipu-
lated these elements, consider this CSS:
/* labels */
body#gmail-google-com div#nb_0 {
display: none !important;
}

/* The Invitation Link */
body#gmail-google-com #il {

display: none !important;
}

/* The footer */
body#gmail-google-com div#ft {

display: none !important;
}

These three short sections turn off the labels, the invitation link, and the whole
footer section. We’re almost Zen-like now. Final stop: the application area:
/*--
*/
/* THE APPLICATION AREA */

/* top bar */
body#gmail-google-com div#tc_top table,
body#gmail-google-com div#tc_top table td.tl,
body#gmail-google-com div#tc_top table td.tr,
body#gmail-google-com div#tc_top table.th,{

background: #ffffff !important;
border: none !important;
padding: 2px !important;
margin: 5px 0 5px 0 !important;

}

/* bottom bar*/
body#gmail-google-com div#tc_bot table,
body#gmail-google-com div#tc_bot table td.bl,
body#gmail-google-com div#tc_bot table td.br,
body#gmail-google-com div#tc_bot table.th{

display: none !important;
}

/* selection links in bar */
body#gmail-google-com div#co div#tc_top span.l{

color: #191b4c !important;
}

09_59611x ch04.qxp 11/28/05 11:12 PM Page 48

49Chapter 4 — Skinning Gmail

/* mailbox contents */
body#gmail-google-com div#co div#tbd {

background: #ffffff !important;
border: none !important;
padding: 4px 0 4px 0 !important;

}

/* unread mail row inside the inbox */
body#gmail-google-com table.tlc tr.ur {

background-color: #d7d7d7 !important;
height: 30px;

}

/*read mail row inside the inbox */
body#gmail-google-com table.tlc tr.rr {

background-color: #ffffff !important;
}

body#gmail-google-com table.tlc tr.ur td,
body#gmail-google-com table.tlc tr.rr td{

border: 0 !important;
}

/* message hovering snippet expansion */
body#gmail-google-com table.tlc tr.ur:hover,
body#gmail-google-com table.tlc tr.rr:hover{

background-color: #ffffff !important;
}

body#gmail-google-com table.tlc tr.ur:hover td,
body#gmail-google-com table.tlc tr.rr:hover td{

border: none !important;
vertical-align: top !important;

}

body#gmail-google-com table.tlc tr.ur:hover .sn,
body#gmail-google-com table.tlc tr.rr:hover .sn{

display: block !important;
white-space: normal !important;

}

/* and email address display */
body#gmail-google-com table.tlc tr.ur:hover td span,
body#gmail-google-com table.tlc tr.rr:hover td span {

display: block; !important;
color: #ff0000;

}

/* labels should still be inline */

09_59611x ch04.qxp 11/28/05 11:12 PM Page 49

50 Part II — Getting Inside Gmail

body#gmail-google-com table.tlc tr.ur:hover td span.ct,
body#gmail-google-com table.tlc tr.rr:hover td span.ct{

display: inline;
}

body#gmail-google-com table.tlc tr.ur:hover td span[id]:after,
body#gmail-google-com table.tlc tr.rr:hover td span[id]:after{
content: attr(id);
display: block;
margin-left: -38px; /* hack to hide “user_” id prefix */
color: #b6af9e;

}

/*---
*/

The first thing to notice is that you turned off the bottom button bar. There’s no
need to have two, and you have one at the top already. Then you recolor the links
within the top bar.

The next section colors the background of the application white and removes the
solid borders. Then you have two bits of CSS: You define the background color of
the rows for each message within the mailbox that is being viewed. Within the
Inbox, these lines of CSS put a gray background behind unread mail, and a white
background behind read mail (see Figure 4-11).

FIGURE 4-11: The new style sheet applied

09_59611x ch04.qxp 11/28/05 11:12 PM Page 50

51Chapter 4 — Skinning Gmail

The rest of the code deals with the physical layout of the application area, espe-
cially removing the borders. If you want to see the CSS listing in its entirety, flip
to Appendix A and check out Listing A-2.

Thanks for the basis for this style sheet must go to Mihai Parparita, who released
the original underneath the Creative Commons Attribution-ShareAlike license at
http://persistent.info/archives/2004/10/05/gmail-skinning. Now
that you have your new style sheet applied, you can get down to the business of
ridding Gmail of advertising.

Removing Google’s Advertising
Gmail is advertising-supported, and Google’s advertising is in no way intrusive,
and can be very useful. But if you’re totally against the concept, and serene within
your soul about the idea of using a service without the quid pro quo, it is entirely
possible to remove the advertising using the techniques in this chapter. The adver-
tising is contained entirely within a div called ad, so the code in Listing 4-5 turns
off advertising.

I do not recommend you use this code to turn off advertising, but I include it
regardless and leave the determination to you.

Listing 4-5: Turning Off Google’s Advertising with CSS

/* Adverts */
body#gmail-google-com div#ad {
display: none !important;
}

And Now . . .
In this chapter, you explored how Gmail is structured and saw that the entire
interface is loaded into a complex selection of frames. You learned how to change
the styling of this interface, and while doing so saw a lot of the interface code. You

09_59611x ch04.qxp 11/28/05 11:12 PM Page 51

52 Part II — Getting Inside Gmail

should be confident now that Gmail is not an enormously complex and incompre-
hensible application that instills fear into your heart: It’s just very complex, slightly
incomprehensible, and not at all scary.

So, now you’ve started to delve into Gmail’s workings. The next chapter moves
beyond the surface and shows you how your browser communicates with the
Gmail server, how the interface is put together, and how Gmail actually works.
You’ll be using many of the same techniques as you did in this chapter but to a
much greater depth. Put the kettle on, make some coffee, and let’s go.

09_59611x ch04.qxp 11/28/05 11:12 PM Page 52

How Gmail Works

By now you’ve learned how to use Gmail with some flair, and
you can change the way it looks to a certain extent. Now
you have to look into exactly how it works. You already

know that the majority of the Gmail functionality is enacted
client-side — that is, on the browser, rather than at the server —
and is done with JavaScript. This chapter describes exactly how
this works and how you can exploit it.

What the Devil Is Going On?
Before revealing just what’s happening, let’s recap. In Chapter 4
you used the DOM inspector inside Firefox to help you dissect
the HTML, and this will help you again. So, as before, open up
Gmail in Firefox, and open the DOM inspector.

You already know that the main document is made of two frames,
the first made of many subframes and the second one with noth-
ing but a huge chunk of JavaScript. Figure 5-1 shows you that in
the DOM inspector.

Using the DOM inspector’s right-click menu Copy as XML
function, you can grab the text of the script and copy it to a text
editor. Ordinarily, I would include this code as a listing right
here, but when I cut and pasted it into the manuscript of this
book, it added another 120 pages in a single keystroke. This does
not bode well, especially as Google has tried as hard as it can to
format the JavaScript as tightly as possible. This saves bandwidth
but doesn’t help anyone else read what Google is doing. We’ll
reach that problem in a page or two.

˛ Getting at the code

˛ The interface

˛ XMLHttpRequest

˛ Packet sniffing

˛ Probing the
interface

˛ Decoding the data

chapter

in this chapter

10_59611x ch05.qxp 11/28/05 11:15 PM Page 53

54 Part II — Getting Inside Gmail

FIGURE 5-1: The location of the
Gmail JavaScript shown with
the DOM inspector

Back to the browser, then, and you find you have a very complicated page seem-
ingly made up of close to 250KB of JavaScript, one iFrame you can see, and
apparently ten or more that don’t appear on the screen. Furthermore, the eagle-
eyed in our midst will have noticed that the Gmail URL doesn’t change very
much when you’re moving around the application. Changing from Inbox to All
Mail for the subset of your mail you want to see on the screen changes the page
but not the URL. For anyone used to, say, Hotmail, this is all very puzzling.

Preloading the Interface
What is actually happening is this: Gmail loads its entire interface into the one
single HTML page. When you move around the application, you’re not loading
new pages, but triggering the JavaScript to show you other parts of the page you
have already in your browser’s memory. This is why it is so fast: There’s no net-
work connection needed to bring up the Compose window, or show the Settings
page, as you’ve already loaded it. You can see this inside the DOM inspector.
Figure 5-2 shows the section of the page with the various divs, each containing
part of the interface.

You’ll remember from Chapter 4 that the div d_tlist contains the majority of
the interface for the Inbox. Well, further inspection shows that d_comp holds the
Compose window, and d_prefs hold the Settings window, and so on.

This is all very interesting, but it doesn’t really show how the application works. If
anything, it asks a difficult question: if the page never refreshes, how does it send
or receive any messages? The answer to this is in the JavaScript, and the use of one
very clever function, XMLHttpRequest.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 54

55Chapter 5 — How Gmail Works

FIGURE 5-2: The main interface divs

Introducing XMLHttpRequest
I like to think of this as quite a romantic story. JavaScript, you see, has had a bad
rap over the years: it’s commonly misconceived as a scrappy language for dodgy
website effects circa 1999, and up there with the <blink> tag as something to be
avoided by the truly righteous web developer. This is, of course, utter rot: Modern
JavaScript is a rich and powerful language, and is rapidly regaining momentum.
Perhaps since IE5 was launched, and certainly since Mozilla and Safari became
mainstream, the majority of browsers have been capable of doing some very clever
things in JavaScript. It’s just that no one bothered to look.

One such function is XMLHttpRequest. Invented by Microsoft and now univer-
sally implemented, it allows a JavaScript program to communicate with a server in
the background, without refreshing the page. This is very key for Gmail. It means
that the JavaScript code can, upon a button push or any other trigger, send a tiny
request to the Gmail server, parse the response, and throw it onto the screen,
entirely without refreshing the page or causing any more traffic than is really nec-
essary. It’s blazingly fast, especially if you have a server optimized for just such a
thing. Google, naturally, does.

Using XMLHttpRequest Yourself
To get an idea of just what is going on, it’s a good idea to use XMLHttpRequest
yourself. In this section you’ll use it to create a little application of your own. You
can skip this section if you’re not interested in a deep understanding, but it’s pretty
cool stuff to play with anyway.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 55

56 Part II — Getting Inside Gmail

First, open up a directory on a website. You’ll need to access it via a proper
domain, you see. Create the directory, and make sure your browser can see it. In
that directory, place a text file, called Listing.txt, and put the exclamation
“Horrible!” inside the file. Bear with me.

Then create an HTML file, containing the code in Listing 5-1, and save this file
to the directory you created earlier.

Listing 5-1: Listing.html — Showing XMLHttpRequest

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/tr/xhtml1/DTD/xhtml1-transitional.dtd”>
<html>
<head>
<style></style>
<script type=”text/javascript”>

var xmlhttp=false;

try {
xmlhttp = new ActiveXObject(“Msxml2.XMLHTTP”);
} catch (e) {
try {
xmlhttp = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (E) {
xmlhttp = false;
}
}

if (!xmlhttp && typeof XMLHttpRequest!=’undefined’) {
xmlhttp = new XMLHttpRequest();

}

function Listing1() {
xmlhttp.open(“GET”, “Listing.txt”,true);
xmlhttp.onreadystatechange=function() {
if (xmlhttp.readyState==4) {
alert(xmlhttp.responseText)
}
}
xmlhttp.send()
}

</script>
</head>

<body>

<h1>My Dog Has No Nose.</h1>

10_59611x ch05.qxp 11/28/05 11:15 PM Page 56

57Chapter 5 — How Gmail Works

How does it
smell?
</body>
<html>

Open Listing.html in a browser and it should appear very much like Figure 5-3.

FIGURE 5-3: Ready to click on the link?

And when you click on the link, you should get a pop-up alert box similar to
Figure 5-4.

FIGURE 5-4: The result of an XMLHttpRequest function call

10_59611x ch05.qxp 11/28/05 11:15 PM Page 57

58 Part II — Getting Inside Gmail

What has happened here? Well, the link in the code doesn’t go anywhere, but
clicking it sets the JavaScript going. Have a look at the first half of the code again:
<script type=”text/javascript”>

var xmlhttp=false;

try {
xmlhttp = new ActiveXObject(“Msxml2.XMLHTTP”);
} catch (e) {
try {
xmlhttp = new ActiveXObject(“Microsoft.XMLHTTP”);
} catch (E) {
xmlhttp = false;
}
}

if (!xmlhttp && typeof XMLHttpRequest!=’undefined’) {
xmlhttp = new XMLHttpRequest();

}

Stepping through this from the beginning, you set up a variable called xmlhttp
and set it to false. You use this variable to help check which browser you’re using.
The XMLHttpRequest object is called different things in different applications
(Technically speaking, it’s not a standard part of the JavaScript specification, so
different people call it different things. Ho hum.). In Microsoft browsers, it’s an
Active X object called Msxml2.XMLHTTP or Microsoft.XMLHTTP, whereas in
Mozilla, Safari, and others, it’s a standard JavaScript function called
XMLHttpRequest.

So the first half of the code goes through the alternatives, trying to define xml-
http as an XMLHttpRequest object by calling each of the possible functions in
turn. First it tries Msxml2.XMLHTTP, then Microsoft.XMLHTTP, and finally
defaults to XMLHttpRequest. (Usually, of course, there’s another test for no-
JavaScript-support-at-all, but we’ll skip that here for the sake of brevity.)

Now, go line by line through the second half of the code:
function Listing1() {
xmlhttp.open(“GET”, “Listing.txt”,true);
xmlhttp.onreadystatechange=function() {
if (xmlhttp.readyState==4) {
alert(xmlhttp.responseText)
}
}
xmlhttp.send()
}

10_59611x ch05.qxp 11/28/05 11:15 PM Page 58

59Chapter 5 — How Gmail Works

The first line defines the name of the function: Listing1.

The second line sets up the open method of the XMLHttpRequest function
you’ve placed into the xmlhttp object. XMLHttpRequest has six possible methods
to call, as you’ll see later. The open method takes three parameters: the HTTP
call (such as GET or POST), the URL, and a flag of true or false to indicate if
the request is asynchronous (set to true) or not (set to false). Asynchronous in
this context means that the script continues processing while it is waiting for the
server to reply. In this listing it’s not a big deal, but in others this is very impor-
tant: If you set the request to false, and the server takes a long time to get back to
you, you can lock up the browser in the meantime.

The third line solves this problem. It sets up an onreadystatechange event
handler, which waits for the XMLHttpRequest function’s state to change before
running the function it has defined. The possible values for onreadystate
change are in Table 5-2, but in the meantime know that readyState=4 means
that the XMLHttpRequest function has completed its task. So, lines 3 and 4 mean
“Wait until the function’s state has changed, and if the state has changed to ‘com-
plete’ then do the following; if not, keep waiting.”

Line 5 is triggered if 3 and 4 come true. It displays an alert box, containing the
result of the responseText method. This contains the contents of Listing.txt.

Lines 6 and 7 close off the functions prettily, and line 8 triggers the communica-
tion itself. Note the order this all comes in: You’ve set up the request ready to go.
You’ve set up an Event Handler, watching for any request to come back and say
it’s done, and only then do you fire off the request itself.

So, now you’ve got a page with JavaScript code that can go out, fetch another file,
and do something with its contents, all without refreshing the HTML. In our
listing, it’s a file with plain text, but it can be just about anything: XML, for
example.

Before moving on to using this new knowledge to look into Gmail’s code, have a
look at Tables 5-1 and 5-2, which serve as a reference of the XMLHttpRequest
functions, methods, and suchlike.

Table 5-1 XMLHttpRequest Object Methods

Method Description

abort() Stops the current request.

getAllResponseHeaders() Returns complete set of headers (labels and
values) as a string.

Continued

10_59611x ch05.qxp 11/28/05 11:15 PM Page 59

60 Part II — Getting Inside Gmail

Table 5-1 (continued)

Method Description

getResponseHeader(“headerLabel”) Returns the string value of a single header
label.

open(“method”, “URL”[, asyncFlag[, Assigns the method, the URL, and the other
“userName”[, “password”]]]) optional attributes of a pending request.

send(content) Sends the request, with an optional postable
string or bit of DOM object data.

setRequestHeader(“label”, “value”) Assigns a label/value pair to the header to be
sent with a request.

Table 5-2 contains some of the XMLHttpRequest object properties you’ll likely
need to use.

Table 5-2 Common XMLHttpRequest Object Properties

Property Description

onreadystatechange Event handler for an event. It fires whenever the state changes.

readyState Object status integer:
0 = uninitialized
1 = loading
2 = loaded
3 = interactive
4 = complete

responseText The data returned from the server, as a string.

responseXML The data returned from the server, as a DOM-compatible
document object.

status Numeric http status code returned by server, such as 404 for
“Not Found” or 200 for “OK.”

statusText Any string message accompanying the status code.

You should now feel confident that you understand how a simple HTML and
JavaScript document can request data from a server in the background. There’s no
need for the page to reload in the browser for you to retrieve new information.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 60

61Chapter 5 — How Gmail Works

Finding XMLHttpRequest within the Gmail code
Don’t take the presence of XMLHttpRequest within Gmail on trust. You can see
this in action in Gmail’s own code. Go back to the DOM inspector and open the
second frameset — the one with all of the JavaScript in it. Copy the entire script
into a text editor and save it, as you’re going to refer to it a lot in this section.
Once you’ve done that, search for the string xmlhttp. You’ll find the function in
Listing 5-2.

Listing 5-2: Gmail’s XMLHttpRequest Function

function zd(){var R=null;if(da){var
vN=lJ?”Microsoft.XMLHTTP”:”Msxml2.XMLHTTP”;try{R=new
ActiveXObject(vN)}catch(f){C(f);alert(“You need to enable active
scripting and activeX controls.”)}}else{R=new
XMLHttpRequest();if(!R){;alert(“XMLHttpRequest is not supported on
this browser.”)}}return R}

As with all of the Gmail JavaScript, this is compressed and slightly confusing.
Reformatted, it looks like Listing 5-3.

Listing 5-3: Gmail’s XMLHttpRequest Function, Tidied

function zd(){
var R=null;
if(da){

var vN=lJ?”Microsoft.XMLHTTP”:”Msxml2.XMLHTTP”;
try{R=new ActiveXObject(vN)}
catch(f){
C(f);alert(“You need to enable active scripting and

activeX controls.”)}
}else{
R=new XMLHttpRequest();
if(!R){
;alert(“XMLHttpRequest is not supported on this

browser.”)}
}

return R}

This listing does exactly the same thing you did earlier: tries out the Microsoft
Active X controls, then tries the more standard XMLHttpRequest and then, if all
fails, bails with an error message. For future reference, and remember this because
you’ll need it later, the XMLHttpRequest object in the Gmail code is called R.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 61

62 Part II — Getting Inside Gmail

Sniffing the Network Traffic
So now that you understand how XMLHttpRequest works, you’re led to some fur-
ther questions: What is being sent and received using the XMLHttpRequest func-
tions, and what are the URLs? Once you know the answers to these questions,
you can write your own code to spoof these requests, and can then interface
directly with the Gmail system. The rest of the book relies on this idea.

To find out what Gmail is saying to the browser, use a new tool: the packet sniffer.
This is a generic term for a range of applications that can listen to raw network
traffic, display it on the screen, log it, analyze it, and so on. What you’re interested
in is watching what your browser is doing in the background: what it is sending,
where it is sending it to, and then the replies it is getting.

My packet sniffer of choice for this job is Jeremy Elson’s Tcpflow, available at
www.circlemud.org/~jelson/software/tcpflow/.

I use Marc Liyanage’s OS X package, which you can download from
www.entropy.ch/software/macosx/#tcpflow.

Tcpflow is available under the GPL, and can be compiled on most proper com-
puting platforms. Windows users will need to look elsewhere, but the following
techniques remain the same.

Firing Up Tcpflow
Install Tcpflow, and set it running inside a terminal window, monitoring port 80.
On my machine, that means typing the following:
sudo tcpflow -c port 80

Then open a browser and request a page. Any will do: Figure 5-5 shows the start
of a typical result.

As you can see from the figure and your own screen, Tcpflow captures all of the
traffic flowing backward and forward across Port 80 — all your web traffic, in
other words. It shows the requests and the answers: headers, content, and all.

Tcpflow is perfect for the job. But there’s a snag. Open up Gmail, and let it sit
there for a while. After it settles down, you will notice that Tcpflow regularly
burps up new traffic looking very similar to Listing 5-4. This is Gmail’s heartbeat:
checking for new mail. But it’s very odd looking.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 62

63Chapter 5 — How Gmail Works

FIGURE 5-5: The start of a Tcpflow session

Listing 5-4: Gmail Checking for New Mail

216.239.057.107.00080-192.168.016.050.59607: HTTP/1.1 200 OK
Set-Cookie: SID=AfzuOeCbwFixNvWd6vNt7bUR2DpPxRz-
YhOB54dzyYwHeLIHjVq_eeHH5s6MYQbPE0hVUK_LMROFuRWkMhfSR-U=;
Domain=.google.com;Path=/;Expires=Tue, 06-Jan-2015 00:12:12 GMT
Set-Cookie: GBE=; Expires=Fri, 07-Jan-05 00:12:12 GMT; Path=/
Cache-control: no-cache
Pragma: no-cache
Content-Type: text/html; charset=utf-8
Content-Encoding: gzip
Transfer-Encoding: chunked
Server: GFE/1.3
Date: Sat, 08 Jan 2005 00:12:12 GMT

a
..........

216.239.057.107.00080-192.168.016.050.59607: 2c8
R...A{[uj...*..lQ...D.M.”.h...}...”G...RD..7../}.c...K
H$g.....U.........M-.J
4......Y.......&....M.(..=.b..t...t.M.*...S!.....dZ.r.........
..w..iy....RQ.T.....n.....n.*.sqK.0.e.Y.m..g...h....{.k[i.k...
..,d!....X..”...Y.a..v......;...J.f29.4....E...Q..,.gA.D.<....
l....r...n0X..z.]0...~g>o1.. x1,...U..f.VK....R++.6.

Continued

10_59611x ch05.qxp 11/28/05 11:15 PM Page 63

64 Part II — Getting Inside Gmail

Listing 5-4 (continued)

.YG......Q...Y......V.O...v
Oh7.D.M.X..3{%f.6].N...V*j.....+.J....2z@..n..)8..?Z./o....j*o
.........3..
!=*.a.v.s..........”\..i{.;o..nh....K+q.\||...G.3]....x.;h.].r
...+..U?,...c........s..PF.%!....i2...}..’+.zP._.
....M...a35u]9.........-A...2.].F|.=..eQK
..5k.qt.....Wt..@Wf{.y.I..
X..*;.D...<*.r.E>...?.uK9p...RC..c..C.~.<..<..0q..9..I.pg.>...
.
...x$..........

The headers are understandable enough, but the content is very strange indeed.
This is because your browser is taking advantage of Gzip encoding. Most modern
web servers can serve content encoded with the Gzip algorithm, and most mod-
ern browsers are happy to decode it on the fly. Human brains, of course, cannot, so
you need to force Gmail to send whatever it is sending over unencoded.

In the first few chapters of this book, you’ve been using Firefox, so return to that
browser again now. In the address bar, type the URL about:config.

You should see a page looking like Figure 5-6.

FIGURE 5-6: The Firefox secret settings page

10_59611x ch05.qxp 11/28/05 11:15 PM Page 64

65Chapter 5 — How Gmail Works

This page allows you to change the more fundamental browser settings. You need
to change only one. Scroll down to network.http.accept-encoding and click
on the string. By default it reads gzip/deflate. Just delete that, and leave it
blank, as shown in Figure 5-7.

FIGURE 5-7: The changed HTTP setting

Empty Firefox’s cache to prevent a strange bug, and restart the browser for good
measure. Now go back to Gmail and watch for the heartbeat. It will now look like
Listing 5-5.

Listing 5-5: Gmail’s Heartbeat, Unencoded

192.168.016.050.59622-216.239.057.107.00080: GET
/gmail?ik=344af70c5d&view=tl&search=inbox&start=0&tlt=1014fb79
f15&fp=54910421598b5190&auto=1&zx=24c4d6962ec6325a216123479
HTTP/1.1
Host: gmail.google.com
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;
en-GB; rv:1.7.5) Gecko/20041110 Firefox/1.0
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9
,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-gb,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer:
http://gmail.google.com/gmail?ik=344af70c5d&search=inbox&view=
tl&start=0&zx=24c4d6962ec6325a116384500
Cookie: GV=101014fb09ab5-af53c8c5457de50bec33d5d6436e82c6;
PREF=ID=2dfd9a4e4dba3a9f:CR=1:TM=1100698881:LM=1101753089:GM=1
:S=nJnfdWng4uY7FKfO; SID=AcwnzkuZa4aCDnqVeiG6-
pM487sZLlfXBz2JqrHFdjIueLIHjVq_eeHH5s6MYQbPE4wm3vinOWMnavqPWq3
SNNY=; GMAIL_AT=e6980e93d906d564-1014fb09ab7;
S=gmail=h7zPAJFLoyE:gmproxy=bnNkgpqwUAI; TZ=-60

216.239.057.107.00080-192.168.016.050.59622: HTTP/1.1 200 OK

Continued

10_59611x ch05.qxp 11/28/05 11:15 PM Page 65

66 Part II — Getting Inside Gmail

Listing 5-5 (continued)

Set-Cookie:
SID=AbF6fUKA6tCIrC8Hv0JZuL5cLPt3vlO6qonGit87BAlMeLIHjVq_eeHH5s
6MYQbPE-F6IjzxJjnWuwgSIxPn3GQ=;Domain=.google.com;Path=/
Cache-control: no-cache
Pragma: no-cache
Content-Type: text/html; charset=utf-8
Transfer-Encoding: chunked
Server: GFE/1.3
Date: Sat, 08 Jan 2005 00:31:09 GMT

62
<script>var
loaded=true;</script><script>try{top.js.L(window,29,’18fd02c90
a
‘);}catch(e){}</script>

This you can recognize: The heartbeat had my browser requesting the following
URL:
/gmail?ik=344af70c5d&view=tl&search=inbox&start=0&tlt=1014fb79f15&
fp=54910421598b5190&auto=1&zx=24c4d6962ec6325a216123479

Likewise, the heartbeat had my browser passing the following cookie:
Cookie: GV=101014fb09ab5-af53c8c5457de50bec33d5d6436e82c6;
PREF=ID=2dfd9a4e4dba3a9f:CR=1:TM=1100698881:LM=1101753089:GM=1:S=n
JnfdWng4uY7FKfO; SID=AcwnzkuZa4aCDnqVeiG6-
pM487sZLlfXBz2JqrHFdjIueLIHjVq_eeHH5s6MYQbPE4wm3vinOWMnavqPWq3SNNY
=; GMAIL_AT=e6980e93d906d564-1014fb09ab7;
S=gmail=h7zPAJFLoyE:gmproxy=bnNkgpqwUAI; TZ=-60

The browser then received a new cookie:
SID=AbF6fUKA6tCIrC8Hv0JZuL5cLPt3vlO6qonGit87BAlMeLIHjVq_eeHH5s6MYQ
bPE-F6IjzxJjnWuwgSIxPn3GQ=;Domain=.google.com;Path=/

Along with the new cookie, my browser also received a snippet of JavaScript as
the contents of the page:
<script>var
loaded=true;</script><script>try{top.js.L(window,29,’18fd02c90a

‘);}catch(e){}</script>

What can you tell from all of this? Well, you now know how Gmail on your
browser communicates with the server, and you know how to listen in on the con-
versation. Two things remain in this chapter, therefore: collecting as many of these
phrases as possible and then working out what they mean.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 66

67Chapter 5 — How Gmail Works

Prodding Gmail to Hear It Squeak
The technique to further learn Gmail’s secrets is obvious. Use it — sending mail,
receiving mail, and so on — and watch what it does in the background. From
these clues, and the JavaScript listing you already have, you can piece together a
complete picture of the Gmail server’s interface. And it’s that interface that you
ultimately want to deal with directly.

To get a clear idea of what is going on, you need to capture everything that hap-
pens when Gmail is loaded, when it sits idle, and when you perform the common
actions with it.

Preparing to Watch the Gmail Boot Sequence
To start the process with gusto, open up Firefox again, and clear all of the caches.
Then open up a terminal window, and set Tcpflow running, and save its output to
a text file, like so:
sudo tcpflow -c ‘(port 80 or 443)’ >> login_capture.txt

This records everything that goes over HTTP or HTTPS. Then log in to Gmail
until you get to a nice, calm, idle Inbox like the placid Inbox shown in Figure 5-8.

FIGURE 5-8: A nice, calm Inbox at the end of the boot sequence

10_59611x ch05.qxp 11/28/05 11:15 PM Page 67

68 Part II — Getting Inside Gmail

You’ll be referring back to this figure in a page or two.

Now, stop the Tcpflow application with a judicious Control+c and open up the
login_capture.txt file.

Cleaning Up the Log
Before looking through the log properly, it needs to be cleaned up a bit. There’s a
lot of information that you don’t need. For instance, every request sent by my
browser has this code, which is superfluous to your needs:
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;
en-GB; rv:1.7.5) Gecko/20041110 Firefox/1.0
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9
,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-gb,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

Search for this code and replace it with a single new line. Next, toward the end,
line 1862 in my working version is a whole collection of requests and responses
for image files. You’re not interested in these at all, so you can reduce them until
they look like so:
192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/help/images/logo.gif 216.239.057.106.00080-
192.168.016.053.64150: HTTP/1.1 200 OK

This makes things much more readable. Now, between lines 394 and 1712 (more
or less, it may be slightly different in your log file) is the serving of the one enor-
mous JavaScript file. Strip the code out, and replace it with your own comment.

Finally, right at the beginning, are a few pages going backward and forward that
seem to be made of utter nonsense. These are encrypted. So, again, strip them out
and replace them with a comment.

You should now have around 500 lines of traffic between your browser and Gmail.
It’s time to step through it and see what is going on. To see the entire boot
sequence log, flip to Appendix A and look through Listing A-3.

Stepping Through the Gmail Boot Sequence
To be able to write an API, you need to know how the login works, so we shall start
there. In all of the following, my machine has the IP address 192.168.016.053.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 68

69Chapter 5 — How Gmail Works

Logging In
Start by requesting the page http://gmail.google.com. Whereupon,
Gmail replies back with an http 302 redirect to https://gmail.google.
com/?dest=http%3A%2F%2Fgmail.google.com%2Fgmail, which the browser
automatically follows, switching to encrypted traffic:
192.168.016.053.64142-216.239.057.106.00080: GET / HTTP/1.1
Host: gmail.google.com

216.239.057.106.00080-192.168.016.053.64142: HTTP/1.1 302
Moved Temporarily
Location:
https://gmail.google.com/?dest=http%3A%2F%2Fgmail.google.com%2
Fgmail
Cache-control: private
Content-Length: 0
Content-Type: text/html
Server: GFE/1.3
Date: Sun, 16 Jan 2005 17:11:18 GMT

192.168.016.053.64143-216.239.057.106.00443
LOTS OF ENCRYPTED TRAFFIC CLIPPED OUT FROM THIS SECTION

Because the login page is encrypted — the traffic flows over HTTPS not HTTP —
you can’t follow what it does using the log. You need to use a script to follow the
URLs until you get back to the trace. I used the following snippet of Perl code to
pretend to be a browser to see what is going on:
#!/usr/bin/perl -w

use LWP::UserAgent;
use HTTP::Request;

This Is Going to Break

During the writing of this book, the Gmail login sequence has changed at least three times. Not
massively so, it must be said, but enough to break code until I worked out just what had
changed. This section, and the chapters following, therefore, must be taken as guides to reverse
engineering the thing yourself, and not as a definitive reference to the Gmail login sequence. If
what I describe here no longer matches reality completely, I apologize. Take solace in the fact
that I have no idea what Google is up to either.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 69

70 Part II — Getting Inside Gmail

use Crypt::SSLeay;

my $ua = LWP::UserAgent->new();

$ua -> agent(“Mozilla/4.0 (compatible; MSIE 6.0; Windows NT
5.1; .NET CLR 1.1.4322)”);

my $request = HTTP::Request->new(GET =>
‘https://gmail.google.com/’);

my $result = $ua->request($request);

if ($result->is_success) {
print $result->content;

} else {
print $result->status_line;
}

You can infer from actually doing it, or by using a script like the one above, that
the page continues with another redirect (or perhaps more than one), finally
ending up at https://www.google.com/accounts/ServiceLogin?
service=mail&continue=http%3A%2F%2Fgmail.google.com%2Fgmail,
as you can see in Figure 5-9.

FIGURE 5-9: The Gmail login screen

10_59611x ch05.qxp 11/28/05 11:15 PM Page 70

71Chapter 5 — How Gmail Works

Viewing source on this page shows you two important things. First, there is the
username and password form itself and second some JavaScript that sets a cookie.
Deal with the form first. Listing 5-6 gives a cleaned-up version of the code, with
the styling removed.

Listing 5-6: The Gmail Login Form

<form action=”ServiceLoginAuth” id=”gaia_loginform”
method=”post”>

<input type=”hidden” name=”continue”
value=”http://gmail.google.com/gmail”>

<input type=”hidden” name=”service” value=”mail”>

Username: <input type=”text” name=”Email” value=”” size=”18”>

Password: <input type=”password” name=”Passwd”
autocomplete=”off” size=”18”>

<input type=”checkbox” name=”PersistentCookie” value=”yes”>
Don’t ask for my password for 2 weeks.

<input type=”submit” name=”null” value=”Sign in”>
</form>

From this we can see that the URL the page POSTs towards to log in is produced
as follows, split here for clarity.
https://www.google.com/accounts/ServiceLoginBoxAuth/continue=h
ttps://gmail.google.com/gmail
&service=mail
&Email=XXXXX
&Passwd=XXXXX
&PersistentCookie=yes
&null=Sign%20in

You will need this later on, but now, the cookie setting.

The First Cookie
The relevant sections of the JavaScript listing inside the login page appear in
Listing 5-7.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 71

72 Part II — Getting Inside Gmail

Listing 5-7: Cookie-Setting Code from the Gmail Login

function SetGmailCookie(name, value) {
document.cookie = name + “=” + value +

“;path=/;domain=google.com”;
}

// This is called when the user logs in to gmail.
// We set a GMAIL_LOGIN2 cookie with the initial timings.
// The first letter “T” in the cookie value means that the
login is not
// completed yet. The main JS will complete logging the
timings and update
// the GMAIL_LOGIN2 cookie. See main.js
function lg() {
var now = (new Date()).getTime();

// use start_time as a place holder for login_box_time until
we’ve
// completely rolled out html-only login
var cookie = “T” + start_time + “/” + start_time + “/” +

now;
SetGmailCookie(“GMAIL_LOGIN2”, cookie);

}

var login_box_time;
function IframeOnLoad() {
if (!login_box_time) {
login_box_time = (new Date()).getTime();

}
}

function el(id) {
if (document.getElementById) {
return document.getElementById(id);

}
return null;

}

var ONE_PX = “https://gmail.google.com/gmail/images/c.gif?t=”
+

(new Date()).getTime();

function LogRoundtripTime() {
var img = new Image();
var start = (new Date()).getTime();
img.onload = GetRoundtripTimeFunction(start);

10_59611x ch05.qxp 11/28/05 11:15 PM Page 72

73Chapter 5 — How Gmail Works

img.src = ONE_PX;
}

function GetRoundtripTimeFunction(start) {
return function() {
var end = (new Date()).getTime();
SetGmailCookie(“GMAIL_RTT2”, (end - start));

}
}

function OnLoad() {
var form = document.getElementById(“gaia_loginform”);
form.onsubmit = lg;
CheckBrowser();
LogRoundtripTime();

}

This JavaScript sets two cookies. The first, GMAIL_LOGIN2, is set with a value of
Tstart_time/start_time/now where both start_time and now are the date-
time exactly then. As you can see from the comments in the code, Google intends
to replace this in the future.

The second cookie is called GMAIL_RTT2 and contains the time it takes to retrieve
a 1-pixel image file from the Gmail servers. RTT, presumably, stands for Round
Trip Time.

You won’t look at it in this book, but the rest of the JavaScript code on that page
presents a very nice listing of a browser check that removes the login window if
the browser isn’t capable of using Gmail.

If you watch the Gmail login sequence from your own browser, you will see that it
goes through more redirects before it settles into HTTP again, and you can see
what is going on from the Tcpflow trace file.

Hitting stop on the browser at just the right time (and that is, to quote the fine
words of my editor, a total crapshoot), gives you this URL:

https://www.google.com/accounts/CheckCookie?continue=http%3A%2F
%2Fgmail.google.com%2Fgmail%3F_sgh%3D8a6d8ffbb159f1c7c9246bd4f4
9e78a1&service=mail&chtml=LoginDoneHtml

Viewing source on that page gives you Listing 5-8.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 73

74 Part II — Getting Inside Gmail

Listing 5-8: The Gmail Cookie Check

<html>
<head>
<title>Redirecting</title>
<meta content=”0;
url=http://gmail.google.com/gmail?_sgh=8a6d8ffbb159f1c7c9246bd
4f49e78a1” http-equiv=”refresh”></head>
<body alink=”#ff0000” text=”#000000” vlink=”#551a8b”
link=”#0000cc” bgcolor=”#ffffff”>
<script type=”text/javascript” language=”javascript”><!--
location.replace(“http://gmail.google.com/gmail?_sgh=8a6d8ffbb
159f1c7c9246bd4f49e78a1”)
//--> </script>
</body>
</html>

This HTML forces you onto the next page, in this case http://gmail.google.
com/gmail?_sgh=8a6d8ffbb159f1c7c9246bd4f49e78a1.

You have seen this sort of URL before: Look back again at Listing A-3, after the
second excised block of encrypted code. So now you know that between the form
submission and the page you get in Listing 5-8, something else happens. You can
also guess that something happens to the cookie you set on the first page — it is
being checked for something. Considering that those cookies do not contain any-
thing but the time they were set, I am guessing that this step is to ensure that the
connection is current and not the result of caching from someone’s browser. It’s to
ensure a good, fresh session with Gmail on the part of the browser application and
the user himself. Or so I would guess.

Either way, the boot sequence continues from here automatically, with everything
in standard HTTP. You will see within the trace that the boot sequence loads the
Inbox next. So that’s what the next section considers.

Loading the Inbox
As you come to the end of the boot sequence you have nothing to do but load in the
Inbox and address book. This section deals specifically with the Inbox loading. The
output from the Tcpflow program earlier in this chapter doesn’t contain enough
mail to be of use in this regard, but if you do the trace again, only this time with a
few more messages in the Inbox, you can see what is going on. Figure 5-10 shows
the new Inbox, loaded with messages.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 74

75Chapter 5 — How Gmail Works

FIGURE 5-10: Gmail with some new, unread messages

Listing 5-9 shows the new trace.

A Summary of the Login Procedure

As I have said before, the login procedure for Gmail seems to be changing on a very regular
basis. Check with the libraries examined in Chapter 6 for the latest news on this. Basically, how-
ever, the login procedure goes like this, with each step moving on only if the previous was
reported successful.

1. Request the Gmail page.

2. Set the two cookies.

3. Send the contents of the form.

4. Request the cookie check page.

5. Request the Inbox.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 75

76 Part II — Getting Inside Gmail

Listing 5-9: The Inbox with More Messages Within

192.168.016.051.59905-064.233.171.107.00080: GET
/gmail?ik=&search=inbox&view=tl&start=0&init=1&zx=vzmurwe44cpx
6l HTTP/1.1
Host: gmail.google.com
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;
en-GB; rv:1.7.5) Gecko/20041110 Firefox/1.0
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9
,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-gb,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://gmail.google.com/gmail/html/hist2.html
Cookie: GV=1010186d43b2b-b6b21a87a46b00d1bc5abf1a97357dd7;
PREF=ID=0070250e68e17190:CR=1:TM=1106068639:LM=1106068639:S=O1
Nivj_xqk7kvdGK;
GMAIL_LOGIN=T1106068635841/1106068635841/1106068648645;
SID=DQAAAGoAAAC06FIY2Ix4DJlCk7ceaOnWPvpK4eWn9oV6xpmOT4sNhdBPkZ
2npQE8Vi8mWY9RybWVwJet9CHeRBw99oUdRqQHvBb8IWxhLcurTBFZJstXoUbW
FDZTmxZKt55eUxnspTHLanel9LsAU1wqHcHhlHI7;
GMAIL_AT=5282720a551b82df-10186d43b2e;
S=gmail=WczKrZ6s5sc:gmproxy=UMnFEH_hYC8; TZ=-60

064.233.171.107.00080-192.168.016.051.59905: HTTP/1.1 200 OK
Set-Cookie:
SID=DQAAAGoAAAC06FIY2Ix4DJlCk7ceaOnWPvpK4eWn9oV6xpmOT4sNhdBPkZ
2npQE8Vi8mWY9RybWVwJet9CHeRBw99oUdRqQHvBb8IWxhLcurTBFZJstXoUbW
FDZTmxZKt55eUxnspTHLanel9LsAU1wqHcHhlHI7;Domain=.google.com;Pa
th=/
Cache-control: no-cache
Pragma: no-cache
Content-Type: text/html; charset=utf-8
Transfer-Encoding: chunked
Server: GFE/1.3
Date: Tue, 18 Jan 2005 17:17:36 GMT

936
<html><head><meta content=”text/html; charset=UTF-8” http-
equiv=”content-type”></head><script>D=(top.js&&top.js.init)?fu
nction(d){top.js.P(window,d)}:function(){};if(window==top){top
.location=”/gmail?ik=&search=inbox&view=tl&start=0&init=1&zx=v
zmurwe44cpx6l&fs=1”;}</script><script><!--
D([“v”,”15b3e78585d3c7bb”,”33fc762357568758”]
);
D([“ud”,”ben.hammersley@gmail.com”,”{\”o\”:\”OPEN\”,\”/\”:\”SE
ARCH\”,\”\\r\”:\”OPEN\”,\”k\”:\”PREV\”,\”r\”:\”REPLY\”,\”c\”:\

10_59611x ch05.qxp 11/28/05 11:15 PM Page 76

77Chapter 5 — How Gmail Works

”COMPOSE\”,\”gc\”:\”GO_CONTACTS\”,\”gd\”:\”GO_DRAFTS\”,\”p\”:\
”PREVMSG\”,\”gi\”:\”GO_INBOX\”,\”m\”:\”IGNORE\”,\”a\”:\”REPLYA
LL\”,\”!\”:\”SPAM\”,\”f\”:\”FORWARD\”,\”u\”:\”BACK\”,\”ga\”:\”
GO_ALL\”,\”j\”:\”NEXT\”,\”y\”:\”REMOVE\”,\”n\”:\”NEXTMSG\”,\”g
s\”:\”GO_STARRED\”,\”x\”:\”SELECT\”,\”s\”:\”STAR\”}”,”344af70c
5d”,”/gmail?view=page&name=contacts&ver=50c1485d48db7207”]
);
D([“su”,”33fc762357568758”,[“l”,”/gmail/help/images/logo.gif”,
”i”,”Invite a friend to Gmail”,”j”,”Invite PH_NUM friends to
Gmail”]
]
);
D([“p”,[“bx_hs”,”1”]
,[“bx_show0”,”1”]
,[“bx_sc”,”0
064.233.171.107.00080-192.168.016.051.59905: “]
,[“bx_pe”,”1”]
,[“bx_ns”,”1”]
]
);
D([“ppd”,0]
);
D([“i”,6]
);
D([“qu”,”1 MB”,”1000 MB”,”0%”,”#006633”]
);
D([“ft”,”Search accurately with <a style=color:#0000CC
target=_blank
href=\”/support/bin/answer.py?ctx=gmail&answer=7190\”>operator
s including from: to:
 subject:.”]
);
D([“ds”,2,0,0,0,0,16,0]
);
D([“ct”,[[“Heads”,0]
,[“Knees”,0]
,[“Shoulders”,0]
,[“Toes”,0]
]
]
);
D([“ts”,0,50,3,0,”Inbox”,”10186d450f9”,3,]
);

//--></script><script><!--
D([“t”,[“101865c04ac2427f”,1,0,”4:06pm”,”Ben
Hammersley”,”» ”,”This is the
third message”,,[]

Continued

10_59611x ch05.qxp 11/28/05 11:15 PM Page 77

78 Part II — Getting Inside Gmail

Listing 5-9 (continued)

,””,”101865c04ac2427f”,0,”Tue Jan 18 2005_7:06AM”]
,[“101865b95fc7a35a”,1,0,”4:05pm”,”Ben
Hammersley”,”» ”,”This is the
second message”,,[]
,””,”101865b95fc7a35a”,0,”Tue Jan 18 2005_7:05AM”]
,[“101480d8ef5dc74a”,0,1,”Jan 6”,”Ben
Hammersley”,”» ”,”Here\’s a nice
message.”,,[“^t”,”Heads”]
,””,”101480d8ef5dc74a”,0,”Thu Jan 6 2005_4:44AM”]
]
);
D([“te”]);

//--></script><script>var
fp=’341d292f3e55766f’;</script><script>var
loaded=true;D([‘e’]);</script><script>try{top.js.L(window,45,’
cb803471f1’);}catch(e){}</script>

What to make of these traces? First, you can see that to call the contents of the
Inbox, the browser requests two URLs. First, this one:

/gmail?ik=&search=inbox&view=tl&start=0&init=1&zx=z6te3fe41hmsjo

And next, this one:

/gmail?ik=&search=inbox&view=tl&start=0&init=1&zx=781ttme448dfs9

And second, it appears that the real workings of the Inbox are contained in the
JavaScript function that starts D([“t”]), as Listings 5-10 and 5-11 show.

Listing 5-10: With One Message

D([“t”,[“101480d8ef5dc74a”,0,0,”Jan 6”,”Ben
Hammersley”,”» ”,”Here\’s a nice
message.”,,[]
,””,”101480d8ef5dc74a”,0,”Thu Jan 6 2005_4:44AM”]
]
);

10_59611x ch05.qxp 11/28/05 11:15 PM Page 78

79Chapter 5 — How Gmail Works

Listing 5-11: With Three Messages

D([“t”,[“101865c04ac2427f”,1,0,”4:06pm”,”Ben
Hammersley”,”» ”,”This is the
third message”,,[]
,””,”101865c04ac2427f”,0,”Tue Jan 18 2005_7:06AM”]
,[“101865b95fc7a35a”,1,0,”4:05pm”,”Ben
Hammersley”,”» ”,”This is the
second message”,,[]
,””,”101865b95fc7a35a”,0,”Tue Jan 18 2005_7:05AM”]
,[“101480d8ef5dc74a”,0,1,”Jan 6”,”Ben
Hammersley”,”» ”,”Here\’s a nice
message.”,,[“^t”,”Heads”]
,””,”101480d8ef5dc74a”,0,”Thu Jan 6 2005_4:44AM”]
]
);

From looking at these listings, you can deduce that the Inbox structure consists of
one or more of the following arrays (I’ve added in line breaks for clarity):
[
“101480d8ef5dc74a”,
0,
0,
“Jan 6”,
“Ben
Hammersley”,
“» ”,
“Here\’s a nice message.”,
,[]
,””
,”101480d8ef5dc74a”
,0
,”Thu Jan 6 2005_4:44AM”
]

From further deduction, where I sent different types of e-mail to Gmail and
watched what it did — I’ll omit all of that here for the sake of brevity, but you
should have the idea — you can see that the array consists of the following:
[
“101480d8ef5dc74a”, -> The message id.
0, -> Unread=1, Read=0
0, -> Starred=1, plain=0

10_59611x ch05.qxp 11/28/05 11:15 PM Page 79

80 Part II — Getting Inside Gmail

“Jan 6”, -> The date displayed
“Ben
Hammersley”, -> Who sent it
“» ”, -> The little icon in the inbox
“Here\’s a nice message.”, -> The subject line
,[] -> Labels
,”” -> Attachments
,”101480d8ef5dc74a” -> The message ID
,0 -> Unknown
,”Thu Jan 6 2005_4:44AM” -> The full date and time

]

You now know how to decode the Gmail mail listing. You can also see how to
request this data structure — by calling the URL, and parsing the returned
JavaScript function. You can do this in simple regular expressions, a topic explored
in Chapter 7.

Storage Space
The detail of the mail in the Inbox isn’t the only information sent when you
request that URL. Look above the mail function and you can see the following:
D([“qu”,”1 MB”,”1000 MB”,”0%”,”#006633”]

This line of data sent from Gmail’s servers clearly corresponds to the display at
the bottom of the screen giving your mailbox usage statistics:

� D([“qu”,: The name of the Gmail function that deals with the usage
information.

� “1 MB”,: The amount of storage used.

� “1000 MB”,: The maximum amount available.

� “0%”,: The percentage used.

� “#006633”: The hex value for a nice shade of green.

Labels
In Figure 5-10 I have added some labels to the Gmail system. Spotting them in
the Tcpflow is easy:
D([“ct”,[[“Heads”,0],[“Knees”,0],[“Shoulders”,0],[“Toes”,0]]]);

You can deduce straight away that the function starting with D([“ct” contains
the names and an unknown value (perhaps it’s a Boolean, perhaps it’s a string, you
don’t know as yet) of the Labels. You can more easily harvest this data when you
come to write your own API.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 80

81Chapter 5 — How Gmail Works

Reading an Individual Mail
Fire up Tcpflow again, and click one of the messages in the Inbox in Figure 5-10.
The trace resulting from this action is shown in Listing 5-12.

Listing 5-12: Trace from Reading a Message

192.168.016.051.59936-064.233.171.105.00080: GET
/gmail?ik=344af70c5d&view=cv&search=inbox&th=101865c04ac2427f&
lvp=-1&cvp=0&zx=9m4966e44e98uu HTTP/1.1
Host: gmail.google.com
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;
en-GB; rv:1.7.5) Gecko/20041110 Firefox/1.0
Accept:text/xml,application/xml,application/xhtml+xml,text/htm
l;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Language: en-gb,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer:
http://gmail.google.com/gmail?ik=&search=inbox&view=tl&start=0
&init=1&zx=iv37tme44d1tx5
Cookie: GV=1010186dcc455-ce01891ce232fa09b7f9bcfb46adf4e7;
PREF=ID=0070250e68e17190:CR=1:TM=1106068639:LM=1106068659:GM=1
:S=3jNiVz8ZpaPf0GW0; S=gmail=WczKrZ6s5sc:gmproxy=UMnFEH_hYC8;
TZ=-60; SID=DQAAAGoAAACm_kF5GqnusK0rbFcAlLKoJUx26l6np-
H5Een1P_hN--yWqycLWSJUZt3G9Td_Cgw_ZK1naS891aWxZ6IkbNiBFN1J4lmO
COTvOn7r3bnYjWlOqB6netb06ByuEf56Cd12ilfgika0MxmuamO3FWzw;
GMAIL_AT=29a3f526e2461d87-10186dcc456; GBE=d-540-800

064.233.171.105.00080-192.168.016.051.59936: HTTP/1.1 200 OK
Set-Cookie: SID=DQAAAGoAAACm_kF5GqnusK0rbFcAlLKoJUx26l6np-
H5Een1P_hN--yWqycLWSJUZt3G9Td_Cgw_ZK1naS891aWxZ6IkbNiBFN1J4lmO
COTvOn7r3bnYjWlOqB6netb06ByuEf56Cd12ilfgika0MxmuamO3FWzw;Domai
n=.google.com;Path=/

Set-Cookie: GBE=; Expires=Mon, 17-Jan-05 18:00:37 GMT; Path=/
Cache-control: no-cache
Pragma: no-cache

Content-Type: text/html; charset=utf-8
Transfer-Encoding: chunked

Server: GFE/1.3

Continued

10_59611x ch05.qxp 11/28/05 11:15 PM Page 81

82 Part II — Getting Inside Gmail

Listing 5-12 (continued)

Date: Tue, 18 Jan 2005 18:00:37 GMT

4d5

<html><head><meta content=”text/html; charset=UTF-8” http-
equiv=”content-type”></head><script>D=(top.js&&top.js.init)?fu
nction(d){top.js.P(window,d)}:function(){};if(window==top){top
.location=”/gmail?ik=344af70c5d&view=cv&search=inbox&th=101865
c04ac2427f&lvp=-
1&cvp=0&zx=9m4966e44e98uu&fs=1”;}</script><script><!--
D([“v”,”15b3e78585d3c7bb”,”33fc762357568758”]
);
D([“i”,6]
);
D([“qu”,”1 MB”,”1000 MB”,”0%”,”#006633”]
);
D([“ft”,”Compose a message in a new window by pressing
\”Shift\” while clicking Compose Mail or Reply.”]
);
D([“ds”,1,0,0,0,0,16,0]
);
D([“ct”,[[“Heads”,0]
,[“Knees”,0]
,[“Shoulders”,0]
,[“Toes”,0]
]
]
);
D([“cs”,”101865c04ac2427f”,”This is the third message”,”This
is the third message”,””,[“^i”]
,[]
,0,1,”h3ttlgu1hqiz9324trq5kp5qo7wa96s”,,”101865c04ac2427f”]
);
D([“mi”,0,1,”101865c04ac2427f”,0,”0”,”Ben
Hammersley”,”ben@benhammersley.com”,”me”,”4:05pm (2½
hours ago)”,[“Ben Hammersley <ben.hammersley@gmail.com>”]
,[]
,[]
,[
064.233.171.105.00080-192.168.016.051.59936:]
,”Tue, 18 Jan 2005 16:05:17 +0100”,”This is the third
message”,””,[]
,1,,,”Tue Jan 18 2005_7:05AM”]

10_59611x ch05.qxp 11/28/05 11:15 PM Page 82

83Chapter 5 — How Gmail Works

);
D([“mb”,”3rd! THREE! THIRD!

”,0]
);
D([“ce”]);

//--></script><script>var
loaded=true;D([‘e’]);</script><script>try{top.js.L(window,70,’
1
ab915da64’);}catch(e){}</script>

First thing first: the URL. Requesting this message caused Gmail to load this
URL:
/gmail?ik=344af70c5d&view=cv&search=inbox&th=101865c04ac2427f&l
vp=-1&cvp=0&zx=9m4966e44e98uu.

Or, to put it more understandably:
/gmail?
ik=344af70c5d
&view=cv
&search=inbox
&th=101865c04ac2427f
&lvp=-1
&cvp=0
&zx=9m4966e44e98uu

As you can see, th is the message ID of the message I clicked on. But the others
are mysterious at the moment.

At this point in the proceedings, alarms went off in my head. Why, I was think-
ing, is the variable for message ID th— when that probably stands for thread. So,
I sent a few mails back and forth to create a thread, and loaded the Inbox and the
message back up again under Tcpflow. Listing 5-13 shows the resulting trace. It is
illuminating.

Listing 5-13: Retrieving a Thread, Not a Message

THE INBOX LOADING:

D([“t”,[“10187696869432e6”,1,0,”9:00pm”,”Ben, me, Ben
(3)”,”» ”,”This is the third
message”,,[]

Continued

10_59611x ch05.qxp 11/28/05 11:15 PM Page 83

84 Part II — Getting Inside Gmail

Listing 5-13 (continued)

,””,”10187696869432e6”,0,”Tue Jan 18 2005_12:00PM”]
,[“101865b95fc7a35a”,1,0,”4:05pm”,”Ben
Hammersley”,”» ”,”This is the
second message”,,[]
,””,”101865b95fc7a35a”,0,”Tue Jan 18 2005_7:05AM”]
,[“101480d8ef5dc74a”,0,1,”Jan 6”,”Ben
Hammersley”,”» ”,”Here\’s a nice
message.”,,[“^t”,”Heads”]
,””,”101480d8ef5dc74a”,0,”Thu Jan 6 2005_4:44AM”]
]
);
D([“te”]);

THE GETTING MESSAGE EXCHANGE

192.168.016.051.61753-216.239.057.105.00080: GET
/gmail?ik=344af70c5d&view=cv&search=inbox&th=10187696869432e6&
lvp=-1&cvp=0&zx=24lfl9e44iyx7g HTTP/1.1

Host: gmail.google.com

User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;
en-GB; rv:1.7.5) Gecko/20041110 Firefox/1.0

Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9
,text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-gb,en;q=0.5

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Referer:
http://gmail.google.com/gmail?ik=&search=inbox&view=tl&start=0
&init=1&zx=cs149e44iu4pd

Cookie: GV=101018770f6a0-36b4c5fcaa4913584af2219efa21740e;
SID=DQAAAGoAAACTZryXzUYHgTI4VWtHGXDY5J8vchRrqp_Ek4XjEgdZYQwBUE

10_59611x ch05.qxp 11/28/05 11:15 PM Page 84

85Chapter 5 — How Gmail Works

pXOuyokCt-EOOmsaL8J8_bQ3jkrMfskffoH8Mb6GvEJJPAhS6noKP8IjnR-
EcWN8MTvIPeqOYYoxE52oLva00EWdOrsGhtCy18RphU;
GMAIL_AT=aa5dcfedda2d8658-1018770f6a2; S=gmail=p-
l14BJCt_4:gmproxy=c9z4V0uxx2o; TZ=-60; GMAIL_SU=1;
PREF=ID=e38a980ef675b953:TM=1106078936:LM=1106078936:GM=1:S=T0
D_V1EFUHr7faSw; GBE=d-540-800

216.239.057.105.00080-192.168.016.051.61753: HTTP/1.1 200 OK

Set-Cookie:
SID=DQAAAGoAAACTZryXzUYHgTI4VWtHGXDY5J8vchRrqp_Ek4XjEgdZYQwBUE
pXOuyokCt-EOOmsaL8J8_bQ3jkrMfskffoH8Mb6GvEJJPAhS6noKP8IjnR-
EcWN8MTvIPeqOYYoxE52oLva00EWdOrsGhtCy18RphU;Domain=.google.com
;Path=/

Set-Cookie: GBE=; Expires=Mon, 17-Jan-05 20:12:34 GMT; Path=/

Set-Cookie: GMAIL_SU=; Expires=Mon, 17-Jan-05 20:12:34 GMT;
Path=/

Cache-control: no-cache

Pragma: no-cache

Content-Type: text/html; charset=utf-8

Transfer-Encoding: chunked

Server: GFE/1.3

Date: Tue, 18 Jan 2005 20:12:34 GMT

b23

<html><head><meta content=”text/html; charset=UTF-8” http-
equiv=”content-type”></head><script>D=(top.js&&top.js.init)?fu
nction(d){top.js.P(window,d)}:function(){};if(window==top){top
.location=”/gmail?ik=344af70c5d&view=cv&search=inbox&th=101876
96869432e6&lvp=-
1&cvp=0&zx=24lfl9e44iyx7g&fs=1”;}</script><script><!--
D([“su”,”33fc762357568758”,[“l”,”/gmail/help/images/logo.gif”,
”i”,”Invite a friend to Gmail”,”j”,”Invite PH_NUM friends to
Gmail”]

Continued

10_59611x ch05.qxp 11/28/05 11:15 PM Page 85

86 Part II — Getting Inside Gmail

Listing 5-13 (continued)

]
);
D([“v”,”15b3e78585d3c7bb”,”33fc762357568758”]
);
D([“i”,6]
);
D([“qu”,”1 MB”,”1000 MB”,”0%”,”#006633”]
);
D([“ft”,”Automatically <span style=\”color:#0000CC;text-
decoration:underline;cursor:pointer;cursor:hand;white-space:no
wrap\” id=\”prf_d\”>forward your Gmail messages
to another email account. <a style=color:#0000CC
target=_blank
href=\”/support/bin/answer.py?ctx=gmail&answer=10957\”>Learn&n
bsp;more”]
);
D
216.239.057.105.00080-192.168.016.051.61753:
([“ds”,1,0,0,0,0,16,0]
);
D([“ct”,[[“Heads”,0]
,[“Knees”,0]
,[“Shoulders”,0]
,[“Toes”,0]
]
]
);
D([“cs”,”10187696869432e6”,”This is the third message”,”This
is the third message”,””,[“^i”]
,[]
,0,3,”g6yz3b2a3jhoga7fql7qx3yo6l9gvyf”,,”10187696869432e6”]
);
D([“mi”,2,1,”101865c04ac2427f”,0,”0”,”Ben
Hammersley”,”ben@benhammersley.com”,”me”,”4:05pm (5 hours
ago)”,[“Ben Hammersley <ben.hammersley@gmail.com>”]
,[]
,[]
,[]
,”Tue, 18 Jan 2005 16:05:17 +0100”,”This is the third
message”,”3rd! THREE! THIRD!”,[]
,1,,,”Tue Jan 18 2005_7:05AM”]
);

//--></script><script><!--

10_59611x ch05.qxp 11/28/05 11:15 PM Page 86

87Chapter 5 — How Gmail Works

D([“mi”,2,2,”101876847addcbd1”,0,”0”,”Ben
Hammersley”,”ben.hammersley@gmail.com”,”Ben”,”8:59pm (13
minutes ago)”,[“Ben Hammersley <ben@benhammersley.com>”]
,[]
,[]
,[“Ben Hammersley <ben.hammersley@gmail.com>”]
,”Tue, 18 Jan 2005 20:59:13 +0100”,”Re: This is the third
message”,”And this is a reply back On Tue, 18 Jan 2005
16:05:17 +0100, Ben Hammersley <...”,[]
,1,,,”Tue Jan 18 2005_11:59AM”]
);
D([“mi”,0,3,”10187696869432e6”,0,”0”,”Ben
Hammersley”,”ben@benhammersley.com”,”me”,”8:59pm (12 minutes
ago)”,[“Ben Hammersley <ben.hammersley@gmail.com>”]
,[]
,[]
,[]
,”Tue, 18 Jan 2005 20:59:40 +0100”,”Re: This is the third
message”,””,[]
,1,,,”Tue Jan 18 2005_11:59AM”]
);
D([“mb”,”And this is another reply back yet again
”,1]
);
D([“mb”,”<div><div class=ea>-
Show quoted text -</div><span class=e
216.239.057.105.00080-192.168.016.051.61753:
id=q_10187696869432e6_1>
On 18 Jan 2005, at 20:59, Ben
Hammersley wrote:

> And this is a reply
back
>
>
> On Tue, 18 Jan 2005 16:05:17
+0100, Ben Hammersley
> <<a onclick=\”return
top.js.OpenExtLink(window,event,this)\”
href=\”mailto:ben@benhammersley.com\”>ben@benhammersley.com> wrote:
>> 3rd! THREE!
THIRD!
>>
>>

</div>”,0]
);
D([“ce”]);

//--></script><script>var
loaded=true;D([‘e’]);</script><script>try{top.js.L(window,32,’
9
36bba732b’);}catch(e){}</script>

As you can deduce, th does indeed stand for thread. In Gmail, it turns out, you do
not just retrieve single messages. Rather, you retrieve the requested message and
also the entire set of headers for the rest of the messages in the thread. You can see

10_59611x ch05.qxp 11/28/05 11:15 PM Page 87

88 Part II — Getting Inside Gmail

this quite clearly in the example above. The lines in bold type show the headers
for all three messages, and the whole thing finishes with the entire content of the
requested message.

You then allow the JavaScript code to wrangle the interface afterward. This is a
clever trick: it allows the interface to be very quick at the point the user wants it to
be — when you’re reading through a thread — instead of loading each message
individually.

So, you now know how to retrieve messages. But how do you read them?

Listing 5-14 shows the relevant bit of JavaScript.

Listing 5-14: The Message Itself

D([“mi”,0,3,”10187696869432e6”,0,”0”,”Ben
Hammersley”,”ben@benhammersley.com”,”me”,”8:59pm (12 minutes
ago)”,[“Ben Hammersley <ben.hammersley@gmail.com>”]
,[]
,[]
,[]
,”Tue, 18 Jan 2005 20:59:40 +0100”,”Re: This is the third
message”,””,[]
,1,,,”Tue Jan 18 2005_11:59AM”]
);
D([“mb”,”And this is another reply back yet again
”,1]
);
D([“mb”,”<div><div class=ea>-
Show quoted text -</div><span class=e
id=q_10187696869432e6_1>
On 18 Jan 2005, at 20:59, Ben
Hammersley wrote:

> And this is a reply
back
>
>
> On Tue, 18 Jan 2005 16:05:17
+0100, Ben Hammersley
> <<a onclick=\”return
top.js.OpenExtLink(window,event,this)\”
href=\”mailto:ben@benhammersley.com\”>ben@benhammersley.com> wrote:
>> 3rd! THREE!
THIRD!
>>
>>

</div>”,0]
);

From this you can see that the message is sent in three JavaScript arrays. D([“mi”
contains the header information — its status, the message ID, who sent it, and so
on — and then there are two arrays starting with D([“mb” that contain the first

10_59611x ch05.qxp 11/28/05 11:15 PM Page 88

89Chapter 5 — How Gmail Works

line and the whole rest of the message, respectively, marked up in HTML. Parsing
this out, as you will in Chapter 8, will be easy. So you now know how to request a
message and read it.

And Now . . .
In this chapter, you learned how Gmail works, and you looked at the techniques
you would use to probe the system for the knowledge you need to communicate
with the Gmail server directly. You can log in, request mail, read mail, and access
label titles and other sorts of information. In the next chapter, however, you will
look at the existing APIs for Gmail — both confirming what you have learned
here — and learn how to put your new expertise to use.

10_59611x ch05.qxp 11/28/05 11:15 PM Page 89

10_59611x ch05.qxp 11/28/05 11:15 PM Page 90

Gmail and
Greasemonkey

Another phenomenon to hit the web at the same time as
Gmail was the Firefox browser. Indeed, the growth of this
open source application easily rivaled Gmail for shocking

explosiveness. Apart from the additional security benefits and
tasty user interface advantages that Firefox gives, the browser is
also open to a considerable amount of hacking in itself. One of
the key hacks for Firefox was Greasemonkey. In this chapter, you
learn how Greasemonkey and Firefox can be used to radically
improve your Gmail experience, and how the understanding you
now have about the workings of Gmail will enable you to build
your own Greasemonkey scripts.

What Is Greasemonkey?
Greasemonkey allows the user to assign snippets of JavaScript
code to run automatically whenever a certain page is loaded. The
upshot of this is that you can write JavaScript code that will cus-
tomize those web pages, modifying layout, adding new features,
or removing extraneous parts of the page. Greasemonkey has
been used to remove advertising, rewrite links, add new links to
other sites, and even add completely new menus to sites. Gmail,
being one huge hunk of burning JavaScript, is beautifully posi-
tioned to be taken advantage of by Greasemonkey.

To use Greasemonkey, you have to install it first. Do that by get-
ting the latest version from http://greasemonkey.mozdev.
org/.

The snippets of JavaScript used by Greasemonkey are called user-
scripts. They need to be installed into Firefox for the application to
work. You do that like this: Go to the page with the userscript in
it. It will look really ugly, with lots of JavaScript, and the top 20 or
so lines preceded by double forward-slashes, as in Figure 6-1.

˛ What is
Greasemonkey?

˛ Using userscripts

˛ Customizing the
Gmail experience

chapter

in this chapter

11_59611x ch06.qxp 11/28/05 11:06 PM Page 91

92 Part II — Getting Inside Gmail

Click Tools, and then Install User Script. Check that everything looks okay.
(Nothing red and scary? Good, carry on.) That’s it. You’re done.

FIGURE 6-1: Firefox and Greasemonkey

The Userscripts
Now that you know how to install userscripts, you can start to use them.
Ordinarily, you wouldn’t have to type the code in, seeing as you just point your
browser to the site and let fly with the installation procedure, as detailed in the
preceding text, but you can learn a lot from looking at the code. For the next few
examples, therefore, you shall take a look. There are techniques to be learned, and
inspiration to be had, here.

Displaying Bloglines Within Gmail
Bloglines — shown in Figure 6-2 — is another great web-based application. It’s an
RSS reader — you can use it to keep track of hundreds of sites’ content by sub-
scribing to each of the sites’ feeds. Many users, myself included, keep close to a
hundred sites in their Bloglines subscription. Some have many more. Indeed, the
regular trawl of unread news items in Bloglines is close to as important as the reg-
ular checking of my Inbox.

11_59611x ch06.qxp 11/28/05 11:06 PM Page 92

93Chapter 6 — Gmail and Greasemonkey

FIGURE 6-2: The Bloglines Greasemonkey extension in action

Martin Sersale’s beautiful code, which can be installed from
http://www.n3rds.com.ar/greasemonkey/bloglines+gmail.user.js,
allows you to combine the two. First, the listing, and then we shall talk about the
more interesting sections. The whole thing is listed here, in Listing 6-1, as it’s full
of very useful stuff.

Listing 6-1: Displaying Bloglines with Gmail

// Displays a box in Gmail with your Bloglines feeds
// version 0.1
// 2005-05-02
// Copyright (c) 2005, Martin Sarsale -
martin@malditainternet.com
// Released under the GPL license
// http://www.gnu.org/copyleft/gpl.html
// ---

// ==UserScript==
// @name Bloglines
// @namespace
http://martin.malditainternet.com/greasemonkey/gmail+bloglines
/
// @include https://gmail.google.com/*

Continued

11_59611x ch06.qxp 11/28/05 11:06 PM Page 93

94 Part II — Getting Inside Gmail

Listing 6-1 (continued)

// @include http://gmail.google.com/*
// @include http://mail.google.com/*
// @include https://mail.google.com/*
// @include http://gmail.google.com/gmail?logout&hl=en
// @include
https://www.google.com/accounts/ServiceLogin?service=mail*
// @exclude
// @description Displays a box in Gmail with your Bloglines
feeds
// ==/UserScript==

(function(){
var __items={};
function cache_gotsubs(e){

GM_setValue(‘subs’,e[‘responseText’]);
GM_setValue(‘subs_updated’,Date.parse(Date())/1000)
//GM_log/gci(‘getting data, subs_updated set to

‘+GM_getValue(‘subs_updated’,0));
gotsubs(e);

}
function getcachedsubs(){

var v=GM_getValue(‘subs’,null);
if (v){

updated=GM_getValue(‘subs_updated’,0);
d=Date.parse(Date())/1000;
if ((d - updated) > 300){

//GM_log/gci(‘cache expired: ‘+(d -
updated)+”(“+d+” - “+updated+”)”);

return false;
}else{

return v;
}

}
return false;

}
function getsubs(){

v=getcachedsubs();
if (v){

gotsubs(v);
return true;

}
getsubs();

}
function _getsubs(){

GM_xmlhttpRequest({‘method’:’GET’,’url’:”http://rpc.bloglines.
com/listsubs”,’onload’:cache_gotsubs});

11_59611x ch06.qxp 11/28/05 11:06 PM Page 94

95Chapter 6 — Gmail and Greasemonkey

}
function parsesubs(r){

parser=new DOMParser();
dom=parser.parseFromString(r,’text/xml’);
outlines=dom.getElementsByTagName(‘outline’);
subs=new Array();
for(i=0; i<outlines.length; i++){

if (outlines[i].getAttribute(‘type’) != undefined
){

d={ ‘title’:outlines[i].getAttribute(‘title’),
‘htmlUrl’:outlines[i].getAttribute(‘htmlUrl’),
‘type’:outlines[i].getAttribute(‘type’),
‘xmlUrl’:outlines[i].getAttribute(‘xmlUrl’),
‘BloglinesSubId’:outlines[i].getAttribute(‘BloglinesSubId’),
‘BloglinesUnread’:outlines[i].getAttribute(‘BloglinesUnread’)
};

subs[subs.length]=d;
}

}
return subs;

}
function gotsubs(response){

if (typeof(response)==’object’){
data=response[‘responseText’];

}else{
data=response;

}
r=parsesubs(data);
r.sort(function(a,b){; var r=a[‘BloglinesUnread’] >

b[‘BloglinesUnread’]; if(r){return -1}else{return 1} });
addsubhtml_init();
for(i=0; i<r.length; i++){

addsubhtml(r[i]);
}
addsubhtml_end();

}
function addsubhtml_end(){

ul=document.getElementById(‘bloglines_subs’);
if (ul){

GM_setValue(‘subs_cached_html’,ul.innerHTML);
}

}
function createbutton(str){

a=document.createElement(‘div’);
a.appendChild(document.createTextNode(str))
a.style.backgroundColor=’#dddddd’;
a.style.borderStyle=’outset’;
a.style.borderColor=’#eeeeee’;

Continued

11_59611x ch06.qxp 11/28/05 11:06 PM Page 95

96 Part II — Getting Inside Gmail

Listing 6-1 (continued)

a.style.borderWidth=’2px’;
a.style.width=’10px’;
a.style.height=’10px’;
a.style.lineHeight=’10px’;
a.style.verticalAlign=’middle’;
a.style.textAlign=’center’;
a.style.fontSize=’x-small’;
a.style.fontWeight=’bold’;
a.style.position=’absolute’;
a.style.top=’0px’;
a.style.right=’0px’;
return a;

}
function addsubhtml_init(){

ul=document.getElementById(‘bloglines_subs’);
ul.innerHTML=’’;
if (!document.getElementById(‘bloglines_reload’)){

a=createbutton(‘R’);
a.addEventListener(‘click’,_getsubs,false);
a.id=’bloglines_reload’;
ul.parentNode.appendChild(a);

}

}
function addsubhtml(d){

ul=document.getElementById(‘bloglines_subs’);
li=document.createElement(‘li’);
li.className=’nl’;
li.style.padding=’0px’;
li.style.margin=’0px’;
li.style.width=’100%’;
li.style.overflow=’hidden’;

a=document.createElement(‘a’);
a.id=d[‘BloglinesSubId’];

a.href=’http://www.bloglines.com/myblogs_display?sub=’+d[‘Blog
linesSubId’]+’&site=0’;

a.target=’_blank’;
txt=d[‘title’]
a.style.fontSize=’small’;
if (d[‘BloglinesUnread’]>0){

a.style.fontWeight=’bold’;
txt=txt+” (“+d[‘BloglinesUnread’]+”)”;

11_59611x ch06.qxp 11/28/05 11:06 PM Page 96

97Chapter 6 — Gmail and Greasemonkey

}
a.appendChild(document.createTextNode(txt));
li.appendChild(a);
ul.appendChild(li);

}
function getsub(e){

id=e.target.id;

GM_xmlhttpRequest({‘method’:’GET’,’url’:”http://rpc.bloglines.
com/getitems?n=0&s=”+id,’onload’:gotsub});

}
function gotsub(r){

var d=parsesub(r[‘responseText’]);
for(var i=0; i<d.length; i++){

item=d[i];

items[getText(item.getElementsByTagName(‘guid’)[0])]=item;
}
for(i=0; i<d.length; i++){

item=d[i];
displaysubhtml(item);

}
}
function displaysubhtml(item){

li=document.createElement(‘li’);
b=document.getElementById(‘items’);

a=document.createElement(‘a’);
a.id=getText(item.getElementsByTagName(‘guid’)[0]);
a.addEventListener(‘click’,displayitem,false);

a.appendChild(document.createTextNode(getText(item.getElements
ByTagName(‘title’)[0])));

li.appendChild(a);
b.appendChild(li);

}
function displayitem(e){

id=e.target.id;
var item=__items[id];
displayitemhtml(item);

}
function displayitemhtml(item){

i=document.getElementById(‘item’);

i.innerHTML=getText(item.getElementsByTagName(‘description’)[0
]);

Continued

11_59611x ch06.qxp 11/28/05 11:06 PM Page 97

98 Part II — Getting Inside Gmail

Listing 6-1 (continued)

}
function getText(e){

nodes=e.childNodes;
for (var i=0; i<nodes.length; i++){

if (nodes[i].nodeValue != null){
return nodes[i].nodeValue;

}
}

}
function parsesub(r){

parser=new DOMParser();
dom=parser.parseFromString(r,’text/xml’);
r=dom.getElementsByTagName(‘item’);
return r;

}
function checkifpresenthtml(){

d=document.getElementById(‘nt_9’);
if (!d){

inithtml();
getsubs();

}
}
function switch_labels(){

for(i=0; i<window.labels_readed.length; i++){
label=window.labels_readed[i];
if (label.style.display != ‘none’){

label.style.display=’none’;
}else{

label.style.display=’block’;
}

}
}
function inithtml(){

bar=document.getElementById(‘nav’);
if (bar){

document.styleSheets[0].insertRule(‘ul#bloglines_subs>li>a{tex
t-decoration:none}’,document.styleSheets[0].length);

v=getcachedsubs();
if (v){

data=GM_getValue(‘subs_cached_html’,’’);
}else{

data=’’;

11_59611x ch06.qxp 11/28/05 11:06 PM Page 98

99Chapter 6 — Gmail and Greasemonkey

}

invite=document.getElementById(‘nb_1’);
if (invite){ invite.style.display=’none’; }

document.getElementById(‘ds_spam’).parentNode.style.display=’n
one’;

document.getElementById(‘ds_all’).parentNode.style.display=’no
ne’;

document.getElementById(‘ds_trash’).parentNode.style.display=’
none’;

document.getElementById(‘comp’).parentNode.style.display=’none
’;

div=document.createElement(‘div’);
div.style.paddingTop=’0px’;
div.id=’nb_9’;
html=”<div style=’width:

95%;padding:0px;position:relative’><table width=’100%’
style=’margin-top:0px;’ cellspacing=’0’ cellpadding=’0’
bgcolor=’#c3d9ff’> <tbody> <tr height=’2’> <td class=’tl’>
</td> <td class=’tr’> </td> </tr> </tbody> </table> <div
style=’padding: 0pt 3px 1px; background: rgb(195, 217, 255)
none repeat scroll 0%; -moz-background-clip: initial; -moz-
background-origin: initial; -moz-background-inline-policy:
initial;’> <div id=’nt_9’ class=’s h’> <table cellspacing=’0’
cellpadding=’0’> <tbody> <tr> <td style=’vertical-align: top;’
class=’s h’> <img width=’11’ height=’11’
src=’/gmail/images/opentriangle.gif’ /> </td> <td class=’s’>
Bloglines</td></tr></tbody> </table> </div> <table
cellspacing=’2’ class=’nb’> <tbody> <tr> <td><ul
id=’bloglines_subs’ style=’width:100%; margin:0px;
padding:0px; list-style-type:none’>”+data+”</td> </tr>
</tbody> </table> </div> <table width=’100%’ cellspacing=’0’
cellpadding=’0’ bgcolor=’#c3d9ff’> <tbody> <tr height=’2’> <td
class=’bl’> </td> <td class=’br’> </td> </tr> </tbody>
</table></div>”;

div.innerHTML=html;
bar.appendChild(div);
return true;

}
return false;

}
function init(){

return inithtml();

Continued

11_59611x ch06.qxp 11/28/05 11:06 PM Page 99

100 Part II — Getting Inside Gmail

Listing 6-1 (continued)

}
if

(window.location.href==’http://gmail.google.com/gmail?logout&h
l=en’ || window.location.href.substr(0,57) ==
‘https://www.google.com/accounts/ServiceLogin?service=mail’){

//GM_log/gci(‘logout’);
GM_setValue(‘subs’,null);
GM_setValue(‘subs_update’,null);
GM_setValue(‘subs_cached_html’,null);

}else{
if(init()){

getsubs();
setInterval(checkifpresenthtml,1000);

}
}

})()

How It Works
Have a read through the preceding code. From the knowledge you have from the
chapters on skinning CSS and how the JavaScript within Gmail works, you
should be able to glean a little inkling into how it works. For the sake of brevity, I
won’t repeat all of the functions here, but to walk through, the first interesting
things are the _getsubs (note the plural and underscore) and parsesubs func-
tions. _getsubs uses the same xmlhttprequest system that Gmail does. _getsubs
requests your list of subscriptions from Bloglines.

Once the subs have been got by _getsubs, the script goes through a series of
functions to cache them. That is all at the top of the script, and causes the sub-
scriptions list to be collected only once an hour. (At the bottom of the script, the
very last function, is code to check if the page Greasemonkey can see is the one
you get only if the user has logged out of Gmail. If that page is hit, the cache is
emptied as well.)

A freshly retrieved list of subs is then passed through the parsesubs function.
This parses the XML of the subscription list into an array.

Note here that this is, so far, very useful stuff. Many sites provide information
feeds in XML, and all you have here really is a script that pulls in a feed (after
checking it’s not in a cache) and parses it. You can reuse that structure to pull in
data from just about anywhere. Indeed, if an ordinary website has no feed, but is
well-formed XHTML, you can even use this same technique to screenscrape
something and display that information within a page.

11_59611x ch06.qxp 11/28/05 11:06 PM Page 100

101Chapter 6 — Gmail and Greasemonkey

Even better, the script then has to go use the data in the subs list, which is placed
inside an array. In the getsub function (note the singular, and lack of underscore),
the script retrieves the XML of the feed. Once you have that, use the functions
displaysubhtml and inithtml to convert the XML of the feed into HTML
and display it on the page. From Chapter 4, even if you know no JavaScript, you
should be able decipher the meaning of lines such as this:
document.getElementById(‘ds_spam’).parentNode.style.display=’none’;

They prevent the browser from displaying that particular div, making space for the
HTML it then adds onto the screen.

To go more deeply into this script would require another book, on JavaScript and
Greasemonkey at the very least, but I hope by reading through it you can see how
it works. It’s very hackable — have a go at converting it to displaying information
from other XML-providing sources. The weather forecasts available at http://
weather.gov/xml/ are a good starting point. For extra inspiration, consider dis-
playing the weather at the location of a new mail’s sender. Tricky one, that.

Add a Delete Button
Not content with grabbing data from other sources and chucking it all over the
site like some crazed mash-up DJ, you can also use Greasemonkey to add addi-
tional user interface elements. Anthony Lieuallen’s script at www.arantius.
com/article/arantius/gmail+delete+button/ adds a Delete button to the
menu, as shown in Figure 6-3.

FIGURE 6-3: The added
Delete button

Without such a button, as you know, you have to move the message to trash.
Not much of a change, admittedly, but a nice UI improvement. Listing 6-2 shows
the code.

11_59611x ch06.qxp 11/28/05 11:06 PM Page 101

102 Part II — Getting Inside Gmail

Listing 6-2: Adding the Delete Button

// ==UserScript==
// @name Gmail Delete Button
// @namespace
http://www.arantius.com/article/arantius/gmail+delete+button/
// @description Add a “Delete” button to Gmail’s interface.
// @include http*://*mail.google.com/*mail*?*
// @version 2.9.1
// ==/UserScript==

//
// Version 2.91:
// - Japanese and Hungarian translation
// Version 2.9:
// - Compatibility upgrade, works in GM 0.6.2 in Firefox 1.5
Beta 1
// Version 2.8.3:
// - Polish translation
// Version 2.8.2:
// - Russian translation
// Version 2.8.1:
// - Bulgarian translation
// Version 2.8:
// - Cleaned up bits of the code. No more global scope
objects.
// - Deer Park compatible.
// Version 2.7.2:
// - Better i81n, file encoded as unicode, to be compatible
with newer
// versions of greasemonkey.
// Version 2.7:
// - Internationalization. If you speak a language other
than english,
// please check the existing text (if there) and/or suggest
the right
// word to mean ‘Delete’ in your language.
// - A change to the default include path.
// Version 2.6:
// - Add button into starred and sent mail section as per
user request.
// - Rework logic to use events (mouse click and key press)
instead of
// timers to further ameliorate lockouts. I’ve recieved at
least one
// report that it was fixed by 2.3, and others that it was
not at 2.5.

11_59611x ch06.qxp 11/28/05 11:06 PM Page 102

103Chapter 6 — Gmail and Greasemonkey

// Perhaps it was fixed and the timing of reports was off,
but this
// should make things more certain. I always welcome
constructive
// bug reports, I have never had a problem so I need
information from
// those who have to change anything.
// Version 2.5:
// - Change default include pattern to match a change in
Gmail’s code.
// Version 2.4:
// - Remove red text. You may restore the red color by un-
commenting
// the proper line in _gd_make_dom_button.
// - Do not show for a message in the spam folder.
// - Minor tweaks.
// Version 2.3:
// - Add/change code to track down/eliminate error
conditions.
// - Display error when there are no selected messages to
delete.
// - Include delete button in all labels and ‘All Mail’
section.
// Version 2.2:
// - Patched to work with GreaseMonkey 0.3.3
//
// ---

// Originally written by Anthony Lieuallen of
http://www.arantius.com/
// Licensed for unlimited modification and redistribution as
long as
// this notice is kept intact.
// ---

//
// If possible, please contact me regarding new features,
bugfixes
// or changes that I could integrate into the existing code
instead of
// creating a different script. Thank you
//

(function(){

function _gd_dumpErr(e) {
var s=’Error in Gmail Delete Button:\n’;
s+=’ Line: ‘+e.lineNumber+’\n’;

Continued

11_59611x ch06.qxp 11/28/05 11:06 PM Page 103

104 Part II — Getting Inside Gmail

Listing 6-2 (continued)

s+=’ ‘+e.name+’: ‘+e.message+’\n’;
dump(s);

}

function _gd_element(id) {
try {

var el=window.document.getElementById(id);
} catch (e) {

gd_dumpErr(e);
return false;

}
if (el) return el;
return false;

}

function _gd_gmail_delete(e) {
dump(‘Called _gd_gmail_delete()...\n’);
//find the command box
var delete_button=e.target;
var

command_box=delete_button.parentNode.getElementsByTagName(‘sel
ect’)[0];

command_box.onfocus();

//find the command index for ‘move to trash’
var delete_index=-1;
for (var i=0; i<command_box.options.length; i++) {

if (‘tr’==command_box.options[i].value &&
!command_box.options[i].disabled) {

delete_index=i;
break;

}
}

//don’t try to continue if we can’t move to trash now
if (-1==delete_index) {

var box=_gd_element(‘nt1’);
if (box) {

try {
//if we find the box put an error message in

it
box.firstChild.style.visibility=’visible’;

box.getElementsByTagName(‘td’)[1].innerHTML=’Could not delete.
Make sure at least one conversation is selected.’;

11_59611x ch06.qxp 11/28/05 11:06 PM Page 104

105Chapter 6 — Gmail and Greasemonkey

} catch (e) {
gd_dumpErr(e);

}
}
return;

}

//set the command index and fire the change event
command_box.selectedIndex=delete_index;
command_box.onchange();
//command_box.dispatchEvent(‘click’);
//var evt=createEvent();

}

function _gd_make_dom_button(id) {
var delete_button=window.document.createElement(‘button’);
delete_button.setAttribute(‘class’, ‘ab’);
delete_button.setAttribute(‘id’, ‘_gd_delete_button’+id);
delete_button.addEventListener(‘click’, _gd_gmail_delete,

false);

//uncomment (remove the two leading slashes) from the next
line for red text

//delete_button.style.color=’#EE3311’;

//this is a little hack-y, but we can find the code for
the language here

var lang=’’;
try {

var
urlToTest=window.top.document.getElementsByTagName(‘frame’)[1]
.src;

var
m=urlToTest.match(/html\/([^\/]*)\/loading.html$/);

if (null!=m) lang=m[1];
} catch (e) {

gd_dumpErr(e);
}
//now check that language, and find the right word!
var buttonText=’Delete’; //the default text for the

button, overriden
//in the switch below if we know

the right word
switch (lang) {
case ‘it’: buttonText=’Elimina’; break;
case ‘es’: buttonText=’Borrar’; break;
case ‘fr’: buttonText=’Supprimer’; break;
//case ‘pt-BR’: buttonText=’Supressão’; break;

Continued

11_59611x ch06.qxp 11/28/05 11:06 PM Page 105

106 Part II — Getting Inside Gmail

Listing 6-2 (continued)

//it was suggested by a user that ‘Apaga’ is more proper
for this language

case ‘pt-BR’: buttonText=’Apaga’; break;
case ‘de’: buttonText=’Löschen’; break;
case ‘bg’:

buttonText=’Изтрий’;
break;

case ‘ru’:
buttonText=’Удалить’
; break;

case ‘pl’: buttonText=’Usuń’; break;
case ‘ja’:

buttonText=’\u30b4\u30df\u7bb1\u3078\u79fb\u52d5’; break;
case ‘hu’: buttonText=’Töröl’; break;
}

delete_button.innerHTML=’’+buttonText+’’;
return delete_button;

}

function _gd_insert_button(insert_container, id) {
if (!insert_container) return false;
if (_gd_element(‘_gd_delete_button’+id)) {

return false;
}

//get the elements
var spacer, delete_button;
delete_button=_gd_make_dom_button(id);

spacer=insert_container.firstChild.nextSibling.cloneNode(false
);

//pick the right place to put them
var insert_point=insert_container.firstChild; //this is

default
if (2==id || 3==id) {

// 2 and 3 are inside the message and go at a
different place

insert_point=insert_point.nextSibling.nextSibling;
}
if (window.document.location.search.match(/search=query/))

{
//inside the search page we go yet different places

with different spacers

11_59611x ch06.qxp 11/28/05 11:06 PM Page 106

107Chapter 6 — Gmail and Greasemonkey

if (0==id) {

spacer=insert_container.firstChild.nextSibling.nextSibling.clo
neNode(false);

insert_point=insert_container.firstChild.nextSibling.nextSibli
ng.nextSibling;

}
if (1==id)

spacer=window.document.createElement(‘span’); //no space
really needed here

} else if
(window.document.location.search.match(/search=sent/)) {

//inside the sent page we go yet different places with
different spacers

if (0==id) {

//spacer=insert_container.firstChild.nextSibling.nextSibling.c
loneNode(false);

//insert_point=insert_container.firstChild.nextSibling.nextSib
ling.nextSibling;

spacer=window.document.createTextNode(‘ ‘);

insert_point=insert_container.firstChild.nextSibling.nextSibli
ng;

}
if (1==id)

spacer=window.document.createElement(‘span’); //no space
really needed here

}

//put them in
insert_container.insertBefore(spacer, insert_point);
insert_container.insertBefore(delete_button, spacer);

}

function _gd_place_delete_buttons() {
if (!window || !window.document || !window.document.body)

return;
var top_menu=_gd_element(‘tamu’); if (top_menu)

_gd_insert_button(top_menu.parentNode, 0);
var bot_menu=_gd_element(‘bamu’); if (bot_menu)

_gd_insert_button(bot_menu.parentNode, 1);
var mtp_menu=_gd_element(‘ctamu’); if (mtp_menu)

_gd_insert_button(mtp_menu.parentNode, 2);
var mbt_menu=_gd_element(‘cbamu’); if (mbt_menu)

_gd_insert_button(mbt_menu.parentNode, 3);

Continued

11_59611x ch06.qxp 11/28/05 11:06 PM Page 107

108 Part II — Getting Inside Gmail

Listing 6-2 (continued)

}

function _gd_button_event() {
try{

setTimeout(_gd_place_delete_buttons, 333);
gd_place_delete_buttons();

} catch(e) {
gd_dumpErr(e);

}
}

var s=window.document.location.search;
dump(‘Load gmail page: ‘+s+’\n’);
if (s.match(/\bsearch=(inbox|query|cat|all|starred|sent)\b/)
||

(s.match(/view=cv/) && !s.match(/search=(trash|spam)/))
) {

dump(‘==== Apply Gmail Delete Button to: ====\n’+s+’\n’);
//put the main button in
try{_gd_place_delete_buttons();}catch(e){dump(e.message);}

//set events to try adding buttons when the user does
things

//because gmail might create new places to need buttons.
window.addEventListener(‘mouseup’, _gd_button_event,

false);
window.addEventListener(‘keyup’, _gd_button_event, false);

}

})();

Again, without going into JavaScript too deeply, there are two things to note here.
The first is how it draws a new button into the page. The second is that the script
checks the language the interface is being displayed in and labels the button
accordingly. Very pleasingly done.

GmailSecure
Mark Pilgrim’s userscript, GmailSecure, found at http://userscripts.org/
scripts/show/1404 and in Listing 6-3, has a simple function: to force Gmail to
use HTTPS instead of HTTP.

11_59611x ch06.qxp 11/28/05 11:06 PM Page 108

109Chapter 6 — Gmail and Greasemonkey

It is ridiculously simple, consisting simply of only one line of actual code (the rest, to
the chagrin of those of us who print on dead trees, is simply the license under which
the code is released, which has to be included). Here’s the line. Brace yourself:
location.href = location.href.replace(/^http:/, ‘https:’);

Because Gmail works via either HTTP or HTTPS, all the userscript needs to do
is make sure that every time a hyperlink starts with http: that part of the URL is
replaced with https:.

Greasemonkey does this by invoking the location.href.replace function.

Listing 6-3: The Ludicrously Simple GmailSecure

// GMailSecure
// version 0.3 BETA!
// 2005-06-28
// Copyright (c) 2005, Mark Pilgrim
// Released under the GPL license
// http://www.gnu.org/copyleft/gpl.html
//
// ---

//
// This is a Greasemonkey user script.
//
// To install, you need Greasemonkey:
http://greasemonkey.mozdev.org/
// Then restart Firefox and revisit this script.
// Under Tools, there will be a new menu item to “Install User
Script”.
// Accept the default configuration and install.
//
// To uninstall, go to Tools/Manage User Scripts,
// select “GMailSecure”, and click Uninstall.
//
// ---

//
// ==UserScript==
// @name GMailSecure
// @namespace
http://diveintomark.org/projects/greasemonkey/
// @description force GMail to use secure connection
// @include http://mail.google.com/*
// ==/UserScript==

/* BEGIN LICENSE BLOCK

Continued

11_59611x ch06.qxp 11/28/05 11:06 PM Page 109

110 Part II — Getting Inside Gmail

Listing 6-3 (continued)

Copyright (C) 2005 Mark Pilgrim

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be
useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You can download a copy of the GNU General Public License at
http://diveintomark.org/projects/greasemonkey/COPYING
or get a free printed copy by writing to the Free Software
Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
USA.
END LICENSE BLOCK */

location.href = location.href.replace(/^http:/, ‘https:’);

//
// ChangeLog
// 2005-07-08 - 0.3 - MAP - added license block
// 2005-06-28 - 0.2 - MAP - changed GMail URL
//

This idea, rewriting URLs, can be very powerfully used. With Mark Pilgrim’s
technique of using location.href.replace, you can do this by brute force.
With the next example, “Mailto Compose in Gmail,” you will see the more radical
version of this.

MailtoComposeInGmail
Perhaps the biggest issue that hits Gmail users, if they start to use the application
as their primary e-mail tool, is that mailto: links found within e-mails do not
trigger Gmail, but rather cause your operating system to load up what it thinks is
the default e-mail application. One moment of thoughtless clicking, and Outlook
Express starts appearing all over the screen. Nausea and discomfort result.

11_59611x ch06.qxp 11/28/05 11:06 PM Page 110

111Chapter 6 — Gmail and Greasemonkey

Julien Couvreur’s MailtoComposeInGmail userscript solves this issue. It applies
itself to every site apart from Gmail, rewriting the mailto: links it finds into a
link that opens the Gmail compose page, with the to: and subject: lines
already filled in.

Listing 6-4 elucidates the userscript. Afterwards, you will see how it works.

Listing 6-4: MailtoComposeInGmail

// MailtoComposeInGMail
// version 0.1
// 2005-03-28
// Copyright (c) 2005, Julien Couvreur
// Released under the GPL license
// http://www.gnu.org/copyleft/gpl.html
// ---

//
// This is a Greasemonkey user script.
//
// To install, you need Greasemonkey:
http://greasemonkey.mozdev.org/
// Then restart Firefox and revisit this script.
// Under Tools, there will be a new menu item to “Install User
Script”.
// Accept the default configuration and install.
//
// To uninstall, go to Tools/Manage User Scripts,
// select “Mailto Compose In GMail”, and click Uninstall.
//
// Aaron Boodman also has a similar script, at:
// http://youngpup.net/userscripts/gmailto.user.js
// In his approach, the links are re-written at the time that
you click
// on them. One benefit is that the link still looks like
mailto:x
// when you hover over it.
// ---

//
// WHAT IT DOES:
// After the page is loaded, look for “mailto:” links and
hooks their onclick
// event to go to GMail’s compose page, passing all the usual
parameters
// (to, cc, subject, body,...).

Continued

11_59611x ch06.qxp 11/28/05 11:06 PM Page 111

112 Part II — Getting Inside Gmail

Listing 6-4 (continued)

// ---

//
// ==UserScript==
// @name Mailto Compose In GMail
// @namespace
http://blog.monstuff.com/archives/000238.html
// @description Rewrites “mailto:” links to GMail compose
links
// @include *
// @exclude http://gmail.google.com
// ==/UserScript==

(function() {

var processMailtoLinks = function() {
var xpath = “//a[starts-with(@href,’mailto:’)]”;
var res = document.evaluate(xpath, document, null,

XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE, null);

var linkIndex, mailtoLink;
for (linkIndex = 0; linkIndex < res.snapshotLength;

linkIndex++) {
mailtoLink = res.snapshotItem(linkIndex);
//alert(mailtoLink.href);

var m = mailtoLink.href;
var matches =

m.match(/^mailto:([^\?]+)(\?([^?]*))?/);
var emailTo, params, emailCC, emailSubject,

emailBody;

emailTo = matches[1];
//alert(“Found to=” + emailTo);

params = matches[3];
if (params) {

var splitQS = params.split(‘&’);
var paramIndex, param;

for (paramIndex = 0; paramIndex <
splitQS.length; paramIndex++) {

param = splitQS[paramIndex];
nameValue = param.match(/([^=]+)=(.*)/);

11_59611x ch06.qxp 11/28/05 11:06 PM Page 112

113Chapter 6 — Gmail and Greasemonkey

if (nameValue && nameValue.length == 3) {
// depending on name, store value in a

pre-defined location
switch(nameValue[1]) {

case “to”:
emailTo = emailTo + “%2C%20” +

nameValue[2];
break;

case “cc”:
emailCC = nameValue[2];
//alert(“Found CC=” +

emailCC);
break;

case “subject”:
emailSubject = nameValue[2];
//alert(“Found subject=” +

emailSubject);
break;

case “body”:
emailBody = nameValue[2];
//alert(“Found body=” +

emailBody);
break;

}
}

}
}

mailtoLink.href =
“https://mail.google.com/mail?view=cm&tf=0” +

(emailTo ? (“&to=” + emailTo) : “”) +
(emailCC ? (“&cc=” + emailCC) : “”) +
(emailSubject ? (“&su=” + emailSubject) : “”)

+
(emailBody ? (“&body=” + emailBody) : “”);

// mailtoLink.onclick = function() { location.href
= newUrl; return false; };

}
}

window.addEventListener(“load”, processMailtoLinks,
false);

})();

Instead of rewriting the mailto: links directly, as Mark Pilgrim’s script does to
make HTTP links into HTTPS, this script adds a JavaScript onclick function

11_59611x ch06.qxp 11/28/05 11:06 PM Page 113

114 Part II — Getting Inside Gmail

to the link instead. When you click such a link, Firefox fires off the JavaScript
function instead of following the link. The onclick function, in turn, opens the
page in Gmail that allows a mail to be composed. Because mailto: links can con-
tain the recipients, message subject, and body text, the userscript has to retrieve
these and add them to the Gmail compose page. You already know that the com-
pose mail URL can be built up in this way, so it’s pretty easy to do that. Here’s the
code that does it:
mailtoLink.href = “https://mail.google.com/mail?view=cm&tf=0”
+

(emailTo ? (“&to=” + emailTo) : “”) +
(emailCC ? (“&cc=” + emailCC) : “”) +
(emailSubject ? (“&su=” + emailSubject) : “”)

+
(emailBody ? (“&body=” + emailBody) : “”);

// mailtoLink.onclick = function() { location.href
= newUrl; return false; };

}

When you run on a link that points to mailto:ben.hammersley@gmail.com,
this will produce the URL https://mail.google.com/mail?view=cm&tf=
0?&to-ben@benhammersley.com.

Perfect. Using this code, you can compose other messages. Perhaps you might like
to use it to produce an “e-mail this to me” userscript, populating the message body
with the contents of the page.

Other Userscripts
Greasemonkey continues to recruit happy developers, and the number of user-
scripts is ever increasing. Here are some more scripts that provide additional func-
tionality to Gmail. More still can be found at http://userscripts.org.

As ever, of course, you must remember that Gmail’s interface is an ever-changing
mélange of weirdness, and these userscripts may well fade in and out of function-
ality. If one stops working, check its coder’s website for updates.

Mark Read Button
Documentation: http://userscripts.org/scripts/show/689

Userscript: http://userscripts.org/scripts/source/689.user.js

11_59611x ch06.qxp 11/28/05 11:06 PM Page 114

115Chapter 6 — Gmail and Greasemonkey

Jim Lawton’s userscript creates a button that, when mails are selected, allows them
to be marked as read, en masse. Very useful in itself, it also provides the core code for
acting on a large number of mails in one go: handy for your own scripts, perhaps.

Multiple Signatures
Documentation: http://userscripts.org/scripts/show/1592

Userscript: http://userscripts.org/scripts/source/1592.user.js

This is a very smart script indeed. Using the ability to change the reply-to:
address within Gmail, it allows the user to change both their e-mail signature,
their reply-to: address, and — brilliantly — Gmail’s color scheme at the same
time. This allows you to use Gmail for multiple mail accounts without getting
them mixed up in the heat and fury of a working day. Very clever.

Hide Invites
Documentation: http://userscripts.org/scripts/show/673

Userscript: http://userscripts.org/scripts/source/673.user.js

A very simple use of Greasemonkey. This userscript simply hides the box that
holds the facility to send Gmail invitations to your friends. As you have already
looked at the way Gmail is constructed, you can modify this userscript yourself to
stop the display of any section of the interface.

Random Signatures
Documentation: http://userscripts.org/scripts/show/1704

Userscript: http://userscripts.org/scripts/source/1704.user.js

Robson Braga Araujo’s userscript adds a random tagline to the bottom of your
Gmail signature and also creates an option in the Settings menu to edit the
taglines and control how the userscript operates.

And Now . . .
In this chapter, you saw that Gmail’s interface and workings are even more cus-
tomizable than you might have first thought. By using Greasemonkey, you can
seriously improve the Gmail experience. And by looking at the way the scripts
work, you can learn how to write your own.

11_59611x ch06.qxp 11/28/05 11:06 PM Page 115

11_59611x ch06.qxp 11/28/05 11:06 PM Page 116

Gmail Libraries

In the previous chapters, you discovered how Gmail works: how
it loads into your browser, and how it handles your mail
through a series of JavaScript tricks and the passing of data in

the background. You can use this newfound knowledge to take
control of the application from within your own programs.

To do that, you need to use a library — a piece of code that
encapsulates the nitty gritty of the interaction between your pro-
gram and Gmail itself in such a way that it makes writing that
program very easy. Instead of, for example, having to write code
that requests the Inbox’s JavaScript array, parses it, finds the mes-
sage identity, requests the thread, parses that, and finally displays
it on the screen, you can simply run the function to download the
next unread mail.

This approach, of wrapping complex activities up into their own
simpler-to-use functions, is one of the bases of software engineer-
ing, so it’s not surprising that there are already many such mod-
ules for Gmail. This chapter examines examples for PHP, Perl,
and Python.

As with all of the code in this book, these libraries are
dependent on Gmail’s code standing still for a while.
Google, on the other hand, likes to keep improving
things. You may find that the APIs don’t quite work
when you try them. Usually this is because Google has
changed the login procedure to Gmail, or something
simple like that. Give it a few days, and you will proba-
bly find that the API’s authors or user community has
hacked up a run-around.

˛ What is a library?

˛ Accessing Gmail
with PHP

˛ Accessing Gmail
with Perl

˛ Accessing Gmail
with Python

chapter

in this chapter

12_59611x ch07.qxp 11/28/05 11:01 PM Page 117

118 Part II — Getting Inside Gmail

PHP — Gmailer
Yin Hung Gan’s Gmailer library is the obvious choice for PHP coders. Gan wrote
it so that he could build a simplified interface for Gmail, and check his mail from
his PDA. It is really two projects: the Gmailer library and Gmail-Lite, which uses
the library to give Gan his simple HTML interface.

Getting and Installing the Library
Gmailer can be downloaded from http://gmail-lite.sourceforge.net/. At
the time of this writing, Gmailer is at version 0.6.9a. The Gmailer homepage
looks like Figure 7-1.

FIGURE 7-1: The Gmailer homepage

Once downloaded, you need only unpack it into the directory your script will run
in. You will also need cURL, from http://curl.haxx.se/, and the OpenSSL
package from www.openssl.org/, but it is very likely that you will already have
those installed as a matter of course. If not, follow the instructions on their web-
sites to download and install them properly. To save time, worry about those only
if any error messages tell you to.

12_59611x ch07.qxp 11/28/05 11:01 PM Page 118

119Chapter 7 — Gmail Libraries

How to Use It
Gmailer provides a series of methods that can be used to log in to Gmail and per-
form the usual functions. Table 7-1 gives the complete rundown of the methods.

Table 7-1 Gmailer’s Methods

Method Function

void setSessionMethod To set the session handling method before connect. If you want
(GM_CONSTANT method) PHP to handle it with cookies, set it to GM_USE_PHPSESSION|
[0.6.4] GM_USE_COOKIE; if you want PHP to handle it but without

using cookies, set it to !GM_USE_COOKIE|GM_USE_
PHPSESSION; if you do not want PHP to handle it, set it to
GM_USE_COOKIE|!GM_USE_PHPSESSION. It will set to
GM_USE_PHPSESSION|GM_USE_COOKIE by default.

void setLoginInfo To set the login information before connect.
string name,
string password,
int GMT_timezone)

void setProxy(string To set the proxy information if necessary. If your proxy server
hostname, string does not require login, set both username and password to “”
username, string
password) [0.6.4]

bool connect() To connect to Gmail. It will use header() to set cookies at the
client-side browser. So you shouldn’t output anything before
calling this method, or use connectNoCookie() otherwise. It
returns 1 if it succeeds, 0 otherwise.

bool connectNoCookie() To connect to Gmail without storing any cookies at the client-side
browser. It returns 1 if it succeeds, 0 otherwise.

bool isConnected() To check if connected.

bool fetch(string query) To fetch the URL query result from Gmail. It is intended to be
used internally (private method). Use fetchBox() instead.

bool fetchBox To fetch a result from Gmail by given:
GM_CONSTANT type, type: Gmailer constant, such as GM_LABEL.
string box, int position) box: name of box (such as Inbox, your_label)

position: cursor for paged result.

bool fetchContact() To fetch the contact list.

Continued

12_59611x ch07.qxp 11/28/05 11:01 PM Page 119

120 Part II — Getting Inside Gmail

Table 7-1 (continued)

Method Function

GMailSnapshot get To get a snapshot, an object (see GMailSnapshot below) for you
Snapshot(GM_CONSTANT to access the query result at ease.
type)

bool getAttachment To download an attachment of a message.
(string attachment_id,
string message_id,
string filename)

array getAttachmentsOf To download all files attached to a conversation. The full path of
(array GMailSnapshot-> downloaded files will be returned (as array).
conv, string path_to_
store_files)

bool send(string to, To send Gmail. to, cc, and bcc are comma-separated addresses.
string subject, attachments is an array of names of files to be attached.
string body, string cc,
string bcc,
string message_replying,
string thread_replying,
array attachments)

bool performAction To perform an action on a message. message_id can be a string
(GM_CONSTANT action_ if only one message is to be acted.
type, array message_id,
string label)

void disconnect() To disconnect from Gmail. Any cookies set at the client-side
browser by libgmailer will be removed.

string dump(string query) To dump all it gets from the URL query string, including headers.

array getStandardBox() To get an array of names of the standard box (Inbox, Starred, and
so on).

Logging in with Gmailer
Logging into Gmail with the Gmailer library is very simple. First you point your
script to the library itself:
require(“libgmailer.php”);

Then you invoke the new Gmailer object:
$gm = new GMailer();

12_59611x ch07.qxp 11/28/05 11:02 PM Page 120

121Chapter 7 — Gmail Libraries

Then you set the setLoginInfo method, giving the username, password, and
time zone from GMT:
$gm->setLoginInfo($name, $pwd, $tz);

Finally, you tell Gmailer to connect:
$gm->connect();

You need to use setLoginInfo only once — Gmailer saves your Gmail cookies,
so once you’ve logged in, you only need to use the connect() method to pass
more commands.

Putting that all together, then, you arrive at Listing 7-1, which gets you logged in
to Gmail, ready for some more code.

Listing 7-1: Logging in to Gmail with PHP

<?php

require(“libgmailer.php”);

$gm = new GMailer();
$name = “username”;
$pwd = “password”;
$tz = “0”;
$gm->setLoginInfo($name, $pwd, $tz);

if ($gm->connect()) {

/** THE REST OF YOUR CODE GOES IN HERE **/

}

$gm->disconnect();

?>

The disconnect() method logs you out again.

Retrieving the Inbox
Once you are logged in, retrieving a thread is simple and is a good example to
show the deeper functions available from the Gmailer library.

12_59611x ch07.qxp 11/28/05 11:02 PM Page 121

122 Part II — Getting Inside Gmail

Assuming you’re logged in, request the Inbox like so:
$gm->fetchBox(GM_STANDARD, Inbox, 0);

Then parse it into an object called a Snapshot, like so:
$snapshot = $gm->getSnapshot(GM_STANDARD);

Once you have the Inbox loaded into a Snapshot, you can query that Snapshot
and get all of the information out of it. You’ll have noticed, however, two things
not yet covered: the phrase GM_STANDARD and the properties that Snapshots
themselves have.

The Constants
GM_STANDARD is a constant. Gmailer has 20 constants available, each representing
a different feature of the Gmail system: the Inbox, the Labels, the Contacts, and
so on. To work with Gmail, you need to use a method to retrieve one of the con-
stants, and then you create a Snapshot of it, and finally query that Snapshot.
This two-stage process is really all there is to the Gmailer library, so once you
understand it, you are good to go.

Table 7-2 gives the constants available to the programmer.

Table 7-2 Gmailer’s Constants

Constant Description

GM_STANDARD All the information about a standard box (Inbox, Sent, All,
Starred, Spam, Trash).

GM_LABEL All the information about the labels.

GM_CONVERSATION All the information about a particular conversation.

GM_QUERY All about a search query.

GM_CONTACT All about the contact list.

GM_ACT_APPLYLABEL Apply or remove label from message.
GM_ACT_REMOVELABEL

GM_ACT_STAR Star or unstar a message.
GM_ACT_UNSTAR

GM_ACT_SPAM Mark or unmark a message as spam.
GM_ACT_UNSPAM

GM_ACT_READ Mark a message as read or unread.
GM_ACT_UNREAD

GM_ACT_ARCHIVE Move a message away from or to the Inbox.
GM_ACT_INBOX

12_59611x ch07.qxp 11/28/05 11:02 PM Page 122

123Chapter 7 — Gmail Libraries

Constant Description

GM_ACT_TRASH Move message to or away from the Trash.
GM_ACT_UNTRASH

GM_ACT_DELFOREVER Delete message forever.

GM_USE_PHPSESSION Use PHP session to handle Gmail-lite session.
[0.6.4]

GM_USE_COOKIE [0.6.4] Use cookie to handle Gmail-lite session.

Table 7-3 gives special properties available for each constant’s Snapshot.

Table 7-3 The Data Available via a Snapshot

Properties available to all Snapshot types except GM_CONTACT

Property Description

gmail_ver Version of Gmail JavaScript core program.

quota_mb Mailbox quota in MB.

quota_per Mailbox quota in percentage.

std_box_new Number-indexed array. Number of unread mails in each standard box. You
may call GMailer::getStandardBox() to get an array of names of
standard boxes.

have_invit Number of invites you have. 0 = no invitation, and so forth.

label_list Number-indexed array. An array of label names.

label_new Number-indexed array. Number of unread mails in each label. (A 1-to-1
mapping of label_list.)

Properties available to Snapshot types GM_STANDARD, GM_LABEL, and GM_QUERY

Property Description

box_name Name of the standard box or label, or query string currently viewing.

box_total Total number of conversations in current mailbox.

box_pos Current starting position (for paged results).

Number-indexed array. An array of conversations in the current mailbox.
Each conversation is a text-indexed array of the following:

Continued

12_59611x ch07.qxp 11/28/05 11:02 PM Page 123

124 Part II — Getting Inside Gmail

Table 7-3 (continued)

Index Description

Id Conversation ID.

is_read 0 = read; 1 = not read yet.

is_starred 0 = not starred; 1 = starred.

Date Arrival date/time of the most recent message.

sender Senders of message in this conversation.

Flag Flag.

Subj Subject of this conversation.

snippet Snippet, or preview, of this conversation.

Labels Number-indexed array. Name of labels that this
conversation is bearing.

attachment Number-indexed array. Name of all attaching files of
this conversation.

Msgid Message ID of the most recently received message of
this conversation.

For example, in order to get the subject of the sixth conversation of the
current viewing box you write $snapshot->box[5][“subj”].

Properties available to Snapshot type GM_CONVERSATION

Property Description

conv_title Subject (title) of this conversation.

conv_total Total number of messages in this conversation.

conv_id Conversation ID.

conv_labels Number-indexed array. Name of labels that this conversation is bearing.

conv_starred Is the conversation starred? This is true if any of the messages of a
[0.6.4] conversation are starred.

Number-indexed array. An array of messages of the current conversation.
Each message is a text-indexed array of the following:

Index Description

index Index.

id Message ID.

sender Name of sender of this message.

sender_email E-mail address of the sender.

recv Name of receiver of this message.

12_59611x ch07.qxp 11/28/05 11:02 PM Page 124

125Chapter 7 — Gmail Libraries

Index Description

recv_email E-mail address of the receiver.

reply_email Replying address of this message.

dt_easy Arrival date/time of this message in easy format, such
as 9 Aug (2 days ago).

dt Arrival date/time of this message in long format, such
as Mon, 9 Aug 2004 19:34:03 +0800.

subj Subject of this message.

is_starred Is the message starred?
[0.6.4]

snippet Snippet, or preview, of this message.

body Message body.

attachment Number-indexed array. An array of attachment
information, which is a text-indexed array of the
following:

Index Description

id Attachment ID.

filename Filename of this attaching file.

type File type (such as JPG, GIF, PDF) of
this attaching file.

size Size in bytes of this file.

Example: $snapshot-
>conv[3][“attachment”][1][“size”]
(size of the 2nd attaching file of the 4th
messages of current conversation)

Properties available to Snapshot type GM_CONTACT

Property Description

contacts_all Number-indexed array. Array of entries (see the table that follows) of your
All address book.

contacts_freq Number-indexed array. Array of entries of your frequently mailed address
book:

Index Description.

name Name (nickname).

email E-mail address.

notes Notes.

is_freq 0 = not frequently mailed; 1 = frequently mailed.

12_59611x ch07.qxp 11/28/05 11:02 PM Page 125

126 Part II — Getting Inside Gmail

Once you’ve requested the Inbox and created a Snapshot, you can query that
Snapshot for details. To print out the number of threads within the Inbox, you
can say this:
echo “Threads in the inbox:” . $snapshot->box_total;

In order to get the Thread ID of the first thread in the Inbox, you can do this:
$threaded = $snapshot->box[0][“id”];

As you can see from the code and the preceding tables, it’s really quite a straight-
forward interface. You’ll be using the interface in later chapters, but to finish,
Listing 7-2 shows PHP code using the Gmailer library to log in and display the
contents of the first message in the first thread in the Inbox.

Listing 7-2: Reading the First Message in the Inbox

<?php

require(“libgmailer.php”);

$gm = new GMailer();
$name = “username”;
$pwd = “password”;
$tz = “0”;
$gm->setLoginInfo($name, $pwd, $tz);

if ($gm->connect()) {

$gm->fetchBox(GM_STANDARD, Inbox, 0);
$snapshot = $gm->getSnapshot(GM_STANDARD);

$threaded = $snapshot->box[0][“id”];

$gm->fetchBox(GM_CONVERSATION, $threaded, 0);
$snapshot = $gm->getSnapshot(GM_CONVERSATION);

echo “The first message reads” . $snapshot-
>conv[0][“body”];

}

$gm->disconnect();

?>

You return to this library in later chapters.

12_59611x ch07.qxp 11/28/05 11:02 PM Page 126

127Chapter 7 — Gmail Libraries

Perl — Mail::Webmail::Gmail
CPAN, the directory of Perl modules, lists quite a few Gmail-related modules,
one of which is shown in Figure 7-2. But at time of this writing, the only one
working is Allen Holman’s Mail::Webmail::Gmail.

FIGURE 7-2: A CPAN search resulting in a Gmail module

Getting and Installing the Library
Mail::Webmail::Gmail is available from CPAN. You can download it directly
from http://search.cpan.org/~mincus/ or use the command line like this:
sudo perl -MCPAN -e ‘install Mail::Webmail::Gmail’

However installed, the module has a few dependencies that you will need to have
installed already:

� LWP::UserAgent

� HTTP::Headers

� HTTP::Cookies

� HTTP::Request::Common

� Crypt::SSLeay

� Exporter

12_59611x ch07.qxp 11/28/05 11:02 PM Page 127

128 Part II — Getting Inside Gmail

Using the Library
The Mail::Webmail::Gmail module is remarkably simple to use and very thor-
ough. You’ll be using it extensively in the next few chapters, so here we shall just
summarize the options.

Logging In
The standard call for logging into Gmail session is:
my $gmail = Mail::Webmail::Gmail->new(username => ‘username’,
password => ‘password’,);

That call can also take some optional arguments. If given the details, you can use a
proxy server, and you can also encrypt the entire session as opposed to just the
login sequence. Call them all like so:
my $gmail = Mail::Webmail::Gmail->new(
username => ‘username’,
password => ‘password’,
proxy_username => ‘proxy_username’,
proxy_password => ‘proxy_password’,
proxy_name => ‘proxy_server’,
encrypt_session => 1
);

Once logged in, you can make requests for data and pass methods on the Gmail
Inbox. There are lots of methods that you can use.

The Other Functions
This chapter provides only a table of the available functions (see Table 7-4). They
are more fully explained as you use them in the rest of the book.

Table 7-4 The Functions Within Mail::Gmail::Webmail

Function What It Does

get_labels() Retrieves an array of the labels in the account.

edit_labels (label=> Creates the label ‘label name’.
’label_name’, action =>
‘create’);

edit_labels(label => Renames the label ‘label_name’ to ‘renamed_label’.
‘label_name’, action =>
‘rename’, new_name =>
‘renamed_label’);

12_59611x ch07.qxp 11/28/05 11:02 PM Page 128

129Chapter 7 — Gmail Libraries

Function What It Does

edit_labels(label => Deletes the label ‘label_name’.
‘label_name’, action =>
‘delete’);

edit_labels(label => Adds a label to a message.
‘label_name’, action =>
‘add’, msgid =>
$message_id);

$gmail->edit_labels Removes a label from a message.
(label => ‘label_name’,
action => ‘remove’,
msgid => $message_id);

update_prefs Sets preferences inside Gmail. The available options are:
(indicators => 0, keyboard_shortcuts = (0, 1)
reply_to => indicators = (0, 1)
‘test@test.com’); snippets = (0, 1)

max_page_size = (25, 50, 100)
display_name = (‘’, string value up to 96
characters)
reply_to = (‘’, string value up to 320
characters)
signature = (‘’, string value up to 1000
characters)

edit_star(action => Stars a message.
‘add’, ‘msgid’ =>
$msgid);

edit_star(action => Unstars the message.
‘remove’, ‘msgid’ =>
$msgid);

edit_archive(action => Archives the message.
‘archive’, ‘msgid’ =>
$msgid);

edit_archive(action => Unarchives the message.
‘unarchive’, ‘msgid’ =>
$msgid);

Continued

12_59611x ch07.qxp 11/28/05 11:02 PM Page 129

130 Part II — Getting Inside Gmail

Table 7-4 (continued)

Function What It Does

$gmail->get_messages Retrieves a reference to an array of hashes for the messages
(label => ‘work’); within the stated label. Or you can use the Gmail standard folder

names ‘INBOX’, ‘STARRED’, ‘SPAM’, or ‘TRASH’
get_messages(label => $Mail::Webmail::Gmail::FOLDERS{
‘INBOX’ });
The array of hashes looks like this:
$indv_email{ ‘id’ }
$indv_email{ ‘new’ }
$indv_email{ ‘starred’ }
$indv_email{ ‘date_received’ }
$indv_email{ ‘sender_email’ }
$indv_email{ ‘subject’ }
$indv_email{ ‘blurb’ }
@{ $indv_email{ ‘labels’ } }
@{ $indv_email{ ‘attachments’ } }

size_usage(); Returns a scalar value with the amount of megabytes remaining
to use.

get_indv_email(id => Retrieves a hash of hashes containing an individual message in
$msgid) this format:

$indv_email{ ‘id’ }
$indv_email{ ‘sender_email’ }
$indv_email{ ‘sent’ }
$indv_email{ ‘to’ }
$indv_email{ ‘read’ }
$indv_email{ ‘subject’ }
@{ $indv_email{ ‘attachments’ } }

get_mime_email(msg => Retrieves the message as a string, in MIME format.
$msgid)

get_contacts(); Retrieves an array of hashes containing the Gmail address book.
The array of hashes is in the following format:
$indv_contact{ ‘id’ }
$indv_contact{ ‘name1’ }
$indv_contact{ ‘name2’ }
$indv_contact{ ‘email’ }
$indv_contact{ ‘note’ }

12_59611x ch07.qxp 11/28/05 11:02 PM Page 130

131Chapter 7 — Gmail Libraries

Function What It Does

send_message(to => Sends a message to a single recipient.
‘user@domain.com’, To send to multiple users, send an arrayref containing all of the
subject => ‘Test Message’, users:

msgbody => ‘This is
a test.’);
my $email_addrs = [
‘user1@domain.com’,
‘user2@domain.com’,
‘user3@domain.com’,];
$gmail->send_message(to => $email_addrs,
subject => ‘Test Message’, msgbody => ‘This is a
test.’);

send_message(to => Sends a message with an attachment.
‘user@domain.com’,
subject => ‘Test Message’,
msgbody => ‘This is a
test.’, file0 => [“/tmp/
foo”], file1 => [“/tmp/
bar”]);

delete_message Sends a message to the Trash.
(msgid => $msgid, del_
message => 0);

delete_message(msgid => Permanently deletes the message.
$msgid);

The rest of this module is covered in Chapter 8 onwards.

Python — Libgmail
The trifecta of scripting languages beginning with P ends with ython, and is com-
pleted by Libgmail, the Python bindings for Gmail access.

Getting and Installing the Library
Libgmail is hosted on Sourceforge at http://Libgmail.sourceforge.net/
and can be downloaded directly from there. The authors of Libgmail advise using
the version from CVS if possible, as it is more likely to work with whatever
changes Google has made to the service lately. Figure 7-3 gives the traditional
screenshot of the project’s homepage.

12_59611x ch07.qxp 11/28/05 11:02 PM Page 131

132 Part II — Getting Inside Gmail

FIGURE 7-3: Python’s Libgmail binding

You should follow the instructions on their website to install the latest version. As
mentioned before, if Libgmail stops working, it may just be a matter of time
before a new version restores functionality.

How to Use It
Libgmail comes with some sample code, but no real documentation at the
moment. There are currently 15 methods available, which offer the vast majority
of the functionality that Gmail can give. Start by logging in.

login
To log in, import the Libgmail bindings, create a new GmailAccount object, and
use the login method on it, like so:
import Libgmail

ga = Libgmail.GmailAccount(“google@gmail.com”,
“mymailismypass”)
ga.login()

Now that you’re logged in, you want to retrieve the messages from a folder.

12_59611x ch07.qxp 11/28/05 11:02 PM Page 132

133Chapter 7 — Gmail Libraries

getMessagesByFolder
The getMessagesByFolder method takes the name of the folder, and an
optional True/False flag to indicate selecting every page of that folder’s listing.
(Remember that these libraries interact with Gmail by scraping the pages it
returns, effectively, so you still have to consider the information as it is meant for
the real Gmail interface, not just yours).

Leaving the flag off sets it to the default False. To place the details of the Inbox
into an object called folder, you do the following:
folder= ga.getMessagesByFolder(‘inbox’)

This returns a GmailSearchResult instance that you can query.

getMessageByLabel
The getMessageByLabel method works in exactly the same way as
getMessagesByFolder but replaces the folder with a label. It returns a
GmailSearchResult instance, which is examined in two paragraphs’ time.

getMessagesByQuery
The getMessagesByQuery method works in exactly the same way as
getMessagesByFolder but does so with a search query instead of the name of
the mailbox. For example:
messages = ga.getMessagesByQuery(‘ransom note’)

This query will also return a GmailSearchResult instance.

All this talk of GmailSearchResult instances begs the question: What exactly is
a GmailSearchResult instance? A GmailSearchResult instance is a thread
object. This contains details of the thread, plus one or more msg objects, corre-
sponding to the messages within. These can be queried like so:
for thread in folder:
print thread.id # the id of the thread
print len(thread) # the number of messages
print thread.subject # the subject of the thread
for msg in thread:
print msg.id # the id of the message
print msg.number # the number within the thread
print msg.subject # the message subject
print msg.source # the raw source of the message

12_59611x ch07.qxp 11/28/05 11:02 PM Page 133

134 Part II — Getting Inside Gmail

getQuotaInfo
The getQuotaInfo method allows you to retrieve information on how much
storage you are taking up inside Gmail. It returns an array of megabytes used,
total megabytes available, and percentage of storage used.

getUnreadMsgCount
When invoked, the getUnreadMsgCount method returns an integer equal to the
number of unread messages within the Inbox:
new_messages = ga.getUnreadMsgCount()

Reading the First Message in the Inbox
Putting together the methods discussed so far, you can display the messages in the
Inbox, and information about the amount of storage you have left, with the code
in Listing 7-3.

Listing 7-3: Using Python to Display the First Message in the Inbox

#!/usr/bin/python2.3

import Libgmail

ga = Libgmail.GmailAccount(“google@gmail.com”,
“mymailismypass”)
ga.login()
folder = ga.getMessagesByFolder(‘inbox’)

for thread in folder:
print thread.id, len(thread), thread.subject
for msg in thread:
print “Message ID:”, msg.id
print “Message Number:”, msg.number
print “Message Subject:”, msg.subject
print msg.source

Keeping Your Powder Dry

The remaining methods —sendMessage, trashMessage, trashThread, getLabelNames,
createLabel, deleteLabel, renameLabel, and storeFile— are, apart from being self-
explanatorily named, covered in great detail in the remainder of this book.

12_59611x ch07.qxp 11/28/05 11:03 PM Page 134

135Chapter 7 — Gmail Libraries

quotaInfo = ga.getQuotaInfo()
quotaMbUsed = quotaInfo[QU_SPACEUSED]
quotaMbTotal = quotaInfo[QU_QUOTA]
quotaPercent = quotaInfo[QU_PERCENT]
print “%s of %s used. (%s)\n” % (quotaMbUsed, quotaMbTotal,
quotaPercent)

Setting Yourselves Up for the Remaining Chapters
To aid you in your coding over the next few chapters, you shall also need a small
Perl module of your own, which tidies up the boring things such as logging in.
Listing 7-4 gives the script Utils.pm, which you should place within the directory
in which you wish to work. You will need to place your own username and pass-
word in the place indicated.

Listing 7-4: Utils.pm

package Utils;

require Mail::Webmail::Gmail;

require Exporter;
@ISA = qw(Exporter);
@EXPORT = qw(login strip_bold);

sub login {
return Mail::Webmail::Gmail->new(

username => “USERNAME”,
password => “PASSWORD”

);
}

get rid of and in subjects
sub strip_bold {

my $str = shift;
$str =~ s/(.*)<\/b>/$1/;
return $str;

}

1;

12_59611x ch07.qxp 11/28/05 11:03 PM Page 135

136 Part II — Getting Inside Gmail

You will also need the following Perl modules installed:

� libwww-perl: http://search.cpan.org/~gaas/libwww-perl-5.803/

� MIME-Base64: http://search.cpan.org/~gaas/MIME-Base64-3.05/

� MIME-tools: http://search.cpan.org/~dskoll/MIME-tools-5.417/

� MailFolder: http://search.cpan.org/~kjohnson/MailFolder-0.07/

� MD5: http://search.cpan.org/~gaas/MD5-2.03/

And Now . . .
In this chapter, you worked through a quick overview of the most popular Gmail
libraries available for the most popular scripting languages. As you have seen, the
libraries are at varying stages of completeness and simplicity but are nevertheless
extremely useful.

In the next few chapters, you will use the Perl library to perform the basic Gmail
functions and start to produce Gmail-based applications of your own.

12_59611x ch07.qxp 11/28/05 11:03 PM Page 136

Checking for Mail

Now that you’ve been introduced to the Gmail libraries, you
can them to use with a simple script to tell you when you
have new mail. In this chapter, you go through the first

stage of this code in all of the languages and then build on it in
Perl to make a standalone application.

As previously discussed, the APIs upon which this code
is based may cease to work every so often, as Google
changes the way that Gmail operates. If that’s the case,
your knowledge gained in Chapter 5 should help you
help the API’s author to fix things.

The Basics in Perl
Using the Mail::Webmail::Gmail module to check for mail is
simplicity itself. You need to set up the modules and then log in:
use Mail::Webmail::Gmail;

my $gmail = Mail::Webmail::Gmail->new(
username => “ben.hammersley\@gmail.com”,
password => “XXXXXXXX”,

);

After that, retrieve the Inbox and step through the list of mes-
sages in it. Within the Perl library, using the get_messages
method gives you an array of hashes, with the value of ‘new’
being the read/unread flag. So all you need to do is count the
number of messages with a true value in that reference, like so:

˛ Checking for new
mail with Perl, PHP,
and Python

˛ Instant Messenger
alerts

˛ Alerts to your
mobile phone

chapter

in this chapter

13_59611x ch08.qxp 11/28/05 11:07 PM Page 137

138 Part II — Getting Inside Gmail

my $new_msgs = 0;

if (defined($messages)) {
foreach (@{$messages}) {

if ($_->{‘new’}) {
$new_msgs++;

}
}

}

This leaves you with the variable $new_msgs to give you the number of unread
messages in the Inbox. Listing 8-1 gives an entire working script to display this.

Listing 8-1: Checking the New Mail Count in Perl

#!/usr/bin/perl

use warnings;
use strict;
use Mail::Webmail::Gmail;

my $gmail = Mail::Webmail::Gmail->new(
username => “ben.hammersley\@gmail.com”,
password => “XXXXXXXX”,

);

my $messages =
$gmail->get_messages(label =>

$Mail::Webmail::Gmail::FOLDERS{‘INBOX’});

my $new_msgs = 0;

if (defined($messages)) {
foreach (@{$messages}) {

if ($_->{‘new’}) {
$new_msgs++;

}
}

}

print “you have $new_msgs new messages in your inbox\n”;

Obviously, from here you can build out to produce all sorts of interesting alerts, as
you shall do later on in this chapter.

An alternative and easier way of doing this can be found in Listing 8-2.

13_59611x ch08.qxp 11/28/05 11:07 PM Page 138

139Chapter 8 — Checking for Mail

Listing 8-2: An Even Easier Way to Check Mail

use Utils;

$gmail = login();

$messages = $gmail->get_messages(); # simply get all
messages
$count = 0;
foreach (@{$messages}) { # and iterate through
them

if ($_->{“new”}) { # if message is new
$count++;

}
}
print “Number of unread messages: “ . $count . “\n”;

This uses the Utils module you created in Chapter 7 — Listing 7-4 to be precise.
That module encapsulates the login process into one simple login() function,
allowing the script to be even simpler than before.

The Basics in PHP
PHP, too, provides a simple interface to check for new mail in Gmail. The libg-
mailler library, as you saw in Chapter 6, handles it perfectly well. First, you need
to log in:
$gm->setLoginInfo($name, $pwd, $tz);

if ($gm->connect()) {

Then you fetch the Inbox and create the Snapshot object:
$gm->fetchBox(GM_STANDARD, “Inbox”, 0);

$snapshot = $gm->getSnapshot(GM_STANDARD);

After that, loop through all of the messages in the Inbox, incrementing a variable
by one for every unread mail you see:
if ($snapshot) {

for ($i = 0;$i < $snapshot->box_total ; $i++)
{

if ($snapshot->box[$i][“is_read”] == 1)
{ $new++;

}

}

13_59611x ch08.qxp 11/28/05 11:07 PM Page 139

140 Part II — Getting Inside Gmail

Listing 8-3 gives you a complete script, printing to the screen a count of the new
mail in your account.

Listing 8-3: Checking for New Mail in PHP

<?PHP

require(“libgmailer.php”);
$gm = new GMailer();

$name = “USERNAME”;
$pwd = “PASSWORD”;
$tz = “0”;
$new = 0;

$gm->setLoginInfo($name, $pwd, $tz);

if ($gm->connect()) {

$gm->fetchBox(GM_STANDARD, “Inbox”, 0);

$snapshot = $gm->getSnapshot(GM_STANDARD);

if ($snapshot) {
for ($i = 0;$i < $snapshot->box_total ; $i++)

{
if ($snapshot->box[$i][“is_read”] == 1)

{ $new++;
}

}

echo “You have”. $new . “new messages”;

}
}
?>

The Basics in Python
Python’s libgmail provides the simplest method to get a new mail count: There’s a
specific function that you can use.

So, as usual, you first need to log in and check for errors there:

13_59611x ch08.qxp 11/28/05 11:07 PM Page 140

141Chapter 8 — Checking for Mail

ga = libgmail.GmailAccount(username, password)
try:

ga.login()
except:

new_messages = “login failed”

Then run the getUnreadMsgCount function:
else:

new_messages = ga.getUnreadMsgCount()

Take the result of that function and display it. Listing 8-4 gives a complete script
to do this and gives grammatically correct display as well.

Listing 8-4: Checking for New Mail in Python

#!/usr/bin/env python

import libgmail

username = “user”
password = “pass”

ga = libgmail.GmailAccount(username, password)
try:

ga.login()
except:

new_messages = “login failed”
else:

new_messages = ga.getUnreadMsgCount()

if new_messages == “login failed”:
print “Login “

elif int(new_messages) == 0:
print “You have no new messages”

elif int(new_messages) == 1:
print “You have 1 new message.”

else:
print “You have “ + new_messages + “ new messages.”

13_59611x ch08.qxp 11/28/05 11:07 PM Page 141

142 Part II — Getting Inside Gmail

Building on the Basics
Now that you have seen the basics for retrieving the number of unread messages,
you can look at new and interesting ways of displaying that number. You saw
desktop applications that do this in Chapter 2, so this section concentrates on the
more unusual ways of seeing the number.

New Mail Count in RSS
It’s a fair bet that the majority of the readers of a book like this one will also be
heavy users of RSS. The XML-based family of syndication technologies is now
very popular indeed, and presents a lot of opportunities for keeping track of many
different types of information. I personally use the following technique to keep
tabs on Gmail accounts that I use on an infrequent basis: for accounts where
checking them manually is too much bother but where a desktop alert is too
intrusive.

Start off, in the normal way, by loading the core Perl modules. In this case, you
will need Mail::Webmaiil::Gmail, as ever, and the commonly used XML::RSS
module to help produce the RSS feed, and the ubiquitous CGI module to deal
with the incoming parameters and the correct serving of the feed. XML::RSS is a
little out of the scope of this book, and is nevertheless very simple to understand
from its own documentation.

Then take the username and password from parameters in the URL, and set up
the WWW::Gmail object like so:
use CGI qw(standard);

use Mail::Webmail::Gmail;

my $username = param(“username”);
my $password = param(“password”);

my $gmail = Mail::Webmail::Gmail->new(
username => $username,
password => $password,

);

And then it’s the usual matter of downloading the Inbox and counting the unread
messages:

13_59611x ch08.qxp 11/28/05 11:07 PM Page 142

143Chapter 8 — Checking for Mail

my $messages =
$gmail->get_messages(label =>

$Mail::Webmail::Gmail::FOLDERS{‘INBOX’});

my $new_msgs = 0;

if (defined($messages)) {
foreach (@{$messages}) {

if ($_->{‘new’}) {
$new_msgs++;

}
}

}

Once you have the unread message count, you need to use the XML::RSS module
to produce the feed. Listing 8-5 gives the entire script an airing and shows how
this works.

Listing 8-5: Producing a New Mail Count in an RSS Feed

#!/usr/bin/perl -w
use strict;
use XML::RSS;

use CGI qw(standard);

use Mail::Webmail::Gmail;

my $username = param(“username”);
my $password = param(“password”);

my $gmail = Mail::Webmail::Gmail->new(
username => $username,
password => $password,

);

my $messages =
$gmail->get_messages(label =>

$Mail::Webmail::Gmail::FOLDERS{‘INBOX’});

my $new_msgs = 0;

if (defined($messages)) {
foreach (@{$messages}) {

if ($_->{‘new’}) {

13_59611x ch08.qxp 11/28/05 11:07 PM Page 143

144 Part II — Getting Inside Gmail

$new_msgs++;
}

}
}

my $rss = new XML::RSS (version => ‘0.91’);

$rss->channel(title => “Unread mail count for $username”,
link => “http://gmail.google.com/”,
description => “The unread mail count for

$username”,
language => “en”,

);

$rss->add_item(
title => “You have $new_msgs messages”),
link => “http://gmail.google.com”),
);

print header(‘application/xml+rss’), $rss->as_string;

Installing this script on a web server and pointing your newsreader at the URL
produces a single-item RSS feed showing the number of unread messages in your
Inbox. It’s simple and unobtrusive in that way. The URL should be structured
like so:

http://www.example.com/gmail2rss.cgi?username=USERNAME&password=
PASSWORD

You build upon this script in later chapters.

New Mail Count to AOL Instant Messenger
As well as an RSS reader, you might also have an AOL Instant Messenger (AIM)
application running. In this section, you build two ways of receiving new mail
notification via AIM. The first is by using a script very similar to that in Listing
8-4. This one checks for mail, logs in to AIM, and sends you a message with the
number. You just need to set the script to run on a schedule, and it keeps you up to
date in a relatively painless way.

To do this, you first log in and check for new mail, as per the preceding scripts,
and then use the Net::AOLIM module to send the message. Like so:
my $aim_user = “”;
my $aim_password = “”;
my $aim_destuser = “”;

13_59611x ch08.qxp 11/28/05 11:07 PM Page 144

145Chapter 8 — Checking for Mail

my $message = “Your Gmail inbox, $username, has a new message
count of $new_msg”;

$aim = Net::AOLIM->new(‘username’ => $aim_user,
‘password’ => $aim_password,
);

$aim->signon or die “Cannot sign on to AIM”;
$aim->toc_send_im($aim_destuser, $message);

Listing 8-6 shows the entire code for this script.

Listing 8-6: New Mail Alerts to AOL Instant Messenger

#!/usr/bin/perl -w
use strict;
use XML::RSS;

use CGI qw(standard);

use Mail::Webmail::Gmail;
use Net::AOLIM;

my $username = param(“username”);
my $password = param(“password”);

my $gmail = Mail::Webmail::Gmail->new(
username => $username,
password => $password,

);

my $messages =
$gmail->get_messages(label =>

$Mail::Webmail::Gmail::FOLDERS{‘INBOX’});

my $new_msgs = 0;

if (defined($messages)) {
foreach (@{$messages}) {

if ($_->{‘new’}) {
$new_msgs++;

}
}

}

13_59611x ch08.qxp 11/28/05 11:07 PM Page 145

146 Part II — Getting Inside Gmail

my $aim_user = “”;
my $aim_password = “”;
my $aim_destuser = “”;

my $message = “Your Gmail inbox, $username, has a new message
count of $new_msg”;

$aim = Net::AOLIM->new(‘username’ => $aim_user,
‘password’ => $aim_password,
);

$aim->signon or die “Cannot sign on to AIM”;
$aim->toc_send_im($aim_destuser, $message);

To use this script, place your Gmail and AIM username and passwords in the
variables at the top. (You will need a separate AIM account for the script itself,
which you can sign up for at www.aol.com) and then use cron to schedule it to
run at the desired interval.

A good introduction to cron can be found at
www.unixgeeks.org/security/newbie/unix/cron-1.html, but I set mine
for this script to the following:
1 * * * * /usr/bin/perl ~/code/gmail2AIM.pl

The preceding code should give you an idea of how you should set up cron.

The second and perhaps more fun way of sending Gmail new mail counts over
AIM is to create an AIM bot. This is a script that logs in as an AIM user and
replies when you “talk” to it. In this case, it’s not going to be particularly clever in
what it says — it will merely reply with the latest count.

To create a bot, start off by logging in to AIM as you did before and then permit-
ting anyone to send you a message:
$aim = Net::AOLIM->new(“username” => $aim_user,

“password” => $aim_password,
“callback” => \&reply,
“allow_srv_settings” => 0,
“login_timeout” => 2);

$aim->im_permit_all();

$aim -> sign_on();

Once that is in place, set the script on a loop, waiting for an incoming message.
This is done with the Net::AOLIM’s ui_dataget function, like so:

13_59611x ch08.qxp 11/28/05 11:07 PM Page 146

147Chapter 8 — Checking for Mail

while (1)
{

last unless defined($foo->ui_dataget(undef));
}

When Net::AOLIM receives a message, it hands the script off to the subroutine
called reply. reply must check if the incoming message is a direct Instant
Message, not an internal error message. Once it has done that, it retrieves the
buddy name of the person who sent it.
sub reply
{

my $params = $_[ARG1];

my $aim_event_type = $params->[0];

if($aim_event_type eq ‘IM_IN’) {

my $aimdestuser = $params->[1];

And all that remains to be done is to check Gmail for new mail and reply to the
message sender with a nice answer. Once that is done, the script returns to its
loop. Listing 8-7 shows all.

Listing 8-7: A New Mail Count AIM Bot

#!/usr/bin/perl -w

use warnings;
use strict;
use Mail::Webmail::Gmail;
use Net::AOLIM;

my $gmail_user =””;
my $gmail_password = “”;

my $aim_user = “”;
my $aim_password = “”;
my $aim_destuser = “”;

$aim = Net::AOLIM->new(“username” => $aim_user,
“password” => $aim_password,
“callback” => \&reply,
“allow_srv_settings” => 0,
“login_timeout” => 2);

13_59611x ch08.qxp 11/28/05 11:07 PM Page 147

148 Part II — Getting Inside Gmail

$aim->im_permit_all();

$aim -> sign_on();

while (1)
{

last unless defined($foo->ui_dataget(undef));
}

sub reply
{

my $params = $_[ARG1];

my $aim_event_type = $params->[0];

if($aim_event_type eq ‘IM_IN’) {

my $aimdestuser = $params->[1];

my $gmail = Mail::Webmail::Gmail->new(
username => $gmail_user,
password => $gmail_password,

);

my $messages =
$gmail->get_messages(label =>

$Mail::Webmail::Gmail::FOLDERS{‘INBOX’});

my $new_msgs = 0;

if (defined($messages)) {
foreach (@{$messages}) {

if ($_->{‘new’}) {
$new_msgs++;

}
}

}

my $message = “$gmail_user has a new message count of
$new_msg”;

$aim->toc_send_im($aim_destuser, $message);

}
}
s

13_59611x ch08.qxp 11/28/05 11:07 PM Page 148

149Chapter 8 — Checking for Mail

Run this as a background application by typing the following command:
./google2rssbot.pl &

You can kill it with a judicious control-c.

There are many ways to extend this script — allowing different people to check
different accounts depending on their buddy name, and so on. It should be clear
from the listing how to do this.

And Now . . .
So now you have seen how to check for new mail in three languages, and how to
create some interesting applications to repurpose that data. In all, quite simple
stuff but a good starting point. In the next chapter, you move on to the next logi-
cal stage: reading the mail.

13_59611x ch08.qxp 11/28/05 11:07 PM Page 149

13_59611x ch08.qxp 11/28/05 11:07 PM Page 150

Reading Mail

In Chapter 7, you built scripts and applications to tell you that
you had new mail. In this chapter, you move on to the next log-
ical step and retrieve that mail from Gmail so you can read it.

Reading an individual mail from Gmail is unlike reading individual
mails from a POP3 or IMAP server. In the more common e-mail
systems, an e-mail is identified by a number and can be retrieved
directly. In Gmail, as you found in Chapter 6, this isn’t possible:
You have to retrieve the entire thread and then retrieve the message
from that. In an ideal world, a Gmail library would hide this horri-
ble fact, and they all do this to a lesser or greater extent.

Reading Mail with Perl
The process with Mail::Webmail::Gmail is remarkably easy. You
log in, retrieve the contents of the Inbox, find the thread with the
message you require, retrieve it, find the message within that
thread, and parse out the contents.

The Basics
Logging in and retrieving the contents of the Inbox, as ever,
looks like this:
my $gmail = Mail::Webmail::Gmail->new(

username => “ben.hammersley\@gmail.com”,
password => “XXXXXXXX”,

);

my $messages =
$gmail->get_messages(label =>

$Mail::Webmail::Gmail::FOLDERS{‘INBOX’});

˛ Locating the mail

˛ Retrieving the
message source

˛ Parsing the
message source

chapter

in this chapter

14_59611x ch09.qxp 11/28/05 11:03 PM Page 151

152 Part II — Getting Inside Gmail

Now you have a reference to an array of hashes containing the contents of the
Inbox. You can loop through this array of hashes, and pull out the details of the
messages with the et_indv_email function. This function can either take the
message ID or, as in this case, take the reference to the specific message, like this:
foreach (@{ $messages }) {

my $message = $gmail->get_indv_email(msg => $_);
print “$message->{ $_->{ ‘id’ } }->{ ‘body’ }\n”;

}

Of course, spinning through your Inbox and printing out all of the bodies might
be fun to do once, but it’s not very useful.

Accessing All the Data of a Message
Mail::Webmail::Gmail can, of course, give you all of the information within a
message. However, relying on addressing the data directly within your script is a
recipe for trouble. Even as I type this sentence, the Gmail UI seems to be chang-
ing and rendering bits of Mail::Webmail::Gmail out of date until either Gmail
changes back or the library is fixed. To make sure that your own code isn’t entirely
broken by such changes, do something like this:
foreach (@{ $messages }) {

my $message = $gmail->get_indv_email(msg => $_);

my $to = $message->{ $_->{ ‘id’ } }->{ ‘to’} || “To
irretrievable”;

my $sender_email = $message->{ $_->{ ‘id’ } }->{
‘sender_email’} || “Sender_email irretrievable”;

my $sent = $message->{ $_->{ ‘id’ } }->{ ‘sent’} ||
“To irretrievable”;

my $subject = $message->{ $_->{ ‘id’ } }->{ ‘subject’}
|| “Subject irretrievable”;

my $body = $message->{ $_->{ ‘id’ } }->{ ‘body’} ||
“Body irretrievable”;

print “$to \n $sender_email \n $sent \n $subject \n
$body”;

}

The double pipe at the end of the variable setting lines basically means, “If this call
to the API returns empty, make it this value instead.” This is a simple catch to make
sure that, at least, your script doesn’t just fail on you.

14_59611x ch09.qxp 11/28/05 11:03 PM Page 152

153Chapter 9 — Reading Mail

Listing the Mail and Displaying a Chosen Message
So, with that all fully understood, you can put your knowledge, and that of
Chapter 7, to use. Listing 9-1 shows code that logs in, displays the mail you have
in your account in a list, and then lets you select the one you want to read. Select
that, and it displays it. Easy and useful.

Listing 9-1 follows, and then I’ll walk you through it. It uses the Utils.pm module
from Chapter 7 to deal with the login procedure.

Listing 9-1: Mail Listing and Display

use Utils;

$gmail = login();

$messages = $gmail->get_messages(); # simply get all messages
$id = 1;
$num = 0;
@nums;
foreach (@{$messages}) { # and iterate through them

if ($_->{“new”}) {
........print $id . “\t” . $_->{“sender_email”} . “\t” .
strip_bold($_->{“subject”}) . “\n”; # output message data
........push(@nums, $num);
........$id++;

}
$num++;

}

print “\n”;
print “enter message number to retrive it\n”;
$num = <>;
print “\n”;

$message = @{$messages}[$nums[$num - 1]];
$msgid = $message->{“id”};
if ($msgid) { # check if message id is OK

my $full_message = $gmail->get_indv_email(msg =>
$message); # and retrive full message (including body but not
attachments - if we need them as well - we need to use
get_attachment method)

print “sender: “ . $full_message->{$id}->{“sender”} .
“\n”;

Continued

14_59611x ch09.qxp 11/28/05 11:03 PM Page 153

154 Part II — Getting Inside Gmail

Listing 9-1 (continued)

print “sent: “ . $full_message->{$id}->{“sent”} . “\n”;
print “to: “ . $full_message->{$id}->{“to”} . “\n”;
print “subject: “ . strip_bold($full_message->{$id}-

>{“subject”}) . “\n”;
print $full_message->{$id}->{“body”} . “\n\n”;

}

So how does this work? First you use the Utils.pm module you made at the end of
Chapter 7 and have it log you in:
use Utils;
$gmail = login();

Now that you’re logged in, you need to retrieve the messages and loop through
each one, numbering it and printing the sender and subject line.
$messages = $gmail->get_messages(); # simply get all messages
$id = 1;
$num = 0;
@nums;
foreach (@{$messages}) { # and iterate through them

if ($_->{“new”}) {
........print $id . “\t” . $_->{“sender_email”} . “\t” .
strip_bold($_->{“subject”}) . “\n”; # output message data
........push(@nums, $num);
........$id++;

}
$num++;

}

Now you give the option to enter the number (as printed in the preceding code)
of the message you want to see.
print “\n”;
print “enter message number to retrive it\n”;
$num = <>;
print “\n”;

Once a number has been entered, retrieve the message and print it on the screen.
$message = @{$messages}[$nums[$num - 1]];
$msgid = $message->{“id”};
if ($msgid) { # check if message id is OK

my $full_message = $gmail->get_indv_email(msg =>
$message); # and retrive full message (including body but not

14_59611x ch09.qxp 11/28/05 11:03 PM Page 154

155Chapter 9 — Reading Mail

attachments - if we need them as well - we need to use
get_attachment method)

print “sender: “ . $full_message->{$id}->{“sender”} .
“\n”;

print “sent: “ . $full_message->{$id}->{“sent”} . “\n”;
print “to: “ . $full_message->{$id}->{“to”} . “\n”;
print “subject: “ . strip_bold($full_message->{$id}-

>{“subject”}) . “\n”;
print $full_message->{$id}->{“body”} . “\n\n”;

}

Now, as you can see from the in-code comments, this code can’t deal with attach-
ments. It’s time you learned how. Oh. Look . . .

Dealing with Attachments
Gmail’s enormous storage capacity gives you the opportunity to use it for very
large attachments. There are many possibilities for this feature, but first you need
to know how to retrieve the attachments themselves.

You retrieve an attachment in a way very closely connected to the method you
used in the RSS script in Listing 9-1. First, retrieve the list of messages and then
loop through them, pulling out the data on each message. Here you differ —
you’re looking for an attachment, so you test to see if one is present, and if so you
go on to do something about it. The first part of a script after logging in, there-
fore, is:
my $messages = $gmail->get_messages();

foreach (@{$messages}) {
my $email = $gmail->get_indv_email(msg => $_);
if (defined($email->{ $_->{‘id’} }->{‘attachments’}))

{
foreach (@{ $email->{ $_->{‘id’} }->{‘attachments’} }

) {

Here do something with each attachment

}
}

}

Making an RSS Feed of Your Inbox
So now you know how to gather the mail from a specific folder and print it out.
Let’s do something more useful with it, as an exercise. How about an RSS feed of

14_59611x ch09.qxp 11/28/05 11:03 PM Page 155

156 Part II — Getting Inside Gmail

your Inbox? In Chapter 7 you already made a feed that displays the unread mes-
sage count. Do the same here, only displaying the messages instead.

Listing 9-2 shows the code, which is followed by a walkthrough.

Listing 9-2: Gmail Inbox to RSS

#!/usr/bin/perl

use warnings;
use strict;
use XML::RSS;
use Mail::Webmail::Gmail;
use CGI qw(standard);

my $username = param(“username”);
my $password = param(“password”);

my $gmail = Mail::Webmail::Gmail->new(
username => $username,
password => $password,

);

my $messages =
$gmail->get_messages(label =>

$Mail::Webmail::Gmail::FOLDERS{‘INBOX’});

my $rss = new XML::RSS(version => ‘2.0’);

foreach (@{$messages}) {

my $message = $gmail->get_indv_email(msg => $_);

my $messageid = $_->{‘id’};

my $sender_email = $message->{ $_->{‘id’} }-
>{‘sender_email’}

|| “Sender_email irretrievable”;

my $sent = $message->{ $_->{‘id’} }->{‘sent’}
|| “To irretrievable”;

my $subject = $message->{ $_->{‘id’} }->{‘subject’}
|| “Subject irretrievable”;

14_59611x ch09.qxp 11/28/05 11:03 PM Page 156

157Chapter 9 — Reading Mail

my $body = $message->{ $_->{‘id’} }->{‘body’}
|| “Body irretrievable”;

$rss->add_item(
title => “$subject”,
link =>

“http://gmail.google.com/gmail/h/abcde12345/?th=$messageid&v=c
”,

author => “$sender_email”,
description => “$body”,

);

}

$rss->channel(
title => “The Gmail inbox for $username”,
link => “http://gmail.google.com/”,

);

print header(‘application/xml+rss’);
print $rss->as_string;

The first thing to notice is that this script is very simple indeed. That’s because of
the Perl module — the whole point of these modules is to abstract away this sort
of thing. So, the first thing you do is load the modules up and log in as usual:
use XML::RSS;
use Mail::Webmail::Gmail;
use CGI qw(standard);

my $username = param(“username”);
my $password = param(“password”);

my $gmail = Mail::Webmail::Gmail->new(
username => $username,
password => $password,

);

Because you want the script to return an RSS feed, you’ve made it into a CGI script,
to be called from, and run by, a server. The easiest way to make this useful is to take
the Gmail account’s username and password from parameters in the script’s URL.
Saving this script as gmailinboxtorss.cgi would allow you to subscribe to the follow-
ing URL:
http://www.example.com/gmailinboxtorss.cgi?username=USERNAME&passw
ord=PASSWORD

14_59611x ch09.qxp 11/28/05 11:03 PM Page 157

158 Part II — Getting Inside Gmail

By this point in the script, you have logged in. Now to retrieve the messages in
the Inbox:
my $messages =
$gmail->get_messages(label =>

$Mail::Webmail::Gmail::FOLDERS{‘INBOX’});

This places the contents of the Inbox into $messages as a reference to an array of
hashes, which contains the messages within the Inbox. Before looping through
this array and creating an RSS item from each one, first you need to create the
object that creates the RSS feed. Do that with this line:
my $rss = new XML::RSS(version => ‘2.0’);

Now for the real workings. You have an array where each member is a hash, con-
taining a single message and all its details. To get to these details, you need to be
able to address them with the hash’s key. So, loop through the array, take the name
of the hash, use that as its key, and grab out the values:
foreach (@{$messages}) {

my $message = $gmail->get_indv_email(msg => $_);

my $messageid = $_->{‘id’};

my $sender_email = $message->{ $_->{‘id’} }-
>{‘sender_email’}

|| “Sender_email irretrievable”;

my $sent = $message->{ $_->{‘id’} }->{‘sent’}
|| “To irretrievable”;

my $subject = $message->{ $_->{‘id’} }->{‘subject’}
|| “Subject irretrievable”;

my $body = $message->{ $_->{‘id’} }->{‘body’}
|| “Body irretrievable”;

Noting, again, the double pipe in the statement that gives the variable a value even if
the Mail::Webmail::Gmail module cannot. This protects you a little from Gmail’s
evolution breaking the module and hence your scripts.

Next, create the RSS item for the message:
$rss->add_item(

title => “$subject”,
link =>

“http://gmail.google.com/gmail/h/abcde12345/?th=$messageid&v=c
”,

14_59611x ch09.qxp 11/28/05 11:03 PM Page 158

159Chapter 9 — Reading Mail

author => “$sender_email”,
description => “$body”,

);

That’s all quite self-explanatory, except for the line that creates the item’s link
element. There you can see a long URL that is completed with the message ID
number. This produces a link to the HTML-only version of the Gmail interface,
but you will have to wait until Chapter 12 to see that fully explained. Skip ahead
if you’re curious.

The only thing left to do here is serve the feed, so you do this:
$rss->channel(

title => “The Gmail inbox for $username”,
link => “http://gmail.google.com/”,

);

print header(‘application/xml+rss’);
print $rss->as_string;

To install and run this script, place it in a CGI-enabled directory on your server,
and remember to CHMOD it to executable.

This script highlights a simple method of gathering messages and doing some-
thing with them. As you saw in the previous chapter, you can easily direct the
get_messages() function, which above retrieves the array of hashes from the
Inbox. You can grab the messages from the Starred folder, for example, by chang-
ing the line in Listing 9-1 to the following:
my $messages = $gmail->get_messages(label =>
$Mail::Webmail::Gmail::FOLDERS{ ‘STARRED’ });

Moving messages around the labels and default folders is examined in Chapter 10.
There you will also look at finding which labels and folders you have.

And Now . . .
In this chapter, then, you’ve learned how to retrieve e-mails from Gmail using
Perl. You should now be able to access the data of any mail you wish and use it
within your programs. As you will see in the later chapters, this opens many new
opportunities. In the next chapter, you learn how to send mail via Gmail.

14_59611x ch09.qxp 11/28/05 11:03 PM Page 159

14_59611x ch09.qxp 11/28/05 11:03 PM Page 160

Sending Mail

Now that you know how to read the mail in your Inbox
with your own programs, it’s time to move on to replying
to those mails by sending your own messages.

Sending Mail with Gmail SMTP
The first thing to remember is that Gmail provides its own SMTP
server. This offers two major features. First, you can use the SMTP
server from your own e-mail application, which is a great help if
you’re traveling and your usual e-mail provider is unreachable. The
second use is that every single scripting language you might have a
desire to use has standard SMTP support available as a library, and
the support for TLS encryption, which you need to connect to
Gmail, is being added apace.

First, though, the settings you’ll need:

� Server name: smtp.google.com

� Username: yourgmailname@gmail.com

� Password: Your Gmail password

� Security: Yes, using TLS

One thing to note about this technique is that Gmail will rewrite
your e-mail headers. It replaces the From: and Reply-to: lines
with your Gmail address because Gmail also automatically adds
the so-called Domain Keys to their outgoing e-mails, allowing
spam-hit system administrators to block fake Gmail mail from
their servers. Without the Domain Keys this wouldn’t work, but
Gmail can’t send mail with a different From: or Reply-to: address
without breaking the Domain Key.

˛ Using the Gmail
SMTP server

˛ Sending mail
with Perl

˛ Replying to
mail with Perl

chapter

in this chapter

15_59611x ch10.qxp 11/28/05 11:06 PM Page 161

162 Part II — Getting Inside Gmail

One other advantage of using the Gmail SMTP client is that any mail sent via the
SMTP gateway is automatically stored within your Gmail account.

Using the SMTP Server Programmatically
If you want to talk directly to the SMTP server instead of using the APIs featured
in the rest of this chapter, then you will need to use a library that can deal with
TLS encryption. There is no standard module to do this within Perl or PHP at
the time of this writing, but Python users can use the standard smtplib, which
comes with the Python distribution.

Sending Mail with Perl
The Mail::Webmail::Gmail module encapsulates mail sending in one single func-
tion, send_message. The basic method to send a message is:
$gmail->send_message(
to => ‘user@domain.com’,
subject => ‘Test Message’,
msgbody => ‘This is a test.’
);

To send to multiple addresses, you can use an arrayref containing all of the
addresses:
my $email_addrs = [
‘user1@domain.com’,
‘user2@domain.com’,
‘user3@domain.com’,];

$gmail->send_message(
to => $email_addrs,
subject => ‘Test Message’,
msgbody => ‘This is a test.’
);

You may also send mail using cc: and bcc:
$gmail->send_message(
to => $email_addrs,
cc=> $cc_email_addrs,
subject => ‘Test Message’,
msgbody => ‘This is a test.’
);

Listing 10-1 shows a small script, using the Mail::Webmail::Gmail module and
the Utils.pm code introduced in Chapter 7. It takes input from the keyboard,
and sends the mail directly. It’s exceptionally easy to understand, so no walk-
through is necessary.

15_59611x ch10.qxp 11/28/05 11:06 PM Page 162

163Chapter 10 — Sending Mail

Listing 10-1: Sending Mail with Perl

use Utils;

$gmail = login();

input data from keyboard
print “to:\n”;
$to = <>;

print “subject:\n”;
$subject = <>;

print “body:\n”;
$body = <>;

$gmail->send_message(to => $to, subject => $subject, msgbody
=> $body); # and send the message
print “message sent\n”;

That script is, as you can see, remarkably simple. But it does provide the basis for
any number of more complicated scripts. Being able to send mail from a script
isn’t a new thing — it’s pretty easy to do without Gmail — but doing it via Gmail
does give you some advantages. First, it’s easier, but second, the mail is automati-
cally archived. Using Gmail to handle outgoing mail from your applications can
therefore be more resilient, certainly easier, and much more useful than doing it
any other way.

In Chapter 9, you looked at downloading and reading new mail. Listing 10-2
shows a script that combines the techniques you learned there with your new-
found skills at sending mail.

Listing 10-2: Reading Unread Mail and Replying

use Utils;

$gmail = login();

$messages = $gmail->get_messages(); # simply get all
messages
$id = 1;
$num = 0;
@nums;

Continued

15_59611x ch10.qxp 11/28/05 11:06 PM Page 163

164 Part II — Getting Inside Gmail

Listing 10-2 (continued)

foreach (@{$messages}) {
if ($_->{“new”}) {

print $id . “\t”
. $_->{“sender_email”} . “\t”
. strip_bold($_->{“subject”})
. “\n”;

push(@nums, $num);
$id++;

}
$num++;

}

print “\n”;
print “enter message number to reply to\n”;
$num = <>;
print “\n”;

$message = @{$messages}[$nums[$num - 1]];
$msgid = $message->{“id”};
if ($msgid) { # check if message id is OK

print “body:\n”;
$body = <>;
$gmail->send_message(

to => $message->{“sender_email”},
subject => “Re: “ . strip_bold($message->{“subject”}

),
msgbody => $body

); # we are using sender and subject from the
original message

print “message sent\n”;
}

Running this script produces a list of the new messages and gives you the option
to choose one and reply to it. You should see how this works from the code, but
let’s walk through it.

The start is simple enough. You’re using the Utils.pm module you created in
Chapter 7, and you just want to log in. Logging in creates the Gmail object
used in the rest of the script:
use Utils;

$gmail = login();

15_59611x ch10.qxp 11/28/05 11:06 PM Page 164

165Chapter 10 — Sending Mail

You then grab all of the messages in the Inbox and set up some variables you shall
use to keep track of them:
$messages = $gmail->get_messages(); # simply get all
messages
$id = 1;
$num = 0;

@nums;

Then you iterate through these messages, adding them to a list if they are marked
as unread. You print the sender’s address and the subject line of the e-mail, with a
number next to it, pushing that number and the message:
foreach (@{$messages}) {

if ($_->{“new”}) {
print $id . “\t”
. $_->{“sender_email”} . “\t”
. strip_bold($_->{“subject”})
. “\n”;

push(@nums, $num);
$id++;

}
$num++;

}

And then you ask the user to enter the number of the message she wants to
reply to:
print “\n”;
print “enter message number to reply to\n”;
$num = <>;
print “\n”;

Finally, you retrieve the sender’s e-mail and subject line from the chosen mail and
request some body text from the user. Once you have that, the message is created
and sent:
$message = @{$messages}[$nums[$num - 1]];
$msgid = $message->{“id”};
if ($msgid) { # check if message id is OK

print “body:\n”;
$body = <>;
$gmail->send_message(

to => $message->{“sender_email”},
subject => “Re: “ . strip_bold($message->{“subject”}

),
msgbody => $body

15_59611x ch10.qxp 11/28/05 11:06 PM Page 165

166 Part II — Getting Inside Gmail

); # we are using sender and subject from the
original message

print “message sent\n”;
}

This is, of course, an extremely simple script and well positioned to be built upon.

Sending Attachments
To attach files to a message via the WWW::Webmail::Gmail module, you only
need use the send_message function as normal, but provide a file reference to the
attachment. Because you’re programmers, remember, you start counting from zero.
So the first reference is file0, the second file1, and so on. Like so:
$gmail->send_message(
to => ‘user@domain.com’,
subject => ‘Test Message’,
msgbody => ‘This is a test.’,
file0 => [“/tmp/foo”],
file1 => [“/tmp/bar”]
);

And Now . . .
So, in this short chapter, you learned how to send mail. In the next chapter, you
look at the much more advanced concepts of organizing your mail inside Gmail,
programmatically. This will allow you to go on and use Gmail for more compli-
cated applications.

15_59611x ch10.qxp 11/28/05 11:06 PM Page 166

Conquering Gmail

You’re the man! You’ve learned how to use Gmail to its
fullest, and now you’re writing scripts that use scraped
APIs to control your mail. In the rest of the book, you take

your skills to the next level.

First, in Chapter 11, you look at organizing your mail—using
Gmail’s labeling system. Then Chapter 12 deals with e-mail
addresses and the import and export of addresses to the Gmail
address book.

Then, for a bit of a break, in Chapter 13 you look at the possibili-
ties that might open up with the HTML-only version of Gmail.
In the future, you might want to know about that so you can
build your own API library.

After that, it’s back to practicalities, when you learn how to export
mail in Chapter 14, use Gmail for all sorts of interesting activities
(Chapter 14), and then, in perhaps the culmination of the whole
study of this fine web application, use Gmail as a mountable file
system. Really. Peep Chapter 16 if you don’t believe.

Chapter 11
Dealing with Labels

Chapter 12
Addressing Addresses

Chapter 13
Building an API from
the HTML-Only Version
of Gmail

Chapter 14
Exporting Your Mail

Chapter 15
Using Gmail to . . .

Chapter 16
Using GmailFS

in this part

part

16_59611x pt03.qxp 11/28/05 11:05 PM Page 167

16_59611x pt03.qxp 11/28/05 11:05 PM Page 168

Dealing with
Labels

You can receive mail and you can send mail, but you have
yet to play with Gmail’s main feature — its immense stor-
age capacity. You’ll be using that over the next few chap-

ters. One of the biggest draws to Gmail is the way you organize
mail with labels. Labels are quite the fashionable thing on the
Internet at the moment: Whether you call them labels or the
commonly used idea of tags, it really doesn’t matter. Gmail’s sys-
tem works in the same way as the other cult Web 2.0 sites, Flickr
and del.icio.us.

In this chapter, then, you look at working with the labels pro-
grammatically, listing them, setting them, changing them, and
deleting them.

Listing the Existing Labels
The simplest thing you can do with labels is list the ones you are
already using. Listing 11-1 shows a script to do just that. It uses
the Utils.pm module created earlier in the book, as do the rest of
the scripts in this chapter.

You can find Utils.pm, if you don’t have it already, in
Listing 7-4.

The script is too simple to require any explanation, but just note
that it uses Mail::Webmail::Gmail’s get_labels() function to
return an array.

˛ Listing existing
labels

˛ Setting and editing
labels

˛ Deleting old labels

chapter

in this chapter

17_59611x ch11.qxp 11/28/05 11:08 PM Page 169

170 Part III — Conquering Gmail

Listing 11-1: Getting the Existing Labels

use Utils;

$gmail = login();

@labels = $gmail->get_labels(); # simply get all labels
foreach (@labels) { # and iterate through them

print $_ . “\n”;
}

Running this will simply print out a list of the labels you are using right now.
That’s useful, but you can extend it a little bit. Listing 11-2 does the same thing,
but allows you to select a label, whereupon it prints all the messages labeled thusly.
Have a look at the listing, and then you’ll walk through the clever bit.

Listing 11-2: Retrieving the Messages from a Certain Label

use Utils;

$gmail = login();

@labels = $gmail->get_labels(); # simply get all labels
$id = 1;
foreach (@labels) { # and iterate through them

print $id . “\t” . $_ . “\n”;
$id++;

}

print “\n”;
print “enter label number to retrive labeled messages:\n”;
$num = <>;
print “\n”;

$label = $labels[$num - 1];
if ($label) {

$messages =
$gmail->get_messages(label => $label);

foreach (@{$messages}) {

17_59611x ch11.qxp 11/28/05 11:08 PM Page 170

171Chapter 11 — Dealing with Labels

print $_->{“sender_email”} . “\t”
. strip_bold($_->{“subject”})
. “\n”;

}
}

The important section to note here is the code that follows:
if ($label) {

$messages =
$gmail->get_messages(label => $label);

foreach (@{$messages}) {
print $_->{“sender_email”} . “\t”
. strip_bold($_->{“subject”})
. “\n”;

}
}

By this section of the script, you’ve printed out the labels you know about, and
asked the user to choose one. So now you test to see if the number the user enters
is actually a value option, and if it is, you retrieve all of the messages with the per-
tinent label. That’s done, as ever, with the get_messages() function, which can
be modified by passing the name of a label with it:

$messages = $gmail->get_messages(label => $label);

And this returns messages in the same way as you dealt with in Chapter 8.

In Chapter 9, you requested new mail and gave the option to reply to it. Here, in
Listing 11-3, you can do a similar thing: request mail for a certain label and give
the option to reply to it.

Listing 11-3: Retrieving a Labeled Message and Replying

use Utils;

$gmail = login();

@labels = $gmail->get_labels(); # simply get all labels
$id = 1;
foreach (@labels) { # and iterate through them

print $id . “ “ . $_ . “\n”;
$id++;

Continued

17_59611x ch11.qxp 11/28/05 11:08 PM Page 171

172 Part III — Conquering Gmail

Listing 11-3 (continued)

}

print “\n”;
print “enter label number to retrive labeled messages:\n”;
$num = <>;
print “\n”;

$label = $labels[$num - 1];
if ($label) {

$messages =
$gmail->get_messages(label => $label); # get all

labeled messages
$id = 1;
foreach (@{$messages}) { # and iterate through them

print $id . “\t”
. $_->{“sender_email”} . “\t”
. strip_bold($_->{“subject”})
. “\n”; # output message data

$id++;
}

print “\n”;
print “enter message number to reply to\n”;
$num = <>;
print “\n”;

$message = @{$messages}[$num - 1];
$msgid = $message->{“id”};
if ($msgid) { # check if message id is OK

print “body:\n”;
$body = <>;
$gmail->send_message(

to => $message->{“sender_email”},
subject => “Re: “ . strip_bold($message-

>{“subject”}),
msgbody => $body

); # we are using sender and subject from the
original message

print “message sent\n”;
}

}

17_59611x ch11.qxp 11/28/05 11:08 PM Page 172

173Chapter 11 — Dealing with Labels

This is exactly the same technique as you used in Listing 11-2, added to Chapter
10’s method for sending a reply. You should now be able to see how you can build
simple applications and workflows with the Gmail and the Mail::Webmail::Gmail
module.

Setting New Labels
It’s all very well being able to list the existing labels, but what about setting mes-
sages with them? To do that with Mail::Webmail::Gmail, use the edit_labels
function. Listing 11-4 displays the unlabeled messages and the existing labels, and
allows you to apply one to the other.

First, the listing and then how it works.

Listing 11-4: Labeling Unlabeled Messages

use Utils;

$gmail = login();

$messages = $gmail->get_messages(); # simply get all
messages
$id = 1;
$num = 0;
@nums;
foreach (@{$messages}) { # and iterate through
them

if ($_->{“new”}) {
print $id . “\t”
. $_->{“sender_email”} . “\t”
. strip_bold($_->{“subject”})
. “\n”; # output message data

push(@nums, $num);
$id++;

}
$num++;

}

print “\n”;
print “enter message number to label\n”;
$num = <>;
print “\n”;

Continued

17_59611x ch11.qxp 11/28/05 11:08 PM Page 173

174 Part III — Conquering Gmail

Listing 11-4 (continued)

$message = @{$messages}[$nums[$num - 1]];
$msgid = $message->{“id”};

if ($msgid) {
@labels = $gmail->get_labels(); # simply get all labels
$id = 1;
foreach (@labels) { # and iterate through

them
print $id . “\t” . $_ . “\n”;
$id++;

}

print “\n”;
print “enter label to set\n”;
$num = <>;
print “\n”;

$label = $labels[$num - 1];
if ($label) {

$gmail->edit_labels(
label => $label,
action => “add”,
msgid => $msgid

); # simply add label to message
print “labeled message\n”;

}
}

The key part of the script is the edit_labels function. Here’s the pertinent
function call:
$gmail->edit_labels(

label => $label,
action => “add”,
msgid => $msgid

);

You set the label attribute to the label you require, the action to “add” and the
msgid to the message ID of the message you’re changing. It is, as you can see,
very simple to understand.

17_59611x ch11.qxp 11/28/05 11:08 PM Page 174

175Chapter 11 — Dealing with Labels

Creating a New Label
The creation of new labels is done with the same edit_labels function, using
the “create” action. This code that follows creates a new label “fish”. Labels
can have a maximum of 40 characters.
$gmail->edit_labels(

label => “fish”,
action => “create”,

);

When that’s done, you can go back and apply that label to the messages you wish.

Removing Labels
Of course, you might go completely label crazy. In which case, one day you’ll wake
up with regret and want to undo all that you did before. If that’s the case, use the
final variation of the edit_labels function, like so:

$gmail->edit_labels(
label => $label,
action => “remove”,
msgid => $msgid

);

Listing 11-5 puts together the final variation of the chapter, with a script that
allows you to choose a label, display the messages with that label, and choose a
message to remove that label from. Complex? Not hardly!

Listing 11-5: Getting Labeled Messages and Removing Labels

use Utils;

$gmail = login();

@labels = $gmail->get_labels(); # simply get all labels
$id = 1;
foreach (@labels) { # and iterate through them

print $id . “ “ . $_ . “\n”;
$id++;

}

print “\n”;
print “enter label number to retrieve labeled messages:\n”;
$num = <>;

Continued

17_59611x ch11.qxp 11/28/05 11:08 PM Page 175

176 Part III — Conquering Gmail

Listing 11-5 (continued)

print “\n”;

$label = $labels[$num - 1];
if ($label) {

$messages =
$gmail->get_messages(label => $label); # get all

labeled messages

$id = 1;
$num = 0;
foreach (@{$messages}) { # and

iterate through them
print $id . “\t”
. $_->{“sender_email”} . “\t”
. strip_bold($_->{“subject”})
. “\n”; # output

message data
$id++;

}

print “\n”;
print “enter message number to remove label\n”;
$num = <>;
print “\n”;

$message = @{$messages}[$num - 1];
$msgid = $message->{“id”};
if ($msgid) { # check if

message id is OK
$gmail->edit_labels(

label => $label,
action => “remove”,
msgid => $msgid

);
print “removed label\n”;

}
}

And Now . . .
You should now be able to deal confidently with the mail inside Gmail. But what
of your address book? In the next chapter, you look at using the Perl API to com-
municate with the address book and to import and export your contacts.

17_59611x ch11.qxp 11/28/05 11:08 PM Page 176

Addressing
Addresses

Gmail’s mastery of your e-mail wouldn’t be of much use
without an address book. Lucky for us, Gmail provides a
perfectly functional one. Indeed, it was the address auto-

completion, where you can start typing a known address and have
it appear automatically within the To: field of a new mail, that
first excited the Gmail beta testers. As an example of Ajax pro-
gramming, it was, at the time, second to none.

The auto-completion system gets its addresses from, and is cen-
tered on, the Gmail Contacts list. In this chapter, you learn how
to control the Contacts list from your own programs.

The Contacts List
The Contacts list is accessed from the link on the left of your
Gmail screen. It looks, if you’re logged into my system at least,
very much like Figure 12-1.

As far as an address book goes, it’s pretty simple. But combined
with the auto-complete function, it provides a very useful way of
dealing with your (or at least my) failing memory when it comes
to e-mail addresses.

Adding and managing contacts from your browser is obvious and
far below your geeky level, so let’s go straight to the scripting.

˛ Importing contacts

˛ Displaying contacts

˛ Exporting contacts

chapter

in this chapter

18_59611x ch12.qxp 11/28/05 11:13 PM Page 177

178 Part III — Conquering Gmail

Figure 12-1 The Gmail contacts list

Importing Contacts
You’ve got a list of contacts, and you’re not going home until you’ve added them
to your Gmail account. Hurrah, then, for Listing 12-1. This provides the basis
for a script to allow you to add contacts programmatically. It uses, as ever, the
Utils.pm and Mail::Webmail::Gmail modules that you’ve been working with
since Chapter 7.

Listing 12-1: Adding a Contact

use Utils;

$gmail = login();

input data from keyboard
print “name:\n”;
$name = <>;
print “email:\n”;
$email = <>;
print “notes:\n”;
$notes = <>;

18_59611x ch12.qxp 11/28/05 11:13 PM Page 178

179Chapter 12 — Addressing Addresses

chomp($name);
chomp($email);
chomp($notes);

$gmail->add_contact(name => $name, email => $email, notes =>
$notes)
; # simply add contact

print “contact added\n”;

Running this script from the command line provides three prompts, in order, for
the name, e-mail address, and notes regarding the contact. Enter those, and the
script adds the contact to your Gmail account.

If you have a long list of addresses to import, sometimes it’s easier to turn that list
into a comma-separated values (CSV) file and use the import function that’s part
of the Gmail site itself.

A comma-separated values file for e-mail addresses looks like this:
First Name,Last Name,Email Address
Ben,Hammersley,ben.Hammersley@gmail.com
Julius,Caesar,example.account@gmail.com

With the first line called the header, defining the values separated by commas
(hence the name) in the rest of the file. Most e-mail programs will export in a
compatible version of CSV anyway, but if you need to make one by hand, that’s
how. Spreadsheets are also good programs to use to build CSV files.

So, to import large amounts of contacts, follow these steps:

1. Create a custom CSV file or export the address book from your other web-
mail provider or e-mail client as a CSV file.

2. Log in to Gmail and click Contacts on the left side of the page. The Contacts
list then opens in a new window.

3. Click Import Contacts.

4. Click Browse and locate the CSV file you’d like to upload.

5. Select the file and click Import Contacts. After successfully uploading the
document, a dialog box displays the number of new entries that were added
to your Contacts list.

18_59611x ch12.qxp 11/28/05 11:13 PM Page 179

180 Part III — Conquering Gmail

Showing Your Current Contacts
Once you’ve got your old contacts in there and have added a load more, you might
want to list those and access them programmatically. Listing 12-2 shows you how.

Listing 12-2: Getting Your Contacts

use Utils;

$gmail = login();

(@contacts) = @{ $gmail->get_contacts() }; # simply get all
contacts
foreach (@contacts) { # and iterate
though them

print $_->{“name1”} . “\t” . $_->{“email”} . “\n”; #
output contact data
}

The Mail::Webmail::Gmail module provides for this with one lovely bite-sized
function: get_contacts(). This returns an array hash of your contacts, in this
format:

$contact{ ‘id’ }
$contact{ ‘name1’ }
$contact{ ‘name2’ }
$contact{ ‘email’ }
$contact{ ‘note’ }

And so, in the core of the script in Listing 12-2, you are just looping through the
Arrays of Hashes and printing out the first name and e-mail address. You could,
of course, change this to use the other values, too:
foreach (@contacts) {

print $_->{“name1”} . $_->{“name2”} . $_->{“id”} . “\t” .
$_->{“email”} . “\t” . $_->{“note”} . “\n”;
}

The get_contacts() function can also be limited to the Frequently Mailed
contacts with the frequent flag:

my $contacts = $gmail->get_contacts(frequent => 1);

18_59611x ch12.qxp 11/28/05 11:13 PM Page 180

181Chapter 12 — Addressing Addresses

Exporting Contacts
Gmail is a bit greedy here. There are ample opportunities to import contacts to
the system. As you’ve seen, you can do it with comma-separated value files or via
the script in Listing 12-1. But if you want to get your contacts out again, and into
a desktop address book, you’re stuck.

Not quite. In Listing 12-3, there’s a script to export your contacts into a large
vCard file. All the modern address book or e-mail clients will be able to under-
stand the vCard file, and re-import your addresses. It’s also useful for backups, if
you ever get wary of Google’s ability to do that for you.

Here’s the listing, and then you’ll see how it works.

Listing 12-3: Exporting Contacts as vCards

use Utils;

$gmail = login();

open VCARDS, “>contacts.vcf”;

(@contacts) = @{ $gmail->get_contacts() }; # simply get all
contacts
foreach (@contacts) { # and iterate
though them

print VCARDS “BEGIN:VCARD\nVERSION:3.0\n”;
print VCARDS “FN:” . $_->{“name1”} . “\n”;
print VCARDS “EMAIL;type=INTERNET:” . $_->{“email”} .

“\n”;
print VCARDS “END:VCARD\n”;
print VCARDS “\n”;

}

close VCARDS;

A vCard is a small text file containing address data. The entire standard is complex
and extensive, defined in RFC2425; you can read about it at www.imc.org/pdi/
vcardoverview.html.

18_59611x ch12.qxp 11/28/05 11:13 PM Page 181

182 Part III — Conquering Gmail

Here is an example of a very simple vCard file:
BEGIN:VCARD
VERSION:3.0
FN:Ben Hammersley
EMAIL;type=INTERNET:ben.hammersley@gmail.com
END:VCARD

Saving that to disk and importing it into a vCard-compatible program will result
in my lovely e-mail address being embedded into your system. vCard files can
contain more than one vCard within, and that’s what the script in Listing 12-3
does. It’s very, very simple. It opens up a filehandle to a file called contacts.vcf
in the directory you’re running the script in (change that line to make it go else-
where, naturally), and then calls upon the Mail::Webmail::Gmail module to
provide a hash of the contacts in your Contacts list. It then just iterates through
them, creating vCards as it goes and printing them to the filehandle. Then it
closes the filehandle and exits. Simplicity itself, really. You can then go on and
import the large vCard file into your weapon of choice.

And Now . . .
In this chapter, you looked at dealing with contacts within Gmail. You should
have learned how to import contacts from other applications. You should also be
able to export them at will, in order to re-import them into other applications or
for backup purposes. In the next chapter, you look at scraping the Gmail interface.

18_59611x ch12.qxp 11/28/05 11:13 PM Page 182

Building an API from
the HTML-Only
Version of Gmail

The problem with reverse engineering web applications —
other than the complexity — is that they never stop evolv-
ing. That’s the advantage of building an application on the

web: It costs nothing to ship an upgrade to all of your users. Such
upgrades, as mentioned previously, do, however, tend to break the
third-party APIs that this book relies on.

The one thing worse than breaking an API is making it redun-
dantly complex, and about halfway through writing this book,
Gmail did just that by releasing a plain HTML version of
the site. Gmail users approaching the site with an old, non-
JavaScript–enabled browser are able to access a version of the
application that does not rely on the JavaScript techniques dis-
cussed in previous chapters. The functionality is a little restricted,
but the basic capabilities to read, write, and organize your mail
are there. This chapter, therefore, looks at faking an API by
scraping the HTML version — something somewhat simpler
than messing with the JavaScript API.

A First Look at the HTML Version
To see the HTML version of Gmail, turn off the JavaScript in
your browser, and log in as normal. (Or, you can log in and switch
from standard view to basic HTML by using the choices at the
bottom of the page. Either way is good.) You should see some-
thing very similar to Figure 13-1.

˛ Gmail from an
HTML perspective

˛ Basic scraping

chapter

in this chapter

19_59611x ch13.qxp 11/28/05 11:09 PM Page 183

184 Part III — Conquering Gmail

FIGURE 13-1: The HTML-only version of Gmail

It’s easy to see the differences between the JavaScript and non-JavaScript versions
of the site. The non-JavaScript version has the yellow banner along the top, and —
key point this — the URL of the page is both longer, and as you shall see, changes
when you use the application.

The first order of business is to view the HTML source of the page. You can see
that the page is all one piece — there’s no iFrame nonsense here — and that it’s
pretty unspectacular markup. In fact, saving the HTML to disk, and running the
tidy application on it produces the output in Listing 13-1.

Listing 13-1: What Happens When You Try to Tidy Gmail’s HTML

line 7 column 26 - Warning: unescaped & or unknown entity
“&name”
line 7 column 35 - Warning: unescaped & or unknown entity “&ver”
line 12 column 30 - Warning: unescaped & or unknown entity
“&name”
line 12 column 43 - Warning: unescaped & or unknown entity
“&ver”
line 12 column 1 - Warning: <script> attribute “type” lacks
value
line 13 column 33 - Warning: unescaped & or unknown entity
“&name”

19_59611x ch13.qxp 11/28/05 11:09 PM Page 184

185Chapter 13 — Building an API from the HTML-Only Version

line 13 column 41 - Warning: unescaped & or unknown entity
“&ver”
line 13 column 1 - Warning: <script> attribute “type” lacks
value
line 16 column 1 - Warning: <table> attribute “summary” lacks
value
line 21 column 42 - Warning: unescaped & or unknown entity
“&answer”
line 24 column 1 - Warning: discarding unexpected </table>
line 25 column 1 - Warning: <script> attribute “type” lacks
value
line 17 column 1 - Warning: <script> isn’t allowed in <tr>
elements
line 30 column 1 - Warning: <table> attribute “summary” lacks
value
line 30 column 1 - Warning: discarding unexpected <table>
line 46 column 1 - Warning: missing <td>
line 48 column 2 - Warning: discarding unexpected <td>
line 49 column 1 - Warning: <table> attribute “summary” lacks
value
line 59 column 21 - Warning: unescaped & or unknown entity “&pv”
line 62 column 1 - Error: discarding unexpected </form>
line 63 column 1 - Error: discarding unexpected </table>
line 66 column 1 - Error: discarding unexpected </table>
line 67 column 1 - Warning: <table> attribute “summary” lacks
value
line 67 column 1 - Error: discarding unexpected <table>
line 70 column 1 - Warning: <table> attribute “summary” lacks
value
line 73 column 18 - Warning: unescaped & or unknown entity “&v”
line 73 column 22 - Warning: unescaped & or unknown entity “&pv”
line 112 column 1 - Error: discarding unexpected </table>
61 warnings, 18 errors were found! Not all warnings/errors were
shown.

It is, in short, horrific HTML. Now, the modern-day browser is used to such
things and has no problem in displaying this monstrosity on the screen. Your
problems are only just beginning, however. If the page were compliant and well-
formed XHTML, you would be able to use any number of XML parsing tools on
the source. XPath, for example, would make your life incredibly simple. This is not
to be. You’re going to have to treat Gmail’s HTML front page as any other horri-
bly coded page. It’s still much, much simpler than the JavaScript variety, for sure,
but it’s not as simple as it could be.

It is, then, time for the Old School.

19_59611x ch13.qxp 11/28/05 11:09 PM Page 185

186 Part III — Conquering Gmail

Introducing Basic Scraping
Every page on the web can be scraped — it can be downloaded by a script and have
its content mined and used as the input for a program. The complexity of this task
is dependent on the way the page itself is coded: One of the key reasons why
XHTML is so encouraged is that to be correct, XHTML also has to be well-
formed XML. Well-formed XML can be processed with a whole raft of useful
tools that make the job a simple one. Badly formed markup, like that of Gmail, is
different. This “tag soup” requires a more complicated processing model. There are
a few, but you’re going to use the method produced by the Perl module
HTML::TokeParser — Token Parsing.

HTML::TokeParser
Imagine the web page is a stream of tags. With HTML::TokeParser, you leap
from tag to tag, first to last, until you reach the one you want, whereupon you can
grab the content and move on. Because you start at the top of the page, and spec-
ify exactly how many times you jump, and to which tags, an HTML::TokeParser
script can look a little complicated, but in reality it’s pretty easy to follow. You can
find the HTML::TokeParser module at http://search.cpan.org/~gaas/
HTML-Parser-3.45/lib/HTML/TokeParser.pm.

If you flip to Appendix A, Listing A-4 shows the HTML code of the Gmail Inbox
you want to walk through.

As you can see from the listing, the page is made up of lots of tables. The first dis-
plays the yellow banner advertising the JavaScript-enhanced version. The second
holds the search section. The third holds the left-hand menu, the fourth the
labels, and so on, and so on. It is only until you get to the table that starts with the
following code that you get to the Inbox itself:

<table width=100% cellpadding=2 cellspacing=0 border=0 bgcolor=#e8eef7
class=th>

But looking at this section of the code brings you hope and joy. Listing 13-2
shows the code that displays the first and last messages in the Inbox shown in
Figure 13-1.

19_59611x ch13.qxp 11/28/05 11:09 PM Page 186

187Chapter 13 — Building an API from the HTML-Only Version

Listing 13-2: A Single Message in the HTML-Only Inbox Source

<tr bgcolor=#E8EEF7>
<td width=1% nowrap>
<input type=checkbox name=t
value=”1025a4065d9b40bf”>
<img src=”/gmail/images/cleardot.gif”
width=15 height=15 border=0 alt=””>
</td>
<td width=30%>
Ben Hammersley</td>
<td width=68%>

hello me
</td>
<td nowrap width=1%>Feb 28

...

<td nowrap>Jan 18
<tr bgcolor=#E8EEF7>
<td>
<input type=checkbox name=t
value=”101480d8ef5dc74a”>
<img src=”/gmail/images/star_on_2.gif”
width=15 height=15 border=0 alt=Starred>
</td>
<td >
Ben Hammersley</td>
<td >

Heads

Here’s a nice message.
</td>

...
<tr bgcolor=#E8EEF7>
<td>

Continued

19_59611x ch13.qxp 11/28/05 11:09 PM Page 187

188 Part III — Conquering Gmail

Listing 13-2 (continued)

<input type=checkbox name=t
value=”101480d8ef5dc74a”>
<img src=”/gmail/images/star_on_2.gif”
width=15 height=15 border=0 alt=Starred>
</td>
<td >

Ben Hammersley</td>
<td >

Heads

Here’s a nice message.
</td>
<td nowrap>Jan 6

If you look at this code, and know what you already do about the way Gmail
works, it’s easy to deduce the structure of the page. Each line of the Inbox is struc-
tured like this:
<tr bgcolor=#E8EEF7>
<td><input type=checkbox name=t value=”THREAD ID”>
A LINK TO A STAR IMAGE IF THE MESSAGE IS STARRED
</td>
<td >THE AUTHOR NAME</td>
<td >
THE LABEL
THE SUBJECT LINE
</td>
<td nowrap>THE DATE.

And so, to retrieve your Inbox, you simply retrieve this page, walk through the
code until you get to the correct table, collect every instance of the preceding
structure, and parse out the details. This is what you shall do now.

Parsing the Inbox
Listing 13-3 shows some Perl code that uses HTML::TokeParser to walk through
the HTML-only Inbox page that you saved earlier and print out details of the
messages therein. Note that it loads the page as a text file from the disk, and just

19_59611x ch13.qxp 11/28/05 11:09 PM Page 188

189Chapter 13 — Building an API from the HTML-Only Version

prints the results out to the screen. You will need to save the Inbox source as
‘gmailinboxsource.html’ and save it in the same directory as this script. You’ll use
these results in a more meaningful way later.

Listing 13-3: Walking Through the Inbox with HTML::TokeParser

#!/usr/bin/perl

use warnings;
use strict;
use HTML::TokeParser;

open(FILEIN, “gmailinboxsource.html”);
undef $/;
my $filecontents = <FILEIN>;

my $stream = HTML::TokeParser->new(\$filecontents);

Go to the right part of the page, skipping 8 tables (!!!)
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);

Now we loop through the table, getting the dates and
locations. We need to stop at the bottom of the table, so we
test for a closing /table tag.

PARSE: while (my $tag = $stream->get_tag) {

my $nexttag = $stream->get_tag->[0];
last PARSE if ($nexttag eq ‘table’);
$stream->unget_token();

my $input_tag = $stream->get_tag(“input”);
my $threadid = $input_tag->[1]{value};

my $starred = $stream->get_trimmed_text() || “Not
Starred”;

Continued

19_59611x ch13.qxp 11/28/05 11:09 PM Page 189

190 Part III — Conquering Gmail

Listing 13-3 (continued)

$stream->get_tag(“td”);
my $sender = $stream->get_trimmed_text(“/td”);

$stream->get_tag(“td”);
$stream->get_tag(“font”);
$stream->get_tag(“font”);
my $label = $stream->get_trimmed_text(“/font”) || “No

Label”;

$stream->get_tag(“/font”);
my $subject = $stream->get_trimmed_text(“/td”);

$stream->get_tag(“td”);
my $dateline = $stream->get_trimmed_text();
$dateline =~ s/†/ /;

print
“THREADID $threadid\nSTARRED $starred \nSENDER $sender\nLABEL
$label \nSUBJECT $subject\nDATE: $dateline \n\n\n”;

}

Running this code on the saved page in Listing A-4 produces the output in
Listing 13-4.

Listing 13-4: The Result of 13-3 on A-4

THREADID 1025a4065d9b40bf
STARRED Not Starred
SENDER Ben Hammersley
LABEL No Label
SUBJECT hello me
DATE: Feb 28

THREADID 10237338e99e7a8c
STARRED Not Starred
SENDER Ben Hammersley
LABEL No Label
SUBJECT This is the subject line
DATE: Feb 21

19_59611x ch13.qxp 11/28/05 11:09 PM Page 190

191Chapter 13 — Building an API from the HTML-Only Version

THREADID 10187696869432e6
STARRED Not Starred
SENDER Ben, me (3)
LABEL No Label
SUBJECT This is the third message
DATE: Jan 18

THREADID 101865b95fc7a35a
STARRED Not Starred
SENDER Ben Hammersley
LABEL No Label
SUBJECT This is the second message
DATE: Jan 18

THREADID 101480d8ef5dc74a
STARRED Starred
SENDER Ben Hammersley
LABEL Heads
SUBJECT Here’s a nice message.

This is a beautiful result. You can take all of the information out of the Inbox —
the sender, the date, the subject line, and so on — and do something with it pro-
grammatically. You are well on the way to producing your own API.

Now, place that aside for a moment and look at the individual messages. You
know that the individual message is identified by the ThreadID, and you now
know how to identify that. You can also see, by looking at the HTML code —
repeated here in Listing 13-5 — that the individual message is retrieved with a
URL constructed like so: http://gmail.google.com/gmail/h/CACHEBUST-
INGSTRING/?th=THREADID&v=c.

Listing 13-5: The Pertinent Bits of Listing A-4 for Finding

the Individual Message

<base href=”http://gmail.google.com/gmail/h/1m0fzst8pmgu0/”>
...

<input type=checkbox name=t
value=”1025a4065d9b40bf”>
<img src=”/gmail/images/cleardot.gif”

Continued

19_59611x ch13.qxp 11/28/05 11:09 PM Page 191

192 Part III — Conquering Gmail

Listing 13-5 (continued)

width=15 height=15 border=0 alt=””>
</td>
<td width=30%>
Ben Hammersley</td>
<td width=68%>

hello me
</td>
<td nowrap width=1%>Feb 28

So, you can now work out how to retrieve the message itself. You simply construct
the correct URL, retrieve it, parse the page, and there it is.

Retrieving the Individual Page
There are two types of individual message pages, and you’ll need to work out how
to deal with them in a few paragraphs. In the meantime, jump to Appendix A and
check out Listing A-5, which shows the code for the page depicted in Figure 13-2.

FIGURE 13-2: An individual message page, with only one message

19_59611x ch13.qxp 11/28/05 11:09 PM Page 192

193Chapter 13 — Building an API from the HTML-Only Version

There is a lot going on here. You have the entire message, and all of the associated
metadata — the sender, the date, the subject line, and so forth — and you have a
whole collection of actions to perform on the message, with (joy of joys) a seemingly
easy-to-decipher system of URLs to set them going. Later on in this chapter, you
return to this listing to work on these commands.

Meanwhile, you need to get at the message contents. The technique is exactly the
same as when you looked through the Inbox. Listing 13-6 shows the code that
does this.

Listing 13-6: Code to Parse an Individual Message Page

#!/usr/bin/perl

use warnings;
use strict;
use HTML::TokeParser;

open(FILEIN, “Gmail - single message.html”);
undef $/;
my $filecontents = <FILEIN>;

my $stream = HTML::TokeParser->new(\$filecontents);

$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);
$stream->get_tag(“table”);

$stream->get_tag(“b”);

my $subject = $stream->get_trimmed_text(“/b”);

$stream->get_tag(“b”);
my $from_true_name = $stream->get_trimmed_text(“/b”);

$stream->get_tag(“/font”);
my $from_email_address = $stream->get_trimmed_text(“/td”);

Continued

19_59611x ch13.qxp 11/28/05 11:09 PM Page 193

194 Part III — Conquering Gmail

Listing 13-6 (continued)

$stream->get_tag(“td”);
my $dateline = $stream->get_trimmed_text(“tr”);

$stream->get_tag(“td”);
my $to_line = $stream->get_trimmed_text(“tr”);

$stream->get_tag(“div”);
$stream->get_tag(“div”);
my $message_text = $stream->get_text(“/div”);

print
“ \nSENDER $from_true_name $from_email_address \nSUBJECT
$subject\nDATE: $dateline \nTO: $to_line\nMESSAGE:
$message_text\n”;

Running this script — again, as with Listing 13-3, it works on the page saved to
disk — produces the output shown in Figure 13-3.

So this is increasingly useful: You can retrieve the Inbox, find a ThreadID, and
bring down a message if the thread contains only one message. You can then take
that message and grab the information out of it.

FIGURE 13-3: The result of running Listing 13-6

19_59611x ch13.qxp 11/28/05 11:09 PM Page 194

195Chapter 13 — Building an API from the HTML-Only Version

Dealing with Threads
Here’s the problem, however: Gmail’s individual message page doesn’t show an
individual message. Rather, it shows parts of an entire thread, and the entire mes-
sage of the last one in the thread.

However, look at the top right of the individual message page. There’s a link to
“Expand All.” Clicking this link brings you a page that shows all of the content
of all of the messages within that particular ThreadID. To test this, I sent a series
of messages to my Gmail account with the same subject line. Gmail naturally
compiled these messages into a thread. The URL for the default view (the
one displaying the latest message in full, but the previous messages’ headers
only) was http://gmail.google.com/gmail/h/o1xhaxisf335/
?th=102f31cbbb3d650f&v=c.

The Expand All view’s URL was
http://gmail.google.com/gmail/h/60blkjl9nnjc/
?d=e&th=102f31cbbb3d650f&v=c.

The addition of the single flag d=e causes Gmail to return all of the information
you need. You already know that the random string in the middle of the URL is a
cache-busting string and can be anything, so you can say that the URL to retrieve
a full message thread is http://gmail.google.com/gmail/h/RANDOMSTRING/
?d=e&th=THREADID&v=c.

One thing remains to check. What happens if you try this URL with a ThreadID
of a thread with only one message? Will it still work? The answer, which you can
test yourself, is yes. It does. So now you can see how to read the mail in the Inbox.
You just need to make two passes with your scraping code. The first runs through
the Inbox listing, grabbing the ThreadIDs of each message. The second pass takes
that ThreadID and makes it into a URL as described. You then need only to
retrieve that page and scrape it to read the messages.

Dealing with Other Folders
As you may be noticing, working with the HTML-only version of Gmail is much
easier than the JavaScript version — when it comes to making an API, at least. It’s
a very steady, almost plodding, discovery of techniques. The next thing to look for,
I think, is how to read messages in the other folders: Starred, Sent Mail, All Mail,
Drafts, and so on.

19_59611x ch13.qxp 11/28/05 11:09 PM Page 195

196 Part III — Conquering Gmail

This is a simple matter. When I opened each of these folders, I found these URLS:

� Inbox: http://gmail.google.com/gmail/h/q2fuyjw4p8mu/?

� Starred: http://gmail.google.com/gmail/h/q2fuyjw4p8mu/?s=r

� Sent Mail: http://gmail.google.com/gmail/h/q2fuyjw4p8mu/?s=s

� Drafts: http://gmail.google.com/gmail/h/q2fuyjw4p8mu/?s=d

� All Mail: http://gmail.google.com/gmail/h/q2fuyjw4p8mu/?s=a

� Spam: http://gmail.google.com/gmail/h/q2fuyjw4p8mu/?s=m

� Trash: http://gmail.google.com/gmail/h/q2fuyjw4p8mu/?s=t

Ignoring the random seed again, you can see that the s= attribute sets the folder
to view. Setting it to anything else but the preceding options returns an error,
except, happily setting it to s=i, which gives you the Inbox.

So, to retrieve the mail from another folder, you simply form the URL as in the
preceding list, send it to the scraping script you wrote earlier in this chapter, and
proceed from there.

And Now . . .
So, you now have the basic techniques down for interacting with the HTML-only
version of Gmail. You now know how to scrape the pages, and you now know how
to find and, in theory, gather information from, all of the messages. In the next
chapter, you learn how to export your mail, whether for re-import into another
application or to back it up. As good as Gmail is, always being able to leave is
sometimes a good excuse to stay.

19_59611x ch13.qxp 11/28/05 11:09 PM Page 196

Exporting Your Mail

The hallmark of a truly great web application is the ease with
which you can remove your data should you want to leave.
In the words of the poet, if you love someone set them free.

Sadly, Gmail doesn’t make it easy to get your mail out of there.
There’s no built-in facility to do so at all, at least at the time of
this writing. Of course, many would say that Gmail is so shiny
that you’d be mad to stop using it. Maybe so, but in this chapter
you look at how to do that anyway.

Exporting as a Massive Text File
The first way to export your mail, and the simplest, is to dump
the lot to a big text file — illustrated in Listing 14-1. It’s not very
useful for re-importing your mail into another application, but it
is good for backups of data that you’d like on paper, for example.

Listing 14-1: Export All Mail to a Text File

use Utils;

$gmail = login();

$messages = $gmail->get_messages();

open OUTPUT, “>mailarchive.txt”;

foreach (@{$messages}) {

my $full_message = $gmail->get_indv_email(msg =>
$message);
....print OUTPUT “Sender: “ . $full_message-
>{$id}->{“sender_email”} . “\n”;

Continued

˛ Converting to a
big text file

˛ Converting to
Mbox

˛ Appending to IMAP

chapter

in this chapter

20_59611x ch14.qxp 11/28/05 11:04 PM Page 197

198 Part III — Conquering Gmail

Listing 14-1 (continued)

....print OUTPUT “Sent: “ . $full_message->{$id}->{“sent”}

. “\n”;

....print OUTPUT “Subject: “ . strip_bold($full_message-
>{$id}->{“subject”}) . “\n\n”;
....print OUTPUT $full_message->{$id}->{“body”} . “\n\n----
\n”;
}

close OUTPUT;

Running the script produces a file in the directory the script is run from called
mailarchive.txt. It will look rather like this:
Sender: bobette@example.com
Sent: 12:01pm
Subject: This is a mail

You are a very sexy man.
Love
Bob x

Sender: bobette@example.com
Sent: 11:23pm
Subject: Terrible confession

I’ve lost my wristwatch. Have you seen it?
Puzzled
Bob x

And so on. Very nice for printing or storing on a keychain flash drive in case of
some form of dreadful server failure at the Google farm. Of course, flippancy aside,
it is nice to have a printout of a series of mails. As you know from previous chap-
ters how to select mails from specific labels, you can use a variation of Listing 14-1
to provide backups of mail specific to certain projects, or subjects, or whatever you
like. That is very useful, depending on your own personal work style.

20_59611x ch14.qxp 11/28/05 11:04 PM Page 198

199Chapter 14 — Exporting Your Mail

Converting to Mbox
Much more useful, converting to the Mbox format allows your Gmail to be
imported into most popular e-mail applications. Listing 14-2 converts your Gmail
Inbox into an Mbox-compatible file. It needs two modules, in addition to the
Utils.pm module you’ve been using for this section of the book (that, if you’ve for-
gotten, is found in Listing 7-4):

� Mail::Internet: Available from http://search.cpan.org/~markov/

� Mail::Folder::Mbox: Available from http://search.cpan.org/
~kjohnson

Listing 14-2: Convert to Mbox

use Utils;
use Mail::Internet;
use Mail::Folder::Mbox;

$gmail = login();

$inbox = new Mail::Folder(‘mbox’);
$inbox->create(‘inbox’);
$inbox->open(‘inbox’);

$messages =
$gmail->get_messages(label =>

$Mail::Webmail::Gmail::FOLDERS{“INBOX”})
; # simply get all messages from INBOX

foreach (@{$messages}) { # and iterate through them
$message = $gmail->get_mime_email(msg => $_); #

retrive MIME message
@message_lines = split(/\n/, $message); # split

it into lines
map { $_ .= “\n” } @message_lines; # prevent joining of

lines in the body
$message_inet =
new Mail::Internet(\@message_lines)
; # construct RFC822

compilant message
$inbox->append_message($message_inet); # and append it

into mbox

Continued

20_59611x ch14.qxp 11/28/05 11:04 PM Page 199

200 Part III — Conquering Gmail

Listing 14-2 (continued)

}

$inbox->sync();
$inbox->close();

Running the script, as ever, produces an mbox file in the directory in which it is
run. This one is called “inbox” and will contain the contents of your Gmail Inbox.

From the previous chapters, it should be easy to see how to vary this script to
deal with mail in the archive or with a specific label.

Apple Mail.app, Thunderbird, and Entorage and Eudora can all deal with
importing Mbox files directly. Outlook, however, cannot. It requires an .idx file for
each folder, which contains an index of the mails within. It’s easy to produce one
of these, however: Simply grab a copy of Eudora from http://eudora.com/
products/eudora/download/ and import into there. Then rename the folder
in Eudora (and rename it back again if you like) to force it to produce an .idx file.
Then you can export from Eudora, and the .idx file that Outlook needs will be
there. A bit fiddly, yes, but that’s what you get for using Outlook.

Appending to IMAP
The Internet Message Access Protocol, or IMAP, is by far the best protocol for
accessing e-mails from a desktop client. Unlike POP3, IMAP allows you to keep
your mail on a server — folders, sub-folders and all — and access it from multiple
clients and devices. This means that you can, for example, have your mail synchro-
nized between your home and work desktop machines, your laptop, and your
phone. (Of course, Gmail does that too, without all the messing around, but who’s
quibbling at this point?)

It can be very useful to dump your Inbox into an IMAP account, and that’s what
Listing 14-3 does.

20_59611x ch14.qxp 11/28/05 11:04 PM Page 200

201Chapter 14 — Exporting Your Mail

Listing 14-3: Appending to IMAP

use Utils;
use Net::IMAP;

$gmail = login();
$imap = new Net::IMAP(“IMAP SERVER ADDRESS”, Debug => 1);
$imap->login(“USERNAME”, “PASSWORD”);

$messages =
$gmail->get_messages(label =>

$Mail::Webmail::Gmail::FOLDERS{“INBOX”})
; # simply get all messages from INBOX

foreach (@{$messages}) { # and iterate through them
$message = $gmail->get_mime_email(msg => $_); #

retrive MIME message
$imap->append(“INBOX”, $message); # and append it to

the IMAP INBOX
}

$imap->logout();

By now, as you come to the end of this book, you should be confident in dealing
with mail within the archive and under different labels. I leave it to you as an
exercise, therefore, to move labeled mail into the IMAP folders.

And Now . . .
For the final chapter of the book, you’re going to look at the different applications
that have already been written using the techniques you’ve learned in this section.

20_59611x ch14.qxp 11/28/05 11:04 PM Page 201

20_59611x ch14.qxp 11/28/05 11:04 PM Page 202

Using Gmail to . . .

Gmail’s popularity, enormous storage, search capability, and
labels mean that many people have been hacking new
uses for the application. This chapter, then, looks at some

of the more unusual uses that people are putting the system to.

Using Gmail as a To-Do List
Around the same time as Gmail was launched, the tech world
spawned a fashion for being really, really organized. To-do lists
are a stylish accessory for any self-respecting geek, and, of course,
Gmail can be fashioned into a fine tool for such things.

Using Filters
The first way of making to-do lists is to use plus addresses
and filters. The plus address feature, as you’ll remember from
Chapter 3, is the one where you can add a plus sign (+) and then
any string to your Gmail address without it making any difference.
For example, Ben.Hammersley+fanmail@gmail.com is exactly
the same as Ben.Hammersley@gmail.com or Ben.Hammersley+
hatemail@gmail.com or Ben.Hammersley+dinner_
invitations@gmail.com or whatever. They’ll all be delivered to
my address, no matter what you put after the plus sign.

However, you can set filters on the address, and push specific ones
into specific labels. Figure 15-1 shows a filter set up to do just
that, sending ben.hammersley+todo@gmail.com to the label
“Todo”.

˛ To-do lists

˛ Bittorrent

˛ And much more . . .

chapter

in this chapter

21_59611x ch15.qxp 11/28/05 11:08 PM Page 203

204 Part III — Conquering Gmail

FIGURE 15-1: Setting a filter for a to-do list

What’s the point of that? Well, it’s easy to send e-mail, whether you’re sat at your
main machine or using a mobile device — and so you can send new to-do list items
to your Gmail account with a few simple keystrokes. Place the to-do item itself in
the subject line, and you can have a screen very much like Figure 15-2 — showing
the “Todo” label index, now passing muster as a very useful to-do list in itself.

FIGURE 15-2: The Todo label listing

21_59611x ch15.qxp 11/28/05 11:08 PM Page 204

205Chapter 15 — Using Gmail to . . .

Using gmtodo
Gnome desktop users needn’t go crazy with the preceding technique when they
have a complete to-do list application to use: gmtodo, from http://gmtodo
.sourceforge.net/.

Paul Miller’s application is written in Python, and hence uses Libgmail. It also
requires Pygtk, but most Linux distributions have that as standard. If you don’t,
you’ll get an error message, and will have to download it from www.pygtk.org.

Once you’ve done that, or just gone ahead and unarchived the application, you run
it from the command line with a judicious python gmtodo.py.

gmtodo works in exactly the same way as the plus address method, only giving it a
nice GUI. The one thing you should know is that your Gmail username and pass-
word are stored in plain text in a file called .gmtodo in your home directory. If you
consider that an unnecessary security risk, you’ve been warned.

Using Gmail to Find Information in RSS Feeds
If you’re like me, you probably spend the first 37 hours or so of your working week
trolling through your newsreader, in search of blog-borne snippets of wisdom and
genius. Fifteen thousand blog posts about cats and new Apple rumors later, and
you’re none the wiser. But, still, somewhere back there, half an hour ago, there
might have been something vaguely interesting. If only you could remember
what it was.

Gmail, obviously, can help. By using an RSS to E-mail service, and the plus
address technique discussed earlier in the chapter, you can use Gmail to store your
RSS feeds, ready for the searching thereof. To do this, I like to use the free service
at www.rssfwd.com, as shown in Figure 15-3.

By subscribing to the feeds I like to read and then setting up a plus address’n’label
combo as you did in the previous section, I know that I will always have an archive
of all of the old feeds I’ve read. I don’t actually use Gmail as my newsreader —
although I could, I guess — because I prefer my desktop client for that. But as a
store and search system, it’s perfect.

21_59611x ch15.qxp 11/28/05 11:09 PM Page 205

206 Part III — Conquering Gmail

FIGURE 15-3: A screenshot of rssfwd.com

Using Gmail to Find Torrent Files
The technique used above, to filter RSS feeds into labels, can also be used to
search for torrent files from your favorite Bittorrent tracker site. These sites invari-
ably have RSS feeds of their latest offerings, but the feeds are far too fast moving,
and far too full of rubbish, to be worth reading manually. Instead, forward them to
Gmail in the same manner you would forward your RSS feeds, and use Gmail’s
search capability to find the ones you want. If you’re looking for a torrent for a
particular show but don’t want to have to keep going back to Gmail to check, have
a filter forward it to another e-mail address, as in Figure 15-4.

21_59611x ch15.qxp 11/28/05 11:09 PM Page 206

207Chapter 15 — Using Gmail to . . .

FIGURE 15-4: Not that you’ll have anything to do with this naughty activity

Using Gmail as a Notepad
Jonathan Aquino, a blogger from British Columbia, called Gmail the Notepad of
the web. “Today,” he said at http://jonaquino.blogspot.com/2005/03/
gmail-as-notepad-of-web.html, “I realized that Gmail’s latest features make
it an excellent replacement for Notepad and other basic desktop text editors. (Use
its Save Draft feature so that you can edit your text whenever you want.)”

It’s certainly a worthwhile insight making. Indeed, as he went on to say, Gmail has
a number of advantages over Notepad or any other ordinary text editors. Gmail,
he said, beats Notepad with the following:

� Filename is optional. No need to think of a unique filename to save under —
just enter your content and go.

� Search all your past files at once. Try that, Notepad!

� Spell-checking on demand.

21_59611x ch15.qxp 11/28/05 11:09 PM Page 207

208 Part III — Conquering Gmail

� Load/save your text files from any computer in the world.

� Cross-platform — you can access it from any make or model of machine, as
long as you can get online with a web browser.

� Undo Discard. Ever wish you could retrieve your file after closing it without
saving? Now you can.

This technique works pretty well — and now that Gmail has rich-text editing
capabilities, it has become even more powerful. Because you might be using
the Drafts folder for things other than stored notes, you might want to assign the
mail a label. Figure 15-5 shows my Drafts folder with three notes within. I’ve
labeled two.

Imaginative readers — that’s all of you — will have spotted that you can easily
write a script to keep your Gmail-held notes copied to your local machine. I leave
that as an exercise to the newly enlightened reader.

FIGURE 15-5: Using Gmail as a notepad application

21_59611x ch15.qxp 11/28/05 11:09 PM Page 208

209Chapter 15 — Using Gmail to . . .

Using Gmail as a Spam Filter
If there’s one thing Gmail knows, it’s spam. Hosting millions of e-mail addresses
means millions of spam messages arrive every day — and Google must unleash their
minions in the never-ending battle to stop that stuff from getting into your Inbox.

So, Gmail’s spam filters are really good, and with a little bit of cunning technique,
you can use the system to filter all of your mail, and not just Gmail.

You can do this because Gmail allows you to forward messages. This is a little bit
complicated, so bear with me. Here’s what to do:

Go to the Settings page, click the Forwarding tab, and set Gmail to forward all
messages to your non-Gmail account (from now on referred to as example.com).

Once you’ve done that, all messages to gmail.com will go to example.com, except
for the spam, which will be filtered.

Now, go to your example.com mail server and create a filter to check the headers
of any incoming e-mail. Have it forward to your Gmail account if it does not find
the following in the header:

X-Forwarded-For: user@gmail.com user@example.com

There are many ways to do this, and you’d be wise to ask your system administra-
tor to advise you on it. For really advanced users, a procmail filter to do this looks
like this (with your Gmail account and real mail server replacing
user@gmail.com and user@example.com in the obvious places):

:0
* !^X-Forwarded-For: user@gmail.com user@example.com
! user@gmail.com

When this is set up, your server sends all the mail that Gmail hasn’t seen to
Gmail. Gmail filters it for spam, and then passes it back, having added in the
header. The filter ignores all the messages with the X-Forwarded-For header,
and so all you see in your example.com account is beautifully filtered mail.

This technique also has the advantage of saving a copy of all of your mail within
Gmail, which is handy for backups. And remember, if you use Gmail as your
SMTP server, too, all your outgoing mail will be saved also.

21_59611x ch15.qxp 11/28/05 11:09 PM Page 209

210 Part III — Conquering Gmail

An Even Simpler Way of Doing It
There is, naturally, an even easier way to do this. Justin Blanton, this tome’s noble
technical editor, points out that if you can’t set server-side filters but can create
multiple mail accounts, you can do the following:

1. Create a new mail account (the username doesn’t matter; no one will see it).

2. Forward the e-mail from your current account to Gmail.

3. Forward your Gmail e-mail to the account you just created.

4. Gmail filters your e-mail before forwarding it along.

5. Use your new mail account (you’ll obviously want to set the “reply-to” and
“from” fields to your current address and not the one you just created).

This is very elegant but does require multiple e-mail accounts.

Using Gmail as Storage for a Photo Gallery
As something as a transition to the final chapter, this use of Gmail is borderline
naughty. Indeed, at the time of this writing, Google has taken the author’s Gmail
account away from him, so fiendish is his wares. Still, he fears nothing here in
Chapter 14 and so will happily point to Goollery, the PHP system for using
Gmail as the storage for an online photo gallery.

Figure 15-6 shows it in action on the demo site. You can download Goollery from
www.wirzm.ch/goollery/.

The authors, Martin Wirz, Andres Villegas, and Matias Daniel Medina, have
done a very nice job with Goollery. It’s easy to use, requiring only PHP, curl, and
ImageMagick to be installed on your server to begin with. (These are all pretty
standard, and your system administrator can help you.)

Once that’s done, you must create a label within your Gmail account called “pic-
tures” and then follow the rest of the installation instructions included within the
Goollery package.

Goollery uses PHP, and so libgmail, to access Gmail. In the next chapter, you see
precisely how this works.

21_59611x ch15.qxp 11/28/05 11:09 PM Page 210

211Chapter 15 — Using Gmail to . . .

FIGURE 15-6: Goollery in action

And Now . . .
I hope that this chapter has shown you some of the interesting things you can do
when you have an almost limitless amount of storage space, some cunning filters,
or a bit of imagination.

To finish up the book, you’re going to look at perhaps the most extreme use of
Gmail — using the webmail application as a mountable file system.

21_59611x ch15.qxp 11/28/05 11:09 PM Page 211

21_59611x ch15.qxp 11/28/05 11:09 PM Page 212

Using GmailFS

Very early on in the life of the Gmail beta program, Richard
Jones out-geeked everyone with the release of version 0.1
of the GmailFS — a mountable file system for Linux

machines that uses Gmail as the storage mechanism. This chapter
examines GmailFS and discusses how it works and how to use it.

The Underlying Idea
The shocking thing about Gmail, apart from the cleverness of the
asynchronous JavaScript and XML interface, is the amount of
storage available to the user. A gigabyte is a lot of space for mail,
especially when it is free. It’s so much space, indeed, that the sec-
ond question on a lot of people’s lips (after “How do they do
that” had been answered) was, “What can you do to fill it up?”

The answer, Richard Jones decided, was to use Gmail as the stor-
age for a file system. One gigabyte is a nice size for an emergency
backup, or to share files between friends. It is, after all, 200 or so
good-sized MP3 files — legally downloaded, of course.

Installing GmailFS
GmailFS works on Linux machines only. For Windows machines,
the equivalent program is GmailDrive.

The Correct Python
First, you need to make sure you have Python 2.3 installed. Python
will probably have come pre-installed with your OS, but you need
to make sure it is version 2.3 or above. There are many tests for
this, depending on your system.

˛ Installing GmailFS

˛ Using Gmail FS

˛ How GmailFS works

chapter

in this chapter

22_59611x ch16.qxp 11/28/05 11:08 PM Page 213

214 Part III — Conquering Gmail

If you are using an RPM-based distribution — Red Hat, Mandrake, or SuSE, for
example — you can get a package’s version number by using rpm. Open a terminal
window, and type the following command:
rpm -q python

This should give a result similar to the following:
python-2.3.0

If the version number is too low, you should download the update from
http://python.org/download/ and follow the instructions there.

If you’re running a DEB-based distribution — Debian or Knoppix, for example —
use apt-cache by opening a terminal and typing the following:
apt-cache show python

Again, this should give a message showing the version number. Go to http://
python.org/download/ if the number is below 2.3.

If you’re not using DEB or RPM, then you need to ask for the version number
from Python directly. Again, open the terminal window, and type python.
Figure 16-1 shows the result.

FIGURE 16-1: Python showing and telling

(This screenshot, the cunning amongst you will have noticed, was done on
an Apple, not a Linux box. For the sake of the Python version, this makes no
difference.)

To exit Python, you have to press Ctrl+D.

22_59611x ch16.qxp 11/28/05 11:08 PM Page 214

215Chapter 16 — Using GmailFS

Installing FUSE
The majority of the cleverness that makes up the GmailFS package comes from
the FUSE library from http://fuse.sourceforge.net/.

Standing for File System in Userspace, FUSE is a package that allows programs
to implement their own fully functional file system. Your version of Linux may
have it already installed — Debian does, for example — but if not you can down-
load it from http://fuse.sourceforge.net/.

The GmailFS package was developed to work with version 1.3 of FUSE, which is
quite an old version. It is still available for download, however. Later versions of
FUSE may well work, too; it’s worth experimenting.

You also need to install the FUSE Python bindings from http://cvs.source
forge.net/viewcvs.py/fuse/.

Once you have downloaded these packages, you just need to unpack them and fol-
low the instructions within.

Installing Libgmail
The final tool you need before installing GmailFS is Libgmail. You’ve met this
many times before in earlier chapters. You can get the latest version from
http://libgmail.sourceforge.net/. Remember to download the very latest
version from the CVS section of that site.

Installing GmailFS
Finally you are ready to install GmailFS. Download version 0.3 from
http://richard.jones.name/google-hacks/gmail-filesystem/
gmailfs-0.3.tar.gz, unpack it, and copy gmailfs.py to /usr/local/bin.

After doing that, copy mount.gmailfs to /sbin.

Finally, the distribution contains a configuration file called gmailfs.conf. It
looks like Listing 16-1.

Listing 16-1: gmailfs.conf

[connection]
#proxy = http://user:pass@proxyhost:port
or just

Continued

22_59611x ch16.qxp 11/28/05 11:08 PM Page 215

216 Part III — Conquering Gmail

Listing 16-1 (continued)

#proxy = http://proxyhost:port
#retries = 3

[account]
username = gmailusername
password = gmailpassword

[filesystem]
fsname = linux_fs_3

[references]
reference = filesystem:username:password

[logs]
Change this to DEBUG for verbose output useful for debugging
level = INFO

Simply place your username and password in the obvious places, and copy the
entire file to /etc.

If you are behind a proxy, you will need to enter the details into gmailfs.conf in
the obvious place and also install pyOpenSSL from http://pyOpenSSL.source
forge.net/, and pyOpenSSLProxy from http://richard.jones.name/
google-hacks/gmail-filesystem/pyOpenSSLProxy-0.1.tar.gz.

Once everything is installed, you are ready to use the system.

Using GmailFS
There are two ways to launch the GmailFS: You can either mount it from the
command line or use fstab.

Mounting GmailFS from the Command Line
To mount from the command line, type this command, press return, and proceed
to the section “Passing Commands to the File System” a bit later:
mount -t gmailfs /usr/local/bin/gmailfs.py /gmailfs -o
fsname=XXXXX

22_59611x ch16.qxp 11/28/05 11:08 PM Page 216

217Chapter 16 — Using GmailFS

Replace the XXXXX with a hard-to-guess string. This string, the name of the file
system, must be weird and difficult to guess, because (as you will see) people can
corrupt the system by sending you mail with that name in the subject line.

Mounting GmailFS from fstab
Linux machines have a file called /etc/fstab, which contains the details of all of
the drives and partitions the system can see. You can add GmailFS to the fstab
file to make the drive a permanent addition to your system.

To use fstab, place an entry inside /etc/fstab that looks like this:
/usr/local/bin/gmailfs.py /gmailfs gmailfs noauto,
fsname=XXXXX

Again, replace the XXXXX with the name you wish to give the file system. You will
probably need root access to add things to the fstab file. Once the line has been
added, reboot the machine.

Passing Commands to the File System
With the commands passed in the previous section, you now have a file system
mounted at /gmailfs. So, from the command line you can use cd /gmailfs
and then use any of the normal shell commands: ls, mkdir, rm, and so on. For
all intents and purposes, the GmailFS is just the same as if it were a 1 gigabyte
hard disk.

Copying files to and from a GmailFS directory is pretty quick, depending of
course on the speed of your Internet connection, but running ls to get a directory
listing takes a very long time if you have lots of mail. To understand why, take a
look at how GmailFS works.

Using Multiple GmailFS Drives

Because you are giving the GmailFS system a specific, hard-to-guess name, denoted in the com-
mand line by the fsname= parameter, you are actually able to run more than one file system
from the same Gmail account. You can mount as many as you like, as long as each one has a
different name.

22_59611x ch16.qxp 11/28/05 11:08 PM Page 217

218 Part III — Conquering Gmail

How GmailFS Works
GmailFS works with four parts: FUSE, which provides the interface to the Linux
kernel that allows additional file systems to be created by programs (in what is
technically known as userspace); Libgmail, which provides the interface to Gmail;
Gmail, which provides the storage; and GmailFS itself, which links the three oth-
ers together.

The part of the system where FUSE talks with the Linux kernel is beyond the
scope of this book, and is well documented on the web. And by now you should
be confident with sending and receiving mail with Libgmail. So all you need to
understand is how the files are stored on Gmail.

What Makes Up a File?
To really understand the system, you need to know how a general UNIX file sys-
tem identifies a file. Under an ordinary Unix file system, a file consists of three
things: the content of the file itself; a file called an inode, which contains the
details of the file; and a pointer to the inode inside another file that represents a
directory.

This is perhaps a little confusing, so consider an example. Say you want to access a
file called supersecretpasswords.txt. To display the contents of the file you
would ordinarily use the command cat supersecretpasswords.txt. You can
see this in Figure 16-2.

FIGURE 16-2: Displaying the contents of a file

22_59611x ch16.qxp 11/28/05 11:08 PM Page 218

219Chapter 16 — Using GmailFS

For the cat command to access the file, the operating system first opens the file
that represents the directory. Within that is a list of filenames, each with a corre-
sponding name of an inode file.

The operating system then opens the inode, and it is the inode that tells the oper-
ating system where the file is on the disk and all of the rest of the data about the
file. This metadata is quite extensive and contains the following information:

� The location of the item’s contents on the disk

� What the item is (such as a file, directory, or symbolic link)

� The item’s size, in bytes

� The time the file’s inode was last modified — also called the ctime

� The time the file’s contents were last modified — the mtime

� The time the file was last accessed — the atime

� The number of names the file has — hard links

� The file’s owner — the UID

� The file’s group — the GID

� The file’s permissions — for example, 755

Because the file’s contents, the inode, and the pointer to it from the directory are
all separate, a single file can have many names. Each name is called a hard link.
Deleting a link doesn’t delete the file or the inode itself, only the link, as there may
be other links pointing to the inode, and hence to the contents of the file. When a
file has no hard links left, the kernel will count it as deleted and allow it to be
physically overwritten on the disk itself.

So, so far you have two types of file that dictate the file system: the directory file,
which matches the filename to the inode, and the inode, which matches lots of
metadata to a block of data on the disk.

The third part of the file system, then, is the physical block on the disk. For most
file systems, this is indeed a physical address, but as different types of storage have
different ways of addressing their own bits (pun intended), this section, too, can
be abstracted away into a file.

So, you have the directory pointing to the inode, the inode pointing to the data-
block, and the datablock pointing to the actual data — and then, as shown in
Figure 16-2, the data pointing to world domination. Excellent.

22_59611x ch16.qxp 11/28/05 11:08 PM Page 219

220 Part III — Conquering Gmail

Representing All of This in E-Mail
But lest you forget, you’re trying to represent all of this data in e-mail messages
and not a proper storage medium. The translation between the two is the job of
FUSE and GmailFS. Together, they handle the requests from the operating sys-
tem for the data inside the directories, the inodes, and then the datablocks, and
feed it back in the manner that the kernel expects.

To do that, GmailFS needs to store all of these different types of data within the
framework that e-mail provides. Think on this: What is the framework available
for data within e-mail?

It’s easy, actually. You can use the subject line, the body of the message itself, and
any number of attachments. That is how GmailFS works.

The Actual Data in Action
GmailFS just uses the subject line and the attachments. Nothing is held in the
message body itself. There are three types of messages used.

� Directory and file entry messages: These hold the parent path and name of
a file or a directory. The subject of these messages has a reference to the file’s
or directory’s inode.

� Inode messages: The subject line of these messages holds the information
found in an inode.

� Datablock messages: These messages hold the file’s data in attachments.
The subject of the messages holding these structures contains a reference to
the file’s inode as well as the current block number. Because Gmail has a size
limit of 5MB for attachments, this message may contain more than one
attachment.

So, now when you run the cat supersecretpasswords.txt command on a file
within the GmailFS system, FUSE and the GmailFS script first use Libgmail to
request the corresponding file entry message. This command points them to the
inode message, which then points them to the datablock message and the data
you need.

As previously mentioned in a sidebar, each of the messages’ subject lines contains
the file system name. This allows you to use more than one file system off the
same Gmail account, and also provides some security. The security comes from
the way that GmailFS adds data to itself — by sending mail to itself. Without the
hard-to-guess file system name, it would be possible for an outside party to send
messages to the account that added data to the file system.

22_59611x ch16.qxp 11/28/05 11:08 PM Page 220

221Chapter 16 — Using GmailFS

And Now . . .
And so, the end is near. In this chapter, you’ve looked at how file systems work,
and how Gmail can be used as such. Doing so allows you to host large amounts
of files and applications “out there” on the Internet, with only the tiny GmailFS
application needed to access it. You can, for example, carry the GmailFS applica-
tion around on a so-cheap-it’s-free thumbdrive and then have gigabytes of data
waiting on Gmail accounts. You can even, if you’re feeling very, very, very geeky,
save a browser to a GmailFS drive, and check your Gmail via the browser hosting
on the same account. Ah, it’s all too much for me, and so, with that, we come to
the end.

22_59611x ch16.qxp 11/28/05 11:08 PM Page 221

22_59611x ch16.qxp 11/28/05 11:08 PM Page 222

Long Code Listings

This book contains a lot of code. You love it really, but the
designers do not. So to make the book more readable I
moved all the long bits of code to this appendix. Enjoy!

Chapter 4

Listing A-1: The HTML That Displays the Inbox

<HTML>
<HEAD>
<META http-equiv=”content-type”

content=”text/html; charset=UTF-8”/>
<SCRIPT>

D=(top.js&&top.js.init)?function(d){top.
js.P(window,d)}:function(){};if(window==top){top
.location=’/gmail?search=inbox&view=tl&s
tart=0&init=1&zx=3177c401850460908955817
35&fs=1’;} </SCRIPT>

<SCRIPT>
<!--
D(["v","3177c40185046090"]
);
D(["ud","ben.hammersley@gmail.com
","{\"o\":\"OPEN\"
,\"/\":\"SEARCH\",\"\\r
\":\"OPEN\",\"k\":\&quo
t;PREV\",\"r\":\"REPLY\"
;,\"c\":\"COMPOSE\",\"g
c\":\"GO_CONTACTS\",\"gd\&qu
ot;:\"GO_DRAFTS\",\"p\":\&qu
ot;PREVMSG\",\"gi\":\"GO_INB
OX\",\"a\":\"REPLYALL\"
,\"!\":\"SPAM\",\"f\&qu
ot;:\"FORWARD\",\"u\":\"
;BACK\"

Continued

˛ Long code listings

˛ More long code
listings

appendix

in this appendix

23_59611x app.qxp 11/28/05 11:16 PM Page 223

224 Appendix — Long Code Listings

Listing A-1 (continued)

,\"ga\":\"GO_ALL\",\"j\":\"
NEXT\",\"y\":\"REMOVE\",\"n\&quo
t;:\"NEXTMSG\",\"gs\":\"GO_STARRED\&q
uot;,\"x\":\"SELECT\",\"s\":\&qu
ot;STAR\"}"]
);
D(["p",["sx_em",""]
,["sx_at","archive"]
,["bx_show0","1"]
]
);
D(["ppd",0]
);
D(["i",4]
);
D(["qu","0 MB","1000
MB","0%","#006633"]
);
D(["ft","Use the \<span
style=\"color:#0000CC;text-
decoration:underline;cursor:pointer;cursor:hand;white-space:no
wrap\" id=\"fsb\"\>search\</span\> box
or \<span style=\"color:#0000CC;text-
decoration:underline;cursor:pointer;cursor:hand;white-space:no
wrap\" id=\"mt_adv\"\>search
options\</span\> to find messages quickly!"]
);
D(["ds",1,0,0,0,0,0,0]
);
D(["ct",[]
]
);
D(["ts",0,50,1,0,"Inbox","100ae7248b9
",1,[]
]
);
D(["t",["100adb8b86f18e51",1,0,"\<
b\>2:29pm\</b\>","\\<b\>Ben
Hammersley\</b\>\</span\>
(2)","\<b\>&raquo;\</b\>&nbsp;&q
uot;,"\<b\>Skinning Gmail? That\’s so
cool!\</b\>","BEGIN PGP SIGNED MESSAGE-- Hash:
SHA1 la la la --BEGIN PGP SIGNATURE-- Version: GnuPG v1
&hellip;",[]
,"","100adb8b86f18e51",0]

23_59611x app.qxp 11/28/05 11:16 PM Page 224

225Appendix — Long Code Listings

]
);
D(["te"]);

//--> </SCRIPT>
<STYLE>

body {background:#fff;margin:1ex}body,td,input,textarea,select
{font-family:arial,sans-serif}input,textarea,select {font-
size:100%}form {margin:0;width:100%}select {width:20ex}.b
{font-weight:bold}.r {text-align:right}.c {text-
align:center}img {border:0}.s {font-size:80%}.xs
{font-size:70%}.sxs {font-size:87%}.lk {color:#0000CC;text-
decoration:underline;cursor:pointer;cursor:hand;white-space:no
wrap}.l {color:#0000CC;cursor:pointer;cursor:hand;white-
space:nowrap}.lc {color:#0000CC}.urlc {color:#006633}.g
{color:#444}.h {cursor:pointer;cursor:hand}.ilc {text-
decoration:underline;cursor:pointer;cursor:hand;white-space:no
wrap;font-weight:bold}.nfc {color:#AA0000;font-weight:bold}.gr
{color:#006633}.ab {font-size:85%;vertical-
align:middle;padding:0 10 0 10}.ct
{color:#006633;font-size:80%}.mh {font-size:80%}.mh div
{padding-bottom:4}.asl {font-weight:bold;text-
align:right;vertical-align:top;padding-top:4px;width:1%}.asbu
{font-size:80%}.nt table {background:#FAD163;font-
size:80%;font-weight:bold;white-space:nowrap}.nm {padding:0 15
1}.phd {padding:6 0 10}.phd table {background:#FAD163;font-
weight:bold;margin:auto;font-size:80%}.ph {padding:7 12}.nl
{font-size:80%;white-space:nowrap;padding:2 0 2 8}.cv {font-
size:80%;width:100%}.nb
{width:100%;background:white;table-layout:fixed}.nb div
{white-space:nowrap;overflow:hidden;text-overflow:ellipsis}.cs
{color:#063}.rv {color:#00c}.cs, .rv {font-size:70%;padding:0
2 2 2;width:100%;text-overflow:ellipsis}.th td {font-
size:80%;}.tlc
{table-layout:fixed;cursor:pointer;cursor:hand}.tlc col {font-
size:80%}.tlc td {border-bottom:1px #bbb
solid;font-size:80%;empty-cells:show}.cti {padding:20;}.ctn
{margin:10;font-size:110%;font-weight:bold}#cbs, #cts {text-
align:left;padding-left:20px;white-space:nowrap}#cit
{width:1%;font-size:80%;white-space:nowrap}.ctlf {padding-
left:3em;width:1%;text-align:right;vertical-align:top;white-sp
ace:nowrap}.ctrf {white-space:nowrap}.cted {font-
size:80%;padding:1em 0 0}.clc td {padding-right:1ex}.tlc td
{width:100%;white-space:nowrap;overflow:hidden;text-
overflow:ellipsis}.tlc img {width:15;height:15}.rr
{background:#E8EEF7}.rr b {font-weight:normal}.sr
{background:#FFFFCC}.p {color:#777}.p b {font-weight:bold}.lb

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 225

226 Appendix — Long Code Listings

Listing A-1 (continued)

{color:#080}#tt {padding:3 0}.msg {display:inline-block}#mm
{width:100%}#mm td {font-size:80%;white-space:nowrap}.rc
{width:100%;table-layout:fixed}.rc div {white-
space:nowrap;overflow:hidden;text-overflow:ellipsis}.au
{font-weight:bold}.mb {font-size:80%;padding:6 0 0 10}.ma
{}.att td {font-size:80%}.mc {font-size:70%;padding:4 0 0
10;background:#eee}.q {color:#505}.e {display:none}.ea {font-
size:80%;color:#5c6efc;padding:5;cursor:pointer;cursor:hand}.s
g, .sg *, .ad, .ad * {color:#888888}.st0
{background:#ffff88}#ap {font-size:80%;padding-
bottom:1.5ex}.al {padding-bottom:1ex}.ai
{vertical-align:middle}.cg {background:#eee}.cf
{background:#c3d9ff}.cb2 #cft, .cb2 #cfb {display:none}#cft td
{background-color:inherit}.ci {background:#e0ecff;vertical-
align:top}.cf td, .cg td {font-size:80%}.cn, .cto, .cn table,
.cto table {height:100%}.cn .tl {background-image:none}.cd
{padding:4 5 2 10;}.cd button {text-align:center;font-
size:80%}.tb {padding:5;width:100%}.sp
{display:none;background:#e8f1ff;padding:7px;border:1px black
solid;cursor:default;overflow:auto;height:100%}.ms {text-
decoration:underline;cursor:pointer;cursor:hand;font-weight:bo
ld}.un {color:red}.cr {color:green}.mr {text-
decoration:none}.sm {position:absolute;display:none;margin:2px
0px;font-family:arial,sans-serif;background-
color:#c3d9ff;border:2px solid;border-color:#e8f1ff #9daecd
#9daecd #e8f1ff;z-index:1}.si {font-family:arial,sans-
serif;display:block;padding:3px
1em;white-space:nowrap;font-size:83%;cursor:default}.ih
{background-color:#66c;color:white}.sy {font-size:90%;font-
weight:bold}.hm {background-color:#ffff00}.tbo
{background:#c3d9ff;padding:2;-moz-user-select:none}.tbr
{cursor:default;width:100%;padding-left:0;vertical-
align:middle;-moz-user-select:none}.tbb {border:solid #c3d9ff
1px;padding:0 2 0 2;-moz-user-select:none}.tbm {font-
size:80%;-moz-user-select:none}.db {border:1px
solid;border-color:#9daecd #e8f1ff #e8f1ff #9daecd}.ob
{background:#e8f1ff;border:1px solid;border-color:#9daecd
#e8f1ff #e8f1ff #9daecd}.hb {border:1px solid;border-
color:#e8f1ff #9daecd #9daecd #e8f1ff}.sv
{margin-left:12px}.pt
{display:none;position:absolute;background:#bbb;padding:2px}.p
t table {background:#bbb}.pt table td
{width:15px;height:15px;padding:0px;margin:0px;border:1px
solid #bbb}.ef {width:100%}.nw {white-space:nowrap}.hd
{display:none}.iv

23_59611x app.qxp 11/28/05 11:16 PM Page 226

227Appendix — Long Code Listings

{position:absolute;left:0;right:0;width:0;height:0;padding:0;m
argin:0;border:0}#hm { position:absolute;z-index:3;border:1px
#000 outset;background:#eee;padding:2}.ac span {text-
decoration:none;color:#00c;display:block;cursor:default;paddin
g:0 10 0 10;font-size:80%;white-space:nowrap}.ac span.sel
{background:#c4e4ff}.chc {background:#FAD163;padding:2 4 0
9}.chc, .chc td {font-size:80%;white-space:nowrap}#ctf {font-
size:80%}#ctm {padding:9 8 5 0;white-space:nowrap}.ctum
{padding:5 8;font-weight:bold}.ctsm {padding:5
8;background:#FFFFF8;font-weight:bold}.y
{background:#FFFFF8}.z {background:#FFFFCC}.pr
{background:#FAD163}#pt {font-weight:bold;padding-
left:4;padding-top:3}#pm {padding:6 0 3;font-size:80%}#pm span
{font-weight:bold}#pp {background:#FFF7D7;padding:8}.pum
{padding:3 8}.psm {padding:3 8;background:#FFF7D7}table.pe
{font-size:80%}.pl {color:#063;font-weight:bold}.tl
{background:url(/gmail/images/corner_tl.gif) top left}.bl
{background:url(/gmail/images/corner_bl.gif) bottom left}.tr
{background:url(/gmail/images/corner_tr.gif) top right}.br
{background:url(/gmail/images/corner_br.gif) bottom right}.tl,
.bl, .tr, .br {background-repeat:no-repeat;padding-
left:4;width:4}.ctop
{background:url(/gmail/images/card_top.gif) top repeat-
x;padding:1;width:100%}.ctl
{background:url(/gmail/images/card_tl.gif) top left}.ctr
{background:url(/gmail/images/card_tr.gif) top right}.stl
{background:url(/gmail/images/card_stl.gif) top left}.cbot
{background-image:url(/gmail/images/card_bot.gif);background-
position:bottom;background-repeat:repeat-x;padding:1;width:100
%}.cbl {background-
image:url(/gmail/images/card_bl.gif);background-position:botto
m left}.cbr {background-
image:url(/gmail/images/card_br.gif);background-position:botto
m right}.cb {background-
image:url(/gmail/images/card_left.gif);background-position:lef
t;background-repeat:repeat-y;border-right:1px #e8e8e8
solid;}.cb2 {background-
image:url(/gmail/images/card_left2.gif);background-position:le
ft;background-repeat:repeat-y;border-right:1px #e8e8e8
solid;}.ctl, .ctr, .stl, .cbl, .cbr {background-repeat:no-
repeat}.ctl, .cbl, .stl {padding:0 10 0 0}.ctr, .cbr
{padding:0 9 0 0}#rh {background:white}.metatable {margin-
bottom:10} .metatable td {font-size:70%;padding:2 2 8 2}.rhh
{color:#333;text-align:center} </STYLE>
</HEAD>

<BODY>
<TABLE width=”100%” cellspacing=”0” cellpadding=”0”>

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 227

228 Appendix — Long Code Listings

Listing A-1 (continued)

<TBODY>
<TR>
<TD width=”149” valign=”top” rowspan=”2”>
<DIV id=”ds_inbox” style=”padding-top: 1ex;”

class=”h”>
<IMG width=”143” height=”59”

src=”/gmail/help/images/logo.gif”/>
</DIV>

</TD>
<TD valign=”top” align=”right”>
<DIV class=”s” style=”padding-bottom: 2px; text-

align: right;”>

ben.hammersley@gmail.com
|
Settings
| <A target=”_blank” href=”/support/”
class=”lc” id=”help”>
Help
| <A target=”_top”

onclick=”return
top.js._Main_OnLink(window,this,event)” class=”lk”
href=”?logout”>
Sign out

</DIV>
</TD>

</TR>
<TR>
<TD valign=”bottom”>
<DIV class=”s” id=”mt1”>
<TABLE cellspacing=”0” cellpadding=”0”>
<TBODY>
<TR>
<TD valign=”bottom”>
<FORM onsubmit=”return

top.js._MH_OnSearch(window,0)”
style=”padding-bottom: 5px; white-

space: nowrap;” class=”s” id=”s”>
<INPUT value=”” name=”q”

maxlength=”2048” size=”28”/>
 <INPUT type=”submit”
value=”Search Mail”/>
 <INPUT type=”submit”

onclick=”return
top.js._MH_OnSearch(window,1)” value=”Search the Web”/>

23_59611x app.qxp 11/28/05 11:16 PM Page 228

229Appendix — Long Code Listings

 </FORM>
</TD>
<TD>
<TABLE cellspacing=”0” cellpadding=”0”

style=”vertical-align: top; padding-bottom: 4px;”>
<TBODY>
<TR>
<TD>
<SPAN id=”mt_adv” style=”font-

size: 65%;” class=”lk”>
Show search options

 </TD>

</TR>
<TR>
<TD>
<SPAN id=”mt_cf1”

style=”font-size: 65%;
vertical-align: top;” class=”lk”>
Create a filter

</TD>
</TR>

</TBODY>
</TABLE>

</TD>
</TR>

</TBODY>
</TABLE>

</DIV>
<DIV

style=”height: 2.1ex; padding-right: 149px;
visibility: hidden;” class=”nt” id=”nt1”/>

</TD>
</TR>

</TBODY>
</TABLE>
<DIV style=”padding-bottom: 1px;” id=”mt2”/>
<DIV class=”nt” id=”nt2” style=”display: none;”/>
<DIV id=”nav” style=”position: absolute; left: 1ex; width:

14ex;”>
<DIV class=”nl”>

Compose Mail

</DIV>
<DIV style=”padding-top: 9px;”>
<TABLE cellspacing=”0” cellpadding=”0” border=”0”

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 229

230 Appendix — Long Code Listings

Listing A-1 (continued)

style=”background: rgb(195, 217, 255) none
repeat scroll 0%; -moz-background-clip: initial; -moz-
background-origin: initial; -moz-background-inline-policy:
initial;” class=”cv”>

<TBODY>
<TR height=”2”>
<TD width=”8” class=”tl”/>

</TR>
<TR>
<TD/>
<TD>

Inbox (1)

</TD>
</TR>
<TR height=”2”>
<TD class=”bl”/>

</TR>
</TBODY>

</TABLE>
<DIV class=”nl”>

Starred <IMG width=”13” height=”13”
src=”/gmail/images/star_on_sm_2.gif” id=”_ss”/>

</DIV>
<DIV class=”nl”>

Sent Mail
</DIV>
<DIV class=”nl”>

Drafts
</DIV>
<DIV class=”nl”>

All Mail
</DIV>
<DIV class=”nl”>

Spam
</DIV>
<DIV class=”nl”>

23_59611x app.qxp 11/28/05 11:16 PM Page 230

231Appendix — Long Code Listings

Trash

</DIV>
</DIV>
<DIV style=”padding-top: 8px;”>
<DIV class=”nl”>

Contacts

</DIV>
</DIV>
<DIV id=”nb_0” style=”padding-top: 8px;”>
<DIV style=”width: 95%;”>
<TABLE width=”100%” cellspacing=”0” cellpadding=”0”

bgcolor=”#b5edbc”>
<TBODY>
<TR height=”2”>
<TD class=”tl”/>
<TD class=”tr”/>

</TR>
</TBODY>

</TABLE>
<DIV style=”padding: 0pt 3px 1px; background:

rgb(181, 237, 188) none repeat scroll 0%; -moz-background-
clip: initial; -moz-background-origin: initial;
-moz-background-inline-policy: initial;”>

<DIV id=”nt_0” class=”s h”>
<IMG width=”11” height=”11”

src=”/gmail/images/opentriangle.gif”/>
Labels </DIV>

<TABLE cellspacing=”2” class=”nb”>
<TBODY>
<TR>
<TD>
<DIV align=”right” id=”prf_l” class=”lk

cs”>
Edit labels </DIV>

</TD>
</TR>

</TBODY>
</TABLE>

</DIV>
<TABLE width=”100%” cellspacing=”0” cellpadding=”0”

bgcolor=”#b5edbc”>
<TBODY>
<TR height=”2”>
<TD class=”bl”/>

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 231

232 Appendix — Long Code Listings

Listing A-1 (continued)

<TD class=”br”/>
</TR>

</TBODY>
</TABLE>

</DIV>
</DIV>
<DIV id=”nb_2” style=”padding-top: 7px;”/>
<DIV style=”padding-top: 7px;” class=”s”>
<SPAN style=”color: rgb(170, 0, 0);” class=”ilc”

id=”il”>
Invite 4 friends

to Gmail
 </DIV>

</DIV>
<DIV style=”margin-left: 14ex;” id=”co”>
<DIV id=”tc_top”>
<TABLE width=”100%” cellspacing=”0” cellpadding=”0”

bgcolor=”#c3d9ff”>
<TBODY>
<TR height=”2”>
<TD class=”tl”/>
<TD class=”tr”/>

</TR>
</TBODY>

</TABLE>
<TABLE width=”100%” cellspacing=”0” cellpadding=”0”

style=”background: rgb(195, 217, 255) none
repeat scroll 0%; -moz-background-clip: initial; -moz-
background-origin: initial; -moz-background-inline-policy:
initial;” class=”th”>

<TBODY>
<TR>
<TD width=”8”/>
<TD>
<BUTTON style=”font-weight: bold;”

id=”ac_rc_^i” class=”ab” type=”button”>
Archive </BUTTON>
 <BUTTON style=”width: 8em; text-
align: center;” id=”ac_sp”

class=”ab” type=”button”>
Report Spam </BUTTON>
 <SELECT id=”tamu”

onchange=”top.js._TL_OnActionMenuChange(window,this)”
onfocus=”return

top.js._TL_MaybeUpdateActionMenus(window,this)”

23_59611x app.qxp 11/28/05 11:16 PM Page 232

233Appendix — Long Code Listings

onmouseover=”return
top.js._TL_MaybeUpdateActionMenus(window,this)”
style=”vertical-align: middle;”>

<OPTION style=”color: rgb(119, 119, 119);”
id=”mac”>
More Actions ... </OPTION>

<OPTION style=”color: rgb(119, 119, 119);”
disabled=”” id=”nil”>
-------- </OPTION>

<OPTION style=”color: rgb(119, 119, 119);”
disabled=”” id=”al”>
Apply label: </OPTION>

<OPTION value=”new”>
 New label... </OPTION>

</SELECT>

Refresh

</TD>
<TD align=”right”>

1
-
1
of
1

</TD>
<TD width=”4”/>

</TR>
<TR>
<TD/>
<TD valign=”bottom” style=”padding-top: 3px;”

colspan=”2”>
Select:
All
,
Read
,
Unread
,
Starred
,
Unstarred
,
None

</TD>
</TR>

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 233

234 Appendix — Long Code Listings

Listing A-1 (continued)

<TR height=”3”>
<TD/>

</TR>
</TBODY>

</TABLE>
</DIV>
<DIV style=”border-left: 9px solid rgb(195, 217, 255);”>
<DIV id=”tbd”>
<FORM target=”hist” method=”post” name=”af”

action=”/gmail?search=inbox&view=tl&start=0”>
<INPUT type=”hidden” name=”act”/>
<INPUT type=”hidden” name=”at”/>
<INPUT type=”hidden” name=”vp”/>
<TABLE width=”100%” cellspacing=”0”

cellpadding=”1” id=”tb” class=”tlc”>
<COL style=”width: 31px; text-align: right;”/>
<COL style=”width: 20px;”/>
<COL style=”width: 24ex;”/>
<COL style=”width: 2ex;”/>
<COL/>
<COL style=”width: 17px;”/>
<COL style=”width: 8ex;”/>
<TBODY>
<TR id=”w_0” class=”ur”>
<TD align=”right”>
<INPUT type=”checkbox”/>

</TD>
<TD>

</TD>
<TD>

Ben Hammersley

(2) </TD>
<TD>

 </TD>
<TD>

Skinning Gmail? That’s so cool!

- BEGIN PGP SIGNED MESSAGE-- Hash: SHA1 la la la --BEGIN PGP
SIGNATURE-- Version: GnuPG v1 …

</TD>

23_59611x app.qxp 11/28/05 11:16 PM Page 234

235Appendix — Long Code Listings

<TD>
 </TD>

<TD>

2:29pm
</TD>

</TR>
</TBODY>

</TABLE>
</FORM>
<DIV style=”padding: 0pt 20px;” class=”s c”>

</DIV>
</DIV>

</DIV>
<IMG width=”9” height=”11”

src=”/gmail/images/chevron.gif”
style=”position: absolute; display: none;”

id=”ar”/>
<DIV id=”tc_bot”>
<TABLE width=”100%” cellspacing=”0” cellpadding=”0”

style=”background: rgb(195, 217, 255) none
repeat scroll 0%; -moz-background-clip: initial; -moz-
background-origin: initial; -moz-background-inline-policy:
initial;” class=”th”>

<TBODY>
<TR height=”2”>
<TD/>

</TR>
<TR>
<TD width=”8”/>
<TD>

Select:
All
,
Read
,
Unread
,
Starred
,

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 235

236 Appendix — Long Code Listings

Listing A-1 (continued)

Unstarred
,
None

</TD>
</TR>
<TR height=”4”>
<TD/>

</TR>
<TR>
<TD/>
<TD>
<BUTTON style=”font-weight: bold;”

id=”ac_rc_^i” class=”ab” type=”button”>
Archive </BUTTON>
 <BUTTON style=”width: 8em; text-
align: center;” id=”ac_sp”

class=”ab” type=”button”>
Report Spam </BUTTON>
 <SELECT id=”bamu”

onchange=”top.js._TL_OnActionMenuChange(window,this)”
onfocus=”return

top.js._TL_MaybeUpdateActionMenus(window,this)”
onmouseover=”return

top.js._TL_MaybeUpdateActionMenus(window,this)”
style=”vertical-align: middle;”>

<OPTION style=”color: rgb(119, 119, 119);”
id=”mac”>
More Actions ... </OPTION>

<OPTION style=”color: rgb(119, 119, 119);”
disabled=”” id=”nil”>
-------- </OPTION>

<OPTION style=”color: rgb(119, 119, 119);”
disabled=”” id=”al”>
Apply label: </OPTION>

<OPTION value=”new”>
 New label... </OPTION>

</SELECT>
</TD>
<TD align=”right”>

1
-
1
of

23_59611x app.qxp 11/28/05 11:16 PM Page 236

237Appendix — Long Code Listings

1

</TD>
<TD width=”4”/>

</TR>
</TBODY>

</TABLE>
<TABLE width=”100%” cellspacing=”0” cellpadding=”0”

bgcolor=”#c3d9ff”>
<TBODY>
<TR height=”2”>
<TD class=”bl”/>
<TD class=”br”/>

</TR>
</TBODY>

</TABLE>
</DIV>

</DIV>
<DIV style=”padding: 0ex 14ex;” id=”ft”>
<DIV style=”margin-top: 20px;” class=”c s”>

Use the <SPAN id=”fsb” style=”color: rgb(0, 0, 204);
text-decoration: underline; cursor: pointer; white-space:
nowrap;”>
search
box or <SPAN id=”mt_adv” style=”color: rgb(0, 0,
204); text-decoration: underline; cursor: pointer; white-
space: nowrap;”>
search options
to find messages quickly! </DIV>

<DIV style=”margin-top: 12px; color: rgb(0, 102, 51);”
class=”c s b”>
You are currently using 0 MB (0%) of your 1000 MB. </DIV>

<DIV style=”margin-top: 4px;” class=”c xs”>
<DIV>
<A href=”/gmail/help/terms_of_use.html”

target=”_blank” class=”lc”>
Terms of Use
- <A href=”/gmail/help/privacy.html”
target=”_blank” class=”lc”>
Privacy Policy
- <A href=”/gmail/help/program_policies.html”
target=”_blank” class=”lc”>
Program Policies
- <A href=”http://www.google.com/” target=”_blank”
class=”lc” id=”googh”>
Google Home

</DIV>
<DIV style=”color: rgb(68, 68, 68); margin-top: 4px;”>

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 237

238 Appendix — Long Code Listings

Listing A-1 (continued)

©2004 Google </DIV>
</DIV>

</DIV>
<SCRIPT>

var fp=’9cf0974955f546da’; </SCRIPT>
<SCRIPT>

var loaded=true;D([‘e’]); </SCRIPT>
<SCRIPT>

try{top.js.L(window,45,’f4ba224ac4’);}catch(e){} </SCRIPT>
<DIV id=”tip” style=”border-style: outset; border-width:

1px; padding: 2px; background: rgb(255, 255, 221) none repeat
scroll 0%; position: absolute; -moz-background-clip: initial;
-moz-background-origin: initial; -moz-background-inline-
policy: initial; left: 309px; top: 125px; display: none;”>

<CENTER>
<SMALL>

ben@benhammersley.com </SMALL>
</CENTER>

</DIV>
</BODY>

</HTML>

Listing A-2: The Complete CSS Listing

body#gmail-google-com {
background-color: #ffffff !important;

}

body#gmail-google-com img{
display: none !important;

}

/* regular links */
body#gmail-google-com span.lk,
body#gmail-google-com a.lc,
body#gmail-google-com a.lk
{

text-decoration: none !important;
color: #191b4c !important;

}

/* The Search Form */

23_59611x app.qxp 11/28/05 11:16 PM Page 238

239Appendix — Long Code Listings

body#gmail-google-com div#mt1 form{
display: none !important;
}

body#gmail-google-com div#mt1 table{
display: none !important;
}

/*--
*/
/*The Navigation Menu */

body#gmail-google-com span#comp {
font-family: cursive;
}

/* sidebar links */
body#gmail-google-com div#nav table.cv,
body#gmail-google-com div#nav table.cv td {

background: #ffffff !important;
}

body#gmail-google-com table.cv td.tl,
body#gmail-google-com table.cv td.bl {

height: 0 !important;
}

/* both current and other */
body#gmail-google-com table.cv td span.lk,
body#gmail-google-com div.nl span.lk{

display: block !important;
background: #ffffff !important;
color: #191b4c;
border: none !important;
padding: 2px !important;
margin-right: 5px !important;

}

/* Override the background color for the unselected options*/
body#gmail-google-com div.nl span.lk {

background: #ffffff !important;
border: none !important;

}

/* For the mouse-over color change */

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 239

240 Appendix — Long Code Listings

Listing A-2 (continued)

body#gmail-google-com div.nl span.lk:hover {
background: #d3cbb8 !important;
border-color: #fef759 !important;

}

/* hide “New!” super-script */
body#gmail-google-com div#nav sup {

display: none !important;
}

/* remove the colored left border of the inbox */
body#gmail-google-com div#co div {

border: 0 !important;
}

/*---*/

/* labels */
body#gmail-google-com div#nb_0 {
display: none !important;
}

/* The Invitation Link */
body#gmail-google-com #il {

display: none !important;
}

/* The footer */
body#gmail-google-com div#ft {

display: none !important;
}

/*--
*/
/* THE APPLICATION AREA */

/* top bar */
body#gmail-google-com div#tc_top table,
body#gmail-google-com div#tc_top table td.tl,
body#gmail-google-com div#tc_top table td.tr,

23_59611x app.qxp 11/28/05 11:16 PM Page 240

241Appendix — Long Code Listings

body#gmail-google-com div#tc_top table.th,{
background: #ffffff !important;
border: none !important;
padding: 2px !important;
margin: 5px 0 5px 0 !important;

}

/* bottom bar*/
body#gmail-google-com div#tc_bot table,
body#gmail-google-com div#tc_bot table td.bl,
body#gmail-google-com div#tc_bot table td.br,
body#gmail-google-com div#tc_bot table.th{

display: none !important;
}

/* selection links in bar */
body#gmail-google-com div#co div#tc_top span.l{

color: #191b4c !important;
}

/* mailbox contents */
body#gmail-google-com div#co div#tbd {

background: #ffffff !important;
border: none !important;
padding: 4px 0 4px 0 !important;

}

/* unread mail row inside the inbox */
body#gmail-google-com table.tlc tr.ur {

background-color: #d7d7d7 !important;
height: 30px;

}

/*read mail row inside the inbox */
body#gmail-google-com table.tlc tr.rr {

background-color: #ffffff !important;
}

body#gmail-google-com table.tlc tr.ur td,
body#gmail-google-com table.tlc tr.rr td{

border: 0 !important;
}

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 241

242 Appendix — Long Code Listings

Listing A-2 (continued)

/* message hovering snippet expansion */
body#gmail-google-com table.tlc tr.ur:hover,
body#gmail-google-com table.tlc tr.rr:hover{

background-color: #ffffff !important;
}

body#gmail-google-com table.tlc tr.ur:hover td,
body#gmail-google-com table.tlc tr.rr:hover td{

border: none !important;
vertical-align: top !important;

}

body#gmail-google-com table.tlc tr.ur:hover .sn,
body#gmail-google-com table.tlc tr.rr:hover .sn{

display: block !important;
white-space: normal !important;

}

/* and email address display */
body#gmail-google-com table.tlc tr.ur:hover td span,
body#gmail-google-com table.tlc tr.rr:hover td span {

display: block; !important;
color: #ff0000;

}

/* labels should still be inline */
body#gmail-google-com table.tlc tr.ur:hover td span.ct,
body#gmail-google-com table.tlc tr.rr:hover td span.ct{

display: inline;
}

body#gmail-google-com table.tlc tr.ur:hover td span[id]:after,
body#gmail-google-com table.tlc tr.rr:hover td span[id]:after{
content: attr(id);
display: block;
margin-left: -38px; /* hack to hide “user_” id prefix */
color: #b6af9e;

}

/*---
*/

23_59611x app.qxp 11/28/05 11:16 PM Page 242

243Appendix — Long Code Listings

Chapter 5

Listing A-3: The Edited Boot Sequence

192.168.016.053.64142-216.239.057.106.00080: GET / HTTP/1.1

Host: gmail.google.com

216.239.057.106.00080-192.168.016.053.64142: HTTP/1.1 302
Moved Temporarily

Location:
https://gmail.google.com/?dest=http%3A%2F%2Fgmail.google.com%2
Fgmail

Cache-control: private
Content-Length: 0
Content-Type: text/html
Server: GFE/1.3
Date: Sun, 16 Jan 2005 17:11:18 GMT

192.168.016.053.64143-216.239.057.106.00443
LOTS OF ENCRYPTED TRAFFIC CLIPPED OUT FROM THIS SECTION

192.168.016.053.64147-066.102.007.104.00080: GET / HTTP/1.1
Host: www.google.com
Cookie: GMAIL_RTT2=290

066.102.007.104.00080-192.168.016.053.64147: HTTP/1.1 302
Found
Location:
http://www.google.it/cxfer?c=PREF%3D:TM%3D1105895484:S%3Dy1QWQ
vOGa-clmjwi&prev=/
Set-Cookie:
PREF=ID=1ded507398eab78d:CR=1:TM=1105895484:LM=1105895484:S=fq
J6wL_U141gaHs1; expires=Sun, 17-Jan-2038 19:14:07 GMT; path=/;
domain=.google.com

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 243

244 Appendix — Long Code Listings

Listing A-3 (continued)

Content-Type: text/html
Server: GWS/2.1
Content-Length: 214
Date: Sun, 16 Jan 2005 17:11:24 GMT
<HTML><HEAD><TITLE>302 Moved</TITLE></HEAD><BODY>
<H1>302 Moved</H1>
The document has moved
<A
HREF=”http://www.google.it/cxfer?c=PREF%3D:TM%3D1105895484:S%3
Dy1QWQvOGa-clmjwi&prev=/”>here.
</BODY></HTML>

192.168.016.053.64148-216.239.063.104.00080: GET
/cxfer?c=PREF%3D:TM%3D1105895484:S%3Dy1QWQvOGa-clmjwi&prev=/
HTTP/1.1
Host: www.google.it

216.239.063.104.00080-192.168.016.053.64148: HTTP/1.1 302
Found
Location: http://www.google.it/
Set-Cookie:
PREF=ID=5f2f91cd13521ebf:LD=it:TM=1105895484:LM=1105895485:S=J
4G_HJAk1i5fY0Ip; expires=Sun, 17-Jan-2038 19:14:07 GMT;
path=/; domain=.google.it
Content-Type: text/html
Server: GWS/2.1
Content-Length: 151
Date: Sun, 16 Jan 2005 17:11:25 GMT
<HTML><HEAD><TITLE>302 Moved</TITLE></HEAD><BODY>
<H1>302 Moved</H1>
The document has moved
here.
</BODY></HTML>

192.168.016.053.64148-216.239.063.104.00080: GET / HTTP/1.1
Host: www.google.it
Cookie:PREF=ID=5f2f91cd13521ebf:LD=it:TM=1105895484:LM=1105895
485:S=J4G_HJAk1i5fY0Ip

216.239.063.104.00080-192.168.016.053.64148: HTTP/1.1 200 OK
Cache-Control: private

23_59611x app.qxp 11/28/05 11:16 PM Page 244

245Appendix — Long Code Listings

Content-Type: text/html
Server: GWS/2.1
Transfer-Encoding: chunked
Date: Sun, 16 Jan 2005 17:11:25 GMT
a98

<html><head><meta http-equiv=”content-type”
content=”text/html; charset=UTF-
8”><title>Google</title><style><!--
body,td,a,p,.h{font-family:arial,sans-serif;}
.h{font-size: 20px;}
.q{color:#0000cc;}
//-->
</style>
<script>
<!--
function sf(){document.f.q.focus();}
// -->
</script>
</head><body bgcolor=#ffffff text=#000000 link=#0000cc
vlink=#551a8b alink=#ff0000 onLoad=sf()><center><img
src=”/intl/it_it/images/logo.gif” width=276 height=110
alt=”Google”>

<form action=/search name=f><script><!--
function qs(el) {if (window.RegExp &&
window.encodeURIComponent) {var
qe=encodeURIComponent(document.f.q.value);if
(el.href.indexOf(“q=”)!=-1) {el.href=el.href.replace(new
RegExp(“q=[^&$]*”),”q=”+qe);} else {el.href+=”&q=”+qe;}}return
1;}
// -->
</script><table border=0 cellspacing=0 cellpadding=4><tr><td
nowrap>Web <a
id=1a class=q href=”/imghp?hl=it&tab=wi” onClick=”return
qs(this);”>Immagini <a id=2a
class=q href=”/grphp?hl=it&tab=wg” onClick=”return
qs(this);”>Gruppi <a id=3a class=q
href=”/dirhp?hl=it&tab=wd” onClick=”return
qs(this);”>Directory <a id=4a
class=q href=”/nwshp?hl=it&tab=wn” onClick=”return qs(this)
216.239.063.104.00080-192.168.016.053.64148:
;”>News </td></tr></table><t
able cellspacing=0 cellpadding=0><tr><td
width=25%> </td><td align=center><input type=hidden
name=hl value=it><input maxLength=256 size=55 name=q
value=””>
<input type=submit value=”Cerca con Google”
name=btnG><input type=submit value=”Mi sento fortunato”
name=btnI></td><td valign=top nowrap width=25%><font size=-
2> Ricerca

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 245

246 Appendix — Long Code Listings

Listing A-3 (continued)

avanzata
 Preferenze
 Strumenti per le
lingue</td></tr><tr><td colspan=3
align=center>Cerca: <input id=all type=radio
name=meta value=”” checked><label for=all> il
Web</label><input id=lgr type=radio name=meta
value=”lr=lang_it” ><label for=lgr> pagine in
Italiano</label><input id=cty type=radio name=meta
value=”cr=countryIT” ><label for=cty>pagine provenienti da:
Italia</label></td></tr></table></form>
<font size=-
1>Come
aiutare le popolazioni colpite dal
maremoto

Pubblicit.. - Tutto su Google - Stiamo Assumendo - Google.com in
English<p>©2005 Google - Ricerca
effettuata su 8.058.044.651 pa
216.239.063.104.00080-192.168.016.053.64148: gine
Web.</p></center></body></html>

0

192.168.016.053.64149-066.102.007.104.00443:
MORE ENCRYPTED TRAFFIC REMOVED FROM HERE

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail?_sgh=9f1fe07d6a3a70c03b32d8a3ebc7577e HTTP/1.1

Host: gmail.google.com
Cookie: GMAIL_RTT2=290;
PREF=ID=1ded507398eab78d:CR=1:TM=1105895484:LM=1105895484:S=fq
J6wL_U141gaHs1;
GMAIL_LOGIN2=T1105895481223/1105895481223/1105895499818;
SID=DQAAAGsAAADNYMqIE3HRTYLVLhM-
DesqryUuzAxHlGKckFg7QgImGX4Y7tBrplUvz8Z8NHOJCuVrRKX64rmEMzaSoS

23_59611x app.qxp 11/28/05 11:16 PM Page 246

247Appendix — Long Code Listings

TdAy3QWJ4WE2GSEN46IOOMzBr14uI0wGOX_3Fnd-WUQIFpDxFrpuMP5-
J5OPEVdaxV2Y59

216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK

Set-Cookie: GV=101017c822e49-b58a8eed922f7d0f8c9e1901388b8beb;
Domain=gmail.google.com; Path=/gmail
Set-Cookie: GMAIL_AT=58c7bf063b77e796-1017c822e4c; Path=/
Set-Cookie: GMAIL_RTT=; Expires=Sat, 15-Jan-05 17:11:41 GMT;
Path=/
Set-Cookie: GMAIL_RTT2=; Domain=google.com; Expires=Sat, 15-
Jan-05 17:11:41 GMT; Path=/
Set-Cookie: S=gmail=ZnUe1o8mp44:gmproxy=kROzNYRS5DA;
Domain=.google.com; Path=/
Cache-control: private
Content-Type: text/html; charset=utf-8
Expires: Sat, 05 Feb 2005 17:11:41 GMT
ETag: “79be7effb0cf7b45”
Transfer-Encoding: chunked
Server: GFE/1.3
Date: Sun, 16 Jan 2005 17:11:41 GMT

487

<title>Gmail</title><link rel=”alternate”
type=”application/atom+xml” title=”Gmail Atom Feed”
href=”https://gmail.google.com/gmail/feed/atom”
/><noscript>Javascript is disabled in your browser. Gmail
requires Javascript to be enabled in order to operate.<p>To
use Gmail, enable Javascript by changing your browser
preferences.<p>After enabling Javascript, try
again.</noscript><script>var fs_time=(new
Date()).getTime();var testcookie =
‘jscookietest=valid’;document.cookie = testcookie;if
(document.cookie.indexOf(testcookie) == -1) {top.location =
‘/gmail/html/nocookies.html’;}document.cookie = testcookie +
‘;expires=’ + new Date(0).toGMTString();var agt =
navigator.userAgent.toLowerCase();if (agt.indexOf(‘msie’)!= -1
&& document.all) {var control = (a
216.239.057.106.00080-192.168.016.053.64150: gt.indexOf(‘msie
5’) != -1) ? ‘Microsoft.XMLHTTP’ : ‘Msxml2.XMLHTTP’;try {new
ActiveXObject(control);} catch (e) {top.location =
‘/gmail/html/noactivex.html’;}}</script><frameset
rows=’100%,*’ border=0><frame name=main
src=/gmail/html/loading.html frameborder=0 noresize

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 247

248 Appendix — Long Code Listings

Listing A-3 (continued)

scrolling=no><frame name=js
src=/gmail?view=page&name=js&ver=84b4499b9788ada frameborder=0
noresize></frameset>

0

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/html/loading.html HTTP/1.1
Host: gmail.google.com
Referer:
http://gmail.google.com/gmail?_sgh=9f1fe07d6a3a70c03b32d8a3ebc
7577e
Cookie: GV=101017c822e49-b58a8eed922f7d0f8c9e1901388b8beb;
PREF=ID=1ded507398eab78d:CR=1:TM=1105895484:LM=1105895484:S=fq
J6wL_U141gaHs1;
GMAIL_LOGIN2=T1105895481223/1105895481223/1105895499818;
SID=DQAAAGsAAADNYMqIE3HRTYLVLhM-
DesqryUuzAxHlGKckFg7QgImGX4Y7tBrplUvz8Z8NHOJCuVrRKX64rmEMzaSoS
TdAy3QWJ4WE2GSEN46IOOMzBr14uI0wGOX_3Fnd-WUQIFpDxFrpuMP5-
J5OPEVdaxV2Y59; GMAIL_AT=58c7bf063b77e796-1017c822e4c;
S=gmail=ZnUe1o8mp44:gmproxy=kROzNYRS5DA

216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK
Last-Modified: Sun, 09 Jan 2005 20:54:50 GMT
Cache-control: public
Expires: Mon, 16 Jan 2006 17:11:41 GMT
Content-Type: text/html
Server: GFE/1.3
Transfer-Encoding: chunked
Date: Sun, 16 Jan 2005 17:11:41 GMT
Loading...

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail?view=page&name=js&ver=84b4499b9788ada HTTP/1.1
Host: gmail.google.com

23_59611x app.qxp 11/28/05 11:16 PM Page 248

249Appendix — Long Code Listings

Referer:
http://gmail.google.com/gmail?_sgh=9f1fe07d6a3a70c03b32d8a3ebc
7577e
Cookie: GV=101017c822e49-b58a8eed922f7d0f8c9e1901388b8beb;
PREF=ID=1ded507398eab78d:CR=1:TM=1105895484:LM=1105895484:S=fq
J6wL_U141gaHs1;
GMAIL_LOGIN2=T1105895481223/1105895481223/1105895499818;
SID=DQAAAGsAAADNYMqIE3HRTYLVLhM-
DesqryUuzAxHlGKckFg7QgImGX4Y7tBrplUvz8Z8NHOJCuVrRKX64rmEMzaSoS
TdAy3QWJ4WE2GSEN46IOOMzBr14uI0wGOX_3Fnd-WUQIFpDxFrpuMP5-
J5OPEVdaxV2Y59; GMAIL_AT=58c7bf063b77e796-1017c822e4c;
S=gmail=ZnUe1o8mp44:gmproxy=kROzNYRS5DA

216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK
Cache-control: public
Content-Type: text/html; charset=utf-8
Expires: Sat, 05 Feb 2005 17:11:42 GMT
ETag: “84b4499b9788ada”
Last-Modified: Fri, 05 Sep 2003 02:11:15 GMT
Transfer-Encoding: chunked
Server: GFE/1.3
Date: Sun, 16 Jan 2005 17:11:42 GMT
f3ce
<script><!--
var js_load_time=(new Date()).getTime();var product_name =
‘Gmail’;var js_version=’84b4499b9788ada’;var
js_url=’/gmail?view=page&name=js&ver=84b4499b9788ada’;
try {

THE REST OF THE JAVASCRIPT GOES HERE.

--></script>

0

192.168.016.053.64150-216.239.057.106.00080: GET /favicon.ico
HTTP/1.1
216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/html/hist1.html HTTP/1.1

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 249

250 Appendix — Long Code Listings

Listing A-3 (continued)

Host: gmail.google.com
Referer:
http://gmail.google.com/gmail?view=page&name=js&ver=84b4499b97
88ada

Cookie: GV=101017c822e49-b58a8eed922f7d0f8c9e1901388b8beb;
PREF=ID=1ded507398eab78d:CR=1:TM=1105895484:LM=1105895484:S=fq
J6wL_U141gaHs1;
GMAIL_LOGIN2=T1105895481223/1105895481223/1105895499818;
SID=DQAAAGsAAADNYMqIE3HRTYLVLhM-
DesqryUuzAxHlGKckFg7QgImGX4Y7tBrplUvz8Z8NHOJCuVrRKX64rmEMzaSoS
TdAy3QWJ4WE2GSEN46IOOMzBr14uI0wGOX_3Fnd-WUQIFpDxFrpuMP5-
J5OPEVdaxV2Y59; GMAIL_AT=58c7bf063b77e796-1017c822e4c;
S=gmail=ZnUe1o8mp44:gmproxy=kROzNYRS5DA; TZ=-60

216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK
Last-Modified: Sun, 09 Jan 2005 20:54:50 GMT
Cache-control: public
Expires: Mon, 16 Jan 2006 17:11:48 GMT
Content-Type: text/html
Server: GFE/1.3
Transfer-Encoding: chunked
Date: Sun, 16 Jan 2005 17:11:48 GMT
<body onload=”OnLoad()”>
<script>
function OnLoad() {
try {
if (top.js.init) {
top.js.HI_OnNavigateHistory();

}
} catch(e) {
}

}
var loaded = true;
</script>
</body>

0

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/html/hist2.html HTTP/1.1

23_59611x app.qxp 11/28/05 11:16 PM Page 250

251Appendix — Long Code Listings

Host: gmail.google.com
Referer:
http://gmail.google.com/gmail?view=page&name=js&ver=84b4499b97
88ada
Cookie: GV=101017c822e49-b58a8eed922f7d0f8c9e1901388b8beb;
PREF=ID=1ded507398eab78d:CR=1:TM=1105895484:LM=1105895484:S=fq
J6wL_U141gaHs1;
GMAIL_LOGIN2=T1105895481223/1105895481223/1105895499818;
SID=DQAAAGsAAADNYMqIE3HRTYLVLhM-
DesqryUuzAxHlGKckFg7QgImGX4Y7tBrplUvz8Z8NHOJCuVrRKX64rmEMzaSoS
TdAy3QWJ4WE2GSEN46IOOMzBr14uI0wGOX_3Fnd-WUQIFpDxFrpuMP5-
J5OPEVdaxV2Y59; GMAIL_AT=58c7bf063b77e796-1017c822e4c;
S=gmail=ZnUe1o8mp44:gmproxy=kROzNYRS5DA; TZ=-60

216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK
Last-Modified: Sun, 09 Jan 2005 20:54:50 GMT
Cache-control: public
Expires: Mon, 16 Jan 2006 17:11:49 GMT
Content-Type: text/html
Server: GFE/1.3
Transfer-Encoding: chunked
Date: Sun, 16 Jan 2005 17:11:49 GMT
<body onload=”OnLoad()”>
<script>
function OnLoad() {
try {
if (top.js.init) {
top.js.HI_OnNavigateHistory();

}
} catch(e) {
}

}
var loaded = true;
</script>
</body>

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail?ik=&search=inbox&view=tl&start=0&init=1&zx=z6te3fe41hms
jo HTTP/1.1
Host: gmail.google.com
Referer: http://gmail.google.com/gmail/html/hist2.html

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 251

252 Appendix — Long Code Listings

Listing A-3 (continued)

Cookie: GV=101017c822e49-b58a8eed922f7d0f8c9e1901388b8beb;
PREF=ID=1ded507398eab78d:CR=1:TM=1105895484:LM=1105895484:S=fq
J6wL_U141gaHs1;
GMAIL_LOGIN2=T1105895481223/1105895481223/1105895499818;
SID=DQAAAGsAAADNYMqIE3HRTYLVLhM-
DesqryUuzAxHlGKckFg7QgImGX4Y7tBrplUvz8Z8NHOJCuVrRKX64rmEMzaSoS
TdAy3QWJ4WE2GSEN46IOOMzBr14uI0wGOX_3Fnd-WUQIFpDxFrpuMP5-
J5OPEVdaxV2Y59; GMAIL_AT=58c7bf063b77e796-1017c822e4c;
S=gmail=ZnUe1o8mp44:gmproxy=kROzNYRS5DA; TZ=-60

216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK
Set-Cookie: SID=DQAAAGsAAADNYMqIE3HRTYLVLhM-
DesqryUuzAxHlGKckFg7QgImGX4Y7tBrplUvz8Z8NHOJCuVrRKX64rmEMzaSoS
TdAy3QWJ4WE2GSEN46IOOMzBr14uI0wGOX_3Fnd-WUQIFpDxFrpuMP5-
J5OPEVdaxV2Y59;Domain=.google.com;Path=/
Cache-control: no-cache
Pragma: no-cache
Content-Type: text/html; charset=utf-8
Transfer-Encoding: chunked
Server: GFE/1.3
Date: Sun, 16 Jan 2005 17:11:49 GMT
<html><head><meta content=”text/html; charset=UTF-8” http-
equiv=”content-type”></head><script>D=(top.js&&top.js.init)?fu
nction(d){top.js.P(window,d)}:function(){};if(window==top){top
.location=”/gmail?ik=&search=inbox&view=tl&start=0&init=1&zx=z
6te3fe41hmsjo&fs=1”;}</script><script><!--
D([“v”,”84b4499b9788ada”,”33fc762357568758”]
);
D([“ud”,”ben.hammersley@gmail.com”,”{\”o\”:\”OPEN\”,\”/\”:\”SE
ARCH\”,\”\\r\”:\”OPEN\”,\”k\”:\”PREV\”,\”r\”:\”REPLY\”,\”c\”:\
”COMPOSE\”,\”gc\”:\”GO_CONTACTS\”,\”gd\”:\”GO_DRAFTS\”,\”p\”:\
”PREVMSG\”,\”gi\”:\”GO_INBOX\”,\”m\”:\”IGNORE\”,\”a\”:\”REPLYA
LL\”,\”!\”:\”SPAM\”,\”f\”:\”FORWARD\”,\”u\”:\”BACK\”,\”ga\”:\”
GO_ALL\”,\”j\”:\”NEXT\”,\”y\”:\”REMOVE\”,\”n\”:\”NEXTMSG\”,\”g
s\”:\”GO_STARRED\”,\”x\”:\”SELECT\”,\”s\”:\”STAR\”}”,”344af70c
5d”,”/gmail?view=page&name=contacts&ver=50c1485d48db7207”]
);
D([“su”,”33fc762357568758”,[“l”,”/gmail/help/images/logo.gif”,
”i”,”Invite a friend to Gmail”,”j”,”Invite PH_NUM friends to
Gmail”]

23_59611x app.qxp 11/28/05 11:16 PM Page 252

253Appendix — Long Code Listings

]
);
D([“p”,[“bx_hs”,”1”]
,[“bx_show0”,”1”]
,[“bx_sc”,”0”
216.239.057.106.00080-192.168.016.053.64150:]
,[“bx_pe”,”1”]
,[“bx_ns”,”1”]
]
);
D([“ppd”,0]
);
D([“i”,6]
);
D([“qu”,”1 MB”,”1000 MB”,”0%”,”#006633”]
);
D([“ft”,”Compose a message in a new window by pressing
\”Shift\” while clicking Compose Mail or Reply.”]
);
D([“ds”,0,0,0,0,0,20,0]
);
D([“ct”,[]
]
);
D([“ts”,0,50,1,0,”Inbox”,”1017c824dee”,1,]
);
D([“t”,[“101480d8ef5dc74a”,0,0,”Jan 6”,”Ben
Hammersley”,”» ”,”Here\’s a nice
message.”,,[]
,””,”101480d8ef5dc74a”,0,”Thu Jan 6 2005_4:44AM”]
]
);
D([“te”]);

//--></script><script>var
fp=’9055a1297cd86ff2’;</script><script>var
loaded=true;D([‘e’]);</script><script>try{top.js.L(window,43,’
204c380d43’);}catch(e){}</script>

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/help/images/logo.gif
216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 253

254 Appendix — Long Code Listings

Listing A-3 (continued)

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/images/corner_tl.gif
216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/images/corner_bl.gif
216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/images/star_on_sm_2.gif
216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/images/corner_tr.gif
216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/images/opentriangle.gif
216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/images/corner_br.gif
216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/images/star_off_2.gif
216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail/images/chevron.gif
216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail?view=page&name=contacts&ver=50c1485d48db7207 HTTP/1.1
Host: gmail.google.com
Cookie: GV=101017c822e49-b58a8eed922f7d0f8c9e1901388b8beb;
PREF=ID=1ded507398eab78d:CR=1:TM=1105895484:LM=1105895484:S=fq

23_59611x app.qxp 11/28/05 11:16 PM Page 254

255Appendix — Long Code Listings

J6wL_U141gaHs1;
GMAIL_LOGIN2=T1105895481223/1105895481223/1105895499818;
SID=DQAAAGsAAADNYMqIE3HRTYLVLhM-
DesqryUuzAxHlGKckFg7QgImGX4Y7tBrplUvz8Z8NHOJCuVrRKX64rmEMzaSoS
TdAy3QWJ4WE2GSEN46IOOMzBr14uI0wGOX_3Fnd-WUQIFpDxFrpuMP5-
J5OPEVdaxV2Y59; GMAIL_AT=58c7bf063b77e796-1017c822e4c;
S=gmail=ZnUe1o8mp44:gmproxy=kROzNYRS5DA; TZ=-60; GMAIL_SU=1
Pragma: no-cache
Cache-Control: no-cache

216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK
Cache-control: private
Content-Type: text/html; charset=utf-8
Expires: Sat, 05 Feb 2005 17:11:53 GMT
ETag: “50c1485d48db7207”
Last-Modified: Fri, 05 Sep 2003 02:11:15 GMT
Transfer-Encoding: chunked
Server: GFE/1.3
Date: Sun, 16 Jan 2005 17:11:53 GMT
56

[[“ben@benhammersley.com”,”Hacking Gmail”]
,[“BHerrmann@wiley.com”,”Brian Herrmann”]
]

192.168.016.053.64150-216.239.057.106.00080: GET
/gmail?view=page&name=blank_modal&ver=6ae1910f12c398eb
HTTP/1.1
Host: gmail.google.com
Referer:
http://gmail.google.com/gmail?view=page&name=js&ver=84b4499b97
88ada
Cookie: GV=101017c822e49-b58a8eed922f7d0f8c9e1901388b8beb;
PREF=ID=1ded507398eab78d:CR=1:TM=1105895484:LM=1105895484:S=fq
J6wL_U141gaHs1;
GMAIL_LOGIN2=T1105895481223/1105895481223/1105895499818;
SID=DQAAAGsAAADNYMqIE3HRTYLVLhM-
DesqryUuzAxHlGKckFg7QgImGX4Y7tBrplUvz8Z8NHOJCuVrRKX64rmEMzaSoS
TdAy3QWJ4WE2GSEN46IOOMzBr14uI0wGOX_3Fnd-WUQIFpDxFrpuMP5-
J5OPEVdaxV2Y59; GMAIL_AT=58c7bf063b77e796-1017c822e4c;
S=gmail=ZnUe1o8mp44:gmproxy=kROzNYRS5DA; TZ=-60; GMAIL_SU=1

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 255

256 Appendix — Long Code Listings

Listing A-3 (continued)

216.239.057.106.00080-192.168.016.053.64150: HTTP/1.1 200 OK
Cache-control: private
Content-Type: text/html; charset=utf-8
Expires: Sat, 05 Feb 2005 17:11:53 GMT
ETag: “6ae1910f12c398eb”
Last-Modified: Fri, 05 Sep 2003 02:11:15 GMT
Transfer-Encoding: chunked
Server: GFE/1.3
Date: Sun, 16 Jan 2005 17:11:53 GMT
<html><head><style>body{margin:0;background:#FFF}
body,td,button{font-family:sans-serif;font-size:85%}
.tl {
background-image: url(/gmail/images/corner_tl.gif);
background-position:top left;
background-repeat:no-repeat;
}
.tr {
background-image: url(/gmail/images/corner_tr.gif);
background-position:top right;
background-repeat:no-repeat;
}
.bl {
background-image: url(/gmail/images/corner_bl.gif);
background-position:bottom left;
background-repeat:no-repeat;
}
.br {
background-image: url(/gmail/images/corner_br.gif);
background-position:bottom right;
background-repeat:no-repeat;
}
.bubble {
background-color:#C3D9FF;
}
.button {vertical-align:middle;padding:0 10;margin:0 5}
#title {font-weight:bold;padding:2 10}
#message {font-size:95%;padding:10 0 0 10}
#buttons {text-align:center;margin-top:15}
#main {border:2px #c3D9FF solid;padding:10 10 10 0}
</style></head><body>
<table id=main width=100% height=100% cellpadding=0
cellspacing=0>
<tr><td>

23_59611x app.qxp 11/28/05 11:16 PM Page 256

257Appendix — Long Code Listings

</table>
</body>
</html>

192.168.016.053.64151-066.102.007.104.00080: GET /setgmail
HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X Mach-O;
en-GB; rv:1.7.5) Gecko/20041110 Firefox/1.0
Accept: image/png,*/*;q=0.5
Accept-Language: en-gb,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer:
http://gmail.google.com/gmail?ik=&search=inbox&view=tl&start=0
&init=1&zx=z6te3fe41hmsjo
Cookie:
PREF=ID=1ded507398eab78d:CR=1:TM=1105895484:LM=1105895484:S=fq
J6wL_U141gaHs1;
GMAIL_LOGIN2=1105895481223/1105895481223/1105895499818/1105895
502118/1105895508496/1105895509753/1105895510624/false/false;
SID=DQAAAGsAAADNYMqIE3HRTYLVLhM-
DesqryUuzAxHlGKckFg7QgImGX4Y7tBrplUvz8Z8NHOJCuVrRKX64rmEMzaSoS
TdAy3QWJ4WE2GSEN46IOOMzBr14uI0wGOX_3Fnd-WUQIFpDxFrpuMP5-
J5OPEVdaxV2Y59; S=gmail=ZnUe1o8mp44:gmproxy=kROzNYRS5DA

066.102.007.104.00080-192.168.016.053.64151: HTTP/1.1 204 No
Content
Set-Cookie:
PREF=ID=1ded507398eab78d:CR=1:TM=1105895484:LM=1105895514:GM=1
:S=7pA3w_PCISy_m6mm; expires=Sun, 17-Jan-2038 19:14:07 GMT;
path=/; domain=.google.com
Content-Type: text/html
Server: GWS/2.1
Content-Length: 0
Date: Sun, 16 Jan 2005 17:11:54 GMT

23_59611x app.qxp 11/28/05 11:16 PM Page 257

258 Appendix — Long Code Listings

Chapter 13

Listing A-4: The HTML-Only Gmail Inbox Source

<html>
<head>
<title>Gmail - Inbox</title>
<meta http-equiv=Content-Type content=”text/html; charset=UTF-
8”>
<link rel=”stylesheet” type=”text/css”
href=”/gmail/h/?view=page&name=css&ver=4e9d6884374d2804”>
<style type=”text/css”>
@import
url(“/gmail/h/?view=page&name=css2&ver=e5dcae215b68fea6”);
</style>
<base href=”http://gmail.google.com/gmail/h/1m0fzst8pmgu0/”>
<script
src=”/gmail?view=page&name=browser&ver=b8da0131e81235c4”></scr
ipt>
<script
src=”/gmail/h/?view=page&name=js&ver=198b37c9e12e6f72”></scrip
t>
</head>
<body bgcolor=#ffffff>
<table width=100% cellpadding=4 cellspacing=0 border=0
class=bn>

<tr>
<td id=bm bgcolor=#FAE5B0>
For a better Gmail experience, use a
fully supported browser.
<a href=”/support/bin/answer.py?ctx=gmail&answer=15046”
target=_blank
>Learn more
</td>
</table>
<script>
<!--
sbm()
//-->
</script>
<table width=100% cellpadding=0 cellspacing=0 border=0>
<tr>
<td width=143 rowspan=3>

<img src=”/gmail/help/images/logo.gif”

23_59611x app.qxp 11/28/05 11:16 PM Page 258

259Appendix — Long Code Listings

width=143 height=59 border=0
alt=”Gmail by Google”>

</td>

<td width=1 rowspan=3> </td>
<td height=25 colspan=2 align=right valign=top>
ben.hammersley@gmail.com |
Settings |
Help |
Sign out
<tr>
<form action=? name=sf method=GET>
<input type=hidden name=s value=q>
<td>

<table width=100% cellpadding=0 cellspacing=0 border=0>
<tr>
<td width=1% height=25 nowrap>
<input size=28 maxlength=2048
name=q value=””
> <input type=submit name=site value=”Search Mail”
> <input type=submit name=site value=”Search the Web”>
</td>
<td>

 <a href=”?v=as&pv=tl”
>Show search options

</form>
</table>
<tr>
<td height=25 colspan=2>
</table>

<table width=100% cellpadding=0 cellspacing=0 border=0>
<tr>
<td width=120 valign=top>
<table width=100% cellpadding=2 cellspacing=0 border=0
class=m>
<tr>
<td>
<a href=”?ct=n&v=b&pv=tl”
>Compose Mail
<tr>
<td height=5>
<tr>
<td bgcolor=#C3D9FF>

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 259

260 Appendix — Long Code Listings

Listing A-4 (continued)

<a href=”?”
>Inbox
<tr>
<td>

<a href=”?s=r”
>Starred <img src=”/gmail/images/star_on_sm_2.gif”
width=13 height=13 border=0 alt=”star”>
<tr>
<td>
<a href=”?s=s”
>Sent Mail
<tr>
<td>
<a href=”?s=d”
>Drafts
<tr>
<td>
<a href=”?s=a”
>All Mail
<tr>
<td>
<a href=”?s=m”
>Spam (1)

<tr>
<td>
<a href=”?s=t”
>Trash
<tr>
<td height=8>
<tr>
<td>
Contacts
<tr>
<td height=8>
</table>
<table width=100% cellpadding=2 cellspacing=0 border=0
class=l>
<tr>
<td class=lb>
Labels

<font color=#006633
>Heads

23_59611x app.qxp 11/28/05 11:16 PM Page 260

261Appendix — Long Code Listings

<font color=#006633
>Knees

<font color=#006633

>Shoulders

<font color=#006633

>Toes

</td>
</table>
</td>
<td valign=top>
<table width=100% cellpadding=0 cellspacing=0 border=0>

<tr>
<td width=5 bgcolor=#C3D9FF> </td>
<td>
<form action=”?at=946adde382e122c-102ca495e7d” name=f
method=POST>
<input type=hidden name=redir
value=”?”>
<table width=100% cellpadding=2 cellspacing=0 border=0
bgcolor=#C3D9FF>
<tr>
<td>
<input type=submit name=a value=”Archive”> <input
type=submit name=a value=”Report Spam”>
<select name=tact>
<option value=””>More Actions...</option>
<option value=rd>Mark as read</option>
<option value=ur>Mark as unread</option>
<option value=st>Add star</option>

<option value=xst>Remove star</option>
<option value=tr>Move to Trash</option>
<option value=”” disabled>--------</option>
<option value=”” disabled>Apply label:</option>
<option value=”ac_Heads”
>Heads
</option>
<option value=”ac_Knees”
>Knees
</option>
<option value=”ac_Shoulders”
>Shoulders
</option>
<option value=”ac_Toes”

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 261

262 Appendix — Long Code Listings

Listing A-4 (continued)

>Toes
</option>
<option value=”” disabled>--------</option>

<option value=”” disabled>Remove label:</option>
<option value=”rc_Heads”
>Heads
</option>
<option value=”rc_Knees”
>Knees
</option>
<option value=”rc_Shoulders”
>Shoulders
</option>
<option value=”rc_Toes”
>Toes
</option>
</select> <input type=submit name=tbu value=Go>
Refresh
</td>
<td align=right>
1 - 5 of 5

</table>
<table width=100% cellpadding=2 cellspacing=0 border=0
bgcolor=#e8eef7 class=th>
<tr bgcolor=#E8EEF7>
<td width=1% nowrap>
<input type=checkbox name=t
value=”1025a4065d9b40bf”>
<img src=”/gmail/images/cleardot.gif”
width=15 height=15 border=0 alt=””>
</td>
<td width=30%>
Ben Hammersley</td>
<td width=68%>

hello me
</td>
<td nowrap width=1%>Feb 28

<tr bgcolor=#E8EEF7>
<td>
<input type=checkbox name=t

23_59611x app.qxp 11/28/05 11:16 PM Page 262

263Appendix — Long Code Listings

value=”10237338e99e7a8c”>
</td>
<td >
Ben Hammersley</td>
<td >

This is the subject line
</td>
<td nowrap>Feb 21
<tr bgcolor=#E8EEF7>
<td>

<input type=checkbox name=t
value=”10187696869432e6”>
</td>
<td >
Ben, me (3)</td>
<td >

This is the third message
</td>
<td nowrap>Jan 18
<tr bgcolor=#E8EEF7>
<td>
<input type=checkbox name=t
value=”101865b95fc7a35a”>
</td>

<td >
Ben Hammersley</td>
<td >

This is the second message
</td>
<td nowrap>Jan 18
<tr bgcolor=#E8EEF7>
<td>
<input type=checkbox name=t
value=”101480d8ef5dc74a”>
<img src=”/gmail/images/star_on_2.gif”
width=15 height=15 border=0 alt=Starred>
</td>

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 263

264 Appendix — Long Code Listings

Listing A-4 (continued)

<td >

Ben Hammersley</td>
<td >

Heads

Here’s a nice message.
</td>
<td nowrap>Jan 6
</table>
<table width=100% cellpadding=2 cellspacing=0 border=0
bgcolor=#C3D9FF>
<tr>
<td>
<input type=submit name=a value=”Archive”> <input
type=submit name=a value=”Report Spam”>
<select name=bact>

<option value=””>More Actions...</option>
<option value=rd>Mark as read</option>
<option value=ur>Mark as unread</option>
<option value=st>Add star</option>
<option value=xst>Remove star</option>
<option value=tr>Move to Trash</option>
<option value=”” disabled>--------</option>
<option value=”” disabled>Apply label:</option>
<option value=”ac_Heads”
>Heads

</option>
<option value=”ac_Knees”
>Knees
</option>
<option value=”ac_Shoulders”
>Shoulders
</option>
<option value=”ac_Toes”
>Toes
</option>
<option value=”” disabled>--------</option>
<option value=”” disabled>Remove label:</option>
<option value=”rc_Heads”
>Heads
</option>

23_59611x app.qxp 11/28/05 11:16 PM Page 264

265Appendix — Long Code Listings

<option value=”rc_Knees”
>Knees
</option>
<option value=”rc_Shoulders”
>Shoulders
</option>

<option value=”rc_Toes”
>Toes
</option>
</select> <input type=submit name=bbu value=Go>
Refresh
</td>
<td align=right>
1 - 5 of 5
</table>
</tr>
</form>

</table>
<table cellpadding=2 cellspacing=0 border=0 align=center
class=ft>
<tr>
<td align=center>
Search accurately with <a style=color:#0000CC target=_blank
href=”/support/bin/answer.py?ctx=gmail&answer=7190”>operators<
/a> including from: to:
 subject:.
<tr>
<td align=center>

You are currently using 1 MB
(0%)
of your 1000 MB.

<script>
<!--
wsl();
//-->
</script>
<tr>
<td align=center>

<a href=”/gmail/help/terms_of_use.html”
target=_blank>Terms of Use -
<a href=”/gmail/help/privacy.html”
target=_blank>Privacy Policy -

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 265

266 Appendix — Long Code Listings

Listing A-4 (continued)

<a href=”/gmail/help/program_policies.html”
target=_blank>Program Policies -

Google Home

<tr>
<td align=center>
©2005 Google
</table>
</table>
</body>
</html>

Listing A-5: Code That Produces Figure 13-2

<html>
<head>
<title>Gmail - hello me</title>
<meta http-equiv=Content-Type content=”text/html; charset=UTF-
8”>
<link rel=”stylesheet” type=”text/css”
href=”/gmail/h/?view=page&name=css&ver=4e9d6884374d2804”>
<style type=”text/css”>
@import
url(“/gmail/h/?view=page&name=css2&ver=e5dcae215b68fea6”);
</style>
<base href=”http://gmail.google.com/gmail/h/gmqifu8n7ale/”>
<script
src=”/gmail?view=page&name=browser&ver=b8da0131e81235c4”></scr
ipt>
<script
src=”/gmail/h/?view=page&name=js&ver=198b37c9e12e6f72”></scrip
t>
</head>
<body bgcolor=#ffffff>
<table width=100% cellpadding=4 cellspacing=0 border=0
class=bn>
<tr>
<td id=bm bgcolor=#FAE5B0>
For a better Gmail experience, use a
fully supported browser.

23_59611x app.qxp 11/28/05 11:16 PM Page 266

267Appendix — Long Code Listings

<a href=”/support/bin/answer.py?ctx=gmail&answer=15046”
target=_blank
>Learn more
</td>
</table>
<script>
<!--
sbm()
//-->
</script>
<table width=100% cellpadding=0 cellspacing=0 border=0>
<tr>
<td width=143 rowspan=3>

<img src=”/gmail/help/images/logo.gif”
width=143 height=59 border=0
alt=”Gmail by Google”>

</td>
<td width=1 rowspan=3> </td>
<td height=25 colspan=2 align=right valign=top>
ben.hammersley@gmail.com |
Settings |
Help |
Sign out
<tr>
<form action=? name=sf method=GET>
<input type=hidden name=s value=q>
<td>
<table width=100% cellpadding=0 cellspacing=0 border=0>
<tr>
<td width=1% height=25 nowrap>
<input size=28 maxlength=2048
name=q value=””
> <input type=submit name=site value=”Search Mail”
> <input type=submit name=site value=”Search the Web”>
</td>
<td>

 <a href=”?th=1025a4065d9b40bf&v=as&pv=cv”
>Show search options

</form>
</table>
<tr>
<td height=25 colspan=2>
</table>

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 267

268 Appendix — Long Code Listings

Listing A-5 (continued)

<table width=100% cellpadding=0 cellspacing=0 border=0>
<tr>
<td width=120 valign=top>
<table width=100% cellpadding=2 cellspacing=0 border=0
class=m>
<tr>
<td>
<a href=”?th=1025a4065d9b40bf&ct=n&v=b&pv=cv”
>Compose Mail
<tr>
<td height=5>
<tr>
<td bgcolor=#C3D9FF>
<a href=”?”
>Inbox
<tr>
<td>
<a href=”?s=r”
>Starred <img src=”/gmail/images/star_on_sm_2.gif”
width=13 height=13 border=0 alt=”star”>
<tr>
<td>
<a href=”?s=s”
>Sent Mail
<tr>
<td>
<a href=”?s=d”
>Drafts
<tr>
<td>
<a href=”?s=a”
>All Mail
<tr>
<td>
<a href=”?s=m”
>Spam (1)
<tr>
<td>
<a href=”?s=t”
>Trash
<tr>
<td height=8>
<tr>
<td>
Contacts
<tr>

23_59611x app.qxp 11/28/05 11:16 PM Page 268

269Appendix — Long Code Listings

<td height=8>
</table>
<table width=100% cellpadding=2 cellspacing=0 border=0
class=l>
<tr>
<td class=lb>
Labels

<font color=#006633

>Heads

<font color=#006633

>Knees

<font color=#006633

>Shoulders

<font color=#006633

>Toes

</td>
</table>
<td valign=top>
<table width=100% cellpadding=0 cellspacing=0 border=0>
<tr>
<td width=5 bgcolor=#C3D9FF> </td>
<td>
<table width=100% cellpadding=2 cellspacing=0 border=0
bgcolor=#C3D9FF>
<form
action=”?t=1025a4065d9b40bf&at=b2e38396b0a9faf8-102e93a7156”
name=f method=POST>
<tr>
<td>
<input type=hidden name=redir
value=”?”>
<a href=”?”
>« Back to Inbox
<input type=submit name=a value=”Archive”> <input
type=submit name=a value=”Report Spam”>
 <select name=tact>
<option value=””>More Actions...</option>
<option value=rd>Mark as read</option>
<option value=ur>Mark as unread</option>
<option value=st>Add star</option>
<option value=xst>Remove star</option>
<option value=tr>Move to Trash</option>
<option value=”” disabled>--------</option>
<option value=”” disabled>Apply label:</option>

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 269

270 Appendix — Long Code Listings

Listing A-5 (continued)

<option value=”ac_Heads”
>Heads
</option>
<option value=”ac_Knees”
>Knees
</option>
<option value=”ac_Shoulders”
>Shoulders
</option>
<option value=”ac_Toes”
>Toes
</option>
</select> <input type=submit name=tbu value=Go>
</td>
<td align=right>
1 of 5
Older ›</
b>
</tr>
</form>
</table>
<table width=100% cellpadding=2 cellspacing=0 border=0
bgcolor=#E0ECFF>
<tr>
<td align=right>
<table cellpadding=0 cellspacing=0 border=0 class=ac>
<tr>
<td>
<a href=”?th=1025a4065d9b40bf&v=pt” class=nu target=_blank
><img src=”/gmail/images/print_icon.gif”
width=16 height=16 border=0 alt=”Print conversation”
> Print
</td>
<td>
<a href=”?th=1025a4065d9b40bf&v=c” class=nu target=_blank
><img src=”/gmail/images/tearoff_icon.gif”
width=16 height=16 border=0 alt=”Open conversation in new
window”
> New window
</td>
</table>
</table>
<table width=98% cellpadding=0 cellspacing=0 border=0
align=center class=h>
<tr>

23_59611x app.qxp 11/28/05 11:16 PM Page 270

271Appendix — Long Code Listings

<td>
hello me
<a href=”?”
>Inbox
</table>
<table width=98% cellpadding=1 cellspacing=0 border=0
bgcolor=#cccccc
align=center>
<tr>
<td>

<table width=100% cellpadding=1 cellspacing=0 border=0
bgcolor=#efefef>
<tr>
<td>
<a
href=”?m=1025a4065d9b40bf&a=st&th=1025a4065d9b40bf&at=b2e38396
b0a9faf8-102e93a7156&v=c#m_1025a4065d9b40bf”>
<img src=”/gmail/images/star_off_sm_2.gif”
width=13 height=13 border=0 alt=”Add star”>

Ben Hammersley

<ben@benhammersley.com>
</td>
<td align=right valign=top>
Mon, Feb 28, 2005 at 10:35AM
<tr>
<td colspan=2>
To: Ben Hammersley <ben.hammersley@gmail.com>
<tr>
<td colspan=2>
<div class=r>

<a
href=”?rm=1025a4065d9b40bf&th=1025a4065d9b40bf&ct=rn&v=b&pv=cv
”>Reply |
<a
href=”?rm=1025a4065d9b40bf&th=1025a4065d9b40bf&ct=ran&v=b&pv=c
v”>Reply to all |
<a
href=”?rm=1025a4065d9b40bf&th=1025a4065d9b40bf&ct=fn&v=b&pv=cv
”>Forward |
<a href=”?msgs=1025a4065d9b40bf&th=1025a4065d9b40bf&v=pt”
target=_blank>Print |
<a
href=”?m=1025a4065d9b40bf&a=dm&at=b2e38396b0a9faf8-102e93a7156
”>Trash this message |

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 271

272 Appendix — Long Code Listings

Listing A-5 (continued)

Show
original

</div>
<tr bgcolor=#ffffff>
<td colspan=2>
<div class=msg>
hello!

</div>
</table>

<table width=100% cellpadding=1 cellspacing=0 border=0
bgcolor=#e0ecff
class=qr>
<tr>
<td bgcolor=#c3d9ff>
Quick Reply
<tr>
<td>
<table width=1% cellpadding=0 cellspacing=0 border=0
bgcolor=#e0ecff>
<form
action=”?rm=1025a4065d9b40bf&fv=cv&th=1025a4065d9b40bf&at=b2e3
8396b0a9faf8-102e93a7156&ct=qfnq&v=b&pv=cv&qrt=n”
name=qrf method=POST>
<input type=hidden name=redir
value=”?v=c”>
<tr>
<td colspan=2>
<table width=100% cellpadding=1 cellspacing=0 border=0>
<tr>
<td width=99%>
To:
<input type=hidden name=qrr value=o>
Ben Hammersley <ben@benhammersley.com>
</td>
<td width=1% valign=bottom>
<input type=submit name=bu value=”More Reply Options”>
</td>
</table>
<tr>
<td>
<textarea name=body rows=10 cols=50 wrap=virtual>
</textarea>
<tr>
<td>

23_59611x app.qxp 11/28/05 11:16 PM Page 272

273Appendix — Long Code Listings

<input type=submit name=bu value=Send>
<input type=submit name=bu value=”Save Draft”>
<input type=checkbox id=diqt name=diqt value=1 checked>
<label for=diqt>Include quoted text with reply</label>
</tr>
</form>
</table>
</table>
</td>
</tr>
</table>

<table width=100% cellpadding=2 cellspacing=0 border=0
bgcolor=#C3D9FF>
<form
action=”?t=1025a4065d9b40bf&at=b2e38396b0a9faf8-102e93a7156”
name=f method=POST>
<tr>
<td>
<input type=hidden name=redir
value=”?”>
<a href=”?”
>« Back to Inbox
<input type=submit name=a value=”Archive”> <input
type=submit name=a value=”Report Spam”>
 <select name=bact>
<option value=””>More Actions...</option>
<option value=rd>Mark as read</option>
<option value=ur>Mark as unread</option>
<option value=st>Add star</option>
<option value=xst>Remove star</option>
<option value=tr>Move to Trash</option>
<option value=”” disabled>--------</option>
<option value=”” disabled>Apply label:</option>
<option value=”ac_Heads”
>Heads
</option>
<option value=”ac_Knees”
>Knees
</option>
<option value=”ac_Shoulders”
>Shoulders
</option>
<option value=”ac_Toes”
>Toes
</option>
</select> <input type=submit name=bbu value=Go>
</td>

Continued

23_59611x app.qxp 11/28/05 11:16 PM Page 273

274 Appendix — Long Code Listings

Listing A-5 (continued)

<td align=right>
1 of 5
Older ›</
b>
</tr>
</form>
</table>
</table>
<table cellpadding=2 cellspacing=0 border=0 align=center
class=ft>
<tr>
<td align=center>
Search accurately with <a style=color:#0000CC target=_blank
href=”/support/bin/answer.py?ctx=gmail&answer=7190”>operators<
/a> including from: to:
 subject:.
<tr>
<td align=center>

You are currently using 1 MB
(0%)
of your 1000 MB.

<script>
<!--
wsl();
//-->
</script>
<tr>
<td align=center>

<a href=”/gmail/help/terms_of_use.html”
target=_blank>Terms of Use -
<a href=”/gmail/help/privacy.html”
target=_blank>Privacy Policy -
<a href=”/gmail/help/program_policies.html”
target=_blank>Program Policies -
Google Home

<tr>
<td align=center>
©2005 Google
</table>
</table>
</body>
</html>

23_59611x app.qxp 11/28/05 11:16 PM Page 274

SYMBOLS
backslash (/) keyboard shortcut, 18
exclamation (!) keyboard shortcut, 19
hyphen (-) operator, 24
parentheses () operator, 25
quotes (“ “) operator, 25

A
a keyboard shortcut, 19
abort() method, 59
addresses

contacts
adding contacts, 178–179
Contacts list, 177
current contacts, showing, 180
exporting contacts, 181–182
importing contacts, 178–179

header, 179
overview, 177
vCards, 181–182

advertising, removing Google, 51–52
after: operator, 25
All Mail folder, 196
AOL Instant Messenger, new mail count to, 144–149
Aquino, Jonathan (notepad use of Gmail), 207
Araujo, Robson Braga (random signatures), 115
array getAttachmentsOf() method, 120
array getStandardBox() method, 120
attachments

executables sent as, 23–24
overview, 155
sending, 166

B
backslash (/) keyboard shortcut, 18
bcc: operator, 25
before: operator, 25
Blanton, Justin (spam filters), 210
Bloglines, displaying, 92–100
bool connect() method, 119
bool connectNoCookie() method, 119
bool fetch() method, 119
bool fetchBox() method, 119
bool fetchContact() method, 119
bool getAttachment() method, 120
bool isconnected() method, 119
bool performAction() method, 120

bool send() method, 120
boot sequence

labels, 80
log for, cleaning up, 68
login procedure, 75
long code listings for edited, 243–257
steps for

cookie, setting code for, 71–74
inbox, loading, 74–80
logging in, 69–71
multiple messages in inbox, 76–78
one message in inbox, 78–79
reading an individual mail, 81–89

storage space, 80
watching, preparing for, 67–68

bottom section of screen
HTML code for, 43–44
overview, 42–43

box_name property, 123
box_pos property, 123
box_total property, 123
Brown, Jed (WebMailCompose), 7

C
c keyboard shortcut, 18
cc: operator, 25
central activity area of screen

HTML code for, 39–42
overview, 38

certain label, retrieving messages from, 170–171
checking for mail

in Perl
AOL Instant Messenger, new mail count to,

144–149
overview, 137–139
RSS, new mail count in, 137–139

in PHP, 139–140
in Python, 140–141
RSS, new mail count in, 142–144
using Libgmail, 139–140
using Mail::Webmail::Gmail

AOL Instant Messenger, new mail count to,
144–149

overview, 137–139
RSS, new mail count in, 142–144

combo-keys shortcuts, 19
command line, mounting GmailFS from, 216–217

Index

24_59611x bindex.qxp 11/28/05 11:14 PM Page 275

comma-separated values (CSV) file, 179
constants, 122–123
contacts

adding contacts, 178–179
Contacts list, 177
current contacts, showing, 180
exporting contacts, 181–182
importing contacts, 178–179

Contacts list, 177
contacts_all property, 125
contacts_freq property, 125
conv_id property, 124
conv_labels property, 124
conv_starred property, 124
conv_title property, 124
conv_total property, 124
cookie, setting code for, 71–74
Copy as XML function, 53
Couvreur, Julien (MailtoComposeInGmail), 111
CSS listing, long code listings for complete, 238–242
CSV (comma-separated values) file, 179
current contacts, showing, 180
customization

advertising, removing Google, 51–52
Gmail Lite, 45
new style, applying, 44
style sheets, 45–51

D
data

accessing all data of a message, 152
e-mail used to represent all, 220

datablock messages, 220
Delete button, adding, 101–108
delete_message() function, 131
desktop integration

mailto: link redirection
in Mac OS X, 8
for Mozilla, 7–8
for multiplatform, 7–8
overview, 6
in Windows, 7

new mail notification
in Linux, 5–6
in Mac OS X, 5
overview, 3
in Windows, 3–4

direct use of Gmail SMTP, 162
directory file, 219
directory messages, 220

DOM inspector
Copy as XML function, 53
interface with, 30–33

downloading
Gmailer, 118
Libgmail, 131
Mail::Webmail::Gmail, 127

Drafts folder, 196, 208
drives, using multiple, 217

E
edit_archive() function, 129
edit_labels() function, 128–129
edit_star() function, 129
Elson, Jeremy (Tcpflow), 62
Enter keyboard shortcut, 18
esc keyboard shortcut, 19
exclamation (!) keyboard shortcut, 19
existing labels

certain label, retrieving messages from, 170–171
listing, 169–173
retrieving a labeled message and replying, 171–173

exporting contacts, 181–182
exporting mail

to IMAP account, 200–201
Mail::Folder::Mbox module, 199
Mail::Internet module, 199
Mbox format conversion, 199–200
as text file, 197–198

F
f keyboard shortcut, 19
file entry messages, 220
file, identifying a, 218–219
File System in Userspace (FUSE), 215
file system, passing commands to, 217
filename: operator, 25
filters

overview, 21
and to-do lists, 203–204

Firefox, 44
first message in inbox, reading

Gmailer, 126
Libgmail, 134–135

folders
and HTML::TokeParser, 195–196
Inbox folder, 196
Sent Mail folder, 196
Spam folder, 196
Starred folder, 196
Trash folder, 196

from: operator, 24

276 Index ■ C–F

24_59611x bindex.qxp 11/28/05 11:14 PM Page 276

fstab, mounting GmailFS from, 217
functions, 128–131
FUSE (File System in Userspace), 215

G
g then a keyboard shortcut, 19
g then c keyboard shortcut, 19
g then d keyboard shortcut, 19
g then i keyboard shortcut, 19
g then s keyboard shortcut, 19
Gan, Yin Hung (Gmailer), 118
gCount (Spindel), 5
getAllResponseHeaders() method, 59
get_contacts() function, 130
get_indv_email() function, 130
get_labels() function, 128
getMessagesByFolder method, 133
getMessagesByLabel method, 133
getMessagesByQuery method, 133
get_mime_email() function, 130
getQuotaInfo method, 134
getResponseHeader() method, 60
getUnreadMsgCount method, 134
GM_ACT_APPLYLABEL constant, 122
GM_ACT_ARCHIVE constant, 122
GM_ACT_DELFOREVER constant, 123
GM_ACT_INBOX constant, 122
GM_ACT_READ constant, 122
GM_ACT_REMOVELABEL constant, 122
GM_ACT_SPAM constant, 122
GM_ACT_STAR constant, 122
GM_ACT_TRASH constant, 123
GM_ACT_UNREAD constant, 122
GM_ACT_UNSPAM constant, 122
GM_ACT_UNSTAR constant, 122
GM_ACT_UNTRASH constant, 123
Gmail Lite, 45
Gmail Loader (Lyon), 11–12
Gmail SMTP

attachments, sending, 166
direct use of Gmail SMTP, 162
Mail::Webmail::Gmail and, 162–166
overview, 161–162
Perl and, 162–166
unread mail, reading and replying to, 163–166

Gmailer
array getAttachmentsOf() method, 120
array getStandardBox() method, 120
bool connect() method, 119
bool connectNoCookie() method, 119
bool fetch() method, 119
bool fetchBox() method, 119

bool fetchContact() method, 119
bool getAttachment() method, 120
bool isconnected() method, 119
bool performAction() method, 120
bool send() method, 120
box_name property, 123
box_pos property, 123
box_total property, 123
constants, 122–123
contacts_all property, 125
contacts_freq property, 125
conv_id property, 124
conv_labels property, 124
conv_starred property, 124
conv_title property, 124
conv_total property, 124
downloading, 118
first message in inbox, reading, 126
GM_ACT_APPLYLABEL constant, 122
GM_ACT_ARCHIVE constant, 122
GM_ACT_DELFOREVER constant, 123
GM_ACT_INBOX constant, 122
GM_ACT_READ constant, 122
GM_ACT_REMOVELABEL constant, 122
GM_ACT_SPAM constant, 122
GM_ACT_STAR constant, 122
GM_ACT_TRASH constant, 123
GM_ACT_UNREAD constant, 122
GM_ACT_UNSPAM constant, 122
GM_ACT_UNSTAR constant, 122
GM_ACT_UNTRASH constant, 123
GMailSnapshot get Snapshot() method, 120
gmail_ver property, 123
GM_CONTACT constant, 122
GM_CONVERSATION constant, 122
GM_LABEL constant, 122
GM_QUERY constant, 122
GM_STANDARD constant, 122
GM_USE_COOKIE constant, 123
GM_USE_PHPSESSION constant, 123
have_invit property, 123
inbox, retrieval of, 121–122
installation of, 118
label_list property, 123
label_new property, 123
logging in with, 120–121
methods for, 119–120
overview, 118
quota_mb property, 123
quota_per property, 123
Snapshots, 123–124
std_box_new property, 123

Continued

277Index ■ F–G

24_59611x bindex.qxp 11/28/05 11:14 PM Page 277

Gmailer (continued)
string dump() method, 120
using, 119–126
void disconnect() method, 120
void setLoginInfo method, 119
void setProxy method, 119
void setSessionMethod method, 119

GmailerXP, 8
GmailFS

command line, mounting GmailFS from, 216–217
datablock messages, 220
directory messages, 220
drives, using multiple, 217
e-mail used to represent all data, 220
file entry messages, 220
file, identifying a, 218–219
file system, passing commands to, 217
fstab, mounting GmailFS from, 217
FUSE, installing, 215
how it works, 218
inode messages, 220
installation of, 213–215
Libgmail, installing, 215
overview, 213, 218
Python 2.3 needed for, 213–214
use of, 216–217

GmailFS (Jones), 213
GmailSecure, 108–110
GMailSnapshot get Snapshot() method, 120
GmailStatus, 8
GmailStatus (Guenther), 5
Gmailto, 8
gmail_ver property, 123
GM_CONTACT constant, 122
GM_CONVERSATION constant, 122
GM_LABEL constant, 122
GM_QUERY constant, 122
GM_STANDARD constant, 122
gmtodo (Miller), 205
GM_USE_COOKIE constant, 123
GM_USE_PHPSESSION constant, 123
Goollery, 210
Greasemonkey

installation of, 91
overview, 91–92
userscripts

Bloglines, displaying, 92–100
Delete button, adding, 101–108
GmailSecure, 108–110
hide invites, 115
how it works, 100–101
HTTPS, forcing Gmail to use, 108–110

installation of, 92
MailtoComposeInGmail, 110–114
mark read button, 114–115
multiple signatures, 115
random signatures, 115

Guenther, Carsten (GmailStatus), 5
Gzip encoding, 64

H
hard link, 219
has:attachment operator, 24
have_invit property, 123
header, 179
heartbeat, Gmail’s unencoded, 65–66
hiding invites, userscript for, 115
Holman, Allen (Mail::Webmail::Gmail), 127
HTML code. See also HTML version of Gmail

for bottom section of screen, 43–44
for central activity area, 39–42
long code listings

boot sequence, edited, 243–257
CSS listing, complete, 238–242
HTML-only Gmail inbox source, 258–266
inbox, displaying, 223–238
individual message page with only one message,

266–274
for navigation menu, 36–38
for top section of screen, 34–35
XMLHttpRequest, 56–59

HTML version of Gmail
All Mail folder, 196
Drafts folder, 196
HTML::TokeParser

folders and, 195–196
inbox, parsing, 188–192
individual page, retrieving, 192–194
overview, 186–188
threads and, 195

Inbox folder, 196
overview, 183
scraping

HTML::TokeParser, 186–194
overview, 186

Sent Mail folder, 196
Spam folder, 196
Starred folder, 196
Trash folder, 196
viewing, 183–185

HTML::TokeParser
folders and, 195–196
inbox, parsing, 188–192
individual page, retrieving, 192–194

278 Index ■ G–H

24_59611x bindex.qxp 11/28/05 11:14 PM Page 278

overview, 186–188
threads and, 195

HTTPS, forcing Gmail to use, 108–110
hyphen (-) operator, 24

I
IMAP (Internet Message Access Protocol)

exporting mail to, 200–201
integration into your existing mail accounts, 14

importing contacts, 178–179
importing your mail into Gmail

with Gmail Loader, 11–12
overview, 11

in:anywhere operator, 25
inbox

loading, 74–80
long code listings for, 223–238
parsing, 188–192
retrieval of, 121–122

Inbox folder, 196
individual message page with only one message, long code

listings for, 266–274
individual page, retrieving, 192–194
in:inbox operator, 25
inode, 219
inode messages, 220
in:spam operator, 25
installation

of FUSE, 215
of Gmailer, 118
of Greasemonkey, 91
of Libgmail, 132, 215
of Mail::Webmail::Gmail, 127

integration into your existing mail accounts
IMAP and, 14
importing your mail into Gmail

with Gmail Loader, 11–12
overview, 11

Pop mail access, setting up, 12–14
interface

bottom section of screen
HTML code for, 43–44
overview, 42–43

central activity area
HTML code for, 39–42
overview, 38

Delete button, adding, 101–108
with DOM inspector, 29–33
HTML code for

bottom section, 43–44
central activity area, 39–42
navigation menu, 36–38
top section, 34–35

navigation menu
HTML code for, 36–38
overview, 35–36

overview, 29–33
preloading, 54
top section of screen

HTML code for, 34–35
overview, 33–34

Internet Message Access Protocol (IMAP)
exporting mail to, 200–201
integration into your existing mail accounts, 14

in:trash operator, 25
is:read operator, 25
is:starred operator, 25
is:unread operator, 25

J
j keyboard shortcut, 18
Jones, Richard (GmailFS), 213

K
keyboard shortcuts

a key, 19
/ (backslash) key, 18
c key, 18
combo-keys shortcuts, 19
Enter key, 18
esc key, 19
! (exclamation) key, 19
f key, 19
g then a keys, 19
g then c keys, 19
g then d keys, 19
g then i keys, 19
g then s keys, 19
j key, 18
k key, 18
n key, 18
overview, 15–17
p key, 18
r key, 19
s key, 19
spam filters and, 17
tab then enter keys, 19
u key, 18
x key, 19
y key, 18
y then o keys, 19

L
label: operator, 24
label_list property, 123
label_new property, 123

279Index ■ H–L

24_59611x bindex.qxp 11/28/05 11:14 PM Page 279

labels
existing labels

certain label, retrieving messages from, 170–171
listing, 169–173
retrieving a labeled message and replying, 171–173

new labels
creating, 175
unlabeled messages, labeling, 173–174

overview, 80, 169
removing labels, 175–176

Lawton, Jim (mark read button), 115
Lefort, Jean-Yves (Mail Notification), 6
Libgmail

checking for mail, 139–140
downloading, 131
first message in inbox, reading, 134–135
getMessagesByFolder method, 133
getMessagesByLabel method, 133
getMessagesByQuery method, 133
getQuotaInfo method, 134
getUnreadMsgCount method, 134
gmtodo, 205
installation of, 132, 215
login method, 132
overview, 131
using, 132–135

libraries
Gmailer

array getAttachmentsOf() method, 120
array getStandardBox() method, 120
bool connect() method, 119
bool connectNoCookie() method, 119
bool fetch() method, 119
bool fetchBox() method, 119
bool fetchContact() method, 119
bool getAttachment() method, 120
bool isconnected() method, 119
bool performAction() method, 120
bool send() method, 120
box_name property, 123
box_pos property, 123
box_total property, 123
constants, 122–123
contacts_all property, 125
contacts_freq property, 125
conv_id property, 124
conv_labels property, 124
conv_starred property, 124
conv_title property, 124
conv_total property, 124
downloading, 118
first message in inbox, reading, 126
GM_ACT_APPLYLABEL constant, 122

GM_ACT_ARCHIVE constant, 122
GM_ACT_DELFOREVER constant, 123
GM_ACT_INBOX constant, 122
GM_ACT_READ constant, 122
GM_ACT_REMOVELABEL constant, 122
GM_ACT_SPAM constant, 122
GM_ACT_STAR constant, 122
GM_ACT_TRASH constant, 123
GM_ACT_UNREAD constant, 122
GM_ACT_UNSPAM constant, 122
GM_ACT_UNSTAR constant, 122
GM_ACT_UNTRASH constant, 123
GMailSnapshot get Snapshot()

method, 120
gmail_ver property, 123
GM_CONTACT constant, 122
GM_CONVERSATION constant, 122
GM_LABEL constant, 122
GM_QUERY constant, 122
GM_STANDARD constant, 122
GM_USE_COOKIE constant, 123
GM_USE_PHPSESSION constant, 123
have_invit property, 123
inbox, retrieval of, 121–122
installation of, 118
label_list property, 123
label_new property, 123
logging in with, 120–121
methods for, 119–120
overview, 118
quota_mb property, 123
quota_per property, 123
Snapshots, 123–124
std_box_new property, 123
string dump() method, 120
using, 119–126
void disconnect() method, 120
void setLoginInfo method, 119
void setProxy method, 119
void setSessionMethod method, 119

Libgmail
downloading, 131
first message in inbox, reading, 134–135
getMessagesByFolder method, 133
getMessagesByLabel method, 133
getMessagesByQuery method, 133
getQuotaInfo method, 134
getUnreadMsgCount method, 134
installation of, 132
login method, 132
overview, 131
using, 132–135

280 Index ■ L

24_59611x bindex.qxp 11/28/05 11:14 PM Page 280

Mail::Webmail::Gmail
delete_message() function, 131
downloading, 127
edit_archive() function, 129
edit_labels() function, 128–129
edit_star() function, 129
functions, 128–131
get_contacts() function, 130
get_indv_email() function, 130
get_labels() function, 128
get_mime_email() function, 130
installation of, 127
logging in, 128
overview, 127
send_message() function, 131
size_usage() function, 130
update_prefs() function, 129
using, 128–131

overview, 117
Perl

libwww-perl module, 136
MailFolder module, 136
MD5 module, 136
MIME-Base64 module, 136
MIME-tools module, 136
Utils.pm module, 135

for PHP coders, 118–126
libwww-perl module, 136
Lieuallen, Anthony (Delete button, adding), 101
listing existing labels, 169–173
listing mail and displaying chosen message, 153–155
Liyanage, Marc (OS X package), 62
login method, 132
login procedure

boot sequence and, 69–71, 75
with Gmailer, 120–121
Mail::Webmail::Gmail, 128

long code listings
boot sequence, edited, 243–257
CSS listing, complete, 238–242
HTML-only Gmail inbox source, 258–266
inbox, displaying, 223–238
individual message page with only one message,

266–274
Lyon, Mark (Gmail Loader), 11–12

M
Mac OS X

gCount, 5
GmailStatus, 5
mailto: link redirection, 8
new mail notification, 5

Mail Notification (Lefort), 6
MailFolder module, 136
Mail::Folder::Mbox module, 199
Mail::Internet module, 199
mailto: link redirection

in Mac OS X, 8
for Mozilla, 7–8
for multiplatform, 7–8
overview, 6
in Windows, 7

MailtoComposeInGmail, 110–114
MailtoComposeInGmail (Couvreur), 111
Mail::Webmail::Gmail

all data of a message, accessing, 152
AOL Instant Messenger, new mail count to, 144–149
attachments, 155
delete_message() function, 131
downloading, 127
edit_archive() function, 129
edit_labels() function, 128–129
edit_star() function, 129
functions, 128–131
get_contacts() function, 130
get_indv_email() function, 130
get_labels() function, 128
get_mime_email() function, 130
installation of, 127
listing mail and displaying chosen message, 153–155
logging in, 128
overview, 127
reading mail, 151–152
RSS feed of inbox, creating, 155–159
RSS, new mail count in, 142–144
sending mail and, 162–166
send_message() function, 131
size_usage() function, 130
update_prefs() function, 129
using, 128–131

mark read button, userscript for, 114–115
marking a group of e-mails, 23
Mbox format conversion, 199–200
MD5 module, 136
Medina, Matias Daniel (Goollery), 210
metadata, 219
methods for Gmailer, 119–120
Miller, Paul (gmtodo), 205
MIME-Base64 module, 136
MIME-tools module, 136
Mozilla, 7–8
multiplatforms, 7–8
multiple messages in inbox, 76–78
multiple signatures, userscript for, 115

281Index ■ L–M

24_59611x bindex.qxp 11/28/05 11:14 PM Page 281

N
n keyboard shortcut, 18
navigation menu

HTML code for, 36–38
overview, 35–36

Neale, Chris (URIid extension), 44
network traffic

boot sequence
log for, cleaning up, 68
steps for, 68–89
watching, preparing for, 67–68

overview, 62
Tcpflow

Gzip encoding, 64
heartbeat, Gmail’s unencoded, 65–66
new mail, checking for, 63–65
overview, 62

new labels
creating, 175
unlabeled messages, labeling, 173–174

new mail, checking for, 63–65
new mail notification

in Linux
Mail Notification, 6
overview, 5
Wmgmail, 6

in Mac OS X, 5
in Windows

Gmail Notifier, 4
Mozilla Gmail Notifier, 4
overview, 3

new style, applying, 44
newsreaders

overview, 205
torrent files, finding, 206

notepad application, using Gmail as, 207–208

O
object methods

abort() method, 59
getAllResponseHeaders() method, 59
getResponseHeader() method, 60
open() method, 60
send() method, 60
setRequestHeader() method, 60

object properties
onreadystatechange property, 60
readyState property, 60
responseText property, 60
responseXML property, 60
status property, 60
statusText property, 60

one message in inbox, 78–79
onreadystatechange property, 60
open() method, 60
OR operator, 24
OS X package (Liyanage), 62

P
p keyboard shortcut, 18
parentheses () operator, 25
Parparita, Mihai (style sheet), 51
password needed for sending mail, 161
Pederick, Chris (Web Developer Extension), 29
Perl

all data of a message, accessing, 152
AOL Instant Messenger, new mail count to, 144–149
attachments, 155
libwww-perl module, 136
listing mail and displaying chosen message, 153–155
MailFolder module, 136
MD5 module, 136
MIME-Base64 module, 136
MIME-tools module, 136
reading mail, 151–152
RSS feed of inbox, creating, 155–159
RSS, new mail count in, 137–139
sending mail and, 162–166
Utils.pm module, 135

photo gallery, using Gmail as storage for a, 210
PHP

checking for mail, 139–140
Goollery, 210
libraries for coders, 118–126

Pilgrim, Mark (GmailSecure), 108
plus addressing, 20–23
Pop mail access, setting up, 12–14
power tips

attachments, sending executables as, 23–24
filtering, 21
keyboard shortcuts

a key, 19
/ (backslash) key, 18
c key, 18
combo-keys shortcuts, 19
Enter key, 18
esc key, 19
! (exclamation) key, 19
f key, 19
g then a keys, 19
g then c keys, 19
g then d keys, 19
g then i keys, 19
g then s keys, 19

282 Index ■ N–P

24_59611x bindex.qxp 11/28/05 11:14 PM Page 282

j key, 18
k key, 18
n key, 18
overview, 15–17
p key, 18
r key, 19
s key, 19
spam filters and, 17
tab then enter keys, 19
u key, 18
x key, 19
y key, 18
y then o keys, 19

marking a group of e-mails, 23
plus addressing, 20–23
searching, advanced, 24–26

preloading interface, 54
Pygtk, 205
Python

checking for mail, 140–141
gmtodo, 205

Python 2.3, 213–214

Q
quota_mb property, 123
quota_per property, 123
quotes (“ “) operator, 25

R
r keyboard shortcut, 19
random signatures, userscript for, 115
reading mail

individual mail, 81–89
with Perl

all data of a message, accessing, 152
attachments, 155
listing mail and displaying chosen message,

153–155
overview, 151–152
RSS feed of inbox, creating, 155–159

Utils.pm module used for, 153–155
readyState property, 60
removing labels, 175–176
responseText property, 60
responseXML property, 60
retrieving a labeled message and replying, 171–173
RSS feeds

of inbox, creating, 155–159
new mail count in, 142–144
overview, 205
torrent files, finding, 206

S
s keyboard shortcut, 19
Savolainen, Pasi (Wmgmail), 6
scraping HTML::TokeParser, 186–194
search operators

after: operator, 25
bcc: operator, 25
before: operator, 25
cc: operator, 25
filename: operator, 25
from: operator, 24
has:attachment operator, 24
- (hyphen) operator, 24
in:anywhere operator, 25
in:inbox operator, 25
in:read operator, 25
in:spam operator, 25
in:starred operator, 25
in:trash operator, 25
in:unread operator, 25
label: operator, 24
OR operator, 24
overview, 26
() (parentheses) operator, 25
“ “ (quotes) operator, 25
subject: operator, 24
to: operator, 24
overview, 186

searching, advanced, 24–26
send() method, 60
sending mail

with Gmail SMTP
attachments, sending, 166
direct use of, 162
Mail::Webmail::Gmail and, 162–166
overview, 161–162
Perl and, 162–166
unread mail, reading and replying to, 163–166

password needed for, 161
send_message() function, 131
Sent Mail folder, 196
setRequestHeader() method, 60
size_usage() function, 130
Snapshots, 123–124
spam filters, 17, 209–210
Spam folder, 196
Spindel, Nathan (gCount), 5
Starred folder, 196
status property, 60
statusText property, 60
std_box_new property, 123
storage space, 80

283Index ■ P–S

24_59611x bindex.qxp 11/28/05 11:14 PM Page 283

string dump() method, 120
style sheets, 45–51
style sheets (Parparita), 51
subject: operator, 24

T
tab then enter keyboard shortcut, 19
Tcpflow

Gzip encoding, 64
heartbeat, Gmail’s unencoded, 65–66
new mail, checking for, 63–65
overview, 62
thread, retrieving a, 83–88
trace from reading a message, 81–83

Tcpflow (Elson), 62
text-editing, 208
text file, exporting mail as, 197–198
threads

and HTML::TokeParser, 195
retrieving, 83–88

to: operator, 24
to-do lists

filters and, 203–204
gmtodo, using, 205
overview, 203

top section of screen
HTML code for, 34–35
overview, 33–34

torrent files, finding, 206
trace from reading a message, 81–83
Trash folder, 196

U
u keyboard shortcut, 18
unlabeled messages, labeling, 173–174
unread mail, reading and replying to, 163–166
update_prefs() function, 129
URIid extension (Neale), 44
userscripts

Bloglines, displaying, 92–100
Delete button, adding, 101–108
GmailSecure, 108–110
hide invites, 115

how it works, 100–101
HTTPS, forcing Gmail to use, 108–110
installation of, 92
MailtoComposeInGmail, 110–114
mark read button, 114–115
multiple signatures, 115
random signatures, 115

Utils.pm module, 135, 153–155

V
vCards, 181–182
viewing HTML version of Gmail, 183–185
Villegas, Andres (Goollery), 210
void disconnect() method, 120
void setLoginInfo method, 119
void setProxy method, 119
void setSessionMethod method, 119

W
Web Developer Extension (Pederick), 29
WebMailCompose (Brown), 7
Windows

Gmail Notifier, 4
mailto: link redirection, 7
Mozilla Gmail Notifier, 4
new mail notification, 3–4
overview, 3

Wirz, Martin (Goollery), 210
Wmgmail (Savolainen), 6

X
x keyboard shortcut, 19
XMLHttpRequest

within Gmail code, 61
HTML code for, 56–59
object methods, 59–60
object properties, 60
overview, 55
using yourself, 55–60

Y
y keyboard shortcut, 18
y then o keyboard shortcut, 19

284 Index ■ S–Y

24_59611x bindex.qxp 11/28/05 11:14 PM Page 284

Magazine

The most hardco
re technol

ogy magazine

out there,
 for the d

o-it-yourse
lfers who

jump at the c
hance to

be involve
d with

the latest a
nd greates

t technolog
y products

.

AAVVAILABLE NOW ON NEWSSTAILABLE NOW ON NEWSSTANDS ANDS

EVEREVERYWHERE!YWHERE!

IF YOU ENJOYED THIS EXTREMETECH BOOK YOU’LL LOVE...

25_59611x et bob.qxp 11/28/05 11:14 PM Page 289

How to take it
to the Extreme.

Available wherever books are sold.
Wiley and the Wiley logo are trademarks of John Wiley & Sons, Inc. and/or its affiliates. The ExtremeTech logo is a trademark of Ziff
Davis Publishing Holdings, Inc. Used under license. All other trademarks are the property of their respective owners.

™

If you enjoyed this book,
there are many others like
it for you. From Podcasting
to Hacking Firefox,
ExtremeTech books can
fulfill your urge to hack,
tweak and modify,
providing the tech tips and
tricks readers need to get
the most out of their
hi-tech lives.

25_59611x et bob.qxp 11/28/05 11:14 PM Page 290

