

Digital Forensics with
Open Source Tools

This page intentionally left blank

Digital Forensics with
Open Source Tools

Cory Altheide

Harlan Carvey

Technical Editor

Ray Davidson

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Syngress is an imprint of Elsevier

Acquiring Editor: Angelina Ward
Development Editor: Heather Scherer
Project Manager: Andre Cuello
Designer: Joanne Blank

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

© 2011 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further
 information about the Publisher’s permissions policies and our arrangements with organizations such
as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
 Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods or professional practices, may become
 necessary. Practitioners and researchers must always rely on their own experience and knowledge
in evaluating and using any information or methods described herein. In using such information or
 methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-586-8

Printed in the United States of America

11 12 13 14 10 9 8 7 6 5 4 3 2 1

Typeset by: diacriTech, India

For information on all Syngress publications visit our website at www.syngress.com

Contents

About the Authors ...xi
Acknowledgments ...xiii
Introduction ..xv

CHAPTER 1 Digital Forensics with Open Source Tools ��������������������������������� 1
 Welcome to “Digital Forensics with Open Source Tools”1
 What Is “Digital Forensics?” ..1

 Goals of Forensic Analysis ...2
 The Digital Forensics Process ..3

 What Is “Open Source?” ...4
 “Free” vs. “Open”...4
 Open Source Licenses ..5

 Benefits of Open Source Tools ..5
 Education ..5
 Portability and Flexibility ...6
 Price ..6
 Ground Truth ..7

 Summary ...7
 References ...8

CHAPTER 2 Open Source Examination Platform �� 9
 Preparing the Examination System ...9

 Building Software...9
 Installing Interpreters ...10
 Working with Image Files ..10
 Working with File Systems ..10

 Using Linux as the Host ..10
 Extracting Software ..11
 GNU Build System ...12
 Version Control Systems ..16
 Installing Interpreters ...16
 Working with Images ...19

 Using Windows as the Host ..26
 Building Software...26
 Installing Interpreters ...27
 Working with Images ...31
 Working with File Systems ..34

 Summary ...37
 References ...37

vi Contents

CHAPTER 3 Disk and File System Analysis ��� 39
 Media Analysis Concepts ..39

 File System Abstraction Model ..40
 The Sleuth Kit ...41

 Installing the Sleuth Kit ..41
 Sleuth Kit Tools ..42

 Partitioning and Disk Layouts ...52
 Partition Identification and Recovery52
 Redundant Array of Inexpensive Disks53

 Special Containers ...54
 Virtual Machine Disk Images ...54
 Forensic Containers ..55

 Hashing ...56
 Carving ..58

 Foremost ...59
 Forensic Imaging ...61

 Deleted Data ...61
 File Slack ..62
 dd ..64
 dcfldd ..65
 dc3dd ..66

 Summary ...67
 References ...67

CHAPTER 4 Windows Systems and Artifacts ��� 69
 Introduction ...69
 Windows File Systems ..69

 File Allocation Table ..69
 New Technology File System ...71
 File System Summary ..77

 Registry ...78
 Event Logs ..84
 Prefetch Files ...87
 Shortcut Files ..89
 Windows Executables ...89
 Summary ...93
 References ...93

CHAPTER 5 Linux Systems and Artifacts ��� 95
 Introduction ...95
 Linux File Systems ..95

viiContents

 File System Layer ...96
 File Name Layer ...99
 Metadata Layer ...101
 Data Unit Layer ..103
 Journal Tools ..103
 Deleted Data ...103
 Linux Logical Volume Manager ...104

 Linux Boot Process and Services ..105
 System V ..105
 BSD ..107

 Linux System Organization and Artifacts107
 Partitioning ...107
 Filesystem Hierarchy ..107
 Ownership and Permissions ...108
 File Attributes ...109
 Hidden Files ...109
 /tmp ...109

 User Accounts ...110
 Home Directories ..112

 Shell History ...113
 ssh ...113
 GNOME Windows Manager Artifacts114

 Logs ...116
 User Activity Logs ...116
 Syslog ...117
 Command Line Log Processing ...119

 Scheduling Tasks ...121
 Summary ...121
 References ...121

CHAPTER 6 Mac OS X Systems and Artifacts �� 123
 Introduction ...123
 OS X File System Artifacts ...123

 HFS+ Structures ...123
 OS X System Artifacts ..129

 Property Lists ...129
 Bundles ...130
 System Startup and Services ..130
 Kexts ...131
 Network Configuration ...131
 Hidden Directories ...132

viii Contents

 Installed Applications ...133
 Swap and Hibernation dataData ...133
 System Logs ...133

 User Artifacts ..134
 Home Directories ...134

 Summary ...141
 References ...141

CHAPTER 7 Internet Artifacts ��� 143
 Introduction ...143
 Browser Artifacts ..143

 Internet Explorer...144
 Firefox ..147
 Chrome ...154
 Safari ..156

 Mail Artifacts ..161
 Personal Storage Table ...161
 mbox and maildir ...163

 Summary ...166
 References ...166

CHAPTER 8 File Analysis ��� 169
 File Analysis Concepts ..169

 Content Identification ...170
 Content Examination ..171
 Metadata Extraction ...172

 Images ...175
 JPEG ...178
 GIF ...183
 PNG ..184
 TIFF ..185

 Audio ...185
 WAV ...185
 MPEG-3/MP3 ...186
 MPEG-4 Audio (AAC/M4A) ...186
 ASF/WMA ...188

 Video ...189
 MPEG-1 and MPEG-2 ...189
 MPEG-4 Video (MP4)..189
 AVI ...190
 ASF/WMV ...190

ixContents

 MOV (Quicktime) ..191
 MKV ...192

 Archives ..192
 ZIP ..192
 RAR ..193
 7-zip ..195
 TAR, GZIP, and BZIP2 ..195

 Documents...196
 OLE Compound Files (Office Documents)197
 Office Open XML ..201
 OpenDocument Format ..204
 Rich Text Format ..205
 PDF ...206

 Summary ...210
 References ...210

CHAPTER 9 Automating Analysis and Extending Capabilities ������������������� 211
 Introduction ...211
 Graphical Investigation Environments ..211

 PyFLAG ...212
 Digital Forensics Framework ...221

 Automating Artifact Extraction ...229
 Fiwalk ...229

 Timelines ...231
 Relative Times ..233
 Inferred Times ..234
 Embedded Times ..236
 Periodicity ..236
 Frequency Patterns and Outliers (Least Frequency

of Occurrence) ...237
 Summary ...239
 References ...239

APPEnDIX A Free, non-open Tools of note �� 241
 Introduction ...241
 Chapter 3: Disk and File System Analysis242

 FTK Imager ..242
 ProDiscover Free ..242

 Chapter 4: Windows Systems and Artifacts244
 Windows File Analysis ...244
 Event Log Explorer ..244
 Log Parser ...245

x Contents

 Chapter 7: Internet Artifacts ..247
 NirSoft Tools ..247
 Woanware Tools ...247

 Chapter 8: File Analysis ..248
 Mitec.cz: Structured Storage Viewer248
 OffVis ...249
 FileInsight ...250

 Chapter 9: Automating Analysis and Extending Capabilities.....250
 Mandiant: Highlighter ..250
 CaseNotes ...252

 Validation and Testing Resources ...253
 Digital Corpora ...253
 Digital Forensics Tool Testing Images253
 Electronic Discovery Reference Model..................................254
 Digital Forensics Research Workshop Challenges254
 Additional Images ..254

 References ...255

Index �� 257

xi

About the Authors

Cory Altheide is a security engineer at Google, focused on forensics and incident
response. Prior to Google, Cory was a principal consultant with MANDIANT, an
information security consulting firm that works with the Fortune 500, the defense
industrial base, and banks of the world to secure their networks and combat cyber
crime. In this role he responded to numerous incidents for a variety of clients in
addition to developing and delivering training to corporate and law enforcement
 customers.

Cory also worked as the senior network forensics specialist in the National
Nuclear Security Administration’s Information Assurance Response Center (NNSA
IARC). In this capacity he analyzed potentially hostile code, performed wireless
assessments of Department of Energy facilities, and researched new forensic tech-
niques. He also developed and presented hands-on forensics training for various DoE
entities and worked closely with members of the Southern Nevada Cyber Crimes
Task Force to develop their skills in examining less common digital media.

Cory has authored several papers for the computer forensics journal Digital
Investigation and was a contributing author for UNIX and Linux Forensic Analysis
(2008) and The Handbook of Digital Forensics and Investigation (2010). Addition-
ally, Cory is a recurring member of the program committee of the Digital Forensics
Research Workshop.

Harlan Carvey (CISSP) is a vice president of Advanced Security Projects with
 Terremark Worldwide, Inc. Terremark is a leading global provider of IT infrastructure
and “cloud computing” services based in Miami, Florida. Harlan is a key contributor
to the Engagement Services practice, providing disk forensics analysis, consulting,
and training services to both internal and external customers. Harlan has provided
forensic analysis services for the hospitality industry and financial institutions, as
well as federal government and law enforcement agencies. Harlan’s primary areas of
interest include research and development of novel analysis solutions, with a focus on
Windows platforms. Harlan holds a bachelor’s degree in electrical engineering from
the Virginia Military Institute and a master’s degree in the same discipline from the
Naval Postgraduate School. Harlan resides in Northern Virginia with his family.

 This page intentionally left blank

xiii

Acknowledgments

Cory Altheide
First off I want to thank Harlan Carvey. In addition to serving as my coauthor and
sounding board, he has been a good friend and colleague for many years. He has
proven to be one of the most consistently knowledgeable and helpful individuals
I have met in the field. Harlan, thanks again for adding your considerable expertise to
the book and for never failing to buy me a beer every time I see you.

I also thank Ray Davidson for his work as technical editor. His early insights and
commentary helped focus the book and made me target my subsequent writing on
the intended audience.

Tremendous thanks go out to the “usual suspects” that make the open source
forensics world the wonderful place it is. First, thank you to Wietse Venema and Dan
Farmer for creating open source forensics with “The Coroner’s Toolkit.” Thanks to
Brian Carrier for picking up where they left off and carrying the torch to this day.
Simson Garfinkel, you have my gratitude for providing the invaluable resource that is
the Digital Forensics Corpora. Special thanks to Eoghan Casey, who first encouraged
me to share my knowledge with the community many years ago.

To my parents, Steve and Jeanine Altheide, thank you for buying my first Com-
modore-64 (and the second… and the third). Thanks to my brother Jeremy Altheide
and the Old Heathen Brewing Company for producing some of the finest beers
around… someday.

I express infinite gratitude to my incredible wife Jamie Altheide for her never-
ending patience, love, and support during the research and writing of this book.
Finally, I thank my daughters Winter and Lily for reminding me every day that I will
never have all the answers, and that’s okay.

Harlan Carvey
I begin by thanking God for the many blessings He’s given me in my life, the first of
which has been my family. I try to thank Him daily, but I find myself thinking that
that’s not nearly enough. A man’s achievements are often not his alone, and in my
heart, being able to write books like this is a gift and a blessing in many ways.

I thank my true love and the light of my life, Terri, and my stepdaughter, Kylie.
Both of these wonderful ladies have put up with my antics yet again (intently staring
off into space, scribbling in the air, and, of course, my excellent imitations taken from
some of the movies we’ve seen), and I thank you both as much for your patience as
for being there for me when I turned away from the keyboard. It can’t be easy to have
a nerd like me in your life, but I do thank you both for the opportunity to “put pen to
paper” and get all of this stuff out of my head. Yes, that was a John Byrne reference.

Finally, whenever you meet Cory, give him a thundering round of applause. This
book was his idea, and he graciously asked me to assist. I, of course, jumped at the
chance to work with him again. Thanks, Cory.

This page intentionally left blank

xv

Introduction

InTEnDED AuDIEnCE
When writing a technical book, one of the first questions the authors must answer
is “Who is your audience?” The authors must then keep this question in mind at all
times when writing. While it is hoped that this book is useful to everyone that reads
it, the intended audience is primarily two groups.

The first group is new forensic practitioners. This could range from students who
are brand new to the world of digital forensics, to active practitioners that are still
early in their careers, to seasoned system administrators looking to make a career
change. While this book is not a singular, complete compendium of all the forensic
knowledge you will need to be successful, it is, hopefully, enough to get you started.

The second audience is experienced digital forensics practitioners new to open
source tools. This is a fairly large audience, as commercial, proprietary tools have
had a nearly exhaustive hold on working forensic examiners. Many examiners oper-
ating today are reliant upon a single commercial vendor to supply the bulk of their
examination capabilities. They rely on one vendor for their core forensic platform
and may have a handful of other commercial tools used for specific tasks that their
main tool does not perform (or does not perform well). These experienced examiners
who have little or no experience with open source tools will also hopefully benefit
greatly from the content of this book.

LAyOuT OF THE BOOk
Beyond the introductory chapter that follows, the rest of this book is divided up into
eight chapters and one Appendix.

Chapter 2 discusses the Open Source Examination Platform. We walk through
all the prerequisites required to start compiling source code into executable code,
install interpreters, and ensure we have a proper environment to build software on
Ubuntu and Windows. We also install a Linux emulation environment on Windows
along with some additional packages to bring Windows closer to “feature parity”
with Linux for our purposes.

Chapter 3 details Disk and File System Analysis using the Sleuth Kit. The
Sleuth Kit is the premier open source file system forensic analysis framework. We
explain use of the Sleuth Kit and the fundamentals of media analysis, disk and par-
tition structures, and file system concepts. We also review additional core digital
forensics topics such as hashing and the creation of forensic images.

Chapter 4 begins our operating system-specific examination chapters with
 Windows Systems and Artifacts. We cover analysis of FAT and NTFS file systems,
including internal structures of the NTFS Master File Table, extraction and analysis
of Registry hives, event logs, and other Windows-specific artifacts. Finally, because

xvi Introduction

malware-related intrusion cases are becoming more and more prevalent, we discuss
some of the artifacts that can be retrieved from Windows executable files.

We continue on to Chapter 5, Linux Systems and Artifacts, where we dis-
cuss analysis of the most common Linux file systems (Ext2 and 3) and identifi-
cation, extraction, and analysis of artifacts found on Linux servers and desktops.
System level artifacts include items involved in the Linux boot process, service
control scripts, and user account management. User-generated artifacts include
Linux graphical user environment traces indicating recently opened files, mounted
 volumes, and more.

Chapter 6 is the final operating system-specific chapter, in which we examine
Mac OS X Systems and Artifacts. We examine the HFS+ file system using the
Sleuth Kit as well as an HFS-specific tool, HFSXplorer. We also analyze the Property
List files that make up the bulk of OS X configuration information and user artifacts.

Chapter 7 reviews Internet Artifacts. Internet Explorer, Mozilla Firefox, Apple
Safari, and Google Chrome artifacts are processed and analyzed, along with Outlook,
Maildir, and mbox formatted local mail.

Chapter 8 is all about File Analysis. This chapter covers the analysis of files
that aren’t necessarily bound to a single system or operating system—documents,
graphics files, videos, and more. Analysis of these types of files can be a big part of
any investigation, and as these files move frequently between systems, many have the
chance to carry traces of their source system with them. In addition, many of these
file formats contain embedded information that can persist beyond the destruction of
the file system or any other malicious tampering this side of wiping.

Chapter 9 covers a range of topics under the themes of Automating Analysis
and Extending Capabilities. We discuss the PyFLAG and DFF graphical inves-
tigation environments. We also review the fiwalk library designed to take the pain
out of automated forensic data extraction. Additionally, we discuss the generation
and analysis of timelines, along with some alternative ways to think about temporal
analysis during an examination.

The Appendix discusses some non-open source tools that fill some niches not
yet covered by open source tools. These tools are all available free of charge, but are
not provided as open source software, and as such did not fit directly into the main
content of the book. That said, the authors find these tools incredibly valuable and
would be remiss in not including some discussion of them.

WHAT IS nOT COvERED
While it is our goal to provide a book suitable for novice-to-intermediate examiners,
if you do not have any experience with Linux at the command line, you may find it
difficult to follow along with the tool use examples. While very few of the tools cov-
ered are Linux specific, most of the tool installation and subsequent usage examples
are performed from a Linux console.

xviiIntroduction

We focus exclusively on dead drive forensic analysis—media and images of sys-
tems that are offline. Collection and analysis of volatile data from running systems
are not covered. Outside of the Linux platform, current tools for performing these
tasks are largely closed source. That said, much of the analysis we go through is
equally applicable to artifacts and items recovered from live systems.

Low-level detail of file system internals is intentionally omitted as this material is
covered quite well in existing works. Likewise the development of open source tools
is not discussed at length here. This is a book that first and foremost is concerned
with the operational use of existing tools by forensic practitioners.

Outside of the Appendix, no commercial, proprietary, closed source, or otherwise
restricted software is used.

 This page intentionally left blank

CHAPTER

1

Digital Forensics with
Open Source Tools

InFORMATIOn In THIS CHAPTER

• Welcome to “Digital Forensics with Open Source Tools”

• What Is “Digital Forensics?”

• What Is “Open Source?”

• Benefits of Open Source Tools

WELCOME TO “DIgITAL FOREnSICS WITH
OPEn SOuRCE TOOLS”
In digital forensics, we rely upon our expertise as examiners to interpret data and
information retrieved by our tools. To provide findings, we must be able to trust our
tools. When we use closed source tools exclusively, we will always have a veil of
abstraction between our minds and the truth that is impossible to eliminate.

We wrote this book to fill several needs. First, we wanted to provide a work that
demonstrated the full capabilities of open source forensics tools. Many examiners
that are aware of and that use open source tools are not aware that you can actually
perform a complete investigation using solely open source tools. Second, we wanted
to shine a light on the persistence and availability (and subsequent examination) of a
wide variety of digital artifacts. It is our sincere hope that the reader learns to under-
stand the wealth of information that is available for use in a forensic examination.

To continue further, we must define what we mean by “Digital Forensics” and
what we mean by “Open Source.”

WHAT IS “DIgITAL FOREnSICS?”
At the first Digital Forensics Research Workshop (DFRWS) in 2001, digital forensics
was defined as:

The use of scientifically derived and proven methods toward the preservation,
collection, validation, identification, analysis, interpretation, documentation and

1

2 CHAPTER 1 Digital Forensics with Open Source Tools

presentation of digital evidence derived from digital sources for the purpose of
facilitating or furthering the reconstruction of events found to be criminal, or
helping to anticipate unauthorized actions shown to be disruptive to planned
operations [1].

While digital forensics techniques are used in more contexts than just criminal
investigations, the principles and procedures are more or less the same no matter the
investigation. While the investigation type may vary widely, the sources of evidence gen-
erally do not. Digital forensic examinations use computer-generated data as their source.
 Historically this has been limited to magnetic and optical storage media, but increasingly
snapshots of memory from running systems are the subjects of examination.

Digital forensics is alternately (and simultaneously!) described as an art and a
science. In Forensic Discovery, Wietse Venema and Dan Farmer make the argument
that at times the examiner acts as a digital archaeologist and, at other times, a digital
geologist.

Digital archaeology is about the direct effects from user activity, such as file con-
tents, file access time stamps, information from deleted files, and network flow
logs. … Digital geology is about autonomous processes that users have no direct
control over, such as the allocation and recycling of disk blocks, file ID numbers,
memory pages or process ID numbers [2].

This mental model of digital forensics may be more apropos than the “digital
ballistics” metaphor that has been used historically. No one ever faults an archaeolo-
gist for working on the original copy of a 4000-year-old pyramid, for example. Like
archaeology and anthropology, digital forensics combines elements from “hard” or
natural science with elements from “soft” or social science.

Many have made the suggestion that the dichotomy of the art and science of
forensic analysis is not a paradox at all, but simply an apparent inconsistency arising
from the conflation of the two aspects of the practice: the science of forensics com-
bined with the art of investigation. Applying scientific method and deductive reason-
ing to data is the science—interpreting these data to reconstruct an event is the art.

On his Web site, Brian Carrier makes the argument that referring to the practice
as “digital forensics” may be partially to blame for some of this. While traditional
crime scene forensic analysts are tasked with answering very discrete questions
about subsets of evidence posed to them by detectives, digital forensic examiners
often wear both hats. Carrier prefers the term “digital forensic investigation” to make
this distinction clear [3].

goals of Forensic Analysis
The goal of any given forensic examination is to find facts, and via these facts to rec-
reate the truth of an event. The examiner reveals the truth of an event by discovering
and exposing the remnants of the event that have been left on the system. In keeping
with the digital archaeologist metaphor, these remnants are known as artifacts. These
remnants are sometimes referred to as evidence. As the authors deal frequently with

3What Is “Digital Forensics?”

lawyers in writing, we prefer to avoid overusing the term evidence due to the loaded
legal connotations. Evidence is something to be used during a legal proceeding, and
using this term loosely may get an examiner into trouble. Artifacts are traces left
behind due to activities and events, which can be innocuous, or not.

As stated by Locard’s exchange principle, “with contact between two items, there
will be an exchange [4].” This simple statement is the fundamental principle at the
core of evidence dynamics and indeed all of digital forensics. Specific to digital
forensics, this means that an action taken by an actor on a computer system will
leave traces of that activity on the system. Very simple actions may simply cause
registers to change in the processor. More complex actions have a greater likelihood
of creating longer-lasting impressions to the system, but even simple, discreet tasks
can create artifacts. To use a real-world crime scene investigation analogy, kicking
open a door and picking a lock will both leave artifacts of their actions (a splintered
door frame and microscopic abrasions on the tumblers, respectively). Even the act of
cleaning up artifacts can leave additional artifacts—the digital equivalent to the smell
of bleach at a physical crime scene that has been “washed.”

It is important to reiterate the job of the examiner: to determine truth. Every
examination should begin with a hypothesis. Examples include “this computer was
hacked into,” “my spouse has been having an affair,” or “this computer was used
to steal the garbage file.” The examiner’s task is not to prove these assertions. The
examiner’s task is to uncover artifacts that indicate the hypothesis to be either valid
or not valid. In the legal realm, these would be referred to as inculpatory and exculpa-
tory evidence, respectively.

An additional hitch is introduced due to the ease with which items in the digi-
tal realm can be manipulated (or fabricated entirely). In many investigations, the
examiner must determine whether or not the digital evidence is consistent with the
processes and systems that were purported to have generated it. In some cases, deter-
mining the consistency of the digital evidence is the sole purpose of an examination.

The Digital Forensics Process
The process of digital forensics can be broken down into three categories of activity:
acquisition, analysis, and presentation.

• Acquisition refers to the collection of digital media to be examined. Depending
on the type of examination, these can be physical hard drives, optical media, stor-
age cards from digital cameras, mobile phones, chips from embedded devices, or
even single document files. In any case, media to be examined should be treated
delicately. At a minimum the acquisition process should consist of creating a
duplicate of the original media (the working copy) as well as maintaining good
records of all actions taken with any original media.

• Analysis refers to the actual media examination—the “identification, analysis,
and interpretation” items from the DFRWS 2001 definition. Identification con-
sists of locating items or items present in the media in question and then further
reducing this set to items or artifacts of interest. These items are then subjected

4 CHAPTER 1 Digital Forensics with Open Source Tools

to the appropriate analysis. This can be file system analysis, file content exami-
nation, log analysis, statistical analysis, or any number of other types of review.
Finally, the examiner interprets results of this analysis based on the examiner’s
training, expertise, experimentation, and experience.

• Presentation refers to the process by which the examiner shares results of the
analysis phase with the interested party or parties. This consists of generating a
report of actions taken by the examiner, artifacts uncovered, and the meaning of
those artifacts. The presentation phase can also include the examiner defending
these findings under challenge.

Note that findings from the analysis phase can drive additional acquisitions, each
of which will generate additional analyses, etc. This feedback loop can continue for
numerous cycles given an extensive network compromise or a long-running criminal
investigation.

This book deals almost exclusively with the analysis phase of the process,
although basic acquisition of digital media is discussed.

WHAT IS “OPEn SOuRCE?”
Generically, “open source” means just that: the source code is open and available
for review. However, just because you can view the source code doesn’t mean you
have license to do anything else with it. The Open Source Initiative has created a
formal definition that lays out the requirements for a software license to be truly open
source. In a nutshell, to be considered open source, a piece of software must be freely
redistributable, must provide access to the source code, must allow the end user to
modify the source code at will, and must not restrict the end use of the software. For
more detail, see the full definition at the Open Source Initiative’s site [5].

“Free” vs� “Open”
Due to the overloading of the word “free” in the English language, confusion about
what “free” software is can arise. Software available free of charge (gratis) is not
necessarily free from restriction (libre). In the open source community, “free soft-
ware” generally means software considered “open source” and without restriction, in
addition to usually being available at no cost. This is in contrast to various “freeware”
applications generally found on Windows system available solely in binary, execut-
able format but at no cost.

nOTE
Free for Some
Note that under the Open Source Initiative’s definition, any license that restricts the use of
software for certain tasks or that restricts distribution among certain groups cannot be an
open source license. This includes the “Law Enforcement Only” or “Non-Commercial Use”
restrictions commonly placed on freeware tools in the digital forensics community.

5Benefits of Open Source Tools

This core material of this book is focused on the use of open source software to
perform digital forensic examinations. “Freeware” closed source applications that
perform a function not met by any available open source tools or that are otherwise
highly useful are discussed in the Appendix.

Open Source Licenses
At the time of this writing, there are 58 licenses recognized as “Open Source” by the
Open Source Initiative [6]. Since this is a book about the use of open source software
and not a book about the intricacies of software licensing, we briefly discuss the most
commonly used open source licenses. The two most commonly used licenses are the
GNU Public License (GPL) and the Berkeley Software Distribution License (BSD).
To grossly simplify, the core difference between these two licenses is that the GPL
requires that any modifications made to GPL code that is then incorporated into
distributed compiled software be made available in source form as well. The BSD
license does not have this requirement, instead only asking for acknowledgment that
the distributed software contains code from a BSD-licensed project.

This means that a widget vendor using GPL-licensed code in their widget con-
troller code must provide customers that purchase their widgets the source code
upon request. If the widget was driven using BSD license software, this would not
be necessary. In other words, the GPL favors the rights of the original producer
of the code, while the BSD license favors the rights of the user or consumer of
the code. Because of this requirement, the GPL is known as a copyleft license (a
play on “copyright”). The BSD license is what is known as a permissive license.
Most permissive licenses are considered GPL compatible because they give the
end user authority over what he or she does with the code, including using it
in derivative works that are GPL licensed. Additional popular GPL-compatible
licenses include the Apache Public License (used by Apache Foundation projects)
and the X11/MIT License.

BEnEFITS OF OPEn SOuRCE TOOLS
There are great many passionate screeds about the benefits of open source software,
the ethics of software licensing, and the evils of proprietary software. We will not
repeat them here, but we will outline a few of the most compelling reasons to use
open source tools that are specific to digital forensics.

Education
When the authors entered the digital forensics field, there were two routes to becom-
ing an examiner. The first was via a law enforcement or military career, and the
second was to teach yourself (with the authors representing each of these routes).
In either scenario, one of the best ways to learn was by using freely available tools

6 CHAPTER 1 Digital Forensics with Open Source Tools

(and in the self-taught scenario, the only way!). Today, there are numerous college
programs and training programs available to an aspiring examiner, but there is still
something to be said for learning by doing. The authors have been using open source
tools throughout their careers in digital forensics, and we both have no doubt that we
are far better examiners than we would have been otherwise.

Using open source tools to learn digital forensics has several benefits. First,
open source tools innately “show their work.” You can execute the tool, examine
the options and output, and finally examine the code that produced the output to
understand the logic behind the tool’s operation. For the purposes of small examina-
tion scenarios, you can run the tools on any old hardware you have access to—no
multithousand dollar deluxe forensic workstation required. Finally, you also have
access to a dedicated community of examiners, developers, and enthusiasts ready to
help you—provided you’ve done a modicum of legwork before firing off questions
answered trivially by a Google search.

Portability and Flexibility
Another key benefit to the tools covered in this book by and large is that they are all
portable and flexible. By portable we mean that you can easily take your toolkit with
you as you move from one system to another, from one operating system to another, or
from one job to another. Unless you personally license an expensive proprietary tool,
your toolkit may not come with you if you move from one company to another. Any
product-specific expertise you built up could end up worthless. If you are currently
employed in law enforcement, any law enforcement–only tools you are currently using
won’t be available to you should you decide to go into the private sector.

If portability means you can choose where you use your tools, flexibility means
you can choose how you use your tools. You can use open source tools on your local
system or you can install them on a remote server and use them over a remote shell.
You can install them on a single system or you can install them on thousands of
systems. You can do all this without asking the software provider for permissions,
without filling out a purchase order, and without plugging a thousand hardware copy
protection dongles into a thousand machines.

Price
In addition to being open source, all of the tools covered in this work are free of
cost. This is great for individuals looking to learn forensics on their own, students
taking formal coursework in digital forensics, or examiners looking to build a digital
forensics capability on a budget. This is also a great benefit for anyone already using
a full complement of commercial tools. Adding a set of open source tools to your
toolkit will usually cost you nothing, save for a bit of time. Even if you continue
using proprietary, commercial tools on a daily basis, you can use the tools in this
book as an adjunct to cover gaps in your tools coverage or to validate or calibrate
your tools’ findings and operation.

7Summary

ground Truth
Arguably the biggest benefit open source software provides to the examiner is the
code itself. As renowned philosopher Alfred Korzybski once said, “the map is not the
territory.” Being able to review the source code that you then compile into a work-
ing program is invaluable. If you have the skill and desire, you can make changes to
the function of the code. You can verify fixes and changes between versions directly
without having to simply trust what your software provider is telling you.

Using the Sleuth Kit as an example, we have no less than three different ways to
review bug fixes in the software. First, we can review the change log files included
with each release. Most proprietary software vendors will include something similar
when a new version is released. Second, we can review the freely accessible bug
trackers maintained at the Sleuth Kit project site [7]. Most proprietary forensic soft-
ware vendors will not provide open access to their full list of bugs and fixes. Finally,
we can take the previous version of the source code and compare it with the newer
version automatically via the diff command, highlighting exactly which changes
have occurred. The first option is reading the map. The last option is surveying the
territory.

Additionally, with open source software the function of the code can be
reviewed directly. The authors have had experiences where proprietary forensic
products have produced demonstrably erroneous results, but these tests were per-
formed in a “black box” scenario. Known input files were generated and processed,
and precalculated expected results compared to the output from the proprietary
tool, and false negatives were discovered. The authors had to bypass the tool’s
internal logic and implement correct function externally. Had the tool been open
source, the error in processing could have been identified directly in the code,
fixed, and subsequently fixed in the main code repository, identifying and solving
the problem for all users of the code.

In the previous scenario, the lack of access to the source code acted as an addi-
tional layer of abstraction between the examiners and the truth. Each layer of abstrac-
tion is a possible source for error or distortion. Since the goal of the examiner is to
uncover truth, it is in the examiner’s interest to ensure that the possible layers of
abstraction are minimized. If your findings are ever brought into question, being
able to show the actual source code used to generate data you interpreted could be
incredibly valuable.

SuMMARy
The world of digital forensics has a long history of relying heavily on closed-source
tools.

Armed with an understanding of what we are doing, why we are doing it, and
why we choose to use the tools we do, we can move on to the next chapter and begin
building an open source examination platform.

8 CHAPTER 1 Digital Forensics with Open Source Tools

References
[1] A Road Map for Digital Forensic Research, Digital Forensics Research Workshop, 2001

(p. 16), (accessed 05.01.11).
[2] Dan Farmer & Wietse Venema, Forensic Discovery—Chapter 1: The spirit of forensic

discovery. http://www.porcupine.org/forensics/forensic-discovery/chapter1.html,
(accessed 05.01.11).

[3] Digital Investigation and Digital Forensic Basics. http://www.digital-evidence.org/
di_basics.html.

[4] W. Jerry Chisum, & Brent E. Turvey, Profiling 1(1) (2000). http://www.profiling.org/
journal/vol1_no1/jbp_ed_january2000_1-1.html, (accessed 05.01.11).

[5] The Open Source Definition|Open Source Initiative, http://opensource.org/docs/osd.
[6] Open Source Licenses by Category|Open Source Initiative. http://opensource.org/licenses/

category.
[7] Trackers—SleuthKitWiki. http://wiki.sleuthkit.org/index.php?title=Trackers. (accessed

07.01.2011).

CHAPTER

9

Open Source Examination
Platform

InFORMATIOn In THIS CHAPTER

• Preparing the Examination System

• Using Linux as the Host

• Using Windows as the Host

PREPARIng THE EXAMInATIOn SySTEM
Before using many of the open source forensics tools explored in the chapters to
come, you will need to ensure that your system is prepared to build said tools. As
they are “open source,” the bulk of these tools are distributed primarily in source
form, that is, you’ll need to generate the executable code yourself. In other cases, the
tools will be scripts that require a specific interpreter to run. This chapter deals with
the setup required to perform examinations with open source tools using Linux and
Windows hosts.

For each platform we will go through the following steps.

Building Software
Because we are going to be working with open source software, we are going to need
to be able to take that source code and convert it into usable form. At a high level
this is known as building, and we will need to have one or more working build envi-
ronments on the systems we are planning to use open source applications on. This
chapter sets up a generic development environment that can be used to build open
source applications written in the C and C++ languages and to build (or install) any
libraries these applications require.

2

10 CHAPTER 2 Open Source Examination Platform

Installing Interpreters
Some of the open source applications we will be using are written in interpreted (or
“scripting”) languages, such as Perl, Python, or Ruby. To run these programs we
will need the appropriate interpreter, and usually we will need some means to install
prerequisite modules that the applications rely upon.

Working with Image Files
A key part of forensic examination is working with image files—forensic copies of
media. This is easier on some platforms, but is necessary on all—if we can’t open the
container, we can’t get at the contents. An important part of setting up an examina-
tion system is ensuring that you can access work with image files directly. While the
forensic tools worked with in later chapters can access image files directly, having
multiple means to access them is an effective means of verifying the operation of our
tools. Having this capability also serves as a hedge in case our forensic tools fail to
process a given image file properly.

There are two general classes of image files we will be working with: raw
images and forensic containers. Raw image files are exactly what they sound like—
a pure bit-for-bit copy of source media. Forensic containers are special file formats
designed with forensic use in mind. Generally these will contain equivalent data
found in a raw image and will also contain checksum information or metadata about
the container. In addition, forensic container formats may allow for compression and
encryption.

Working with File Systems
Finally, there will be times when we as examiners will need to interact with the
file systems contained in image files using native system functionality (but still in a
forensically sound manner). For example, to examine an Ext4 file system we’ll need
to use native system capabilities rather than a forensic utility simply because (at the
time of writing) there are no open source forensic utilities that can interpret Ext4 file
systems.

uSIng LInuX AS THE HOST
Using Linux as the base is the most common way to set up an open source forensics
platform, and throughout the book will be our “supported” use case. In the examples
we are using Ubuntu, but if you have a different distribution you prefer using already
it’s entirely possible to do so. We will use the Ubuntu package manager apt to install
software throughout the book; however, none of the software we are installing is
Ubuntu-specific, and most of the packages we install should be available via the
package manger in your distribution of choice.

11Using Linux as the Host

Extracting Software
Linux source code is usually distributed in compressed archives known as tarballs.
To extract these we will use the tar command along with a handful of flags.

To extract tarballs with tgz or tar.gz extensions (GZippped tarballs), use the
 command:

tar xzf {filename}

To extract tarballs with tbz, tbz2, tar.bz2, or tar.bz extensions (BZipped tarballs),
use this command:

tar xjf {filename}

In either case you can add the -v option for verbose mode, which will display the
name and path of extracted files to the console as the command progresses.

We’ll need to install a few pieces of software before we can begin building pro-
grams from source code. On Ubuntu, the “build-essential” meta-package will get
us started. Build-essential is basically a grouping of packages essential for building
software. To install this package we’ll used the apt-get command. The apt-get
command is part of the “Advanced Packaging Tool,” the main method for installing
precompiled software packages on Debian-derived Linux distributions (including
Ubuntu). Because installing packages is a system administration function, on Linux
systems we will need to act with super-user or root privileges in order to do so. We
will use the sudo command to run apt-get with super-user privileges.

TIP
Brief Linux Command Line Refresher
Ideally you will come into this book with some Linux experience. If it’s been a while (or
you’re brand new), here’s a refresher list of the basic terminal commands you’ll need to
use to navigate and work with files:

• cd changes directories. “cd ..” goes up a directory, “cd /” goes to the top of the
directory structure, and “cd ~” goes to your home directory.

• ls lists the contents of a directory (equivalent to “dir” in a Windows command
prompt). “ls” will list the current directory, and “ls –1” will provide a verbose listing.

• pwd will print the current directory you are in, in case you get lost.
• mkdir will create a new directory
• cp will copy a file. “cp –r” will copy a directory and all items in the subdirectory.
• mv will rename (or, move) a file or directory
• rm will delete (or, remove) a file. “rm –r” is required to delete a directory (and all its

subdirectories!)
• cat will dump the contents of a file to the screen. Long files can be viewed a page at

a time using less or more.
• The pipe character “|” is used to chain the output from one command to the input of

the next. The greater than sign “>” is used to send the output to a named file instead
of the screen. Double arrows “>>” append the output instead of overwriting.

• Finally, man and info can be used to get usage information for any command.

12 CHAPTER 2 Open Source Examination Platform

user@ubuntu:~$ sudo apt-get install build-essential
[sudo] password for user:
The following extra packages will be installed:

dpkg-dev fakeroot g++ g++-4.4 libstdc++6-4.4-dev patch
xz-utils

Suggested packages:
debian-keyring debian-maintainers g++-multilib g++-4.4-

multilib gcc-4.4-doc
libstdc++6-4.4-dbg libstdc++6-4.4-doc diffutils-doc

The following NEW packages will be installed:
build-essential dpkg-dev fakeroot g++ g++-4.4 libstdc++6-4.4-

dev patch xz-utils
0 upgraded, 8 newly installed, 0 to remove and 0 not upgraded.
Need to get 7571kB of archives.
After this operation, 24.6MB of additional disk space will be

used.
Do you want to continue [Y/n]? Y

While we now have the basics of our build environment installed, we will come
back to the apt-get command to install development libraries required by many of the
applications we will be installing later. Most open source applications will come with
a README or INSTALL document that will contain information regarding what
additional libraries. Be sure to reference this prior to attempting to build software.

For more information on installing software on Ubuntu, please see the Ubuntu
Help Guide [1].

gnu Build System
The majority of the software we will be building uses the “GNU Autotools” system
to prepare and execute a build [2]. Building software that uses this system generally
consists of running three commands, in sequence:

1� ./configure
2� make
3� (sudo) make install

Configure
If the application being built has any configurable options, the included configure
script is the method we will use to set them. Generally the configure script will
respond to the --help flag by displaying all the available configuration options. We
can use the configure script from LibEWF library as an example. We will discuss
the operation of this library in detail shortly—for now it’s enough to know that it
is a prerequisite for the operation of our forensic platform. We have truncated the
output that follows due to space considerations—most configure scripts will allow
you to tune many options related to the building and subsequent installation of the
software.

13Using Linux as the Host

user@ubuntu:~/src/libewf-20100226$./configure --help
'configure' configures libewf 20100226 to adapt to many kinds of

systems.
Usage: ./configure [OPTION]... [VAR=VALUE]...
...
Optional Features:
...

--enable-wide-character-type
 enable wide character type support (default is no)
--enable-static-executables
 build the ewftools as static executables (default is
 no)
--enable-low-level-functions
 use libewf's low level read and write functions in
 the ewftools (default is no)
--enable-low-memory-usage
 enable low memory usage (default is no)
--enable-verbose-output enable verbose output (default is no)
--enable-debug-output enable debug output (default is no)
--enable-python build python bindings (pyewf) (default is no)
--enable-v2-api enable experimental version 2 API (default is no)

...

Here we can see handful of libewf-specific configuration options that may be of inter-
est to us. Referencing the included README file tells us that libewf relies on zlib (the
deflate/zip compression library) and libcrypto (the OpenSSL library). Different distribu-
tions will have these libraries packaged under different names, but in general these can
be located fairly easily by searching for the development name of the libraries at hand
using the apt-cache search command or equivalent command for your distribution.

user@ubuntu:~$ apt-cache search openssl | grep dev
libssl-ocaml-dev - OCaml bindings for OpenSSL
libcurl4-openssl-dev - Development files and documentation for

libcurl (OpenSSL)
libssl-dev - SSL development libraries, header files and documentation
user@ubuntu:~$ apt-cache search zlib | grep dev
lib32z1-dev - compression library - 32 bit development
libmng-dev - M-N-G library (Development headers)
libzlcore-dev - zlibrary core - development files
libzltext-dev - zlibrary text model/viewer - development files
zlib1g-dbg - compression library - development
zlib1g-dev - compression library - development
libcryptokit-ocaml-dev - cryptographic algorithm library for

OCaml - development
libniftiio1-dev - IO libraries for the NIfTI-1 data format
libtrf-tcl-dev - Tcl data transformations - development files
libzzip-dev - library providing read access on ZIP-archives -

development

14 CHAPTER 2 Open Source Examination Platform

From the results, we see that we need the “zlib1g-dev” and “libssl-dev” libraries,
which can be installed using the following command:

user@ubuntu:~$ sudo apt-get install zlib1g-dev libssl-dev
...
Setting up libssl-dev (0.9.8k-7ubuntu8) ...

With our libraries installed, we are ready to execute the configure script. Upon
execution, the configure script will check the build system to ensure that all the librar-
ies required to build (and subsequently execute) the program are present, functional,
and of the correct version.

user@ubuntu:~/src/libewf-20100226$./configure --enable-wide-
character-type --enable-low-level-functions

checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
...
config.status: executing libtool commands
configure:
Building:

libuna support: local
libbfio support: local
libcrypto EVP support: yes
libcrypto MD5 support: evp
libcrypto SHA1 support: evp
guid support: libuuid

Features:
Wide character type support: yes
ewftools are build as static executables: no
ewftools use low level read and write functions: yes
Python (pyewf) support: no
Verbose output: no
Debug output: no
Experimental version 2 API: no

Note that this particular configuration script provides the name of the library
providing the included functionality: “guid support: libuuid.” If the README or
INSTALL documentation is missing, incomplete, or simply incorrect, simply
attempting to run the configure script is a trial-and-error method that may provide
more information about what libraries you need to complete the build.

WARnIng
“�/configure not found”
Very simple programs that don’t have any third-party library dependencies may not have a
configure script. Some of these may provide a prebuilt makefile, but if this isn’t the case you
may need to compile the code directly. Check for a README or INSTALL document or, barring
that, read the source itself for an indication of how to proceed with building the software.

15Using Linux as the Host

A successful execution of the configure script will generate a “makefile”—a
build script read by the make command, which brings us to the next step in the build
process.

Make
The make command reads through the “makefile” generated by the configure script,
and proceeds to compile and link each of the executable files and libraries that make
up the program at hand. This can take some time and will generate a lot of output
while it is executing. A highly edited sample of what you can expect from a typical
make execution appears here:

user@ubuntu:~/src/libewf-20100226$ make
Making all in include
make[1]: Entering directory '/home/user/src/libewf-20100226/

include'
...
make[1]: Entering directory '/home/user/src/libewf-20100226/

liberror'
/bin/bash ../libtool --tag=CC -- mode=compile gcc -DHAVE_CONFIG_H -I.

 -I../common -I../include -I../common- g -O2 -Wall -MT
liberror_error.lo -MD -MP -MF .deps/liberror_error.Tpo -c -o
liberror_error.lo liberror_error.c

libtool: compile: gcc -DHAVE_CONFIG_H -I. -I../common -I../
include -I../common -g -O2 -Wall -MT liberror_error.lo -MD -MP
-MF .deps/liberror_error.Tpo -c liberror_error.c -fPIC -DPIC
-o .libs/liberror_error.o

...
make[1]: Leaving directory '/home/user/src/libewf-20100226'

Once the “make” completes, the final step is to actually install the application.
Executing

sudo make install

will copy the finished executables, libraries, documentation (if present), and any
additional materials to their configured locations—generally under the “/usr/local/”
directory.

nOTE
Other Build Systems
GNU Autotools does not stand alone in the pantheon of build systems for open source
software. While it is the most venerable and still most common build system in use, there
are others in use in various projects. Two of the most common are cmake and scons.
Scons is python based and is therefore a popular build system for python-heavy programs.
Cmake is an intermediary build layer used by cross-platform applications—it generates
native build files for each target—Makefiles for Unix-like systems, Visual Studio Solution
files for Windows targets, etc.

16 CHAPTER 2 Open Source Examination Platform

version Control Systems
In addition to packaged tarballs of source code, many open source projects are avail-
able via version control systems. These services enable tracking of code changes
among a distributed group of participants. Version control systems offer many
 capabilities geared toward ensuring clean and easy collaboration on development;
however, for our use, we will only be “checking out” code—retrieving a copy of
the source code from the repository. The end result will be a directory tree of code
 similar to what we would have after extracting a tarball.

Sometimes, code that is still under active development may only be available
via a source checkout from a version control system; in other cases, the develop-
ment version of an application may have capabilities required to perform a successful
examination. As always, validate that any tools you use perform the functions they
are designed for in a verifiable, repeatable manner, but above all work on copies or
extracted data rather than original data.

Popular open source version control systems include

• cvs
• subversion
• git
• mercurial

We will discuss the operation of these tools to perform source code checkouts
when we build tools that require this.

Installing Interpreters
In addition to compiling executable code, we will need to be able to execute pro-
grams written in interpreted languages. To do so, we will need to install the appropri-
ate interpreters—Perl, Python, and Ruby. On most Linux distributions the Perl and
Python interpreters (and a handful of modules) will be already be installed. We’ll
want to install the Python 3 interpreter in addition to our currently installed version,
and we’ll need to install the Ruby interpreter. We will also explore how to install
various modules in each of the interpreters.

Perl
Perl is one of the older nonshell scripting languages still in common use. Its longevity
is one of its core strengths—over many years of use Perl has built up an impressive
number of open source libraries and modules available for reuse.

TIP
CERT Forensic Tools Repository
The examples throughout this book use Ubuntu as our base operating system. If you are a
Fedora user, you may want to use the CERT Linux Forensics Tools Repository. This repository
provides a prebuilt set of forensic packages for Fedora 10, 11, 12, and 13, including many
of the tools discussed throughout this book.

http://www.cert.org/forensics/tools/

17Using Linux as the Host

To check our installed version of perl we can issue the following command:

user@ubuntu:~$ perl -v
This is perl, v5.10.1 built for x86_64-linux-gnu-thread-multi

The core repository for Perl modules is known as CPAN (the Comprehensive
Perl Archive Network). Packages in CPAN can be installed from the terminal using
the -MCPAN option to perl. Upon executing this command for the first time your
CPAN preferences will be set up—defaults are fine for our usage so hit enter when
prompted to accept them.

user@ubuntu:~$ perl -MCPAN -e shell
...
cpan[1]> help
Display Information (ver 1.9402)

command argument description
cpan [n] quit
...

Python
Like Perl, Python will be present on most Linux distributions by default. We can
check the python version we have installed with the -V flag:

user@ubuntu:~$ python -V
Python 2.6.5

In addition to the Python 2.6 interpreter we want a parallel installation of
the Python 3 interpreter. Python 3 represents a major change from the 2.x series
and as such is not directly backward compatible with existing programs written
for Python 2.x. Because we will be using a few programs targeted for the newer
Python, we will need both. We can install Python 3 directly using the following
command:

user@ubuntu:~$ sudo apt-get install python3-minimal
[sudo] password for user:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:

python3.1 python3.1-minimal
Suggested packages:

python3.1-doc python3.1-profiler
The following NEW packages will be installed:

python3-minimal python3.1 python3.1-minimal
0 upgraded, 3 newly installed, 0 to remove and 0 not

upgraded.
Need to get 4,995kB of archives.
After this operation, 17.7MB of additional disk space will

be used.
Do you want to continue [Y/n]?

18 CHAPTER 2 Open Source Examination Platform

Unlike Perl and Ruby, Python doesn’t have a “standard” package management
system. Python modules are instead expected to be handled by the operating system’s
package manager or installed by the user manually. As we use programs that need
specific packages we will install using both methods. That said, Python does have a
centralized packaged repository, and there are several unofficial package managers
available that leverage this repository. The most widely used is easy_install,
 provided by the “python-setuptools” package. We can install this for Python 2.x and
3.x using the following command:

user@ubuntu:~$ sudo apt-get install python-setuptools python
3-setuptools

Ruby
Ruby is the third scripting language we will need to ensure is installed. As a younger
language, it is not present by default on our Ubuntu installation:

user@ubuntu:~$ ruby -v
The program 'ruby' is currently not installed. You can install

it by typing:
sudo apt-get install ruby

As just shown, we can install via apt-get. Once this is completed, we can verify
the install and check the version with the -v option.

user@ubuntu:~$ ruby -v
ruby 1.8.7 (2010-01-10 patchlevel 249) [i486-linux]

Ruby packages are managed via RubyGems. This needs to be installed separately:

user@ubuntu:~$ sudo apt-get install rubygems

The package manager is invoked via the gem command:

user@ubuntu:~$ gem
RubyGems is a sophisticated package manager for Ruby. This is a
basic help message containing pointers to more information.

Usage:
gem -h/--help
gem -v/--version
gem command [arguments...] [options...]

Examples:
gem install rake
gem list --local
gem build package.gemspec
gem help install ...

We will use tools that require each of these interpreters more throughout the
book. For now, ensuring that we have them installed, operational, and can install
packages is sufficient.

19Using Linux as the Host

Working with Images
Although we will be using forensic utilities that can interpret the file system on a raw
image, it is in our interest to ensure that we can work with image files using native
system functionality as well. This enables us to test our forensic tools for accuracy,
provides us a much needed “safety net” in the event our tools don’t function properly,
and, in some cases, may be the most useful way to access data of interest.

Any given Linux distribution should have the capability to work with raw image
files natively. We will use the losetup command to create a “loop device” associ-
ated with our disk image. A loop device is a virtual device that allows a disk image
to be treated as if it were an actual disk.

user@ubuntu:~$ losetup
Usage:
losetup loop_device # give info
losetup -a | --all # list all used
losetup -d | --detach loop_device # delete
losetup -f | --find # find unused
losetup [options] {-f|--find|loop_device} file # setup
Options:
-e | --encryption <type> enable data encryption with specified

<name/num>
-h | --help this help
-o | --offset <num> start at offset <num> into file
-p | --pass-fd <num> read passphrase from file descriptor

<num>
-r | --read-only setup read-only loop device
-s | --show print device name (with -f <file>)
-N | --nohashpass Do not hash the given password (Debian

hashes)
-k | --keybits <num> specify number of bits in the hashed

key given

WARnIng
Automounting of volumes on ubuntu
One of the major benefits of using Linux as a forensic platform is the tremendous power
the system provides to an educated examiner. However, as Linux distributions become
more and more “user-friendly,” the operation of system becomes more and more abstracted
away and difficult to access. One example is preventing the automatic mounting of external
media. Historically, most Linux distributions did not automatically mount file systems—
all mounts had to explicitly requested. For forensic examiners, this is terrific; end users,
though, were obviously less than enthusiastic about this “feature.” Current Ubuntu systems
will detect and automatically mount external storage in much the same manner as Windows
systems. Given this, examiners should always use hardware write blocker devices whenever
working with original media.

20 CHAPTER 2 Open Source Examination Platform

 to the cipher. Some ciphers support several key
 sizes and might be more efficient with a smaller
 key size. Key sizes < 128 are generally not
 recommended
-v | --verbose verbose mode

To determine the appropriate offset we will use the mmls command from the
Sleuth Kit to read the partition table from a sample image. We will examine this com-
mand and the rest of the Sleuth Kit at length in Chapter 3.

user@ubuntu:~$ mmls /mnt/forensic/testimg/testimg.img
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000016064 0000016065 Unallocated
02: 00:00 0000016065 0312496379 0312480315 NTFS (0x07)
03: ----- 0312496380 0312499999 0000003620 Unallocated

We want to associate the loop device with the partition, not the disk, as this will
allow us to mount the file system. To do this we provide losetup with an offset into
the image file where we would like the loop device to begin. The output of mmls is
measured in sectors, and losetup expects an offset in bytes, so multiplying 16065 by
the default sector size of 512 gives us an offset of 8225280. We also want the device
to be read-only (-r).

user@ubuntu:~$ sudo losetup -r -o 8225280 /dev/loop0 /mnt/
forensic/testimg/testimg.img

We can test our math by checking for a valid file system at the beginning of the
loop device. Using dd and the file command is one way to do this:

user@ubuntu:~$ sudo dd if=/dev/loop0 bs=512 count=1 | file -
1+0 records in
1+0 records out
512 bytes (512 B) copied, 0.0778169 s, 6.6 kB/s
/dev/stdin: x86 boot sector, code offset 0x52, OEM-ID "NTFS ",

sectors/cluster 8, reserved sectors 0, Media descriptor 0xf8,
heads 255, hidden sectors 16065, dos < 4.0 BootSector (0x80)

The file command confirms that we have a valid file system at the beginning of
our loop device. Now we can create a directory to serve as a mount point and mount
the loop device.

user@ubuntu:~$ sudo mkdir /mnt/testimg
user@ubuntu:~$ sudo mount -o ro /dev/loop0 /mnt/testimg/
user@ubuntu:~$ ls /mnt/testimg/
CONFIG.SYS IO.SYS MSOCache Program Files System

Volume Information Windows ntldr python
AUTOEXEC.BAT Documents and Settings I386 MSDOS.SYS

NTDETECT.COM RECYCLER boot.ini pagefile.sys

21Using Linux as the Host

Unfortunately, this only lets us access volumes contained in raw disk images. To
access volumes inside forensic containers we will need to use software that under-
stands these containers. The two forensic container formats we will need to be able to
work with are EWF and AFF. EWF (Expert Witness Format) is the native format gen-
erated by Guidance Software’s EnCase software. AFF is the Advanced Forensics For-
mat and is an open source forensic container format that provides many benefits over
traditional “raw” images. These containers are discussed in more detail in Chapter 3—
for now, being able to mount volumes inside the containers is all we’re after.

FUSE
FUSE is a Linux kernel module that allows for “File Systems In User Space.” In
addition to interpreting file systems, various FUSE modules will also interpret vol-
umes or containers and allow for access to their contents. There are many FUSE
modules implementing everything from cloud-based file systems to encrypted local
file systems to Wikipedia as a file system. We can install a few FUSE modules (and
prerequisites for additional FUSE modules) using the following command:

user@ubuntu:~$ sudo apt-get install zfs-fuse python-fuse fuse-
zip sshfs

The following extra packages will be installed:
libaio1 libewf1 libzip1

The following NEW packages will be installed:
fuse-zip ifuse libaio1 libzip1 python-fuse sshfs zfs-fuse

0 upgraded, 7 newly installed, 0 to remove and 0 not upgraded.
Need to get 1,917kB of archives.
After this operation, 5,759kB of additional disk space will be

used.
Do you want to continue [Y/n]?

This will install:

• ZFS-Fuse—a driver for Sun’s ZFS file system
• Python-Fuse—a python API for implementing FUSE file systems
• Fuse-Zip—a FUSE module that presents ZIP archives as file systems
• SSHFS—a FUSE module that transparently presents remote file systems as local

over SSH (SFTP/SCP)

TIP
Mounting Split Raw Images
If you have ever dealt with sharing of forensic images across different groups you will have
likely come across “split raw” images. Due to file size limitations and differing examination
preferences and capabilities, raw image files split into 2-Gigabyte chunks are the lowest
common denominator when sharing forensic data. Unfortunately, split raw image files
aren’t directly accessible as a “virtual disk” using the loop device method just described.
Historically, this meant the examiner would need to map devices to each segment and then
combine them using the Linux md functionality. Luckily, Richard Harman has written a perl
script called poorcase (http://code.google.com/p/poorcase/) that handles this tedium.

22 CHAPTER 2 Open Source Examination Platform

MountEWF
MountEWF is a program that presents an Expert Witness Format forensic image as a
raw image. It does this by leveraging the FUSE system via Python. It is not included
with libewf directly but can be retrieved from the LibEWF project site [3]. Like a disk,
the forensic container can hold multiple mountable file systems, so simply “mounting”
the container is not desirable or even feasible. Instead, MountEWF provides a view
of raw streams contained in the EWF container at the provided mount point. The raw
streams can then be accessed directly using the losetup technique discussed previously.

MountEWF is a python script so it does not need to be compiled before running.
We can copy it into our path to allow for easier execution:

user@ubuntu:~/src/afflib-3.5.12$ sudo cp /home/user/src/mount_
ewf-20090113.py /usr/local/bin/mount_ewf.py

Executing the command with no arguments will provide usage instructions:

user@ubuntu:~/src/afflib-3.5.12$ mount_ewf.py
Using libewf-20100226. Tested with libewf-20080501.
Usage:

mount_ewf.py [options] <filename(s)> <mountpoint>
Note: This utility allows EWF files to be mounted as a filesystem

containing a flat disk image. <filename> can be any segment of
the EWF file. To be identified, all files need to be in the same
directory, have the same root file name, and have the same first
character of file extension. Alternatively, multiple filenames
can be specified in different locations in the order to be
reassembled.

ewf segment filename(s) required.

To test mount_ewf without creating an Expert Witness formatted image, we can
use the image provided by Lance Mueller for his first forensic practical [4].

user@ubuntu:~/images$ mount_ewf.py WinXP2.E01 ~/mount_points/
ewf/

Using libewf-20100226. Tested with libewf-20080501.
user@ubuntu:~/images$ ls -lath /home/user/mount_points/ewf/
total 2.0G
drwxr-xr-x 5 user user 4.0K 2010-08-20 23:52 ..
dr-xr-xr-x 2 root root 0 1969-12-31 16:00 .
-r--r--r-- 1 root root 2.0G 1969-12-31 16:00 WinXP2
-r--r--r-- 1 root root 293 1969-12-31 16:00 WinXP2.txt

The text file listed is the case metadata. The other file is the raw image.

user@ubuntu:~/images$ cat /home/user/mount_points/ewf/WinXP2.txt
Description: WinXP
Case number: Case 1
Examiner name: Mueller
Evidence number: WinXP
Acquiry date: 2008-01-17T17:05:46
System date: 2008-01-17T17:05:46

23Using Linux as the Host

Operating system used: Vista
Software version used: 6.8
ce2211114a461a96bb2c4409b272dbee */home/user/mount_points/ewf/

WinXP2

The last line of the text file is the MD5 hash of the content. We can verify this
using the md5sum command.

user@ubuntu:~/images$ md5sum /home/user/mount_points/ewf/WinXP2
ce2211114a461a96bb2c4409b272dbee /home/user/mount_points/ewf/

WinXP2

We can verify access to the raw content using the file command:

user@ubuntu:~/images$ file /home/user/mount_points/ewf/WinXP2
/home/user/mount_points/ewf/WinXP2: x86 boot sector, code offset

0x52, OEM-ID "NTFS", sectors/cluster 4, reserved sectors 0,
Media descriptor 0xf8, heads 128, hidden sectors 63, dos <
4.0 BootSector (0x80)

AFFuse
AFFuse is a FUSE-based program that gives the examiner access to Advanced Foren-
sic Format containers. From an examiner’s perspective, AFFuse operates in much the
same manner as MountEWF—the forensic container is “mounted” to a directory
provided by the examiner. This directory will have a file for each stream inside the
AFF container, which can then be accessed as “raw” images via losetup.

AFFuse is part of the AFF library, available at www.afflib.org.
AFFuse requires the FUSE development library, and AFF itself requires the expat

library for signature verification. On Ubuntu we can install these with the following
command:

sudo apt-get install libfuse-dev libexpat1-dev

A simple “./configure” should eventually yield the following result:

configure: ***
configure: AFFLIB 3.5.12 configuration
configure: Amazon S3 Support: no
configure: LZMA Compression: yes
configure: LIBEWF: yes (requires uuid-dev on Linux)
configure: PYTHON Bindings: no
configure: QEMU Image Drivers: yes
configure: FUSE: yes
configure: LIBEXPAT: yes (needed for AFF signatures)
configure:
configure: CFLAGS: -g -O2 -D_FORTIFY_SOURCE=2 -Wall
configure: CPPFLAGS: -D_FILE_OFFSET_BITS=64 -DFUSE_USE_

VERSION=26 -I/usr/local/include
configure: CXXFLAGS: -g -O2 -D_FORTIFY_SOURCE=2 -Wall
configure: LIBS: -lssl -lcrypto -lexpat -lrt -lz -lewf
configure: LDFLAGS: -L/usr/local/lib

24 CHAPTER 2 Open Source Examination Platform

We can complete the install with make and finally sudo make install.
Once again, executing the command with no options gives us usage instruc-

tions. In this case, the usage instructions are quite verbose as AFFuse is also
 displaying options that can be passed to the FUSE library and are not AFF spe-
cific. We won’t be using any of these at the moment so trimming them gives us the
following usage:

user@ubuntu:~/src/afflib-3.5.12$ affuse
affuse version 3.5.12
Usage: affuse [<FUSE library options>] af_image mount_point
...
Use fusermount -u mount_point, to unmount

We can test out AFFuse using an image from Digital Corpora (http://www
. digitalcorpora.com). Ubnist1.casper-rw.gen3.aff is an AFF image taken from
a Ubuntu 8.10 thumbdrive. We can mount the AFF container with the following
affuse command:

user@ubuntu:~/images$ mkdir ~/mount_points/
user@ubuntu:~/images$ mkdir ~/mount_points/aff/
user@ubuntu:~/images$ affuse ubnist1.casper-rw.gen3.aff ~/mount_

points/aff/
user@ubuntu:~/images$ ls -lath /home/user/mount_points/aff/
total 4.0K
drwxr-xr-x 4 user user 4.0K 2010-08-20 23:47 ..
drwxr-xr-x 2 root root 0 1969-12-31 16:00 .
-r--r--r-- 1 root root 600M 1969-12-31 16:00 ubnist1.casper-rw.

gen3.aff.raw

Listing the contents of the mount point displays a single raw image inside. We
can use the file command to confirm that we have access to the raw content.

user@ubuntu:~/images$ file ~/mount_points/aff/ubnist1.casper-rw.
gen3.aff.raw

/home/user/mount_points/aff/ubnist1.casper-rw.gen3.aff.raw:
Linux rev 1.0 ext3 filesystem data, UUID=8717883b-0b7b-4149-
8b76-d97117813599 (needs journal recovery) (large files)

XMount
XMount is similar to both MountEWF and AFFuse in that it provides the examiner
“raw” access to container files. Where it differs is that rather than simply presenting
a raw “dd” style image, XMount can also present the contents of the container as a
VirtualBox or VMWare format disk image. It converts on the fly via FUSE and is tre-
mendously useful for a Linux-based examiner who wishes to boot a virtual instance
of an imaged system. XMount will redirect any writes to a cache file in a directory
specified by the examiner. XMount is available from https://www.pinguin.lu/index
.php. To install XMount, execute the basic “./configure; make; sudo make
install” sequence described previously.

25Using Linux as the Host

user@ubuntu:~$ uname -a
Linux ubuntu 2.6.32-21-generic #32-Ubuntu SMP Fri Apr 16

08:10:02 UTC 2010 i686 GNU/Linux

Next, we can change directories to “/lib/modules/2.6.32-21-generic/kernel/fs”—this
is the subdirectory where file system kernel modules for our running kernel are located.

user@ubuntu:/lib/modules/2.6.32-21-generic/kernel/fs$ ls
9p affs autofs befs binfmt_aout.ko btrfs cifs configfs dlm

exofs fat fscache gfs2 hfsplus isofs jfs minix nfs
nfsd nls ocfs2 qnx4 reiserfs smbfs sysv udf xfs

adfs afs autofs4 bfs binfmt_misc.ko cachefiles coda cramfs efs
exportfs freevxfs fuse hfs hpfs jffs2 lockd ncpfs nfs_
common nilfs2 ntfs omfs quota romfs squashfs ubifs ufs

Another way to check file system support in our current kernel is to browse
through the kernel’s configuration (“/boot/config-2.6.32-21-generic”, for example)
until we see the section entitled “File systems.”

#
File systems
#
CONFIG_EXT2_FS=y
CONFIG_EXT2_FS_XATTR=y
CONFIG_EXT2_FS_POSIX_ACL=y
CONFIG_EXT2_FS_SECURITY=y
CONFIG_EXT2_FS_XIP is not set
CONFIG_EXT3_FS=y
CONFIG_EXT3_DEFAULTS_TO_ORDERED=y
CONFIG_EXT3_FS_XATTR=y
CONFIG_EXT3_FS_POSIX_ACL=y
CONFIG_EXT3_FS_SECURITY=y
CONFIG_EXT4_FS=y
CONFIG_EXT4_FS_XATTR=y
CONFIG_EXT4_FS_POSIX_ACL=y
CONFIG_EXT4_FS_SECURITY=y
CONFIG_EXT4_DEBUG is not set
CONFIG_JBD=y
CONFIG_JBD_DEBUG is not set
CONFIG_JBD2=y
CONFIG_JBD2_DEBUG is not set
CONFIG_FS_MBCACHE=y
CONFIG_REISERFS_FS=m
...

TIP
Checking kernel File System Support
One of the major strengths of using Linux as a forensic platform is the wide variety of file
systems supported as kernel modules. Modern Ubuntu has dozens of file systems available
as loadable kernel modules. To view the available file systems in our running kernel, we
first need to use the uname command to determine our running kernel version:

26 CHAPTER 2 Open Source Examination Platform

uSIng WInDOWS AS THE HOST
Setting up a working build environment on a Windows system is a bit more complex
than on Linux or OS X. Many of the items we take for granted on a Linux system
aren’t present on a default Windows system. An out-of-the-box Windows system
doesn’t have a compiler or any of the interpreters we will need. It doesn’t have native
capability to mount or examine image files and only supports a handful of file sys-
tems. Luckily, we can set up a reasonable development environment suitable for
building open source forensics tools without too much trouble. That said, we can turn
a Windows host into a capable open source forensics platform; better, stronger, faster.
We have the technology.

Building Software
There are a couple different methods for building software on Windows, and they
each have advantages and disadvantages regarding different use cases. For our pur-
poses the best approach is going to be implementation of a Unix-like environment
on our Windows system via Cygwin. Per www.cygwin.com, “Cygwin is a Linux-like
environment for Windows.” Cygwin provides this environment through cygwin1.dll,
a Linux-emulation layer between Linux tools and the Windows operating system.
Through Cygwin we can compile and use Linux-targeted source code on our Win-
dows examination workstation. Using a Cygwin environment ensures that we have
the highest available compatibility with the bulk of open source forensics utilities, as
these are usually written and tested on Unix-like systems.

To install Cygwin, download and execute the installer (setup.exe).
Using the Cygwin installer, we will install the following packages, which can

be located using the search box at the top of the package installer window, seen in
Figure 2.1.

• automake
• make
• cmake
• cvs
• subversion
• mercurial
• gcc
• gcc-g++
• git
• python
• perl
• ruby
• mintty

27Using Windows as the Host

This will give us a working Unix-like development environment. We should be
able to use the majority of the utilities discussed in later chapters, barring any utili-
ties that require native Linux functionality to work—for example, any FUSE-based
utilities will not function under Cygwin.

Installing Interpreters
We already installed the perl, python, and ruby interpreters via the Cygwin installer.
We can verify the versions of each of the interpreters installed by opening up the
mintty terminal emulator from the Start Menu and passing the appropriate “version”
flag to each interpreter (see Figure 2.2). These installations will serve us well when

FIguRE 2�1

Cygwin setup.

TIP
visual Studio and MingW
Compiling “native” Windows code will usually require the use of Microsoft’s Visual Studio.
While the full version of Visual Studio is commercial software, Microsoft releases “Express”
versions of Visual Studio targeted toward specific languages at no cost. We won’t cover the
installation or operation of Visual Studio in this book, but be aware that this may be an
option worth exploring.

MinGW (Minimal Gnu for Windows) is another option for producing “native” Windows
binaries from open source software. MinGW is a port of the GNU C-Compiler and GNU
Binutils to Windows, which allows developers to produce truly native Windows binaries
that don’t rely on external DLLs to function. This differs from the Cygwin approach, which
produces binaries dependent on the functionality exposed by the cygwin1.dll file to operate.
Additionally, developers can cross-compile native Windows code from non-Windows
development systems. If you are interested in learning more about MinGW, please refer to
http://www.mingw.org/.

28 CHAPTER 2 Open Source Examination Platform

working in Cygwin environment but we will need “native” interpreters for some of
the code we will be running later.

Perl—ActiveState
ActiveState’s Perl distribution [5] is the de facto Windows Perl in use today. It pro-
vides the Perl interpreter in an easy-to-use and easy-to-manage installer and includes
a graphical package manger (shown in Figure 2.3) to handle modules. Installation is
the straightforward “Click next/Accept defaults” until the installer exits.

Python
Installing Python on Windows isn’t quite as obvious of a proposition as install-
ing Perl. While ActiveState provides its own Windows Python distribution, there
are also “native” Windows installers that provide functional basic Python installa-
tions. At the time of this writing the consensus seems to be that if you are going to
be doing Windows-specific python development, the ActiveState installer provides
some nice benefits. That said, the official Windows installer (shown in Figure 2.4)
will be sufficient to run any of the python scripts covered in this book. You can
choose to install either or both, as you can have multiple installations in different
directories.

At the time of this writing, Python 2.x and Python 3.x are both in active parallel
development and use. Python 3 is not directly backward compatible with Python
2—Python 2 scripts need to be rewritten for 3. Given this, there is a lot of existing
Python 2 code, so we will definitely need at least a Python 2 installation. There is also

FIguRE 2�2

Verifying the Cygwin installs of Perl, Python, and Ruby.

29Using Windows as the Host

FIguRE 2�4

The Windows native installer for Python 2.6.5.

FIguRE 2�3

The Perl Package Manager installed with ActiveState Perl.

30 CHAPTER 2 Open Source Examination Platform

a growing set of Python 3 code, so it is in our best interest to have a parallel Python
3 environment installed as well. Given this, the current newest versions at the time of
writing of Python are 2.6.5 and 3.1.2.

Ruby
Getting Ruby on Windows is trivial using the installer from www.rubyinstaller.org.
During installation, ensure that both checkboxes shown in Figure 2.5 are checked—
this will let you run command-line ruby scripts without specifying the path of the
interpreter and will ensure that ruby programs launched from Explorer are associated
with this ruby installation.

TIP
Too Many Pythons…
Keeping track of the latest Python installer can be a chore, especially given the current
2.x/3.x split. Wesley Chun, author of Core Python Programming, provides a constantly
updated matrix of Python versions for Linux, Mac, and Windows at www.corepython.com.

FIguRE 2�5

Ruby installer configuration options.

31Using Windows as the Host

Working with Images
Windows doesn’t have any native equivalent to the losetup command we used to
access image files as disks. Fortunately, Olof Lagerkvist has written the open source
ImDisk, which brings much of the same functionality to the Windows world. After
downloading and running the ImDisk installer, we need to manually start the ImDisk
service the first time and configure it to automatically start in the future. To do so,
we’ll need to start a command prompt with administrator access (see Figure 2.6).

Entering these lines shown in Figure 2.7 in the administrator shell will set the
ImDisk service to start automatically in the future and will start it now manually.

FIguRE 2�6

Starting an administrator shell—Windows 7.

FIguRE 2�7

Starting ImDisk service manually.

32 CHAPTER 2 Open Source Examination Platform

The ImDisk service is located in the Control Panel, as shown in Figure 2.8. Upon
launching the application and selecting “Mount New,” you should be greeted with a
screen similar to Figure 2.9.

There are many options to experiment with here, but for our purposes the most
important are the path to the image file and the “Read-only media” checkbox.

FIguRE 2�9

Mounting an NTFS volume image.

FIguRE 2�8

Locating the IMDisk entry in the Control Panel.

33Using Windows as the Host

Checking this will ensure that we don’t make any inadvertent writes to our image
file. Figure 2.10 shows the ImDisk service after successfully mounting a test NTFS
image from the Digital Forensic Tool Testing collection. http://dftt.sourceforge.net/.

Figures 2.11 and 2.12 show that the image file now appears exactly like a normal
volume.

FIguRE 2�10

ImDisk displaying the mounted image.

FIguRE 2�11

ImDisk mounted volume as shown in Explorer.

FIguRE 2�12

Browsing the contents of an ImDisk mounted volume.

34 CHAPTER 2 Open Source Examination Platform

Working with File Systems
While Windows doesn’t have the breadth of file system support our Ubuntu examina-
tion system has by default, there are some open source programs that allow Windows
to access some commonly encountered non-Windows file systems. It’s important to
note that in both cases, the forensic software we will be using is capable of interpret-
ing both of these file systems directly.

Ext2Fsd is an open source Ext2 file system driver for Windows systems available
from http://www.ext2fsd.com/. Using this we can examine Ext 2 (and Extended 3,
minus the journal) file systems directly. Note that during installation we have the
option to enable write support on Ext2/3 volumes as well—this is not recommended
but depending on your use case this may be necessary (see Figure 2.13). When

WARnIng
Potential ImDisk Pitfall
Remember that when you access a file system from a Windows machine using your
Windows examination machine, you are doing so using standard Windows functionality. If
you attempt to access files on the mounted file system that your current user doesn’t have
permission to access, you will not be able to access them!

FIguRE 2�13

Deselecting all options during Ext2Fsd configuration.

35Using Windows as the Host

 completing the installation, you will have the option to assign drive letters to any
connected Ext2 and 3 volumes—deselect this (Figure 2.14).

HFS Explorer (available from http://www.catacombae.org/hfsx.html) is an
application that can read the HFS and HFS+ file systems used on Mac OS X
disks (including some CDs/DVDs and the DMG container files used frequently
on Macs). On installation, it will associate itself with DMG containers by default
(Figure 2.15). This is generally a safe option, as we have no other means of access-
ing these files.

Figure 2.16 shows HFS Explorer being used to examine a DMG container. Indi-
vidual files can be extracted out for examination using the “Extract” button. The
“Info” button will display detailed information about the currently highlighted file
or directory, including time stamps and ownership information. Under the “Tools”
menu, the “File System Info” option provides a plethora of detailed information
about the file system.

FIguRE 2�14

Finishing Ext2Fsd installation.

36 CHAPTER 2 Open Source Examination Platform

FIguRE 2�15

HFS Explorer installation.

FIguRE 2�16

Navigating a DMG file with HFSExplorer.

37References

SuMMARy
While using open source forensic tools has certain advantages, preparing the plat-
form to build and execute these tools can be daunting to a newcomer. In this chapter
we have gone through the process of building a development workstation that we will
use to compile and run tools going forward. Additionally, we discussed the installa-
tion of various utilities that allow examiners utilizing Windows systems to use many
of the tools and scripts we will be working with throughout the book.

References
[1] InstallingSoftware—Community Ubuntu Documentation. https://help.ubuntu.com/

community/InstallingSoftware, (accessed 24.08.10).
[2] GNU Build System—automake. http://www.gnu.org/software/hello/manual/automake/

GNU-Build-System.html, (accessed 24.08.10).
[3] libewf—Browse /mount_ewf at SourceForge.net. http://sourceforge.net/projects/libewf/

files/mount_ewf/, (accessed 24.08.10).
[4] Computer Forensics, Malware Analysis & Digital Investigations: Forensic Practical.

http://www.forensickb.com/2008/01/forensic-practical.html, (accessed 24.08.10).
[5] ActivePerl Downloads—Perl Binaries for Windows, Linux and Mac|ActiveState. http://

www.activestate.com/activeperl/downloads, (accessed 24.08.10).

 This page intentionally left blank

CHAPTER

39

Disk and File System
Analysis

InFORMATIOn In THIS CHAPTER

• Media Analysis Concepts

• The Sleuth Kit

• Partitioning and Disk Layouts

• Special Containers

• Hashing

• Carving

• Forensic Imaging

MEDIA AnALySIS COnCEPTS
At its most basic, forensic analysis deals with files on media—deleted files, files in fold-
ers, files in other files, all stored on or in some container. The goal of media analysis is to
identify, extract, and analyze these files and the file systems they lie upon. Identification
includes determining which active and deleted files are available in a volume. Extrac-
tion is the retrieval of relevant file data and metadata. Analysis is the process in which
we apply our intelligence to the data set and ideally come up with meaningful results.

Note that these are not necessarily discrete procedural steps. In fact, some exami-
nation processes will seem to straddle two or more of these—carving, for example, can
easily be described as both identification and extraction. Nonetheless, we feel that this
is a suitable model for describing why we as examiners are taking a particular action.

This chapter focuses primarily on the concepts behind identifying and extracting
file system artifacts, and information about files. Deep analysis of the artifacts found
in content of the files and the artifacts of interest found in specific file systems will
not be covered here as this analysis makes up the bulk of Chapters 4 through 8.

While we discuss the file system analysis concepts that will be of the most use
to an examiner, a full analysis of every conceivable artifact and nuance of each
file system is outside the scope of this book. For greater detail on this topic, the
authors highly recommend File System Forensic Analysis by Brian Carrier [1],
the authoritative work on the subject.

3

40 CHAPTER 3 Disk and File System Analysis

File System Abstraction Model
In the aforementioned File System Forensic Analysis, the author puts forth a file sys-
tem abstraction model to be used when describing the functions of file systems and
the artifacts generated by these functions. For readers with networking backgrounds,
this model is not unlike the OSI model used to describe communications systems.

As described by Carrier, the logical progression of any file system, from low level
to high level, is:

• Disk
A disk refers to a physical storage device—a SCSI or SATA hard drive, or a Secure
Digital Card from a digital camera, for example. Analysis of items at this level is
usually beyond the capabilities of most examiners—physical media analysis of
conventional hard drives requires extensive specialized training and knowledge,
access to a clean room, and expensive electron microscopy equipment. With the
rise of flash media and Solid State Disks, however, analysis of media at this level
may be in the realm of possibility for a larger pool of examiners.

• Volume
A volume is created using all or part of one or more disks. A single disk may
contain several volumes, or a volume may span several disks, depending on
configuration. The term “partition” is often used interchangeably for a vol-
ume; Carrier makes a distinction wherein a “partition” is limited to a single
physical disk, and a volume is a collection of one or more partitions. Put
simply, a volume describes a number of sectors on a disk(s) in a given system.
Please see Figure 3.1 for a simplified display of the delineation between a disk
and volumes present on the disk.

• File System
A file system is laid down on a volume and describes the layout of files and
their associated metadata. Items in the file system layer include metadata spe-
cific to and solely used for the file system’s operation—the Ext2 superblock
is a good example.

FIguRE 3�1

Disk and volumes.

41The Sleuth Kit

• Data Unit
A data unit is the smallest available freestanding unit of data storage avail-
able in a given file system. On Unix-derived file systems these are known
as blocks. These are generally some power of 2 multiple of the physical
sector size of the disk. Historically the sector size of every disk was 512
bytes—most modern file systems will use 4096 bytes (4K) or larger as the
smallest addressable data unit. The information available at the data unit
layer is simple: the content of that data unit. If that data unit is allocated to
a JPEG image, the data unit will contain a portion of JPEG data. If the data
unit was allocated to a text file, the data unit will contain text.

• Metadata
Metadata refers to data about data. Given that the data unit layer holds data
in a file system, the metadata layer then contains data about the data units. On
Unix-derived file systems these metadata units are called inodes. The exact
content of metadata units depends on the actual file system being discussed,
but generally this layer will at least consist of file time stamps, file ownership
information, and data units allocated to this metadata unit. We’ll discuss the
specific artifacts for each file system in the relevant sections later.

• File Name
The file name layer is where humans operate. Unsurprisingly, this layer con-
sists of file and folder/directory names. Once again, artifacts available in this
layer vary depending on the file system. At the very least, file names have a
pointer to their corresponding metadata structure.

Because this abstraction model is built with the design of Unix-derived file sys-
tems in mind, some of the separations do not map directly to the designs of file sys-
tems for other platforms. However, a good understanding of this model is imperative
to truly understanding the significance of file system artifacts on any file system.

THE SLEuTH kIT
To process file system artifacts, we will use The Sleuth Kit (www.sleuthkit.org). The
Sleuth Kit (TSK) is the suite of file system forensic tools originally created by Brian
Carrier as an updated version of the older Coroner’s Toolkit. The Coroner’s Toolkit
(TCT) was designed specifically to perform forensic analysis of compromised Unix-
like systems. While being a very powerful set of early forensic tools, TCT had major
shortcomings, including a lack of portability between systems and a lack of support
for non Unix-like file systems. Carrier developed the Sleuth Kit to provide a highly
portable, extensible, and useful open source forensics toolkit.

Installing the Sleuth kit
The Sleuth Kit natively supports processing raw disk images (split or not), but it can
also import the ability to process additional image formats from the LibEWF and

42 CHAPTER 3 Disk and File System Analysis

AFFLib packages installed in Chapter 2. Note that we could install precompiled
Sleuth Kit packages using the Ubuntu package manager. Retrieving the source code
directly and compiling ourselves minimizes the number of intermediaries involved in
producing executable code. It also ensures that we have the latest version of our core
tools and libraries, as package repositories may take some time to update.

Note that when executing the Sleuth Kit’s configure script (./configure), you
should see the following lines toward the end of the script’s output:

checking afflib/afflib.h usability... yes
checking afflib/afflib.h presence... yes
checking for afflib/afflib.h... yes
checking for af_open in -lafflib... yes
checking libewf.h usability... yes
checking libewf.h presence... yes
checking for libewf.h... yes
checking for libewf_open in -lewf... yes
configure: creating ./config.status

This confirms that LibEWF and AFFLib are installed properly and will be used by
the Sleuth Kit.

With these development libraries installed, and the Sleuth Kit configured, finish-
ing the build and install is a simple matter executing make followed by sudo make
install. This will install the suite of command-line tools that make up the Sleuth Kit.

Sleuth kit Tools
Mastering 21 separate command line utilities may seem daunting if you are not used
to operating via command prompt frequently. That said, the bulk of Sleuth Kit tools
are named in a logical manner, which indicates the file system layer they operate
upon and the type of output you should expect from them. Since the Sleuth Kit comes
from a Unix-derived pedigree, this naming is quite clear if you are familiar with the
Linux command line.

The common prefixes found in the Sleuth Kit tools that indicate the file system
layer of the tool are:

• “mm-”: tools that operate on volumes (aka “media management”)
• “fs-”: tools that operate on file system structures
• “blk-”: tools that operate at the data unit (or “block”) layer
• “i-”: tools that operate at the metadata (or “inode”) layer
• “f-”: tools that operate at the file name layer

WARnIng
got Root?
If you plan to use Sleuth Kit tools with an attached disk as the target (as opposed to an
image file) remember that you will need root privileges. This can be accomplished either
by becoming root via the “su-” command or by executing the command with root privileges
using the “sudo” command, as shown in Chapter 2.

43The Sleuth Kit

There are two additional layers that don’t map directly into the file system model as
described:

• “j-”: tools that operate against file system journals
• “img-”: tools that operate against image files

Common suffixes found in Sleuth Kit tools that indicate the expected function of the
tool are:

• “-stat”: displays general information about the queried item—similar to the
“stat” command on Unix-like systems

• “-ls”: lists the contents of the queried layer, such as the “ls” command on
 Unix-like systems

• “-cat”: dumps/extracts the content of the queried layer, such as the “cat”
 command on Unix-like systems

Additionally, a handful of tools provided by the Sleuth Kit don’t follow this naming
scheme. These are described under the “Miscellaneous Tools” section.

To demonstrate use of the Sleuth Kit, we will proceed through each layer, describ-
ing each tool present in that layer. Additionally, we will examine the use and output of
the most important tools using a Linux Ext3 file system as our demonstration target.

Volume Layer Tools
The mmstat command will display the type of volume system in use on the target
image file or disk.

The mmls command parses and displays the media management structures on the
image file or disk (i.e., the partition table). Note that unlike the fdisk command,
mmls will clearly show nonallocated spaces before, after, or between volumes.

Here we have an example image from Digital Forensics Tool Testing archive.

nOTE
Sleuth kit Disk Layer Tools
Current versions of the Sleuth Kit do not provide any tools for operating at the disk layer.
Because the Sleuth Kit is a file system forensic analysis framework, this should not be
surprising. That said, versions of the Sleuth Kit prior to 3.1.0 did include two tools at this
layer that you may encounter in older forensic live CD distributions.

The disk_stat tool will show if the disk has a Host Protected Area (HPA) present. A HPA
is one method that can be used to artificially restrict the number of sectors addressable by the
operating system accessing a hard drive.

The disk_sreset will allow you to temporarily remove an HPA from a disk. This is
a nonpermanent change—the HPA will return the next time the disk is powered on.
Temporarily removing the HPA using disk_sreset enables a subsequent image capture
operation to grab the entire disk, including the protected area.

Another method for restricting the displayed number of sectors is via Device Configuration
Overlay. Both this and HPA can be detected and removed using the hdparm utility, which is
included by default on most Linux distributions.

Other non-Sleuth Kit tools that operate at the disk layer include all of the imaging tools
discussed in the Forensic Imaging section later in the chapter.

44 CHAPTER 3 Disk and File System Analysis

user@forensics:~$ mmls 10-ntfs-disk.dd
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors
 Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000000062 0000000063 Unallocated
02: 00:00 0000000063 0000096389 0000096327 NTFS (0x07)
03: 00:01 0000096390 0000192779 0000096390 NTFS (0x07)
04: ----- 0000192780 0000192783 0000000004 Unallocated

We can see here that the primary partition table was found in the first sector of the
disk and that there are two volumes present—the first from sector 63 through sector
96389 and the second from sector 96390 through sector 192779. The mmls output
also makes it clear that there are four “extra” sectors after the end of the last volume
in addition to the standard 63 sector gap before the first volume.

Another important benefit of using mmls instead of a tool such as fdisk is that the
offsets to individual volumes are presented as counts of 512-byte sectors. These offsets
can be passed directly to higher level Sleuth Kit tools to specify a volume to analyze.

The mmcat streams the content of the specified volume to STDOUT (usually the
console). This can be used to extract a specific volume of interest for analysis using
tools that may not be able to operate on the container format or disk directly.

File System Layer Tools
The fsstat command displays file system information. Data of particular interest
in the output of this command vary depending on the file system being examined but
may include volume names, data unit sizes, and statistical information about the state
of the file system. We will use output from an Ext3 file system to present the tool.
Analysis of Ext3-specific information is covered in detail in Chapter 5.

user@forensics:~$ fsstat ubnist1.casper-rw.gen3.aff
FILE SYSTEM INFORMATION
--
File System Type: Ext3
Volume Name:
Volume ID: 9935811771d9768b49417b0b3b881787
Last Written at: Tue Jan 6 10:59:33 2009
Last Checked at: Sun Dec 28 12:37:56 2008
Last Mounted at: Tue Jan 6 10:59:33 2009
Unmounted properly
Last mounted on:
Source OS: Linux
Dynamic Structure
Compat Features: Journal, Ext Attributes, Resize Inode, Dir Index
InCompat Features: Filetype, Needs Recovery,
Read Only Compat Features: Sparse Super, Has Large Files,
Journal ID: 00
Journal Inode: 8

45The Sleuth Kit

As you can see from the partial tool output just given, the fsstat tool provides
some basic file system information, including some information that may be of key
investigative value, such as the last written and last mounted information. After this
general information, the output of fsstat will be highly file system dependent. In
the case of Ext3, statistical and layout information is provided about metadata and
content structures present on the disk:

METADATA INFORMATION

Inode Range: 1 - 38401
Root Directory: 2
Free Inodes: 36976
Orphan Inodes: 35, 20, 17, 16,
CONTENT INFORMATION

Block Range: 0 - 153599
Block Size: 4096
Free Blocks: 85287
...

Note that this tool provides the block size used on the file system. This is important
information when carving data from unallocated space.

Data Unit Layer Tools
The blkstat command displays information about a specific data unit. Generally,
this will simply be allocation status; however, on Ext file systems, the block group to
which the block is allocated is also displayed.

user@forensics:~$ blkstat ubnist1.casper-rw.gen3.aff 521
Fragment: 521
Allocated
Group: 0

The blkls command lists details about data units. Blkls can also be used to
extract all unallocated space of the file system. This is useful to do prior to attempt-
ing to carve data from a file system. The following example extracts all of the unal-
located space from our sample image file into a single, flat file.

user@forensics:~$ blkls ubnist1.casper-rw.gen3.aff > ubnist1.
casper-rw.gen3.unalloc

user@forensics:~$ ls -lath ubnist1.casper-rw.gen3.unalloc
-rw-r----- 1 cory eng 331M Sep 2 20:36 ubnist1.casper-rw.gen3.

unalloc

The blkcat command will stream the content of a given data unit to STD-
OUT. This is similar in effect to using dd to read and write a specific block. The
next example uses blkcat to extract block 521, which we view courtesy of the
xxd binary data viewer, which is included with the vim editor package on most
distributions.

46 CHAPTER 3 Disk and File System Analysis

user@forensics:~$ blkcat ubnist1.casper-rw.gen3.aff 521 | xxd |
head

0000000: 0200 0000 0c00 0102 2e00 0000 0200 0000
0000010: 0c00 0202 2e2e 0000 0b00 0000 1400 0a02
0000020: 6c6f 7374 2b66 6f75 6e64 0000 0c00 0000 lost+found.....
0000030: 1400 0c01 2e77 682e 2e77 682e 6175 6673wh..wh.aufs
0000040: 011e 0000 1400 0c02 2e77 682e 2e77 682ewh..wh.
0000050: 706c 6e6b 015a 0000 1400 0c02 2e77 682e plnk.Z......wh.
0000060: 2e77 682e 2e74 6d70 021e 0000 0c00 0402 .wh..tmp.......
0000070: 726f 6673 025a 0000 0c00 0302 6574 6300 rofs.Z.....etc.
0000080: 045a 0000 1000 0502 6364 726f 6d00 0000 .Z...cdrom......
0000090: 031e 0000 0c00 0302 7661 7200 013c 0000var..<..

The blkcalc command is used in conjunction with the unallocated space
extracted using blkls. With blkcalc, we can map a block from blkls output back
into the original image. This is useful when we locate a string or other item of interest
in the blkls extract and want to locate the location of the item in our forensic image.

Metadata Layer Tools
The istat command displays information about a specific metadata structure. In
general, any of the information listed as being contained in a metadata structure
(ownership, time information, block allocations, etc.) will be displayed. As always,
the exact information displayed is file system dependent. We will explore file
 system-specific information in subsequent chapters.

What follows is the istat output for inode 20 on our test Ext3 file system. Out-
put common to other file systems includes allocation status, ownership information,
size, and time stamp data. Addresses of the inode’s data units will also be present
but are handled in different manners by different file systems, as shown later.

user@forensics:~$ istat ubnist1.casper-rw.gen3.aff 20
inode: 20
Allocated
Group: 0
Generation Id: 96054594
uid / gid: 0 / 0
mode: rrw-r--r--
size: 123600
num of links: 0
Inode Times:
Accessed: Tue Jan 6 10:59:33 2009
File Modified: Wed Jan 7 07:59:47 2009
Inode Modified: Wed Jan 7 07:59:47 2009
Deleted: Wed Dec 31 16:00:17 1969
Direct Blocks:
28680 0 0 0 0 0 0 28681
0 0 0 0 0 0 0 28683
0 0 0 0 0 0 28684 0
0 0 0 0 0 0 28685
Indirect Blocks:
28682

47The Sleuth Kit

The ils command lists the metadata structures, parsing and displaying the
embedded dates, ownership information, and other relevant information. This is one
of the commands that can be used to generate a bodyfile for timeline generation using
the mactime command (see “Miscellaneous Tools”). Timelines are key to the inves-
tigations presented in Chapter 9.

As you can see from the argument list, the examiner can tune the ils output to
view as much (or as little) data as necessary.

user@forensics:~$ ils
Missing image name
usage: ils [-emOpvV] [-aAlLzZ] [-f fstype] [-i imgtype] [-b

dev_sector_size] [-o imgoffset] [-s seconds] image [images]
[inum[-end]]

 -e: Display all inodes
 -m: Display output in the mactime format
 -O: Display inodes that are unallocated, but were sill open

(UFS/ExtX only)
 -p: Display orphan inodes (unallocated with no file name)
 -s seconds: Time skew of original machine (in seconds)
 -a: Allocated inodes
 -A: Unallocated inodes
 -l: Linked inodes
 -L: Unlinked inodes
 -z: Unused inodes (ctime is 0)
 -Z: Used inodes (ctime is not 0)
 -i imgtype: The format of the image file (use '-i list' for

supported types)
 -b dev_sector_size: The size (in bytes) of the device

sectors
 -f fstype: File system type (use '-f list' for supported

types)
 -o imgoffset: The offset of the file system in the image

(in sectors)
 -v: verbose output to stderr
 -V: Display version number

For example, if we wanted to list all inodes that are allocated or that have been used
at some point, we can do so with the -a and -Z flags:

user@forensics:~$ ils -aZ ubnist1.casper-rw.gen3.aff
...
st_ino|st_alloc|st_uid|st_gid|st_mtime|st_atime|st_ctime|st_

crtime|st_mode|st_nlink|st_size
1|a|0|0|1230496676|1230496676|1230496676|0|0|0|0
2|a|0|0|1231268373|1230496676|1231268373|0|755|15|4096
7|a|0|0|1230496676|1230496676|1230496676|0|600|1|4299210752
8|a|0|0|1230496679|0|1230496679|0|600|1|16777216
11|a|0|0|1230496676|1230496676|1230496676|0|700|2|16384
12|a|0|0|1230469846|1230469846|1231311252|0|444|19|0
13|a|0|0|1230615881|1225321841|1230615881|0|755|9|4096
...

48 CHAPTER 3 Disk and File System Analysis

The icat command streams the data unit referenced by the specified meta data
address. For example, if “file1.txt” points to inode 20, which then points to blocks 30,
31, and 32, the command “icat {image_ file} 20” would produce the same output
that “cat file1.txt” would from the mounted file system.

The ifind command finds the metadata structure referenced by the provided file
name or the metadata structure that references the provided data unit address. For
example, to find the inode that owns block 28680, we can do the following:

user@forensics:~$ ifind -d 28680 ubnist1.casper-rw.gen3.aff
20

File Name Layer Tools
The fls command lists file names (deleted and allocated). By default it does not
traverse the entire file system so you will only see the root directory of the volume
being examined. This is one of the commands we can use to generate a bodyfile
for timeline generation using the mactime command (see “Miscellaneous Tools”).
A simple “fls image” will produce a terse directory listing of the root directory of
the file system.

user@forensics:~$ fls ubnist1.casper-rw.gen3.aff
d/d 11: lost+found
r/r 12: .wh..wh.aufs
d/d 7681: .wh..wh.plnk
d/d 23041: .wh..wh..tmp
d/d 7682: rofs
d/d 23042: etc
d/d 23044: cdrom
d/d 7683: var
d/d 15361: home
d/d 30721: tmp
d/d 30722: lib
d/d 15377: usr
d/d 7712: sbin
d/d 13: root
r/r * 35(realloc): .aufs.xino
d/d 38401: $OrphanFiles

Note that the “.aufs.xino” file is listed with an asterisk—this indicates that it is
deleted. The (realloc) indicates that the inode the name references has been real-
located to another file.

The fls man page provides more background into the various options that can
be passed to the command. For interactive use, particularly important fls arguments
include:

 -d: Display deleted entries only
 -l: Display long version (like ls -l)
 -m: Display output in mactime input format with
 dir/ as the actual mount point of the image

49The Sleuth Kit

 -p: Display full path for each file
 -r: Recurse on directory entries
 -u: Display undeleted entries only
 -z: Time zone of original machine (i.e. EST5EDT or GMT)

(only useful with -l)
 -s seconds: Time skew of original machine (in seconds)

(only useful with -l & -m)

Note that the time zone argument does not apply if you are using -m to create a
 mactime input file. This is only used when displaying time information to the
 console.

The ffind command finds file names that reference the provided metadata num-
ber. Using inode 20, which we located via the ifind command, we can discover the
name associated with this inode.

user@forensics:~$ ffind ubnist1.casper-rw.gen3.aff 20
File name not found for inode

Unfortunately, no name currently points to this inode—it is orphaned. Just to sate our
curiosity, we can check the adjacent inodes.

user@forensics:~$ ffind ubnist1.casper-rw.gen3.aff 19
/root/.pulse-cookie
user@forensics:~$ ffind ubnist1.casper-rw.gen3.aff 21
/root/.synaptic/lock

Miscellaneous Tools
The mactime command generates a timeline based on processing the bodyfile pro-
duced by ils and/or fls. To generate a timeline using the Sleuth Kit, first we need
to generate the bodyfile. This is simply a specifically ordered pipe-delimited text file
used as the input file for the mactime command.

user@forensics:~$ ils -em ubnist1.casper-rw.gen3.aff > ubnist1.
bodyfile

user@forensics:~$ fls -r -m "/" ubnist1.casper-rw.gen3.aff >>
ubnist1.bodyfile

This produces a text file with the metadata information of each file or inode on a
single line.

md5|file|st_ino|st_ls|st_uid|st_gid|st_size|st_atime|st_mtime|st_
ctime|st_crtime

0|<ubnist1.casper-rw.gen3.aff-alive-1>|1|-/----------
|0|0|0|1230496676|1230496676|1230496676|0

0|<ubnist1.casper-rw.gen3.aff-alive-2>|2|-/drwxr-
xr-x|0|0|4096|1230496676|1231268373|1231268373|0

0|<ubnist1.casper-rw.gen3.aff-alive-3>
|3|-/----------|0|0|0|0|0|0|0

0|<ubnist1.casper-rw.gen3.aff-alive-4>
|4|-/----------|0|0|0|0|0|0|0

50 CHAPTER 3 Disk and File System Analysis

0|<ubnist1.casper-rw.gen3.aff-alive-5>
|5|-/----------|0|0|0|0|0|0|0

0|<ubnist1.casper-rw.gen3.aff-alive-6>
|6|-/----------|0|0|0|0|0|0|0

0|<ubnist1.casper-rw.gen3.aff-alive-7>|7|-/rrw-------
|0|0|4299210752|1230496676|1230496676|1230496676|0

...
0|/lost+found|11|d/drwx------

|0|0|16384|1230496676|1230496676|1230496676|0
0|/.wh..wh.aufs|12|r/rr--r-

-r--|0|0|0|1230469846|1230469846|1231311252|0
0|/.wh..wh.plnk|7681|d/drwx------

|0|0|4096|1230469846|1230469897|1230469897|0
0|/.wh..wh.plnk/1162.7709|7709|r/rrw-r-

-r--|0|0|186|1225322232|1225322232|1230469866|0

When generating a timeline for an actual investigation we will want to set the
time zone that data originated in and possibly some additional file system-specific
information. However, to generate a simple comma-separated timeline, we can issue
the following command:

user@forensics:~$ mactime -b ubnist1.bodyfile -d > ubnist1.timeline.csv

Timeline analysis is quite useful when performed properly. We will discuss timeline
analysis in Chapter 9.

The sigfind command is used to search a source file for a binary value at given
offsets. Given a sequence of hexadecimal bytes, sigfind will search through a stream
and output the offsets where matching sequences are found. Sigfind can be sector or
block aligned, which can be of value when searching through semistructured data such
as memory dumps or extracted unallocated space. This is useful for locating files based
on header information while minimizing noisy false positives that may occur when
simply searching through a data stream using something like the grep command.

Using the sigfind tool is quite simple.

 -sigfind [-b bsize] [-o offset] [-t template] [-lV] [hex_
signature] file

 -b bsize: Give block size (default 512)
 -o offset: Give offset into block where signature

should exist (default 0)
 -l: Signature will be little endian in image
 -V: Version
 -t template: The name of a data structure template:
 dospart, ext2, ext3, fat, hfs, hfs+, ntfs, ufs1, ufs2

As an example, we can use sigfind to locate (at least portions of) PDF files on
our test Ext3 image. PDF documents begin with the characters “%PDF.” Converting
these ASCII characters to their hex equivalent gives us “25 50 44 46.” Using sigfind,
we look for this at the start of every cluster boundary (which was discovered earlier
using the fsstat tool).

51The Sleuth Kit

user@forensics:~$ sigfind -b 4096 25504446 ubnist1.casper-rw.gen3.aff
Block size: 4096 Offset: 0 Signature: 25504446
Block: 722 (-)
Block: 1488 (+766)
Block: 1541 (+53)
Block: 1870 (+329)
Block: 82913 (+81043)
...

The output of the tool provides the offset in blocks into the image where the hit
signature matched and in parentheses provides the offset from the previous match.
Sigfind also has a number of data structure templates included, which makes identi-
fying lost partitions or file system structures simple.

The hfind command is used to query hash databases in a much faster manner than
grepping through flat text files.

The sorter command extracts and sorts files based on their file type as deter-
mined by analysis of the file’s content. It can also look up hashes of extracted files
and perform file extension verification.

Finally, the srch_strings command is simply a standalone version of the
strings command found in the GNU binutils package. This tool is included to ensure
that the Sleuth Kit has string extraction capability without requiring that the full
binutils package be installed on systems where it is not normally present.

Image File Tools
We can think of the image file as a new intermediary layer that replaces the disk layer
in our file system stack. Because this layer is created by an examiner, we generally
don’t expect to find any forensically interesting items here. However, depending on
the forensic format, relevant information may be available.

The img_stat command will display information about the image format,
including any hash information and other case-relevant metadata contained in the
image. This tool is generally only useful when executed against forensic image con-
tainer types. Here is the img_stat information from our Ext3 test image:

user@forensics:~$ img_stat ubnist1.casper-rw.gen3.aff
IMAGE FILE INFORMATION
--
Image Type: AFF
Size in bytes: 629145600
MD5: 717f6be298748ee7d6ce3e4b9ed63459
SHA1: 61bcd153fc91e680791aa39455688eab946c4b7
Creator: afconvert
Image GID: 25817565F05DFD8CAEC5CFC6B1FAB45
Acquisition Date: 2009-01-28 20:39:30
AFFLib Version: "3.3.5"

The img_cat command will stream the content of an image file to STDOUT. This is
a convenient way to convert a forensic container into a “raw” image.

52 CHAPTER 3 Disk and File System Analysis

Journal Tools
Many modern file systems support journaling. To grossly simplify, journaling file
systems keep a journal of changes they are preparing to make and then they make
the changes. Should the system lose power in the middle of a change, the journal
is used to replay those changes to ensure file system consistency. Given this, it is
possible that the journal may contain data not found anywhere else in the active file
system.

The jls command lists items in the file system journal, and the jcat com-
mand streams the content of the requested journal block to STDOUT. As the
information provided by these tools is highly file system specific, we will dis-
cuss the use of both of them in the relevant file system sections in the following
chapters.

PARTITIOnIng AnD DISk LAyOuTS
The two primary partitioning schemes in use today are the “Master Boot Record
(MBR)” and the “GUID Partition Table (GPT).” The GPT scheme was devel-
oped as a replacement for the aging MBR scheme. The MBR partitioning method
originally only allowed for four primary partitions and disks of up to 2 Terabytes,
a size that is quite possible to exceed nowadays. The GPT format supports disks
up to 8 Zettabytes in size and 128 primary partitions, along with many more
improvements. The partition table is not likely to contain any information of
relevance to most investigations. Forensic analysis of the partition table is usu-
ally limited to recovery of volumes when the partitioning structures are missing
or corrupted.

Partition Identification and Recovery
Identification of deleted or otherwise missing partitions can be performed using the
sigfind tool mentioned earlier. The tool includes a number of predefined data struc-
ture templates that will locate the tell-tale marks of a partition table or file system
header. We can test this using the 10th test image from the Digital Forensic Tool
Testing project (http://dftt.sourceforge.net/test10/index.html). The “dospart” tem-
plate looks for the hex value “55AA” in the last two bytes of each sector, a structure
common to MBR partitions.

user@ubuntu:~/10-ntfs-autodetect$ sigfind -t dospart 10-ntfs-
autodetect/10-ntfs-disk.dd

Block size: 512 Offset: 510 Signature: 55AA
Block: 0 (-)
Block: 63 (+63)
Block: 96389 (+96326)
Block: 96390 (+1)

53Partitioning and Disk Layouts

We can compare this with mmls output for the same image:

DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors
 Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000000062 0000000063 Unallocated
02: 00:00 0000000063 0000096389 0000096327 NTFS (0x07)
03: 00:01 0000096390 0000192779 0000096390 NTFS (0x07)
04: ----- 0000192780 0000192783 0000000004 Unallocated

We can see that sigfind located the 0x55AA signature in the boot sector (0), the
beginning and end of the first volume (63 and 96389), and the beginning of the next
volume (96390).

Additionally, the TestDisk tool from CGSecurity can be used to recover parti-
tions in the case of disk corruption or intentional spoiling. TestDisk can operate
on both raw and Expert Witness/E01 format files used by EnCase. An excellent
tutorial on the use of TestDisk is provided at the CGSecurity site [2]. Testdisk
can be installed on Ubuntu via apt-get. The source code and precompiled binaries
for DOS, Windows, OS X, and Linux are also available from the CGSecurity site
(www.cgsecurity.org).

Redundant Array of Inexpensive Disks
Redundant Array of Inexpensive Disks (RAID) is designed as a means to take mul-
tiple physical disks and address them as a single logical unit.

The most commonly used basic RAID levels are:

• RAID 0 refers to a setup of at least two disks that are “striped” at a block level.
Given two disks (0 and 1), block A will be written to disk 0, block B will be writ-
ten to disk 1, and so on. This increases write speeds and does not sacrifice any
storage space, but increases the fragility of data, as losing a single drive means
losing half of your blocks.

• RAID 1 is the opposite of RAID 0—blocks are mirrored across pairs of drives.
This increases read speeds and reliability, but reduces the amount of available
storage to half of the physical disk space.

nOTE
Other Media Management Schemes
The Sleuth Kit is able to recognize two other volume layer layouts: Sun slices (used by Solaris)
and BSD disklabels (used by BSD-based operating systems). We don’t cover analysis of either
platform in this book, but should you need to, you can use the Sleuth Kit on these volumes
as well.

54 CHAPTER 3 Disk and File System Analysis

• RAID 5 requires at least three disks and performs striping across multiple disks
in addition to creating parity blocks. These blocks are also striped across disks
and are used to recreate data in the event a drive is lost.

Additionally, there are “nested” or “hybrid” RAID setups that combine two of these
RAID levels in sequence. For example, a RAID 50 or 5+0 set would be a pair of
RAID5 sets that are subsequently striped.

The Sleuth Kit has no built-in capability for dealing with RAID. The PyFLAG
suite discussed in Chapter 9 includes a command line python utility called raid_
guess.py that can be used to reconstruct a RAID map when given a set of disk
images [3]. That said, the authors recommend using the original hardware the
RAID is housed in to perform imaging whenever possible. There are many differ-
ent RAID implementations in use, and recreating the logical structure after the fact
can be perilous.

SPECIAL COnTAInERS
In addition to file systems in volumes on physical media, you may have to deal
with file systems in other containers. One example is the Macintosh-specific DMG
container discussed in the previous section. The other two major containers you are
likely to encounter are Virtual Machine Disk Images and Forensic Containers.

virtual Machine Disk Images
Virtualization applications such as VMWare, VirtualBox, Virtual PC, and QEMU
allow users to run a full “virtual machine” within the host operating system. Generally,
they store the file systems used by these virtual machines as virtual disk images—
container files that act as a “disk” for purposes of virtualization software. If it acts like
a disk for virtualization software, we should be able to get it to act as a disk for pur-
poses of extracting artifacts. The most common virtual disk format today is VMDK,
used by VMWare’s virtualization products.

A VMWare virtual disk is defined using a descriptor file that defines the file(s)
that makes up that particular virtual disk, as well as specifications of the “disk” being
presented to the virtual machine. A disk is originally formed from the base file (or
files in the case where the disk is created as a series of 2-GB split chunks). As users
create snapshots of a virtual machine, files containing changes from the base image
called delta links are created, and a new descriptor file containing information about
the base and delta files is created.

The full VMDK specification is available from VMWare at http://www.vmware
.com/app/vmdk/?src=vmdk.

AFFLib supports VMDK containers natively, and Sleuth Kit will import this func-
tionality if built with AFF support. We can use any of the sleuth kit tools directly
against a VMDK by specifying the “afflib” parameter to the image type argument (-i).

55Special Containers

Forensic Containers
We have already spent a little time working with forensic containers, but we have
not gone into detail about what exactly they are. In general, container formats geared
toward forensic imaging have some functionality above and beyond what we get with
a raw disk image. This can include things such as internal consistency checking, case
information management, compression, and encryption. We can, of course, perform
any of these tasks with a raw image as well. The difference is for a forensic container
format, these functions are built into the format, reducing the administrative over-
head involved with things such as ensuring that the hash and case notes for a given
image are kept with that image at all times.

EWF/E01
The most commonly used forensic container format is the Expert Witness Format
(EWF), sometimes referred to as the “E01” format after its default extension. This
native format is used by Guidance Software’s EnCase forensic suite. This “format”
has changed somewhat from one release of EnCase to the next and is not an open
standard. That said, the LibEWF library supports all modern variants of image files
generated by EnCase in this format.

TIP
Creating vMDks from Raw Images
In some circumstances it is useful to be able to access a raw image in a virtual machine.
Two projects are available that provide just this functionality. LiveView (http://liveview
.sourceforge.net/) is a graphical application targeted for use on Windows with limited Linux
support that will create all the files needed to generate a VMWare-bootable virtual machine.

Raw2VMDK (http://segfault.gr/projects/lang/en/projects_id/16/secid/28/) is a command
line utility that simply generates a valid VMDK file that points to your existing raw image.
You can then use this VMDK in any number of ways. For example, the VMDK can be added
as a secondary (read-only) disk attached to a forensics-oriented virtual machine.

nOTE
Other virtual Disk Formats
While the most common, VMWare’s VMDK is by no means the only virtual disk format in use.

vDI is the virtual disk format used by Sun’s open source virtualization platform
VirtualBox.
vHD is the format used by Microsoft’s Virtual PC product, as well as the “built-in” virtu-
alization capability found in Windows 7 and Server 2008.
QCOW2 is the format used currently by the open source QEMU project.

Should you need to do so, these disk formats can be converted into either VMDKs or
raw images suitable for forensic processing using either the qemu-img utility (part of the
QEMU package) or the vboxmanage utility from VirtualBox.

56 CHAPTER 3 Disk and File System Analysis

The structure of this format has been documented by its original author, Andy
Rosen of ASRData, with further documentation performed by Joachim Metz during
his work on the LibEWF project [4]. The EWF format supports compression, split
files, and stores case metadata (including an MD5 or SHA1 hash of the acquired
image) in a header data structure found in the first segment of the image file. Exam-
iners interested in the inner workings of the EWF format should reference these
documents.

AFF
The Advanced Forensics Format (AFF) is an open source format for storing disk
images for forensics, as well as any relevant metadata. AFF is implemented in the
LibAFF package we installed previously. The Sleuth Kit supports AFF image files
through this library. AFF images can be compressed, encrypted, and digitally signed.
An interesting feature of the AFF format is that metadata stored in the image file are
extensible—arbitrary information relevant to the case can be stored directly in the
image file in question.

AFF images can be stored in one of three methods:

• AFF—This is the default format of an AFF container; this is a single image file
containing forensic data as well as case metadata.

• AFD—This format contains metadata in the image, but splits the image file into
fixed-size volumes. This can be useful when transporting or archiving images via
size-limited file systems or media.

• AFM—This format stores the image file as a single, solid container but stores
metadata in an external file.

HASHIng
One of the key activities performed at many different points throughout an examina-
tion is generation of a cryptographic hash, or hashing. A cryptographic hash function
takes an arbitrary amount of data as input and returns a fixed-size string as output.
The resulting value is a hash of data. Common hashing algorithms used during a
forensic examination include MD5 and SHA1. MD5 produces a 128-bit hash value,
while SHA1 produces a 160-bit hash value. Longer versions of SHA can be used
as well; these will be referred to by the bit length of the hash value they produce
(e.g., SHA256 and SHA512).

For hash functions used in forensic functions, modification of a single bit of
input data will produce a radically different hash value. Given this property, it is
easy to determine one of the core uses for hashing in forensic analysis: verification
of the integrity of digital evidence. A hash generated from the original evidence
can be compared with a hash of the bit-stream image created from this evidence—
matching hashes show that these two items are the same thing. Additionally, taking
an additional hash after completing examination of a forensic copy can show that the
examiner did not alter source data at any time.

57Hashing

Other characteristics of hash functions make them valuable for additional forensic
uses. Because a hash is calculated by processing the content of a file, matching
hashes across various files can be used to find renamed files, or to remove “known
good” files from the set of data to be examined. Alternately, the hashes of files of
interest can be used to locate them irrespective of name changes or other metadata
manipulations.

Many programs that implement the MD5 and SHA* algorithms are available for
a variety of platforms. For simply generating a hash of a single file, the md5sum or
sha1sum programs present on nearly on Linux systems are sufficient. Using these
programs to generate hash lists of multiple files or multiple nested directories of
files can be quite tedious. To solve this problem, Jesse Kornblum has produced the
md5deep and hashdeep utilities.

Md5deep is a suite of hashing utilities designed to recurse through a set of input
files or directories and produce hash lists for these. The output is configurable based
on the examiners requirements and, despite the name, the suite includes similar
tools implementing SHA* and other hashing algorithms. Hashdeep is a newer util-
ity developed as a more robust hash auditing application. It can be used to generate
multiple hashes (e.g., MD5 and SHA1 hashes) for files and can be used to subse-
quently audit the set of hashed data. After generating a base state, hashdeep can
report on matching files, missing files, files that have been moved from one location
to another, and files that did not appear in the original set. Full usage information
and tutorials, source code, and binaries for Windows are available at the md5deep
site [5].

As stated earlier, the fact that a change in a single input bit will change many
bits in the final hash value is one of the valuable characteristics of hash functions for
purposes of proving a file’s content or integrity. If you instead want to prove that two
files are similar but not identical, a standard hashing approach will not help—you
will only be able to tell that two files are different, not how different. Jesse Korn-
blum’s ssdeep was developed to provide this capability, which Jesse calls “context
triggered piecewise hashes” “fuzzy hashing [6].” To simplify, fuzzy hashing breaks
the input file into chunks, hashes those, and then uses this list to compare the similar-
ity of two files. The hashing window can be tuned by the end user.

We can see the basic operation of ssdeep in the console output that follows. The
author generated a paragraph of random text and then modified capitalization of the
first word. The MD5 hashes are wildly different:

MD5 (lorem1.txt) = ea4884844ddb6cdc55aa7a95d19815a2
MD5 (lorem2.txt) = 9909552a79ed968a336ca3b9e96aca66

We can generate fuzzy hashes for both files by running ssdeep with no flags:

ssdeep,1.1--blocksize:hash:hash,filename
24:FPYOEMR7SlPYzvH6juMtTtqULiveqrTFIoCPddBjMxiAyejao:

9YfQ7qYza6MdtiHrTKoCddBQxiwd,"/home/cory/ssdeep-test/lorem1.txt"
24:lPYOEMR7SlPYzvH6juMtTtqULiveqrTFIoCPddBjMxiAyejao:dYfQ

7qYza6MdtiHrTKoCddBQxiwd,"/home/cory/ssdeep-test/lorem2.txt"

58 CHAPTER 3 Disk and File System Analysis

By inspecting both sets of fuzzy hashes visually, we can identify that they match,
except for the first byte, which is where our modification occurred. Alternately, we
can run ssdeep in directory mode by passing the -d flag, which will compare all files
in a directory:

user@ubuntu:~/ssdeep-test$ ssdeep -d *
/home/user/ssdeep-test/lorem2.txt matches /home/user/ssdeep-

test/lorem1.txt (99)

Full usage information and tutorials, source code, and binaries for Windows are
available at the ssdeep site [7].

CARvIng
A wise forensic examiner once said “when all else fails, we carve.” Extraction of
meaningful file content from otherwise unstructured streams of data is a science
and an art unto itself. This discipline has been the focus of numerous presenta-
tions at the Digital Forensics Research Workshop over the years, and advance-
ments continue to be made to this day. At its most basic, however, the process
of carving involves searching a data stream for file headers and magic values,
determining (or guessing) the file end point, and saving this substream out into
a carved file. Carving is still an open problem and is an area of ongoing, active
experimentation. Numerous experimental programs are designed to implement
specific new ideas in carving, as well as more utilitarian programs geared toward
operational use.

nOTE
Hash Collisions
Over the past few years there have been some publicized attacks against the MD5 algorithm
in which researchers were able to generate two different files that generated the same MD5
hash value. All of the attacks made public thus far have been in the category of collision
attacks. In a collision attack, a third party controls both files. This scenario is not applicable
for most of the tasks we use hashing for in forensic analysis, such as verifying an image
file has not been altered or verifying a file against a set of known good or bad hashes. That
said, tools such as hashdeep can use multiple hash algorithms (in addition to nonhash
data like file size) to strengthen the confidence of a hashset.

TIP
hachoir-subfile
The hachoir-subfile program can be used to intelligently identify files within binary
streams, including unallocated space from disk images. It operates in a manner similar
to the sigfind, but uses intelligence about file formats to provide a much stronger signal
that an actual file has been located, minimizing false positives. While not a carving tool
in and of itself, it can be used to positively identify files inside of a stream for subsequent
manual extraction. The hachoir suite of programs is discussed in detail in Chapter 8.

59Carving

Foremost
Foremost is a file carving program originally written by Jesse Kornblum and Kris
Kendall at the Air Force Office of Special Investigations and later updated by Nick
Mikus of the Naval Postgraduate School. It uses defined headers, footers, and knowl-
edge of the internal structures for supported file types to aid in carving. A complete
list of the file types supported natively by foremost can be found in the program’s
man page, but suffice it to say it includes the usual suspects: JPEG images, office
documents, archive files, and more. If necessary, additional file types can be defined
in a custom foremost.conf file. We will discuss the analysis of files and their content
in Chapter 8.

Foremost can be installed easily using apt-get on Ubuntu or by retrieving and
compiling the source (or supplied binaries) from the foremost project page at Source-
Forge: http://foremost.sourceforge.net/. Options that may be particularly important
include:

-d - turn on indirect block detection (for UNIX file-systems)
-i - specify input file (default is stdin)
-a - Write all headers, perform no error detection (corrupted

files)
-w - Only write the audit file, do not write any detected files

to the disk
-o - set output directory (defaults to output)
-c - set configuration file to use (defaults to foremost.conf)
-q - enables quick mode. Search are performed on 512 byte

boundaries.

We can perform a basic run of foremost using the Digital Forensics Research Work-
stop 2006 carving challenge file as input [8]. We will use the -v flag to increase the
verbosity of the output.

user@ubuntu:~/dfrws $ foremost -v -i dfrws-2006-challenge.raw
Foremost version 1.5.4 by Jesse Kornblum, Kris Kendall, and Nick Mikus
Audit File
Foremost started at Sat Dec 10 21:51:55 2010
Invocation: foremost -v -i dfrws-2006-challenge.raw
Output directory: /home/user/dfrws/output
Configuration file: /usr/local/etc
Processing: dfrws-2006-challenge.raw
|--
File: dfrws-2006-challenge.raw
Start: Sat Jan 1 21:51:55 2011
Length: Unknown

Num Name (bs=512) Size File Offset Comment
0: 00003868.jpg 280 KB 1980416
1: 00008285.jpg 594 KB 4241920
2: 00011619.jpg 199 KB 5948928
3: 00012222.jpg 6 MB 6257664

60 CHAPTER 3 Disk and File System Analysis

4: 00027607.jpg 185 KB 14134784
5: 00031475.jpg 206 KB 16115200
6: 00036292.jpg 174 KB 18581504
7: 00040638.jpg 292 KB 20806656
8: 00041611.jpg 1 MB 21304832
9: 00045566.jpg 630 KB 23329792
10: 00094846.jpg 391 KB 48561152
11: 00000009.htm 17 KB 4691
12: 00004456.htm 22 KB 2281535
13: 00027496.htm 349 KB 14078061
14: 00028244.htm 50 KB 14460928
15: 00029529.htm 183 KB 15118957
16: 00032837.doc 282 KB 16812544
17: 00045964.doc 71 KB 23533568
18: 00028439.zip 157 KB 14560768
19: 00030050.zip 697 KB 15385752
20: 00045015.zip 274 KB 23047680
21: 00007982.png 6 KB 4086865 (1408 x 1800)
22: 00033012.png 69 KB 16902215 (1052 x 360)
23: 00035391.png 19 KB 18120696 (879 x 499)
24: 00035431.png 72 KB 18140936 (1140 x 540)
*|
Finish: Sat Jan 1 21:51:57 2011
25 FILES EXTRACTED

jpg:= 11
htm:= 5
ole:= 2
zip:= 3
png:= 4

Note that due to the intentional fragmentation of this test image, the bulk of these
extracted files will not be identical to the original items. Simson Garfinkel presented
research at the Digital Forensics Research workshop in 2007 that indicated that the
majority of files on any give volume will be contiguous and that most fragmented
files are simply split into two fragments, with a single block splitting the halves [9].

TIP
Additional Carving utilities
Scalpel is a file carver forked from Foremost version 0.69 and completely rewritten with
an eye toward increasing performance. The latest public release of scalpel is version 1.60,
released in December 2006. The authors have presented papers referencing advanced
versions of scalpel with parallelized carving support and GPU acceleration, but at the time
of this publication these have not been released publicly [10].

PhotoRec is an advanced, cross-platform carving program distributed as part of the
TestDisk program mentioned in the Partition Identification and Recovery section. Like
TestDisk, CGSecurity provides an extensive guide that details use of the tool on their
Web site [11].

61Forensic Imaging

The most common scenario for carving in an actual investigation is the attempted
retrieval of deleted data for which metadata are no longer present or no longer linked.
In these cases, extracting the unallocated space of the volume into a contiguous
block using blkls has the potential to eliminate fragmentation caused by currently
 allocated blocks.

FOREnSIC IMAgIng
In creation of a forensic image, we are trying to capture an accurate as possible
representation of source media. This is not unlike the police lines set up at a physi-
cal crime scene. These lines are put in place to minimize the amount of change that
occurs in a crime scene, which in turn gives the crime scene investigators the most
accurate data possible.

Imagine, then, if the crime scene investigators could create a copy of the actual
crime scene. In the real world this is madness, but this is what we aim to do with
creation of a forensic image.

A good forensic imaging process generates an exact duplicate (or a container that
holds an exact duplicate) of the source media under investigation. By exact duplicate
we mean exactly that—we aim to acquire a complete sector-for-sector, byte-for-byte
copy of original media. There should be no on-disk information present on source
media that do not appear in our forensic image. An ideal imaging process should not
alter original media, fail to acquire any portion of original media, nor introduce any
data not present on source media into the image file.

A traditional forensic analyst examining a gun used in a homicide works on the
original. Why doesn’t the computer forensic examiner do the same? Examiners gen-
erate forensic images for several reasons. The primary reason is to provide an exact
copy of original media to examine. For the traditional analyst, the actual weapon is
the best evidence. In the case of digital evidence, we can make a duplicate of source
media that matches the original in every way. Working with original digital evidence
can be very dangerous because the original can be altered or destroyed with relative
ease. By only accessing the original media once, to generate our forensic image, we
minimize our opportunities to alter the original accidentally. Another benefit of work-
ing on an image is if we make a mistake and somehow end up altering the image file
in some way, we can generate a new exact duplicate from the intact original media.

Deleted Data
Another reason examiners use forensic imaging is for completeness. Simply exam-
ining an active file system as presented by the operating system is not sufficiently
thorough for a forensic examination. Most volumes contain reams of potentially
interesting data outside of the viewable, allocated files on a mounted file system.
This includes several categories of “deleted data.”

62 CHAPTER 3 Disk and File System Analysis

• Deleted files are the “most recoverable.” Generally this refers to files that have
been “unlinked”—the file name entry is no longer presented when a user views
a directory, and the file name, metadata structure, and data units are marked
as “free.” However, the connections between these layers are still intact when
forensic techniques are applied to the file system. Recovery consists of record-
ing the relevant file name and metadata structures and then extracting the
data units.

• Orphaned files are similar to deleted files except the link between the file name
and metadata structure is no longer accurate. In this case, recovery of data (and
metadata structure) is still possible but there is no direct correlation from the file
name to recovered data.

• Unallocated files have had their once-allocated file name entry and associated
metadata structure have become unlinked and/or reused. In this case, the only
means for recovery is carving the not-yet-reused data units from the unallocated
space of the volume.

• Overwritten files have had one or more of their data units reallocated to another
file. Full recovery is no longer possible, but partial recovery may depend on the
extent of overwriting. Files with file names and/or metadata structures intact that
have had some or all data units overwritten are sometimes referred to as Deleted/
Overwritten or Deleted/Reallocated.

File Slack
As mentioned previously, the minimum space that can be allocated on a volume is a
single block. Assuming a 4K block size, on a standard drive with 512-byte sectors,
this means the ASCII text file containing a single byte—the letter ‘a’—will consume
eight sectors on the disk. We provided the ‘a’—where did the other 4095 bytes writ-
ten to the disk come from?

The answer is, as always, it depends. Different file systems and operating systems
handle this differently, but generally the process goes:

• The cluster to be used is marked as “allocated” and assigned to the file’s metadata
structure.

• The ‘a’ followed by 511 null bytes (hex 00) are placed in the first sector.

Astute readers will note that we didn’t state how the next seven sectors are written to
the disk. That’s not an oversight—they aren’t written to the disk. They retain what-
ever data were last stored in them during their previous allocation. This is what is
known as file slack or slack space.

Figure 3.2 demonstrates the generation of file slack using three successive views
of the same eight blocks on a disk. At first the row consists of new, empty, unallo-
cated blocks. Then, file A is created, has eight blocks allocated to it, and those eight
blocks are filled with data. File A is then “deleted” and sometime later the first five
blocks are reallocated and overwritten with the content from File B. This leaves three
of the blocks containing data from File A unallocated but recoverable.

63Forensic Imaging

FIguRE 3�2

File slack.

nOTE
RAM Slack
While all modern operating systems pad the written sector with null bytes, this was not
always the case. MS-DOS and older DOS-based versions of Microsoft Windows would
pad the rest of the sector out with whatever contents of memory happened to be next
to data being written. These data, between the end of allocated data and the beginning
of previously allocated data, became known as RAM slack. Given this, RAM slack could
potentially contain data that were never written to the disk, such as cryptographic keys or
passphrases.

TIP
volume or Disk?
When creating a forensic image, most of the time an examiner will use the physical disk
(e.g., /dev/sda) as input. However, in some circumstances you may be better off imaging the
volume or volumes of interest (e.g., /dev/sda1). One example is when dealing with a RAID
array. Imaging physical disks requires the capability to rebuild the RAID from these disk
images at a later date, which (as mentioned previously) can be difficult. Depending on the
type of RAID and the utilities available to you as an examiner, this may prove to be difficult
or impossible. Another example is in the case of Storage Area Network volume—with many
of these systems, removing and imaging the physical drives are simply not options.

64 CHAPTER 3 Disk and File System Analysis

dd
The dd command is the most basic open source tool available to create a forensic
image. Because it is nearly universally present on any Unix-like operating system
and is the basis for several other forensic imaging utilities, learning its operation is
valuable to any examiner. Put simply, dd copies data from one place to another. The
user can provide various arguments and flags to modify this simple behavior, but the
basic syntax of the tool is fairly clear. The excerpt from the tool help given here has
the basic options you need to understand in bold.

user@forensics:~$ dd --help
Usage: dd [OPERAND]…
 or: dd OPTION
Copy a file, converting and formatting according to the operands.
 bs=BYTES force ibs=BYTES and obs=BYTES
 cbs=BYTES convert BYTES bytes at a time
 conv=CONVS convert the file as per the comma separated symbol list
 count=BLOCKS copy only BLOCKS input blocks
 ibs=BYTES read BYTES bytes at a time
 if=FILE read from FILE instead of stdin
 iflag=FLAGS read as per the comma separated symbol list
 obs=BYTES write BYTES bytes at a time
 of=FILE write to FILE instead of stdout
 oflag=FLAGS write as per the comma separated symbol list
 seek=BLOCKS skip BLOCKS obs-sized blocks at start of output
 skip=BLOCKS skip BLOCKS ibs-sized blocks at start of input
 status=noxfer suppress transfer statistics

So, to make a simple clone from one drive to another, we would invoke the tools
like so:

dd if=/dev/sda of=/dev/sdb bs=4096

This takes reads from the first disk, 4096 bytes at a time, and writes the content out
to the second disk, 4096 bytes at a time. If we did not provide the block size (bs=)
argument, dd would default to reading and writing a single 512-byte sector at a time,
which is quite slow.

Cloning a disk is interesting but of limited use for an examiner. For the most
part, we are interested in creating a forensic image file—a file that contains all of the
content present on the source disk. This, also, is simple to do using the same syntax.

user@forensics:~$ sudo dd if=/dev/sdg of=dd.img bs=32K

[sudo] password for user:
60832+0 records in
60832+0 records out
1993342976 bytes (2.0 GB) copied, 873.939 s, 2.3 MB/s

65Forensic Imaging

The key items of interest in the console output for the dd command are “records
in” and “records out” lines. First, they match, which is good—this indicates that we
did not lose any data due to drive failures, failure to write the output file fully, or any
other reason. Second, the “60832+0” records indicate that exactly this many 32K
blocks were both read and written. If we had imaged a drive that was not an exact
multiple of 32K in size, the “+0” would instead show “+1,” indicating that a partial
record was read (and written).

Some of the other options of forensic interest present in the base dd command
are the conv (convert) option. If imaging a failing or damaged hard drive, the
conv=noerror,sync option can be used to ignore read errors, writing blocks of
NULL characters in the output file for every block that was unable to be read. Addi-
tionally, in the case of a dying drive, supplying the iflag=direct option (use direct
I/O, bypassing the kernel drive cache) and reducing the block size to 512 bytes will
ensure that the amount of unrecoverable data is kept to a minimum.

dcfldd
While dd can and has been used to acquire forensically sound images, versions of dd
are available that are specifically designed for forensic use. The first of these to be
examined is dcfldd, created for the Defense Computer Forensics Laboratory by Nick
Harbour. The dcfldd project forked from GNU dd, so its basic operation is quite
similar. However, dcfldd has some interesting capabilities that aren’t found in vanilla
dd. Most of the capabilities revolve around hash creation and validation, logging
of activity, and splitting the output file into fixed-size chunks. The extended dcfldd
functions, as well as base dd functions, can be reviewed by passing the --help flag
to the dcfldd command.

Unsurprisingly, performing the same image acquisition that was done with dd
using dcfldd is quite similar. In fact, if we did not want to take advantage of the addi-
tional features of dcfldd, we could use the exact same arguments as before and would
get the same results. In the code section following, we reimage the same device as
previously, but at the same time generate a log of the md5 and sha1 hashes generated
of each 512 megabyte chunk of the disk.

WARnIng
Bad Sectors
Note that using dd with the conv=noerror argument is not the recommended course of
action when attempting to image a damaged hard drive. Given the option, we recommend
using GNU ddrescue, a specialized version of dd designed to deal with retrieving data
from uncooperative drives. However, in some cases your only option may be to either
retrieve a partial image using dd or retrieve nothing at all.

66 CHAPTER 3 Disk and File System Analysis

user@forensics:~$ sudo dcfldd bs=32k if=/dev/sdg of=dcfldd.img
hashwindow=512M hash=md5,sha1 hashlog=dcfldd.hashlog

60672 blocks (1896Mb) written.
60832+0 records in
60832+0 records out

dc3dd
The last dd variant we will examine is dc3dd, a forensically oriented version cre-
ated by Jesse Kornblum for the Department of Defense Cyber Crime Center. dc3dd
is developed as a patch applied to GNU dd, rather than a fork, so dc3dd is able to
incorporate changes made in the mainline dd more rapidly than dcfldd. dc3dd has
all of the same extended features found in dcfldd and has core dd features currently
absent in the latest dcfldd release.

We can provide the same arguments to dc3dd that were used previously with
dcfldd.

user@forensics:~$ sudo dc3dd bs=32k if=/dev/sdg of=dc3dd.img
hashwindow=512M hash=md5,sha1 hashlog=dc3dd.hashlog

[sudo] password for user:
warning: sector size not probed, assuming 512
dc3dd 6.12.3 started at 2010-09-03 17:34:57 -0700
command line: dc3dd bs=32k if=/dev/sdg of=dc3dd.img

hashwindow=512M hash=md5,sha1 hashlog=dc3dd.hashlog
compiled options: DEFAULT_BLOCKSIZE=32768
sector size: 512 (assumed)
md5 0- 536870912: 07c416f8453933c80319c2d89e5533ad
sha1 0- 536870912: a222f5835ed7b7a51baaa57c5f4d4495b1ca1e79
md5 536870912- 1073741824: acac88a20c6d6b364714e6174874e4da
sha1 536870912- 1073741824:

5b69440a15795592e9e158146e4e458ec8c5b319
md5 1073741824- 1610612736: ed9b57705e7ae681181e0f86366b85e6
sha1 1073741824- 1610612736:

bc5369977d9a2f788d910b5b01a9a1e97432f928
md5 1610612736- 1993342976: 812c94592ec5628f749b59a1e56cd9ab
sha1 1610612736- 1993342976:

bb789315a814159cdf2d2803a73149588b5290ee
md5 TOTAL: 58e362af9868562864461385ecf58156
sha1 TOTAL: 8eaba11cb49435df271d8bc020eb2b46d11902fe
3893248+0 sectors in
3893248+0 sectors out
1993342976 bytes (1.9 G) copied (??%), 908.424 s, 2.1 M/s
dc3dd completed at 2010-09-03 17:50:06 -0700

Note that dc3dd produces a hash log to the console as well as writing it out to
the file passed in the hashlog= argument. Additionally, it presents the sector count
rather than the block count as a summary upon completion.

67References

SuMMARy
This chapter discussed the core concepts of disk and file system analysis. In addition,
it explored many of the fundamental concepts of forensic analysis, such as forensic
imaging, dealing with forensic containers, and hashing. Through use of the Sleuth Kit,
we have shown how to exploit a file system for artifacts of forensic interest. Subsequent
chapters will build upon this foundation to examine and analyze higher level artifacts.

References
 [1] B. Carrier, 2005. File System Forensic Analysis. Addison-Wesley, Boston, MA.
 [2] TestDisk Step By Step—CGSecurity. http://www.cgsecurity.org/wiki/TestDisk_Step_

By_Step.
 [3] RAID Recovery—PyFLAG. http://pyflag.sourceforge.net/Documentation/articles/raid/

reconstruction.html.
 [4] libewf—Browse /documentation/EWF file format at SourceForge.net. http://sourceforge

.net/projects/libewf/files/documentation/EWF%20file%20format/.
 [5] Getting Started with Hashdeep. http://md5deep.sourceforge.net/start-hashdeep.html.
 [6] J. Kornblum, Identifying almost identical files using context triggered piecewise hashing.

Paper presented at Digital Forensics Research Workshop, 2006. Elsevier, (accessed
13.09.10).

 [7] Getting Started with ssdeep. http://ssdeep.sourceforge.net/usage.html.
 [8] Digital Forensics Research Workshop 2006 File Carving Challenge. http://www.dfrws

.org/2006/challenge/dfrws-2006-challenge.zip.
 [9] S.L. Garfinkel, Carving contiguous and fragmented files with fast object validation.

Paper presented at Digital Forensics Research Workshop, 2007.
 [10] Scalpel: A Frugal, High Performance File Carver. http://www.digitalforensicssolutions

.com/Scalpel/.
 [11] PhotoRec Step By Step – CGSecurity, http://www.cgsecurity.org/wiki/PhotoRec_Step_

By_Step (retrieived Jan 9, 2011).

TIP
Creating “Expert Witness Format” Images
It is likely that you will have to provide forensic images for use by a third party at some
point in your career. Depending on the capabilities and experience of the other party, you
may wish to provide them with images in the “Expert Witness Format” discussed in the
Forensic Containers section. Note that EnCase is entirely capable of reading from “raw”
images, but should you receive a specific request to provide images in this format, you can
comply using open source tools.

The ewfacquire utility is a part of the LibEWF package and provides a robust
console interface for generating EWF image files. It is invoked simply by providing the
ewfacquire command with an input source. The program will prompt the user for
information required to generate the image file.

The guymager application is a graphical forensic imaging utility that can be used to
generate raw, AFF, and EWF image files. Note that guymager uses LibEWF for its EWF
support, so functionally these two tools should be the same when generating EWF containers.

 This page intentionally left blank

CHAPTER

69

Windows Systems and
Artifacts

InFORMATIOn In THIS CHAPTER

• Windows File Systems

• Registry

• Event Logs

• Prefetch Files

• Shortcut Files

• Windows Executables

InTRODuCTIOn
Like any operating system, Windows systems offer a wealth of artifacts. In the case
of the Windows operating system, there may be a greater wealth of artifacts than
on some other operating systems. As such, those artifacts are unique to the operat-
ing system. This chapter addresses and discusses a number of artifacts unique and
 specific to Windows systems.

WInDOWS FILE SySTEMS
Windows systems support two primary file systems: FAT and NTFS. “FAT” stands
for “file allocation table,” and “NTFS” stands for “New Technology File System.”
FAT file systems come in several different flavors and are supported by a number of
operating systems, (although drivers are available that allow other operating systems
to access NTFS-formatted volumes) including Linux and MacOSX. In contrast, the
NTFS file system is not as widely supported, but does provide administrators with
the ability to set access control lists (ACLs) on file objects within the file system.

File Allocation Table
The FAT file system is perhaps one of the simplest file systems available and has
been widely available on Microsoft operating systems, starting with MS-DOS.

4

70 CHAPTER 4 Windows Systems and Artifacts

FAT was the primary file system on MS-DOS systems and floppy diskettes and
was also used extensively on Windows 3.x and Window 95 and 98. This file
 system is still used on removable storage devices such as thumb drives, as well as
compact flash cards used in digital cameras. The FAT file system is supported by
other operating systems, so it makes a good medium for moving from one system
(Linux, MacOSX) to another (Windows); if you’re conducting analysis via a Linux
 system, you can save extracted files and data and easily access it later from a Win-
dows system. However, keep in mind that the FAT file system doesn’t possess the
same security mechanisms as other file systems, including NTFS (discussed later
in this chapter).

The FAT file system comes in a number of different flavors; FAT12, FAT16,
FAT32, and exFAT. FAT is also considered to be a rather simple file system in that it
possesses relatively few data structures. With the FAT file system, the disk or volume
is broken up in to clusters of a specific size, based on the version of FAT used. For
example, for FAT12, the cluster size ranged from 512 bytes to 8 kilobytes (KB). For
FAT16 [1], the cluster size ranges from 512 bytes to 64 KB.

Microsoft provides a Knowledge Base article that describes the FAT32 file
system [2] from a high level. As part of this description, Microsoft states that the
FAT32 file system can support disks up to 2 terabytes (TB), but that Windows
2000 only supports partitions up to 32 gigabytes (GB) in size. Using 4-KB
 clusters, FAT32 uses space more efficiently; cluster sizes can range from 512
bytes to 32 KB. The primary difference between FAT16 and FAT32 is the logical
partition size.

On disk, the FAT file system begins with the boot sector (Microsoft Knowledge
Base article 140418 [3] provides a detailed description of the FAT boot sector) and
is followed by FAT areas 1 and 2 (the second FAT area is a copy of the first), the root
folder, files, and other folders. The FAT maps to each cluster within the volume and
tells the operating system how each cluster is used; whether it’s used, in use as part
of a file, or the end of the file.

Files are laid out within the FAT volume in clusters and are referenced by 32-byte
entries that contain the address of the starting cluster number for the file. If a file
consumes more than one cluster, then the starting cluster ends with the number of
the next cluster and so on until the last cluster is reached. This final cluster is marked
with an end-of-file indicator (0xffff).

nOTE
Cluster Sizes
Using larger cluster sizes to support larger disks makes the FAT file system inefficient, as
small files, smaller than the cluster size, are written to a cluster. As such, the remaining
space in the cluster is wasted.

71Windows File Systems

According to the “File Times” article [4] on the Microsoft Developer Network
(MSDN) site, FAT file times maintain a resolution of 10 milliseconds for creation
times, a resolution of 2 seconds for the last modification or write time, and a resolu-
tion of a day for last accessed times. Also, the FAT file system stores its MAC times
in the local system time format.

new Technology File System
The NTFS is perhaps the most widely used file system on Windows systems, as it
offers a number of advantages over the FAT file system, including the ability to set
access control lists (ACLs, or permissions) on file objects, journaling, compression,
and a host of other capabilities not offered on the FAT file system.

MFT
The most notable source of valuable information for an analyst from the NTFS file
system is the Master File Table (MFT). The location of the starting sector of the MFT
can be found in the boot sector of the disk, and every file and directory in the volume
has an entry in the MFT. Each MFT entry is 1024 bytes in size, making the MFT
very simple to parse. Each MFT record, or entry, begins with ASCII string “FILE” (if
there is an error in the entry, it will begin with “BAAD”) and consists of one or more
(most often, more) attributes, each with their own identifier and structure. Figure 4.1
illustrates a portion of an MFT entry.

The first 42 bytes of each MFT entry comprise a header structure with 12 elements,
and the remaining 982 bytes depend largely on the values within the header and the

FIguRE 4�1

Excerpt of an MFT record, or entry.

nOTE
Recovering Deleted Files
Nick Harbour, a malware reverse engineer with consulting firm Mandiant, wrote an open
source Unix command line tool for recovering deleted files from FAT file systems called
“fatback.” The tool is referenced from Nick’s Web site, rnicrosoft.net, and is available for
download from SourceForge.net (the project can be found on the Web at http://sourceforge
.net/projects/fatback/).

72 CHAPTER 4 Windows Systems and Artifacts

various attributes contained within the entry. Not all of the elements within the header
of the MFT entry are immediately useful to a forensic analyst; however, Figure 4.2
illustrates five of the elements that are immediately useful.

As illustrated in Figure 4.2 (which is a portion extracted from Figure 4.1), we see
the “FILE” signature visible at the beginning of the record. Then we see the sequence
number or value, which is incremented when the entry is allocated or unallocated.
Because this particular MFT entry is actually the first record within the MFT and
refers to the file “$MFT,” it stands to reason that the sequence number is 1. Next is
the link count, which refers to the number of directories that have entries for this
record (hard links cause this value to incremented). Next is the offset with the record
to the first attribute; if you look at offset 0x38 within the record, you’ll see that the
first attribute has an identifier of 0x10, or 16. Finally, we see the flags value, which
tells us if the entry is allocated (if the 0x01 bit is set) and if the entry is a directory
(if the 0x02 bit is set). In short, from these two values, we can determine if the entry
is allocated or deleted, and if it is for a file or directory. When the header is parsed,
pseudocode for this may be represented as follows:

if ($mft{flags} & 0x0001) - allocated; else unallocated/deleted
if ($mft{flags} & 0x0002) - folder/directory; else file

The flags value visible in Figure 4.2 is “0x01,” which indicates an allocated file.
A value of 0x00 would indicate a deleted file, and a value of 0x03 would indicate an
allocated directory.

FIguRE 4�2

MFT record header items (in little Endian order).

TIP
MFT Records
MFT records are not deleted once they have been created; new records are added to the
MFT as needed, and records for deleted files are reused.

73Windows File Systems

As mentioned previously, only the first 42 bytes are structured; after that, the rest
of the MFT entry consists of one or more attribute fields. There is no formal speci-
fication or statement that says there needs to be specific attributes within an MFT
entry, but for the most part, you can expect to find a $STANDARD_INFORMATION
and a $FILE_NAME attribute in most MFT entries. This section looks at these two
attributes, as they provide time stamp information, which is valuable to forensic ana-
lysts. We will also take a brief look at the $DATA attribute and leave the remaining
attributes as an exercise for the interested and curious reader.

The header of each attribute contains a 16-byte header, which identifies the type
of attribute, the overall length of the attribute, and whether the attribute is resident to
the MFT entry or not, among other elements.

Using this header information, we can parse through the MFT entry and extract valu-
able information from each attribute. For example, the $STANDARD_INFORMATION
attribute (which is always resident) exists for every file and directory entry and has an
identifier of 0x10 (i.e., 16). This attribute contains the file times for the MFT entry (well,
three of them, anyway) that we see when we type “dir” at the command prompt; the
modified time, last accessed time, and the creation (born) date of the file or directory,
also referred to as “MAC” times. The attribute contains a fourth time value that specifies
the last time that the MFT entry was altered. All together, these times are referred to as
“MACE” (with the “E” referring to the MFT entry modification time) or “MACB” (with
the “C” referring to the MFT entry modification time) times.

The $FILE_NAME attribute (identifier 0x30, or 48) is also found with most
file and directory MFT entries; in fact, many MFT entries will have more than one
$FILE_NAME attribute. Like the $STANDARD_INFORMATION attribute, this
attribute is always resident and also contains four time values; however, these time
values are usually set when the file is created on the system. Unlike file times in the
 $STANDARD_INFORMATION attribute, these file times are not affected by nor-
mal system activity or malicious tampering and can therefore be used to determine

nOTE
MFT Metadata Files
The first 16 entries of the MFT contain information about metadata files; however, they
may not all be used. Those that are not used are left in an allocated state and only contain
basic information.

WARnIng
File Times
NTFS file times are recorded in Universal Coordinated Time (UTC) format, which is
analogous to Greenwich Mean Time. This is true for all of the times; in each MFT entry, a
file record will likely have at least 8 times associated with it; many times, 12 or more. On
the FAT file system, file times are maintained in local system time format.

74 CHAPTER 4 Windows Systems and Artifacts

 indicators of nefarious activity, and steps can be taken to obfuscate the time when a
system was infected. The following code sample (parseSIAttr() function) pro-
vides an example of how the $STANDARD_INFORMATION attribute can be parsed:

sub parseSIAttr {
my $si = shift;
my %si;
my ($type,$len,$res,$name_len,$name_ofs,$flags,$id,

$sz_content,$ofs_content)
= unpack("VVCCvvvVv",substr($si,0,22));

my $content = substr($si,$ofs_content,$sz_content);
my ($t0,$t1) = unpack("VV",substr($content,0,8));
$si{c_time} = getTime($t0,$t1);
my ($t0,$t1) = unpack("VV",substr($content,8,8));
$si{m_time} = getTime($t0,$t1);
my ($t0,$t1) = unpack("VV",substr($content,16,8));
$si{mft_m_time} = getTime($t0,$t1);
my ($t0,$t1) = unpack("VV",substr($content,24,8));
$si{a_time} = getTime($t0,$t1);
$si{flags} = unpack("V",substr($content,32,4));
return %si;

}

TIP
getTime
The getTime() function seen within the code listing for the parseSIAttr() attribute
just given consists of code borrowed from Andreas Schuster that translates the 64-bit
FILETIME object time stamps into a 32-bit Unix time that can be further translated to
a human readable time via the Perl built-in gmtime() function. That code appears as
follows:

sub getTime($$) {
my $lo = shift;
my $hi = shift;
my $t;
if ($lo == 0 && $hi == 0) {

$t = 0;
} else {

$lo -= 0xd53e8000;
$hi -= 0x019db1de;
$t = int($hi*429.4967296 + $lo/1e7);

};
$t = 0 if ($t < 0);
return $t;

}

This code is very useful for parsing and translating any FILETIME object, regardless of
from where it is extracted.

75Windows File Systems

On a normal system, many MFT entries may have two $FILE_NAME attributes:
one to hold the full name of the file (or directory) and one to hold the DOS, 8.3 file-
name. For example, if a file is named “myreallylongfile.txt,” the 8.3 file name will
appear as “myreal~1.txt.” This is kept for compatibility with older file systems and
those that do not support long file names. So it is not unusual on a normal Windows
system to have a number of MFT entries with two $FILE_NAME attributes with
nearly identical contents. The following code sample (parseFNAttr() function)
provides an example of how a $FILE_NAME attribute from an MFT entry can be
parsed and available data extracted:

sub parseFNAttr {
my $fn = shift;
my %fn;
my ($type,$len,$res,$name_len,$name_ofs,$flags,$id,

$sz_content,$ofs_content)
= unpack("VVCCvvvVv",substr($fn,0,22));

my $content = substr($fn,$ofs_content,$sz_content);
$fn{parent_ref} = unpack("V",substr($content,0,4));
$fn{parent_seq} = unpack("v",substr($content,6,2));
my ($t0,$t1) = unpack("VV",substr($content,8,8));
$fn{c_time} = getTime($t0,$t1);
my ($t0,$t1) = unpack("VV",substr($content,16,8));
$fn{m_time} = getTime($t0,$t1);
my ($t0,$t1) = unpack("VV",substr($content,24,8));
$fn{mft_m_time} = getTime($t0,$t1);
my ($t0,$t1) = unpack("VV",substr($content,32,8));
$fn{a_time} = getTime($t0,$t1);
$fn{flags} = unpack("V",substr($content,56,4));
$fn{len_name} = unpack("C",substr($content,64,1));
$fn{namespace} = unpack("C",substr($content,65,1));
$fn{len_name} = $fn{len_name} * 2 if ($fn{namespace} > 0);
$fn{name} = substr($content,66,$fn{len_name});
$fn{name} = cleanStr($fn{name}) if ($fn{namespace} > 0);
$fn{name} =~ s/\x0c/\x2e/g;
$fn{name} =~ s/[\x01-\x0f]//g;
return %fn;

}

The final attribute we discuss is the $DATA attribute (identifier 0x80, or 128).
This attribute contains or refers to the actual content of the file. If the nonresident
flag in the attribute header is not set, then the content of the file is resident within the
$DATA attribute of the MFT entry, following the header and two additional struc-
tures. This is generally true for short text files, for example, or other files less than
700 bytes. If data are nonresident, then “data runs,” or where data are located on the
disk, need to be translated.

Example code for parsing $DATA attribute data runs is very involved and is
not presented here. Similarly, code for extracting information from resident $DATA

76 CHAPTER 4 Windows Systems and Artifacts

attributes is trivial and consists of parsing some additional information (size of con-
tent and offset to content) after the attribute header.

Some open source tools are available for parsing the MFT (specifically, $STAN-
DARD_INFORMATION and $FILE_NAME attributes) and making time-stamped
data available to the analyst. One is David Kovar’s analyzemft.py Python script, found
on the Web at http://www.integriography.com/projects/analyzeMFT. Another is the
mft.pl Perl script, from which the parseSIAttr() and parseFNAttr() functions
were extracted, which is available in the WinForensicAnalysis Google Code pro-
jected, located on the Web at http://code.google.com/p/winforensicaanalysis.

Brian Carrier’s “The SleuthKit” (TSK) tools are probably the best known tools
for collecting a wide range of file system and file system metadata information from
acquired images and even live systems. For example, in order to collect a listing
of file system $STANDARD_INFORMATION attribute file times from an acquired
image, an analyst may use a command similar to the following:

C:\tsk>fls –f ntfs –m C:/ -p –r G:\case\xp.img > G:\case\files\
bodyfile.txt

This command produces what is known as a “bodyfile,” which is an intermedi-
ate file format used to store this information before converting it to a timeline of file
system activity. In some instances, the analyst may need to add the “-o” switch in
order to identify the offset to the partition that appeared on the live system as the
“C:\” drive; this offset information can be determined manually via a hex editor or
by using mmls.exe.

An analyst can also collect this very same information from a live, remote system
using F-Response. If the analyst has connected to the remote system properly and has
mounted the system’s C:\ drive as F:\ on their own system, they may then use a com-
mand similar to the following in order to collect $STANDARD_INFORMATION
attribute file times for the files in the C:\ partition:

C:\tsk>fls –f ntfs –m C:/ -p –r \\.\F: > g:\case\files\bodyfile.txt

The complete set of TSK tools, along with documentation and usage information,
can be found on the Web at the SleuthKit Web site, http://www.sleuthkit.org.

NTFS Alternate Data Streams
Another interesting feature of the NTFS file system is alternate data streams
(ADS), or “ADSs.” ADSs have been part of the NTFS file system since the first
version of Windows NT 3.1 and were included for compatibility with the Macin-
tosh Hierarchal File System (HFS). HFS utilized resource forks for maintaining
file metadata, and ADSs provided interoperability when moving files from one file
system (HFS) to another (NTFS). ADSs are actually an additional stream associ-
ated with a file, and while all versions of Windows include a means for creat-
ing arbitrary ADSs (some versions of Windows actually create and use specific
ADSs), it wasn’t until Windows Vista that native functionality became available
for viewing arbitrary ADSs. As of Windows Vista, the ‘dir /r’ command would

77Windows File Systems

allow an analyst to search for arbitrary ADSs on a live system. However, Windows
systems running the NTFS file system have long had the native ability to create
and use arbitrary ADSs.

In order to demonstrate how to create an arbitrary ADS, create a new directory
called “ads” (via the DOS md or mkdir command, if you like), open a command
prompt to or cd to that directory, and type the following command:

C:\ads>echo "this is an ADS" > myfile.txt:ads.txt

If you type the dir command, you’ll see that the file “myfile.txt” exists and is zero
bytes in size. We just echo’d a string that is 14 bytes in length into a file (apparently),
so where did it go? If we use the ‘type’ command to attempt to view the string we just
entered into the ADS, on Windows XP we’ll get an error message about the syntax of
the command. Type the following command:

C:\ads>notepad .\myfile.txt:ads.txt

When the Notepad window opens, we can see the string we typed in . . . where
did it come from? The string was stored in the alternate data stream, which is a file
but is denoted by the colon in the name. ADSs can be added or attached to files or to
directory listings (using a command such as “C:\ads>:ads.txt”).

Some Windows applications will actually employ specific ADSs. With Windows
XP Service Pack 2, the Attachment Manager would add an ADS called “Zone.Iden-
tifier” to files downloaded via Internet Explorer or as OutLook attachments. These
ADSs were usually no more than 26 or 28 bytes in length and simply identified the
files as having been downloaded via zone 3. Whenever a user would attempt to open
or execute a downloaded file, they would be presented with a warning, asking if they
were sure that they wanted to launch the file in question.

ADSs can also be used to “hide” executable content. On many versions of Win-
dows, executable image files (.exe files) can be hidden in and run from ADSs. Not
only will Perl run scripts that are “hidden” in ADSs, but Windows Scripting Host
files can also be “hidden” in and run from ADSs.

Again, ADSs are artifacts specific to the NTFS file system. Many commercial
forensic applications will display ADSs in red within the graphical user interface
(GUI) of the application. Dave Roth [6] has published a Perl script named “list-
datastreams.pl” that can be used on a live system to locate ADSs. This script uses
Dave’s Win32::API::Prototype module and relies on native Windows application
programming interface (API) functions.

File System Summary
NTFS.com has a comparison of file systems [7] that provides an excellent overview
of the differences between versions of the FAT file system and NTFS. Perhaps the
best, most authoritative source of information available on file systems in general
(including but not limited to FAT and NTFS) is Brian Carrier’s File System Forensic
Analysis [8].

78 CHAPTER 4 Windows Systems and Artifacts

REgISTRy
The Windows Registry is an extremely valuable source of forensics artifacts to any
analyst. The Registry is a binary, hierarchal database [9] that contains configura-
tion for the Windows system, replacing the INI files of Windows 3.1. The Windows
Registry contains operating system and application configuration settings and infor-
mation. In addition, the Registry records information specific to users, essentially
tracking a user’s activity in order to organize and optimize the user’s experience
while interacting with the system.

For the most part, users don’t interact directly with the Registry. Any interaction
is usually through an installation routine or program, such as a Microsoft Installer
file. System administrators may interact more directly with the Registry, through the
Registry Editor (regedit.exe), which is a native utility that ships with all versions
of the Windows operating system. A view of the Registry via the Registry Editor is
illustrated in Figure 4.3.

As seen in Figure 4.3, the Registry appears to have a familiar folder-based
structure. This isn’t actually the case, but is instead an abstraction provided by
the Registry Editor. To really understand what the Registry “looks like,” we first
have to understand that it’s not really a bunch of folders or directories. To begin
with, the Registry itself exists as a bunch of files on the hard drive, as illustrated
in Figure 4.4.

As illustrated in Figure 4.4, files that comprise the Registry and contain infor-
mation about the system and applications are located in the Windows\system32\
config directory. Additional files that contain user-specific information and appli-
cation settings are found in the user profile directories (i.e., NTUSER.DAT and
USRCLASS.DAT).

The Registry’s binary structure consists of “cells,” the two most important of
which are keys and values. There are several other cell types, but these additional

FIguRE 4�3

View of the Windows Registry via the Registry Editor.

79Registry

cell types serve as pointers to additional keys (also known as “subkeys”) and values.
Registry keys (the folders in Figure 4.3) can point to or “contain” additional keys
(subkeys), as well as values. Values are simply that—values that contain data. Values
do not point to keys. Figure 4.5 illustrates this nomenclature.

Figure 4.5 provides an excellent illustration of the various visual elements of
the Registry, in particular the cells that we’ll be discussing. In the left-hand pane
of the Registry Editor, we see the keys and subkeys displayed as folders. When

FIguRE 4�4

Registry files on disk.

FIguRE 4�5

Registry nomenclature.

80 CHAPTER 4 Windows Systems and Artifacts

we click on one of the keys, we will likely see (depending on the key) something
similar to what appears in the right-hand pane, which illustrates the Registry values
and data they can contain. As mentioned earlier, this information is actually con-
tained in files within the file system; if the files are accessed on a binary basis,
we can access the various key and value cells and extract the information we’re
interested in.

In order to really understand how important the Registry can be to an analyst,
we need to start by looking at the Registry on a binary basis. Registry key cells (i.e.,
“keys”) can be very important due to the information they contain within their struc-
ture, which is illustrated in Figure 4.6.

As illustrated in Figure 4.6, the structure of a Registry key starts with a 4-byte
DWORD (double word) that comprises the size of the key, which when read as a
signed integer produces a negative value (in Figure 4.6, the size is -96 bytes; as we
can see from the hexadecimal view, the key structure is indeed 96 bytes). Using Perl,
the following code can be used to parse the DWORD value as a signed integer:

Unpack("l",$dword)

This is followed by the key node identifier “nk,” which tells us that this is a
key (as opposed to a value) node, or cell. Immediately after the node identifier is a
2-byte value that describes the node type; in Figure 4.6, that value is 0x2C, which
identifies a root key cell. The other value you would expect to find is 0x20, which
identifies a regular key cell. The key structure also contains a LastWrite time, a 64-bit

FIguRE 4�6

Registry key node in hexidecimal.

nOTE
When a Registry key is deleted, much like a file, it really doesn’t "go" anywhere. In fact,
when a key is deleted, the size value is changed to a positive value. In the fall of 2008,
Jolanta Thomassen released a Perl script that became known as "regslack," which uses this
property to parse through a hive file and retrieve deleted keys. Regslack is available in the
Downloads section of the RegRipper.net Web site.

81Registry

FILETIME object that marks the number of 100-nanosecond epochs since midnight
of 1 January 1601. This value is analogous to a file’s last modification time and can
be very valuable to an analyst, as it indicates when a change occurred to the key.
These changes can include values or subkeys being added or removed, or a value
being modified. Table 4.1 provides a list of the elements within the key cell structure
that are most important to forensic analysts, along with their position within the
structure and their size.

The other type of cell within the Registry that we’re interested in is the value cell.
Figure 4.7 illustrates a hexadecimal view of a value cell.

Value cells do not contain nearly as much information as a key cell. Perhaps most
importantly, they do not contain any time-stamped information, such as a key cell’s
LastWrite time. Value cells do, however, contain important information in that infor-
mation contained in their data is what constitutes the operating system and applica-
tion configuration settings within the Registry.

Table 4.2 provides a list of relevant value cell structure details. As with the key
cell, the first 4 bytes of a value cell (as illustrated in Figure 4.7) contain the size of
the cell.

FIguRE 4�7

Registry value node in hexidecimal.

Table 4.1 Registry Key Cell Structure Details

Offset (bytes) Size (bytes) Description

  0 4 Size
  4 2 Node ID (“nk,” or 0x6B6E)
  6 2 Node Type (0x2C or 0x20)
  8 8 LastWrite time
20 4 Offset to this key’s parent key
24 4 Number of subkeys
32 4 Offset to the list of subkey records
36 4 Number of values
44 4 Offset to the value list
48 4 Offset to security identifier record
76 2 Length of the key name

82 CHAPTER 4 Windows Systems and Artifacts

Reading key and value information from the Registry is relatively straightforward
using a variety of open source tools. On live Windows systems, the Win32::TieRegistry
Perl module (Python has the winreg module available for the same purpose) would
be one way to extract information from both local and remote systems.

Unlike native tools such as the Registry Editor (regedit.exe) or reg.exe, you can
write Perl scripts that allow you to extract the LastWrite time from Registry keys in
a programmatic fashion, allowing you to parse or sort the information as necessary.
The Win32::TieRegistry module is part of the standard distribution of Perl available
from the ActiveState Web site.

When working with images acquired from systems (either the entire image or just
Registry hives extracted from these systems), we would opt for the Parse::Win32Registry
Perl module, in part because it provides us with a cross-platform means for extracting
necessary information. The Win32::TieRegistry module utilizes the API available on
Windows systems, and therefore provides access to Registry data on the live systems.
The Parse::Win32Registry module accesses hive files on a binary level, providing a
layer of abstraction so that we can access a Registry value simply by providing a key
path (such as “Software/Microsoft/Windows/CurrentVersion”).

TIP
RegScan
A number of Perl scripts available use the Win32::TieRegistry Perl module. One is
regscan.pl, available in a zipped archive in the Downloads section of the RegRipper.net
Web site. This Perl script allows you to extract information about Windows services found
in the Registry on a live, running system.

Table 4.2 Registry Value Cell Structure Details

Offset (bytes) Size (bytes) Description

  0 4 Size (as a negative number)
  4 2 Node ID (“vk,” or 0x6B76)
  6 2 Value name length
  8 4 Data length
12 4 Offset to data
16 4 Value type

WARnIng
Win32::TieRegistry Module
Tools such as the Win32::TieRegistry Perl module rely on the underlying native Windows
API and, as such, are not cross-platform; that is, they will not run on default MacOSX or
Linux installations.

83Registry

RegRipper is an open source Perl application available for parsing Registry hives
extracted from an image, from within a mounted image, or from a system accessed
via F-Response. RegRipper is available in the Downloads section of the RegRipper
.net Web site.

RegRipper uses the Parse::Win32Registry module in order to interact with Reg-
istry hive files. Because this application uses “plugins,” or small files containing Perl
code, to extract specific information, the main script, rr.pl, is really a GUI interface to
an “engine” that runs these plugins. Figure 4.8 illustrates the RegRipper GUI.

WARnIng
F-Response
If you’re using F-Response as a means for extending your incident response reach and/or
capability, you would think that you’re interacting with a live system, so Perl scripts written
using the Win32::TieRegistry module would be your "tool of choice." Well, you’re not
using the API to extract data from the hive files; instead, when using F-Response, you’ll
be interacting with hive files (and other files, as well) on a binary level, so tools using the
Parse::Win32Registry module will be most useful to you.

FIguRE 4�8

RegRipper GUI, ready to rip a Software hive.

84 CHAPTER 4 Windows Systems and Artifacts

The RegRipper package also includes a command line interface tool called
rip.pl, which allows you to run specific plugins against a hive or (like rr.pl) run lists
of plugins (contained in a text file called a “plugins file”) against the hive. Rip.pl
is extremely useful for getting targeted information from a hive, as well as testing
newly created plugins. After all, RegRipper is open source, and the author invites and
strongly encourages others to write their own plugins for their own needs.

A number of Registry keys and values may be of interest to an analyst during an
examination. Windows Registry Forensics [10] from Syngress Publishing, Inc was
published in January 2011 and goes into a great deal of detail regarding additional
and advanced analysis of Windows Registry hive files.

EvEnT LOgS
Earlier versions of Windows (NT, 2000, XP, and 2003, specifically) utilized a logging sys-
tem known as Event Logging. Information about the structures that make up Event Logs
can be found at the MSDN site [11]. Interestingly enough, these structures are defined
well enough that tools can be written to parse the event records from within the logs on a
binary level, as well as from unallocated space. This can sometimes be important, as the
header of the Event Log (.evt) file (see the ELF_ LOGFILE_HEADER structure at the
MSDN site) will indicate a certain number of event records in the file, but parsing on a
binary level may reveal several additional event records. The header contains a value that
tells the Microsoft API where the oldest event record is located (StartOffset) and another
that tells the API where the “end of file” record is located (EndOffset). Based on normal
operation of the Event Logging system, there may be times when valid event records can
be found within the “hidden” space within the Event Log file.

Event Log records all contain a “magic number” or unique identifier (Microsoft
refers to it as a signature), which is “LfLe” (0x654c664c in hex), as illustrated in
Figure 4.9.

As indicated by information from the MSDN site mentioned earlier, the header of
the Event Log file (illustrated in Figure 4.9) is 48 bytes in size. This is further indi-
cated by the 4-byte DWORD value that brackets the header record (i.e., is found at
both the beginning and the end of the record); in this case, that value is 0x30, or 48.
This is important to remember, as the header of an event record (not the header of
the Event Log file, as illustrated in Figure 4.9) is 56 bytes in size, which does not

nOTE
RegRipper in Linux Distributions
RegRipper is included on a number of forensic-oriented, Linux-based toolkit distributions,
including PlainSight and the SANS Investigative Forensic Toolkit. The rip.pl script can be
run in an environment in which the Parse::Win32Registry can be installed; the RegRipper
GUI can be installed and run from a Linux environment in which WINE (found on the Web
at http://www.winehq.org/) has been installed.

85Event Logs

include the actual content of the file. Complete details of the Event Log record (i.e.,
EVENTLOGRECORD) structure are also available at the MSDN site; several key
elements of the structure are illustrated in Figure 4.10.

As with the header structure of the Event Log file, event records are also brack-
eted by size values. In Figure 4.10, the event record is 224 (0xE0) bytes in size.
The event record structure contains information about the record itself, including
offsets to and lengths of strings, the user security identifier (SID), if applicable, and
data held within the event record. As illustrated in Figure 4.10, two time stamps are
embedded within the event record structure as well: when the event in question was

nOTE
Hidden Event Records
There have been a number of instances in which "hidden" event records have been found
in an Event Log file. In one instance, the analyst extracted a copy of an .evt file from an
acquired image and was able to open it in the Event Viewer on her analysis system. A review
of the event records, as well as parsing the header information, indicated that there were a
specific number of event records in the Event Log file. However, parsing the Event Log file
on a binary basis revealed two additional records.

In another instance, an analyst extracted copies of several Event Log files from an
acquired image and parsed them on a binary basis. She suspected that a user had cleared
the Event Logs and, when opening copies of the Event Log files in Event Viewer, found
that one was reportedly empty. However, parsing the "empty" Event Log revealed five
"hidden" event records.

FIguRE 4�9

Event Log header illustrating the signature.

FIguRE 4�10

EVENTLOGRECORD structure elements.

86 CHAPTER 4 Windows Systems and Artifacts

generated and when it was actually written to the Event Log. These time stamps are
written as 32-bit Unix times and are translated easily into more easily readable dates
using, for example, the Perl gmtime() function.

Given the information within the structure, open source tools, such as evtparse.pl
(available from the Google Code winforensicanalysis project), can be written and
used to parse the information from Event Log files. Other tools, such as evtrtp.pl
(also available from the Google Code winforensicanalysis project), can be used
to approach parsing and analysis of the contents of Event Log files in a different
manner. Instead of simply extracting and displaying the event record information,
evtrpt.pl keeps track of that information and displays statistics about the frequency
of various event identifiers (IDs) and sources for the event records. Sample output
from a System Event Log (sysevent.evt) from a Windows XP system is shown here:

Event Source/ID Frequency

Source Event ID Count
---------- -------- -----
DCOM 10005 4
Dhcp 1005 1
EventLog 6005 7
EventLog 6006 6
EventLog 6009 7
EventLog 6011 1
NetBT 4311 3
PlugPlayManager 256 3
Print 20 1
SRService 115 1
Serial 2 2
Server 2504 1
Service Control Manager 7011 1
Service Control Manager 7035 27
Service Control Manager 7036 36
Setup 60054 1
Setup 60055 1
W32Time 35 3

Total: 106

Event Type Frequency

Type Count
------- -----
Error 9
Info 91
Warn 6

Total: 106

Date Range (UTC)
Fri Jun 18 09:05:19 2004 to Fri Jan 18 00:53:41 2008

87Prefetch Files

As you can see, evtrpt.pl provides something of an “at-a-glance” of what infor-
mation would be available from the Event Log file being parsed, including not only
the various event sources and IDs, but also the date range of all records found in the
file. This information can be useful to an analyst looking for activity that occurred on
the system at a specific time. For example, an analyst may be parsing the Application
Event Log looking for specific event IDs associated with antivirus scanning applica-
tions (as the event source), looking for logins via the Security Event Log, or looking
for specific events in the System Event Log. If none of these events exists within the
Event Log or the date range of the available event records does not cover the window
of compromise or the specific time frame of the incident, the analyst can save herself
considerable time by moving on to other sources of data.

Grokevt (found on the Web at http://projects.sentinelchicken.org/grokevt/) is
another open source tool for parsing Event Log files.

Later versions of Windows (i.e., Vista and beyond) use the Windows Event Log
mechanism, which supersedes the Event Logging mechanism of earlier versions of
Windows. Part of this change included a change in the structure of events recorded
and how those events are recorded. This new Windows Event Log format is much
more complex, and details about the schema used can be found at the MSDN Win-
dows Event Log Reference site [12].

Andreas Schuster has written and maintains a Perl-based tool for parsing Win-
dows Event Logs from Vista and above systems, called evtxparse.pl. You can down-
load a copy of evtxparse.pl via Andreas’ blog, which can be found on the Web at
http://computer.forensikblog.de.

PREFETCH FILES
Beginning with Windows XP, the operating system was capable of performing
“prefetching.” The actual mechanics of how prefetching is performed aren’t signifi-
cant; suffice to say that the purpose of prefetching is to allow regularly used applica-
tions to load faster by prestaging segments of loaded code in a specific location so
that instead of searching for it (resulting in page faults), the operating system would
know exactly where to find that code. This is a simple explanation, to be sure, but
again, the specifics of how prefetching is performed aren’t what we’re interested in;
instead, we’re interested in prefetch file metadata.

Windows XP, Vista, and Windows 7 conduct application prefetching by default; Win-
dows 2003 and 2008 have the ability to do so, but that functionality is disabled by default
(all versions of Windows after Windows XP perform boot prefetching). What this means
is that when an application is launched, a prefetch file for that application is created. This
file is located in the C:\Windows\Prefetch directory and ends with the extension “.pf.”
That way, the next time that application is launched, the prefetch directory is checked for
a prefetch file and, if one exists, the code within the file is used to launch the application.

These prefetch files appear in the C:\Windows\Prefetch directory, and their names
start with the name of the executable image file for the application. For example, if
a user runs Notepad, an application prefetch file that starts with “notepad.exe” will

88 CHAPTER 4 Windows Systems and Artifacts

appear in the Prefetch directory. Following the name, there is a dash and several
hexadecimal characters that make up the hash of the path to the file. The file name
ends with “.pf.” Looking back to our Notepad example, a prefetch file for the applica-
tion could look like “NOTEPAD.EXE-336351A9.pf.”

What this means to an analyst is that when a prefetch file is found, it’s an indication
that an application was run on that system. These prefetch files also contain metadata
that can be very useful to an analyst. For example, the creation date of the file will tell the
analyst when the application was first run, assuming that a previous prefetch file wasn’t
deleted and a new one created in its place. The prefetch file itself contains a 64-bit time
stamp indicating when it was last run, as well as a count of how many times the applica-
tion has been run. On Windows XP, the 64-bit “last run” time stamp is at offset 0x78
(120 bytes) within the file, and the run count is a 4-byte (DWORD value) located at
offset 0x90 (144 bytes). Metadata at these offsets are illustrated in Figure 4.11.

On Vista and Windows 7 systems, the 64-bit “last run” time stamp can be found
at offset 0x80 (128 bytes) within the binary contents of the prefetch file, and the run
count is (again, 4 bytes) located at offset 0x98 (152 bytes).

Additional information can also be extracted from metadata within a prefetch file.
For example, embedded within the prefetch file is information about the volume from
which the executable image file was run, as well as strings indicating the paths to mod-
ules loaded by the executable image when it was run. The Perl script pref.pl (available at
the winforensicanalysis Google Code project) can retrieve these metadata from prefetch
files from Windows XP, as well as from Vista and Windows 7 systems. An example of
the volume information available in the Notepad prefetch file appears as follows:

Volume Path : \DEVICE\HARDDISKVOLUME1
Volume Creation Date: Fri Jan 1 22:24:09 2010 Z
Volume Serial Number: A424-CE42

One of the interesting file paths in the available strings embedded within this
particular prefetch file is “\DEVICE\HARDDISKVOLUME1\ADS\MYFILE.
TXT:ADS.TXT”; you will probably recognize this file path from the discussion of
ADSs in the NTFS section earlier in this chapter.

FIguRE 4�11

Metadata found in a Prefetch file (Windows XP).

89Windows Executables

SHORTCuT FILES
Windows shortcut files are shell artifacts created under a number of circumstances,
such as when a user double-clicks a file or when an application is installed (i.e.,
a shortcut file may be created on the desktop). Most shortcut files appear in the Win-
dows Explorer shell with an associated icon that may represent the type of file that is
referring to, and when a user double-clicks the shortcut, the appropriate application
is launched to load or run the target file.

Due to their file extension (.lnk), Windows shortcut files are often referred to as
LNK files. Jesse Hager has done some considerable work to parse the structure of
LNK files, and a copy of his paper can be found in the Downloads section of the
8bits project on Google Code. The various structure elements and sizes, with a few
corrections, can also be found on the Web at http://www.stdlib.com/art6-Shortcut-
File-Format-lnk.html. While Windows shortcuts are files within the file system, and
as such have their own MACB times, the embedded elements within the structure
of LNK files contain the MACB times of the target file that the shortcut points to,
as well as the path (among other data). This information can be used to demonstrate
access to files, particularly those that may be on network shares or removable storage
locations.

A number of open source resources are available for parsing LNK files. A Perl
script for parsing LNK files can be found linked at the “JAFAT: Archive of Foren-
sics Tools” site at http://jafat.sourceforge.net/files.html. There is an example of JAVA
code that will reportedly parse information from LNK files that can be found on the
Web at http://www.javafaq.nu/java-example-code-468.html.

WInDOWS EXECuTABLES
Executable files on Windows systems follow the portable executable (PE), common
object file format (COFF) specification [13]. What this means is that under normal
circumstances, files with specific extensions (i.e., .exe, .dll, .sys, .ocx) will follow
a particular binary structure format. This section discusses the format of PE files;
however, it will not discuss any of the various tricks that malware authors will use to
obscure and obfuscate the malicious programs that they attempt to place on systems.
This is more a subject for a larger text on malware reverse engineering, and there
are several books available that cover this subject nicely, the best of which will be
mentioned later in this section.

TIP
A Bit of History
While working on this book, I found a Lisp script for NTEmacs that could reportedly be
used to parse and display information from Windows shortcut files. While there probably
aren’t many forensic analysts using NTEmacs or Lisp tools for analysis, the script was
technically open source!

90 CHAPTER 4 Windows Systems and Artifacts

A detailed breakdown of the various structures (including the structure element
names, sizes, and meanings) within a PE file is available via the ImageHlp Struc-
tures site [14].

These details can assist (and have assisted) analysts with writing their own tools
and utilities, as well as modifying others, for use in “normal” PE file analysis, as well
as in static malware analysis.

PE files start with the letters “MZ” as the first two characters in the binary con-
tents of the file, as illustrated in Figure 4.12.

The “MZ” at the beginning of the PE file marks the beginning of what is referred
to as the PE file’s “DOS header” or the IMAGE_DOS_HEADER structure and is
sometimes referred to as a “magic number.” The DOS header is 64 bytes long, and
in addition to the “magic number,” the only other important element is the 4-byte
DWORD at the end of the structure, which points us to the beginning of the IMAGE_
NT_HEADER structure, as illustrated in Figure 4.13.

Details of parsing of the remaining structures of PE files are left as an exercise
to the reader.

FIguRE 4�13

PE Signature of the IMAGE_NT_HEADER structure.

FIguRE 4�12

Binary contents at the beginning of a PE file.

TIP
Where Does "MZ" Come From?
The "MZ" at the beginning of a PE file are the initials of Mark Zbikowski, one of the
original architects of MS-DOS, OS/2, and Windows NT.

91Windows Executables

Many “normal” PE files have additional information embedded within their
structure, in particular file version information. This is usually strings maintained in
the “resource section” of the file, as the section can contain other “resources,” such as
icons and bitmaps. Most applications developed by reputable software development
companies will include file version information within the resource section of the
executable files (EXE as well as DLL files) that ship with the application. Also, “bad
guys” have been known to simply rename files loaded on to compromised systems,
leaving the resource information in place.

Extracting file version information from a PE file is relatively trivial using tools
such as the Perl Win32::FileVersionInfo module. Scripts using this module can be
written to display the file version information from files, as follows:

C:\Perl>ver.pl c:\windows\notepad.exe
Filename : c:\windows\notepad.exe
Type : Application
OS : NT/Win32
Orig Filename : NOTEPAD.EXE
File Description : Notepad
File Version : 5.1.2600.5512 (xpsp.080413-2105)
Internal Name : Notepad
Company Name : Microsoft Corporation
Copyright : Microsoft Corporation. All rights reserved.
Product Name : Microsoft« Windows« Operating System
Product Version : 5.1.2600.5512
Trademarks :

WARnIng
Extracting file version information from a PE file is simply one technique of many
that an analyst has at her disposal. While some attackers may make use of existing
tools and change the names of the files, leaving the file version information in place,
others have removed the file version information, or faked it. File version information
should never be considered the sole source of information about a PE file during an
investigation.

TIP
Installing Perl Modules
If you’re using ActiveState Perl distribution, you can search for and install a number of
modules that don’t ship with the default installation using the Perl Package Manager,
or ppm.

Searching for modules that include "win32" in their name is as simple as typing "ppm
search win32." Once you find a module, you can install it using "ppm install <module
name>"; all dependencies will also be installed.

92 CHAPTER 4 Windows Systems and Artifacts

The pefile project [15] on Google Code provides an open source Python module,
written by Ero Carrera, for interacting with and extracting information from PE files.
The module includes some fairly extensive capabilities beyond just retrieving various
elements of the PE structure, including modifying values, and detecting compres-
sion utilities that may have been used to obfuscate the file. The project wiki includes
usage examples as well. Example Python code for extracting the import table from a
PE file using the pefile module appears as follows:

import pefile
pe = pefile.PE("C:/Windows/notepad.exe")
for entry in pe.DIRECTORY_ENTRY_IMPORT:

print entry.dll
for imp in entry.imports:
print '\t', hex(imp.address), imp.name

This simple bit of open source code makes it relatively simple to query the import
table of a PE file and determine which dynamic link library (DLL) functions the
executable image file accesses when run, giving the analyst a clue as to some poten-
tial functions of the file or if the file has been modified.

In the fall of 2010, the Malware Analyst’s Cookbook [16] was published by Wiley
Publishing, Inc. In this book, the authors provide a “recipe” demonstrating use of the
pescanner.py Python script for parsing and performing a modicum on analysis on PE
files. The script can be installed and run on Linux, MacOSX, and (with some work)
Windows systems. The script uses a number of techniques to scan for indications
of suspicious elements (i.e., unusual section names, unusual entry points, to name a
few) within a particular executable image file (EXE, DLL, etc.). Clam antivirus and
Yara (the Yara project can be found on the Web at http://code.google.com/p/yara-
project/) signatures can be incorporated into pescanner.py in order to add the ability
to not just detect suspicious elements of the PE file, but also perform a modicum of
malware detection.

TIP
Parsing PE Headers
During an examination, I’d run across a DLL that I later determined was loaded by a
number of processes on Windows systems. Examining a timeline constructed from file
system metadata, I noticed that during the window of initial infection, immediately after
several files where created on the system, that the DLL in question had been modified.
I looked closer and noticed that during the installation process for a malicious DLL, which
had been detected via antivirus application scans, that the DLL had been modified to
not only include an additional section to the PE header, but also that the malicious DLL
(and its exported function) was referenced by the modified DLL. Being able to examine
the import table of a PE file allows an examiner to not only see what the executable file
is capable of (based on the imported DLLs and functions) but also what may have been
added to the executable file.

93References

The Win32::Exe Perl module provides a level of modicum of access to the struc-
ture of PE files, albeit not to the level of the Python pefile module; while being able
to read the section information, there’s no apparent access (with the current version)
to the import or export tables within the PE file.

SuMMARy
There are a number of open source tools and utilities that an analyst can use to explore
and retrieve information from the various artifacts produced by and found on Win-
dows systems. Many of these tools and utilities are cross-platform in that they can
be run on MacOSX, Linux, or Windows platforms, with the proper configuration (as
discussed in Chapter 2). Many of these tools and utilities are actually scripts of some
kind (Perl, Python, Ruby, etc.) that an analyst can use or modify to meet their needs
(be sure to read the license, if there is one, for the tool first!). Analysts with some
programming skill, or access to someone like this, can modify the open source tools
to provide whatever necessary information would be most valuable and useful.

The needs of forensic analysis are outstripping the functionality available in
commercial forensic analysis applications. As such, analysts need the ability to
quickly access or develop the necessary tools and utilities to allow them to be bet-
ter able to complete the tasks at hand. While there are a number of files on Win-
dows systems that are text based and easily examined or parsed, a number of other
files (and file formats) may play a critical role during an examination. Analysts
need to be able to access the necessary information quickly and decisively, and
open source utilities provide this capability, while providing for documentation and
 reproducibility.

References
 [1] FAT File System, Microsoft TechNet. http://technet.microsoft.com/en-us/library/

cc938438.aspx, (accessed 20.12.10).
 [2] Description of the FAT32 File System, Microsoft Support. http://support.microsoft.com/

kb/154997/, (accessed 20.12.10).
 [3] Detailed Explanation of FAT Boot Sector, Microsoft Support. http://support.microsoft

.com/kb/140418/, (accessed 20.12.10).
 [4] File Times (Windows), Microsoft Developer Network (MSDN). http://msdn.microsoft

.com/en-us/library/ms724290, (accessed 20.12.10).
 [5] How to Use NTFS Alternate Data Streams, Microsoft Support. http://support.microsoft

.com/kb/105763, (accessed 20.12.10).
 [6] ListDataStreams.pl Perl Script, Dave Roth’s Web site. http://www.roth.net/perl/scripts/db/

code/LISTDATASTREAMS.PL, (accessed 20.12.10).
 [7] Comparison of File Systems, NTFS.com. http://www.ntfs.com/ntfs_vs_fat.htm, (accessed

20.12.10).
 [8] B. Carrier, File System Forensic Analysis. Addison-Wesley Publishing, 2005, ISBN:

0-32-126817-2.

94 CHAPTER 4 Windows Systems and Artifacts

 [9] Windows Registry Information for Advanced Users, Microsoft Support. http://support
.microsoft.com/kb/256986, (accessed 20.12.10).

 [10] H. Carvey, Windows Registry Forensics. Syngress Publishing, Inc., 2011, ISBN:
9781597495806.

 [11] Event Log Structures, Microsoft Developer Network Site. http://msdn.microsoft.com/
en-us/library/aa363659(=VS.85).aspx, (accessed 20.12.10).

 [12] Windows Event Log Reference, Microsoft Developer Network Site. http://msdn
.microsoft.com/en-us/library/aa385785(v=VS.85).aspx, (accessed 20.12.10).

 [13] Microsoft Portable Executable and Common Object File Format Specification, Windows
Hardware Developer Central site. http://www.microsoft.com/whdc/system/platform/
firmware/pecoff.mspx, (accessed 20.12.10).

 [14] ImageHlp Structures, Microsoft Developer Network Site. http://msdn.microsoft.com/
en-us/library/ms680198(v=VS.85).aspx, (accessed 20.12.10).

 [15] Pefile, Google Code. http://code.google.com/p/pefile/>, (accessed 20.12.10).
 [16] M. Ligh, S. Adair, B. Hartstein, and M. Richard, Malware Analyst’s Cookbook and

DVD: Tools and Techniques for Fighting Malicious Code. Wiley Publishing, Inc., 2010,
ISBN: 978-0-470-61301-0.

CHAPTER

95

Linux Systems and
Artifacts

InFORMATIOn In THIS CHAPTER

• Linux File Systems

• Linux Boot Process and Services

• Linux System Organization and Artifacts

• User Accounts

• Home Directories

• Logs

• Scheduling Tasks

InTRODuCTIOn
Modern Linux systems have come a long way from their humble roots as a free
Unix-like system for home computers. Over the past 20 years, Linux has found its
way into everything—to children’s toys and networking devices to the most powerful
supercomputing clusters in the world. While we can’t teach you everything you will
need to know to examine a supercomputing cluster, we can get you started with an
exploration of standard Linux file system artifacts, directory structures, and artifacts
of system and user activity.

LInuX FILE SySTEMS
At the time of this writing, most current Linux systems use the Ext3 file system.
Ext3 is the successor of Ext2, which added journaling but retained Ext2’s under-
lying structure otherwise. In fact, an Ext3 volume will happily mount as Ext2 if the
user issues the mount command appropriately. Many other file systems are available
via the Linux kernel, including ReiserFS, XFS, and JFS. Because these file systems
are not generally used in a default Linux installation, their presence may indicate a
purpose-built system (as opposed to a general-use desktop system).

5

96 CHAPTER 5 Linux Systems and Artifacts

This section explores some of the Ext2 and 3 specific structures and forensically
interesting information available, using the file system abstraction model described
in Chapter 3 as a framework.

File System Layer
Ext file systems have two major components that make up their file system layer
structures: the superblock and the group descriptor tables. The superblock is a data
structure found 1024 bytes from the start of an Ext file system. It contains infor-
mation about the layout of the file system and includes block and inode allocation
information, and metadata indicating the last time the file system was mounted or
read. The group descriptor table is found in the block immediately following the
superblock. This table contains allocation status information for each block group
found on the file system [1]. The fsstat tool in the Sleuth Kit can be used to parse
the content of these data structures and display information about the file system.

To demonstrate, we will create a small 10-Megabyte Ext2 file system. First we
need to generate a 10-Megabyte file to act as the container for our file system.

nOTE
Other Linux File Systems
In addition to the Ext family of file systems, you may come across other, less commonly
used Linux file systems. None of these are currently supported by The Sleuth Kit, but can
be examined logically using native Linux file system support.

ReiserFS is a file system developed by Namesys, which was at one point the default for
new SuSE Linux installations. It is no longer in common use by any major distribution
but is the default for a handful of distributions, including Xandros and Linspire.
XFS is a file system created by Silicon Graphics for the IRIX operating system. Its key
strengths lie in the handling of very large files and very high throughput. This makes it a
popular choice for streaming media applications.
JFS is a file system originally created by IBM for the AIX operating system. That said,
the JFS found in the Linux kernel is not compatible with the JFS used in AIX. Like XFS,
JFS handles very large files and high throughput very well and has found use in similar
applications as XFS.
yAFFS2 and JFFS2 are file systems designed for use on flash and other embedded stor-
age devices, such as network devices, media players, and telephones running special-
ized Linux distributions.

nOTE
EXT4
Ext4 is the modern replacement for Ext3, which is beginning to appear as the default
install option for many Linux distributions. Currently, the Sleuth Kit does not have proper
Ext4 support, but some tasks do work. For example, running ils against a specific inode
will still return expected results, but fls will exhibit inconsistent behavior. This is because
the metadata structures have remained consistent with those found in an Ext2/Ext3 file
system, but the data unit layer has changed quite dramatically.

97Linux File Systems

user@ubuntu:~/images$ dd if=/dev/zero of=testimage.img bs=1024
count=10000

10000+0 records in
10000+0 records out
10240000 bytes (10 MB) copied, 0.033177 s, 309 MB/s

Next, we can build the file system using the mke2fs command.

user@ubuntu:~/images$ mke2fs testimage.img
mke2fs 1.41.11 (14-Mar-2010)
testimage.img is not a block special device.
Proceed anyway? (y,n) y
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
Stride=0 blocks, Stripe width=0 blocks
2512 inodes, 10000 blocks
500 blocks (5.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=10485760
2 block groups
8192 blocks per group, 8192 fragments per group
1256 inodes per group
Superblock backups stored on blocks:

8193
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 21 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

Running the fsstat command against our newly created file system yields the
 following output:

user@ubuntu:~/images$ fsstat testimage.img
FILE SYSTEM INFORMATION
--
File System Type: Ext2
Volume Name:
Volume ID: 1c0806ef7431d187bb4c63d11ab0842e
Last Written at: Tue Oct 19 16:24:39 2010
Last Checked at: Tue Oct 19 16:24:39 2010
Last Mounted at: empty
Unmounted properly
Last mounted on:
Source OS: Linux
Dynamic Structure
Compat Features: Ext Attributes, Resize Inode, Dir Index
InCompat Features: Filetype,
Read Only Compat Features: Sparse Super,
...

98 CHAPTER 5 Linux Systems and Artifacts

Of particular interest in the previous section is the “Last Mounted At:” and “Last
Mounted On:” displaying null/empty results. Because this file system has just been
created, this is to be expected. For a heavily used file system, this would indicate an
error or possibly intentional tampering.

Continuing with the fsstat output, we begin to see the information the file sys-
tem layer has about lower layers.

METADATA INFORMATION
--
Inode Range: 1 - 2513
Root Directory: 2
Free Inodes: 2501

The “Root Directory” entry provides the inode number of the root directory—this
is the value the fls command uses by default. The next section of output details the
layout of the blocks of the file system.

CONTENT INFORMATION
--
Block Range: 0 - 9999
Block Size: 1024
Reserved Blocks Before Block Groups: 1
Free Blocks: 9585
BLOCK GROUP INFORMATION
--
Number of Block Groups: 2
Inodes per group: 1256
Blocks per group: 8192
Group: 0:

Inode Range: 1 - 1256
Block Range: 1 - 8192
Layout:

Super Block: 1 - 1
Group Descriptor Table: 2 - 2
Data bitmap: 42 - 42
Inode bitmap: 43 - 43
Inode Table: 44 - 200
Data Blocks: 201 - 8192

Free Inodes: 1245 (99%)
Free Blocks: 7978 (97%)
Total Directories: 2

Group: 1:
Inode Range: 1257 - 2512
Block Range: 8193 - 9999
Layout:

Super Block: 8193 - 8193
Group Descriptor Table: 8194 - 8194
Data bitmap: 8234 - 8234

99Linux File Systems

Inode bitmap: 8235 - 8235
Inode Table: 8236 - 8392
Data Blocks: 8393 - 9999

Free Inodes: 1256 (100%)
Free Blocks: 1607 (88%)
Total Directories: 0

In this output we have the majority of the information needed to extract raw data
from the file system. We know that the file system is divided into two block groups,
each with 8192 1024-byte blocks. We know which inodes are associated with which
block groups, information that can be of use when recovering deleted data. We also
know the location of the backup superblock, which can be used for sanity checking
in the case of a corrupted or inconsistent primary superblock.

File name Layer
File names in Ext file systems are stored as directory entries. These entries are stored
in directories, which are simply blocks filled with directory entries. Each directory
entry contains the file name, the address of the inode associated with the file, and a
flag indicating whether the name refers to a directory or a normal file.

Ext file systems allow multiple file names to point to the same file—these addi-
tional names are known as hard links. A hard link is an additional directory entry that
points to the same inode. Each hard link increments the inode’s link count by one.

To demonstrate this, we can create a simple file, add some text to it, and examine
the file.

user@ubuntu:~$ touch file1
user@ubuntu:~$ echo "i am file1" > file1
user@ubuntu:~$ cat file1
i am file1
user@ubuntu:~$ stat file1

File: 'file1'
Size: 11 Blocks: 8 IO Block: 4096 regular file

Device: 801h/2049d Inode: 452126 Links: 1
Access: (0644/-rw-r--r--) Uid: (1000/ user) Gid: (1000/ user)
Access: 2010-10-19 21:06:36.534649312 -0700
Modify: 2010-10-19 21:06:34.798639051 -0700
Change: 2010-10-19 21:06:46.694615623 -0700

TIP
DebugFS
If you are using Linux as your examination platform, you can also use the included
debugfs utility to gather much of this file system information. This is useful if you need
to confirm an item you discovered using a forensic utility or wish to further investigate
unusual data. Please reference the debugfs man page for usage information.

100 CHAPTER 5 Linux Systems and Artifacts

Here we have created “file1” and added some identifying text. We can use the stat
command to display the file’s inode information. Next, we use the ln command to
create a “hard link” to file1.

user@ubuntu:~$ ln file1 file2
user@ubuntu:~$ stat file2

File: 'file2'
Size: 11 Blocks: 8 IO Block: 4096 regular file

Device: 801h/2049d Inode: 452126 Links: 2
Access: (0644/-rw-r--r--) Uid: (1000/ user) Gid: (1000/ user)
Access: 2010-10-19 21:06:36.534649312 -0700
Modify: 2010-10-19 21:06:34.798639051 -0700
Change: 2010-10-19 21:06:46.694615623 -0700

Note that file2 has the exact same inode number shown in the stat output of file1.
Also note that the “Links” value is incremented.

user@ubuntu:~$ cat file2
i am file1
user@ubuntu:~$ stat file1

File: 'file1'
Size: 11 Blocks: 8 IO Block: 4096 regular file

Device: 801h/2049d Inode: 452126 Links: 2
Access: (0644/-rw-r--r--) Uid: (1000/ user) Gid: (1000/ user)
Access: 2010-10-19 21:06:56.798612306 -0700
Modify: 2010-10-19 21:06:34.798639051 -0700
Change: 2010-10-19 21:06:46.694615623 -0700

Dumping the content of file2 and reviewing the stat output of file1 one more time
reinforce that these are effectively the same “file.” file1 and file2 are both simply file
names that reference the same inode.

A second type of link exists on Ext file systems—soft links. A soft link is a spe-
cial file that has a path to another file in place of the block pointers in its inode. The
soft link then serves as an indirect reference to the actual file.

We can add a soft link to our link chain by using the -s flag to the ln command.

user@ubuntu:~$ ln -s file1 file3
user@ubuntu:~$ stat file1

File: 'file1'
Size: 11 Blocks: 8 IO Block: 4096 regular file

Device: 801h/2049d Inode: 452126 Links: 2
Access: (0644/-rw-r--r--) Uid: (1000/ user) Gid: (1000/ user)
Access: 2010-10-19 21:06:56.798612306 -0700
Modify: 2010-10-19 21:06:34.798639051 -0700
Change: 2010-10-19 21:06:46.694615623 -0700

Note that the stat information for file1 has remained unchanged—file1 is “unaware”
that it is also “file3.”

101Linux File Systems

user@ubuntu:~$ stat file3
File: 'file3' -> 'file1'
Size: 5 Blocks: 0 IO Block: 4096 symbolic link

Device: 801h/2049d Inode: 452127 Links: 1
Access: (0777/lrwxrwxrwx) Uid: (1000/ user) Gid: (1000/ user)
Access: 2010-10-19 21:07:33.382618755 -0700
Modify: 2010-10-19 21:07:33.382618755 -0700
Change: 2010-10-19 21:07:33.382618755 -0700

By running stat against file3 we can get a better idea of what is occurring. The
“Size” value is the number of bytes in the target file name (five). As a soft link, file3
has no data allocated so the “Blocks” value is zero. In addition, because file3 has its
own inode, it gets it own independent set of time stamps.

Metadata Layer
Metadata for files on Ext file systems are stored in inodes. Forensically interesting
items contained in Ext inodes include the file’s size and allocated blocks, ownership
and permissions information, and time stamps associated with the file. In addition,
an inode will contain a flag indicating whether it belongs to a directory or a regular
file. As mentioned previously, each inode also has a link count, which is the number
of file names that refer to this inode.

Ownership information includes User Identifier (UID) and Group Identifier
(GID) values, which can be of importance in many different examinations. We will
discuss more about mapping numeric UIDs and GIDs into their human-readable
equivalent later.

Ext inodes store four time stamps, commonly referred to as MAC times.

• The (M)odified time stamp is updated when the content of the file or directory is
written. So, if a file is edited or entries are added to or removed from a directory,
this time stamp will update.

nOTE
Device Files
In addition to standard “files” and “directories,” Linux has a few special device files that
you will likely encounter when examining a Linux system.

A character device is a special file that transmits data one character at a time. Devices
in this category include user input devices such as mice, keyboards, and serial devices
such as serial ports and modems. Character devices generally stream their data—that is to
say they do not support random access.

A block device is a special file that transmits data one block at a time, where a block
is a specified amount of data. The canonical example of this is a hard drive device, which
transmits data in blocks of 512 bytes at a time. Block device input and output can usually
be buffered for speed and their data can be accessed nonsequentially.

Note that on a dead file system these files will not have much meaning but that
you should be aware of their significance when reviewing links to them or scripts that
reference them.

102 CHAPTER 5 Linux Systems and Artifacts

• The (A)ccessed time stamp is updated when the content of the file or directory is
read. Any activity that opens a file for reading or lists the contents of a directory
will cause this time stamp to be updated.

• The (C)hanged time stamp is updated when the inode is modified. Any permis-
sion changes or changes that cause the Modified time stamp to update will cause
this time stamp to update as well.

• The (D)eleted time stamp is updated only when the file is deleted.

It is important to note that altering the modification or access time is quite simple
using the touch command. Items from the touch command’s usage output that can
be used to set specific time values can be seen in bold in the output that follows.

Usage: touch [OPTION]... FILE...
Update the access and modification times of each FILE to the

current time.
A FILE argument that does not exist is created empty.
....

-a change only the access time
-c, --no-create do not create any files
-d, --date=STRING parse STRING and use it instead of current

time
...

-m change only the modification time
-r, --reference=FILE use this file's times instead of current

time
-t STAMP use [[CC]YY]MMDDhhmm[.ss] instead of

current time
--time=WORD change the specified time:

 WORD is access, atime, or use: equivalent to -a
 WORD is modify or mtime: equivalent to -m

...

While this is trivial to do, it is important to note that altering the C-time (inode
change time) is not possible to do using the touch command—in fact, the C-time
will be updated to record the time any time stamp alteration occurred! In a case where
time stamps appear to have been modified, the C-time can end up being the “truest”
time stamp available.

The inode also contains pointers to blocks allocated to the file. The inode can
store the addresses of the first 12 blocks of a file; however, if more than 12 pointers

WARnIng
Preventing A-Time updates
Note that Ext systems can be mounted with the noatime option, which will prevent all
Accessed time stamp values on that volume from being updated. If file system access time
stamps don’t match up with what secondary time sources such as network traffic captures
or log files are indicating, a noatime mount is a more likely culprit than time travel.

For now...

103Linux File Systems

are required, a block is allocated and used to store them. These are called indirect
block pointers. Note that this indirection can occur two more times if the number of
block addresses requires creating double and triple indirect block pointers.

Data unit Layer
Data units in Ext file systems are called blocks. Blocks are 1, 2, or 4K in size as
denoted in the superblock. Each block has an address and is part of a block alloca-
tion group as described in the block descriptor table. Block addresses and groups
start from 0 at the beginning of the file system and increment. As noted in the Meta-
data section, pointers to the blocks allocated to a file are stored in the inode. When
writing data into a block, current Linux kernels will fill the block slack space with
zeroes, so no “file slack” should be present. Note that the allocation strategy used
by the Linux kernel places blocks in the same group as the inode to which they are
allocated.

Journal Tools
The core functional difference between Ext2 and Ext3 is the journal present in
Ext3. Current Ext3 journal implementations only record metadata changes and are
recorded at the block level. The journal is transaction based, and each transaction
recorded has a sequence number. The transaction begins with a descriptor block,
followed by one or more file system commit blocks, and is finalized with a commit
block. See the jcat output that follows for an example of a simple metadata update
excerpt.

...
4060: Allocated Descriptor Block (seq: 10968)
4061: Allocated FS Block 65578
4062: Allocated Commit Block (seq: 10968)
...

The usefulness of the information extracted from the journal is going to be
highly dependent on the nature of your specific investigation, including the amount
of time that has passed since the event of interest and the amount of file system
activity that has occurred in the meantime. It is possible that old inode data may
be present in the journal, which can provide a transaction log of old time stamps
or old ownership information. Additionally, old inode information recovered from
the journal may contain block pointers that have subsequently been wiped from a
deleted inode.

Deleted Data
As demonstrated earlier, for each directory entry that points to a given inode, that
inode’s link count is incremented by one. When directory entries pointing to a given
inode are removed, the inode’s link count is subsequently decremented by one. When

104 CHAPTER 5 Linux Systems and Artifacts

all directory entries pointing to a given inode are removed, the inode has a link count
of zero and is considered “deleted.” On Ext2 systems, this is where the process stops,
so recovery in this case is fairly easy. On Ext3 systems, when the link count of an
inode hits zero, the block pointers are also zeroed out. While the content is still pres-
ent in the freed blocks (until these are reallocated and overwritten), the link between
metadata and data has been scrubbed.

In Forensic Discovery, Dan Farmer and Wietse Venema make many interesting
observations with regard to deletion of data. One item of note is the fact that deleting
a block or inode effectively “freezes” that item until it is reused. If an attacker places
their malware in a relatively low-use area of the file system and then later deletes it,
it is quite possible that the deleted blocks and inode will remain preserved in digital
amber, Jurassic Park–style, for quite some time [2].

This idea has some effect on data recovery. For example, if you are attempting
to recover data that existed previously in the /usr/share/ directory and all files in that
directory have blocks allocated in block group 45, restricting your carving attempts
to unallocated blocks from group 45 may prove a time (and sanity) saver.

Linux Logical volume Manager
Some Linux systems may have one or more partitions allocated to the Logical Vol-
ume Manager (LVM). This system combines one or more partitions across one or
more disks into Volume Groups and then divides these Volume Groups into Logical
Volumes. The presence of an LVM-configured disk can be detected by looking for
partition type 8e, which is identified as “Linux_LVM” in the fdisk command output
shown here:

fdisk –l
Disk /dev/sda: 8589 MB, 8589934592 bytes
255 heads, 63 sectors/track, 1044 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x0006159f

Device Boot Start End Blocks Id System
/dev/sda1 * 1 25 200781 83 Linux
/dev/sda2 26 1044 8185117+ 8e Linux LVM

To gain access to actual file systems contained inside of the LVM, we will need to
first identify and activate the volume group(s) and then process any discovered logi-
cal volume(s). As LVMs are a Linux-specific technology, this can only be performed
from a Linux system.

First, we will need to scan all disks and display the name associated with the
LVM as shown here for a volume group named “VolGroup00.”

pvscan
PV /dev/sda2 VG VolGroup00 lvm2 [7.78 GB / 32.00 MB free]
Total: 1 [7.78 GB] / in use: 1 [7.78 GB] / in no VG: 0 [0]

105Linux Boot Process and Services

In order to access logical volumes contained within this Volume Group, it is necessary
to activate VolumeGroup00 as shown here:

vgchange -a y VolGroup00
2 logical volume(s) in volume group VolGroup00 now active.
lvs
LV VG Attr Lsize Origin Snap% Move Log Copy%
LogVol00 VolGroup00 -wi-a- 7.25G
LogVol01 VolGroup00 -wi-a- 512.00M

At this point we can image each logical volume directly as if it were a normal volume
on a physical disk.

dd if=/dev/VolGroup00/LogVol00 bs=4k of=/mnt/images/
LogVol00.dd

dd if=/dev/VolGroup00/LogVol01 bs=4k of=/mnt/images/
LogVol01.dd

LInuX BOOT PROCESS AnD SERvICES
Understanding the Linux boot process is important when performing an investigation
of a Linux system. Knowledge of the files user during system startup can help the
examiner determine which version of the operating system was running and when it
was installed. Additionally, because of its open nature, a sufficiently privileged user
can alter many aspects of the boot process so you need to know where to look for
malicious modification. A complete review of the Linux boot process is outside the
scope of this book, but a brief description of the process follows.

The first step of the Linux boot process is execution of the boot loader, which
locates and loads the kernel. The kernel is the core of the operating system and is
generally found in the /boot directory. Next, the initial ramdisk (initrd) is loaded. The
initrd file contains device drivers, file system modules, logical volume modules, and
other items required for boot but not built directly into the kernel.

Once the kernel and initial ramdisk are loaded, the kernel proceeds to initial-
ize the system hardware. After this, the kernel begins executing what we recognize
as the operating system, starting the /sbin/init process. Once init starts, there
are two primary methods by which it will proceed to bring up a Linux operating sys-
tem—System V style and BSD style. Linux distributions generally follow System V
examples for most things, including init’s tasks and processing runlevels.

System v
The System V init system is the most common init style across Linux distributions.
Under System V, the init process reads the /etc/inittab file to determine the default “run-
level.” A runlevel is a numeric description for the set of scripts a machine will execute
for a given state. For example, on most Linux distributions, runlevel 3 will provide a full
multiuser console environment, while runlevel 5 will produce a graphical environment.

106 CHAPTER 5 Linux Systems and Artifacts

Note that each entry in a runlevel directory is actually a soft link to a script in /
etc/init.d/, which will be started or stopped depending on the name of the link. Links
named starting with “S” indicate the startup order, and links starting with “K” indi-
cate the “kill” order. Each script can contain many variables and actions that will be
taken to start or stop the service gracefully.

/etc/rc3.duser@ubuntu:/etc/rc3.d$ ls -l
total 4
-rw-r--r-- 1 root root 677 2010-03-30 00:17 README
lrwxrwxrwx 1 root root 20 2010-07-21 20:17 S20fancontrol -> ../

init.d/fancontrol
lrwxrwxrwx 1 root root 20 2010-07-21 20:17 S20kerneloops -> ../

init.d/kerneloops
lrwxrwxrwx 1 root root 27 2010-07-21 20:17 S20speech-dispatcher

-> ../init.d/speech-dispatcher
lrwxrwxrwx 1 root root 24 2010-08-21 00:57 S20virtualbox-ose ->

../init.d/virtualbox-ose
lrwxrwxrwx 1 root root 19 2010-07-21 20:17 S25bluetooth -> ../

init.d/bluetooth
lrwxrwxrwx 1 root root 17 2010-08-21 08:28 S30vboxadd -> ../

init.d/vboxadd
lrwxrwxrwx 1 root root 21 2010-08-21 08:32 S30vboxadd-x11 -> ../

init.d/vboxadd-x11
lrwxrwxrwx 1 root root 25 2010-08-21 08:32 S35vboxadd-service ->

../init.d/vboxadd-service
lrwxrwxrwx 1 root root 14 2010-07-21 20:17 S50cups -> ../init.d/

cups
lrwxrwxrwx 1 root root 20 2010-07-21 20:17 S50pulseaudio -> ../

init.d/pulseaudio
lrwxrwxrwx 1 root root 15 2010-07-21 20:17 S50rsync -> ../

init.d/rsync
lrwxrwxrwx 1 root root 15 2010-07-21 20:17 S50saned -> ../

init.d/saned
lrwxrwxrwx 1 root root 19 2010-07-21 20:17 S70dns-clean -> ../

init.d/dns-clean
lrwxrwxrwx 1 root root 18 2010-07-21 20:17 S70pppd-dns -> ../

init.d/pppd-dns
lrwxrwxrwx 1 root root 24 2010-07-21 20:17 S90binfmt-support ->

../init.d/binfmt-support

WARnIng
Modern Startup Methods
Modern desktop-focused Linux distributions are replacing antiquated init systems with
backward-compatible, event-driven daemons. The most popular of these is “upstart,”
currently used by Ubuntu and Fedora. However, due to upstart being backward compatible
with init, the inittab/runlevel paradigm will still be present on disk for the forseeable
future.

107Linux System Organization and Artifacts

lrwxrwxrwx 1 root root 22 2010-07-21 20:17 S99acpi-support ->
../init.d/acpi-support

lrwxrwxrwx 1 root root 21 2010-07-21 20:17 S99grub-common -> ../
init.d/grub-common

lrwxrwxrwx 1 root root 18 2010-07-21 20:17 S99ondemand -> ../
init.d/ondemand

lrwxrwxrwx 1 root root 18 2010-07-21 20:17 S99rc.local -> ../
init.d/rc.local

As you can see there are numerous places an intruder can set up a script to help them
maintain persistent access to a compromised system. Careful review of all scripts
involved in the boot process is suggested in an intrusion investigation.

BSD
The BSD-style init process is a bit less complex. BSD init reads the script at /etc/rc
to determine what system services are to be run, configuration information is read
from /etc/rc.conf, and additional services to run from /etc/rc.local. In some cases,
this is the extent of init configuration, but other implementations may also read addi-
tional startup scripts from the /etc/rc.d/ directory. BSD style init is currently used by
 Slackware and Arch Linux, among others.

LInuX SySTEM ORgAnIZATIOn AnD ARTIFACTS
To be able to locate and identify Linux system artifacts, you will need to understand
how a typical Linux system is structured. This section discusses how directories and
files are organized in the file system, how users are managed, and the meaning of file
metadata being examined.

Partitioning
Linux file systems operate from a single, unified namespace. Remember, everything
is a file, and all files exist under the root directory, “/”. File systems on different local
disks, removable media, and even remote servers will all appear underneath a single
directory hierarchy, beginning from the root.

Filesystem Hierarchy
The standard directory structure Linux systems should adhere to is defined in the
Filesystem Hierarchy Standard (FHS). This standard describes proper organization
and use of the various directories found on Linux systems. The FHS is not enforced
per se, but most Linux distributions adhere to it as best practice. The main directo-
ries found on a Linux system and the contents you should expect to find in them are
shown in Table 5.1.

108 CHAPTER 5 Linux Systems and Artifacts

Ownership and Permissions
Understanding file ownership and permission information is key to performing a
successful examination of a Linux system. Ownership refers to the user and/or group
that a file or directory belongs to, whereas permissions refer to the things these (and
other) users can do with or to the file or directory. Access to files and directories on
Linux systems are controlled by these two concepts. To examine this, we will refer
back to the test “file1” created earlier in the chapter.

user@ubuntu:~$ stat file1
File: 'file1'
Size: 11 Blocks: 8 IO Block: 4096 regular file

Device: 801h/2049d Inode: 452126 Links: 1
Access: (0644/-rw-r--r--) Uid: (1000/ user) Gid: (1000/ user)
Access: 2010-10-19 21:06:36.534649312 -0700
Modify: 2010-10-19 21:06:34.798639051 -0700
Change: 2010-10-19 21:06:34.798639051 -0700

The fifth line contains the information of interest—the “Access: (0644/-rw-r—r--)”
item are the permissions, and the rest of the line is the ownership information. This
file is owned by User ID 1000 as well as Group ID 1000. We will discuss users and
groups in detail later in the chapter.

Table 5.1 Standard Linux Directories

/bin essential command binaries (for all users)

/boot files needed for the system bootloader
/dev device files
/etc system configuration files
/home user home directories
/lib essential shared libraries and kernel modules
/media mount points for removable media (usually for automounts)
/mnt temporary mount points (usually mounted manually)
/opt add-on application packages (outside of system package manager)
/root root user’s home directory

/sbin system binaries
/tmp temporary files

WARnIng
/ vs /root
In traditional Unix nomenclature, “/” is referred to as “root,” as it is the root of the
entire directory structure for the system. Unfortunately, this leads to confusion with the
subdirectory “/root” found on many Linux systems. This is referred to as “slash root” or
“root’s home.”

109Linux System Organization and Artifacts

Linux permissions are divided among three groups, and three tasks. Files and
directories can be read, written, and executed. Permissions to perform these tasks
can be assigned based to the owner, the group, or the world (aka anyone with access
to the system). This file has the default permissions a file is assigned upon creation.
Reading from left to right, the owner (UID 1000) can read and write to the file, any-
one with a GID of 1000 can read it, and anyone with an account on the system can
also read the file.

File Attributes
In addition to standard read/write/execute permissions, Ext file systems support
“attributes.” These attributes are stored in a special “attribute block” referenced by
the inode. On a Linux system, these can be viewed using the lsattr command.
Attributes that may be of investigative interest include

• (A)—no atime updates
• (a)—append only
• (i)—immutable
• (j)—data journaling enabled

Remember that we are working outside of file system-imposed restrictions when
we use forensic tools and techniques so these attributes do not impact our exami-
nation of data in question. The presence of specific attributes may be of investigative
interest, however.

Hidden Files
On Linux systems, files are “hidden” from normal view by beginning the file name
with a dot (.). These files are known as dotfiles and will not be displayed by default in
most graphical applications and command line utilities. Hidden files and directories
are a very rudimentary way to hide data and should not be considered overtly suspi-
cious, as many applications use them to store their nonuser-serviceable bits.

/tmp
/tmp is the virtual dumping ground of a Linux system—it is a shared scratch space,
and as such all users have write permissions to this directory. It is typically used
for system-wide lock files and nonuser-specific temporary files. One example of a
service that uses /tmp to store lock files is the X Window Server, which provides
the back end used by Linux graphical user interfaces. The fact that all users and
processes can write here means that the /tmp directory is a great choice for a staging
or initial entry point for an attacker to place data on the system. As an added bonus,
most users never examine /tmp and would not know which random files or directo-
ries are to be expected and which are not.

110 CHAPTER 5 Linux Systems and Artifacts

Another item to note with regard to the /tmp directory can be seen in the following
directory listing:

drwxrwxrwt 13 root root 4.0K 2010-10-15 13:38 tmp

Note that the directory itself is world readable, writable, and executable, but the
last permission entry is a “t,” not an “x” as we would expect. This indicates that the
directory has the “sticky bit” set. Files under a directory with the sticky bit set can
only be deleted by the user that owns them (or the root user), even if they are world
or group writable. In effect, stickiness overrules other permissions.

nOTE
Sticky History
Decades ago, the sticky bit was placed on program files to indicate that their executable
instructions should be kept in swap once the program exited. This would speed up
subsequent executions for commonly used programs. While some Unix-like systems still
support this behavior, it was never used for this purpose on Linux systems.

nOTE
/etc/passwd doesn’t have��� passwords?
The name “passwd” seems to indicate that the file will contain passwords, but it doesn’t—
password hashes are in “shadow.” What gives?

Once upon a time, “passwd” did hold the password hashes. Unfortunately, this represents
a pretty big security risk since the “passwd” file is necessarily readable by all users on the
system. Any sufficiently motivated user could then harvest and crack all the local passwords.
Modern systems store the password hashes in “shadow” to limit the scope of attacks like this.

uSER ACCOunTS
The first place to begin looking for information related to user accounts is the “/etc/
passwd” file. It contains a list of users and the full path of their home directories. The
passwords for user accounts are generally stored in the “/etc/shadow” file.

A typical entry in the “/etc/passwd” file is shown here with a description of each
field: forensics:x:500:500::/home/forensics:/bin/bash

1� username
2� hashed password field (deprecated)
3� user ID
4� primary group ID
5� The “GECOS” comment field. This is generally used for the user’s full name or

a more descriptive name for a service account
6� The path of the user’s home directory
7� The program to run upon initial login (normally the user’s default shell)

111User Accounts

The “/etc/passwd” file will usually be fairly lengthy, even on a single user system.
A fairly old trick that is still occasionally seen in compromises in the wild is to add
an additional “UID 0” user somewhere in the middle of these default accounts in an
attempt to fade into the noise.

The “/etc/group” file has a format similar to /etc/passwd, but with fewer fields.
Examples of typical entries can be seen here:

root:x:0:root
bin:x:1:root,bin,daemon
daemon:x:2:root,bin,daemon
wheel:x:10:root

The first field is the group name, second is the hash of the group password (password-
protected groups are not typically used), the third is the group ID, and the fourth is a
comma-separated list of members of the group. Additional unauthorized users in the
root or wheel groups may be suspicious and warrant further investigation.

The “/etc/shadow” file is the third item required for basic Linux authentication. It
contains hashed user passwords and password-related information.

root:1gsGAI2/j$jWMnLc0zHFtlBDveRqw3i/:13977:0:99999:7:::
bin:*:13826:0:99999:7:::
...
gdm:!!:13826:0:99999:7:::
user:1xSS1eCUL$jrGLlZPGmD7ia61kIdrTV.:13978:0:99999:7:::

The fields of the shadow file are as follows:

1� Username
2� Encrypted password
3� Number of days since the Unix epoch (1 Jan 1970) that the password was last

changed
4� Minimum days between password changes

nOTE
The Zero Effect
Because Linux permissions are granted by the numeric UID and GID and not the account
name, any user account with UID 0 is the functional equivalent of root.

nOTE
Wheel in the Sky
The wheel group is a holdover from the early days of Unix and refers to a “big wheel”—
someone important. Modern Linux systems have carried over this tradition; in many cases,
users in the wheel group have some set of administrative powers, generally including the
ability to execute sudo commands.

112 CHAPTER 5 Linux Systems and Artifacts

5� Maximum time password is valid
6� Number of days prior to expiration to warn users
7� Absolute expiration date
8� Reserved for future use

One item to note is that the “*” and the “!!” in the password fields for daemon
accounts “bin” and “gdm” indicate that these accounts do not have encrypted pass-
words. Because these are not user accounts, they have a null or invalid password field
to prevent them from being used for an interactive login. Any nonuser accounts that
do have encrypted password fields should be investigated.

user@ubuntu:~/images$ ls /etc/passwd*
/etc/passwd /etc/passwd-
user@ubuntu:~/images$ diff /etc/passwd /etc/passwd-
diff: /etc/passwd-: Permission denied
user@ubuntu:~/images$ sudo diff /etc/passwd /etc/passwd-
37d36
< hacker:x:1001:1001::/home/hacker:/bin/sh

HOME DIRECTORIES
On a Linux system, user home directories serve pretty much the same purpose they
do on any other operating system—they provide users a location to store data spe-
cific to them. Well-behaved processes and services specific to an individual user will
also store automatically created data in subdirectories. These are the standard visible
subdirectories found on a Linux system using the GNOME desktop environment:

• Desktop—The user’s Dektop directory. Any files present in this directory should
be visible on the user’s desktop in interactive graphical sessions.

• Documents—The default directory for office-type document files—text, spread-
sheets, presentations, and the like.

• Downloads—Default directory for files downloaded from remote hosts;
GNOME-aware Web browsers, file-sharing clients, and the like should deposit
their data here.

TIP
Passwd Backups
Some Linux distributions generate backup copies of the user management files (passwd,
shadow, and groups) when a user or group is added or modified. These files will have a
minus or dash sign (−) appended to their name. This can be convenient in an intrusion
investigation where a user has been added to the system. We can use the diff
command to compare current and backup passwd files to look for any intruder user
accounts.

113Home Directories

• Music—Default location for music files.
• Pictures—Default location for pictures. Note that scanned images or images

from attached imaging devices (webcams, cameras) will likely end up here
unless otherwise directed.

• Public—Files to be shared with others.
• Templates—Holds document templates. New files can be generated from a

given template via a right click in GNOME. Note that this directory is empty by
default so any additions may indicate a frequently used file type.

• Videos—Default location for videos. Locally recorded or generated video should
end up in this directory unless redirected by the user.

In addition to these “user-accessible” directories, various hidden directories and
files are present. Some of these can contain valuable forensic data generated auto-
matically or as a secondary effect of a user’s activity.

Shell History
The default command shell on most Linux distributions is the Bourne Again Shell,
aka “BASH.” Commands typed in any shell sessions will usually be stored in a file
in the user’s home directory called “.bash_history.” Shell sessions include direct vir-
tual terminals, GUI terminal application windows, or logging in remotely via SSH.
Unfortunately, the bash shell records history as a simple list of commands that have
been executed, with no time stamps or other indication of when the commands were
entered. Correlation of history entries and file system or log file time information
will be important if the time a specific command was executed is important to your
investigation.

ssh
The .ssh directory contains files related to the use of the Secure Shell (ssh) client.
SSH is used frequently on Linux and Unix-like systems to connect to a remote sys-
tem via a text console. SSH also offers file transfer, connection tunneling, and proxy-
ing capabilities. There may be client configuration files present, which can indicate
a particular use case for SSH.

When a user connects to a remote host using the ssh program, the remote
host’s hostname or IP address and the host’s public key are recorded in the

TIP
you Can go home Again
When a user account is deleted from a Unix system, the home directory may be left
behind. If your examination warrants, it can be useful to look in the “/home” directory for
additional directories that may contain old user data.

114 CHAPTER 5 Linux Systems and Artifacts

“.ssh/known_hosts” file. Entries in this file can be correlated with server logs to tie
 suspect activity to a specific machine. A traditional known_hosts entry looks like the
 following:

$ cat .ssh/known_hosts
192.168.0.106 ssh-rsaAAAAB3NzaC1yc2EAAAADAQABAAABAQDRtd74Cp19PO44
zRDUdMk0EmkuD/d4WAefzPaf55L5Dh5C06Sq+xG543sw0i1LjMN7C
IJbz+AnSd967aX/BZZimUchHk8gm2BzoAEbp0EPIJ+G2vLOrc+faM
1NZhDDzGuoFV7tMnQQLOrqD9/4PfC1yLGVlIJ9obd+6BR78yeBRdq
HVjYsKUtJl46aKoVwV60dafV1EfbOjh1/ZKhhliKAaYlLhXALnp8/
l8EBj5CDqsTKCcGQbhkSPgYgxuDg8qD7ngLpB9oUvV9QSDZkmR0R937MYi
IpUYPqdK5opLVnKn81B1r+TsTxiI7RJ7M53pOcvx8nNfjwAuNzWTLJz6zr

Some distributions enable the hashing of entries in the known_hosts file—a hashed
entry for the same host looks like this:

|1|rjAWXFqldZmjmgJnaw7HJ04KtAg=|qfrtMVerwngkTaWC7mdEF3HNx/o=
ssh-rsaAAAAB3NzaC1yc2EAAAADAQABAAABAQDRtd74Cp19PO44zRDUdMk0Em
kuD/d4WAefzPaf55L5Dh5C06Sq+xG543sw0i1LjMN7CIJbz+AnSd967aX/BZZ
imUchHk8gm2BzoAEbp0EPIJ+G2vLOrc+faM1NZhDDzGuoFV7tMnQQLOrqD9/4
PfC1yLGVlIJ9obd+6BR78yeBRdqHVjYsKUtJl46aKoVwV60dafV1EfbOjh1/
ZKhhliKAaYlLhXALnp8/l8EBj5CDqsTKCcGQbhkSPgYgxuDg8qD7ngLpB9oUv
V9QSDZkmR0R937MYiIpUYPqdK5opLVnKn81B1r+TsTxiI7RJ7M53pOcvx8nNfjwA
uNzWTLJz6zr

Note that in both cases the stored public key is identical, indicating that the hashed
host |1| is the same machine as host 192.168.0.106 from the first known_hosts file.

gnOME Windows Manager Artifacts
Because each Linux system can be quite different from any other Linux system,
attempting to create an exhaustive list of possible user artifacts would be an exercise in
futility. That said, some additional files generated by user activity on a default GNOME
desktop installation are worth exploring. Because these artifacts are usually plain text,
no special tools are needed to process them. Simply looking in the right location and
being able to understand the significance of a given artifact is all that is required for
many Linux artifacts. We will discuss a few of these artifacts in this section.

The hidden “.gconf” directory contains various GNOME application configura-
tion files under a logical directory structure. Of particular interest in this structure is
“.gconf/apps/nautilus/desktop-metadata/,” which will contain subdirectories for any
media handled by the GNOME automounter. If an icon for the volume appears on
the user’s desktop, an entry will be present in this directory. Each volume directory
will contain a “%gconf.xml” file. An example of the content found inside this file is
shown here:

user@ubuntu:~$ cat .gconf/apps/nautilus/desktop-metadata/
EXTDISK@46@volume/\%gconf.xml

<?xml version="1.0"?>

115Home Directories

<gconf>
<entry name="nautilus-icon-position" mtime="1287452747"

type="string">
<stringvalue>64,222</stringvalue>

</entry>
</gconf>

The “C-time” of the %gconf.xml file should correspond to the first time the volume
was connected to the system in question. In the case of this file, the embedded icon-
position “mtime” value also matches this time, as the icon was never respositioned.

File: '.gconf/apps/nautilus/desktop-metadata/EXTDISK@46@
volume/%gconf.xml'

Size: 157 Blocks: 8 IO Block: 8192 regular file
Device: 1ch/28d Inode: 23498767 Links: 1
Access: (0600/-rw-------) Uid: (1000/ user) Gid: (1000/ user)
Access: 2010-12-28 16:24:06.276887000 -0800
Modify: 2010-10-18 18:45:50.283574000 -0700
Change: 2010-10-18 18:45:50.324528000 -0700

The “.gnome2” subdirectory contains additional GNOME application-related arti-
facts. One of the items of interest here is “.gnome2/evince/ev-metadata.xml,” which stores
recently opened file information for items viewed with “evince,” GNOME’s native file
viewer. This can provide information about files viewed on external media or inside of
encrypted volumes. A similar file that may be present is “.gnome2/gedit-metadata.xml,”
which stores similar information for files opened in GNOME’s native text editor “gedit.”

The .recently-used.xbel file in the user’s home is yet another cache of recently
accessed files. An XML entry is added each time the user opens a file using a GTK
application, and it does not appear that this file is ever purged automatically. On a
heavily used system this file may grow quite large. An example entry is shown here:

<bookmark href="file:///tmp/HOWTO-BootingAcquiredWindows.pdf"
added="2010-04-16T18:04:35Z" modified="2010-04-16T18:04:35Z"
visited="2010-04-16T19:51:34Z">

 <info>
 <metadata owner="http://freedesktop.org">
 <mime:mime-type type="application/pdf"/>
 <bookmark:applications>

<bookmark:application name="Evince Document Viewer"
exec="'evince %u'" timestamp="1271441075"
count="1"/>

 </bookmark:applications>
 </metadata>
 </info>
</bookmark>

Linux applications can cache various bits of data in the user’s home under the
appropriately named directory “.cache.” One item of note in this directory is the
Ubuntu/GNOME on-screen display notification log, which contains a time-stamped

116 CHAPTER 5 Linux Systems and Artifacts

history of items displayed to the user via the notify-osd daemon. This can include
items such as network connections and disconnections, which can be useful to deter-
mine if a laptop system was moved from one location to another.

user@ubuntu:~$ cat .cache/notify-osd.log
[2010-10-15T02:36:54-00:00, NetworkManager] Wired network
Disconnected
[2010-10-15T02:37:30-00:00, NetworkManager] Wired network
Disconnected
[2010-10-15T13:38:15-00:00, NetworkManager] Wired network
Disconnected - you are now offline
[2010-10-15T13:39:03-00:00, NetworkManager] Wired network
Disconnected - you are now offline

The “.gtk-bookmarks” file in the user’s home directory is used by the GNOME
file manager (Nautilus) to generate the “Places” drop-down list of locations. The
default values are shown here:

-rw-r--r-- 1 user user 132 2010-10-13 18:21 .gtk-bookmarks
file:///home/user/Documents
file:///home/user/Music
file:///home/user/Pictures
file:///home/user/Videos
file:///home/user/Downloads

Any additional or altered values in this file may indicate a user-created shortcut
to a frequently accessed directory. Additionally, this file may contain links to exter-
nal or portable volumes that may not be immediately apparent or that exist inside of
encrypted containers.

LOgS
Log analysis on Linux is generally quite straightforward. Most logs are stored in
clear text, with a single line per event. Identifying which logs contain data you are
after may be challenging, but processing these logs once you’ve found them is usu-
ally less involved than on Windows systems. Unfortunately, the amount of log infor-
mation and the ease of access cuts both ways—logs on Linux systems tend to “roll
over” after 28–30 days by default, and deleting or modifying logs is one of the most
basic tasks an attacker may perform.

We will examine two types of logs: logs generated by or track user activity and
logs generated by system activity.

user Activity Logs
We discussed shell history files previously—these are a great source of informa-
tion about user activity. Unfortunately, because they usually do not contain any time

117Logs

information, their usefulness may be limited. There are additional logs that hold
information about user access to the system that do record time stamps, however.
Direct records of user activity on a Linux system are stored in three primary files:
“/var/run/utmp,” “/var/log/wtmp,” and “/var/log/lastlog.”

The “utmp” and “wtmp” files record user logons and logoffs in a binary format.
The major difference between these files is that “utmp” only holds information about
active system logons, whereas “wtmp” stores logon information long term (per the
system log rotation period). These files can both be accessed via the last command
using the –f flag.

user@ubuntu:~$ last -f wtmp.1
user pts/2 :0.0 Thu Oct 14 19:40 still logged in
user pts/0 :0.0 Wed Oct 13 18:36 still logged in
user pts/0 cory-macbookpro. Wed Oct 13 18:22 - 18:35

(00:12)
user tty7 :0 Wed Oct 13 18:21 still logged in
reboot system boot 2.6.32-24-generi Wed Oct 13 18:17 - 21:49

(12+03:32)
user pts/0 :0.0 Wed Oct 13 18:05 - 18:05 (00:00)
user tty7 :0 Wed Oct 13 18:04 - crash (00:13)
reboot system boot 2.6.32-24-generi Wed Oct 13 18:01 - 21:49

(12+03:48)
user tty7 :0 Sat Aug 21 09:46 - crash (53+08:15)
reboot system boot 2.6.32-24-generi Sat Aug 21 08:46 - 21:49

(65+13:03)
user pts/0 :0.0 Sat Aug 21 08:23 - 08:44 (00:21)
user tty7 :0 Sat Aug 21 08:21 - down (00:22)
wtmp.1 begins Sat Aug 21 08:21:52 2010

The “lastlog” is a binary log file that stores the last logon time and remote host
for each user on the system. On a live system, this file is processed via the lastlog
command. Simple Perl scripts exist for parsing the file offline [3], but these scripts
need to be modified to match the format definition of “lastlog” for the given system.
The structures for “utmp,” “wtmp,” and “lastlog” are all defined in the “/usr/include/
bits/utmp.h” header file on Linux distributions.

Syslog
The bulk of system logs on a Linux system are stored under the “/var/log” directory,
either in the root of this directory or in various subdirectories specific to the appli-
cation generating the logs. Syslog operates on client/server model, which enables
events to be recorded to a remote, dedicated syslog server.

However, on a standalone Linux system, events are usually written directly to the
files on the local host.

Syslog uses a “facility/priority” system to classify logged events. The “facility”
is the application or class of application that generated the event. The defined syslog
facilities are listed in Table 5.2.

118 CHAPTER 5 Linux Systems and Artifacts

Syslog levels indicate the severity of the issue being reported. The available lev-
els and the urgency they are intended to relay are displayed in Table 5.3.

Syslog events are a single line containing made up of five fields:

1� Date of message creation
2� Time of message creation
3� Host name of the system creating the log entry
4� Process name creating the log entry
5� Text of the log entry

Table 5.2 Syslog Facilities

auth Authentication activity
authpriv Authentication and PAM messages
cron Cron/At/Task Scheduler messages
daemon Daemons/service messages
kern Kernel messages
Lpr Printing services
mail Email (imap, pop, smtp) messages
news Usenet News Server messages
syslog Messages from syslog
user User program messages
Local* Locally defined

WARnIng
Remote Syslog Caveats
Syslog can be configured to log to a remote server, either entirely replacing or
simply supplementing local logging. This is noted in the syslog configuration file with
“*.* @hostname” as the syslog destination. The syslog protocol is clear text and is
transmitted over the connectionless UDP protocol. Because message sources are not
authenticated and messages are not signed, it is possible for an attacker to spoof syslog
remote messages. A much more mundane threat is the silent dropping of logs if the
syslog server fails to receive the UDP datagram for any reason.

Table 5.3 Syslog Severities

Emerg or panic System is unusable
Alert Action must be taken immediately
Crit Critical conditions
Err Error conditions
Warning Warning conditions
Notice Normal but significant conditions
Info Informational messages
Debug Debugging level messages, very noisy
None Used to override (*) wildcard
* All levels except none

119Logs

This uniform logging format makes searching for log entries of note on a Linux
system relatively easy. It is important to note that most Linux systems implement
some level of log rotation. For example, a default Ubuntu Linux desktop installa-
tion rotates logs every month, compressing the older log file with GZip for archival.
Server systems will likely archive logs more rapidly and are more likely to delete
logs from active systems after a shorter retention period.

Table 5.4 contains the default paths of some common logs of interest in many
Linux examinations.

Command Line Log Processing
Linux system administrators are generally quite familiar with processing system log
files using command line tools. Because Linux system logs are by and large plain
text, this is done quite easily by chaining together a handful of text-processing and
searching tools. The primary tools used for log file processing on Linux systems are
sed, awk, and grep.

Sed is a stream editor. It is designed to take an input stream, edit the content, and
output the altered result. It reads input line by line and performs specified actions
based on matching criteria—usually line numbers or patterns to match. Sed opera-
tors are passed as single characters. Basic sed operators are:

• p: print
• d: delete
• s: substitute
• y: transform
• !: inverts the pattern match

For purposes of log analysis, sed is generally used to quickly eliminate log
lines that are not of interest. For example, to delete all log lines containing the word
“DEBUG,” we would use the following sed command:

sed /DEBUG/d logfile.txt

Table 5.4 Common Log Files of Interest

/var/log/messages Catch-all, nonspecified logs
/var/log/auth.log User authentication successes/failures
/var/log/secure
/var/log/sulog “su” attempts/success
/var/log/httpd/* Apache Web Server
/var/log/samba/smbd.log Samba (Windows File Sharing)
/var/log/samba/nmbd.log
/var/log/audit/audit.log Auditd/SELinux
/var/log/maillog Mail servers (sendmail/postfix)
/var/log/cups/access_log CUPS Printer Services
/var/log/cron Anacron/cron
/var/log/xferlog FTP servers

120 CHAPTER 5 Linux Systems and Artifacts

Awk is a more robust text processing utility, but this additional power is wrapped
in additional complexity. Sed and awk are used together frequently in Linux and
Unix shell scripts to perform text transformations. While sed is line based, awk can
perform field operations, so it is useful when you want to compare multiple text fields
in a single log line. The default field separator in awk is any white space, but this can
be changed to any character using the -F argument. So, to print the fifth field from
every line in a log file, you would use:

awk '{print $5}' logfile.txt

To print the third field from every line in a comma-separated log file, you would use:

awk -F\, '{print $3}' logfile.txt

The grep command is a powerful text-searching utility. For log analysis, this is
generally used to return lines that match specific criteria. Pattern matching in grep
is handled by regular expressions (see the Regular Expressions sidebar for more
information). For basic use, though, simply supplying a literal string to match is
effective enough.

Using these three commands together can be quite effective. Let’s say you have
a SSH brute force login attack that may have been successful. A fast or long-lived
SSH brute force attack can generate thousands to hundreds of thousands of log
lines. Using these utilities we can whittle our log down to relevant entries very
quickly. First, we will use sed to eliminate all lines that aren’t generated by the SSH
daemon (sshd). Next, we will use grep to extract only lines pertaining to accepted
connections. Finally, we will use awk to reduce some of the extraneous fields in the
log line.

user@ubuntu:/var/log$ sudo sed '/sshd/!d' auth.log | grep
Accepted | awk '{print $1, $2, $3, $9, $11}'

Dec 17 13:50:51 root 192.168.7.81
Dec 18 12:55:09 root 192.168.7.81

TIP
Regular Expressions
To become truly proficient with grep, an examiner must become familiar with “regular
expressions,” which may also be referred to as a “regex.” In short, a regular expression is
a shorthand value that describes a range of text to be selected. The syntax used to create
a regex can appear quite arcane, and even seasoned Linux veterans will have to refer
to a regex cookbook from time to time. A good online guide to begin exploring regular
expressions can be found at http://www.regular-expressions.info/quickstart.html.

121References

SCHEDuLIng TASkS
On Linux systems there are two main mechanisms for scheduling a job to be run in
the future: at and cron. The at command is used to run a task once, at a specific
point in the future. At jobs can be found under “/var/spool/cron.” The cron process
is used to schedule repeating tasks—processes to be run every night, once a week,
every other week, and so on. There are two locations where cron jobs will be stored.
System cron jobs are found in a set of directories defined in the “/etc/crontab” file
and are typically in the aptly named directories “/etc/cron.hourly,” “/etc/cron.daily,”
“/etc/cron.weekly,” and “/etc/cron.monthly.” Any scheduled tasks added by users
will be found in “/var/spool/cron,” such as jobs added by the at command. As you can
surmise, cron jobs are a terrific way for an attacker to maintain persistence on a com-
promised system, so verifying these jobs will be critical in an intrusion investigation.

SuMMARy
While the adoption of Linux as a desktop is still fairly sparse, many of the skills
involved in processing a Linux system are applicable to other Unix-like systems, to
include Mac OS X, which is discussed in Chapter 6. While it is not taking the desktop
world by storm, Linux is becoming more and more popular on embedded devices
such as mobile phones and tablet computers. Examiners capable of exploiting these
data sources for artifacts of interest will be in high demand in the years to come.

References
[1] Rémy Card, Blaise Pascal, Theodore Ts’o, Stephen Tweedie, Design and Implementation

of the Second Extended Filesystem. http://web.mit.edu/tytso/www/linux/ext2intro.html,
(accessed 9.10.10).

[2] D. Farmer, W. Venema, Forensic Discovery, Addison-Wesley, Upper Saddle River, NJ, 2005.
[3] Formatting and Printing Lastlog. http://www.hcidata.info/lastlog.htm, (accessed 9.11.10).

TIP
Log Statistics
If you need to generate simple statistics about the content of a log file or log files, several
command line utilities can be used for this purpose:

• uniq can be used with the “-c” flag to collapse repeating lines of data to a single line,
preceded by the total number of lines “uniqued” together. Uniq only works on sorted
data, so unsorted data should be preprocessed using the sort command. This can be
useful when trying to determine “top talkers” from a file containing IP addresses or for
finding the most (or least) commonly returned status codes from a Web server log.

• Wc can be used to count characters, words, or lines from input data. This can be useful
when trying to determine the number of results returned for a specific grep query.

This page intentionally left blank

CHAPTER

123

InFORMATIOn In THIS CHAPTER

• OS X File System Artifacts

• OS X System Artifacts

• User Artifacts

InTRODuCTIOn
The first version of Mac OS X was released 10 years ago, and in the subsequent
10 years Apple has seen its fortune rise considerably. While not nearly as prevalent
as Windows desktops and laptops, it is important that an examiner be prepared to
deal with an OS X system if necessary. This chapter introduces the file system used
by OS X, explains the layout of files and directories on the file system, and analyzes
artifacts related to user and system activity.

OS X FILE SySTEM ARTIFACTS
The file system used by OS X is called HFS Plus or Mac OS Extended. HFS+ is the
successor to the Hierarchical File System (HFS) used on pre-OS X Mac operating
systems. There are currently two variant HFS+ formats used to support journaling
(HFSJ) and case-sensitive file names (HFSX). Beyond these extended capabilities,
because these variants don’t alter the function or artifacts available to the examiner,
we will treat them all as “HFS+” throughout this chapter. The best source of informa-
tion available about HFS+ is an Apple technical document entitled “Technical Note
TN1150: HFS Plus Volume Format [1].”

HFS+ Structures
The volume header is one of the core structures of an HFS+ volume. It stores data
about the file system, including the allocation blocks size, the volume creation time
stamp, and the location of the special files required for HFS+ operation, discussed

Mac OS X Systems and
Artifacts 6

124 CHAPTER 6 Mac OS X Systems and Artifacts

later in the chapter. The volume header is always located 1024 bytes from the start
of the volume, with a backup copy located 1024 bytes before the end of the volume.

HFS+ uses allocation blocks as data units. The size of a single allocation block is
defined in the volume header, but 4K bytes is a common value. Allocation blocks can
be further grouped into clumps, which are somewhat similar to the block allocation
groups found in Ext file systems under Linux. A file’s data are addressed in terms of
extents. An HFS+ extent is simply a 4-byte pointer to a starting allocation block and
a 4-byte value indicating the length of the extent.

HFS+ files may have any number of data streams called forks associated with it.
The two primary forks are the data fork and the resource fork. Generally the data fork
holds the actual file content, while the resource fork will be empty or contain nones-
sential supporting information about the file. Additional forks may be created for a
file for application specific purposes.

We can use the fsstat command from the Sleuth Kit to read information about the file
system from the volume header. We will use the nps-2009-hfsjtest1/img.gen1.dmg
file from the Digital Corpora as our test image while examining basic file system data.

FILE SYSTEM INFORMATION
--
File System Type: HFS+
File System Version: HFS+
Volume Name: image
Volume Identifier: 9bee54da586b82f5
Last Mounted By: Mac OS X, Journaled
Volume Unmounted Properly
Mount Count: 11
Creation Date: Thu Jan 29 09:33:30 2009
Last Written Date: Thu Jan 29 09:33:42 2009
Last Backup Date: Wed Dec 31 16:00:00 1969
Last Checked Date: Thu Jan 29 09:33:30 2009
Journal Info Block: 2
METADATA INFORMATION
--
Range: 2 - 28
Bootable Folder ID: 0
Startup App ID: 0
Startup Open Folder ID: 0
Mac OS 8/9 Blessed System Folder ID: 0
Mac OS X Blessed System Folder ID: 0
Number of files: 7
Number of folders: 4
CONTENT INFORMATION
--
Block Range: 0 - 2559
Allocation Block Size: 4096
Number of Free Blocks: 443

From this output we can confirm the 4K allocation block size, some relevant time
information associated with access to the volume, and a couple other pieces of OS

125OS X File System Artifacts

X operating system-specific startup metadata that aren’t relevant on a nonsystem
volume and are thus displayed as “0”. These include the two Startup items and the
“Blessed” System Folder lines. These would point to items in the /System/Library/
CoreServices directory on an OS X boot volume.

In addition to various Sleuth Kit tools, we can also use HFSExplorer from Cata-
combae. HFSExplorer is an open source cross-platform application that can be used
to open and examine HFS, HFS+, and HFSX volumes. In addition, individual files
can be extracted for detailed examination. See Figure 6.1 for the HFSExplorer dis-
play of the file system information from the Digital Corpora test image.

We can continue our examination using fls from the Sleuth Kit.

forensics:~$ fls nps-2009-hfsjtest1/image.gen1.dmg
r/r 3: $ExtentsFile
r/r 4: $CatalogFile
r/r 5: $BadBlockFile
r/r 6: $AllocationFile
r/r 7: $StartupFile
r/r 8: $AttributesFile
d/d 21: .fseventsd
d/d 19: .HFS+ Private Directory Data^
r/r 16: .journal
r/r 17: .journal_info_block
d/d 20: .Trashes
r/r 24: file1.txt
r/r 25: file2.txt
d/d 18: ^^^^HFS+ Private Data

The “dollar” files are HFS+ special files used as the backbone of the HFS+ file system.

HFS+ Special Files
The bulk of the structures that an HFS+ relies upon for proper function are stored
in the volume as hidden files, much like the MFT and associated files on an NTFS
volume. An HFS+ volume has five such files, which are not directly accessible using
standard file system utilities:

1� The allocation file is a bitmap that tracks the allocation status of each block of
the volume.

2� The catalog file contains records for each file and directory on the volume.
It serves many of the same functions that the Master File Table serves on an

nOTE
Sleuth kit and HFS+
While the Sleuth Kit does support HFS+, at the time of this writing there are some limitations.
Currently, the Sleuth Kit does not display deleted files and cannot process the HFS+ journal.
Additionally, Sleuth Kit tools have no understanding of nondata forks, extended attributes, or
HFS+ hard links. That said, the HFS+ analysis capabilities currently present in the Sleuth Kit
should allow an examiner to perform a thorough examination in many types of cases.

126 CHAPTER 6 Mac OS X Systems and Artifacts

FIguRE 6�1

File system information in
HFSExplorer.

127OS X File System Artifacts

NTFS file system. By necessity, the location of the first extent of the catalog
file is stored in the volume header. The location of all other files is stored in
catalog records. HFS+ catalog records are 8K in length and include the catalog
node ID (CNID) of the file or folder, the parent CNID, time stamp metadata,
and information about the data and resource forks of the file.

3� The extents overflow file contains records for forks that have more than
eight extents allocated to them. This file should be fairly sparse, as having
more than eight extents indicates fairly severe fragmentation on an HFS+ file
 system.

4� The startup file is used to hold information used when booting from a system
that doesn’t have knowledge of HFS+.

5� The attributes file can be used to store extended attributes for files. The
attributes file is used in the per-file compression found in OS X 10.6.

One important item to note is that the allocation strategy for CNIDs is interest-
ing from an analysis perspective. CNIDs are 32-bit values allocated sequentially
starting from 16. They are not reused until all 32-bit integers (minus the reserved
CNIDs) have been assigned. This allows the CNID to serve as a relative time
marker. Files with higher CNID values are newer than files with lower CNID val-
ues, despite what any time stamp information would indicate. Additionally, miss-
ing CNID values indicate that a file was once present and has been subsequently
deleted. See Chapter 9 for more information on relative time values and extended
time analysis.

Next, we will examine metadata for a single regular file in detail using istat.

forensics:~$ istat nps-2009-hfsjtest1/image.gen1.dmg 24
Catalog Record: 24
Allocated
Type: File
Mode: rrw-r--r--
Size: 28
uid / gid: 501 / 501
Link count: 1
Admin flags: 0
Owner flags: 0
File type: 0000
File creator: 0000
Text encoding: 0
Resource fork size: 0
Times:
Created: Thu Jan 29 09:33:35 2009
Content Modified: Thu Jan 29 09:33:42 2009
Attributes Modified: Thu Jan 29 09:33:42 2009
Accessed: Thu Jan 29 09:33:35 2009
Backed Up: Wed Dec 31 16:00:00 1969
Data Fork Blocks:
2315

128 CHAPTER 6 Mac OS X Systems and Artifacts

As you can see from the output just given, a Catalog Record supports five time stamps;
however, only the first four are in active use on current HFS+ implementations.

Created: Updated when the file is created.
Content Modified: Updated when the file content is modified.
Attributes Modified: Updated when attributes (metadata) associated with the
file are modified. This is similar to the inoded/metadata change time on Linux
file systems.
Accessed: Updated when the file content is accessed.
Backed Up: Field is deprecated and usually null (as seen earlier).

Finally, to extract the file content we can use two different methods. First, the
indirect method using icat.

forensics:~$ icat nps-2009-hfsjtest1/image.gen1.dmg 24
New file 1 contents - snarf

Alternatively, we can dump the allocation block directly using blkcat. We can see
the block value in the istat output shown earlier under “Data Fork Blocks”:

forensics:~$ blkcat nps-2009-hfsjtest1/image.gen1.dmg 2315
New file 1 contents - snarf

Note that HFS+ volumes are capable of maintaining a journal; however, cur-
rently there are no open source forensic utilities capable of processing the journal
for artifacts.

Deleted Data
Unfortunately, recovery of deleted files from HFS+ volumes is quite difficult.
Because of the constant rebalancing of the B-Tree structures inside of the Catalog
File, file metadata information is usually overwritten soon after a file is deleted from
the file system. This leaves the examiner in much the same boat as on Linux—data
recovery is sometimes possible via data carving, but associating recovered content
with file names or dates will not be straightforward. Many data formats will contain
extractable secondary identifying information or time information, however. Extrac-
tion of these data is covered in Chapter 8.

Ownership/Permissions
OS X uses POSIX standard permissions as default. These are described in Chapter 5.
In addition to POSIX permissions, OS X 10.4 and newer supported extended ACLs

TIP
DMg/uDIF Containers
The majority of OS X software is distributed as “DMG” files. DMG files are standalone disk-
like images in the Universal Disk Image Format (UDIF). UDIF is the native image file format
for OS X and, as expected, these image files will generally contain a HFS+ file system.
UDIF images can be compressed, sparse, or encrypted. UDIF/DMG images can be examined
using HFSExplorer.

129OS X System Artifacts

for more finely grained control to files. This should not affect the forensic examiner’s
ability to view file system content as we are viewing a dead file system outside of
operating system restrictions. More information about the use and implementation of
OS X extended ACLs is available at the Apple Developer Library [2].

OS X SySTEM ARTIFACTS
Like Linux systems, OS X places all volumes under a single unified namespace
below the root directory “/”. Immediately beneath the root directory are the follow-
ing directories:

Applications—This directory is the standard location for all installed OS X appli-
cations. Generally this directory will hold applications designed to be launched
interactively via the OS X GUI.
Library—Library directories hold supporting data that may need to be modified
during execution of a program. This generally includes things such as prefer-
ences, recent items, and other similar data. The root Library directory contains
system-wide configuration data. User-specific data are stored under user Library
directories.
Network—Directory for items in the Network domain; generally empty.
System—This directory contains operating system-specific data, somewhat anal-
ogous to contents of the system32 directory on a Windows system.
Users—The parent directory for user home directories.
Volumes—The parent directory for mounted volumes; similar to /mnt or /media
on Linux systems.
bin and sbin—These directories contain command-line utilities included in the
OS X system.
private—This directory contains (among other things) OS X versions of /var,
/tmp, and /etc.

Property Lists
Many artifacts of interest on an OS X system are stored as property lists or .plist
files. There are two types of property lists: plain text, XML property lists and binary
property lists. Plain text plist files can be examined directly or viewed in any XML
display program. Binary plists need to be converted to plain text prior to analysis.
Due to being more compact than their plain text equivalent, binary plists are becom-
ing used more and more commonly. A typical OS X install will have thousands of
plist files, so knowing which will be relevant to your examination is key.

Many OS X-native, closed source utilities interact with plist files, including a
basic command line utility called plutil. Fortunately, Pete M. Wilson has devel-
oped a Perl script that can convert binary plist files to their plain text equivalent [3].
His script, plutil.pl, is quite simple to use. When provided with the name of a
binary plist file, plutil.pl parses the file and outputs a plain text version in the
same directory.

130 CHAPTER 6 Mac OS X Systems and Artifacts

Bundles
On an OS X system, the “applications” users generally interact with are not mono-
lithic files at all, but are in fact special directories known as bundles. Bundles are
directories that have their contents hidden from the end user’s view by the operating
system. Opening or double-clicking on an application bundle is enough to execute
the application, but the actual executable code is several directories down from the
bundle itself. Drilling down into the bundle via the OS X GUI can be performed via
the right-click menu as shown in Figure 6.2.

When examining an OS X system via the Sleuth Kit, the bundle will just be
treated as a standard directory. Application bundles can be identified in a file listing
by the “.app” extension in the directory name, and a set of subdirectories similar to
the following:

Contents
Contents/Info.plist
Contents/MacOS
Contents/PkgInfo
Contents/Resources
Contents/Versions

The actual executable code is normally stored in the MacOS directory, with the
other directories holding supporting data such as icons, text files, and the like.

System Startup and Services
On system boot, the bootloader boots the OS X kernel (/mach_kernel), which then
runs the launchd process. Launchd serves as a replacement for init and the init

FIguRE 6�2

“Show Package Contents” in OS X.

131OS X System Artifacts

scripts process found on Linux systems. The launchd takes its tasking from four
directories. System tasks that run in the background are read from /System/Library/
LaunchDaemons and /Library/LaunchDaemons, while user-interactive launch
tasks are read from /System/Library/LaunchAgents and /Library/LaunchAgents.
Launchd will read and process plists in these directories, launching the appropri-
ate applications. Note that all of the plist files in these directories should be in the
plain XML format and thus do not require conversion before examination. Per
Apple’s documentation [4], the division of startup tasks is shown in Table 6.1.

kexts
OS X has the capability to load additional functionality into the kernel via kernel
extensions. Kernel extensions are bundles with the extension kext and can be found
in the /System/Library/Extensions directory. There are many Apple-provided
 kernel extensions in this directory, and there may be extensions for third-party
hardware devices or programs that require low-level access, such as disk encryp-
tion software.

network Configuration
The bulk of local system network configuration information on an OS X system
is stored in various plist files under /Library/Preferences/SystemConfiguration. The
preferences.plist file contains general settings for all the network interfaces on the
system, as well as location-specific network profile information if this feature is in
use. In addition, this file also shows the hostname of the computer, which may be
important in a network-related examination.

 <dict>
 <key>ComputerName</key>
 <string>forensic-macpro</string>
 <key>ComputerNameEncoding</key>
 <integer>1536</integer>
 </dict>

The com.apple.network.identification.plist file is a rich source of historic network
information. Among other data, this file contains a running list of previously assigned
network addresses with time stamps. This information is obviously invaluable during
investigation of a mobile laptop. For a relevant excerpt, see the following section.

Table 6.1 Standard Startup Locations

/Library/LaunchAgents Per-user agents provided by the administrator
/Library/LaunchDaemons System-wide daemons provided by the administrator
/System/Library/LaunchAgents Per-user agents provided by Mac OS X
/System/Library/Launch-

Daemons
System-wide daemons provided by Mac OS X

132 CHAPTER 6 Mac OS X Systems and Artifacts

 <dict>
 <key>Identifier</key>
<string>IPv4.Router=172.17.9.254;IPv4.RouterHardwareAddress=00:

16:46:44:9a:43</string>
 <key>Services</key>
 <array>
 <dict>
 ...
 <key>IPv4</key>
 <dict>
 <key>Addresses</key>
 <array>

<string>172.17.9.47</string>
 </array>
 <key>InterfaceName</key>
 <string>en0</string>
 ...
 <key>Timestamp</key>
 <date>2010-03-30T20:15:59Z</date>
 </dict>

Note that because this file does not appear to expire results or roll over, it is possible
that historic network data could be stored indefinitely.

The com.apple.Bluetooth.plist file contains a list of all Bluetooth devices that
have ever been paired with the system, including time stamps.

 <key>LastInquiryUpdate</key>
 <date>2010-04-07T23:36:07Z</date>
 <key>LastNameUpdate</key>
 <date>2010-04-08T01:01:10Z</date>
 <key>LastServicesUpdate</key>
 <date>2010-04-08T01:01:11Z</date>
 <key>Manufacturer</key>
 <integer>15</integer>
 <key>Name</key>
 <string>forensic-iphone</string>
 <key>PageScanMode</key>

Hidden Directories
In addition to special bundle directory types that hide their contents from the user
by default, OS X honors traditional Unix-style “dotfile” hiding. Files and directories
named with a leading dot will be hidden from the user’s view by default. There are
not as many of these hidden files on OS X systems as there are on a standard Linux
installation but some are present, including a couple significant examples we will
examine shortly.

133OS X System Artifacts

Installed Applications
/Library/Receipts contains information about applications installed via the OS X
Installer system. This directory contains various “pkg” bundles, which contain infor-
mation about the installed package. The creation times of these directories should
correspond with the date that the software was installed.

Swap and Hibernation dataData
OS X stores swap files and hibernation data under the /private/var/vm directory.
Depending on how heavily used (and short on resources) the system is, there will
be anywhere from 1 to 10 numbered swapfile items in this directory. These contain
paged out sections of memory and can persist on disk for some time. Additionally,
if hibernation is enabled, a sleepimage file will be present. This file will be the same
size as the available RAM on the system and will contain a copy of memory as it
existed the last time the system was put to sleep. Any techniques used for processing
unstructured data streams are applicable to these files, including string extraction and
file carving.

System Logs
OS X shares many logs with other Unix-like operating systems, such as Linux. In
general, BSD and Linux-derived applications for OS X will store logs under /private/
var/log. OS X will generally have a syslog daemon running and will generate many
of the same logs (including syslog-derived logs) that a standard Linux system does.
For detailed information on syslog and Linux logging, please see Chapter 5. Of the
most interest to the examiner are the logfiles shown in Table 6.2, all found under
/private/var/log.

System-wide software created specifically for OS X will generally store logs
under /Library/Logs. Examples include the “Software Update.log” file, which tracks
when system software updates are applied, and the CrashReporter, HangReporter,
and PanicReporter logs, which record application and kernel errors and make con-
tain system state information related to the time they were generated.

Table 6.2 System Logs of Interest

fsck_hfs.log Record of all HFS/HFS+/HFSX volumes attached to the system
system.log A catch-all log file, equivalent to messages on Linux
secure.log Records all system authentication, including screensaver unlocks 

and SSH access.

134 CHAPTER 6 Mac OS X Systems and Artifacts

uSER ARTIFACTS
Each user on the system will have a plist stored under /private/var/db/dslocal/nodes/
Default/users/ that corresponds to their short username. This contains basic user infor-
mation similar to /etc/passwd entries on Linux systems, including the path to the user’s
default shell, the user’s long displayed name, and the user’s UID. Group information
is stored in /private/var/db/dslocal/nodes/Default/groups/ and is in a similar format.
Of particular importance is the admin.plist file in the groups directory. Examining this
file will help you determine if a given user has administrative or “root” privileges on
this system. In the excerpt shown here, “root” and “user1” are both Administrators.

<array>
<string>Administrators</string>

</array>
<key>users</key>
<array>

<string>root</string>
<string>user1</string>

</array>

The /Library/Preferences/com.apple.loginwindow.plist file contains, among other
items, information about the last user that logged into the system. This can be impor-
tant during examination of a shared system.

<key>lastUser</key>
<string>loggedIn</string>
<key>lastUserName</key>
<string>forensic-user</string>

Home Directories
OS X systems are generally fairly “tidy.” As such, a user’s home directory is where
most of the artifacts generated directly and indirectly by a user will be found. While
certain user activities will generate artifacts in system areas (e.g., logging on and off),
nearly all postauthentication user activity will be confined to items and residual data
in their own home directory.

A standard user home directory will contain the default directories shown in
Table 6.3.

Of all these directories, the one that contains the largest number of OS X-specific
user artifacts is Library.

User’s Library
A user’s library contains a large number of indirect artifacts related to user activity.
These include log files, preference settings, application artifacts, and artifacts gen-
erated from connecting to other devices or systems. It is an incredibly rich source
of information exposing user activity on the system for several reasons. First, the
Library is not a directory the user would ever explore under normal circumstances.
Next, nearly all the artifacts present here are generated via interactive user activity,

135User Artifacts

not automatic system processes. Finally, artifacts in the user’s Library will generally
persist indefinitely unless purged actively. The Library contains a handful of sub-
directories, each of which is intended to store specific classes of data. This section
discusses some of the forensically interesting content of each of these directories.

Preferences
Library/Preferences/ contains preference data for applications installed on the sys-
tem. This generally includes items such as recently opened files or network locations
and any configuration changes the user may have customized. Among items of inter-
est in Preferences is com.apple.quicktimeplayer.plist, which contains a list of video
files that were opened using QuickTime, including the full path to the file. The fol-
lowing excerpt is from one of the author’s systems.

 <dict>
 <key>altname</key>

<string>IMG_1288.MOV - .../Downloads/IMG_1288.
MOV</string>

 <key>dataRef</key>
 <data>

AAAAAAEeAAIAAAtNYWNpbnRvc2hIRAAAAAAAAAAAAAAAAAAAAADH

KHhBSCsAAAFJR2oMSU1HXzEyODguTU9WAAAAAAAAAAAAAAAAAAAA

AAAdr1

7cj4mD4AAAAAAAAAAP////8AAEkgAAAAAAAAAAAAAAAAABAACAAA

xyjowQAAABEACAAAyPj6rgAAAA4AGgAMAEkATQBHAF8AMQAyADgA

OAAuAE0ATwBWAA8AGAALAE0AYQBjAGkAbgB0AG8AcwBoAEgARAAS

 ACFVc2Vycy9jb3J5L0Rvd25sb2Fkcy9JTUdfMTI4OC5NT1YAABMA
 AS8AABUAAgAL//8AAA==
 </data>
 <key>dataRefType</key>
 <string>alis</string>
 <key>name</key>
 <string>IMG_1288.MOV</string>
 </dict>

Table 6.3 Standard Subdirectories in a User’s Home

Desktop—all files saved to/displayed on the user’s desktop are stored here
Documents—intended for text/office documents
Downloads—Internet (Web browser) downloads
Library—a per-user version of the Library directories discussed previously
Movies—intended for video files
Music—intended for music files
Pictures—intended for image files
Public—acts as a public drop box/world-readable
Sites—used to store files for the user’s personal Web site

136 CHAPTER 6 Mac OS X Systems and Artifacts

Note that the “name” key is simply the bare file name, whereas the “altname”
key is a relative path. The absolute path is embedded in the “dataRef” value. This
is a base64-encoded value, which can be decoded any number of ways. The author
prefers to use the decoding capabilities of openssl, as the openssl binary is gener-
ally present on any Unix-like system. There are many standalone base64 decoders for
every imaginable operating system. To decode data, simply copy data out and save it
to a file (1288-base64.data in this example) and run the following command:

forensics:~ user$ openssl enc -d -base64 -in 1288-base64.data
-out decoded.bin

The full path can then be extracted using the strings command or by any hex
dumping utility, such as xxd.

...
00000b0: 001a 000c 0049 004d 0047 005f 0031 0032I.M.G._.1.2
00000c0: 0038 0038 002e 004d 004f 0056 000f 0018 .8.8...M.O.V....
00000d0: 000b 004d 0061 0063 0069 006e 0074 006f ...M.a.c.i.n.t.o
00000e0: 0073 0068 0048 0044 0012 0021 5573 6572 .s.h.H.D...!User
00000f0: 732f 636f 7279 2f44 6f77 6e6c 6f61 6473 s/cory/Downloads
0000100: 2f49 4d47 5f31 3238 382e 4d4f 5600 0013 /IMG_1288.MOV...
0000110: 0001 2f00 0015 0002 000b ffff 0000 ../...........

As the name implies, the com.apple.recentitems.plist contains numerous related
to recently opened files and recently accessed file servers. Unfortunately, these
entries are not time stamped so correlation with outside time sources (e.g., file sys-
tem metadata) will be necessary to build a complete picture of use. The section that
follows contains an excerpt displaying the last three Windows file share hosts this
system contacted.

<key>Hosts</key>
<dict>

<key>Controller</key>
<string>CustomListItems</string>
<key>CustomListItems</key>
<array>

<dict>
<key>Name</key>
<string>forensics-2</string>
<key>URL</key>
<string>smb://forensics-2</string>

</dict>

TIP
Other Media Applications
While this example used the native QuickTime Player, third-party video players such as MPlayer
and VLC will generate similar artifacts in their preferences plists.

137User Artifacts

<dict>
<key>Name</key>
<string>unicron</string>
<key>URL</key>
<string>smb://unicron</string>

</dict>
<dict>

<key>Name</key>
<string>parabola</string>
<key>URL</key>
<string>smb://parabola</string>

</dict>
</array>
<key>MaxAmount</key>
<integer>10</integer>

</dict>

The com.apple.DiskUtility.plist contains a key named “DUSavedDiskImageList,”
which is used to populate the sidebar of the Disk Utility application. Items listed
under this key display the full path for disk images that have been opened on the
system. Note that this key can contain files that have been deleted from the system.

<key>DUSavedDiskImageList</key>
<array>

 <string>/Users/forensic/Downloads/ntfs-3g-2010.1.
16-macosx.dmg</string>

<string>/Users/forensic/Downloads/wxPython2.8-osx-
unicode-2.8.9.1-universal-py2.4.dmg</string>

<string>/Users/forensic/Downloads/HFSDebug-Lite-4.33.
dmg</string>

<string>/Users/forensic/Downloads/python-2.5-macosx.dmg
</string>

<string>/Users/forensic/Downloads/notecase-1.9.8.dmg
</string>

<string>/Users/forensic/Downloads/VirtualBox-3.2.
10-66523-OSX.dmg</string>

</array>

The com.apple.finder.plist file is the main preference file for the Finder appli-
cation, which is the graphical file explorer on OS X systems. This file contains
numerous entries, but a few are of the most interest to an examiner. The “FXCon-
nectToLastURL” key contains the full URL of the last server the system connected
to via the Finder.

<key>FXConnectToLastURL</key>
<string>smb://my-server-1/c$</string>

Entries under the “FXDesktopVolumePositions” key correspond to the mount points
and volume names of volumes that have been mounted on the system previously.

138 CHAPTER 6 Mac OS X Systems and Artifacts

<key>FXDesktopVolumePositions</key>
<dict>

<key>/Volumes/1GB</key>
<dict>

...
</dict>
<key>/Volumes/BT4</key>
<dict>

...

Finally, the “FXRecentFolders” key contains the user’s most recently viewed directories.

<key>FXRecentFolders</key>
<array>

<dict>
<key>file-data</key>
...
<key>name</key>
<string>Downloads</string>

</dict>

As many Mac users also use iPods, iPhones, or iPads, examining the com.apple.
iPod.plist may be an important part of an OS X investigation. This file contains data
about any of these devices that have been attached to the system, including a wealth
of identifying information (which has been redacted in the output here).

<key>Connected</key>
<date>2010-11-06T00:15:58Z</date>
<key>Device Class</key>
<string>iPhone</string>
<key>Family ID</key>
<integer>10004</integer>
<key>Firmware Version</key>
<integer>256</integer>
<key>Firmware Version String</key>
<string>4.1</string>
<key>ID</key>
<string>[REDACTED]</string>
<key>IMEI</key>
<string>[REDACTED]</string>
<key>Serial Number</key>
<string>[REDACTED]</string>
<key>Updater Family ID</key>
<integer>10004</integer>
<key>Use Count</key>
<integer>15</integer>

Application Support
The Application Support directory contains data supporting the operation of various
programs installed on the system. This is generally used for data altered frequently

139User Artifacts

and/or stored for long periods. Examples include Address Book application data,
iPod syncing information, and profile data for the Firefox browser. Firefox browser
data analysis is covered in detail in Chapter 7. Removing an application from the
system will not usually remove any Application Support data so this can be a rich
source of archival data.

Data synced from an iPod, iPhone, or iPad can be found in the Library/ Application
Support/MobileSync/Backup directory. This directory will contain one or more
subdirectories that appear to be a long string of random digits. This is the device’s
Unique Device Identifier (UDID). Multiple UDID directories may be present if mul-
tiple devices are synced to the machine or if multiple backups have occurred. The
newest backup directory will be the “bare” UDID directory, and older backups will
have the time and date they were created appended to the directory path (i.e., UDID-
20101010-120000).

In each backup directory there will be (among the numerous files) an Info.plist
file. This file contains information about the device that was backed up.

<key>Build Version</key>
<string>8A293</string>
<key>Device Name</key>
<string>Forensic iPhone</string>
<key>Display Name</key>
<string>Forensic iPhone</string>
<key>GUID</key>
<string>[REDACTED]</string>
<key>ICCID</key>
<string>[REDACTED]</string>
<key>IMEI</key>
<string>[REDACTED]</string>
<key>Last Backup Date</key>
<date>2010-07-24T06:22:33Z</date>
<key>Phone Number</key>
<string>1 (650) 555-1212</string>
<key>Product Type</key>
<string>iPhone2,1</string>
<key>Product Version</key>
<string>4.0</string>
<key>Serial Number</key>
<string>[REDACTED]</string>
<key>Sync Settings</key>
<dict>

While the values are redacted in this output, keep in mind that you can correlate the
IMEI and Serial Number values from this file with those found in the com.apple.
iPod.plist file given previously.

Logs
In addition to the system logs discussed earlier, the user’s Library/Logs/ directory
holds many user-specific application logs. These will be almost universally plain

140 CHAPTER 6 Mac OS X Systems and Artifacts

text log files with a .log extension that can be viewed in any text editor or processed
using similar techniques to those discussed in Chapter 5. In addition to user
 application-specific logs, the DiskUtility.log can be a valuable resource to determine
if a performed any disk burning or other activities using the Disk Utility application
(or applicable subsystems).

See the following segment for an excerpt from the DiskUtility.log. Note the time-
stamped output, which can be correlated to access or modification times found in file
system output.

2010-10-21 13:37:52 -0700: Disk Utility started.
2010-10-21 13:37:57 -0700: Burning Image "raptor20091026.iso"
2010-10-21 13:37:59 -0700: Image name: "raptor20091026.iso"
2010-10-21 13:37:59 -0700: Burn disc in: "HL-DT-ST DVD-RW GH41N"
2010-10-21 13:37:59 -0700: Erase disc before burning: No
2010-10-21 13:37:59 -0700: Leave disc appendable: No
2010-10-21 13:37:59 -0700: Verify burned data after burning: Yes
2010-10-21 13:37:59 -0700: Eject disc after burning
2010-10-21 13:37:59 -0700:
2010-10-21 13:37:59 -0700: Preparing data for burn
2010-10-21 13:37:59 -0700: Opening session
2010-10-21 13:37:59 -0700: Opening track
2010-10-21 13:37:59 -0700: Writing track
2010-10-21 13:40:52 -0700: Closing track
2010-10-21 13:40:52 -0700: Closing session
2010-10-21 13:40:56 -0700: Finishing burn
2010-10-21 13:40:56 -0700: Verifying burn...
2010-10-21 13:40:56 -0700: Verifying
2010-10-21 13:44:28 -0700: Burn completed successfully

Caches
The Cache directory is user-specific dumping ground for items intended to be tem-
porary. Despite this, application data can persist in the Cache directory for a very
long time, sometimes persisting even after the application that created data has been
removed. As data stored in Cache directory are application specific, a detailed exami-
nation of the contents is outside of the scope of this chapter. An example of Cache
content analysis can be found in Chapter 7.

.Trash
Each user directory should contain a hidden directory named “.Trash.” Unsurpris-
ingly, this location is used as temporary file storage when a file is “deleted” using
the Finder application. In OS X 10.5 and previous versions, simply viewing contents
was the extent of examination possible for this directory. These versions of OS X
did not keep track of the original location of the file, nor did they maintain any other
 metadata about the file. This has changed in OS X 10.6, which now stores the original
path of the deleted file in a hidden .DS_Store file in the .Trash directory. The original
path can be determined easily by viewing the .DS_Store file with a hex editor [5].

141References

Shell History
OS X uses the Bourne Again Shell (BASH) by default, so if a user has used the
terminal their shell history should be present in the user’s home directory in the
“.bash_history” file. Because most OS X users will not use the Terminal at any point,
the presence of entries in this file may be a sign that the user is a “power user” or is
at least somewhat tech savvy. As on Linux, this file does not have time values asso-
ciated with each entry, but through careful system examination, inferred times for
listed activity may be deduced.

SuMMARy
As Mac OS X systems continue to gain popularity, the ability to process these sys-
tems will become increasingly important. Additionally, many of the artifacts gener-
ated by OS X on desktops and laptops are also found on the iOS used in Apple’s
line of mobile products—the iPod Touch, the iPhone, and the iPad. This chapter
discussed analysis of the HFS+ file system used on OS X systems. It detailed the
extraction of binary property list files, which are used to store the bulk of OS X’s
configuration details and subsequently contain many artifacts of interest.

References
 [1] Technical Note TN1150: HFS Plus Volume Format. developer.apple.com/library/mac/

technotes/tn/tn1150.html, (accessed 23.11.10).
 [2] Access Control Lists. http://developer.apple.com/library/mac/#documentation/MacOSX/

Conceptual/BPFileSystem/Articles/ACLs.html.
 [3] System Startup Programming Topics: The Boot Process. http://developer.apple

.com/library/mac/#documentation/MacOSX/Conceptual/BPSystemStartup/Articles/
BootProcess.html.

 [4] plutil.pl for Windows/Linux. http://scw.us/iPhone/plutil/.
 [5] Snow Leopard Put Back (Undelete). http://www.appleexaminer.com/MacsAndOS/

Analysis/SLPutBack/SLPutBack.html.

TIP
�DS_Store Parsing
.DS_Store files can be examined interactively using the hachoir-urwid program, which is
discussed in Chapter 8.

This page intentionally left blank

CHAPTER

143

Internet Artifacts

InFORMATIOn In THIS CHAPTER

• Browser Artifacts

• Mail Artifacts

InTRODuCTIOn
It can be argued that nothing demonstrates the concept of evidence dynamics better
than Internet artifacts. On a modern end-user computer system, the bulk of the user’s
interaction with the system will likely be related to Internet communication of some
sort. Every click of a link, every bookmark, and every search query can leave telltale
traces on the user’s system. This chapter examines the application-specific artifacts
created by Web browsers and then moves on to delve into analysis of the contents of
local mailbox formats.

BROWSER ARTIFACTS
If the bulk of a computer user’s time is spent on the Internet, then it’s like that nearly
all (or at least a great deal) of that time is spent interacting with a Web browser. The
modern Web browsing experience is much richer than the creators of the World
Wide Web had envisioned. As an example, at the time of this writing Google has
begun distributing netbook computer systems, which are nothing more than minimal
laptop systems with a Linux kernel running the Chrome Browser. This device’s util-
ity is based on the assumption that everything the user does—create and edit docu-
ments, etc.—will all occur via the Web. Even in seemingly unexpected cases, the
analysis of Web browser artifacts can be a key factor of digital forensic analysis. For
example, the authors have examined various compromised servers where the built-in
Web browser was used to load additional tools onto the compromised server or to
submit stolen data to a file sharing site. Going forward, knowledge of the forensic
analysis of Web browsers will be crucial.

7

144 CHAPTER 7 Internet Artifacts

Internet Explorer
Microsoft ships its operating systems with the Internet Explorer (IE) Web browser as
part of the base installation. IE has two primary areas where data of primary interest
to forensic analysts are stored: in the index.dat “database” used by the Web browser
and in the browser cache. These index.dat files are structured in a manner that has
become known as the “MS IE Cache File” (MSIECF) format. The index.dat file con-
tains a record of accessed URLs, including search queries, Web mail accesses, and so
on, and is often considered the primary source of forensic information when it comes
to IE Web browser analysis.

Index.dat
Various open source tools can be used to access and parse the contents of the index.
dat file into a readable format. Perhaps one of the most well-known open source tools
for parsing index.dat files is pasco from FoundStone (pasco can be downloaded
from http://sourceforge.net/projects/fast/files/Pasco/). Note that Pasco has not been
updated since 2004, but it is still widely used in many forensic live CD distribu-
tions. Joachim Metz has developed an updated library based on further reverse engi-
neering of the MSIECF format, which is available at http://sourceforge.net/projects/
libmsiecf/. The libmsiecf library contains two programs. Msiecfinfo displays basic
information about parsed MSIECF files, and msiecfexport, extracts the entries
contained within the MSIECF files. This software is currently in an alpha state and is
only available for Unix-like systems.

In addition, the Win32::URLCache, written by Kenichi Ishigaki, can also be used
to parse index.dat files. If you’re using ActiveState’s ActivePerl, the Perl Package
Manager (ppm) command to install the module on an Internet-connected system is

C:\perl>ppm install win32-urlcache

This ppm command will install the module, as well as all dependencies. This same
module can be installed on other platforms using Perl’s CPAN functionality:

perl -MCPAN -e "install Win32::UrlCache"

Based on documentation provided along with the module, code used to parse an
index.dat file might look like the following:

my $index = Win32::UrlCache->new($config{file});
foreach my $url ($index->urls) {

my $epoch = getEpoch($url->last_accessed);

Index�dat File Location
On Windows XP and 2003 systems, the index.dat file of primary interest to forensics
examiners is found in the path “C:\Documents and Settings\user\Local Settings\Temporary
Internet Files\Content.IE5” directory.

On Windows Vista and Windows 7 systems, the file is located in the “C:\Users\user\
AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.IE5” directory.

145Browser Artifacts

my $hdr = $url->headers;
$hdr =~ s/\r\n/ /g;
my $descr = $url->url.":".$url->filename.":".$hdr;
print $epoch."|URL|".$config{system}."|".$config{user}."|".$descr.

"\n";
}

Note that the getEpoch() function mentioned in the aforementioned code is a user-
defined function that converts the time value from the index.dat file into a 32-bit
Unix-formatted time value so that it can be included in a timeline.

The module is also capable of parsing out LEAK records, which are created when
a history item is marked for deletion but the actual cached file is locked [1].

Favorites
IE Favorites can also contain information that may be interesting or essential to a
forensic analyst. “Favorites” are the IE version of bookmarks, providing an indication
of a user’s movements across the Internet. A user’s favorites can be found (on Windows
XP) in the “C:\Documents and Settings\user\Favorites” directory. The user’s Favorites
appear in the Internet Explorer version 8 browser as illustrated in Figure 7.1.

When a user profile is created (i.e., the account is created and the user logs in
for the first time), the profiles Favorite’s folder is populated with certain defaults.

TIP
Index�dat Artifacts
Internet Explorer’s artifacts are not so much the result of the use of the application as
they are the result of the use of the WinInet application programming interface (API).
When a user browses the Web using IE, artifacts are created (index.dat entries added,
files written to the cache, etc.) to the appropriate locations, in that user’s context. Many
times malware will make use of the same APIs in order to communicate and exfiltrate data
off of an infected system. Often, malware is running with System level privileges, and as
such, an analyst would expect to find entries in index.dat files for the “Default User” or
“LocalService” accounts.

FIguRE 7�1

User’s IE 8 Favorites.

146 CHAPTER 7 Internet Artifacts

As seen in Figure 7.1, the user has chosen to add the Google.com Web site as a
Favorite site. These Favorites appear as URL shortcut files (filename.url); the Google
URL shortcut contains the following text. Users can create folders in order to orga-
nize their Favorites into common groups or simply add Favorites to the default folder.

Contents of the Google.url Favorite appear as follow:

[DEFAULT]
BASEURL=http://www.google.com/
[InternetShortcut]
URL=http://www.google.com/
IDList=
IconFile=http://www.google.com/favicon.ico
IconIndex=1
[{000214A0-0000-0000-C000-000000000046}]
Prop3=19,2

Contents of the URL shortcut can be viewed easily in a text editor or output to the
console using the “type” (Windows) or “cat” (Linux) commands.

In addition to the content of the Favorites file, an analyst may find value in the file
MAC times, which will illustrate when the file was created and when the file was last
accessed or modified. Depending on the type of examination being performed, this
information may prove to be valuable.

Cookies
Internet Explorer cookies can be found in Documents and Settings\%username%\
Cookies on Windows XP systems and in Users\%username%\AppData\Roaming\
Microsoft\Windows\Cookies on Vista and Windows 7 systems. Because Internet
Explorer stores user cookies as discrete, plain text files per issuing host, these can be
inspected directly. See the following for an example:

SaneID
3A345581BB019948
geico.com/
1536
3378255872
30795568
4048194256
30118489
*

While the content is plain text, some of the fields need to be deciphered to be of
value, in particular lines 5 and 6 (the cookie’s expiration time) and 7 and 8 (the cre-
ation time). The open source tool galleta was developed for this task. Here is the
same cookie, processed with galleta:

SITE VARIABLE VALUE CREATION TIME EXPIRE TIME FLAGS
geico.com/ SaneID 3A345581BB019948 12/02/2010 02/19/2020 1536
 11:48:50 06:28:00

147Browser Artifacts

Cache
The browser’s cache contains files that are cached locally on the system as a result of
a user’s Web browsing activity. On XP systems, these files are located in Documents
and Settings\%username%\Local Settings\Temporary Internet Files\Content.IE5. On
Vista and Windows 7 systems they can be found in Users\%username%\AppData\
Local\Microsoft\Windows\Temporary Internet Files\Content.IE5.

Files cached locally are stored in one of four randomly named subdirectories. The
MSIE Cache File located in this directory has all the information needed to map any
files of interest located in the cache subdirectories with the URL the file was retrieved
from. For example, in the following output from msiecfexport, we can see that the
file “favicon[1].ico” in the O2XMPJ7 directory was retrieved from “login.live.com.”

Record type : URL
Offset range : 80000 - 80384 (384)
Location : https://login.live.com/favicon.ico
Primary filetime : Dec 04, 2010 04:12:53
Secondary filetime : Jun 15, 2010 22:12:26
Filename : favicon[1].ico
Cache directory index : 0 (0x00) (O2XM9PJ7)

For comparison’s sake, here is the same item as viewed by pasco, which produces
tabbed-separated output.

URL https://login.live.com/favicon.ico 06/15/2010 15:12:26 12/03/2010
20:12:53 favicon[1].ico O2XM9PJ7 HTTP/1.1 200 OK Content-Length:
1150 Content-Type: image/x-icon ETag: "0411ed6d7ccb1:46b" PPServer:
PPV: 30 H: BAYIDSLGN1J28 V: 0 ~U:user

Firefox
Mozilla’s Firefox browser is the second most widely used browser in the world, after
Internet Explorer. Like the tools discussed in this book, it is open source software, so
it is used commonly on Linux desktops, but is used on OS X and Windows as well.

Firefox 3 stores history data in SQLite 3 database files, which are quite easy to
process using open source tools. Firefox stores these along with a few other items of
interest in a user-specific profile directory. Please reference Table 7.1 for a listing of
the default location of the profile directory on different operating systems.

Table 7.1 Firefox Profile Locations

Operating System Location

Windows XP C:\Documents and Settings\%username\Local Settings\ 
Application Data\Mozilla\Firefox\Profiles

Windows Vista/7 C:\Users\%username%\AppData\Roaming\Mozilla\Firefox\Profiles
Linux /home/$username/.mozilla/firefox/Profiles
OS X /Users/$username/Library/Application Support/Firefox/Profiles/

148 CHAPTER 7 Internet Artifacts

In this directory you will find one or more folders and a file named profiles.ini.
The content of this file will be similar to the following:

[General]
StartWithLastProfile=1
[Profile0]
Name=default
IsRelative=1
Path=Profiles/fenkfs6z.default

When Firefox is started it will use this file to determine which profile direc-
tory to read from. In a multiple profile environment, StartWithLastProfile=1 directs
Firefox to skip asking the user which profile to select and use the last-used profile by
default. The next section describes the first Firefox profile, which on this system is
also the only profile. In most cases a single profile named «default» will be the only
profile present, as shown earlier. In a multiple-profile Firefox environment, addi-
tional named profiles will be present, and the last-used profile will be indicated by a
«Default=1» variable. The Path variable points to the directory where this profile’s
data are stored.

Inside of each profile directory you will find numerous files and subdirectories.
The most important files here will be.sqlite files, which are the previously men-

tioned SQLite 3 databases. We will be examining four of these databases in detail.

• Formhistory.sqlite: stores data about form submission inputs—search boxes,
usernames, etc.

• Downloads.sqlite: stores data about downloaded files
• Cookies.sqlite: stores data about cookies
• Places.sqlite: stores the bulk of “Internet history” data

TIP
Introduction to SQLite
Because many Web browser artifacts are stored in SQLite databases, it is important that
an examiner has a minimum level of understanding of commands available for processing
these files. To open a sqlite database using the command-line sqlite3 client, simply type
sqlite3 {name of database file}. You will be dropped to the sqlite> prompt, indicating that
you have attached to the database successfully. In addition to standard data retrieval
queries performed by the SELECT statement, there are a handful of special sqlite3 queries
the examiner should be aware of

�headers on: Adds column headers to output, which annotates the fields.
�tables: Displays all tables in the database.
�schema {table name}: Displays all fields in the table.
�output {filename}: Writes output to the named file instead of the screen.

Additionally, the sqlite statement “select * from sqlite_master;” will query the database
itself and will produce output showing all tables and fields in each table in one set of
output.

149Browser Artifacts

There are numerous open source utilities for interacting with SQLite databases.
We will use two in this chapter: the command line sqlite3 tool and the graphical
sqliteman program. The sqliteman program can be installed on Ubuntu using the
following command:

sudo apt-get install sqliteman

Additional prebuilt packages are available for OS X and Windows.
After backing up the user’s Firefox profile, choose Open from the File menu and

browse to the copy of the profile directory. Next, select the database you would like
to examine and click Open. From here, you can browse the database structure, exe-
cute SQL queries, and export findings. Most of these databases have simple schemas
with one table of interest. For example, to view data held in the formhistory.sqlite
database, you would execute the following command:

SELECT * FROM moz_formhistory;

An example of results from this query is shown in Figure 7.2.

FIguRE 7�2

SQLite query for moz_formhistory.

WARnIng
Copy Protection
Be aware that when using standard database tools to interact with SQLite databases, you
can write data in addition to reading so take care to only use these tools on duplicate
copies of data.

150 CHAPTER 7 Internet Artifacts

The formhistory.sqlite database contains data that the user entered into forum
submission fields. This includes items such as names, addresses, email addresses,
phone numbers, Web mail subject lines, search queries, and usernames or “handlers”
entered into forums.

The downloads.sqlite database contains records of the files downloaded by the
user. Be aware that the files that show up in this database are those that are handled
by the Firefox Download Manager. Multimedia files handled by browser plug-ins
and other items that end up in the browser cache will not show up in this database.
An important aspect of this particular database is that it allows the investigator to cor-
relate items found on the file system to the URLs where they originated.

The cookies.sqlite database can produce information such as the last time the
user visited a site that set or requested a specific cookie, whether or not the user was
registered or logged in at a particular site, and other browser state information.

The places.sqlite database contains the most data related to user activity in the
browser. In contrast to each of the previous databases examined, places.sqlite has a more
complex multitable schema, which has been mapped in detail by Chris Cohen [2].

The two items of primary interest in most Web history examinations are the URL
visited and the time of that visit. These two items are found in the url field in the
moz_places table and in the visit_date in the moz_historyvisits table, respectively.
The id field in the moz_places table corresponds to the places_id in the moz_histo-
ryvisits table. The visit_date is stored in «PRTime», which is a 64-bit integer count-
ing the number of microseconds since the UNIX Epoch (January 1st, 1970 UTC).
The following sqlite statement will retrieve these two values from their respective
tables and convert the visit_date to a human-consumable format:

SELECT
datetime(moz_historyvisits.visit_date/1000000,'unixepoch'),
moz_places.url
FROM moz_places, moz_historyvisits
WHERE moz_places.id = moz_historyvisits.place_id

We will use the console sqlite3 client to perform this query.

forensics:~ forensics$ sqlite3 ~/Library/Application\ Support/
Firefox/Profiles/fffffs6z.default/places.sqlite

sqlite> SELECT datetime(moz_historyvisits.visit_date/1000000,
'unixepoch'), moz_places.url FROM moz_places, moz_historyvisits
WHERE moz_places.id = moz_historyvisits.place_id;

...
2010-06-08 05:35:34|http://code.google.com/p/revealertoolkit/
2010-06-08 05:35:54|http://code.google.com/p/revealertoolkit/

downloads/list
2010-06-08 05:35:58|http://code.google.com/p/revealertoolkit/

downloads/detail?name=RVT_v0.2.1.zip&can=2&q=
2010-06-08 05:36:42|http://code.google.com/p/poorcase/
2010-06-08 05:36:46|http://code.google.com/p/poorcase/downloads/

list

151Browser Artifacts

2010-06-08 05:36:46|http://code.google.com/p/poorcase/downloads/
detail?name=poorcase.odp&can=2&q=

2010-06-08 05:36:50|http://code.google.com/p/poorcase/downloads/
detail?name=poorcase_1.1.pl&can=2&q=

2010-06-08 05:37:12|http://liveview.sourceforge.net/
2010-06-08 05:37:12|http://sourceforge.net/project/showfiles.

php?group_id=175252
2010-06-08 05:37:11|http://sourceforge.net/projects/liveview/

files/
2010-06-08 05:37:35|http://www.google.com/search?q=system+combo+

timeline&ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:
en-US:official&client=firefox-a

2010-06-08 05:37:35|http://www.cutawaysecurity.com/blog/
system-combo-timeline

2010-06-08 05:39:52|http://log2timeline.net/INSTALL.txt
2010-06-08 05:39:59|http://cdnetworks-us-2.dl.sourceforge.net/

project/revit/revit07-alpha/revit07-alpha-20070804/revit07-
alpha-20070804.tar.gz

...

Cache
In addition to browser history files, a user’s browser cache may be of investigative
importance. Table 7.2 contains the location of the Firefox cache on different operat-
ing systems. Examining this directory directly for viewing will usually yield a stream
of numbered unidentifiable files along with one cache map file «_CACHE_MAP_»
and three cache block files (_CACHE_001_ through _CACHE_003_). These are
binary files that contain information regarding the URLs and filenames associated
with cached data, as well as time stamp data.

Although there are free forensic applications for parsing these data, none of these
tools are open source. These free tools are discussed in the Appendix.

Saved Session Data
If a Firefox session is not terminated properly, a file named sessionstore.js will be
present in the user’s profile directory. This file is used by Firefox to recover the
browser session in case of a crash or other unexpected shutdown. If this file is present

Table 7.2 Firefox Cache Locations

Operating System Location

Windows XP C:\Documents and Settings\%username\Local Settings\ 
Application Data\Mozilla\Firefox\Profiles

Windows Vista/7 C:\Users\%username%\AppData\Roaming\Mozilla\Firefox\
Profiles

Linux /home/$username/.mozilla/firefox/Profiles
OS X /Users/$username/Library/Caches/Firefox/Profiles

152 CHAPTER 7 Internet Artifacts

upon start up, Firefox will use the contents to restore the browser windows and tabs
the user last had open. The content is stored as a series of JavaScript Object Notation
(JSON) objects and can be viewed using any text editor. JSON is structured data,
however, and can be parsed and displayed in a more logical format using a JSON
viewer or “pretty printer.” One such open source application is the Adobe AIR-
based JSON Viewer available at http://code.google.com/p/jsonviewer/. Figure 7.3 is
a screenshot of an example sessionstore.js with structure viewed in JSON Viewer.

FIguRE 7�3

JSON Viewer.

153Browser Artifacts

Items of note in a sessionstore.js file include closed tabs and windows, saved
form data, and temporary cookies.

Bookmarks and Bookmark Backups
Firefox stores Bookmarks in the places.sqlite database via combination of data in
“moz_bookmarks,” “moz_places,” and “moz_items_annos” tables. Extraction of
data from these tables has been documented thoroughly by Kristinn Gudjonsson [3].
Briefly, the SQL query Kristinn wrote to generate a simple list of stored bookmarks
and associated dates is

SELECT moz_bookmarks.type,moz_bookmarks.title,moz_bookmarks.
dateAdded,

moz_bookmarks.lastModified,moz_places.url,moz_places.title,
moz_places.rev_host,moz_places.visit_count
FROM moz_places, moz_bookmarks
WHERE

moz_bookmarks.fk = moz_places.id
AND moz_bookmarks.type <> 3

The moz_items_annos table may contain additional information relating to
annotations the user has made to bookmarks, including the time the annotation was
created and modified. In addition to direct SQLite queries, this time information
can also be extracted using Kristinn’s log2timeline tool, which is discussed in
Chapter 9.

Firefox Bookmark Backups are found in the user’s profile under the “bookmark-
backups” directory. These are stored as a series of JSON objects and can be parsed
using any number of JSON viewers, such as the previously mentioned JSON Viewer.
Recorded artifacts include the date the bookmark was added, the title, and the URL
of the bookmarked site.

Extensions
Firefox supports the installation of extensions, which can enhance or modify the
behavior of the browser. A manifest of installed extensions can be found in the user’s
profile directory in the “extensions.rdf” file. This XML document describes the
extensions installed for this user. Simply grepping for the strings “NS1:name” can
provide a list of installed extensions:

 NS1:name="Evernote Web Clipper"
 NS1:name="XSS Me"
 NS1:name="Google Feedback"
 NS1:name="SQL Inject Me"
 NS1:name="Redirect Remover"
 NS1:name="1Password"
 NS1:name="Tamper Data"
 NS1:name="Access Me"
 NS1:name="Google Toolbar for Firefox"
 NS1:name="Default"

154 CHAPTER 7 Internet Artifacts

The code and supporting files that make up the extensions can be found in subdirec-
tories of the extensions directory under the user’s profile directory.

Chrome
Chrome is the open source Web browser developed by Google. In the two short years
since its release Chrome has become the third most popular browser in the world and
is the centerpiece of Chrome OS. Chrome is available for Windows, OS X, and Linux.

Like Firefox, Chrome utilizes a variety of SQLite databases to store user data. We
can access these data using any SQLite client, but will use the base command line
sqlite3 program for most cases. Please reference Table 7.3 for a list of the storage
locations for Chrome history on different operating systems.

“Cookies” is the SQLite database Chrome uses to store all cookies. Information
stored in this database includes the creation time of the cookie, the last access time
of the cookie, and the host the cookie is issued for.

The “History” SQLite database contains the majority of user activity data of
interest, divided among numerous tables. Three tables are of particular interest:

downloads
urls
visits

The downloads table tracks downloaded files, in much the same manner as the Down-
loads.sqlite database does for Firefox. Items of interest include the local path of the
saved file, the remote URL, and the time the download was initiated.

Together, urls and visits tables can be used to construct a good view of user
browsing activity. Because the id field of the urls table maps to the url field of the
visits table, the following SQL query will produce a report of browsing activity [4]:

SELECT urls.url, urls.title, urls.visit_count, urls.typed_count,
urls.last_visit_time, urls.hidden, visits.visit_time, visits.
from_visit

FROM urls, visits
WHERE

urls.id = visits.url

Table 7.3 Chrome History Locations

Operating System Location

Windows XP C:\Documents and Settings\%username\Application Data\
Google\Chrome\default

Windows Vista/7 C:\Users\%username%\AppData\Local\Google\Chrome\ 
default

Linux /home/$username/.config/google-chrome/Default
OS X /Users/$username/Library/Application Support/Google/

Chrome/Default/

155Browser Artifacts

The following section is an excerpt of the results produced by this query:

http://digitalcorpora.org/corpora/disk-images|Digital Corpora»
Disk Images|1|0|12935304129883466|0|12935304129883466|76149

http://digitalcorpora.org/corp/images/nps/nps-2009-
casper-rw|Index of /corp/images/nps/nps-2009-casper-
rw|1|0|12935304152594759|0|12935304152594759|76150

http://digitalcorpora.org/corp/images/nps/nps-2009-
casper-rw/|Index of /corp/images/nps/nps-2009-casper-
rw|2|0|12935304190343005|0|12935304152594759|76151

http://digitalcorpora.org/corp/images/nps/nps-2009-
casper-rw/|Index of /corp/images/nps/nps-2009-casper-
rw|2|0|12935304190343005|0|12935304190343005|76150

http://digitalcorpora.org/corp/images/nps/nps-2009-casper-rw/
narrative.txt||1|0|12935304181158875|0|12935304181158875|76152

Note that the visit_time value is stored in the “seconds since January 1, 1601 UTC”
format used in many Chrome date fields

The “Login Data” SQLite database is used by Chrome to store saved login data.
On Linux systems, this can include password data. On an OS X systems, native
 password storage systems are used.

“Web Data” is a SQLite database that contains data the user has opted to save for
form auto-fill capabilities. This can include names, addresses, credit data, and more.

The “Thumbnails” SQLite database stores thumbnail images of visited sites. This
can be useful for determining the content of sites of interest. Figure 7.4 shows a
stored thumbnail binary blob as an image using SQLiteman’s image preview func-
tionality to view a particular thumbnail.

FIguRE 7�4

Site image embedded in “thumbnails” table.

156 CHAPTER 7 Internet Artifacts

The “url_id” field in this table maps to the “id” field in the “urls” table in the
 History database. This can be used to map a generated thumbnail to a particular visit
at a specific time and date.

sqlite> select * from urls where id is 36368;
36368|http://blogs.sans.org/computer-forensics/|SANS Computer Forensic

Investigations and Incident Response|3|0|12930180528625238|0|1413

Bookmarks
Chrome bookmarks are stored in “Bookmarks” file under the user’s profile direc-
tory. This file contains a series of JSON objects and can be viewed with any JSON
viewer or examined trivially as plain text. See the following section for an example
of a bookmark entry:

{
"date_added": "12924673772022388",
"id": "108",
"name": "Digital Corpora",
"type": "url",
"url": "http://digitalcorpora.org/"

},

Note that this date is also in the “seconds since January 1, 1601 UTC” format. A copy
of the Bookmarks file named “Bookmarks.bak” will also be found in this directory.

Local State
The “Local State” file is used by Chrome to restore state after an unexpected
shutdown. It is similar in function to the sessionstate.js file in Firefox and, like
sessionstate.js, contains JSON objects. It can be viewed with any text editor or
with the JSON Viewer we used to examine the sessionstate.js file in the previous
section.

Cache
The Chrome cache consists of an index file, four numbered data files (data_0 through
data_3), and many numbered files starting with f_ followed by six hex digits. There
are currently no open source tools to process these files in a meaningful way, but the
creation time of the f_ files can be correlated with data extracted from the History
database. The f_ files can also be analyzed according to content. See Chapter 8 for a
discussion of file artifact analysis.

Safari
Safari is the default browser included on Mac OS X. It is used almost exclusively by
Mac OS X users, but is also available for Windows. Any examination of a Mac OS X
system will likely require analysis of Safari artifacts. Please reference Table 7.4 for
the location of Safari History files on Windows and OS X systems.

157Browser Artifacts

The main Safari history file is History.plist, which records the URL visited, the
time and date of the previous visit, and the total number of times the site has been
visited. Because this file is a plist, it can be processed using the plutil.pl script dis-
cussed in Chapter 6. The output from running this tool on a sample Safari History.
plist can be seen here:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>WebHistoryDates</key>
<array>

<dict>
<key></key>
<string>http://www.amazon.com/Digital-Forensics-Open-

Source-Tools/dp/1597495867</string>
<key>D</key>
<array>

<integer>1</integer>
</array>
<key>lastVisitedDate</key>
<string>310529012.7</string>
<key>title</key>
<string>Amazon.com: Digital Forensics with Open Source

Tools (9781597495868): Cory Altheide, Harlan Carvey: B
ooks</string>

<key>visitCount</key>
<integer>1</integer>

</dict>
...

The time stamp just displayed is stored as a CFAbsoluteTime value (also known as
Mac Absolute Time). This value is an offset representing the number of seconds since
midnight January 1, 2001 GMT. Instead of converting these values manually, we can
use Safari Forensic Tools (SFT), a set of command line tools designed for processing
Safari’s plist files.

Table 7.4 Safari History Locations

Operating System Location

Windows XP C:\Documents and Settings\%username\Application Data\Apple 
Computer\Safari

Windows Vista/7 C:\Users\%username%\AppData\Roaming\Apple Computer\
Safari

OS X /Users/$username/Library/Safari

158 CHAPTER 7 Internet Artifacts

Safari maintains four main plist files of interest:

1� Downloads.plist
2� Bookmarks.plist
3� Cookies.plist
4� History.plist

The Safari Forensics Tools suite has individual utilities to parse and display the
 content of each plist.

Downloads.plist stores all files downloaded to the system. This does not include
cached media, images, or any items handled by browser plugins. The Downloads.
plist file can be processed by SFT tool safari_downloads. See the following for an
example entry from this file:

DownloadEntryProgressBytesSoFar: 494185
DownloadEntryIdentifier: 6438149F-D8A0-4677-9D00-C46DFFEE96C2
DownloadEntryPath: ~/Downloads/gp_lin32_rc4_2.tar.bz2
DownloadEntryURL: http://cache.greenpois0n.com/dl/gp_lin32_

rc4_2.tar.bz2
DownloadEntryProgressTotalToLoad: 494185
Status: Completed

This can be used to correlate web browsing history to files on disk.
Bookmarks.plist stores user bookmarks. Safari bookmarks are not as interesting

artifact-wise as bookmarks for other browsers, as it does not store any time stamps
related to the bookmark entry. This file can be processed using the SFT tool safari_bm.

Title: BookmarksMenu
Windows NT Contains File System Tunneling Capabilities

http://support.microsoft.com/kb/172190

As the name implies, Cookies.plist holds entries related to cookies. Artifacts of
interest include the domain and path the cookie is issued for, the creation and expira-
tion times, and the cookie content. The SFT tool safari_cookies can parse this file.

Path: /
Expires: 2015-10-18 14:27:02 -0700
Domain: .howstuffworks.com
Value: [CS]v1|265F0693051D3BB9-40000104602169BD[CE]
Created: 2010-10-19 14:27:02 -0700 (309216422.496477)
Name: s_vi

TIP
Compiling SFT
Jake Cunningham, the author of Safari Forensic Tools, has provided prebuilt binaries for
Windows and Linux. If you plan to build them from source on Linux, you will need to
install the GNUStep development environment. This can be accomplished on Ubuntu
using apt-get:

sudo apt-get install gnustep-devel

159Browser Artifacts

Path: /
Expires: 2015-06-23 09:06:06 -0700
Domain: .southwest.com
Value: [CS]v1|2611C13705159919-40000173803F1B41[CE]
Created: 2010-06-24 09:06:06 -0700 (299088366.870542)
Name: s_vi

The record of a user’s visits to Web sites is stored in the History.plist file. The
SFT tool safari_hist can be used to process this file into a tab-delimited format,
listing the URL visited, the last visit date and time, the number of visits, and the title
of the page in question. See the following excerpt for a sample.

URL Last Visit Date/Time Number of visits Page Title
http://developer.apple.com/library/mac/#technotes/tn2006/tn2166.

html 2010-11-08 11:15:11 -0800 1 Technical Note TN2166:
Secrets of the GPT

http://developer.apple.com/library/mac/navigation/index.html
#topic=Guides§ion=Resource+Types 2010-11-06 22:25:33
-0700 2 Mac OS X Developer Library

http://developer.apple.com/documentation/mac/files/Files-2.html
2010-11-06 22:25:33 -0700 1 Guides

http://developer.apple.com/documentation/mac/files/Files-72.html
2010-11-06 22:25:20 -0700 1 Guides

Cache
The Safari cache is stored in the Cache.db SQLite3 database. Cached data are stored
primarily in two tables: cfurl_cache_response, which stores the URL and request
metadata, and cfurl_cache_blob_data, which stores actual cached data [5]. In many
cases, direct examination of the live database using sqlite queries will yield no results
because the cache has been “emptied.” However, unless the database has been vacu-
umed, the actual cached content will still be present in the database file and can be
recovered using file carving techniques. This segment shows an excerpt of results of
running hachoir-subfile against an “empty” Cache.db database.

forensics:~ $ hachoir-subfile Library/Caches/com.apple.Safari/
Cache.db

[+] Start search on 78134272 bytes (74.5 MB)
[+] File at 32304 size=29913 (29.2 KB): JPEG picture
[err!] Unable to compute GifFile content size: Can't get field

"image[0]" from /
[+] File at 73682: GIF picture
[+] File at 74468: JPEG picture
[+] File at 74498: TIFF picture
[+] File at 75280: JPEG picture
[+] File at 81604 size=1344 (1344 bytes): GIF picture
[+] File at 88754 size=16472 (16.1 KB): GIF picture
[+] File at 102814 size=93773 (91.6 KB): JPEG picture

160 CHAPTER 7 Internet Artifacts

[+] File at 203702: JPEG picture
[+] File at 204574: JPEG picture
[+] File at 209803: JPEG picture
[+] File at 215181 size=3709 (3709 bytes): JPEG picture
[+] File at 221369 size=3665 (3665 bytes): JPEG picture
[+] File at 226953 size=3201 (3201 bytes): JPEG picture
[+] File at 232104 size=2146 (2146 bytes): JPEG picture
[+] File at 236244 size=35133 (34.3 KB): GIF picture
[+] File at 237376: JPEG picture
[+] File at 249450: JPEG picture
[+] File at 252313 size=4365 (4365 bytes): JPEG picture
[+] File at 284855 size=1619 (1619 bytes): JPEG picture
[+] File at 288346 size=4272 (4272 bytes): JPEG picture
[+] File at 294697: JPEG picture
[+] File at 313240 size=596850 (582.9 KB): PNG picture:

800x171x24
[+] File at 313779 size=3366 (3366 bytes): JPEG picture
[+] File at 319757 size=67069 (65.5 KB): JPEG picture
[+] File at 389267 size=4727 (4727 bytes): JPEG picture
[+] File at 399393: Macromedia Flash data: version 10,

compressed
...

LastSession.plist
The LastSession.plist file is used by Safari to restore the browser state in case of an
unexpected shutdown. This file can be parsed using the plutil.pl utility. Artifacts that
can be extracted from this file are limited but, at a minimum, URLs and page titles
can be recovered.

<key>BackForwardList</key>
<array>
<dict>

<key>Title</key>
<string>Top Sites</string>
<key>URL</key>
<string>topsites://</string>

</dict>
<dict>

<key>Title</key>
<string>Technical Note TN2166: Secrets of the GPT

</string>
<key>URL</key>
<string>http://developer.apple.com/library/

mac/#technotes/tn2006/tn2166.html</string>
</dict>

</array>

161Mail Artifacts

MAIL ARTIFACTS
For home users, local email storage may be falling by the wayside in favor of Web
mail, but there are still many businesses using locally stored mail. This section covers
extraction of content from the binary Microsoft Outlook format, as well as some meth-
ods to speed up analysis of plain text email formats used commonly on Linux systems.

Personal Storage Table
PST is the mail storage format used by Microsoft’s Outlook email client. A user’s
PST file is not just for storage of email from their MSExchange server, but can also
store email from POP3, IMAP, and even HTTP (such as Windows Live Hotmail)
accounts. The PST file provides a data storage format for storing emails on the
user’s computer system. Users of OutLook email clients may also have an OST file,
which is for offline storage of email. This file allows the user to continue reviewing
the email that they do have, even while they are offline and cannot connect to their
MSExchange server.

A user’s PST file may be found in the “Local Settings\Application Data\ Microsoft\
Outlook” subfolder within their profile on Windows XP and 2003 systems; on Vista
and Windows 7 systems, the user’s PST file may be located in the “AppData\Roaming\
Microsoft\Outlook” folder. However, PST files can be moved to any location within
the file system, and an analyst may find several PST files on a system. PST files may
contain considerable artifacts of user communications (as well as sharing files as
attachments), and the value of the PST files will depend on the analyst’s goals and the
type of examination.

One of the first open source libraries for accessing the PST file format was libpst
[6]. This library converts 32-bit, pre-OutLook 2003 PST files, as well as 64-bit Out-
Look 2003 files, and is available as source RPMs, as well as .tar.gz files for download
and installation. The library is also utilized by several of the utilities available at the
referenced Web site, including readpst and lspst. In addition to the libpst library,
the libpff library is also available [7] (the libpff library is available as a SourceForge.net
project). As of November 11, 2010, the library is in alpha and is available as a .tar.gz file.

TIP
PST Formats
As of MSOffice 2003, a newer version of the PST file format, which is not backward
compatible with earlier versions of the format, became available. This new format allows
for greater storage capacity for emails and folders, in addition to supporting multilingual
Unicode data.

Early in 2010, Microsoft released their Office document format publicly; PST file
format documentation is available at the Microsoft Web site at http://msdn.microsoft.com/
en-us/library/ff385210.aspx.

162 CHAPTER 7 Internet Artifacts

There may also be options available if you’re interested in more of a cross-
platform approach. In January 2010, Richard Johnson posted to his blog [8] that he’d
developed an open-source Java library for accessing PST files using documentation
available as part of the libpff project. According to his blog post, Richard had done
this in order to be able to convert PST files to Gmail format in order to take advan-
tage of the search capabilities afforded by Gmail; clearly, this may also be a capabil-
ity of interest to forensic analysts. Richard made the open-source java-pst library
available on Google Code [9]; in addition to the library, there is an alpha version of
the pst2gmail conversion utility available on the Web at http://code.google.com/p/
pst2gmail/.

We can use the utilities provided by libpff to examine a sample PST file. The
pffinfo tool will provide some basic information about the internals of a given PST.

user@ubuntu:~/pst$ pffinfo Outlook.pst
pffinfo 20101203
Personal Folder File information:

File size: 7382016 bytes
File content type: Personal Storage Tables (PST)
File type: 64-bit
Encryption type: compressible

Message store:
Folders: Subtree, Inbox, Outbox, Wastbox,

Sentmail, Views, Common views, Finder
Password checksum: N/A

To extract the email content, we will use pffexport. This tool has a variety of
options that can be used to configure what is extracted and how it is represented. The
most important of these is the -m option, which defines the export mode. By default
only “allocated” messages are exported. Note that this includes items in the “Deleted
Items” directory that have not been purged by the user. The -m all option tells
pffexport to attempt to export messages recovered from the unallocated space of
the PST structure.

user@ubuntu:~/pst$ pffexport -m all -t outlook-export Outlook.pst

Pffexport creates two directories when using these flags: one for exported allo-
cated items and one for recovered deleted items. In this instance we did not encounter
any recovered items. Inside the outlook-export.allocated/ directory is a directory named

nOTE
Readpst�exe
Searches on Google for “readpst.exe” and “readpst.zip” reveal that there have been several
efforts to produce a command-line executable version of the readpst utility associated with
the libpst library, but for the Windows platform. Several of the available posts indicate that
the utilities run in Wine, a free application for Linux systems that provide a compatibility
layer for running Windows programs.

163Mail Artifacts

“Top of Personal Folders.” This contains a directory structure that will be familiar to
anyone that has used Outlook:

Calendar Deleted Items Inbox Junk E-mail Outbox Tasks
Contacts Drafts Journal Notes Sent Items

Messages stored in these directories are extracted into component pieces:

/home/user/pst/outlook-export.export/Top of Personal Folders/
Sent Items/Message00066:

Attachments
Attachments/sample.xls
ConversationIndex.txt
Message.txt
OutlookHeaders.txt
Recipients.txt

As you can see, attachments are exported into an “Attachments” subdirectory.
The “Message.txt” file is the actual mail content—the rest of the files are Outlook
 metadata.

For more information about internals of the PST format, please see Joachim
Metz’s extensive documentation at the libpff project page on SourceForge.net: http://
sourceforge.net/projects/libpff/files/documentation/.

mbox and maildir
mbox and maildir are the two primary local mail storage formats used by Linux email
clients. These formats are also supported by cross-platform mail clients, especially
those with a Unix pedigree. Examples include Eudora, Thunderbird, and Apple’s
Mail.app. The older mbox format consists of a single flat file, containing numerous
email entries, whereas the maildir format stores each email as a discreet file in a set
of subdirectories.

Because both of these formats are plain text, searching for specific key words
quickly can be performed without the need for a dedicated email forensics utility. We
will demonstrate examination techniques using item 317398 from Digital Corpora,
which is a large mail archive in mbox format. The file begins with the following lines:

From newville@cars.uchicago.edu Wed Feb 20 16:33:22 2002
Received: from localhost (newville@localhost)

by millenia.cars.aps.anl.gov (8.11.6/8.11.2) with ESMTP id
g1KMXMY05595

TIP
PST to mbox
The default operation of the readpst tool included in libpst is to read in a PST file and
write the discovered directories out to individual mbox-formatted files. If the PST file you
are working with can be parsed with readpst, this can be helpful as you can use the
techniques described in the mbox & maildir section to search the mail content.

164 CHAPTER 7 Internet Artifacts

for <ifeffit@millenia.cars.aps.anl.gov>; Wed, 20 Feb 2002
16:33:22 -0600

X-Authentication-Warning: millenia.cars.aps.anl.gov: newville
owned process doing -bs

Date: Wed, 20 Feb 2002 16:33:22 -0600 (CST)
From: Matt Newville <newville@cars.uchicago.edu>
X-X-Sender: newville@millenia.cars.aps.anl.gov
To: ifeffit@millenia.cars.aps.anl.gov
Message-ID: <Pine.LNX.4.43.0202201626470.5566-100000@millenia.

cars.aps.anl.gov>

This mail entry continues with additional headers followed by the mail body. A
new mail begins with another “From ” line, which is the defined message delineator
for the mbox format. Note that capitalization and the trailing space are intentional
and required for new mail—this is known as the “From_” line.

We will use two different tools to examine this mailbox: grepmail and mairix.
Both can be installed on Ubuntu systems using apt-get.

Grepmail
Grepmail is a utility designed to search for individual mail entries that match a sup-
plied set of criteria. Grepmail has knowledge of the mbox mail format and will return
an entire message rather than a single matching line as is the case when using standard
“grep.” Although grepmail can only process mbox format mailboxes, it can parse com-
pressed mailboxes and can search through a number of mailboxes at once. Selected
grepmail options that may be of particular interest to examiners are listed here:

-b Search must match body
-d Specify a required date range
-h Search must match header
-H Print headers but not bodies of matching emails
-j Search must match status (A=answered, R=read, D=deleted,
O=old, F=flagged)
-Y Specify a header to search (implies -h)

In addition to header-specific searches, another feature of grepmail an exam-
iner may find of value is its date searching capabilities. Grepmail understands dates
entered in a number of nonstandard formats: “10/31/10,” “4:08pm June eleventh,”
and “yesterday” are all valid date entries, for example. Additionally, date searches
can be constrained by keywords such as “before,” “since,” or “between.” Further dis-
cussion of extended time analysis in forensic examinations can be found in Chapter 9.

While grepmail certainly has interesting search capabilities, it does tend to
slow down quite a bit dealing with very large (multiple gigabyte) mbox files. The

TIP
Mail Searching on Windows
Grepmail and mairix are also both available on Windows via the Cygwin installer
program shown in Chapter 2.

165Mail Artifacts

grepmail program is better suited for queries against relatively small mailboxes
and queries where a specific set of keywords, dates, and other search criteria are
known in advance of the start of the examination and are unlikely to change. Many
legal discovery examinations would fall into this category. For investigations that
don’t have a fixed set of examination criteria from the beginning or that involve large
mailboxes, mairix may be a better utility.

Mairix
Mairix is a powerful mail searching utility that supports both maildir and mbox
 formats. The key difference between mairix and grepmail is that mairix first
builds an index, which is subsequently queried as the examiner performs searches.
Prior to searching, we need to provide a configuration file (mairixrc) that will tell
mairix the location of our content to be indexed, where the index should go, and
where any mail items that are returned in response to a query should be exported to.

We can build a minimal mairixrc file containing the following information:

base=.
mbox=input/mail.mbox
database=.database
mfolder=output

“Base” defines the base path that mairix will treat as its root. “mbox” points to the
mbox file we will be examining. Note that this can be a colon-delimited set of mbox
files if you need to index and examine multiple mailboxes. “Database” tells mairix
where to store the index it will build. Finally, “mfolder “defines a directory where
mairix will write the output from any subsequent queries. Search results are stored
in maildir format by default.

Once the .mairixrc is written we can generate the index using:

mairix -v -f .mairixrc
...
Wrote 5283 messages (105660 bytes tables, 0 bytes text)
Wrote 1 mbox headers (16 bytes tables, 18 bytes paths)
Wrote 84528 bytes of mbox message checksums
To: Wrote 803 tokens (6424 bytes tables, 8158 bytes of text,

53244 bytes of hit encoding)
Cc: Wrote 430 tokens (3440 bytes tables, 4187 bytes of text,

4171 bytes of hit encoding)
From: Wrote 2074 tokens (16592 bytes tables, 22544 bytes of

text, 38970 bytes of hit encoding)
Subject: Wrote 1875 tokens (15000 bytes tables, 13413 bytes of

text, 39366 bytes of hit encoding)
Body: Wrote 165118 tokens (1320944 bytes tables, 1619831 bytes

of text, 1488382 bytes of hit encoding)
Attachment Name: Wrote 385 tokens (3080 bytes tables, 6288 bytes

of text, 1256 bytes of hit encoding)
(Threading): Wrote 5742 tokens (45936 bytes tables, 278816 bytes

of text, 39685 bytes of hit encoding)

166 CHAPTER 7 Internet Artifacts

Note that adding the -v flag forces mairix to write status information to the console
while indexing—omitting this flag will not harm anything but may give the indica-
tion of a hung program when indexing a very large mailbox.

Once the index has been generated we can begin issuing queries. Mairix sup-
ports a broad range of search operators, which we will not duplicate in their entirety
here. Please review the mairix man page for a full list of search operators. The
following search will return all messages with the word “vacation” in the body or
subject.

user@ubuntu:~/mail$ mairix -f rcfile bs:vacation
Created directory ./output
Created directory ./output/cur
Created directory ./output/new
Created directory ./output/tmp
Matched 19 messages

The resulting mail files can be found in the “new” subdirectory under the folder
defined as the “mfolder” in our .mairixrc file.

user@ubuntu:~/mail$ cd output/new/
user@ubuntu:~/mail/output/new$ ls
123456789.121.mairix 123456789.1663.mairix 123456789.1688.mairix

123456789.2686.mairix 123456789.589.mairix
123456789.1616.mairix 123456789.1674.mairix 123456789.1691.

mairix 123456789.2986.mairix 123456789.593.mairix
123456789.1618.mairix 123456789.1675.mairix 123456789.1692.

mairix 123456789.579.mairix 123456789.619.mairix
123456789.1622.mairix 123456789.1677.mairix 123456789.2685.

mairix 123456789.581.mairix

SuMMARy
This chapter identified and analyzed numerous artifacts generated by the top four
browsers in use today. As deciphering a user’s browser activity is becoming more and
more relevant to a wider variety of investigations, being able to locate and process
these data effectively is crucial. This chapter also extracted mail content and meta-
data from Outlook’s binary format and discussed how to analyze locally stored mail
in formats used commonly by Linux and OS X mail clients.

References
[1] The Meaning of LEAK Records. http://www.forensicblog.org/2009/09/10/the-meaning-

of-leak-records/, (accessed 29.12.10).
[2] Firefox 3 Forensics—Research—Firefox Places Schema. http://www.firefoxforensics

.com/research/firefox_places_schema.shtml.

167References

[3] IR and forensic talk» Version 0.41 of log2timeline published. http://blog.kiddaland
.net/2010/01/version-0-41-of-log2timeline-published/.

[4] SANS—Computer Forensics and Incident Response with Rob Lee. http://computer-
forensics.sans.org/blog/2010/01/21/google-chrome-forensics/.

[5] Forensics from the sausage factory: Safari browser cache—Examination of Cache.db.
http://forensicsfromthesausagefactory.blogspot.com/2010/06/safari-browser-cache-
examination-of.html.

[6] libpst Utilities–Version 0.6.49. http://www.five-ten-sg.com/libpst/.
[7] libpff. http://sourceforge.net/projects/libpff/.
[8] java-libpst and pst2gmail. http://www.rjohnson.id.au/wordpress/2010/01/26/java-libpst-

pst2gmail/, (accessed 26.01.10).
[9] java-libpst. http://code.google.com/p/java-libpst/.

This page intentionally left blank

CHAPTER

169

File Analysis

InFORMATIOn In THIS CHAPTER

• File Analysis Concepts

• Images

• Audio

• Video

• Archives

• Documents

FILE AnALySIS COnCEPTS
To perform a comprehensive examination, we must understand the nature of the
files we identify and extract. By understanding these files, we can more successfully
uncover and exploit any higher order forensic artifacts that may be present within
the files. This builds upon and complements the system and application analysis
performed in previous chapters.

The analysis of individual files will be of key importance in many different
 examinations. A malicious document may be the initial entry point in a system
 compromise investigation. The validity of a critical document may be in question.
The examiner may need to locate and identify illicit images or videos on the system.
The presence of the same file on two different machines may tie those machines
and users of the machines together. The fact that these files are intended to be self-
contained and shared across systems is one of the key characteristics that makes them
an interesting source of artifacts.

File analysis can be broken up into two distinct but complementary activities:
content identification and metadata extraction. Content identification is the process
of determining or verifying what a specific file is. Metadata extraction is the retrieval
of any embedded metadata that may be present in a given file.

While we do cover the identification and subsequent artifact retrieval from vari-
ous file types, this chapter is not intended to serve as a comprehensive work on digi-
tal content forensic analysis. Indeed, forensic analysis of any single digital media

8

170 CHAPTER 8 File Analysis

type (audio, video, or still images) is a complex topic that could fill volumes on its
own. Instead, our focus is on retrieving and exploiting forensic artifacts as part of
an examination of activities on a computer system or systems. Through analysis
of the file content and any stored metadata, we can build a better narrative for our
examination.

Throughout this chapter we will be using files retrieved from Digital Corpora
(www.digitalcorpora.org), “a website of digital corpora for use in computer forensics
research.” In particular, we will examine files from the “Govdocs1” collection, which
contains nearly one million files representing a wide variety of file types. This col-
lection gives us the ability to demonstrate the use of various file analysis tools and
techniques against files that are also freely available to the reader.

Content Identification
The goal of the content identification process is to confirm the content of a given
file. Most computer users are familiar with the concept of file extensions as used
on Windows systems to identify specific file types. The name of a file, though, isn’t
what makes a file. A medical doctor isn’t a doctor because she puts “Dr.” before her
name—she is a doctor because of the years of schooling and medical training. Even
without the title, she is a doctor. Similarly, a simple text file is a text file whether it
is named “MyFile.txt” or “ThisIsAnEmptyFolder.” The extension provides a hint to
the Windows shell with regards to the content of the file—it is a convention of con-
venience, nothing more.

For many reasons, we as forensic examiners cannot simply accept this hint as
ground truth and go on our way. First, it is conceivable that a user can change the
file associations and default applications used to open specific files in an effort to
conceal the nature of the files. For example, a user could change all AVI video files to
have a .BIN extension and then associate this extension with a video player. Second,
throughout the course of an examination it is not uncommon to discover files with
no extension at all in a location of interest or with time stamps that place that file in
a time period of interest. Generally, these will be temporary or cache files not meant
for end-user consumption and may contain crucial investigation data.

To identify files based on their content properly, we use key structures inherent to
specific file types to confirm or determine a given file’s type. These are referred to as
magic numbers or magic values and are generally specific hexadecimal values found
at specific offsets from the beginning of a file.

The file command can be used to identify file types based on these magic values.
By default, file will use the system “magic file,” which is a long list of file magic
number definitions. On Ubuntu, this file is located at “/usr/share/misc/magic” but
local magic values may be defined in “/etc/magic” as well. Magic file test definitions
can be fairly complex, but the most basic are of the form “look for this sequence of
hex values at this offset into the file.” For example, the most basic JPEG definition
is as follows:

"0 beshort 0xffd8 JPEG image data"

171File Analysis Concepts

The first column is the offset into the file to begin the test—right at the beginning
in this test. The next column is the type of data to test. The “beshort” value in this
column indicates “a two-byte value in big-endian byte order.” The next column
is test data. If the first two bytes of a file match the value in this column (FFD8
in hex) the test returns “true,” and the file being tested will be reported to be “JPEG
image data.”

More complex test definitions are available in the magic format. The system
magic file and the man page for the magic file are good references for the enterpris-
ing examiner.

Content Examination
Up to this point, the tools mentioned in this chapter have been relatively “automagic”—
you point the tool at some content and it tells you (more or less) what that content is.
This is certainly convenient, but it is imperative that an examiner understand how a
tool operates and be able to confirm and validate correct operation (or, in some cases,
confirm incorrect operation). To do so, we need to be able to view the raw content
of file. The most basic method for doing so is via hexadecimal dump (or hexdump).
A hexdump is simply a text representation of the underlying binary structure of the
file in question. We’ll use the program xxd (included as part of the vim editor, which
is included by default on many Linux distributions) to view a hexdump of a sample
PDF from Digital Corpora (997495.pdf).

0000000: 2550 4446 2d31 2e35 0d25 e2e3 cfd3 0d0a %PDF-1.5.%......
0000010: 3435 2030 206f 626a 203c 3c2f 4c69 6e65 45 0 obj <</Line
0000020: 6172 697a 6564 2031 2f4c 2034 3538 3835 arized 1/L 45885
0000030: 2f4f 2034 392f 4520 3131 3138 342f 4e20 /O 49/E 11184/N
0000040: 3132 2f54 2034 3439 3338 2f48 205b 2036 12/T 44938/H [6
0000050: 3336 2032 3332 5d3e 3e0d 656e 646f 626a 36 232]>>.endobj
0000060: 0d20 2020 2020 2020 2020 2020 2020 2020 .
0000070: 2020 0d0a 7872 6566 0d0a 3435 2031 370d ..xref..45 17.
0000080: 0a30 3030 3030 3030 3031 3620 3030 3030 .0000000016 0000
...

The first column is the byte count/offset in base 16. The second 8 columns are
the hexadecimal representation of the file content. Each column represents 2 bytes.
The rest of the line is the ASCII text rendition of the file. Nonprintable/non-ASCII
characters are displayed as dots (.). While this is a quick method for viewing the
content of a file, it is not ideal for extensive interaction and analysis. For more
in-depth analysis, we can use a hex editor. As the name implies, hex editors are a
class of software designed for editing binary files with no interpretation—reading
and writing hexadecimal. Many simple hex editors are available that are nothing
more than an interactive GUI version of the simple xxd tool we just used. For our
purposes, we want to be able to view raw data of a file, but we also would like to be
able to interactively interpret certain data structures we come across.

172 CHAPTER 8 File Analysis

To examine binary files in a useful manner, we can use tools built around the
hachoir framework. Hachoir is a Python library that parses and interprets a binary
file bit by bit. In the author’s own words, “Hachoir allows you to ‘browse’ any binary
stream just like you browse directories and files.” There are several tools that imple-
ment hachoir’s binary parsing capability that will be of use as we examine various
file formats throughout this chapter. On Ubuntu systems, installing Hachoir is quite
simple. We can use a wildcard to apt-get to install all the available hachoir com-
ponent packages.

user@forensics:~$ sudo apt-get install python-hachoir-*
Reading package lists... Done
Building dependency tree
Reading state information... Done
Note, selecting 'python-hachoir-regex' for regex 'python-hachoir-*'
Note, selecting 'python-hachoir-metadata' for regex 'python-hachoir-*'
Note, selecting 'python-hachoir-core' for regex 'python-hachoir-*'
Note, selecting 'python-hachoir-parser' for regex 'python-hachoir-*'
Note, selecting 'python-hachoir-urwid' for regex 'python-hachoir-*'
Note, selecting 'python-hachoir-subfile' for regex 'python-hachoir-*'
Note, selecting 'python-hachoir-wx' for regex 'python-hachoir-*'
...

hg clone https://bitbucket.org/haypo/hachoir

Throughout this chapter (and the rest of the book), we will discuss the use of three
programs that use the hachoir library:

• hachoir-metadata, a tool that extracts and displays metadata from file for-
mats recognized by hachoir-parser

• hachoir-urwid, a console GUI binary file browser
• hachoir-subfile, a tool for identifying and extracting identifiable files from

inside binary streams

Metadata Extraction
As discussed in Chapter 3, metadata are data about data. In the context of a
file system, metadata are additional information about content in blocks. In the
context of file analysis, metadata are information stored within the file itself that
provide some possibly interesting but otherwise nonessential information about
the file.

TIP
getting the Latest Hachoir
The hachoir project is undergoing constant, rapid development. Versions of the various
hachoir components provided by distribution package managers may be missing key
features added to the source at any given time. To take advantage of the latest updates,
you can check the development branch of hachoir out using mercurial:

173File Analysis Concepts

Metadata are included to provide context or extended information that is outside
of the scope of data itself, for example, author information, or time stamps beyond
those on the local file system.

The value of metadata is highly dependent on the nature of a given examination
and the types of files being examined. For a straightforward intrusion case, metadata
may simply be a secondary source of data. In a litigation support examination, meta-
data may end up being the focal point of the entire case.

As metadata extraction is a relatively common task performed across a variety
of disciplines, many generic metadata extraction tools have been developed. We will
discuss two such tools: the extract tool that implements the libextractor library and
hachoir-metadata, which build upon the hachoir library mentioned previously.
Both tools are quite capable of extracting metadata from many files with minimal
interaction. As we discuss specific file types, we will use these tools as well as more
specialized tools designed to extract metadata from one (or a few) file types.

The extract tool can be installed easily on Ubuntu using the following
 command:

user@forensics:~$ sudo apt-get install extract

The extract tool has many flags and options that can be passed at execution time.
Options that are most interesting to forensic analysis of file content are listed here.

Usage: extract [OPTIONS] [FILENAME]*
Extract metadata from files.

-a, --all do not remove any duplicates
-d, --duplicates remove duplicates only if types match
-g, --grep-friendly produce grep-friendly output (all

results on one line per file)
-H, --hash=ALGORITHM compute hash using the given ALGORITHM

(currently
 sha1 or md5)
-L, --list list all keyword types
-p, --print=TYPE print only keywords of the given TYPE

(use -L to get a list)
-r, --remove-duplicates remove duplicates even if keyword

types do not match
-V, --verbose be verbose
-x, --exclude=TYPE do not print keywords of the given TYPE

WARnIng
Metadata Caveats
Not all file formats support metadata. In general, the older or more simplea particular
file format is, the less likely it is to carry metadata at all and the less likely it is that any
metadata present will be particularly interesting. Also, keep in mind that most metadata
are not required for a file to serve its purpose—it is by definition peripheral.

Because of this, in most cases, metadata can be altered or eliminated without affecting
the function of the content of the file. Depending on the investigation, though, the
absence of metadata may be a forensic artifact in and of itself.

174 CHAPTER 8 File Analysis

In particular, depending on your specific use, removing duplicates or ensuring
that no duplicates are removed may be important. See the following section for a
sample of extract’s output for a sample JPEG image file.

user@ubuntu:~$ extract /usr/share/pixmaps/faces/puppy.jpg
size - 96x96
resolution - 72x72 dots per inch?
mimetype - image/jpeg

Also, see the extract’s output when reading a sample PDF.

user@ubuntu:~$ extract /usr/share/gnome/help/gnome-access-
guide/C/gnome-access-guide.pdf

software - This is pdfTeX using libpoppler, Version 3.141592-
1.40.3-2.2 (Web2C 7.5.6) kpathsea version 3.5.6

modification date - D:20090407113257-04'00'
creation date - 20090407113257-04'00'
keywords -
producer - pdfTeX-1.40.3
creator - LaTeX with hyperref package
subject -
title -
author -
format - PDF 1.4
mimetype - application/pdf

In both cases, data provided are fairly sparse, but extract supports a wide variety of
file types.

Another utility that can be used to bulk extract metadata from files in a generic
manner is hachoir-metadata. Hachoir-metadata uses the hachoir-parser
library to retrieve metadata from many file formats, with a focus on music, video,
and picture files. Note that hachoir-metadata does not currently support the wide
range of exotic file types some of the other tools we will be using do, but it does pro-
vide more verbose data for the file types it does support. For instance, see the output
from hachoir-metadata for the same test JPEG image used previously:

user@ubuntu:~$ hachoir-metadata /usr/share/pixmaps/faces/puppy.jpg
Metadata:
- Image width: 96 pixels
- Image height: 96 pixels
- Bits/pixel: 24
- Pixel format: YCbCr
- Compression rate: 9.0x
- Image DPI width: 72 DPI
- Image DPI height: 72 DPI
- Compression: JPEG (Baseline)
- Comment: JPEG quality: 85%
- Format version: JFIF 1.01
- MIME type: image/jpeg
- Endian: Big endian

175Images

A list of all parsers available in hachoir-metadata can be viewed using
the –parser-list option. At the time of this writing, 35 different file types are
supported. Note that an exhaustive examination of all forms of metadata and all
document types would be futile and well outside the scope of this work. It is the
authors’ intention to explore forensically relevant and interesting document and
metadata types.

Now that we understand the concepts related to file analysis, we can begin
 examining the various file types likely to be important in a variety of examinations.
These files are broken down into five categories: images, audio, video, archives,and
documents.

IMAgES
Images are a simple enough concept; these are files that contain data to be rendered
as graphics. Many different image types are used for different purposes, but all have
the goal of presenting image data to the viewer. In addition, most image file types
are capable of carrying a variety of metadata, ranging from simple text comments to
the latitude and longitude where the image was created. Depending on the investiga-
tion, the examiner may be interested in the content of the image (e.g., a photograph
of a particular person) or metadata (information indicating that the image may have
been altered in image editing software).

The identify utility included as part of the imagemagick package can be used
to extract information from a wide variety of images. To get identify we will need
to install imagemagick.

user@forensics:~$ sudo apt-get install imagemagick

Because the default output of identify is very sparse, we will include the
“-verbose” flag to extract more information about the image. We will use the same
test JPEG from before as reference.

user@ubuntu:~$ identify -verbose /usr/share/pixmaps/faces/puppy.jpg
Image: /usr/share/pixmaps/faces/puppy.jpg

Format: JPEG (Joint Photographic Experts Group JFIF format)
Class: DirectClass
Geometry: 96x96+0+0
Resolution: 72x72
Print size: 1.33333x1.33333
Units: PixelsPerInch
Type: TrueColor
Endianess: Undefined
Colorspace: RGB
Depth: 8-bit

176 CHAPTER 8 File Analysis

Channel depth:
red: 8-bit
green: 8-bit
blue: 8-bit

Channel statistics:
red:

min: 0 (0)
max: 255 (1)
mean: 117.579 (0.461094)
standard deviation: 64.1817 (0.251693)
kurtosis: -0.687544
skewness: 0.430921

green:
min: 0 (0)
max: 255 (1)
mean: 121.92 (0.478116)
standard deviation: 62.863 (0.246522)
kurtosis: -0.66723
skewness: 0.131649

blue:
min: 0 (0)
max: 255 (1)
mean: 76.2197 (0.298901)
standard deviation: 74.8287 (0.293446)
kurtosis: -0.643199
skewness: 0.91572

Image statistics:
Overall:
min: 0 (0)
max: 255 (1)
mean: 78.9296 (0.309528)
standard deviation: 76.239 (0.298976)
kurtosis: -0.823781
skewness: 0.630468

Rendering intent: Undefined
Interlace: None
Background color: white
Border color: rgb(223,223,223)
Matte color: grey74
Transparent color: black
Compose: Over
Page geometry: 96x96+0+0
Dispose: Undefined
Iterations: 0
Compression: JPEG
Quality: 85
Orientation: Undefined

177Images

Properties:
date:create: 2010-07-24T15:03:19-07:00
date:modify: 2010-06-18T02:04:48-07:00

jpeg:colorspace: 2
jpeg:sampling-factor: 2x2,1x1,1x1
signature: 54b2634b34b7359af479f233afd4ada15

5af0e0413899929b6bbf8e8fef93ffd
Profiles:

Profile-exif: 20 bytes
Artifacts:

verbose: true
Tainted: False
Filesize: 3.38KiB
Number pixels: 9KiB
Pixels per second: 900KiB
User time: 0.010u
Elapsed time: 0:01.010
Version: ImageMagick 6.5.7-8 2009-11-26 Q16 http://www

.imagemagick.org

This is an incredible amount of data for a 72 × 72 image that is under 4K in size! Note
that the two dates listed here are from the file system metadata, not any embedded
file metadata.

Identify is a good choice for extracting data from a wide variety of image files
en masse, as the imagemagick library supports over 100 different image file formats.
We will discuss a handful of the most common image file formats and the forensic
artifacts they contain next.

There are three main types of image metadata in use today.

• EXIF (Exchangeable Image File Format) was developed to embed information
about the device capturing the image (typically a camera) into the image itself.
EXIF metadata consist of a series of Tags and Values, which can include things
such as the make and model of the camera used to generate the image, the date
and time the image was captured, and the geolocation information about the
capturing device.

• IPTC refers to the “Information Interchange Model” developed by the
International Press Telecommunications Council (IPTC). This standard,
sometimes referred to as “IPTC Headers,” was designed originally to embed
information about images used by newspapers and news agencies. It is used
primarily by photojournalists and other industries producing digital images
for print.

• XMP is the XML-based “eXensible Metadata Platform” developed by Adobe in
2001. It largely supersedes the earlier metadata schemes and is open and exten-
sible. While used most commonly for image metadata, its extensibility allows it
to be used for other types of files as well.

178 CHAPTER 8 File Analysis

For the specific image files discussed here, we will note which of these metadata
formats are supported and additionally note any file-specific metadata an examiner
may be able to extract.

JPEg
JPEG files are the predominant image type in general use today. JPEG is an acronym
for “Joint Photographic Experts Group,” which is the name of the committee that
created the JPEG standard in 1992. JPEG images use a “lossy” compression format
designed to minimize the size of photographs and other realistic image content while
retaining the bulk of visual information.

JPEG image files can be rich with metadata. The “JPEG File Interchange Format
(JFIF)” extended the JPEG format to include a minimal amount of metadata, includ-
ing pixel density and aspect ratio, and optionally a small embedded thumbnail of the
image to be used by gallery display applications.

In addition to JPEG-specific JFIF metadata, JPEG files may also contain EXIF,
IPTC, or XMP metadata. Many programs are capable of reading these metadata
types. We will examine three—exiftool, exiv2, and hachoir-metadata.

Using exiftool is straightforward. Simply pass a file name to the command and
exiftool will read and parse all available metadata by default. We will use item
808913 from Digital Corpora as an example.

ExifTool Version Number : 8.15
File Name : 808913.jpg
Directory : .
File Size : 1492 kB
File Modification Date/Time : 2005:09:14 10:00:15-07:00
File Permissions : r--r--r--
File Type : JPEG
MIME Type : image/jpeg
Exif Byte Order : Big-endian (Motorola, MM)
Image Description :
Make : NIKON CORPORATION
Camera Model Name : NIKON D1X
X Resolution : 300
Y Resolution : 300
Resolution Unit : inches
Software : Ver.5.01
Modify Date : 2005:08:31 21:44:15
Y Cb Cr Positioning : Co-sited
Exposure Time : 1/500
F Number : 11.0
Exposure Program : Program AE
Exif Version : 0220
Date/Time Original : 2005:08:31 21:44:15
Create Date : 2005:08:31 21:44:15
Components Configuration : Y, Cb, Cr, -
Compressed Bits Per Pixel : 2
Exposure Compensation : 0

179Images

Max Aperture Value : 4.8
Metering Mode : Multi-segment
Flash : No Flash
Focal Length : 50.0 mm
Maker Note Version : 2.00
ISO : 200
Color Mode : Color
Quality : Normal
White Balance : Auto
Focus Mode : AF-C
Flash Setting :
Flash Type :
White Balance Fine Tune : 0
WB RB Levels : 2.125 1.24609375 1 1
Program Shift : 0
Exposure Difference : 0
Compression : JPEG (old-style)
Preview Image Start : 1646
Preview Image Length : 25318
Tone Comp : Normal
Lens Type : G VR
Lens : 24-120mm f/3.5-5.6
Flash Mode : Did Not Fire
AF Area Mode : Dynamic Area
AF Point : Center
AF Points In Focus : Lower-right
Shooting Mode : Single-Frame
Color Hue : Mode1
Light Source : Natural
Shot Info Version : 0100
Hue Adjustment : 3
Lens Data Version : 0100
Lens ID Number : 120
Lens F Stops : 5.33
Min Focal Length : 24.5 mm
Max Focal Length : 119.9 mm
Max Aperture At Min Focal : 3.6
Max Aperture At Max Focal : 5.7
MCU Version : 124
Sensor Pixel Size : 5.9 x 5.9 um
User Comment :
Sub Sec Time : 03
Sub Sec Time Original : 03
Sub Sec Time Digitized : 03
Flashpix Version : 0100
Color Space : sRGB
Exif Image Width : 3008
Exif Image Height : 1960
Interoperability Index : R98 - DCF basic file (sRGB)
Interoperability Version : 0100
Sensing Method : One-chip color area
File Source : Digital Camera
Scene Type : Directly photographed

180 CHAPTER 8 File Analysis

CFA Pattern : [Blue,Green][Green,Red]
Custom Rendered : Normal
Exposure Mode : Auto
Digital Zoom Ratio : 1
Focal Length In 35mm Format : 75 mm
Scene Capture Type : Standard
Gain Control : None
Contrast : Normal
Saturation : Normal
Sharpness : Normal
Subject Distance Range : Unknown
GPS Version ID : 2.2.0.0
GPS Latitude Ref : North
GPS Longitude Ref : West
GPS Altitude Ref : Above Sea Level
GPS Time Stamp : 21:43:35.84
GPS Satellites : 04
GPS Map Datum :
Thumbnail Offset : 27316
Thumbnail Length : 5452
Image Width : 3008
Image Height : 1960
Encoding Process : Baseline DCT, Huffman coding
Bits Per Sample : 8
Color Components : 3
Y Cb Cr Sub Sampling : YCbCr4:2:2 (2 1)
Aperture : 11.0
Blue Balance : 1.246094
GPS Altitude : 133 m Above Sea Level
GPS Latitude : 30 deg 14' 51.60" N
GPS Longitude : 89 deg 25' 3.60" W
GPS Position : 30 deg 14' 51.60" N, 89 deg 25'

3.60" W
Image Size : 3008x1960
Lens ID : AF-S VR Zoom-Nikkor 24-120mm

f/3.5-5.6G IF-ED
Lens : 24-120mm f/3.5-5.6 G VR
Preview Image : (Binary data 25318 bytes, use -b

option to extract)
Red Balance : 2.125
Scale Factor To 35 mm Equivalent : 1.5
Shutter Speed : 1/500
Create Date : 2005:08:31 21:44:15.03
Date/Time Original : 2005:08:31 21:44:15.03
Modify Date : 2005:08:31 21:44:15.03
Thumbnail Image : (Binary data 5452 bytes, use -b

option to extract)
Circle Of Confusion : 0.020 mm
Field Of View : 27.0 deg
Focal Length : 50.0 mm (35 mm equivalent: 75.0 mm)
Hyperfocal Distance : 11.35 m
Light Value : 14.9

181Images

There are several items of interest in this extensive output, including the make
and model of the camera, the original image creation date, information about the lens
and camera settings, and GPS data. We can plug these data into Google maps and see
where the photograph was taken, as shown in Figure 8.1.

Viewing the image indicates that this is likely accurate GPS information (Figure 8.2).

FIguRE 8�1

Google Maps View of extracted GPS coordinates.

FIguRE 8�2

Actual content of 808913.jpg.

182 CHAPTER 8 File Analysis

We can also use the exiv2 utility to recover metadata from this document.

File name : 808913.jpg
File size : 1527500 Bytes
MIME type : image/jpeg
Image size : 3008 x 1960
Camera make : NIKON CORPORATION
Camera model : NIKON D1X
Image timestamp : 2005:08:31 21:44:15
Image number :
Exposure time : 1/500 s
Aperture : F11
Exposure bias : 0 EV
Flash : No flash
Flash bias :
Focal length : 50.0 mm (35 mm equivalent: 75.0 mm)
Subject distance :
ISO speed : 200
Exposure mode : Auto
Metering mode : Multi-segment
Macro mode :
Image quality : NORMAL
Exif Resolution : 3008 x 1960
White balance : AUTO
Thumbnail : image/jpeg, 5452 Bytes
Copyright :
Exif comment :

Note that the default output of exiv2 is relatively sparse. Use the -pa flag to
produce more verbose output similar to exiftool’s default output. Using exiv2
in this manner also produces tag names that can be processed more easily by subse-
quent scripting. For example, the GPS information appears as follows in the verbose
exiv2 run:

Exif.GPSInfo.GPSVersionID Byte 4 2.2.0.0
Exif.GPSInfo.GPSLatitudeRef Ascii 2 North
Exif.GPSInfo.GPSLatitude Rational 3 30deg 14.86000'
Exif.GPSInfo.GPSLongitudeRef Ascii 2 West
Exif.GPSInfo.GPSLongitude Rational 3 89deg 25.06000'
Exif.GPSInfo.GPSAltitudeRef Byte 1 Above sea level
Exif.GPSInfo.GPSAltitude Rational 1 133 m
Exif.GPSInfo.GPSTimeStamp Rational 3 21:43:35.8
Exif.GPSInfo.GPSSatellites Ascii 3 04
Exif.GPSInfo.GPSMapDatum Ascii 10

This more clearly indicates the source of the information when compared to the same
data retrieved by exiftool. Exiv2 also has the benefit of being orders of magnitude

183Images

faster than exiftool for most tasks. This is beneficial when performing bulk pro-
cessing of thousands or tens of thousands of images. The primary reason exiftool
is so much slower may also be framed as an advantage—because it is written in Perl,
it can be executed on any system with a Perl interpreter.

Hachoir-metadata is not quite as full featured as the previous tools with
respect to extracting JPEG metadata, but it does have the advantage of being innately
read-only. It is also designed solely for the task of metadata extraction, which keeps
its operation simple.

Metadata:
- Image width: 3008 pixels
- Image height: 1960 pixels
- Bits/pixel: 24
- Pixel format: YCbCr
- Compression rate: 11.8x
- Creation date: 2005-08-31 21:44:15
- Latitude: 30.2476666667
- Altitude: 133.0 meters
- Longitude: -89.4176666667
- Camera aperture: 4.5
- Camera focal: 11
- Camera exposure: 1/500
- Camera model: NIKON D1X
- Camera manufacturer: NIKON CORPORATION
- Compression: JPEG (Baseline)
- Producer: Ver.5.01
- Comment: JPEG quality: 95% (approximate)
- MIME type: image/jpeg
- Endianness: Big endian

gIF
Graphics Interchange Format (GIF) is an image format used primarily for icons and
simple graphics. It uses lossless compression, which is well suited for dealing with
large areas of solid color. The GIF format also supports transparency and animation.
Because GIF files aren’t generated by cameras or other imaging devices, there has

TIP
JPEg Quantization Tables
An interesting side effect of JPEG compression is that the method used to create or
edit a JPEG may leave tell-tale markings in the quantization tables present in the JPEG
content. These can serve as a tool mark indicating that the JPEG was likely generated by
a specific make and model of digital camera [1].

184 CHAPTER 8 File Analysis

never been a need for built-in metadata. Thus, GIF metadata are sparse to the point of
near nonexistence. Generally, metadata in GIFs are limited to image information and
sometimes a single simple comment field. GIF images can have XMP tags embed-
ded in them but this is not common. Exiftool and hachoir-metadata can both process
GIF metadata.

We will examine item 135900 from Digital Corpora, first using exiftool.

ExifTool Version Number : 8.15
File Name : 135900.gif
Directory : 135
File Size : 15 kB
File Modification Date/Time : 1997:04:26 11:08:49-07:00
File Permissions : r--r--r--
File Type : GIF
MIME Type : image/gif
GIF Version : 89a
Image Width : 478
Image Height : 580
Has Color Map : Yes
Color Resolution Depth : 8
Bits Per Pixel : 4
Background Color : 0
Comment : Image generated by Ghostscript

(device=ppmraw).
Image Size : 478x580

What follows is the same file as seen by hachoir-metada.

Metadata:
- Image width: 478 pixels
- Image height: 580 pixels
- Number of colors: 16
- Bits/pixel: 4
- Pixel format: Color index
- Compression: LZW
- Comment: Image generated by Ghostscript (device=ppmraw)
- Format version: GIF version 89a
- MIME type: image/gif
- Endianness: Little endian

Png
Portable Network Graphics (PNG) is another format for the lossless compression
of images. It is intended to provide a free and open replacement for GIF images and
is suitable for many of the same uses as GIF. As such, embedded metadata present
in PNG files are also relatively sparse and usually limited to image information
and a single comment field. Like GIF images, PNGs can contain XMP tags but this
is rare.

185Audio

We can extract the (minimal) metadata from item 696048 in Digital Corpora
using hachoir-metadata:

Metadata:
- Image width: 2160 pixels
- Image height: 1080 pixels
- Bits/pixel: 24
- Pixel format: RGB
- Compression rate: 6.8x
- Compression: deflate
- Producer: GraphicConverter
- Comment: DESCRIPTION: IDL TIFF file\nIgnored Tags: $010D
- MIME type: image/png
- Endianness: Big endian

TIFF
The Tagged Image File Format (TIFF) is an image file format used commonly in
publishing and graphic design. It is the default file format for many applications on
OS X, including the default screen capture utility Grab. TIFF was created originally
as a unified format for scanned documents and is still common for fax and scanning
applications to generate TIFF images. As the name suggests, TIFF image files sup-
port internal metadata tags. There are also extended versions of TIFF, such as Geo-
TIFF (used to store geographical image data) and the Microsoft Document Imaging
format used to store scanned or faxed documents. In addition, many of the “Raw”
formats used as lossless storage by digital cameras are TIFF-based. Metadata from
TIFF files can be processed using exiftool.

AuDIO
Audio files consist of data that impart sound when decoded properly. This could
be music, voice mail messages, or any other sort of recorded audible material.
If your case revolves around the identification and extraction of audio data, it is
likely that the audio content will be of primary interest. However, audio formats can
carry rich metadata that can help provide additional information relevant to your
 investigation.

WAv
The Waveform Audio File Format (WAV) is a standard for storing an audio bitstream
originally developed by Microsoft and IBM for use on desktop PCs. WAV audio is
stored as a series of tagged chunks inside of a Resource Interchange File Format
(RIFF) container. The RIFF container format supports INFO chunks, which contain
various metadata tags. In addition to these RIFF-specific tags, RIFF container files
(like WAV audio) can contain XMP metadata.

186 CHAPTER 8 File Analysis

user@ubuntu:~/Downloads$ hachoir-metadata mediaexample.wav
Common:
- Author: administrator
- Duration: 3 sec 299 ms
- Channel: mono
- Sample rate: 44.1 kHz
- Bits/sample: 16 bits
- Compression rate: 1.0x
- Creation date: 2005-09-26
- Compression: Microsoft Pulse Code Modulation (PCM)
- Bit rate: 705.6 Kbit/sec
- Producer: Sony Sound Forge 7.0
- MIME type: audio/x-wav
- Endian: Little endian

Here we can see possibly interesting metadata, such as the name of the application
used to create the WAV file, as well as the “Author” and creation date.

MPEg-3/MP3
The venerable MP3 format is by and large the most popular format for digital music
in use today. Originally published by the Moving Picture Experts Group (MPEG) in
1993, the MP3 format soon became the preferred format for the nascent file sharing
networks such as Napster and Gnutella (formerly Kazaa). MP3 uses a lossy compres-
sion scheme based on the study of human hearing, which allows for a 1:10 compres-
sion ratio over raw digital audio data. This means a typical song will be around 5 to
6 megabytes in MP3 format. With 1990s network speeds, this reduction of file size
enabled the quick transfer of songs and albums. Today, it allows even the smallest
portable device to store many days worth of music.

MP3 files may contain metadata in two different formats: ID3v1 and ID3v2.
ID3v1 tags are limited to an array of 128 bytes appended to the end of the MP3 file.
Extended ID3v1 tags add an additional 227 bytes for use immediately prior to the
ID3v1 tag. Because this provides a very limited amount of space in which to store
metadata, in 1998 a replacement metadata format was created and named ID3v2.
ID3v2 tags are not fixed size and may contain a much richer variety of metadata
when compared to ID3v1 tags. In addition to expected metadata-like track title and
artist information, ID3v2 tags can include embedded image data [2].

The id3v2 program can be used to extract both types of ID3 tags. In addition,
the exiftool and hachoir-metadata programs we have already used will also
extract both forms of ID3 tags.

MPEg-4 Audio (AAC/M4A)
The Advanced Audio Coding (AAC) standard is the modern successor to the MP3
and is designed to serve a similar function. AAC files may be referred to as “MP4
Audio” or “M4A” files. AAC compressed audio is usually stored in an MPEG-4

187Audio

container format. As the MP4 container can store audio, video, or both, the M4A
naming and file extension is used to hint that this MP4 container holds solely audio
information. MP4 video is discussed in the next section.

Examiners processing modern digital devices will very likely encounter AAC
audio files. It is supported audio format on nearly every portable device in use today,
from handheld game consoles to mobile phones.

AAC/M4A files may contain ID3 tags as seen in MP3 files, but may also con-
tain a number of MP4-specific metadata tags. These tags can be retrieved using
the AtomicParsley tool. While this tool can also be used to write metadata, the
 relevant options for metadata extraction are shown here.

user@forensics:~$ AtomicParsley
AtomicParlsey sets metadata into MPEG-4 files & derivatives supporting 3 tag

schemes: iTunes-style, 3GPP assets & ISO defined copyright notifications.
AtomicParlsey quick help for setting iTunes-style metadata into MPEG-4 files.
General usage examples:

AtomicParsley /path/to.mp4 -T 1
AtomicParsley /path/to.mp4 -t +
AtomicParsley /path/to.mp4 --artist "Me" --artwork /path/to/art.jpg
Atomicparsley /path/to.mp4 --albumArtist "You" --podcastFlag true
Atomicparsley /path/to.mp4 --stik "TV Show" --advisory explicit

Getting information about the file & tags:
-T --test Test file for mpeg4-ishness & print atom tree
-t --textdata Prints tags embedded within the file
-E --extractPix Extracts pix to the same folder as the mpeg-4 file

...

We will use the AtomicParsley tool to extract metadata from an archival audio file
one of the authors created in 2004 using iTunes:

AtomicParsley Lateralus.m4a -tE
Major Brand: M4A - version 0
Compatible Brands: M4A mp42 isom
Tagging schemes available:
iTunes-style metadata allowed.
ISO-copyright notices @ movie and/or track level allowed.
uuid private user extension tags allowed.

Track level ISO user data:

Track 1:
No user data for this track.

3GPP assets/ISO user data:

iTunes-style metadata tags:

Atom "©nam" contains: Lateralus
Atom "©ART" contains: Tool
Atom "©wrt" contains: Tool
Atom "©alb" contains: Lateralus

188 CHAPTER 8 File Analysis

Atom "gnre" contains: Metal
Atom "trkn" contains: 9 of 13
Atom "disk" contains: 1 of 1
Atom "©day" contains: 2001
Atom "cpil" contains: false
Atom "tmpo" contains: 0
Atom "©too" contains: iTunes v4.5
Atom "----" [iTunNORM] contains: 0000118C 000010C6 00008D88

0000B033 0008023C 00076BA8 00007E8D 00007E8D 00013344 000280F2
Atom "----" [iTunes_CDDB_IDs] contains:

13+6E36238CDD88E9432B0DEA4286C0B545+1295274
Atom "covr" contains: 1 piece of artwork

free atom space: 2048
padding available: 2048 bytes
user data space: 95707
media data space: 63408499

Extracted artwork to file: Lateralus_artwork_1.png

In addition to metadata tags and internal file structure information, we can see that
using the file contained an embedded thumbnail image, which has been extracted as
instructed with the -E argument.

ASF/WMA
Advanced Systems Format (ASF) is Microsoft’s container format designed for
streaming media delivery. It is used to store Windows Media Audio (WMA) data in
addition to Windows Media Video (WMV), which will be discussed in the next sec-
tion. Both the ASF container and the WMA compression codecs are proprietary to
Microsoft; however, both have been reverse engineered to the point where they can
be played or converted using a libavcodec-based software such as ffmpeg or Video
LAN Client. ASF containers may also hold metadata that can be extracted using
exiftool and hachoir-metadata.

Common:
- Duration: 4 sec 878 ms
- Creation date: 2005-09-26
- Creation date: 2005-09-26 21:19:20

TIP
M4P and M4R
On systems where Apple’s iTunes is used heavily you may find M4P and M4R files. M4P
are AAC files protected by Apple’s Fairplay DRM, which restricts playback on nonauthorized
devices. M4R files are simply AAC files intended to be used as iPhone ringtones.

189Video

- Bit rate: 48.6 Kbit/sec (max)
- Comment: Engineer=administrator
- Comment: Is seekable
- MIME type: audio/x-ms-wma
- Endian: Little endian
Audio stream #1:
- Channel: mono
- Sample rate: 44.1 kHz
- Bits/sample: 16 bits
- Compression: Windows Media Audio V7 / V8 / V9
- Bit rate: 48.6 Kbit/sec

vIDEO
Video files contain (at the very least) data that decode into a sequence of moving
images. The large majority of video files will also contain an audio component that
will be synchronized to the video component. Given these two distinct components,
video files are generally created in the form of a container file that contains one or
more streams. The method used to compress and encode data in these streams is
referred to as a codec. To play back the content successfully, the proper codec is
required. We will discuss some specific codecs in their respective sections that follow.

Like many of the other file formats discussed, various video file formats can carry
metadata with them. Example metadata can include relatively benign items such as
the intended aspect ratio of the video content to more interesting information such
as the date the file was created or the name of the program used to generate the file.

MPEg-1 and MPEg-2
MPEG-1 and MPEG-2 are standards for video and audio compression and transmis-
sion developed by the Moving Pictures Experts Group. MPEG-1 (sometimes simply
referred to as MPG files) was used on video CDs (VCDs) in the 1990s. VCDs were
popular in Asia but did not see widespread availability in the United States. MPEG-2
is the subsequent, higher quality video standard used on DVDs and digital cable and
satellite transmissions. Neither of these formats carries any appreciable metadata.

MPEg-4 video (MP4)
In addition to AAC audio, the MPEG-4 container is used to hold video content as
well. MPEG-4 video files generally have an “MP4” extension. The MP4 Registration
Authority maintains a list of registered codecs for streams within MP4 files. Most
MP4 video files intended for playback on a variety of systems will have a video
stream encoded using the MPEG-4 Advanced Video Codec (MPEG-4 AVC), which
may also be referred to as H.264. The audio stream will normally be AAC, just as in
MP4 audio files. Because the container is the same, metadata can be extracted from
MP4 videos using AtomicParsley in the same manner as for MP4 audio.

190 CHAPTER 8 File Analysis

AvI
Audio Video Interleave is a container format introduced in 1992 by Microsoft. Like
WAV, AVI is a descendent of the RIFF format, which stores contents as “chunks” and
can include an INFO chunk to store metadata. Additionally, XMP metadata can be
embedded into an AVI.

An AVI file can contain video and audio streams compressed by numerous codecs.
These codecs are identified using fixed sequences of four bytes called FourCC codes.
Like the magic numbers mentioned earlier, these codes tell AVI player software the
codecs necessary to decode the content properly.

As a RIFF-derived format, AVI containers can be parsed the same way as WAV
files with respect to metadata extraction. For metadata extracted from a sample AVI
downloaded from Microsoft’s media example site, see the following.

Common:
- Artist: Microsoft
- Duration: 6 sec 333 ms
- Image width: 320 pixels
- Image height: 240 pixels
- Copyright: 2005 Microsoft
- Frame rate: 30.0 fps
- Bit rate: 3.7 Mbit/sec
- Comment: Has audio/video index (3176 bytes)
- MIME type: video/x-msvideo
- Endian: Little endian
Video stream:
- Duration: 6 sec 333 ms
- Image width: 320 pixels
- Image height: 240 pixels
- Bits/pixel: 24
- Compression: Radius Cinepak (fourcc:"cvid")
- Frame rate: 30.0 fps
Audio stream:
- Duration: 6 sec 333 ms
- Channel: stereo
- Sample rate: 48.0 kHz
- Bits/sample: 16 bits
- Compression rate: 1.0x
- Compression: Microsoft Pulse Code Modulation (PCM)
- Bit rate: 1.5 Mbit/sec

ASF/WMv
Like Windows Media Audio (WMA), Windows Media Video (WMV) is a propri-
etary Microsoft format for compressing video. It is stored in an ASF container and
is generally accompanied by a synchronized WMA stream. Processing these files

191Video

for metadata is exactly the same as processing ASF/WMV, except the output may
contain some video-specific metadata.

Common:
- Title: support.microsoft.com
- Author: Microsoft
- Duration: 9 sec 858 ms
- Creation date: 2005-09-28 15:40:21
- Copyright: 2005 Microsoft
- Bit rate: 178.6 Kbit/sec (max)
- Comment: Is seekable
- MIME type: video/x-ms-wmv
- Endian: Little endian
Audio stream #1:
- Channel: mono
- Sample rate: 22.1 kHz
- Bits/sample: 16 bits
- Compression: 10
- Bit rate: 21.7 Kbit/sec
Video stream #1:
- Image width: 640 pixels
- Image height: 480 pixels
- Bits/pixel: 24
- Compression: Windows Media Video V9
- Bit rate: 156.8 Kbit/sec

MOv (Quicktime)
The QuickTime File Format is referred to more commonly by the file extension
used by Apple QuickTime movies—.MOV. This format is largely superseded by
the MPEG-4 format, but older QuickTime files may still be found during an investi-
gation. QuickTime metadata can be extracted using qtinfo, part of the quicktime-
utils package on Ubuntu. The qtinfo program implements functionality from
libquicktime.

user@ubuntu:~/qt$ qtinfo sample_sorenson.mov
swScaler: Exactly one scaler algorithm must be chosen
Type: Quicktime

copyright: © Apple Computer, Inc. 2001
name:QuickTime Sample Movie

1 audio tracks.
2 channels, 16 bits, sample rate 22050, length 108544

samples, compressor QDM2.
Sample format: 16 bit signed.
Channel setup: Not available
Language: eng
supported.

192 CHAPTER 8 File Analysis

1 video tracks.
190x240, depth 24
rate 12.000000 [600:50] constant
length 60 frames
compressor SVQ1.
Native colormodel: YUV 4:2:0 planar
Interlace mode: None (Progressive)
Chroma placement: MPEG-1/JPEG
No timecodes available
supported.

0 text tracks.

Mkv
The Matroska Multimedia Container format is a relatively recently developed open
standard, which can be used to carry audio, video, images, and subtitle tracks. Over
the last half of the decade the MKV format gained widespread popularity among
individuals involved in file sharing, especially file sharing of Japanese Animation
videos, in part due to its ability to carry subtitles within the file.

The mkvtoolnix package contains various command line tools that can be used
to manipulate, extract, and identify the streams inside a Matroska container, in addi-
tion to identifying and extracting metadata. Hachoir-metadata is aware of the
MKV format and can parse out metadata as well. Like most video files, interesting
information is usually limited to authorship and creation time.

Note that if you want to use GUI versions of the mkvtoolnix utilities you’ll
need to install the “mkvtoolnix-gui” package—the default package is console only.

ARCHIvES
Archive files are container files designed to hold other files. These containers can
generally apply various compression algorithms to the contained files and may sup-
port encryption of their contents. Archive files may have a small amount of meta-
data, usually in the form of user-supplied notes. Many archives will retain some file
system time stamps when adding files to a container. In addition, some archive types
may retain information from their system of origin, including UID and GID informa-
tion from Unix-like systems.

ZIP
The ZIP format is one of the older compression and archive formats still in current
use. It is supported on any platform you are likely to use and doesn’t appear to be in
danger of fading away any time soon. ZIP archives can use numerous compression
mechanisms and two forms of encryption—a weak password-based scheme defined

193Archives

in the original ZIP specification and the more current form, which uses AES. We can
use the unzip command to retrieve information about the content of a ZIP archive
without actually extracting. This can be good to examine file modification dates
embedded in the archive.

user@ubuntu:~/Downloads$ unzip -v BiffView.zip
Archive: BiffView.zip

Length Method Size Cmpr Date Time CRC-32 Name
-------- ------ ------- ---- ---------- ----- -------- ----
2020 Defl:N 629 69% 2008-04-15 12:01 80bdeec9 xlsspec/1904.html
477 Defl:N 306 36% 2008-06-30 15:12 f8438b88 xlsspec/404.html
818 Defl:N 397 52% 2008-04-15 12:01 a4c4130d xlsspec/ADDIN.html

...lines removed...
122880 Defl:N 40081 67% 2008-06-30 15:17 4c4cefa4 BiffView.exe
16384 Defl:N 1782 89% 2008-06-30 15:16 7b4c3e2b DIaLOGIKa.

b2xtranslator.CommonTranslatorLib.dll
61440 Defl:N 19292 69% 2008-06-30 15:16 ca90a7d8 DIaLOGIKa.

b2xtranslator.Spreadsheet.XlsFileFormat.dll
36864 Defl:N 11199 70% 2008-06-30 15:16 8009c24d DIaLOGIKa.

b2xtranslator.StructuredStorageReader.dll
20480 Defl:N 4187 80% 2008-06-30 15:16 b33559d4 DIaLOGIKa.

b2xtranslator.Tools.dll
--------------- ----------

3779194 465706 88% 271 files

We can see here that the visible portion of the contents of this archive was last modi-
fied between April and June of 2008.

We can also examine the structure of the ZIP archive interactively with hachoir-
urwid. For an expanded tree view showing the detail for a single entry in the archive,
see Figure 8.3.

RAR
The Roshal Archive (RAR) format is a proprietary compression and archive for-
mat developed by Eugene Roshal. Key features of RAR are very good compression,
archive repair and recovery capabilities, archive splitting, and in-built strong encryp-
tion. It is for all these reasons that RAR archives are the format of choice for piracy
groups distributing content. RAR archives are also used frequently to exfiltrate data
during computer intrusions.

We can examine the contents of RAR archives using the RAR plugin to 7zip,
which can be installed on Ubuntu via the following command:

sudo apt-get install p7zip-rar

We can examine a hacking tool retrieved from packetstormsecurity.org. The “l” flag
will tell 7z to list the content of the archive.

194 CHAPTER 8 File Analysis

user@ubuntu:~/Downloads$ 7z l PuttyHijackV1.0.rar
7-Zip 9.04 beta Copyright (c) 1999-2009 Igor Pavlov 2009-05-30
p7zip Version 9.04 (locale=en_US.utf8,Utf16=on,HugeFiles=on,1 CPU)
Listing archive: PuttyHijackV1.0.rar

Path = PuttyHijackV1.0.rar
Type = Rar
Solid = -
Blocks = 5
Multivolume = -
Volumes = 1

 Date Time Attr Size Compressed Name
------------------- ----- ------------ ------------ ------------
2008-07-31 16:51:41A 1775 852 PuttyHijack.txt
2008-06-20 12:51:14A 9116 2908 HijackDLL.cpp
2008-06-20 12:51:46A 32768 10973 HijackDLL.dll

FIguRE 8�3

Hachoir-urwid examination of BiffView.zip.

195Archives

2008-06-20 13:05:44A 5221 2040 PuttyHijack.c
2008-06-20 13:05:45A 32768 12578 PuttyHijack.exe
------------------- ----- ------------ ------------ ------------
 81648 29351 5 files, 0 folders

We can see that the dates are all in the June/July 2008 time frame. One scenario
where this information may be useful is in the case of time stamp manipulation—if
this archive were found on a compromised system and the extracted copy of “Put-
tyHijack.exe” had a modification date in 2005, we would then have overt evidence
of time stamp alteration.

Some RAR archives (especially those used to distribute pirated software) may con-
tain comments, “NFO” files, or “greets” that can be displayed using this tool as well.

7-zip
The 7-zip (or 7z) format is an open archive and compression format that has become
popular as a replacement for both ZIP and RAR’s functions. It has highly efficient
compression, supports strong AES encryption, and supports extremely large files. In
addition, the 7-zip program is an open source and can be used to process many other
archive formats on Linux, Windows, and OS X systems (among others). 7-zip can be
installed on Ubuntu using the following command:

sudo apt-get install p7zip-full

7z archives generally do not hold a great deal of metadata, but they will retain the
modification times of the files at the time they were archived.

TAR, gZIP, and BZIP2
On Linux systems “tarballs” are the standard method of archiving and compressing
data. In true Unix spirit, archiving and compression steps are split among different
tools. The tar command is used to concatenate selected files into a single, solid
archive. This tar archive is then compressed, usually using the GZIP or BZIP2 com-
pression utilities. This compressed archive is the “tarball.” Modern versions of the
tar command will accept flags indicating which compression to use at the time the
archive is created, eliminating the need to manually compress after the fact.

One interesting artifact unique to tarballs is the fact that they retain the owner
and group information from the system they were created on, in addition to the time
stamp artifacts seen in other archive formats. Let’s examine the “Turtle” FreeBSD
rootkit as found on packetstormsecurity.org. To ensure that we don’t lose any fidelity,
we will unwrap the tarball in layers. First, we can look inside the compression layer
at the tarball using the gunzip command:

user@ubuntu:~/Downloads$ gunzip --list --verbose Turtle.tar.gz
method crc date time compressed uncompressed ratio

uncompressed_name
defla 9d77901e Sep 29 19:05 4403 20480 78.6% Turtle.tar

196 CHAPTER 8 File Analysis

We can see that the tar archive was last modified on September 29th, but that is
the only artifact of interest at this layer. We can now drill a step deeper, into the tar
archive itself. As stated, we can pass flags to the tar command that indicate we need
to decompress the archive prior to processing with tar:

user@ubuntu:~/Downloads$ tar --list --verbose --gunzip --file
Turtle.tar.gz

drwxr-xr-x angelo/angelo 0 2010-09-29 15:20 turtle/
drwxr-xr-x angelo/angelo 0 2010-09-29 15:20 turtle/module/
-rw-r--r-- angelo/angelo 142 2010-09-29 09:47 turtle/README
-rwxr-xr-x angelo/angelo 321 2010-09-29 09:44 turtle/run.sh
-rwxr-xr-x root/angelo 5821 2010-09-29 15:18 turtle/module/

turtle.ko
-rwxr-xr-x angelo/angelo 5718 2010-09-29 15:18 turtle/module/

turtle.c
-rw-r--r-- angelo/angelo 97 2010-09-26 10:10 turtle/module/

Makefile

Here we can see that files in the archive were owned by a user named “angelo,” who
did development work on this rootkit on at least two different dates (September 26th
and 29th).

DOCuMEnTS
“Document” is a relatively generic term; however, in the context of forensic file anal-
ysis, a “document” is a file type containing text, images, and rendering information.
Various Microsoft Office file types and Adobe’s Portable Document Format (PDF)
are examples of “documents.” This is the most extensive portion of the chapter
because of the wide variety of document types that can be of interest during any
given examination, and because of the richness of forensic data that can be retrieved
from these files.

Nearly every document type carries with it some amount of metadata, rang-
ing from authorship information and document revision histories to internal time
stamps and information about the system(s) used to edit the file. During examina-
tions performed in support of legal inquiries, these and other pieces of metadata may
be crucial in authenticating a document as genuine (or not). In an intrusion-related
examination, a document may contain an exploit allowing an attacker to gain control
over the target system.

WARnIng
Digital Trigger Discipline
When examining possibly hostile documents, treat them as you would any other piece of
malicious code. The goal of a malicious document is to execute unwanted code on the
system—don’t let it be your examination system! Always work with hostile documents
inside a virtual machine to reduce the risk of accidental compromise.

197Documents

OLE Compound Files (Office Documents)
You may not be familiar with the name “OLE Compound File” but you are very likely
familiar with the files that use this format. Documents created using the Microsoft
Office 1997–2003 binary formats are OLE Compound files, for example, PowerPoint
presentations, Word Documents (DOC), and Excel Spreadsheets (XLS). Other names
for OLE compound files are “Compound Binary Files”, “Compound Document
Files”, “Office Binary Files”, or “COM Structured Storage Files”.

OLE files are really tiny, dedicated, portable file systems. Like traditional file
systems, they hold data in a structured manner and can also contain metadata. OLE
files have two main storage concepts: storage objects and stream objects. A storage
object performs the same functions as a directory on a standard file system; like a
directory, it can contain additional storage objects that act as subdirectories. Stream
objects are sequences of sectors allocated for a discrete piece of data. Thus, in the
OLE “file system”, streams take up the role of files.

An OLE file is made up of a root storage object (similar to the root directory on
standard file systems) and at least one stream object representing the default data
for the file. For example, in a Word 2003 document, this default stream object will
contain the majority of the true file content. In addition to this stream object, the root
storage object can contain any number of additional storage objects, each of which
may contain one or more additional streams [3].

OLE files can contain numerous pieces of metadata, including Authorship infor-
mation, editorial comments, revision history, information about the amount of time
spent editing a document, the username of the last user to open the document for writ-
ing, and various time stamps. We will examine a couple of tools available for extract-
ing these data. First, we will examine the demo tools in libforensics. Libforensics is
a Python 3.1 framework for developing computer forensics applications developed
by Michael Murr. It is currently in prerelease but the demonstration tools for extract-
ing OLE metadata are worth examining. To use libforensics, we will need to check
out a current code snapshot using the mercurial source code control system. See the
checkout request and results that follow.

nOTE
BTk Foiled by Document Metadata
The BTK Killer claimed the lives of 10 victims from 1974 through 1991 and evaded
capture for 30 years. In the end, it was metadata embedded in a Word document that led
to his arrest.

“The BTK killer’s last known communication with the media and police was a padded
envelope which arrived at FOX affiliate KSAS-TV in Wichita on February 16, 2005.
A purple, 1.44-MB Memorex floppy disk was enclosed in the package…Police found
metadata embedded in a Microsoft Word document on the disk that pointed to Christ
Lutheran Church, and the document was marked as last modified by “Dennis.” A search
of the church website turned up Dennis Rader as president of the congregation council.
Police immediately began surveillance of Rader [4].”

198 CHAPTER 8 File Analysis

user@ubuntu:~/source$ hg clone https://libforensics.googlecode
.com/hg/ libforensics

requesting all changes
adding changesets
adding manifests
adding file changes
added 44 changesets with 648 changes to 423 files
updating to branch default
249 files updated, 0 files merged, 0 files removed, 0 files

unresolved

We now have a copy of the libforensics source tree under our local directory “libfo-
rensics.” The libforensics README says we need to copy the “lf” directory into our
Python 3.1 path.

user@ubuntu:~/source$ cd libforensics/code
user@ubuntu:~/source/libforensics$ sudo cp -R lf /usr/lib/python3.1/

In the “demo” directory, numerous Python programs exist for processing different
types of artifacts. We are only interested in OLE-related programs for the moment.
If you recall the file system abstraction discussed in Chapter 3 and subsequent use
of the Sleuth Kit utilities, the naming convention used by these utilities should be
familiar. We will only be using olels.py, which lists the entries in an OLE file.

We can test this on “darknet5.doc,” retrieved from Stanford University’s Web site.
We will execute oleps.py with the -lpr options to provide the greatest amount of
information.

user@ubuntu:~/source/libforensics/demo$ python3.1 olels.py -lpr
~/Downloads/darknet5.doc

r/r 32: \x05SummaryInformation
1601-01-01 00:00:00 1601-01-01 00:00:00 492

r/r 2: WordDocument
1601-01-01 00:00:00 1601-01-01 00:00:00 79906

r/r 31: 1Table
1601-01-01 00:00:00 1601-01-01 00:00:00 35816

r/r 1: Data
1601-01-01 00:00:00 1601-01-01 00:00:00 109193

d/d 3: ObjectPool
2002-10-16 06:30:18.586000 2002-10-16 06:30:17.845000 0

d/d 13: ObjectPool/_1089739458
2002-10-16 06:30:17.855000 2002-10-16 06:30:17.855000 0

r/r 17: ObjectPool/_1089739458/\x03ObjInfo
1601-01-01 00:00:00 1601-01-01 00:00:00 6

r/r 15: ObjectPool/_1089739458/\x03EPRINT
1601-01-01 00:00:00 1601-01-01 00:00:00 114884

r/r 14: ObjectPool/_1089739458/\x01Ole
1601-01-01 00:00:00 1601-01-01 00:00:00 20

199Documents

r/r 16: ObjectPool/_1089739458/\x01CompObj
1601-01-01 00:00:00 1601-01-01 00:00:00 113

r/r 19: ObjectPool/_1089739458/VisioInformation
1601-01-01 00:00:00 1601-01-01 00:00:00 28

r/r 18: ObjectPool/_1089739458/VisioDocument
1601-01-01 00:00:00 1601-01-01 00:00:00 73699

r/r 20: ObjectPool/_1089739458/\x05SummaryInformation
1601-01-01 00:00:00 1601-01-01 00:00:00 61544

r/r 21: ObjectPool/_1089739458/\x05DocumentSummaryInformation
1601-01-01 00:00:00 1601-01-01 00:00:00 528

d/d 4: ObjectPool/_1089739296
2002-10-16 06:30:17.855000 2002-10-16 06:30:17.845000 0

r/r 8: ObjectPool/_1089739296/\x03ObjInfo
1601-01-01 00:00:00 1601-01-01 00:00:00 6

r/r 6: ObjectPool/_1089739296/\x03EPRINT
1601-01-01 00:00:00 1601-01-01 00:00:00 265812

r/r 5: ObjectPool/_1089739296/\x01Ole
1601-01-01 00:00:00 1601-01-01 00:00:00 20

r/r 7: ObjectPool/_1089739296/\x01CompObj
1601-01-01 00:00:00 1601-01-01 00:00:00 113

r/r 10: ObjectPool/_1089739296/VisioInformation
1601-01-01 00:00:00 1601-01-01 00:00:00 28

r/r 9: ObjectPool/_1089739296/VisioDocument
1601-01-01 00:00:00 1601-01-01 00:00:00 101771

r/r 11: ObjectPool/_1089739296/\x05SummaryInformation
1601-01-01 00:00:00 1601-01-01 00:00:00 61964

r/r 12: ObjectPool/_1089739296/\x05DocumentSummaryInformation
1601-01-01 00:00:00 1601-01-01 00:00:00 504

d/d 22: ObjectPool/_1089739502
2002-10-16 06:30:17.865000 2002-10-16 06:30:17.865000 0

r/r 26: ObjectPool/_1089739502/\x03ObjInfo
1601-01-01 00:00:00 1601-01-01 00:00:00 6

r/r 24: ObjectPool/_1089739502/\x03EPRINT
1601-01-01 00:00:00 1601-01-01 00:00:00 71232

r/r 23: ObjectPool/_1089739502/\x01Ole
1601-01-01 00:00:00 1601-01-01 00:00:00 20

r/r 25: ObjectPool/_1089739502/\x01CompObj
1601-01-01 00:00:00 1601-01-01 00:00:00 113

r/r 28: ObjectPool/_1089739502/VisioInformation
1601-01-01 00:00:00 1601-01-01 00:00:00 28

r/r 27: ObjectPool/_1089739502/VisioDocument
1601-01-01 00:00:00 1601-01-01 00:00:00 36441

r/r 29: ObjectPool/_1089739502/\x05SummaryInformation
1601-01-01 00:00:00 1601-01-01 00:00:00 61828

r/r 30: ObjectPool/_1089739502/\x05DocumentSummaryInformation
1601-01-01 00:00:00 1601-01-01 00:00:00 472

r/r 34: \x01CompObj 1601-01-01 00:00:00 1601-01-01 00:00:00 106

200 CHAPTER 8 File Analysis

r/r 33: \x05DocumentSummaryInformation
1601-01-01 00:00:00 1601-01-01 00:00:00 1912

v/v 36: $Header 0 0 0
v/v 37: $DIFAT 0 0 0
v/v 38: $FAT 0 0 0
v/v 39: $MiniFAT 0 0 0

Note that each stream has a date field displayed, but this information is only valid
for Root and directory objects. We can see that this document was last modified
October 16, 2002 at 6:30 am (UTC). We can also see that this document appears
to have Visio objects embedded in it in addition to the default “WordDocument”
stream, which contains the text of the document. Olels.py also supports generating
output in the Sleuth Kit mactime format for processing into a timeline.

OLE metadata can be extracted using the wvSummary tool, which is part of the
wv package.

user@ubuntu:~/Downloads$ wvSummary darknet5.doc
Metadata for darknet5.doc:

Template = "Normal.dot"
Security Level = 0
Created = 2002-10-16T05:45:00Z
Last Saved by = "paul england"
Revision = "5"
Last Printed = 2002-10-16T00:02:00Z
Keywords = ""
Subject = ""
Generator = "Microsoft Word 10.0"
Number of Characters = 44050
Last Modified = 2002-10-16T06:30:00Z
Creator = "Paul England"
Number of Pages = 1
msole:codepage = 1252
Number of Words = 8067
Description = ""
Editing Duration = 2009-04-22T20:10:48Z
Title = "The Darknet and the Future of Content Distribution"
_EmailSubject = "DRM 2002 submission"
_AuthorEmail = "pengland@exchange.microsoft.com"
Links Dirty = FALSE
Number of Lines = 734
Document Parts = [(0, "The Darknet and the Future of Content

Distribution")]
Scale = FALSE
Number of Paragraphs = 200
Unknown6 = FALSE

201Documents

Unknown7 = 659579
_AuthorEmailDisplayName = "Paul England"
Company = "Microsoft Corporation"
Document Pairs = [(0, "Title"), (1, 1)]
Unknown1 = 51917
_AdHocReviewCycleID = 985029792
Unknown3 = FALSE
msole:codepage = 1252
_PreviousAdHocReviewCycleID = 1239174308

As you can see, this document has a number of pieces of interesting metadata, includ-
ing creation, modification, printing times, number of revisions, and the author’s name
and email address.

Office Open XML
Office Open XML (OOXML) is one of two current competing open standards for
editable documents (PDF, discussed later, is for fixed-layout documents). It is Micro-
soft’s replacement for the binary, proprietary OLE compound format just discussed.
Like the OLE compound format, an OOXML file is a container that holds a series
of embedded files within it. The good news is, this container is the ubiquitous ZIP
archive. This means that the examination techniques used against ZIP files will (for
the most part) work here as well. Once we have identified and recorded the ZIP-
related artifacts, we can extract the contents for examination.

We can extract the content using unzip and examine the individual pieces. To
make examination of XML documents more pleasant, we will need a couple of tools
out of the xml-twig-tools package— xml_pp (an XML pretty-printer) and xml_grep
(an XML-aware grep-like tool).

sudo apt-get install xml-twig-tools

We will examine “blue_book.docx,” retrieved from the Center For Disease
 Control’s Web site (www.cdc.gov/traumaticbraininjury/pdf/blue_book.docx).

TIP
Excel Binary Internal Structure
Excel binary spreadsheet files (XLS) have an additional layer of internal structure within
the OLE-structured storage. The file format of the main Excel content streams is known as
the “Binary Interchange File Format” or “BIFF” format. The “Book” or “Workbook” stream
of an XLS will be stored in this BIFF format. The additional structures represented in the
BIFF format can contain additional artifacts of forensic interest. These can be extracted
and examined using biffview, an open source Excel-binary debugging utility, available
here: http://b2xtranslator.sourceforge.net/download.html

202 CHAPTER 8 File Analysis

user@ubuntu:~/Downloads$ unzip -l blue_book.docx
Archive: blue_book.docx
Length Date Time Name
------ ------ ----- ------

 2711 1980-01-01 00:00 [Content_Types].xml
 590 1980-01-01 00:00 _rels/.rels
 4112 1980-01-01 00:00 word/_rels/document.xml.rels
 2221742 1980-01-01 00:00 word/document.xml
 745 1980-01-01 00:00 word/header3.xml
 745 1980-01-01 00:00 word/header1.xml
 745 1980-01-01 00:00 word/footer3.xml
 947 1980-01-01 00:00 word/endnotes.xml
 745 1980-01-01 00:00 word/header2.xml
 745 1980-01-01 00:00 word/footer1.xml
 953 1980-01-01 00:00 word/footnotes.xml
 1720 1980-01-01 00:00 word/footer2.xml
 51676 1980-01-01 00:00 word/media/image12.emf
 12364 1980-01-01 00:00 word/media/image11.emf
 54344 1980-01-01 00:00 word/media/image10.emf
 53656 1980-01-01 00:00 word/media/image9.emf
 23756 1980-01-01 00:00 word/media/image7.emf
 32508 1980-01-01 00:00 word/media/image6.emf
 6992 1980-01-01 00:00 word/theme/theme1.xml
 152194 1980-01-01 00:00 word/media/image1.png
 53988 1980-01-01 00:00 word/media/image8.emf
 42788 1980-01-01 00:00 word/media/image2.emf
 53576 1980-01-01 00:00 word/media/image4.emf
 115076 1980-01-01 00:00 word/media/image5.png
 32108 1980-01-01 00:00 word/media/image3.emf
 13128 1980-01-01 00:00 word/settings.xml
 38445 1980-01-01 00:00 word/styles.xml
 11533 1980-01-01 00:00 word/numbering.xml
 296 1980-01-01 00:00 customXml/_rels/item1.xml.rels
 341 1980-01-01 00:00 customXml/itemProps1.xml
 218 1980-01-01 00:00 customXml/item1.xml
 836 1980-01-01 00:00 docProps/core.xml
 2675 1980-01-01 00:00 word/fontTable.xml
 260 1980-01-01 00:00 word/webSettings.xml
 2325 1980-01-01 00:00 docProps/app.xml
------- -- -------
 2991583 35 files

Listing the content with unzip, we notice that the embedded time stamps are invalid.
Although OOXML is using ZIP as its container, it does not store accurate time
stamps for the component files because they are not needed for function of the
document.

203Documents

Main “metadata” are contained in “docProps/core.xml,” but other artifacts may
be scattered throughout the document.

user@ubuntu:~/Downloads/blueBook$ xml_pp docProps/core.xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<cp:coreProperties xmlns:cp="http://schemas.openxmlformats.

org/package/2006/metadata/core-properties" xmlns:dc="http://
purl.org/dc/elements/1.1/" xmlns:dcmitype="http://purl.
org/dc/dcmitype/" xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<dc:title>TRAUMATIC BRAIN INJURY IN THE UNITED STATES</
dc:title>

<dc:subject>TBI</dc:subject>
<dc:creator>CDC</dc:creator>
<cp:keywords>TBI</cp:keywords>
<dc:description></dc:description>
<cp:lastModifiedBy>cut4</cp:lastModifiedBy>
<cp:revision>4</cp:revision>
<cp:lastPrinted>2010-02-03T20:19:00Z</cp:lastPrinted>
<dcterms:created xsi:type="dcterms:W3CDTF">2010-03-

17T15:18:00Z</dcterms:created>
<dcterms:modified xsi:type="dcterms:W3CDTF">2010-03-

17T15:23:00Z</dcterms:modified>
</cp:coreProperties>

Additional metadata may be found in the extended properties XML file, found in
“docProps/app.xml.” An excerpt of this file is show here:

user@ubuntu:~/Downloads/blueBook$ xml_pp docProps/app.xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Properties xmlns="http://schemas.openxmlformats.org/

officeDocument/2006/extended-properties" xmlns:vt="http://
schemas.openxmlformats.org/officeDocument/2006/docPropsVTypes">

<Template>Normal.dotm</Template>
<TotalTime>8</TotalTime>
<Pages>74</Pages>
<Words>14846</Words>

<Characters>84623</Characters>
<Application>Microsoft Office Word</Application>
<DocSecurity>0</DocSecurity>
<Lines>705</Lines>
<Paragraphs>198</Paragraphs>

...

Be aware that any embedded files can retain any metadata you may expect to find—
JPEGs can carry their EXIF information with them inside of the OOXML, for
example.

204 CHAPTER 8 File Analysis

OpenDocument Format
OpenDocument Format (ODF) is another open standard for editable documents
similar to OOXML. It was originally developed by Sun Microsystems and is
supported by a wide variety of open source programs. It is the native format of
Sun’s OpenOffice suite of programs. Like the OOXML format, the easiest way
to examine the components that make up ODF files is to examine them as a zip
archive, extract data, and examine the individual components. We can examine
“open source 1-pager.odt,” retrieved from the Whitehouse’s Web site (http://
www.whitehouse.gov/files/ documents/ostp/opengov_inbox/open%20source%20
1-pager.odt).

The file has been renamed to “opensource.odt” on the local examination system
for clarity.

user@ubuntu:~/Downloads$ unzip -l opensource.odt
Archive: openSource.odt
Length Date Time Name
------- ---------- ----- -----
 39 2009-04-08 19:06 mimetype
 0 2009-04-08 19:06 Configurations2/statusbar/
 0 2009-04-08 19:06 Configurations2/accelerator/current.xml
 0 2009-04-08 19:06 Configurations2/floater/
 0 2009-04-08 19:06 Configurations2/popupmenu/
 0 2009-04-08 19:06 Configurations2/progressbar/
 0 2009-04-08 19:06 Configurations2/menubar/
 0 2009-04-08 19:06 Configurations2/toolbar/
 0 2009-04-08 19:06 Configurations2/images/Bitmaps/
 22 2009-04-08 19:06 layout-cache
18761 2009-04-08 19:06 content.xml
23045 2009-04-08 19:06 styles.xml
 1107 2009-04-08 19:06 meta.xml
 6435 2009-04-08 19:06 Thumbnails/thumbnail.png
 7590 2009-04-08 19:06 settings.xml
 1965 2009-04-08 19:06 META-INF/manifest.xml

58964 16 files

Traditional metadata are found in “meta.xml,” which we can view using xml_pp:

user@ubuntu:~/Downloads/openSourceDoc$ xml_pp meta.xml
<?xml version="1.0" encoding="UTF-8"?>
<office:document-meta office:version="1.1" xmlns:dc="http://purl.

org/dc/elements/1.1/" xmlns:meta="urn:oasis:names:tc:opendocu
ment:xmlns:meta:1.0" xmlns:office="urn:oasis:names:tc:opendoc
ument:xmlns:office:1.0" xmlns:ooo="http://openoffice.org/2004/
office" xmlns:xlink="http://www.w3.org/1999/xlink">

<office:meta>
<meta:generator>StarOffice/8$Solaris_Sparc OpenOffice.org_

project/680m17$Build-9310</meta:generator>

205Documents

<meta:initial-creator>Christopher Hankin</meta:initial-creator>
<meta:creation-date>2009-03-17T05:56:00</meta:creation-date>
<meta:print-date>2009-03-17T09:30:38</meta:print-date>
<meta:editing-cycles>0</meta:editing-cycles>
<meta:editing-duration>PT7H0M0S</meta:editing-duration>
<meta:user-defined meta:name="Info 1"/>
<meta:user-defined meta:name="Info 2"/>
<meta:user-defined meta:name="Info 3"/>
<meta:user-defined meta:name="Info 4"/>
<meta:document-statistic meta:character-count="5526"

meta:image-count="0" meta:object-count="0" meta:page-
count="2" meta:paragraph-count="37" meta:table-count="0"
meta:word-count="851"/>

</office:meta>
</office:document-meta>

One interesting item of note is that OpenDocument metadata include the exact
build number of the application that generated the document, which could be used a
secondary time signal in case of suspected backdating of a document.

Rich Text Format
Rich Text Format (RTF) is a document format developed by Microsoft intended to
facilitate the transfer of documents across differing platforms. This is the native for-
mat for documents created in the Windows Wordpad utility and the TextEdit appli-
cation on Mac OS X. The RTF format has been in use since 1987 and has received
some significant updates as the years have progressed, including the addition of
XML elements in the most recent revision. Take simple RTF document displayed in
Figure 8.4 as an example.

RTF markup is fairly terse and is interspersed directly with the text being affected,
so while simply viewing the raw RTF text is possible, it can be somewhat tedious for
larger, more complex documents.

{\rtf1\ansi\ansicpg1252\cocoartf949\cocoasubrtf540
{\fonttbl\f0\fswiss\fcharset0 Helvetica;}
{\colortbl;\red255\green255\blue255;}
{\info
{\doccomm RTF comment}
{\author Ann Onymous}
{*\copyright CC}}\margl1440\margr1440\vieww9000\viewh8400\

viewkind0
\pard\tx720\tx1440\tx2160\tx2880\tx3600\tx4320\tx5040\tx5760\

tx6480\tx7200\tx7920\tx8640\ql\qnatural\pardirnatural
\f0\fs24 \cf0 This is a
\b Rich
\b0
\i Text
\i0 \ul File\ulnone .}d

206 CHAPTER 8 File Analysis

In addition, because RTF natively stores its text in ASCII, non-ASCII characters are
represented as escaped byte sequences in the raw RTF. This makes direct viewing of
nonrendered, non-ASCII RTF files futile.

RTF metadata are contained in the body of the document itself and can be viewed
directly with no additional tools.

PDF
Adobe’s Portable Document Format is an open format designed to be a self- contained
method for transmitting fixed-layout documents between systems. A PDF created on
one system should present an identical rendered document on any system it is viewed
upon without the user installing additional fonts, graphics libraries, or any software
beyond a PDF viewer. Over the past decade, PDFs have become ubiquitous and are
used for everything from standard government forms to digital magazines.

FIguRE 8�4

Simple RTF document.

207Documents

At its most basic, a PDF is container file that holds a sequence of PostScript lay-
out instructions and embedded fonts and graphics. In addition to simply displaying
document data, PDFs can contain interactive form fields, such as text input fields
and checkboxes. This enables PDFs to be used in place of traditional paper forms
used for clerical tasks. Over the years, the type of content that can be stored in a PDF
has grown and now includes links to external content, JavaScript, and Flash movie
objects. During the time period in which this book was written, malicious PDFs were
one of the primary vectors for desktop system compromises.

PDFs can contain two different types of metadata. The Document Information
Directory contains key/value pairs with authorship information, document title, and
creation/modification time stamps. Modern PDFs support the Extensible Metadata
Platform (XMP) method of storing metadata, which you may recall is also used to
store metadata in some graphic file formats.

Exiftool can be used to extract metadata from PDF files. We will work with item
025835 from Digital Corpora in the following examples.

exiftool digitalcorpora/025/025835.pdf
ExifTool Version Number : 8.15
File Name : 025835.pdf
Directory : digitalcorpora/025
File Size : 409 kB
File Modification Date/Time : 2008:12:29 10:50:01-08:00
File Permissions : r--r--r--
File Type : PDF
MIME Type : application/pdf
PDF Version : 1.6
XMP Toolkit : Adobe XMP Core 4.0-c316 44.253921,

Sun Oct 01 2006 17:14:39
Metadata Date : 2008:12:29 13:50:01-05:00
Creator Tool : Adobe InDesign CS (3.0.1)
Format : application/pdf
Document ID : uuid:c8670dad-5726-4376-a186-

3e33d82a2d90
Instance ID : uuid:61f43463-8ce2-4f88-93b5-

605851bc842a
Page Count : 4
Create Date : 2007:09:26 10:33:57-04:00
Creator : Adobe InDesign CS (3.0.1)
Producer : Adobe PDF Library 6.0
Modify Date : 2008:12:29 13:50:01-05:00
Title : ASK28_Inside_24231e.indd

Of particular interest are the embedded dates and the Creator/Producer tags. Many
malicious PDF files will be created with various command line tools that set the Creator/
Producer tags to their name. An emailed PDF that purports to be a global trade report
about emerging markets that has “pypdf” as the creator is probably not legitimate.

208 CHAPTER 8 File Analysis

If a PDF is created via one of the interactive PDF creation utilities (such as Adobe
InDesign), a history of changes to the document may be recorded. These changes
can provide interesting data if extracted, including dates and times of changes. In
addition, it may be possible to extract older versions of a PDF. This can be of interest
when a document is redacted prior to publication—older versions of the document
may contain the nonredacted information.

To examine a PDF for historical versions, we can use the pdfresurrect tool,
which is installed easily on Ubuntu via apt-get. The tool accepts four flags:

• -i will display verbose historical information
• -w writes each recoverable version of the document out to disk
• -q displays the total number of versions present
• -s scrubs the historical data from the document

Again examining 025835 from Digital Corpora, we can determine if any older ver-
sions are present:

pdfresurrect -q 025835.pdf
025835.pdf: 8

We can list more information about these versions with -i. Because this is quite
verbose, we will use grep ModDate to restrict output to just the modification dates
of each revision.

pdfresurrect -i 025835.pdf | grep ModDate
ModDate: (D:20070926103434-04'00')
ModDate: (D:20081229134840-05'00')
ModDate: (D:20081229134904-05'00')
ModDate: (D:20081229134912-05'00')
ModDate: (D:20081229134925-05'00')
ModDate: (D:20081229134934-05'00')
ModDate: (D:20081229134947-05'00')
ModDate: (D:20081229135001-05'00')

Note the recorded change in relative time zone from the September 2007 creation to
the December 2008 modifications. Further analysis could include extracting the revi-
sions out and comparing the different versions visually.

To assist in the diagnosis and analysis of potentially malicious PDF files, Didier
Stevens has created two Python utilities: pdfid.py and pdf-parser.py. Pdfid.py
is a high-level scanner that looks for functionality used frequently in malicious PDFs,
whereas pdf-parser.py will parse and display the building blocks of a PDF for
further examination. A treatise on the analysis of malicious PDF documents is outside
of the scope of this book, but Didier has produced an excellent guide, which is freely
available at http://didierstevens.com/files/data/malicious-pdf-analysis-ebook.zip.

Origami is another set of useful utilities geared toward analyzing (and creating)
malicious PDF documents. It has an optional graphical interface that can be used to
explore the structure of a PDF document interactively.

209Documents

Origami is written in Ruby and is currently hosted in a Mercurial repository on
Google Project Hosting. We can check out the most recent revision of the code with
the following command:

hg clone https://origami-pdf.googlecode.com/hg/ origami-pdf

The GUI interface is stored in the “walker” directory. Because the GUI is
built around the GIMP Toolkit version 2 (GTK2), we need to install Ruby-GTK2
 bindings. Additionally, the core origami libraries require OpenSSL bindings. We can
install both using apt-get on an Ubuntu system.

sudo apt-get install libgtk2-ruby libopenssl-ruby

Figure 8.5 examines one of the sample PDF documents included with the Origami
suite, a cross-platform command launcher example (calc.pdf).

FIguRE 8�5

Examining malicious PDF sample with Origami.

TIP
Ruby gems
The Ruby-GTK2 and OpenSSL bindings can also be installed using the Ruby gems package
manager if you don’t want to use the native system package manager or are attempting to
install on a system without native package management.

210 CHAPTER 8 File Analysis

SuMMARy
This chapter examined artifacts present in various image files, audio files, video con-
tainers, archives, and document formats. Because of the transient nature of these
files, they have the capability of retaining information about the systems they are
created or modified on even as they pass from host to host or volume to volume.
Careful examination of artifacts contained within file formats can be the key that ties
a remote user or system to the activity of interest.

References
[1] Multimedia: “Comparing JPEG Quantization Tables”—Computer Forensic Blog. http://

computer.forensikblog.de/en/2007/12/comparing_jpeg_quantization_tables.html.
[2] History—ID3.org. http://www.id3.org/History.
[3] Microsoft Corporation (2007). Windows Compund Binary File Format Specification.

[Document]. http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-
ABFD-4342ED7AD886/WindowsCompoundBinaryFileFormatSpecification.pdf.

[4] The BTK Killer—Wichita, Kansas—American Serial Killers. http://americanserialkillers
.com/articles/the-btk-killer-wichita-kansas/, 2006.

CHAPTER

211

Automating Analysis and
Extending Capabilities

InFORMATIOn In THIS CHAPTER

• Graphical Investigation Environments

• Automating Artifact Extraction

• Timelines

InTRODuCTIOn
If you have been working straight through this book, you should be able to perform a
successful examination using only the tools and techniques discussed in the previous
chapters. This chapter focuses on expanding your analytical capabilities in two dis-
tinct ways. First, we examine tools that build upon the programs and concepts from
the previous chapters and, in doing so, provide additional benefit to the examiner.
These benefits include a more integrated working environment, collaboration pos-
sibilities, extended searching and filtering capabilities, and automation. The second
part of the chapter deals with extended concepts of temporal analysis. Because time-
line generation and analysis are such an integral part of many forensic examinations,
it is imperative to have a good understanding of how to extract more meaning from
time data.

gRAPHICAL InvESTIgATIOn EnvIROnMEnTS
Many of the tools examined in previous chapters are command line or console based,
which can be a tremendous advantage in various scenarios and provide a great deal
of flexibility. However, some workflows are better suited to a graphical environ-
ment. Advantages of using a graphical examination platform include integrated case
management, built-in keyword searching, and greater continuity when examining
between the various file system layers. The prime example of the open source graphi-
cal forensic environment is the venerable Autopsy browser, created by Brian Carrier
as a visual front end to the Sleuth Kit tools. The Autopsy browser does not provide

9

212 CHAPTER 9 Automating Analysis and Extending Capabilities

any capabilities above and beyond those provided by the command line Sleuth Kit
tools but does provide a more comfortable environment for examiners who are
 primarily GUI users. The next two sections discuss two graphical investigation envi-
ronments that do provide a host of additional examination capabilities: PyFLAG and
the Digital Forensics Framework.

PyFLAg
PyFLAG is the Python-based Forensics and Log Analysis GUI created by Michael
Cohen and David Collett to support unified examination of disparate data types often
encountered in modern forensic examinations [1]. Because PyFLAG is a Web-based,
database-backed application, a user generally just needs a Web browser to perform
an examination. Being a Web/database application gives PyFLAG several advan-
tages over more traditional forensic utilities, which tend to be single-user/single-
computer bound. A PyFLAG instance can support multiple users on a single case or
multiple users working on different cases in parallel. As any examiner can tell you,
when it rains, it pours, so having the ability to scale up the number of examiners that
can work on a given case at one time can be incredibly valuable. In addition to the
server model, PyFLAG has some other features that make it an interesting tool for an
examiner using open source tools.

Virtual File System
Much like the unified file system concept common to Unix and Linux systems (as
discussed in Chapter 5), PyFLAG features a unified Virtual File System (VFS) for
all objects under examination. PyFLAG refers to each of these items as inodes. Each
item loaded into the PyFLAG database receives a PyFLAG inode, in addition to
the internal file system metadata address it may already have. This means that any
number of file system images, network traffic captures, standalone log files, and even
streams of unstructured data may be loaded under the same virtual root and subse-
quently processed with PyFLAG.

Additionally, as an examination using PyFLAG proceeds it is not uncommon to
discover nested files (such as files inside of archives, or files recovered via carving
or extracted from a network packet capture). These nested files will be allocated a
PyFLAG inode chained under their parent item. These chained inodes will be indi-
cated by a pipe character (|).

Scanners
PyFLAG’s scanners are discrete modules with a specific task. A scanner will run
over objects loaded into the VFS and perform a function. For example, the PstFile.py
scanner will run over inodes loaded into the VFS, determine if they are an Outlook
PST, and process them accordingly. This processing populates the VFS with inodes
referencing any discovered discrete items inside of the PST, which are then rescanned
with any additional loaded scanners. Using discrete scanners coupled with the inode
creation and nesting mentioned earlier can enable an examiner to fairly rapidly gain
deep knowledge of the true contents of the file system in question.

213Graphical Investigation Environments

SQL Queries
The bulk of the PyFLAG GUI is simply a front end to submitting SQL queries to the
back-end database, and then formatting and displaying the results. One nice aspect of
this division is that the database can be queried and manipulated directly, without the
necessity of the browser. Indeed, many of the more advanced functions of PyFLAG
require direct database interaction.

If you are not familiar with SQL queries, however, PyFLAG should still be
usable and may, in fact, assist you in learning SQL. On each set of responses dis-
played by the PyFLAG GUI that are results of a SQL query, there will be a “SQL
Used” Icon that resembles a hand holding some traditional database icons. Clicking
this will display the SQL query the GUI issued to the database to generate the page
in question.

Additionally, PyFLAG uses SQL to do all of its display filtering. In any of the
filtering dialogues, you can enter SQL directly or you can use the provided “helper”
functions that display available tables and operators.

Keyword Searching and Indexing
PyFLAG does not offer “on demand” keyword scanning. This isn’t necessarily a short-
coming, as performing a full file system scan for each keyword is incredibly time-
consuming on large file systems. Instead, PyFLAG offers indexed searching. PyFLAG
builds an index based on a dictionary file, which allows for very fast searching. How-
ever, it only builds this index when a new source is loaded into a case. As the PyFLAG
dictionary is empty after installation, this effectively means that unless the examiner
takes steps to set up a dictionary, keyword searching won’t be possible.

The PyFLAG FAQ contains a handy set of commands to populate the index with
a large number of keywords sourced from the wordlist file included for spellcheck
support on most Linux distributions:

~/pyflag$ grep -E ...+ /usr/share/dict/words > keywords.txt
~/pyflag$ pyflag_launch ./utilities/load_dictionary.py

keywords.txt

This retrieves all three-letter or longer words and loads them into the PyFLAG data-
base. Note that this technique can be extended to load any arbitrary set of keywords
for indexing.

Carving and Advanced Carving
PyFLAG supports file carving in a fairly novel way, through use of the VFS. Using
simple header/footer signature carving, PyFLAG carvers generate VFS inodes cor-
responding to the location and run length of the corresponding hit. The only overhead
from carving is the time and cycles required to perform the carving rather than the
heaps of disk space required for a standard carving operation. Additionally, PyFLAG
carvers will run over all inodes present in the VFS, to include inodes generated by
scanners. Given this, it is possible to extract embedded files from within archives
without performing the intermediary extraction and decompression phases out
to disk.

214 CHAPTER 9 Automating Analysis and Extending Capabilities

PyFLAG also supports a handful of advanced carvers that use built-in knowledge
of the file structures they are carving. The three advanced carvers currently supplied
with PyFLAG are for PDFs, JPEGs, and ZIP archives.

Log Analysis
As the name belies, PyFLAG is equally intended to be used for log analysis as well as
file system forensic analysis. Because logs entries are stored in the PyFLAG database
and are indexed in the same manner as all other content, keyword searches across the
database will produce log results in addition to file system results. PyFLAG currently
has native knowledge of the Windows binary event log format, IIS logs, Apache
Logs, and Linux IPTables logs, but also supports generating log templates based on
a source log file.

Network and Memory Forensics Support
While an exploration of these capabilities is outside the scope of this book, it is
important to be aware that one of PyFLAG’s greatest strengths is its ability to intel-
ligently parse various application-layer networking protocols. Network protocols
currently supported in PyFLAG include HTTP Web traffic, SMTP and POP mail
transfer, IRC chat, and VOIP telephony.

PyFLAG also interfaces with the Volatility framework, an open source frame-
work for performing forensic analysis memory images from Windows and Linux
systems. Items recovered from network or memory captures will be populated into
the VFS and can be processed further using any of the appropriate scanners.

An excellent walkthrough of performing a unified investigation using PyFlag
is available in Michael Cohen and AAron Walters’ write up from the 2008 Digital
Forensics Research Workshop Forensics challenge [2]. To demonstrate basic usage of
PyFLAG for file system forensic analysis, we will install the application and explore
some of the features available using Lance Mueller’s first Forensic Practical Image,
available at http://www.lancemueller.com/blog/evidence/WinXP2.E01.

Installation
PyFLAG installation is a bit more involved than many of the other packages we
have used up to this point. It has many components and is not currently included
in any package management systems. In addition, the most recent version is only
available via the darcs source code management system. We will need to start out
by making sure we have all the dependencies required for PyFLAG’s operation. The
install document (available online at http://www.pyflag.net/pyflag/INSTALL or with
the PyFLAG source) states the following packages are required and handily provides
the Debian/Ubuntu package names:

• build environment (build-essential)
• python dev files (python-dev)
• libz (libz-dev)
• libmagic (libmagic-dev)

215Graphical Investigation Environments

• MySQLdb (python-mysqldb)
• PIL (python-imaging)
• pexpect (python-pexpect)
• dateutil (python-dateutil)
• urwid (python-urwid)

Additionally, we will need the “mysql-server,” “python-sqlite,” and “python-
pyparsing” packages. We have some of these already, but requesting them again will
not hurt anything, so we can install all of these (and their dependencies, and so on) in
one shot with the following command:

sudo apt-get install build-essential python-dev libz-dev
libmagic-dev python-mysqldb python-imaging python-pexpect
python-dateutil python-urwid mysql-server python-sqlite
python-p6

PyFLAG can provide additional, optional functionality if the following packages
are installed:

• geoip (libgeoip-dev) for Maxmind GeoIP support
• libjpeg (libjpeg62-dev) for Advanced JPEG Carving support
• afflib for AFF image support
• libewf for EWF (Encase E01) image support
• clamd (clamav-daemon) for Virus Scanning support

Because we installed AFFLIB and LibEWF from source in Chapter 2, we can skip
these and only install the other packages using:

sudo apt-get install libgeoip-dev libjpeg62-dev clamav-daemon

With all the prerequisites installed, we can fetch the current development branch
of the PyFLAG source code. PyFLAG uses darcs revision control software. If you
don’t have this installed, you can rectify this with apt-get. We can fetch a copy of
the current source to work with using the following command:

darcs get --partial http://www.pyflag.net/pyflag

Once the command completes we will have a new directory named pyflag in our
current directory. We will need to move into this directory and execute the included
“autogen.sh,” which will set up the build environment.

sh autogen.sh

This will create the configure script and associated files, so once this is completed a
standard build will complete the process:

./configure
make
sudo make install

216 CHAPTER 9 Automating Analysis and Extending Capabilities

The next step is to start up PyFLAG.

user@ubuntu:~/source/pyflag$ sudo pyflag
Checking schema for compliance
31172(Warning): Error: Unable to connects - does the DB Exist?:

(1049, "Unknown database 'pyflag' ")
31172(Warning): Error: Unable to connects - does the DB Exist?:

(1049, "Unknown database 'pyflag' ")
31172(Infomation): Serving PyFlag requests on

http://127.0.0.1:8000

Note that the errors are completely normal—the “pyflag” database does not exist the
first time you run PyFLAG. Setting this up is the first thing we have to do.

Once we open a Web browser and navigate to the provided URL, we will be
prompted to initialize the database. If we check the “Upgrade the database?” box
and click Submit, PyFLAG will build the “pyflag” database using the appropriate
schema.

Before continuing further, we need to confirm (and possibly change) some
PyFLAG configuration data. There are two primary configuration directives of con-
cern: uploaddir and resultdir. These determine where PyFLAG looks for input files
and where it places output files. Because PyFLAG will not be able to read or write
to the file system outside of these directories, ensure that they exist and make sure to
place any data you plan on analyzing with PyFLAG in the uploaddir directory.

Usage
Once the database is created and our configuration options are acceptable, the next
step is to start a new case (Case Management -> New Case). Give your case a memo-
rable name and click Submit.

TIP
PyFLAg Windows Installation
The PyFLAG project provides a set of instructions on how to get PyFLAG up and running
on Windows, as well as pointers to the requisite packages at the following URL: http://
www.pyflag.net/cgi-bin/moin.cgi/PyFlagWindows.

TIP
PyFLAg Tuning
If you plan on using PyFLAG for processor and memory intensive tasks, you may find the
default settings too restrictive. If you are running PyFLAG on a large machine, experiment
with these values for performance increases.
• maximum_worker_memory
• workers
• job_queue
• job_queue_poll

217Graphical Investigation Environments

Next, we will need to add an image file to process using PyFLAG. Select Load
Data -> Load IO Data Source. You should see the screen shown in Figure 9.1.

Using our example image shown in Figure 9.1, we will select “EWF” as the IO
Subsystem. After hitting Submit, we see the screen in Figure 9.2. Note that PyFLAG
performs some preliminary analysis of the loaded data, hinting at the content in the
red highlighted text.

Because this is a file system image, we will select “Sleuthkit” as the file system
type. This tells PyFLAG what driver to use to analyze the structure of the data source
we are loading. Before proceeding, we will need to provide a VFS Mount Point for
the data source. This is like creating a mount point when mounting a volume on a
Linux system. We can put whatever we would like here, but it is best to choose some-
thing relevant to the source material, such as “WinXP2.”

FIguRE 9�1

PyFLAG—adding an image file.

FIguRE 9�2

PyFLAG—file system parsing.

218 CHAPTER 9 Automating Analysis and Extending Capabilities

Once the file system driver loads, you should get a file browser view similar to
Figure 9.3.

From here we can browse through the file system using the GUI, export files, and
so on. Before we do that, though, we can exercise some of PyFLAG’s more interest-
ing capabilities. Selecting Load Data -> Scan Filesystem takes us to the screen shown
in Figure 9.4.

This is the main configuration panel that determines which scanners are run
against the VFS (or a subsection defined under the “Scan Files” entry). Each entry
shown is a category, and clicking on the tool icon to the left of each lets an examiner
drill down and enable or disable specific scanners. Once we are done setting which
scanners we want, we can click “Submit” to kick off the scanning process. This
yields the display seen in Figure 9.5.

After scanning is complete, you are returned to the file system browser.
Any new inodes generated by the scanner will be populated into the VFS
 automatically.

A frequent task in forensic analysis is examination of files of a specific type—
only images, for example. PyFLAG has a function that displays all files by type
under Disk Forensics -> Browse Types. This simply displays all files on the system
for which a type was able to be determined. We can utilize the filtering capabilities of
PyFLAG to restrict this to only JPEG images, for example. Selecting the Filter icon
brings up the page shown in Figure 9.6.

FIguRE 9�3

PyFLAG—file system browsing.

219Graphical Investigation Environments

FIguRE 9�4

PyFLAG file system scanners.

FIguRE 9�5

PyFLAG scanner progress.

FIguRE 9�6

PyFLAG filtering.

220 CHAPTER 9 Automating Analysis and Extending Capabilities

We can use the “Column” and “Operators” drop-downs to generate a Filter with-
out knowing any SQL. Simply select the column or operator of interest, position the
cursor in the Search Query field, and select “Insert.” When the query is completed,
click “Submit.” See Figure 9.7 for a subset of the resulting JPEG-only output.

PyFLAG has another method for viewing files of a specific type under Disk Foren-
sics -> Feeling Lucky. These are canned sets of queries useful for retrieving specific sets
of data. In Figure 9.8, this was used to retrieve all graphics files from the file system.

As mentioned before, we can use the “SQL Used” button to force PyFLAG to
“show its work,” so to speak. The segment that follows is the SQL statement used in
the graphics query in Figure 9.8.

select inode.inode_id as 'Thumbnail','inode'.'size' as
'Size',file.link, concat(file.path,file.name) as 'Filename' from
'inode' join 'file' on 'inode'.inode_id = 'file'.inode_id where
((1) and (('inode'.'inode_id' in (select inode_id from type
where type like '%image%')) and 'inode'.'size' > '20000'))
order by 'inode'.'size' desc

Note that this is but a small sampling of what you can do with PyFLAG. Many more
extensive tutorials are available on the PyFLAG wiki.

FIguRE 9�7

PyFLAG—JPEG filtering results.

221Graphical Investigation Environments

Digital Forensics Framework
ArxSys’s Digital Forensics Framework (DFF) is a relative newcomer to the world of
forensic GUIs, but it appears to be receiving a lot of active development at a fairly
rapid pace [3]. At this time it does not have many of the features present in PyFLAG,
but it does present a somewhat cleaner GUI and is quite simple to build and install
on Linux, OS X, and Windows. In addition, it is quite extensible via scripts and
plugins so a sufficiently skilled examiner can overcome any shortcomings that are
discovered.

Virtual File System
Much like PyFLAG, DFF also creates a Virtual File System under which all sub-
sequent items are loaded. DFF refers to unique items as nodes. The core of the
DFF application is tasked with handling the creation of VFS nodes in memory.
All display tasks are handled by a GUI layer, and populating nodes with data is
handled by modules. The Virtual File System is viewed as a tree structure in the
DFF GUI, with all nodes appearing as children under the root (/) or as children of
other nodes.

Modules and Scripts
DFF modules are similar to PyFLAG’s scanners. A module performs a discrete task
and populates a node with the output of that task. The current version of DFF (0.8
at the time of this writing) comes with many modules that perform various tasks,
including processing cell phone memory dumps, performing hash comparisons,
viewing movies and images, and generating statistics about a node or set of nodes.
Because all “analysis tasks” in DFF are performed via modules, the exposed applica-
tion programming interface (API) has a great deal of functionality available. Addi-
tional modules can be written in C++ or Python. In addition, scripts can be generated
on the fly using the built-in Python scripting engine.

FIguRE 9�8

PyFLAG—all images search.

222 CHAPTER 9 Automating Analysis and Extending Capabilities

GUI and Command-Line Capabilities
One of the strongest features of the Digital Forensics Framework is the clean, simple
GUI. The familiar three-pane layout is a paradigm used by many GUI applications so
even a novice should not have much trouble getting oriented in the application. Addi-
tionally, all functions performed via modules from the GUI can also be performed
via the DFF shell. The DFF shell can be launched from within the GUI or can be used
standalone. This allows the examiner to use the same tool whether she is connecting
via a remote shell or sitting at a local desktop.

Installation and Prerequisites
DFF is available via a binary installer package for most Linux distributions and
 Windows and can be compiled from source on Windows, Linux, and OS X systems.
In this example, we compile DFF 0.8.0 from source.

As always, first we need to install the program’s dependencies. DFF’s GUI is based
on the QT4 library, so we will need to install a host of packages related to this. The
following command will get us all the packages we need to build DFF successfully.

user@ubuntu:~$ sudo apt-get install swig1.3 cmake python-qt4-
dev pyqt4-dev-tools qt4-qmake libqt4-dev libqscintilla2-5
libqscintilla2-dev python-qscintilla2 python-magic python-
qt4-phonon

DFF uses the cmake build system, so to start the process off we run “cmake” in the
DFF’s unpacked source directory.

user@ubuntu:~/source/dff-0.8-src$ cmake .

This will generate the makefiles we need to compile. Once complete, we can run
make and then make install.

user@ubuntu:~/source/dff-0.8-src$ make
...
user@ubuntu:~/source/dff-0.8-src$ sudo make install

Usage
We will use the same image as before to explore the usage of DFF (WinXP2.E01). At
this point, DFF does not support Expert Witness Format images; however, as dem-
onstrated in Chapter 2, we can create a virtual mount point for the EWF container
and expose the content as a “raw” image, which DFF can process using the following
series of commands.

First we’ll create a mount point for the container:

user@ubuntu:~$ mkdir ~/mnt
user@ubuntu:~$ mkdir ~/mnt/ewf

Next we will mount the EWF container:

user@ubuntu:~$ mount_ewf.py ~/images/WinXP2.E01 ~/mnt/ewf/
Using libewf-20100226. Tested with libewf-20080501.

223Graphical Investigation Environments

Finally, we can confirm a proper mount by listing the directory we mounted the
EWF to:

user@ubuntu:~$ ls -lath /home/user/mnt/ewf/
total 2.0G
drwxr-xr-x 3 user user 4.0K 2010-11-26 09:26 ..
dr-xr-xr-x 2 root root 0 1969-12-31 16:00 .
-r--r--r-- 1 root root 2.0G 1969-12-31 16:00 WinXP2
-r--r--r-- 1 root root 284 1969-12-31 16:00 WinXP2.txt

With this set up, we can start up DFF. We will pass the “-g” argument to tell DFF
to start the GUI—without this flag, DFF defaults to shell operation.

user@ubuntu:~$ dff -g

Once the GUI comes up, the first thing we need to do is have it read in our image
file. To do so, we will select “Add Dump” from the File menu (Figure 9.9). DFF uses
“Dump” to refer to a bitstream image of a device, as opposed to a physical device.

After browsing to and opening our FUSE-mounted image file (/home/user/mnt/
ewf/WinXP2 in our example), we get Figure 9.10. Note that adding the dump did just
that, nothing more. We need to tell DFF to process the dump file further.

We can examine the attributes of the file on the right to determine that it is an
NTFS volume. To process the NTFS structures in the dump, we can select Modules ->
File System -> NTFS (Figure 9.11).

The NTFS parsing module has a few configurable options, as seen in Figure 9.12.
Optional fields are off by default—the checkbox to the right enables editing them.

We provide a name for the node we are creating with this module (/WinXP2)
and hit “OK.” The Task Manager pane at the bottom of the window should provide

FIguRE 9�9

DFF adding image file.

224 CHAPTER 9 Automating Analysis and Extending Capabilities

FIguRE 9�11

DFF NTFS parser.

FIguRE 9�10

DFF raw image view.

225Graphical Investigation Environments

a status update as the NTFS processing tasks proceed. Once completed, we are pre-
sented with a standard tree file browsing structure, which we can use to examine
the file system interactively. For an example of navigating DFF using the thumbnail
view, see Figure 9.13.

FIguRE 9�12

DFF NTFS parsing options.

FIguRE 9�13

DFF file system browsing.

226 CHAPTER 9 Automating Analysis and Extending Capabilities

One of the interesting modules included in DFF is the Fileschart module
 (Modules -> Statistics -> Fileschart). This performs cursory file analysis of all nodes
and displays a graphical overview of the types of files present in the VFS (Figure 9.14).

DFF also includes a carving module. Currently the carving mechanism used is a
simple header search, and the types of files supported are fairly limited. Figure 9.15
shows an active file carving process.

FIguRE 9�14

DFF file type statistics.

FIguRE 9�15

DFF carving.

227Graphical Investigation Environments

Carved files will be added to the VFS under the node they were found in under a
new directory named “carved” (Figure 9.16).

DFF contains a number of native viewer modules—an image viewer for graph-
ics files, a movie player for video files, and a text viewer for text files. Unknown or
binary files will be displayed using the hexedit module. Among hexedit modules
features is the ability to search the file content for hexadecimal, ASCII, or Unicode
strings. In Figure 9.17 we searched for “hbin” in the Adminstrator’s NTUSER.DAT
file and received 91 results. Clicking on the address of each results in the Offset pane
in the lower right will jump to that hit.

FIguRE 9�16

DFF-carved files.

FIguRE 9�17

DFF Hex Editor search.

228 CHAPTER 9 Automating Analysis and Extending Capabilities

The hexedit module also allows the user to highlight and bookmark selected segments
of data. In Figure 9.18 we have highlighted and bookmarked a registry key of interest.

The DFF unzip module (under archive) allows an examiner to examine the
 contents of a zip archive without extracting data first. In Figure 9.19 we launched the

FIguRE 9�18

DFF bookmarking.

FIguRE 9�19

DFF unzip module.

TIP
Hexedit view for Any File
While double clicking a binary or uncategorized file will use the hexedit module as the viewer
for that file, you can use open any file with the hexedit module via the right-click context menu.

229Automating Artifact Extraction

unzip module by right clicking on a Zip archive and selecting the “unzip” module
from the context menu.

The archive content is added as a child node of the Zip archive under the VFS.
We can now navigate down into the archive and examine the content, including the
embedded time stamp (shown in Figure 9.20).

AuTOMATIng ARTIFACT EXTRACTIOn
One of the constant challenges of forensic analysis is the amount of setup required
before true analysis can be performed. If you are simply looking to identify and
extract a specific file type, you still need to identify the partitions on image, identify
the file systems, access their contents, locate files in question, and so on. The major-
ity of this preliminary work is not interesting and not directly relevant to the purpose
of the exam. The goal of automating artifact extraction is to reduce the amount of
setup required before real work can begin.

Fiwalk
Fiwalk is a library and suite of related programs designed to automate much of the
initial file system analysis performed during a forensic examination [4]. The name
comes from “file & inode walk,” which is effectively what the program does. Fiwalk’s
output is a mapping of a disk’s file systems and contained files, including embedded
file metadata if requested. The goal of the fiwalk project is to provide a standardized
XML description language for the contents of a forensic image file and to enable
more rapid processing of forensic data.

FIguRE 9�20

DFF zip content view.

230 CHAPTER 9 Automating Analysis and Extending Capabilities

Because fiwalk inherits file system analysis capabilities from the Sleuth Kit, it is
able to support any partition, volume, and file system structures the Sleuth Kit is capable
of reading. In addition to its standard XML output, fiwalk can provide output in human-
readable text, Sleuth Kit bodyfile format, the ARFF format used by the open-source
Weka data mining system, and plain CSV for import into a spreadsheet program.

We can demonstrate the use of fiwalk by using it to generate a Forensic XML docu-
ment describing the content of the ubnist1.casper-rw.gen3.aff file from Digital Corpora.

fiwalk -X ubnist1.gen3.xml ubnist1.casper-rw.gen3.aff

The resulting output is a 2.1-Megabyte XML document containing 2533 “fileob-
ject” elements. An example fileobject element (for /etc/hosts) is shown here.

<fileobject>
<filename>etc/hosts</filename>
<partition>1</partition>
<id>65</id>
<name_type>r</name_type>
<filesize>243</filesize>
<alloc>1</alloc>
<used>1</used>
<inode>23065</inode>
<meta_type>1</meta_type>
<mode>420</mode>
<nlink>1</nlink>
<uid>0</uid>
<gid<0</gid>
<mtime>1231268387</mtime>
<ctime>1231268387</ctime>
<atime>1230469854</atime>
<libmagic>ASCII English text</libmagic>
<byte_runs>
<run file_offset='0' fs_offset='528486400' img_

offset='528486400' len='243'/>
</byte_runs>
<hashdigest type='MD5'>0a936719a10e067bab6fd92391776225</

hashdigest>
<hashdigest type='SHA1'>59bcce3e528094e1c7d09d32af788a5eb0f996

0b</hashdigest>
</fileobject>

We can see that this element contains all the information we need to know
about the file, including the three stored time stamps, ownership data, two hashes,
a “libmagic” determination of the content of the file, and the location in the image
where the file’s content resides.

Fiwalk-based Tools
The main fiwalk program is written in C in the interest of speed. However, the fiwalk
project also provides a Python module (fiwalk.py) so that forensic applications

231Timelines

 leveraging fiwalk’s capabilities can be developed quickly and simply. To demonstrate
this, several demonstration programs that use fiwalk.py are included. These can be
used as is or as a basis for additional programs leveraging the fiwalk core.

One example is iredact.py, which is a disk redaction program designed to
enable the intelligent removal of files meeting specific criteria from a disk image.
The idea is to remove sensitive or otherwise nonshareable information from a disk
image prior to making this image available to third parties. Altering a forensic image
is always a fraught with peril, but because iredact.py is designed with forensic needs
in mind, it avoids oversterilization or disturbing unallocated data.

Redaction is controlled by sets of condition:action pairs. Conditions can be a
filename, a wildcard filename, a directory name, an MD5 or SHA1 hash, or file or
sector content. Actions can be to fill the redacted content with a specific hex value,
to encrypt the content, or to “fuzz” the content, which makes executables nonopera-
tional but does not alter their strings.

TIMELInES
Timelines are a very useful analysis tool and have recently been discussed in various
online forums and listservs. Perhaps more importantly, they are being used to a much
greater extent than previously—say, 10 or even 5 years ago. In the past, most time-
lines have consisted almost exclusively of file system modified, accessed, and creation
(MAC) times. More recently, however, the value of adding additional data sources has
been realized, and analysts are taking advantage of this more and more.

As we’re discussing timelines at this point, a couple of key concepts are in order.
First, with respect to generating timelines, one of the key reasons for (and results of)
adding multiple time stamped data sources (from within an acquired image, as well
as from other external sources) to a timeline is so that the analyst can develop context
around the events that are being observed. For example, with just the file MAC times
in a timeline, the analyst may observe that a file was created, modified, or accessed,
and that’s it. However, adding multiple data sources allows the analyst to see other
events that occurred around or “near” the same time, such as a user logging in or
navigating the Windows Start menu to launch a program or open a recently accessed
document. In addition to seeing a file accessed, the analyst may also see which user
accessed the file, and perhaps even with which application.

In addition to context, a timeline provides the analyst with an increased relative
confidence in data being observed. What this means is that some data sources are

TIP
Additional Python Sleuth kit Bindings
Another project that provides Python access to the Sleuth Kit libraries is pytsk, developed
by Michael Cohen of PyFLAG fame. At the time of this writing the project is in alpha and
is available from http://code.google.com/p/pytsk/

232 CHAPTER 9 Automating Analysis and Extending Capabilities

easily mutable (which is a fancy way for saying “easily modified”); on Windows
systems, for example, file MAC times may be modified quite easily through easily
accessible API functions. In fact, this happens quite often during malware infections,
as well as intrusions. Other data sources, such as Registry key LastWrite times and
Master File Table (MFT) $FILE_NAME attributes, may have time stamps associ-
ated with them that are not as easily mutable and would therefore be more reliable
and provide the analyst with a greater level of confidence as to the overall data set.
Also, consider other systems external to the compromised system, such as proxies,
firewalls, and network devices that generate and maintain log data of some sort. The
attacker may not even be aware of these devices, and their logs (as they pertain to the
compromised system) can be included in the timeline, adding to the relative confi-
dence of observed data. Further, data from multiple systems can be combined into an
overall timeline, providing the analyst with a better view for correlating data across a
number of systems. Analysts have used this technique to determine the initial attack
that led to several systems being compromised, as well as lateral movement between
systems once the attacker began to access the previously compromised systems.

Creating timelines from multiple data sources for analysis is a relatively new
technique and not one that you’ll see in commercial forensic analysis applications, as
it requires extracting data that may be poorly documented, if it’s documented at all.

While there aren’t really any commercial applications that allow for the creation
of multisource timelines, there are open source tools that are freely available. While
some analysts employ custom tools and techniques to build their timelines, Kristinn
Gudjonsson has developed the Log2Timeline framework (available on the Web at
http://log2timeline.net), which can be installed on and run from a number of Linux
variants, as well as MacOSX (the framework Web site includes an “Installation” sec-
tion with various installation commands).

Log2timeline and its associated tools are also included as part of the SANS Inves-
tigative Forensic Toolkit Workstation (SIFT) version 2.0 virtual machine [5].

Creating timelines is, at this point, a largely manual process, but can be accom-
plished with the assistance of open-source tools. Some analysts may choose to create
the “super” timeline available through the use of log2timeline, while others may opt
to take a more manual and minimalist approach, starting with file system metadata.
These data can be extracted using fls from the Sleuthkit set of tools (referred to as TSK
tools). From there, data from sources that make sense to add, based on the goals of the
analysis, can be added. For example, the analyst may opt to add Windows Event Log

nOTE
Log2Timeline and SIFT
Kristinn’s log2timeline framework is used to produce what are referred to as “super
timelines,” a phrase coined by Rob Lee of Mandiant and SANS fame. These timelines are
referred to as “super” due to the amount of available data that can be included within
the timeline.

233Timelines

data, unless the available event records do not cover the date in question (if the date is
known). In the case of SQL injection where the Web server and database server were
installed on the same system (which happens more often than you’d think), a timeline
consisting of the file system metadata and relevant IIS Web server logs have proven
to be all that is necessary to clearly demonstrate the attacker’s actions.

Regardless of the method used for producing a timeline, resulting data can then
be analyzed by opening it in a text viewer or spreadsheet application, depending on
the analyst’s preferences. Basic methods for performing timeline analysis is simply
reviewing the items in the timeline sequentially, or performing simple searches for
items of interest. To perform more meaningful analysis of timelines, the examiner
must take into account the nature of time and various ways of extracting more meaning
out of a temporal information. With that in mind, we will discuss some types of time
information that may not be immediately apparent, some additional sources of time
information, and some patterns of interest that may arise when examining a timeline.

Relative Times
Timeline review is generally performed by examining the generated timeline as a
series of discrete time points, such as “December 4th 2010 at 11:05:23 PM UTC.”
Most reports of forensic analysis also follow this pattern as well. Unfortunately,
this sort of review can lead to tunnel vision and a distorted view of the event that
occurred. Since accurate event reconstruction is one of the goals of a forensic exami-
nation, this sort of thinking can be detrimental to an investigation. It is important to
think of time as more than a set of points on a line. A program does not execute at a
specific time—it begins execution at a specific time, continues execution, and even-
tually halts. While we may not always be able to recover all the artifacts covering the
entirety of this time span, this is what actually occurred. The artifacts we uncover are
just that: artifacts. Once again, the map is not the territory.

We can extend our understanding of timelines by thinking about four different
types of relative times. We use relative times to discuss the relationship of one event
or time point to another event or time point. There are three relative times to con-
sider: before, after, and during. Any given time information can be referenced in
relation to another using these time descriptions.

Before and After
Before and after are incredibly simple concepts, but can be applied to forensic exami-
nations in interesting ways. Any discrete point in a timeline can be described as hav-
ing occurred before or after any other point or event. Of course the converse is also
true—an event (event B) dependent on another event (event B) occurring could not
occur prior to that event. The canonical example of this is the creation of the file sys-
tem being examined. This is the canonical “start point” for all file system time points.
Any time information indicating a date before this is falsified, either intentionally or
as a consequence of retaining original times during an archive extraction, as demon-
strated in Chapter 8.

234 CHAPTER 9 Automating Analysis and Extending Capabilities

Another common example of this type of temporal investigation is examining
all activity that occurred after a specific event of interest. In an intrusion investiga-
tion, this event will be the initial compromise time. This event can act as a stop point
with regards to relevant time information—anything that occurred prior to the initial
point of compromise is now irrelevant. This of course assumes you are able to make
a definitive judgment about the initial point of compromise. In some investigations,
this lower bound on time analysis may shift as new information is uncovered.

As expected, examination of items that occurred before a specific event is the
opposite. In an intrusion investigation, the bounding event for this can be the last
known traffic from an attacker’s IP address. One of the goals of examining every-
thing that occurred before an event is identification of the initial point of compro-
mise. Given both time points, you can establish a finite window of time data that may
be of relevance.

During
This describes a set of time data with a finite beginning and end—the duration of
the event. The prime example of this sort of time information is the window of com-
promise during an intrusion. Given an attacker’s entry, and the time of successful
remediation, the time in between is the duration of compromise. This is often the
largest time period of immediate relevance. Within this window, additional durations
may be uncovered. For example, windows between logins and logouts of compro-
mised accounts may provide additional windows of access to investigate further. This
can help reduce the amount of time information of relevance the examiner needs to
 process.

This can also help reduce the amount of data considered to be compromised. For
example, if sensitive data were not on a compromised system outside of the window
of access, it may be reasonable to consider that there was no opportunity for data to
be compromised. Conversely, identifying the window of access can be used to reduce
the scope of investigation to data that existed on the system during this window.
 Limiting examination to a particular time window can also be useful when attempt-
ing to attribute particular activity to a certain user account. Any activity that has
specific start and stop times can be used to partition a subset of time data.

Inferred Times
In many investigations, absolutely granular time points for data of interest may
not be available or may be incorrect or misleading. If this is the case, inferred time
may be the most accurate time available to you. Generally this will apply to deleted
data. Data that have been deleted will either have no directly associated metadata
structure or have a metadata structure that is tied only loosely to actual data con-
tent. Under these circumstances, it may still be able to infer additional temporal
information

For example, in one investigation, metadata information for a deleted file
(“file1.doc”) on an NTFS file system indicated that the file was modified on

235Timelines

 January 10, 2010. There were no signs of system clock manipulation, and the file
name attribute time stamps were also consistent with January 10. However, the con-
tent of the file (a forecast of the Florida orange crop) appeared to be data that did not
exist before March 10, 2010.

MFT Entry #: 4067
Path: D:\Temp\file1.doc
Deleted
Size: 5974865 (5.9M)
DATA MODIFIED: 01/10/10 02:21:58PM
ACCESSED: 01/10/10 02:21:58PM
CREATED: 01/10/10 02:20:27PM
MFT MODIFIED: 01/10/10 02:21:58PM
67 Data Runs

File1.doc is a ≈ 5.9-Megabyte file with 67 data runs. Given that the volume this
file resides on was nearly empty at the time of examination, this is an inordinate
amount of fragmentation. This leads to several suppositions. We can assume that the
D: volume was nearly full when this file was created, which would account for the
operating system placing the file content in any location it could find space. Once the
original file1.doc was deleted, the MFT entry became “frozen” and its reuse never
became necessary. Examining the data runs listed as allocated to the file1.doc entry
yielded some of our Florida orange crop forecast. Examining clusters listed as purely
unallocated that are adjacent to clusters listed as allocated to file1.doc show that this
content continues for many contiguous clusters, which would not be the case if they
were truly the data originally allocated to file1.doc.

Given this scenario, we have the following inferred timeline.

1� January 10 2010 2:20:27 pm—File1.doc is created on the system. MFT entry 4067
is populated with metadata relevant to File1.doc. File content for File1.doc is written
to a nearly full volume, leading to a 5.9-Megabyte file with 67 fragments.

2� January 10 2010 2:21:58 pm—File1.doc is deleted, freezing the MFT entry. All
clusters in the 67 data runs contain File1.doc data at this time.

3� {Sometime after March 10 2010}: The Florida orange crop report is created on
this volume. An unknown MFT entry is created for this file, and clusters are
allocated. Some or all of these clusters are in a run, which overwrites some of
the data runs previously allocated to File1.doc.

4� {Sometime after entry 3}: The Florida orange crop report is deleted. The runs
allocated to this file are left intact.

5� {Sometime after entry 4}: The MFT entry created for the Florida orange crop
report is reused by a new file. Metadata and data run information contained in
the MFT entry are overwritten and lost.

Note that while were are not able to assign fixed times to items 3 through 5 on
our timeline we know that these had to have occurred sometime after March 10th
due to the content of the document. Without this additional temporal knowledge,

236 CHAPTER 9 Automating Analysis and Extending Capabilities

an examiner would simply have one set of incorrect time stamps to work with. In
other cases, there may be two competing sets of time information. Without additional
temporal knowledge gleaned from sources such as firewall logs, packet captures, or
registry data, conflicting file system time stamps may simply end up being tossed out
as inconclusive.

Embedded Times
We discussed the extraction of time information from file metadata in Chapter 8.
Like information from devices external to the system, these time artifacts can be
a very rich source of temporal data. The fact that they contain time information is
frequently overlooked by or unknown to the actors that generate or transmit them.
Embedded times can travel within the files as they move from system to system and
cannot be manipulated directly with the same tools used to manipulate file system
time data. They can retain their time information for recovery after deletion, even
when the file system metadata structures have been removed.

File content may contain another source of time information as well: embedded
inferred time. As an example, many PDF files will contain the name and version of
the software used to generate them. The release date of this version of the software
used to generate the document is the earliest date that the file could have existed.
When examining office documents that may be of questionable veracity, the exis-
tence of printer make and model can be used to create a timeframe in which the
document must have been printed.

Periodicity
Another concept useful in the analysis of temporal information is periodicity. Peri-
odicity refers to the rate at which a given event or activity recurs. This is sometimes
referred to as “frequency” but frequency can also refer to how often something occurs
(“four times a day”) as opposed to periodicity, which refers explicitly to the time that
passes between repeated events. Periodicity is a useful signal when analyzing time

WARnIng
The unreality of Time
While it is certainly possible to manipulate or fake internal time information or other
embedded metadata, this forgery generally appears in one of two forms. First, these data
can be blatantly false: dates in the future, gibberish usernames, or application names
that simply don’t exist. This sort of “salting the earth” is found frequently in malware
and other malicious files. It is obvious, but the point is to ruin investigative traces. The
other form is used when the file in question is intended to be viewed as legitimate:
forged legal documents, backdated financial information, and the like. Time manipulation
of this sort is much more difficult to detect, and often in these types of cases detecting
any inconsistency in data is exactly the point. It is highly unlikely that this level of
tampering would occur on a document not intended to be passed off as a legitimate
document.

237Timelines

data related to backdoor traffic. Most backdoor programs have a highly fixed period
for beacon traffic back to their controllers. Unfortunately, many Benign auto-update
programs also share this same characteristic. It should not be surprising then that
periodicity can be used to classify automated traffic versus human traffic.

Even the most precise human will display some variance in their activity—their
morning routine may be to fire up a Web browser, open their mail, and check a
couple of Web sites, but the period between each of these activities will vary from
day to day. Automated traffic will generally occur at fixed intervals. Analysis of
fixed-length periods between recurring activities can help suss out automated activi-
ties intermixed with human activities. Analysis of the speed of recurrence can also
yield positive results—activities that occur too fast for a human to perform in rapid
succession are likely to be an automated process or a human running a script. Quasi-
periodic activity can be of interest as well. For example, time information may indi-
cate that a lab machine is accessed after hours, every Thursday night between 10 and
11 pm, with no discernible business purpose.

Frequency Patterns and Outliers (Least Frequency
of Occurrence)
“Least Frequency of Occurrence” is a term used by Pete Silberman of Mandiant at
the 2008 SANS Forensic Summit to describe a characteristic of malware on sys-
tems; specifically, what he was referring to was that early on, malware would infect
systems quickly, and many times, massively, continually scanning the network and
infecting any vulnerable system. As such, many systems were infected and reinfected
so many times that they quickly became completely unusable. As the development
and goals of malware evolved and the direction moved to avoiding detection, authors
began including the creation of a unique mutex to identify infected systems so that
they would not be reinfected continually; after all, what was the point of completely
denying the use of a system to anyone if you were after data, storage, or CPU cycles?
As it happened, creation of the unique mutex led malware infection to being the least
frequent event or action to occur on a system.

Consider this; during normal, day-to-day function of a Windows XP system in a
corporate environment, a considerable amount of activity occurs on the system. In
the morning, the user logs in, often after having only logged out and not powered
the system down the previous morning. While the system is active on the corpo-
rate network, considerable activity occurs; files are created or modified as the user

WARnIng
More Human than Human
Be aware that some malicious backdoors will vary the timing of their beacon traffic to
avoid detection via these mechanisms. In these cases, analysis of periodic activity will
not be of much help, but other techniques [such as Least Frequency of Occurrence (LFO)
analysis] may be of use.

238 CHAPTER 9 Automating Analysis and Extending Capabilities

goes about his/her daily business. Even more activity occurs “under the hood”; on
Windows XP systems, a System Restore Point is created every 24 hours, and a lim-
ited defragmentation of the hard drive occurs every 3 calendar days. In addition, the
operating system and applications are updated automatically; in some corporations,
systems are scanned for compliance regularly, and applications are updated accord-
ingly. Given all this, it’s easy to see how malware infections and even intrusions are
often the least frequent activities to occur on systems.

The same is true for other systems, as well. Even on Windows 2003 or 2008 serv-
ers (database, file, web, etc.) and Windows 7 systems used in either the corporate
or the home environment, malicious activity very often is the least frequent type of
activity. So what does this mean for the analyst? Instead of looking for spikes in the
number of files or increases in general activity on a system, an analyst is very often
looking for a specific straw (based on color, length, texture, etc.) of hay in a haystack.
Once found, the analyst will be able to provide context to that straw so that it will
stand out from the other straws in the haystack.

Analysts need to consider LFO when performing analysis, particularly during data
breach and intrusion investigations. Most systems have plenty of powerful tools installed
for use by administrators, and these tools are equally useful for an intruder as well, par-
ticularly when it comes to determining what system they’re on (hostname, uname—a),
and what other systems may be “near” the compromised system (ping, nbtstat.exe, net.
exe, etc.). As such, there really isn’t an overwhelming need for a moderately knowledge-
able attacker to download a massive set to tools and malware to the system. In fact, it
seems that this is what most attackers want to avoid; more tools increase the likelihood
that someone will notice their presence, either as the tools are downloaded, if one of
them fails to run properly and generate errors, or if the installed antivirus application
generates a warning based on detecting one of the attacker’s tools.

Another aspect to consider is that in order to minimize changes made to compro-
mised systems, attackers will generally opt to use already available user accounts
(when it is necessary to do so) rather than create new ones, although creating a new
user account or two is a great way to ensure that they can get back into the system(s)
at a later date. In an infrastructure that may consist of hundreds or thousands of user
accounts, what are one or two more? The answer to that is that they’re the least fre-
quency of occurrence, as it pertains to the user accounts.

The overall point is that instead of looking for the attacker who is doing the digi-
tal equivalent of driving a truck through your living room, analysts should consider
LFO and look for those things that are slightly different, such as a few pieces of fur-
niture that may have been moved. This is not to say that this is always the case; the
authors are both very familiar with systems that have been compromised and turned
into “warez” servers, making bootleg movies available to anyone with an Internet
connection. In these cases, massive files have been uploaded, and the significant
amounts of traffic generated by those downloading the files have slowed the victim
infrastructure to a crawl. However, observing the nature of many attacks over the past
several years, there seems to be a trend toward minimalization, in which the attacker
or malware has the least effect possible on the compromised systems. Understanding
this will assist analysts in investigating the incident.

239References

SuMMARy
While it is certainly possible to run an entire investigation using nothing but com-
mand line utilities, integrated, the graphical forensic environments discussed in this
chapter provide a host of benefits that make them compelling for an examiner. Being
able to easily apply forensic processes inside of archives, indexed searching, and the
ability to perform complex queries are powerful features that a clever examiner can
use well. The fiwalk library and utilities reviewed demonstrate the power of using
open source tools to automate and simplify data extraction and initial file-system
inventory. Finally, we demonstrated a host of temporal analysis concepts and tech-
niques that can be used to expand timeline analysis beyond simply searching through
a listing of time stamp records.

References
 [1] PyFlag. http://www.pyflag.net/, (accessed 18.12.10).
 [2] M. Cohen, D. Collett, A. Walters, Digital Forensics Research Workshop 2008—

Submission for Forensic Challenge. http://sandbox.dfrws.org/2008/Cohen_Collet_
Walters/Digital_Forensics_Research_Workshop_2.pdf, 2008, (accessed 18.12.10).

 [3] DFF: Open Source software for computer forensics & eDiscovery. http://www.digital-
forensic.org/, (accessed 18.12.10).

 [4] AFFLIB—fiwalk. http://afflib.org/software/fiwalk, (accessed 18.12.10).
 [5] SANS—Computer Forensics and Incident Response with Rob Lee, Community:Downloads.

http://computer-forensics.sans.org/community/downloads/, (accessed 18.12.10).

This page intentionally left blank

APPENDIX

241

Free, Non-open Tools
of Note

InFORMATIOn In THIS CHAPTER

• Disk and File System Analysis

• Windows Systems and Artifacts

• Internet Artifacts

• File Analysis

• Automating Analysis and Extending Capabilities

• Validation and Testing Resources

InTRODuCTIOn
As the title belies, the purpose of this book is twofold. First, we wanted to discuss
digital forensics. Second, we wanted to demonstrate how to perform digital forensics
tasks using open source tools. For some tasks, no open source tools are available.
For others, open source tools are not the best tool for the job. With that in mind, we
present a selection of free but non-open tools that can be used to supplement the
tools discussed throughout this book. Unless otherwise specified, these tools are all
Windows only.

This appendix is divided according to the chapter structure of the main book.
Tools applicable to the techniques and artifacts discussed in a given chapter are dis-
cussed under that chapter’s heading in this appendix. Note that some chapters pres-
ent in the main text are not represented here due to either sufficient open source
tools being available or the lack of any additional non-open tools worth discussing.
Finally, we discuss some testing and validation resources that can be used to calibrate
and verify the operation of your forensic tools. The tools described throughout this
appendix should not be considered an exhaustive list, but instead a representative
sampling of the available free, albeit non-open source tools that are available.

A

242 APPENDIX A Free, Non-open Tools of Note

CHAPTER 3: DISk AnD FILE SySTEM AnALySIS
Open source tools covered in Chapter 3 provide a wealth of capabilities. The fol-
lowing tools can be used in combination with these tools to augment and extend the
analyst’s capabilities.

FTk Imager
AccessData has provided FTK Imager as a free download for quite some time, and
even updated the tool as time has passed. FTK Imager is an extremely valuable tool
to any responder or analyst, allowing them to not only acquire images from sys-
tems (via the appropriate write-blockers or from live systems) but also to verify file
 systems of acquired images, be they raw/dd or “expert witness” (perhaps more popu-
larly known as “EnCase”) format, VMWare vmdk file format, etc. FTK Imager rec-
ognizes a number of file system formats, including not just FAT and NTFS, but ext2,
ext3, and others, as well.

FTK Imager tends to come in two flavors. First is the full version that can be
downloaded and installed on a workstation or laptop, and the second one is a “lite”
version that includes the executable image file and necessary DLLs that can be cop-
ied to and run from a thumb drive or CD. This is often a very valuable resource,
particularly during significant response activities. In such cases, responders are not
limited by the number of imaging resources (laptops and write blockers) that they
have available—rather, copying files to the root of external, USB-connected drives
allows responders to perform live acquisition of a significant number of systems
simultaneously.

At the time of this writing, the Lite version of FTK Imager is version 2.9, and the
full version of the tool is at version 3. The most notable difference between the two
versions, aside from the installation process, is that version 3 now provides the capa-
bility to mount an acquired image as a physical drive or as a logical volume (or vol-
umes) on the analyst’s workstation. You can mount images by choosing the “Image
Mounting…” option from the File menu, as illustrated in Figure A.1.

As shown in Figure A.1, you can use FTK Imager 3 to do most of the things that
you’re used to doing, such as acquiring images, verifying file systems, and capturing
memory, and you can now use it to mount images.

ProDiscover Free
Christopher Brown, the man behind Technology Pathways, LLC, makes a Basic Edi-
tion of his ProDiscover forensic analysis application available for free download.
This free edition provides some basic functionality but does not include the more
extensive capabilities of the full version. For example, the Basic Edition allows the
analyst to create projects, as well as populate the Registry Viewer, the Event Log
Viewer, as well as find Internet activity and conduct searches across the project, as
illustrated in Figure A.2.

243Disk and File System Analysis

FIguRE A�1

FTK Imager 3 File menu options.

FIguRE A�2

ProDiscover Basic Edition project.

244 APPENDIX A Free, Non-open Tools of Note

The Basic Edition (version 6.7.0.9 at the time of this writing) also provides
the ability to perform secure wipes of drives and includes the imaging capability
and image conversion tools found in the full edition. The Basic Edition does not,
 however, provide the ProScript functionality of the full edition, nor the remote access
and imaging capability. A version of ProDiscover Basic Edition (version 5) is also
available as a U3 install package so that it can be run from a thumb drive.

CHAPTER 4: WInDOWS SySTEMS AnD ARTIFACTS
Chapter 4 presented a variety of tools that can be used to process the numerous items
of interest that can be found on a Windows system. The tools discussed here are
purely supplemental. They do, however, have various characteristics that may make
them appealing to an examiner. The first tool reviewed is “Windows File Analysis”
from Michal Mutl.

Windows File Analysis
Windows File Analysis is a small, quite useful graphical Windows application used
to parse and display five different items that frequently contain artifacts relevant dur-
ing a Windows examination. These five items are:

• Thumbnail Database (Thumbs.db) files, which can contain thumbnail images of
items that have been deleted.

• Prefetch files, which track the execution of programs on Windows XP, Vista, and
7 systems.

• Shortcut (LNK) files, which among other data can contain the locations for previ-
ously opened files and time stamps.

• Index.dat files, discussed in Chapter 7. These store Internet Explorer history
information.

• INFO2 files, used by the Recycle Bin in XP.

Windows File Analysis can be downloaded from http://mitec.cz/wfa.html.

Event Log Explorer
Event Log Explorer is a robust application for interactively examining event logs
from Windows systems. Event Log Explorer is free, but only for noncommercial,
personal use. If you use this tool professionally you will need to purchase a license,
but if you are a student or a hobbyist the free license should suffice.

By default the program opens Event Logs using the Windows application pro-
gramming interface (API), but it has the capability of interpreting the file directly as
well. To use Event Log Explorer to examine logs extracted from a forensic image,
you will choose the “direct” option under “File → Open Log File” as show in
 Figure A.3.

245Windows Systems and Artifacts

Among the capabilities of Event Log Explorer is the ability to bookmark and
filter by specific criteria, including time and date of the event, category of the event,
and text in the description of the event. The Bookmark by criteria dialog is shown in
Figure A.4.

When an interesting subset of log entries is located, the examiner can export them
to HTML, tab-separated text, or an Excel spreadsheet.

Log Parser
Log Parser is a tool available from Microsoft [1] that allows you to run structured
query language (SQL) searches across a variety of data sources, including ASCII text
files, Event Logs (both .evt and .evtx formats), the Registry, and Active Directory.
Log Parser is a command line interface (CLI) tool that is extremely useful. A very
simple way to employ Log Parser is to use it to parse Event Log files into comma-
separated value (CSV) format, using the following command:

C:\tools>logparser –i:evt –o:csv "SELECT * from System" >
system.csv

FIguRE A�3

Event Log Explorer—Open Direct.

246 APPENDIX A Free, Non-open Tools of Note

This command can be run on a live system and will parse the System Event Log
and place all available information into a file format that can be opened in Excel. If
you have extracted Event Log files from an acquired image and want to parse those,
you would need to replace “System” with the full path to the extracted file; i.e.,
“D:\case\files\sysevent.evt.”

It is very important to note that Log Parser relies on the API of the system that it
is running on; therefore, you can only parse Event Log (.evt) files from Windows XP
or 2003 on those systems; the same is true for Windows Event Log (.evtx) files from
Vista and above systems.

Fortunately, you don’t have to be an expert in SQL queries in order to take full
advantage of Log Parser. Microsoft provides several examples of ways to utilize Log
Parser [2], including producing graphs. A number of other sites on the Web provide
examples of how Log Parser can be used; in addition, several graphical user interfaces
(GUIs) are available for Log Parser, although these are not available from Microsoft.
Perhaps one of the most popular is the Lizard GUI available from Lizard Labs (http://
www.lizard-labs.net/log_parser_lizard.aspx). GUIs can make interacting with pow-
erful tools such as Log Parser more intuitive and easier for new or novice analysts,
allowing them to overcome the initial learning curve and avoid lots of typing.

FIguRE A�4

Event Log Explorer—Bookmark search.

247Internet Artifacts

CHAPTER 7: InTERnET ARTIFACTS
The growing use of SQLite as a data store by Web browsers is quite beneficial to
forensic examiners using open source tools. In addition to the tools we reviewed, a
wide variety of other SQLite applications can be used based on examiner preference.
Additionally, the following tools provide some additional capabilities beyond what
was discussed in Chapter 7.

nirSoft Tools
Nir Sofer provides numerous freeware tools at www.nirsoft.net, including a handful
of utilities useful for forensic analysis of Internet artifacts from a variety of browsers.

The following tools are used to process the local caches of the referenced browsers:

• MozillaCacheView
• IECacheView
• ChromeCacheView

Each operates in a very similar manner and can be used as a GUI application or run
from the console. This is quite useful if you are scripting the operation of the cache
viewer program or need to process a large number of cached files. Via the GUI, tabu-
lar results can be exported as a text, HTML, or XML file. The elements recovered
vary slightly depending on the type of browser cache being examined, but will gener-
ally include at least the URL the cached file was retrieved from, the MIME type the
server supplied for the file, and the time the content was retrieved.

When executed via the command line, flags can be passed to copy the contents
of the cache to another directory or to dump the results from parsing the cache out
to the tab-delimited text, HTML, or XML. The utilities support arguments to restrict
the files copied to those sourced from a specific URL or specific types of content.
For more usage information or to download the applications, see http://nirsoft.net/
computer_forensic_software.html.

Woanware Tools
Mark Woan has made a plethora of free forensic utilities available at www.woany.co.uk.
We discuss two of them here: Firefox Session Extractor and ChromeForensics.

Firefox Session Extractor (or “firefoxsessionsextractor” as it is listed on the
WoanWare site) is a simple console utility for parsing the sessionstore.js JSON file
used by Firefox to maintain session state in the event of a browser crash or other
improper close. This utility is nice in that because it is a console application, it can
be used in a script and it will also process multiple sessionstore.js files in a recursive
manner. It is available from http://www.woany.co.uk/firefoxsessionstoreextractor/.

ChromeForensics is, as the name suggests, an application for extracting artifacts
left on a system by Google Chrome. As shown in Chapter 7, we can collect these arti-
facts directly using SQLite. ChromeForensics is an option if you are using Windows

248 APPENDIX A Free, Non-open Tools of Note

as your analysis platform and prefer a GUI application. It also has the advantage
displaying Chrome’s Web page thumbnails (shown in Figure A.5), with the ability to
export them in an HTML report.

CHAPTER 8: FILE AnALySIS
We covered the analysis of many different types of files in Chapter 8, including
Microsoft Office binary files stored in the OLE/compound document format (Word
Documents, Excel Spreadsheets, etc.). As we showed, these files are rich with valu-
able artifacts and can be of interest in many different types of examinations. This
section presents three additional tools that can be used to perform additional useful
analysis of these files.

Mitec�cz: Structured Storage viewer
Michal Mutl has released a program for viewing the structure of Office binary files. In
addition to interpreting the structure of streams and displaying metadata, individual
streams can be viewed as text, raw data, image data, or others. For a demonstration
of the Structured Storage Viewer being used to examine metadata from the infamous
“blair.doc,” see Figure A.6.

Mitec Structured Storage Viewer is available from http://mitec.cz/ssv.html.

FIguRE A�5

WoanWare Chrome Forensics.

249File Analysis

Offvis
OffVis is a tool from the Microsoft Security Research Center that can be used to
examine Office binary format documents. It is quite useful for browsing through
the structure of an Office document interactively and has built-in knowledge of the
Office binary internal structures. See Figure A.7 for an example of browsing the
structure of a Word document.

OffVis is available from http://go.microsoft.com/fwlink/?LinkId=158791.

FIguRE A�6

Mitec.cz Structured Storage Viewer.

FIguRE A�7

Microsoft’s OffVis.

250 APPENDIX A Free, Non-open Tools of Note

Note the text and hex view on in the left pane and the interpreted, structured view
on the right. Each pane drives the other—double clicking an interesting area in the
hex view will jump to the location of the structure in the right, and vice versa.

FileInsight
FileInsight is a hex editor from McAfee designed for analyzing malicious files.
While FileInsight is used primarily for examining Windows executables, some of its
features make it a good general file analysis editor. For example, examiners can apply
data structures (C or C++ header files) to interpret files. This can be used to apply
logic to the binary file format being examined. Prebuilt interpreters are included for
Windows executables and Office binary documents, as well as a variety of date and
time formats. The content of a file can be modified in-place using JavaScript, which
can be useful to apply decoding functions or other content transformations. Finally,
plugins can be developed using Python for more extensive tasks.

FileInsight is available from http://www.mcafee.com/us/downloads/free-tools/
fileinsight.aspx.

CHAPTER 9: AuTOMATIng AnALySIS AnD
 EXTEnDIng CAPABILITIES
Chapter 9 discussed some graphical examination environments and then went on
to discuss concepts related to timeline analysis. This section looks at two different
tools. First, we discuss a free, closed tool designed for examining text log data, which
can be used to examine timelines quite successfully. Next, we review a tool that
allows for secure and integrated management of the working notes produced during
an examination.

Mandiant: Highlighter
Mandiant Highlighter is a free tool designed for the purpose of intelligent examination
of log data. One of the problems with reviewing log data during incident response is
the sheer volume of data involved. Highlighter attempts to tackle this issue in several
ways. First, the pane on the right of actual log data is a graphical representation of the
entire log. In Figure A.8 you can immediately see patterns in the length of logs, which
can be of use in the investigation of many Web server attacks.

Highlighter provides line operations for any text file, but can provide field-based
operations when analyzing a delimited file. For example, once a time and date field
has been defined, the activity over time represented in the log file can be displayed as
a histogram. Additionally, unique values found in a specific field can be highlighted
in unique colors. This highlighting is displayed in the main log window, as well as in
the overall view in the right pane. This allows the examiner to quickly identify pat-
terns of access for highlighted IP addresses, usernames, or Web browser user agents,
for example. For an example of some of these features in action, see Figure A.9.

251Automating Analysis and Extending Capabilities

FIguRE A�9

Mandiant Highlighter—highlights and histogram.

FIguRE A�8

Mandiant Highlighter—log lines display.

252 APPENDIX A Free, Non-open Tools of Note

Other prominent features of HIGHLIGHTER include the highlighting of named
keywords, the removal of lines containing specific fields, and the management of
these actions—the examiner can remove any change that has been applied at any
time rather than relying on a serial “undo” buffer.

Highlighter can be retrieved from the Mandiant Web site, http://www.mandiant
.com/products/free_software/highlighter/.

Casenotes
Documentation is a key component in any case or examination, and there are a num-
ber of ways to keep notes of your work. One is to simply use a word processing
application, such as MSWord, as this allows not only for formatting and pasting of
images into the document, but is an accessible enough format that the document
can be opened easily by other analysts. OpenOffice (from openoffice.org) provides
a completely free suite of office applications, and the files produced can be saved in
formats that can be opened by other word processing (MSWord) or document reader
(Adobe Reader) applications. The key here is portability.

Another means for keeping case notes and documentation is with an applica-
tion such as Forensic CaseNotes from QCCIS.com. This is a tabbed application that
allows you to maintain contemporaneous notes about your examination; a sample
test case open in Forensic CaseNotes (FCN) is illustrated in Figure A.10.

FIguRE A�10

Sample case open in Forensic CaseNotes.

253Validation and Testing Resources

As you can see from Figure A.10, FCN includes several tabs (up to four
user configurable tabs) for maintaining various bits of case information. In the
test case, an “Hours” tab has been added, as consultants generally need to track
their time spent on cases on a daily basis, and having a separate tab (as with the
“Exhibit List” tab) simply makes it easier to maintain this information. Each
tab allows you to add and format text, add images, and so on, keeping complete
notes.

Another useful benefit of FCN is that it maintains an audit log of activity, such as
opening and closing the case, verifying the hash for the case notes file, and signifi-
cant modifications to the case notes (adding tabs, etc.).

vALIDATIOn AnD TESTIng RESOuRCES
Throughout the book we have mentioned validating and verifying tools. This can be
challenging given the disparate data sets encountered during a forensic examination.
To that end, we present the following resources that can be used to verify correct
operation of any of the tools you use, not just open source tools.

Digital Corpora
We use items from Digital Corpora extensively in this book. Simply put, Digital Cor-
pora is home to the most useful collection of varying, real-world files and file types
freely available: the Govdocs1 collection. This is a collection of nearly one million
files retrieved from government Web servers indexed via search engines. This is a
tremendous resource for examiners looking to validate tool operation against a wide
variety of files.

Additional available items include:

• Raw dumps from cell phones
• Disk images containing file systems that have undergone real or realistic use
• Complete investigation scenarios with supporting files

Digital Corpora files can be accessed at http//www.digitalcorpora.com.

Digital Forensics Tool Testing Images
The Digital Forensics Tool Testing (DFTT) Images collection is a set of carefully
crafted image files designed to exercise particular capabilities of forensic tools.
These images are terrific for testing the low-level function of file system processing
tools and ensuring validity of operation when parsing things such as complex parti-
tion structures and unallocated data.

The DFTT Images collection is available at http://dftt.sourceforge.net.

254 APPENDIX A Free, Non-open Tools of Note

Electronic Discovery Reference Model
The Electronic Discovery Reference Model (EDRM) provides a number of refer-
ence data sets specifically geared toward the calibration and verification of function
of e-discovery tools and techniques. The most interesting data set provided by the
EDRM is the Enron email data set. This consists of 107 Gigabytes of compressed
email, available as PST archives as well as the open EDRM XML standard. This
is a boon for any examiner looking to validate or expand the capabilities of email
examination tools.

The EDRM can be accessed at http://edrm.net/projects/dataset.

Digital Forensics Research Workshop Challenges
Every year since 2005, the Digital Forensics Research Workshop (DFRWS) has
presented a challenge to the forensics community. Each challenge is designed to
spur development and documentation of new open source tools and techniques
addressing a specific gap in forensic capabilities. These have ranged from mem-
ory images, to dumps from cell phones, to complete scenarios involving network
traces, disk, and memory images from game consoles. These challenges provide a
terrific baseline for examiners looking to test new or existing tools against interest-
ing data sets.

Visit the DFRWS Web site at http://www.dfrws.org.

Additional Images
Acquired system images are also available for testing and validation, as well as
for analysts to practice and maintain their skills from a number of locations. The
National Institute of Standards and Technology site includes the Computer Forensic
Reference Data Sets site, which offers an example image provided from a “hacking
case” (found on the Web at http://www.cfreds.nist.gov/Hacking_Case.html).

The image can be downloaded as a single expert witness format (EWF, popularly
referred to as “EnCase”) format image or as several image segments.

Also, Lance Mueller provides several “practical” exercises through his Web
site, forensickb.com. If you go to his site and search for the term “practical,”
you’ll find references to several scenarios that include links to images of Win-
dows XP systems that can be downloaded. You can then either try your hand at
the practical exercise that Lance outlined or simply sharpen your examination
skills.

Finally, the Honey Project provides a number of examples and includes mate-
rials through the Challenges page, found on the Web at http://www.honeynet.org/
challenges. These challenges span a range of scenarios from image analysis (system
images, diskettes, thumb drives, etc.), network packet captures (pcap files), log files,
etc. All of these can be used to develop and sharpen skills or used for training or
evaluation scenarios.

255References

References
 [1] Download details: Log Parser 2.2, Microsoft Download Center. http://www

.microsoft.com/downloads/en/details.aspx?FamilyID=890cd06b-abf8-4c25-91b2-
f8d975cf8c07&displaylang=en, (accessed 09.01.11).

 [2] ScriptCenter Tools: Log Parser 2.2 Examples, Microsoft ScriptCenter. http://technet
.microsoft.com/en-us/library/ee692659.aspx, (accessed 09.01.11).

 This page intentionally left blank

257

A
Accessed time stamp, 102
Acquisition, digital forensics process, 3
Adobe’s Portable Document Format, 206–209
Advanced Audio Coding (AAC), 186
Advanced Forensics Format (AFF), 56
Advanced Systems Format (ASF), 188–189
AFF, see Advanced Forensics Format
AFFuse, 23–24
Allocation file, 125
Alternate data streams (ADS), 76–77
Application programming interface (API),

145, 244
Application support directory, 138–139
Applications directory, 129
apt-get command, 11
Archives

RAR format, 193–195
seven-zip format, 195
TAR, GZIP, and BZIP2, 195–196
ZIP format, 192–193

Artifact extraction, automating, Fiwalk,
229–231

Artifacts, 2
GNOME Windows Manager, 114–116
Linux system organization and, 107–110

at command, 121
Attributes file, 127
Audio files

ASF format, 188–189
MP3 format, 186
MPEG-3 format, 186
MPEG-4 format, 186–188
WAV format, 185–186
WMA format, 188–189

Audio Video Interleave (AVI), 190

B
BASH, see Bourne Again Shell
Berkeley Software Distribution

License (BSD), 5
blkcalc command, 46
blkcat command, 45
blkls command, 45
blkstat command, 45
Block device, 101
Bookmarks.plist, 158

Bourne Again Shell (BASH), 141
Browser artifacts

Chrome, 154–156
Firefox, 147–154
internet explorer, 144–147
Safari, 156–160

Build-essential meta-package, 11
Bundles, 130

C
Cache directory, 140
Carrier, Brian, 2
Carving program, 58–61, 213–214

Foremost, 59–61
utilities, 60

Catalog file, 125
Catalog node ID (CNID), 125, 127
Changed time stamp, 102
Character device, 101
Chrome

bookmarks, 156
cache, 156
history locations, 154t
local state, 156
SQLite database

cookies, 154
history, 154
login data, 155
thumbnails, 155
web data, 155

CNID, see Catalog node ID
com.apple.Bluetooth.plist, 132
com.apple.DiskUtility.plist, 137
com.apple.finder.plist file, 137
com.apple.network.identification.plist, 131
com.apple.quicktimeplayer.plist, 135
com.apple.recentitems.plist, 136
Comma separated value (CSV), 245
Command line interface (CLI), 245
Command line log processing, 119–120
Common object file format (COFF)

specification, 89
Comprehensive Perl Archive Network (CPAN), 17
Configure script, 12–15
Containers, 54–56

forensic, 55–56
virtual machine disk images, 54

Page numbers followed by f indicates a figure and t indicates a table.

Index

258 Index

Content examination
binary files, 172
hexadecimal dump, 171

Content identification, 170–171
file command, 170
goal of, 170
magic files, 170
magic values, 170
to open specific files, 170

Cookies.plist, 158
Cookies.sqlite database, 148, 150
Copyleft license, 5
Cygwin, 26, 27, 27f, 28f

D
Data unit, 41

layer, 103
layer tools, 45–46

dcfldd command, 65–66
dd command, 20, 64–65
DebugFS, 99
Deleted data, 103–104
Deleted files, 62

recovering, 71
Deleted time stamp, 102
Delta links, 54
Device files, 101
DFF, see Digital Forensics Framework
diff command, 112
Digital archaeology, 2
Digital Corpora, 170, 253
Digital forensics

definition, 1
process of, 3–4

Digital Forensics Framework (DFF)
carving module, 226, 226f
GUI and command-line capabilities, 222
hexedit module, 227f, 228
installation and prerequisites, 222
modules and scripts, 221
NTFS parsing module, 223, 225f
raw image, 222, 224f
unzip module, 228, 228f
virtual file system, 221

Digital forensics process, analysis, 3
Digital Forensics Research Workshop

(DFRWS), 1, 254
Digital Forensics Tool Testing (DFTT), 253
Digital geology, 2
Disk, 40, 40f, 63

analysis, 242–244
partitioning and layouts, 52–54

disk_sreset, 43

disk_stat tool, 43
DMG files, 128
Documents

ODF files, 204–205
Office Open XML, 201–203
OLE compound files, 197–201
PDF, 206–209
RTF files, 205–206

Downloads.plist, 158
Downloads.sqlite databases, 148, 150
.DS_Store Parsing, 141

E
Electronic Discovery Reference

Model (EDRM), 254
Embedded times, 236
/etc/group file, 111
/etc/passwd file, 110, 111
/etc/shadow fille, 111
Event logs, 84–87

explorer, 244–245, 245f
header, 85f
hidden event records, 85
record structure, 85f
tools for parsing, 87

EWF, see Expert Witness Format
Examination system, preparing

building software, 9
file systems, 10
image files, 10
installing interpreters, 10

Exchangeable Image File Format (EXIF), 177
Exculpatory evidence, 3
eXtensible Metadata Platform (XMP), 177
exiftool, 178, 184, 185, 188
Expert Witness Format (EWF), 55–56

images, 67
Ext3 file system, 95
Ext4 file system, 96
Extents overflow file, 127
Ext2Fsd configuration, 34, 34f
Extract tool, 173

F
Farmer, Dan, 2
Favorites

definition, 145
URL shortcut, 146

fdisk command, 104
ffind command, 49
FHS, see Filesystem Hierarchy Standard
File allocation table (FAT) file

system, 69–71

259Index

File analysis
audio files, 185–189
content examination, 171–172
content identification, 170–171
Fileinsight, 249–250
image files, 175–185
JPEG files, 178–183
OffVis, 249–250
structured storage viewer, 248

File attributes, 109
file command, 20
File name, 41

layer, 99–101
layer tools, 48–49

File ownership, 108–109
File slack, 62, 63f
File system

analysis, 242–244
browsing, 218, 218f
layer, 96–99
layer tools, 44–45

File system abstraction model, 40–41
Filesystem Hierarchy Standard (FHS),

107, 108t
Firefox

bookmarks and backups, 153
cache locations, 151t
extensions, 153–154
JSON viewer, 152f
profile locations, 147t
saved session data, 151–153
SQLite databases, 148, 150

copy protection, 149
Flexibility, open source tools, 6
fls command, 48, 98
Foremost as file carving program, 59–61
Forensic analysis, goals of, 2–3
Forensic containers, 10, 55–56

AFF, 56
EWF/E01, 55–56
formats, 21

Forensic imaging, 61–66
dc3dd command, 65–66
dcfldd command, 65–66
dd command, 64–65
deleted data, 61–62
file slack, 62, 63f

Formhistory.sqlite databases, 148, 150
Free source

vs. open source, 4–5
F-Response, 76, 83
fsstat command, 44, 97, 124

FTK imager, 242, 243f
FUSE, 21
FXConnectToLastURL, 137
FXDesktopVolumePositions, 137
FXRecentFolders, 138

g
gem command, 18
getTime() function, 74
GNU build system

configure script, 12–15
make command, 15

GNU Public License (GPL), 5
Graphical investigation environments

DFF
carving module, 226, 226f
GUI and command-line capabilities, 222
hexedit module, 227f, 228
installation and prerequisites, 222
modules and scripts, 221
NTFS parsing module, 223, 225f
raw image, 222, 224f
unzip module, 228, 228f
virtual file system, 221

PyFLAG
carving, 213–214
file system browsing, 218, 218f
installation, 214–216
keyword searching and indexing, 213
log analysis, 214
network and memory forensics

support, 214
scanner progress, 218, 219f
scanners, 212
SQL queries, 213
virtual file system, 212

Graphics Interchange Format (GIF), 183–184
grep command, 50, 120
Ground Truth, 7
Group descriptor tables, 96
Group identifier (GID), 101
GUID Partition Table (GPT), 52
Guymager application, 67

H
Hachoir framework

hachoir-metadata, 172
hachoir-subfile, 172
hachoir-urwid, 172

Hachoir-metadata, 174
using parser-list option, 175

Hachoir-subfile program, 58

260 Index

Hachoir-urwid
examination, 194f
program, 141

Hash collisions, 58
Hashdeep, 57
Hashing, 56–58
Hex editors, 171
Hexadecimal dump, 171
hfind command, 51
HFS, see Hierarchical File System
HFS Explorer, 35, 36f
HFS+ formats used to support journaling

(HFSJ), 123
HFSExplorer, file system information in, 126f
Hidden directories, 132
Hidden files, Linux systems, 109
Hierarchical File System (HFS), 76
Hierarchical File System (HFS) plus,

123, 125
deleted data, 128
implementations, 128
special files, 125–128
structures, 123–129

History.plist, 159
Home directories, 112–116

GNOME Windows Manager
Artifacts, 114–116

shell history, 113
.ssh, 113–114

Host Protected Area (HPA), 43

I
icat command, 48, 128
ID3v1 tags, 186
ID3v2 tags, 186
ifind command, 48, 49
ils command, 47
Image file tools, 51
Imagemagick package, 175
Images

extracting data from, 177
GIF format, 183–184
JPEG format, 178–183
PNG format, 184–185
TIFF format, 185

ImDisk service, 31, 31f, 32, 32f
img_cat command, 51
img_stat command, 51
Inculpatory evidence, 3
Index.dat files, 244

Win32::URLCache, 144
Indirect block pointers, 102
Inferred times, 234–236

Inodes, 41
International Press Telecommunications Council

(IPTC), 177
Internet artifacts

browser artifacts
Chrome, 154–156
Firefox, 147–154
internet explorer, 144–147
Safari, 156–160

mail artifacts, PST, 161–163
Nirsoft tools, 247
Woanware tools, 247–248

Internet explorer
cache, 147
cookies, 146
favorites, 145–146, 145f
index.dat files, 144–145

Interpreters, installing
Linux

Perl, 16–17
Python, 17–18
Ruby, 18

Windows system
Perl—ActiveState, 28, 28f, 29f
Python, 28–30, 28f, 29f
Ruby, 28f, 30, 30f

istat command, 46, 128

J
JavaScript Object Notation (JSON), 151
jcat command, 52
JFFS2, 96
JFS, 96
jls command, 52
Joint Photographic Experts Group (JPEG), 178–183
Journal tools, 52, 103
JPEG File Interchange Format (JFIF), 178

k
Kexts, 131
Korzybski, Alfred, 7

L
last command, 117
lastlog command, 117
LastSession.plist, 160
Least Frequency of Occurrence, 237–238
Library directories, 129
Linux

file systems, 95–105
data unit layer, 103
file name layer, 99–101
file system layer, 96–99

261Index

journal tools, 103
LVM, 104–105
metadata layer, 101–103

GNU build system
configure script, 12–15
make command, 15

images, working with
AFFuse, 23–24
dd command, 20
file command, 20
forensic container formats, 21
FUSE, 21
loop device, 19
mmls command, 20
MountEWF, 22–23
Xmount, 24–25

permissions, 108–109
scheduling tasks, 121
software extraction, 11–12
version control systems, 16

Linux boot process and services, 105–107
BSD-style init process, 107
modern startup methods, 106
System V, 105–107

Linux Logical Volume Manager (LVM),
104–105

Linux system organization and artifacts, 107–110
ln command, 100
LNK files, 89
Locard’s exchange principle, 3
Log analysis, 214
Log parser, 245–246
Logs, 116–120, 139–140

command line log processing, 119–120
common log files of interest, 119t
statistics, 121
syslog, 101, 117–119, 118t
user activity logs, 116

Log2Timeline framework, 232
Loop device, 19
lsattr command, 109
LVM, see Linux Logical Volume Manager

M
M4A files, 186
Mac OS Extended, 123
MAC times, 231
mactime command, 48, 49
Magic file test, 170
Mail artifacts

mbox and maildir
Grepmail, 164–165

mairix, 165–166
PST, 161–163

make command, 15
Mandiant Highlighter, 250–252
Master Boot Record (MBR), 52
Master file table (MFT), 71–76, 71f

metadata files, 73
record header items, 72f

Matroska Multimedia Container format, 192
mbox and maildir

Grepmail, 164–165
mairix, 165–166

Md5deep, 57
Media analysis, 39–41
Metadata layer, 41, 101–103

tools, 46–48
MFT, see Master file table
Miscellaneous tools, 49–51
mke2fs command, 97
MKV format, 192
Mkvtoolnix package, 192
mmls command, 20, 43
mmstat command, 43
Modified time stamp, 101
MountEWF, 22–23
Moving Picture Experts Group (MPEG), 186
MPEG-4 Video (MP4), 189
MS IE Cache File (MSIECF) format, 144

n
Network configuration, OS X system artifacts,

131–132
New technology file system (NTFS), 71–77

alternate data streams (ADS), 76–77
file times, 73
MFT, 71–76
parsing module, 223, 225f
volume image, 32, 32f

Nirsoft tools, 247
NTFS, see New technology file system

O
Open source, 4–5

free source vs., 4–5
licenses, 5

Open Source Initiative, 4
Open source tools, benefits, 5–7

education, 5–6
portability and flexibility, 6
price, 6

OpenDocument format (ODF), 204–205
Orphaned files, 62

262 Index

OS X file system artifacts, 123–133
bundles, 130
hidden directories, 132
installed applications, 133
kexts, 131
network configuration, 131–132
property lists, 129
root directory, 129
show package contents in, 130f
swap and hibernation data, 133
system logs, 133, 133t
system startup and services, 130–131, 131t

Overwritten files, 62
Ownership/Permissions, 128–129

P
Partitioning

and disk layouts, 52–54
identification and recovery, 52–53
Linux file systems, 107

PE files, see Portable executable files
Periodicity, 236–237
Perl, 16–17
Perl package manager (ppm), 144
Perl—ActiveState, 28, 28f, 29f
Permissive license, 5
Personal storage table, mbox and maildir

Grepmail, 164–165
mairix, 165–166

Personal storage table (PST), 161–163
Pffexport, 162
Places.sqlite databases, 148, 150
plutil command, 129
Portability, open source tools, 6
Portable executable (PE) files, 89

binary contents at, 90f
extracting file version information, 91
parsing headers, 92
signature of IMAGE_NT_HEADER

structure, 90f
Portable Network Graphics (PNG), 184–185
Prefetch files, 87–88

metadata in, 88f
Presentation, digital forensics process, 4
Prodiscover Free, 242–244, 243f
Property lists, 129

types of, 129
PyFLAG, see Python-based Forensics and Log

Analysis GUI
Python, 17–18, 28–30, 28f, 29f
Python-based Forensics and Log Analysis GUI

(PyFLAG)
carving, 213–214

file system browsing, 218, 218f
installation, 214–216
keyword searching and indexing, 213
log analysis, 214
network and memory forensics

support, 214
scanner progress, 212, 218, 219f
SQL queries, 213
virtual file system, 212

Q
Quicktime video file format, 191–192

R
RAID, see Redundant Array of

Inexpensive Disks
RAID 0, 53
RAID 1, 53
RAID 5, 54
RAM slack, 63
Raw images, 10, 222, 224f

creating VMDKs from, 55
Redundant Array of Inexpensive Disks (RAID),

53–54
Registry, 78–89

files on disk, 79f
key cell structure, 81t
key node in hexadecimal, 80, 80f
nomenclature, 79, 79f
value node in hexadecimal, 81f

Registry Editor, 78, 78f
RegRipper, 83

GUI, 83f
in Linux distributions, 84

RegScan, 82
Regslack, 80
Regular expressions, 120
ReiserFS, 96
Relative times, 233–234
Remote syslog caveats, 118
Resource Interchange File Format (RIFF), 185
Rich Text Format (RTF), 205–206
Root directory, 98
Roshal Archive (RAR) format, 193–195
Ruby, 18, 28f, 30, 30f

S
Safari

cache, 159–160
lastsession.plist, 160

Safari forensic tools (SFT), 157, 158, 159
safari_hist tool, 159
SANS Forensic Summit 2008, 237

263Index

SANS Investigative Forensic Toolkit Workstation
(SIFT), 232

Secure Shell (ssh), 113–114
sed command, 119
Seven-zip format, 195
Shadow file, 111
Shell history, 113
SIFT, see SANS Investigative Forensic Toolkit

Workstation
sigfind command, 50
Simple RTF document, 206f
sort command, 121
sorter command, 51
SQL queries, 213
SQLite queries, 149f
Sqliteman program, 149
srch_strings command, 51
Startup file, 127
stat command, 100
Sticky bit, 110
strings command, 136
Structured query language (SQL), 245
sudo commands, 111
Superblock, 96
System logs, OS X system artifacts, 117–119,

118t, 133
System V, 105–107

T
Tagged Image File Format (TIFF), 185
Tarballs, 11
TestDisk tool, 53
The Coroner’s Toolkit (TCT), 41
The Sleuth Kit (TSK), 7, 41–52, 125,

130, 230
installing, 41–42
tools, 42–52

data unit layer, 45–46
disk layer, 43
file name layer, 48–49
file system layer, 44–45
image file, 51
journal, 52
metadata layer, 46–48
miscellaneous, 49–51
volume layer, 43–44

Thumbnail database files, 244
Timelines

embedded times, 236
inferred times, 234–236
Least Frequency of Occurrence,

237–238

Log2Timeline framework, 232
MAC times, 231
periodicity, 236–237
relative times, 233–234
SIFT, 232

/tmp directory, Linux system, 109–110
touch command, 102
.Trash, 140
TSK, see The Sleuth Kit

u
Ubuntu, 10, 11, 23
UDID, see Unique device identifier
UDIF, see Universal disk image format
Unallocated files, 62
Unique device identifier (UDID), 139
Universal disk image format (UDIF),

containers, 128
Unzip module, 228, 228f
User accounts, 110–112
User activity logs, 116
User artifacts, 134–141

home directories, 134–141
standard subdirectories in, 135t

shell history, 141
.Trash, 140
user’s library, 134–140

application support directory, 138–139
Cache directory, 140
logs, 139–140
preferences, 135

User identifier (UID), 101

v
Venema, Wietse, 2
Version control systems, 16
Video files

ASF format, 190–191
AVI format, 190
MKV format, 192
MPEG-4, 189
MPEG-1 & 2, 189
quicktime file format, 191–192
WMV format, 190–191

Virtual disk format, 55
Virtual file system, 212, 221
Virtual machine disk (VMDK) images, 54

creating from raw images, 55
Volume, 40, 40f, 63
Volume Groups, 104, 105
Volume layer tools, 43–44

264 Index

W
Waveform Audio File Format (WAV), 185–186
Web history examinations, 150
Wheel group, 111
Windows systems

building software, 26–27
event log explorer, 244–245
executables files on, 89–93
file analysis, 244
file systems, 69–77

working with, 34–35
images, working with, 31–33
installing interpreters

Perl—ActiveState, 28, 28f, 29f
Python, 28–30, 28f, 29f
Ruby, 28f, 30, 30f

shortcut files, 89

Win32::FileVersionInfo module, 91
Win32::TieRegistry module, 82
Win32::URLCache, 144
Woanware tools, 247–248

X
XFS, 96
Xmount, 24–25
XMP, see eXtensible Metadata Platform
xxd program, 171

y
YAFFS2, 96

Z
Zero effect, 111
ZIP archives, 192–193

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

	Front Cover
	Digital Forensics with Open Source Tools
	Copyright
	Table of Contents
	About the Authors
	Acknowledgments
	Introduction
	Chapter 1. Digital Forensics with Open Source Tools
	Welcome to “Digital Forensics with Open Source Tools”
	What Is “Digital Forensics?”
	What is “Open Source?”
	Benefits of Open Source Tools
	Summary
	References

	Chapter 2. Open Source Examination Platform
	Preparing the Examination System
	Using Linux as the Host
	Using Windows as the Host
	Summary
	References

	Chapter 3. Disk and File System Analysis
	Media Analysis Concepts
	The Sleuth Kit
	Partitioning and Disk Layouts
	Special Containers
	Hashing
	Carving
	Forensic Imaging
	Summary
	References

	Chapter 4. Windows Systems and Artifacts
	Introduction
	Windows File Systems
	Registry
	Event Logs
	Prefetch Files
	Shortcut Files
	Windows Executables
	Summary
	References

	Chapter 5. Linux Systems and Artifacts
	Introduction
	Linux File Systems
	Linux Boot Process and Services
	Linux System Organization and Artifacts
	User Accounts
	Home Directories
	Logs
	Scheduling Tasks
	Summary
	References

	Chapter 6. Mac OS X Systems and Artifacts
	Introduction
	OS X File System Artifacts
	OS X System Artifacts
	User Artifacts
	Summary
	References

	Chapter 7. Internet Artifacts
	Introduction
	Browser Artifacts
	Mail Artifacts
	Summary
	References

	Chapter 8. File Analysis
	File Analysis Concepts
	Images
	Audio
	Video
	Archives
	Documents
	Summary
	References

	Chapter 9. Automating Analysis and Extending Capabilities
	Introduction
	Graphical Investigation Environments
	Automating Artifact Extraction
	Timelines
	Summary
	References

	Appendix A. Free, Non-open Tools of Note
	Introduction
	Chapter 3: Disk and File System Analysis
	Chapter 4: Windows Systems and Artifacts
	Chapter 7: Internet Artifacts
	Chapter 8: File Analysis
	Chapter 9: Automating Analysis and Extending Capabilities

	Validation and Testing Resources
	References

	Index

