REVERSING

Secrets of Reverse Engineering

_,lzmn{rn:: l?n;:
AIEiEamI" add)
Jﬁpﬂ!E!Brep ‘PEpL. A
;mnfEmmni,"“ mownFa e
JRLDIE2 a0y and i)
ﬂﬂfeﬂm?? mnv ey
GOIE2 7% Hdd g 3y

EZH‘“’!H v

Eldad Eilam

Foreword by Elliot Chikofsky

Reversing: Secrets of
Reverse Engineering

Reversing: Secrets of

__ Reverse Engineering

Eldad Eilam

WILEY
Wiley Publishing, Inc.

Reversing: Secrets of Reverse Engineering
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

Library of Congress Control Number: 2005921595

ISBN-10: 0-7645-7481-7
ISBN-13: 978-0-7645-7481-8

Manufactured in the United States of America
10987654321
1B/QR/QU/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,

e-mail: brandreview@wiley.com.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no repre-
sentations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation warranties of fit-
ness for a particular purpose. No warranty may be created or extended by sales or promo-
tional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in ren-
dering any professional services. If professional assistance is required, the services of a com-
petent professional person should be sought. Neither the publisher nor the author shall be
liable for any damages arising herefrom. The fact that an organization or Website is referred
to in this work as a citation and/or a potential source of further information does not mean
that the author or the publisher endorses the information the organization or Website may
provide or recommendations it may make. Further, readers should be aware that Internet
Websites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services or to obtain technical support,
please contact our Customer Care Department within the U.S. at (800) 762-2974, outside the
U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States
and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with
any product or vendor mentioned in this book.

Executive Editor
Robert Elliott

Development Editor
Eileen Bien Calabro

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group
Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Editor
Pamela Hanley

Project Coordinator
Ryan Steffen

Credits

Graphics and Production Specialists
Denny Hager

Jennifer Heleine

Lynsey Osborn

Mary Gillot Virgin

Quality Control Technician
Leeann Harney

Proofreading and Indexing
TECHBOOKS Production Services

Cover Designer
Michael Trent

Foreword

It is amazing, and rather disconcerting, to realize how much software we run
without knowing for sure what it does. We buy software off the shelf in shrink-
wrapped packages. We run setup utilities that install numerous files, change
system settings, delete or disable older versions and superceded utilities, and
modify critical registry files. Every time we access a Web site, we may invoke
or interact with dozens of programs and code segments that are necessary to
give us the intended look, feel, and behavior. We purchase CDs with hundreds
of games and utilities or download them as shareware. We exchange useful
programs with colleagues and friends when we have tried only a fraction of
each program’s features.

Then, we download updates and install patches, trusting that the vendors
are sure that the changes are correct and complete. We blindly hope that the
latest change to each program keeps it compatible with all of the rest of the
programs on our system. We rely on much software that we do not understand
and do not know very well at all.

I refer to a lot more than our desktop or laptop personal computers. The
concept of ubiquitous computing, or “software everywhere,” is rapidly
putting software control and interconnection in devices throughout our envi-
ronment. The average automobile now has more lines of software code in its
engine controls than were required to land the Apollo astronauts on the Moon.

Today’s software has become so complex and interconnected that the devel-
oper often does not know all the features and repercussions of what has been
created in an application. It is frequently too expensive and time-consuming to
test all control paths of a program and all groupings of user options. Now, with
multiple architecture layers and an explosion of networked platforms that the
software will run on or interact with, it has become literally impossible for all

Foreword

combinations to be examined and tested. Like the problems of detecting drug
interactions in advance, many software systems are fielded with issues
unknown and unpredictable.

Reverse engineering is a critical set of techniques and tools for understand-
ing what software is really all about. Formally, it is “the process of analyzing a
subject system to identify the system’s components and their interrelation-
ships and to create representations of the system in another form or at a higher
level of abstraction”(IEEE 1990). This allows us to visualize the software’s
structure, its ways of operation, and the features that drive its behavior. The
techniques of analysis, and the application of automated tools for software
examination, give us a reasonable way to comprehend the complexity of the
software and to uncover its truth.

Reverse engineering has been with us a long time. The conceptual Revers-
ing process occurs every time someone looks at someone else’s code. But, it
also occurs when a developer looks at his or her own code several days after it
was written. Reverse engineering is a discovery process. When we take a fresh
look at code, whether developed by ourselves or others, we examine and we
learn and we see things we may not expect.

While it had been the topic of some sessions at conferences and computer
user groups, reverse engineering of software came of age in 1990. Recognition
in the engineering community came through the publication of a taxonomy on
reverse engineering and design recovery concepts in IEEE Software magazine.
Since then, there has been a broad and growing body of research on Reversing
techniques, software visualization, program understanding, data reverse engi-
neering, software analysis, and related tools and approaches. Research
forums, such as the annual international Working Conference on Reverse
Engineering (WCRE), explore, amplify, and expand the value of available tech-
niques. There is now increasing interest in binary Reversing, the principal
focus of this book, to support platform migration, interoperability, malware
detection, and problem determination.

As a management and information technology consultant, I have often been
asked: “How can you possibly condone reverse engineering?” This is soon fol-
lowed by: “You've developed and sold software. Don’t you want others to
respect and protect your copyrights and intellectual property?” This discus-
sion usually starts from the negative connotation of the term reverse engineer-
ing, particularly in software license agreements. However, reverse engineering
technologies are of value in many ways to producers and consumers of soft-
ware along the supply chain.

A stethoscope could be used by a burglar to listen to the lock mechanism of
a safe as the tumblers fall in place. But the same stethoscope could be used
by your family doctor to detect breathing or heart problems. Or, it could
be used by a computer technician to listen closely to the operating sounds
of a sealed disk drive to diagnose a problem without exposing the drive to

Foreword

potentially-damaging dust and pollen. The tool is not inherently good or bad.
The issue is the use to which the tool is put.

In the early 1980s, IBM decided that it would no longer release to its cus-
tomers the source code for its mainframe computer operating systems. Main-
frame customers had always relied on the source code for reference in problem
solving and to tailor, modify, and extend the IBM operating system products. I
still have my button from the IBM user group Share that reads: “If SOURCE is
outlawed, only outlaws will have SOURCE,” a word play on a famous argu-
ment by opponents of gun-control laws. Applied to current software, this
points out that hackers and developers of malicious code know many tech-
niques for deciphering others’ software. It is useful for the good guys to know
these techniques, too.

Reverse engineering is particularly useful in modern software analysis for a
wide variety of purposes:

m Finding malicious code. Many virus and malware detection techniques
use reverse engineering to understand how abhorrent code is struc-
tured and functions. Through Reversing, recognizable patterns emerge
that can be used as signatures to drive economical detectors and code
scanners.

m Discovering unexpected flaws and faults. Even the most well-designed
system can have holes that result from the nature of our “forward engi-
neering” development techniques. Reverse engineering can help iden-
tify flaws and faults before they become mission-critical software
failures.

m Finding the use of others’ code. In supporting the cognizant use of
intellectual property, it is important to understand where protected
code or techniques are used in applications. Reverse engineering tech-
niques can be used to detect the presence or absence of software ele-
ments of concern.

m Finding the use of shareware and open source code where it was not
intended to be used. In the opposite of the infringing code concern, if a
product is intended for security or proprietary use, the presence of pub-
licly available code can be of concern. Reverse engineering enables the
detection of code replication issues.

m Learning from others” products of a different domain or purpose.
Reverse engineering techniques can enable the study of advanced soft-
ware approaches and allow new students to explore the products of
masters. This can be a very useful way to learn and to build on a grow-
ing body of code knowledge. Many Web sites have been built by seeing
what other Web sites have done. Many Web developers learned HTML
and Web programming techniques by viewing the source of other sites.

Foreword

m Discovering features or opportunities that the original developers did
not realize. Code complexity can foster new innovation. Existing tech-
niques can be reused in new contexts. Reverse engineering can lead to
new discoveries about software and new opportunities for innovation.

In the application of computer-aided software engineering (CASE)
approaches and automated code generation, in both new system development
and software maintenance, I have long contended that any system we build
should be immediately run through a suite of reverse engineering tools. The
holes and issues that are uncovered would save users, customers, and support
staff many hours of effort in problem detection and solution. The savings
industry-wide from better code understanding could be enormous.

I've been involved in research and applications of software reverse engi-
neering for 30 years, on mainframes, mid-range systems and PCs, from pro-
gram language statements, binary modules, data files, and job control streams.
In that time, I have heard many approaches explained and seen many tech-
niques tried. Even with that background, I have learned much from this book
and its perspective on reversing techniques. I am sure that you will too.

Elliot Chikofsky

Engineering Management and Integration (Herndon, VA)

Chair, Reengineering Forum

Executive Secretary, IEEE Technical Council on Software Engineering

Acknowledgments

First I would like to thank my beloved Odelya (“Oosa”) Buganim for her con-
stant support and encouragement—I couldn’t have done it without you!

I would like to thank my family for their patience and support: my grand-
parents, Yosef and Pnina Vertzberger, my parents, Avraham and Nava Eilam-
Amzallag, and my brother, Yaron Eilam.

I'd like to thank my editors at Wiley: My executive editor, Bob Elliott, for
giving me the opportunity to write this book and to work with him, and my
development editor, Eileen Bien Calabro, for being patient and forgiving with
a first-time author whose understanding of the word deadline comes from
years of working in the software business.

Many talented people have invested a lot of time and energy in reviewing
this book and helping me make sure that it is accurate and enjoyable to read.
I'd like to give special thanks to David Sleeper for spending all of those long
hours reviewing the entire manuscript, and to Alex Ben-Ari for all of his use-
ful input and valuable insights. Thanks to George E. Kalb for his review of Part
I1I, to Mike Van Emmerik for his review of the decompilation chapter, and to
Dr. Roger Kingsley for his detailed review and input. Finally, I'd like to
acknowledge Peter S. Canelias who reviewed the legal aspects of this book.

This book would probably never exist if it wasn’t for Avner (“Sabi”)
Zangyvil, who originally suggested the idea of writing a book about reverse
engineering and encouraged me to actually write it.

I'd like to acknowledge my good friends, Adar Cohen and Ori Weitz for
their friendship and support.

Last, but not least, this book would not have been the same without Bookey,
our charming cat who rested and purred on my lap for many hours while I
was writing this book.

xi

Foreword

Contents

Acknowledgments

Introduction

Part |
Chapter 1

Reversing 101

Foundations
What Is Reverse Engineering?
Software Reverse Engineering: Reversing
Reversing Applications
Security-Related Reversing
Malicious Software
Reversing Cryptographic Algorithms
Digital Rights Management
Auditing Program Binaries
Reversing in Software Development
Achieving Interoperability with Proprietary Software
Developing Competing Software
Evaluating Software Quality and Robustness
Low-Level Software
Assembly Language
Compilers
Virtual Machines and Bytecodes
Operating Systems

vii

xi

XXiii

_ e e
N = O \WO\WO oI\ U U b wWwW

U
@

xiv Contents

Chapter 2

The Reversing Process
System-Level Reversing
Code-Level Reversing
The Tools
System-Monitoring Tools
Disassemblers
Debuggers
Decompilers
Is Reversing Legal?
Interoperability
Competition
Copyright Law
Trade Secrets and Patents
The Digital Millenium Copyright Act
DMCA Cases
License Agreement Considerations
Code Samples & Tools
Conclusion

Low-Level Software
High-Level Perspectives
Program Structure
Modules
Common Code Constructs
Data Management
Variables
User-Defined Data Structures
Lists
Control Flow
High-Level Languages
C
C++
Java
C#
Low-Level Perspectives
Low-Level Data Management
Registers
The Stack
Heaps
Executable Data Sections
Control Flow
Assembly Language 101
Registers
Flags
Instruction Format
Basic Instructions
Moving Data
Arithmetic
Comparing Operands

13
14
14
14
15
15
15
16
17
17
18
19
20
20
22
23
23
23

25
26
26
28
28
29
30
30
31
32
33
34
35
36
36
37
37
39
40
42
43
43
44
44
46
47
48
49
49
50

Contents

XV

Conditional Branches
Function Calls
Examples
A Primer on Compilers and Compilation
Defining a Compiler
Compiler Architecture
Front End
Intermediate Representations
Optimizer
Back End
Listing Files
Specific Compilers
Execution Environments
Software Execution Environments (Virtual Machines)
Bytecodes
Interpreters
Just-in-Time Compilers
Reversing Strategies
Hardware Execution Environments in Modern Processors
Intel NetBurst
pops (Micro-Ops)
Pipelines
Branch Prediction
Conclusion

Chapter 3 Windows Fundamentals
Components and Basic Architecture
Brief History
Features
Supported Hardware
Memory Management
Virtual Memory and Paging
Paging
Page Faults
Working Sets
Kernel Memory and User Memory
The Kernel Memory Space
Section Objects
VAD Trees
User-Mode Allocations
Memory Management APIs
Objects and Handles
Named objects
Processes and Threads
Processes
Threads
Context Switching
Synchronization Objects
Process Initialization Sequence

51
51
52
53
54
55
55
55
56
57
58
59
60
60
61
61
62
62
63
65
65
65
67
68

69
70
70
70
71
71
72
73
73
74
74
75
77
78
78
79
80
81
83
84
84
85
86
87

xvi Contents
Application Programming Interfaces 88
The Win32 API 88
The Native API 90
System Calling Mechanism 91
Executable Formats 93
Basic Concepts 93
Image Sections 95
Section Alignment 95
Dynamically Linked Libraries 96
Headers 97
Imports and Exports 99
Directories 99
Input and Output 103
The I/0O System 103
The Win32 Subsystem 104
Object Management 105
Structured Exception Handling 105
Conclusion 107
Chapter 4 Reversing Tools 109
Different Reversing Approaches 110
Offline Code Analysis (Dead-Listing) 110
Live Code Analysis 110
Disassemblers 110
IDA Pro 112
ILDasm 115
Debuggers 116
User-Mode Debuggers 118
OllyDbg 118
User Debugging in WinDbg 119
IDA Pro 121
PEBrowse Professional Interactive 122
Kernel-Mode Debuggers 122
Kernel Debugging in WinDbg 123
Numega SoftICE 124
Kernel Debugging on Virtual Machines 127
Decompilers 129
System-Monitoring Tools 129
Patching Tools 131
Hex Workshop 131
Miscellaneous Reversing Tools 133
Executable-Dumping Tools 133
DUMPBIN 133
PEView 137
PEBrowse Professional 137
Conclusion 138

Contents xvii

Part Il
Chapter 5

Chapter 6

Applied Reversing

Beyond the Documentation
Reversing and Interoperability
Laying the Ground Rules
Locating Undocumented APIs
What Are We Looking For?

Case Study: The Generic Table APIin NTDLL.DLL

RtlInitializeGenericTable
RtINumberGenericTableElements
RtlIsGenericTableEmpty
RtlGetElementGenericTable

Setup and Initialization

Logic and Structure

Search Loop 1

Search Loop 2

Search Loop 3

Search Loop 4

Reconstructing the Source Code
RtlInsertElementGenericTable

RtlLocateNodeGenericTable

RtlReallnsertElementWorker

Splay Trees
RtlLookupElementGenericTable
RtlDeleteElementGenericTable
Putting the Pieces Together

Conclusion

Deciphering File Formats

Cryptex

Using Cryptex

Reversing Cryptex

The Password Verification Process
Catching the “Bad Password” Message
The Password Transformation Algorithm
Hashing the Password

The Directory Layout
Analyzing the Directory Processing Code
Analyzing a File Entry

Dumping the Directory Layout

The File Extraction Process
Scanning the File List
Decrypting the File
The Floating-Point Sequence
The Decryption Loop
Verifying the Hash Value

The Big Picture

Digging Deeper

Conclusion

139

141
142
142
143
144
145
146
151
152
153
155
159
161
163
164
165
165
168
170
178
187
188
193
194
196

199
200
201
202
207
207
210
213
218
218
223
227
228
234
235
236
238
239
239
241
242

xviii Contents

Chapter 7

Chapter 8

Auditing Program Binaries
Defining the Problem
Vulnerabilities
Stack Overflows
A Simple Stack Vulnerability
Intrinsic Implementations
Stack Checking
Nonexecutable Memory
Heap Overflows
String Filters
Integer Overflows
Arithmetic Operations on User-Supplied Integers
Type Conversion Errors
Case-Study: The IIS Indexing Service Vulnerability
CVariableSet:: AddExtensionControlBlock
DecodeURLEscapes
Conclusion

Reversing Malware
Types of Malware
Viruses
Worms
Trojan Horses
Backdoors
Mobile Code
Adware/Spyware
Sticky Software
Future Malware
Information-Stealing Worms
BIOS/Firmware Malware
Uses of Malware
Malware Vulnerability
Polymorphism
Metamorphism
Establishing a Secure Environment
The Backdoor.Hacarmy.D
Unpacking the Executable
Initial Impressions
The Initial Installation
Initializing Communications
Connecting to the Server
Joining the Channel
Communicating with the Backdoor
Running SOCKS4 Servers
Clearing the Crime Scene
The Backdoor.Hacarmy.D: A Command Reference
Conclusion

243
243
245
245
247
249
250
254
255
256
256
258
260
262
263
267
271

273
274
274
274
275
276
276
276
277
278
278
279
280
281
282
283
285
285
286
290
291
294
296
298
299
303
303
304
306

Contents

Part 111
Chapter 9

Chapter 10

Cracking

Piracy and Copy Protection
Copyrights in the New World
The Social Aspect
Software Piracy
Defining the Problem
Class Breaks
Requirements
The Theoretically Uncrackable Model
Types of Protection
Media-Based Protections
Serial Numbers
Challenge Response and Online Activations
Hardware-Based Protections
Software as a Service
Advanced Protection Concepts
Crypto-Processors
Digital Rights Management
DRM Models
The Windows Media Rights Manager
Secure Audio Path
Watermarking
Trusted Computing
Attacking Copy Protection Technologies
Conclusion

Antireversing Techniques

Why Antireversing?

Basic Approaches to Antireversing

Eliminating Symbolic Information

Code Encryption

Active Antidebugger Techniques
Debugger Basics
The IsDebuggerPresent API
SystemKernelDebuggerInformation
Detecting SoftICE Using the Single-Step Interrupt
The Trap Flag
Code Checksums

Confusing Disassemblers
Linear Sweep Disassemblers
Recursive Traversal Disassemblers
Applications

Code Obfuscation

Control Flow Transformations
Opaque Predicates
Confusing Decompilers
Table Interpretation

307

309
309
310
310
311
312
313
314
314
314
315
315
316
317
318
318
319
320
321
321
321
322
324
324

327
327
328
329
330
331
331
332
333
334
335
335
336
337
338
343
344
346
346
348
348

XX

Contents

Chapter 11

Part IV
Chapter 12

Inlining and Outlining

Interleaving Code

Ordering Transformations
Data Transformations

Modifying Variable Encoding

Restructuring Arrays
Conclusion

Breaking Protections
Patching
Keygenning
Ripping Key-Generation Algorithms
Advanced Cracking: Defender
Reversing Defender’s Initialization Routine
Analyzing the Decrypted Code
SoftICE’s Disappearance
Reversing the Secondary Thread
Defeating the “Killer” Thread
Loading KERNEL32.DLL
Reencrypting the Function
Back at the Entry Point
Parsing the Program Parameters
Processing the Username
Validating User Information
Unlocking the Code
Brute-Forcing Your Way through Defender
Protection Technologies in Defender
Localized Function-Level Encryption
Relatively Strong Cipher Block Chaining
Reencrypting
Obfuscated Application/Operating System Interface
Processor Time-Stamp Verification Thread
Runtime Generation of Decryption Keys
Interdependent Keys
User-Input-Based Decryption Keys
Heavy Inlining
Conclusion

Beyond Disassembly

Reversing .NET
Ground Rules
.NET Basics
Managed Code
.NET Programming Languages
Common Type System (CTS)
Intermediate Language (IL)
The Evaluation Stack
Activation Records

353
354
355
355
355
356
356

357
358
364
365
370
377
387
396
396
399
400
401
402
404
406
407
409
409
415
415
415
416
416
417
418
418
419
419
419

421

423
424
426
426
428
428
429
430
430

Contents

Chapter 13

IL Instructions
IL Code Samples
Counting Items
A Linked List Sample
Decompilers
Obfuscators
Renaming Symbols
Control Flow Obfuscation
Breaking Decompilation and Disassembly
Reversing Obfuscated Code
XenoCode Obfuscator
DotFuscator by Preemptive Solutions
Remotesoft Obfuscator and Linker
Remotesoft Protector
Precompiled Assemblies
Encrypted Assemblies
Conclusion

Decompilation
Native Code Decompilation: An Unsolvable Problem?
Typical Decompiler Architecture
Intermediate Representations
Expressions and Expression Trees
Control Flow Graphs
The Front End
Semantic Analysis
Generating Control Flow Graphs
Code Analysis
Data-Flow Analysis
Single Static Assignment (SSA)
Data Propagation
Register Variable Identification
Data Type Propagation
Type Analysis
Primitive Data Types
Complex Data Types
Control Flow Analysis
Finding Library Functions
The Back End
Real-World IA-32 Decompilation
Conclusion

Appendix A Deciphering Code Structures

Appendix B Understanding Compiled Arithmetic

Appendix C Deciphering Program Data

Index

430
433
433
436
443
444
444
444
444
445
446
448
451
452
453
453
455

457
457
459
459
461
462
463
463
464
466
466
467
468
470
471
472
472
473
475
475
476
477
477

479
519
537
561

Introduction

Welcome to Reversing: Secrets of Reverse Engineering. This book was written
after years of working on software development projects that repeatedly
required reverse engineering of third party code, for a variety of reasons. At
first this was a fairly tedious process that was only performed when there was
simply no alternative means of getting information. Then all of a sudden, a
certain mental barrier was broken and I found myself rapidly sifting through
undocumented machine code, quickly deciphering its meaning and getting
the answers I wanted regarding the code’s function and purpose. At that point
it dawned on me that this was a remarkably powerful skill, because it meant
that I could fairly easily get answers to any questions I had regarding software
I was working with, even when I had no access to the relevant documentation
or to the source code of the program in question. This book is about providing
knowledge and techniques to allow anyone with a decent understanding of
software to do just that.

The idea is simple: we should develop a solid understanding of low-level
software, and learn techniques that will allow us to easily dig into any pro-
gram’s binaries and retrieve information. Not sure why a system behaves the
way it does and no one else has the answers? No problem—dig into it on your
own and find out. Sounds scary and unrealistic? It’s not, and this is the very
purpose of this book, to teach and demonstrate reverse engineering techniques
that can be applied daily, for solving a wide variety of problems.

But I'm getting ahead of myself. For those of you that haven’t been exposed
to the concept of software reverse engineering, a little introduction is in order.

xxiv Introduction

Reverse Engineering and Low-Level Software

Before we get into the various topics discussed throughout this book, we
should formally introduce its primary subject: reverse engineering. Reverse
engineering is a process where an engineered artifact (such as a car, a jet
engine, or a software program) is deconstructed in a way that reveals its inner-
most details, such as its design and architecture. This is similar to scientific
research that studies natural phenomena, with the difference that no one com-
monly refers to scientific research as reverse engineering, simply because no
one knows for sure whether or not nature was ever engineered.

In the software world reverse engineering boils down to taking an existing
program for which source-code or proper documentation is not available and
attempting to recover details regarding its” design and implementation. In
some cases source code is available but the original developers who created it
are unavailable. This book deals specifically with what is commonly referred
to as binary reverse engineering. Binary reverse engineering techniques aim at
extracting valuable information from programs for which source code in
unavailable. In some cases it is possible to recover the actual source-code (or a
similar high-level representation) from the program binaries, which greatly
simplifies the task because reading code presented in a high-level language is
far easier than reading low-level assembly language code. In other cases we
end up with a fairly cryptic assembly language listing that describes the pro-
gram. This book explains this process and why things work this way, while
describing in detail how to decipher the program’s code in a variety of differ-
ent environments.

I've decided to name this book “Reversing”, which is the term used by many
online communities to describe reverse engineering. Because the term
reversing can be seen as a nickname for reverse engineering | will be using the
two terms interchangeably throughout this book.

Most people get a bit anxious when they try to imagine trying to extract
meaningful information from an executable binary, and I've made it the pri-
mary goal of this book to prove that this fear is not justified. Binary reverse
engineering works, it can solve problems that are often incredibly difficult to
solve in any other way, and it is not as difficult as you might think once you
approach it in the right way.

This book focuses on reverse engineering, but it actually teaches a great deal
more than that. Reverse engineering is frequently used in a variety of environ-
ments in the software industry, and one of the primary goals of this book is to
explore many of these fields while teaching reverse engineering.

Introduction

XXV

Here is a brief listing of some of the topics discussed throughout this book:
m Assembly language for IA-32 compatible processors and how to read
compiler-generated assembly language code.

m Operating systems internals and how to reverse engineer an operating
system.

m Reverse engineering on the .NET platform, including an introduction to
the NET development platform and its assembly language: MSIL.

m Data reverse engineering: how to decipher an undocumented file-for-
mat or network protocol.

m The legal aspects of reverse engineering: when is it legal and when is
it not?
m Copy protection and digital rights management technologies.

m How reverse engineering is applied by crackers to defeat copy protec-
tion technologies.

m Techniques for preventing people from reverse engineering code and a
sober attempt at evaluating their effectiveness.

m The general principles behind modern-day malicious programs and
how reverse engineering is applied to study and neutralize such
programs.

m A live session where a real-world malicious program is dissected and
revealed, also revealing how an attacker can communicate with the pro-
gram to gain control of infected systems.

m The theory and principles behind decompilers, and their effectiveness
on the various low-level languages.

How This Book Is Organized

This book is divided into four parts. The first part provides basics that will be
required in order to follow the rest of the text, and the other three present dif-
ferent reverse engineering scenarios and demonstrates real-world case stud-
ies. The following is a detailed description of each of the four parts.

Part I — Reversing 101: The book opens with a discussion of all the basics
required in order to understand low-level software. As you would
expect, these chapters couldn’t possibly cover everything, and should
only be seen as a refreshing survey of materials you've studied before. If
all or most of the topics discussed in the first three chapters of this book
are completely new to you, then this book is probably not for you. The

xXxvi

Introduction

primary topics studied in these chapters are: an introduction to reverse
engineering and its various applications (chapter 1), low-level software
concepts (chapter 2), and operating systems internals, with an emphasis
on Microsoft Windows (chapter 3). If you are highly experienced with
these topics and with low-level software in general, you can probably
skip these chapters. Chapter 4 discusses the various types of reverse
engineering tools used and recommends specific tools that are suitable
for a variety of situations. Many of these tools are used in the reverse
engineering sessions demonstrated throughout this book.

Part IT - Applied Reversing: The second part of the book demonstrates

real reverse engineering projects performed on real software. Each chap-
ter focuses on a different kind of reverse engineering application. Chap-
ter 5 discusses the highly-popular scenario where an operating-system
or third party library is reverse engineered in order to make better use of
its internal services and APIs. Chapter 6 demonstrates how to decipher
an undocumented, proprietary file-format by applying data reverse
engineering techniques. Chapter 7 demonstrates how vulnerability
researchers can look for vulnerabilities in binary executables using
reverse engineering techniques. Finally, chapter 8 discusses malicious
software such as viruses and worms and provides an introduction to this
topic. This chapter also demonstrates a real reverse engineering session
on a real-world malicious program, which is exactly what malware
researches must often go through in order to study malicious programs,
evaluate the risks they pose, and learn how to eliminate them.

Part III - Piracy and Copy Protection: This part focuses on the reverse

engineering of certain types of security-related code such as copy protec-
tion and Digital Rights Management (DRM) technologies. Chapter 9
introduces the subject and discusses the general principals behind copy
protection technologies. Chapter 10 describes anti-reverse-engineering
techniques such as those typically employed in copy-protection and
DRM technologies and evaluates their effectiveness. Chapter 11 demon-
strates how reverse engineering is applied by “crackers” to defeat copy
protection mechanisms and steal copy-protected content.

Part IV - Beyond Disassembly: The final part of this book contains materi-

als that go beyond simple disassembly of executable programs. Chapter
12 discusses the reverse engineering process for virtual-machine based
programs written under the Microsoft NET development platform. The
chapter provides an introduction to the .NET platform and its low-level
assembly language, MSIL (Microsoft Intermediate Language). Chapter
13 discusses the more theoretical topic of decompilation, and explains
how decompilers work and why decompiling native assembly-language
code can be so challenging.

Introduction xxvii

Appendixes: The book has three appendixes that serve as a powerful refer-
ence when attempting to decipher programs written in Intel IA-32
assembly language. Far beyond a mere assembly language reference
guide, these appendixes describe the common code fragments and com-
piler idioms emitted by popular compilers in response to typical code
sequences, and how to identify and decipher them.

Who Should Read this Book

This book exposes techniques that can benefit people from a variety of fields.
Software developers interested in improving their understanding of various
low-level aspects of software: operating systems, assembly language, compila-
tion, etc. would certainly benefit. More importantly, anyone interested in
developing techniques that would enable them to quickly and effectively
research and investigate existing code, whether it's an operating system, a
software library, or any software component. Beyond the techniques taught,
this book also provides a fascinating journey through many subjects such as
security, copyright control, and others. Even if you're not specifically inter-
ested in reverse engineering but find one or more of the sub-topics interesting,
you're likely to benefit from this book.

In terms of pre-requisites, this book deals with some fairly advanced techni-
cal materials, and I've tried to make it as self-contained as possible. Most of the
required basics are explained in the first part of the book. Still, a certain
amount of software development knowledge and experience would be essen-
tial in order to truly benefit from this book. If you don’t have any professional
software development experience but are currently in the process of studying
the topic, you'll probably get by. Conversely, if you've never officially studied
computers but have been programming for a couple of years, you’ll probably
be able to benefit from this book.

Finally, this book is probably going to be helpful for more advanced readers
who are already experienced with low-level software and reverse engineering
who would like to learn some interesting advanced techniques and how to
extract remarkably detailed information from existing code.

Tools and Platforms

Reverse engineering revolves around a variety of tools which are required in
order to get the job done. Many of these tools are introduced and discussed
throughout this book, and I've intentionally based most of my examples on free
tools, so that readers can follow along without having to shell out thousands of

xxviii Introduction

dollars on tools. Still, in some cases massive reverse engineering projects can
greatly benefit from some of these expensive products. I have tried to provide
as much information as possible on every relevant tool and to demonstrate the
effect it has on the process. Eventually it will be up to the reader to decide
whether or not the project justifies the expense.

Reverse engineering is often platform-specific. It is affected by the specific
operating system and hardware platform used. The primary operating system
used throughout this book is Microsoft Windows, and for a good reason. Win-
dows is the most popular reverse engineering environment, and not only
because it is the most popular operating system in general. Its lovely open-
source alternative Linux, for example, is far less relevant from a reversing
standpoint precisely because the operating system and most of the software
that runs on top of it are open-source. There’s no point in reversing open-
source products—just read the source-code, or better yet, ask the original
developer for answers. There are no secrets.

What's on the Web Site

The book’s website can be visited at http://www.wiley.com/go/eeilam, and
contains the sample programs investigated throughout the book. I've also
added links to various papers, products, and online resources discussed
throughout the book.

Where to Go from Here?

This book was designed to be read continuously, from start to finish. Of
course, some people would benefit more from reading only select chapters of
interest. In terms of where to start, regardless of your background, I would rec-
ommend that you visit Chapter 1 to make sure you have all the basic reverse
engineering related materials covered. If you haven’t had any significant
reverse engineering or low-level software experience I would strongly recom-
mend that you read this book in its “natural” order, at least the first two parts
of it.

If you are highly experienced and feel like you are sufficiently familiar with
software development and operating systems, you should probably skip to
Chapter 4 and go over the reverse engineering tools.

Foundations

This chapter provides some background information on reverse engineering
and the various topics discussed throughout this book. We start by defining
reverse engineering and the various types of applications it has in software,
and proceed to demonstrate the connection between low-level software and
reverse engineering. There is then a brief introduction of the reverse-engineering
process and the tools of the trade. Finally, there is a discussion on the legal
aspects of reverse engineering with an attempt to classify the cases in which
reverse engineering is legal and when it’s not.

What Is Reverse Engineering?

Reverse engineering is the process of extracting the knowledge or design blue-
prints from anything man-made. The concept has been around since long
before computers or modern technology, and probably dates back to the days
of the industrial revolution. It is very similar to scientific research, in which a
researcher is attempting to work out the “blueprint” of the atom or the human
mind. The difference between reverse engineering and conventional scientific
research is that with reverse engineering the artifact being investigated is man-
made, unlike scientific research where it is a natural phenomenon.

Reverse engineering is usually conducted to obtain missing knowledge,
ideas, and design philosophy when such information is unavailable. In some

Chapter 1

cases, the information is owned by someone who isn’t willing to share them.
In other cases, the information has been lost or destroyed.

Traditionally, reverse engineering has been about taking shrink-wrapped
products and physically dissecting them to uncover the secrets of their design.
Such secrets were then typically used to make similar or better products. In
many industries, reverse engineering involves examining the product under a
microscope or taking it apart and figuring out what each piece does.

Not too long ago, reverse engineering was actually a fairly popular hobby,
practiced by a large number of people (even if it wasn’t referred to as reverse
engineering). Remember how in the early days of modern electronics, many
people were so amazed by modern appliances such as the radio and television
set that it became common practice to take them apart and see what goes on
inside? That was reverse engineering. Of course, advances in the electronics
industry have made this practice far less relevant. Modern digital electronics
are so miniaturized that nowadays you really wouldn’t be able to see much of
the interesting stuff by just opening the box.

Software Reverse Engineering: Reversing

Software is one of the most complex and intriguing technologies around us
nowadays, and software reverse engineering is about opening up a program’s
“box,” and looking inside. Of course, we won’t need any screwdrivers on this
journey. Just like software engineering, software reverse engineering is a
purely virtual process, involving only a CPU, and the human mind.

Software reverse engineering requires a combination of skills and a thor-
ough understanding of computers and software development, but like most
worthwhile subjects, the only real prerequisite is a strong curiosity and desire
to learn. Software reverse engineering integrates several arts: code breaking,
puzzle solving, programming, and logical analysis.

The process is used by a variety of different people for a variety of different
purposes, many of which will be discussed throughout this book.

Reversing Applications

It would be fair to say that in most industries reverse engineering for the pur-
pose of developing competing products is the most well-known application of
reverse engineering. The interesting thing is that it really isn’t as popular in the
software industry as one would expect. There are several reasons for this, but
it is primarily because software is so complex that in many cases reverse engi-
neering for competitive purposes is thought to be such a complex process that
it just doesn’t make sense financially.

Foundations

So what are the common applications of reverse engineering in the software
world? Generally speaking, there are two categories of reverse engineering
applications: security-related and software development-related. The follow-
ing sections present the various reversing applications in both categories.

Security-Related Reversing

For some people the connection between security and reversing might not be
immediately clear. Reversing is related to several different aspects of computer
security. For example, reversing has been employed in encryption research—a
researcher reverses an encryption product and evaluates the level of security it
provides. Reversing is also heavily used in connection with malicious soft-
ware, on both ends of the fence: it is used by both malware developers and
those developing the antidotes. Finally, reversing is very popular with crack-
ers who use it to analyze and eventually defeat various copy protection
schemes. All of these applications are discussed in the sections that follow.

Malicious Software

The Internet has completely changed the computer industry in general and the
security-related aspects of computing in particular. Malicious software, such
as viruses and worms, spreads so much faster in a world where millions of
users are connected to the Internet and use e-mail daily. Just 10 years ago, a
virus would usually have to copy itself to a diskette and that diskette would
have to be loaded into another computer in order for the virus to spread. The
infection process was fairly slow, and defense was much simpler because the
channels of infection were few and required human intervention for the pro-
gram to spread. That is all ancient history—the Internet has created a virtual
connection between almost every computer on earth. Nowadays modern
worms can spread automatically to millions of computers without any human
intervention.

Reversing is used extensively in both ends of the malicious software chain.
Developers of malicious software often use reversing to locate vulnerabilities
in operating systems and other software. Such vulnerabilities can be used to
penetrate the system’s defense layers and allow infection—usually over the
Internet. Beyond infection, culprits sometimes employ reversing techniques to
locate software vulnerabilities that allow a malicious program to gain access to
sensitive information or even take full control of the system.

At the other end of the chain, developers of antivirus software dissect and
analyze every malicious program that falls into their hands. They use revers-
ing techniques to trace every step the program takes and assess the damage it
could cause, the expected rate of infection, how it could be removed from
infected systems, and whether infection can be avoided altogether. Chapter 8

Chapter 1

serves as an introduction to the world of malicious software and demonstrates
how reversing is used by antivirus program writers. Chapter 7 demonstrates
how software vulnerabilities can be located using reversing techniques.

Reversing Cryptographic Algorithms

Cryptography has always been based on secrecy: Alice sends a message to
Bob, and encrypts that message using a secret that is (hopefully) only known
to her and Bob. Cryptographic algorithms can be roughly divided into two
groups: restricted algorithms and key-based algorithms. Restricted algorithms
are the kind some kids play with; writing a letter to a friend with each letter
shifted several letters up or down. The secret in restricted algorithms is the
algorithm itself. Once the algorithm is exposed, it is no longer secure.
Restricted algorithms provide very poor security because reversing makes it
very difficult to maintain the secrecy of the algorithm. Once reversers get their
hands on the encrypting or decrypting program, it is only a matter of time
before the algorithm is exposed. Because the algorithm is the secret, reversing
can be seen as a way to break the algorithm.

On the other hand, in key-based algorithms, the secret is a key, some
numeric value that is used by the algorithm to encrypt and decrypt the mes-
sage. In key-based algorithms users encrypt messages using keys that are kept
private. The algorithms are usually made public, and the keys are kept private
(and sometimes divulged to the legitimate recipient, depending on the algo-
rithm). This almost makes reversing pointless because the algorithm is already
known. In order to decipher a message encrypted with a key-based cipher, you
would have to either:

m Obtain the key
m Try all possible combinations until you get to the key

m Look for a flaw in the algorithm that can be employed to extract the key
or the original message

Still, there are cases where it makes sense to reverse engineer private imple-
mentations of key-based ciphers. Even when the encryption algorithm is well-
known, specific implementation details can often have an unexpected impact
on the overall level of security offered by a program. Encryption algorithms
are delicate, and minor implementation errors can sometimes completely
invalidate the level of security offered by such algorithms. The only way to
really know for sure whether a security product that implements an encryp-
tion algorithm is truly secure is to either go through its source code (assuming
it is available), or to reverse it.

Foundations

Digital Rights Management

Modern computers have turned most types of copyrighted materials into dig-
ital information. Music, films, and even books, which were once only available
on physical analog mediums, are now available digitally. This trend is a mixed
blessing, providing huge benefits to consumers, and huge complications to
copyright owners and content providers. For consumers, it means that materi-
als have increased in quality, and become easily accessible and simple to man-
age. For providers, it has enabled the distribution of high-quality content at
low cost, but more importantly, it has made controlling the flow of such con-
tent an impossible mission.

Digital information is incredibly fluid. It is very easy to move around and
can be very easily duplicated. This fluidity means that once the copyrighted
materials reach the hands of consumers, they can be moved and duplicated so
easily that piracy almost becomes common practice. Traditionally, software
companies have dealt with piracy by embedding copy protection technologies
into their software. These are additional pieces of software embedded on top
of the vendor’s software product that attempt to prevent or restrict users from
copying the program.

In recent years, as digital media became a reality, media content providers
have developed or acquired technologies that control the distribution of
content such as music, movies, etc. These technologies are collectively called
digital rights management (DRM) technologies. DRM technologies are concep-
tually very similar to traditional software copy protection technologies dis-
cussed above. The difference is that with software, the thing which is being
protected is active or “intelligent,” and can decide whether to make itself avail-
able or not. Digital media is a passive element that is usually played or read by
another program, making it more difficult to control or restrict usage. Through-
out this book I will use the term DRM to describe both types of technologies
and specifically refer to media or software DRM technologies where relevant.

This topic is highly related to reverse engineering because crackers rou-
tinely use reverse-engineering techniques while attempting to defeat DRM
technologies. The reason for this is that to defeat a DRM technology one must
understand how it works. By using reversing techniques a cracker can learn
the inner secrets of the technology and discover the simplest possible modifi-
cation that could be made to the program in order to disable the protection. I
will be discussing the subject of DRM technologies and how they relate to
reversing in more depth in Part III.

Auditing Program Binaries

One of the strengths of open-source software is that it is often inherently more
dependable and secure. Regardless of the real security it provides, it just feels

Chapter 1

much safer to run software that has often been inspected and approved by
thousands of impartial software engineers. Needless to say, open-source soft-
ware also provides some real, tangible quality benefits. With open-source soft-
ware, having open access to the program’s source code means that certain
vulnerabilities and security holes can be discovered very early on, often before
malicious programs can take advantage of them. With proprietary software for
which source code is unavailable, reversing becomes a viable (yet admittedly
limited) alternative for searching for security vulnerabilities. Of course,
reverse engineering cannot make proprietary software nearly as accessible
and readable as open-source software, but strong reversing skills enable one to
view code and assess the various security risks it poses. I will be demonstrat-
ing this kind of reverse engineering in Chapter 7.

Reversing in Software Development

Reversing can be incredibly useful to software developers. For instance, soft-
ware developers can employ reversing techniques to discover how to interop-
erate with undocumented or partially documented software. In other cases,
reversing can be used to determine the quality of third-party code, such as a
code library or even an operating system. Finally, it is sometimes possible to
use reversing techniques for extracting valuable information from a competi-
tor’s product for the purpose of improving your own technologies. The appli-
cations of reversing in software development are discussed in the following
sections.

Achieving Interoperability with Proprietary Software

Interoperability is where most software engineers can benefit from reversing
almost daily. When working with a proprietary software library or operating
system API, documentation is almost always insufficient. Regardless of how
much trouble the library vendor has taken to ensure that all possible cases are
covered in the documentation, users almost always find themselves scratching
their heads with unanswered questions. Most developers will either be persis-
tent and keep trying to somehow get things to work, or contact the vendor for
answers. On the other hand, those with reversing skills will often find it
remarkably easy to deal with such situations. Using reversing it is possible to
resolve many of these problems in very little time and with a relatively small
effort. Chapters 5 and 6 demonstrate several different applications for revers-
ing in the context of achieving interoperability.

Developing Competing Software

As I've already mentioned, in most industries this is by far the most popular
application of reverse engineering. Software tends to be more complex than

Foundations

most products, and so reversing an entire software product in order to create a
competing product just doesn’t make any sense. It is usually much easier to
design and develop a product from scratch, or simply license the more com-
plex components from a third party rather than develop them in-house. In the
software industry, even if a competitor has an unpatented technology (and I'll
get into patent/trade-secret issues later in this chapter), it would never make
sense to reverse engineer their entire product. It is almost always easier to
independently develop your own software. The exception is highly complex
or unique designs/algorithms that are very difficult or costly to develop. In
such cases, most of the application would still have to be developed indepen-
dently, but highly complex or unusual components might be reversed and
reimplemented in the new product. The legal aspects of this type of reverse
engineering are discussed in the legal section later in this chapter.

Evaluating Software Quality and Robustness

Just as it is possible to audit a program binary to evaluate its security and vul-
nerability, it is also possible to try and sample a program binary in order to get
an estimate of the general quality of the coding practices used in the program.
The need is very similar: open-source software is an open book that allows its
users to evaluate its quality before committing to it. Software vendors that
don’t publish their software’s source code are essentially asking their cus-
tomers to “just trust them.” It’s like buying a used car where you just can’t pop
up the hood. You have no idea what you are really buying.

The need for having source-code access to key software products such as
operating systems has been made clear by large corporations; several years
ago Microsoft announced that large customers purchasing over 1,000 seats
may obtain access to the Windows source code for evaluation purposes. Those
who lack the purchasing power to convince a major corporation to grant them
access to the product’s source code must either take the company’s word that
the product is well built, or resort to reversing. Again, reversing would never
reveal as much about the product’s code quality and overall reliability as tak-
ing a look at the source code, but it can be highly informative. There are no spe-
cial techniques required here. As soon as you are comfortable enough with
reversing that you can fairly quickly go over binary code, you can use that
ability to try and evaluate its quality. This book provides everything you need
to do that.

Low-Level Software

Low-level software (also known as system software) is a generic name for the infra-
structure of the software world. It encompasses development tools such as
compilers, linkers, and debuggers, infrastructure software such as operating

10

Chapter 1

systems, and low-level programming languages such as assembly language. It
is the layer that isolates software developers and application programs from
the physical hardware. The development tools isolate software developers
from processor architectures and assembly languages, while operating systems
isolate software developers from specific hardware devices and simplify the
interaction with the end user by managing the display, the mouse, the key-
board, and so on.

Years ago, programmers always had to work at this low level because it was
the only possible way to write software—the low-level infrastructure just
didn’t exist. Nowadays, modern operating systems and development tools
aim at isolating us from the details of the low-level world. This greatly simpli-
fies the process of software development, but comes at the cost of reduced
power and control over the system.

In order to become an accomplished reverse engineer, you must develop a
solid understanding of low-level software and low-level programming. That’s
because the low-level aspects of a program are often the only thing you have to
work with as a reverser—high-level details are almost always eliminated before
a software program is shipped to customers. Mastering low-level software and
the various software-engineering concepts is just as important as mastering the
actual reversing techniques if one is to become an accomplished reverser.

A key concept about reversing that will become painfully clear later in this
book is that reversing tools such as disassemblers or decompilers never actu-
ally provide the answers—they merely present the information. Eventually, it
is always up to the reverser to extract anything meaningful from that informa-
tion. In order to successfully extract information during a reversing session,
reversers must understand the various aspects of low-level software.

So, what exactly is low-level software? Computers and software are built
layers upon layers. At the bottom layer, there are millions of microscopic tran-
sistors pulsating at incomprehensible speeds. At the top layer, there are some
elegant looking graphics, a keyboard, and a mouse—the user experience. Most
software developers use high-level languages that take easily understandable
commands and execute them. For instance, commands that create a window,
load a Web page, or display a picture are incredibly high-level, meaning that
they translate to thousands or even millions of commands in the lower layers.

Reversing requires a solid understanding of these lower layers. Reversers
must literally be aware of anything that comes between the program source
code and the CPU. The following sections introduce those aspects of low-level
software that are mandatory for successful reversing.

Assembly Language

Assembly language is the lowest level in the software chain, which makes it
incredibly suitable for reversing—nothing moves without it. If software per-
forms an operation, it must be visible in the assembly language code. Assembly

Foundations

11

language is the language of reversing. To master the world of reversing, one
must develop a solid understanding of the chosen platform’s assembly lan-
guage. Which bring us to the most basic point to remember about assembly lan-
guage: it is a class of languages, not one language. Every computer platform
has its own assembly language that is usually quite different from all the rest.

Another important concept to get out of the way is machine code (often called
binary code, or object code). People sometimes make the mistake of thinking that
machine code is “faster” or “lower-level” than assembly language. That is a
misconception: machine code and assembly language are two different repre-
sentations of the same thing. A CPU reads machine code, which is nothing but
sequences of bits that contain a list of instructions for the CPU to perform.
Assembly language is simply a textual representation of those bits—we name
elements in these code sequences in order to make them human-readable.
Instead of cryptic hexadecimal numbers we can look at textual instruction
names such as MOV (Move), XCHG (Exchange), and so on.

Each assembly language command is represented by a number, called the
operation code, or opcode. Object code is essentially a sequence of opcodes and
other numbers used in connection with the opcodes to perform operations.
CPUs constantly read object code from memory, decode it, and act based on
the instructions embedded in it. When developers write code in assembly lan-
guage (a fairly rare occurrence these days), they use an assembler program to
translate the textual assembly language code into binary code, which can be
decoded by a CPU. In the other direction and more relevant to our narrative, a
disassembler does the exact opposite. It reads object code and generates the tex-
tual mapping of each instruction in it. This is a relatively simple operation to
perform because the textual assembly language is simply a different represen-
tation of the object code. Disassemblers are a key tool for reversers and are dis-
cussed in more depth later in this chapter.

Because assembly language is a platform-specific affair, we need to choose a
specific platform to focus on while studying the language and practicing
reversing. I've decided to focus on the Intel IA-32 architecture, on which every
32-bit PC is based. This choice is an easy one to make, considering the popu-
larity of PCs and of this architecture. IA-32 is one of the most common CPU
architectures in the world, and if you're planning on learning reversing and
assembly language and have no specific platform in mind, go with IA-32. The
architecture and assembly language of IA-32-based CPUs are introduced in
Chapter 2.

Compilers

So, considering that the CPU can only run machine code, how are the popular
programming languages such as C++ and Java translated into machine code?
A text file containing instructions that describe the program in a high-level
language is fed into a compiler. A compiler is a program that takes a source file

12

Chapter 1

and generates a corresponding machine code file. Depending on the high-level
language, this machine code can either be a standard platform-specific object
code that is decoded directly by the CPU or it can be encoded in a special plat-
form-independent format called bytecode (see the following section on byte-
codes).

Compilers of traditional (non-bytecode-based) programming languages
such as C and C++ directly generate machine-readable object code from the
textual source code. What this means is that the resulting object code, when
translated to assembly language by a disassembler, is essentially a machine-
generated assembly language program. Of course, it is not entirely machine-
generated, because the software developer described to the compiler what
needed to be done in the high-level language. But the details of how things are
carried out are taken care of by the compiler, in the resulting object code. This
is an important point because this code is not always easily understandable,
even when compared to a man-made assembly language program—machines
think differently than human beings.

The biggest hurdle in deciphering compiler-generated code is the optimiza-
tions applied by most modern compilers. Compilers employ a variety of tech-
niques that minimize code size and improve execution performance. The
problem is that the resulting optimized code is often counterintuitive and dif-
ficult to read. For instance, optimizing compilers often replace straightforward
instructions with mathematically equivalent operations whose purpose can be
far from obvious at first glance.

Significant portions of this book are dedicated to the art of deciphering
machine-generated assembly language. We will be studying some compiler
basics in Chapter 2 and proceed to specific techniques that can be used to
extract meaningful information from compiler-generated code.

Virtual Machines and Bytecodes

Compilers for high-level languages such as Java generate a bytecode instead of
an object code. Bytecodes are similar to object codes, except that they are usu-
ally decoded by a program, instead of a CPU. The idea is to have a compiler
generate the bytecode, and to then use a program called a virtual machine to
decode the bytecode and perform the operations described in it. Of course, the
virtual machine itself must at some point convert the bytecode into standard
object code that is compatible with the underlying CPU.

There are several major benefits to using bytecode-based languages. One
significant advantage is platform independence. The virtual machine can be
ported to different platforms, which enables running the same binary program
on any CPU as long as it has a compatible virtual machine. Of course, regard-
less of which platform the virtual machine is currently running on, the byte-
code format stays the same. This means that theoretically software developers

Foundations

13

don’t need to worry about platform compatibility. All they must do is provide
their customers with a bytecode version of their program. Customers must in
turn obtain a virtual machine that is compatible with both the specific byte-
code language and with their specific platform. The program should then (in
theory at least) run on the user’s platform with no modifications or platform-
specific work.

This book primarily focuses on reverse engineering of native executable
programs generated by native machine code compilers. Reversing programs
written in bytecode-based languages is an entirely different process that is
often much simpler compared to the process of reversing native executables.
Chapter 12 focuses on reversing techniques for programs written for
Microsoft’s .NET platform, which uses a virtual machine and a low-level byte-
code language.

Operating Systems

An operating system is a program that manages the computer, including the
hardware and software applications. An operating system takes care of many
different tasks and can be seen as a kind of coordinator between the different
elements in a computer. Operating systems are such a key element in a com-
puter that any reverser must have a good understanding of what they do and
how they work. As we’ll see later on, many reversing techniques revolve
around the operating system because the operating system serves as a gate-
keeper that controls the link between applications and the outside world.
Chapter 3 provides an introduction to modern operating system architectures
and operating system internals, and demonstrates the connection between
operating systems and reverse-engineering techniques.

The Reversing Process

How does one begin reversing? There are really many different approaches
that work, and I'll try to discuss as many of them as possible throughout this
book. For starters, I usually try to divide reversing sessions into two separate
phases. The first, which is really a kind of large-scale observation of the earlier
program, is called system-level reversing. System-level reversing techniques
help determine the general structure of the program and sometimes even
locate areas of interest within it. Once you establish a general understanding of
the layout of the program and determine areas of special interest within it you
can proceed to more in-depth work using code-level reversing techniques. Code-
level techniques provide detailed information on a selected code chunk. The
following sections describe each of the two techniques.

14

Chapter 1

System-Level Reversing

System-level reversing involves running various tools on the program and uti-
lizing various operating system services to obtain information, inspect pro-
gram executables, track program input and output, and so forth. Most of this
information comes from the operating system, because by definition every
interaction that a program has with the outside world must go through the
operating system. This is the reason why reversers must understand operating
systems—they can be used during reversing sessions to obtain a wealth of
information about the target program being investigated. I will be discussing
operating system basics in Chapter 3 and proceed to introduce the various
tools commonly used for system-level reversing in Chapter 4.

Code-Level Reversing

Code-level reversing is really an art form. Extracting design concepts and
algorithms from a program binary is a complex process that requires a mastery
of reversing techniques along with a solid understanding of software develop-
ment, the CPU, and the operating system. Software can be highly complex,
and even those with access to a program’s well-written and properly-docu-
mented source code are often amazed at how difficult it can be to comprehend.
Deciphering the sequences of low-level instructions that make up a program is
usually no mean feat. But fear not, the focus of this book is to provide you with
the knowledge, tools, and techniques needed to perform effective code-level
reversing.

Before covering any actual techniques, you must become familiar with some
software-engineering essentials. Code-level reversing observes the code from
a very low-level, and we’ll be seeing every little detail of how the software
operates. Many of these details are generated automatically by the compiler
and not manually by the software developer, which sometimes makes it diffi-
cult to understand how they relate to the program and to its functionality. That
is why reversing requires a solid understanding of the low-level aspects of
software, including the link between high-level and low-level programming
constructs, assembly language, and the inner workings of compilers. These
topics are discussed in Chapter 2.

The Tools

Reversing is all about the tools. The following sections describe the basic cate-
gories of tools that are used in reverse engineering. Many of these tools were
not specifically created as reversing tools, but can be quite useful nonetheless.
Chapter 4 provides an in-depth discussion of the various types of tools and

Foundations

15

introduces the specific tools that will be used throughout this book. Let’s take
a brief look at the different types of tools you will be dealing with.

System-Monitoring Tools

System-level reversing requires a variety of tools that sniff, monitor, explore,
and otherwise expose the program being reversed. Most of these tools display
information gathered by the operating system about the application and its
environment. Because almost all communications between a program and the
outside world go through the operating system, the operating system can usu-
ally be leveraged to extract such information. System-monitoring tools can
monitor networking activity, file accesses, registry access, and so on. There are
also tools that expose a program’s use of operating system objects such as
mutexes, pipes, events, and so forth. Many of these tools will be discussed in
Chapter 4 and throughout this book.

Disassemblers

As I described earlier, disassemblers are programs that take a program’s exe-
cutable binary as input and generate textual files that contain the assembly
language code for the entire program or parts of it. This is a relatively simple
process considering that assembly language code is simply the textual map-
ping of the object code. Disassembly is a processor-specific process, but some
disassemblers support multiple CPU architectures. A high-quality disassem-
bler is a key component in a reverser’s toolkit, yet some reversers prefer to just
use the built-in disassemblers that are embedded in certain low-level debug-
gers (described next).

Debuggers

If you've ever attempted even the simplest software development, you've
most likely used a debugger. The basic idea behind a debugger is that pro-
grammers can’t really envision everything their program can do. Programs are
usually just too complex for a human to really predict every single potential
outcome. A debugger is a program that allows software developers to observe
their program while it is running. The two most basic features in a debugger
are the ability to set breakpoints and the ability to trace through code.

Breakpoints allow users to select a certain function or code line anywhere in
the program and instruct the debugger to pause program execution once that
line is reached. When the program reaches the breakpoint, the debugger stops
(breaks) and displays the current state of the program. At that point, it is pos-
sible to either release the debugger and the program will continue running or
to start tracing through the program.

16

Chapter 1

Debuggers allow users to trace through a program while it is running (this
is also known as single-stepping). Tracing means the program executes one
line of code and then freezes, allowing the user to observe or even alter the
program’s state. The user can then execute the next line and repeat the process.
This allows developers to view the exact flow of a program at a pace more
appropriate for human comprehension, which is about a billion times slower
than the pace the program usually runs in.

By installing breakpoints and tracing through programs, developers can
watch a program closely as it executes a problematic section of code and try to
determine the source of the problem. Because developers have access to the
source code of their program, debuggers present the program in source-code
form, and allow developers to set breakpoints and trace through source
lines, even though the debugger is actually working with the machine code
underneath.

For a reverser, the debugger is almost as important as it is to a software
developer, but for slightly different reasons. First and foremost, reversers use
debuggers in disassembly mode. In disassembly mode, a debugger uses a
built-in disassembler to disassemble object code on the fly. Reversers can step
through the disassembled code and essentially “watch” the CPU as it’s run-
ning the program one instruction at a time. Just as with the source-level
debugging performed by software developers, reversers can install break-
points in locations of interest in the disassembled code and then examine the
state of the program. For some reversing tasks, the only thing you are going to
need is a good debugger with good built-in disassembly capabilities. Being
able to step through the code and watch as it is executed is really an invaluable
element in the reversing process.

Decompilers

Decompilers are the next step up from disassemblers. A decompiler takes an
executable binary file and attempts to produce readable high-level language
code from it. The idea is to try and reverse the compilation process, to obtain
the original source file or something similar to it. On the vast majority of plat-
forms, actual recovery of the original source code isn’t really possible. There
are significant elements in most high-level languages that are just omitted dur-
ing the compilation process and are impossible to recover. Still, decompilers
are powerful tools that in some situations and environments can reconstruct a
highly readable source code from a program binary. Chapter 13 discusses the
process of decompilation and its limitations, and demonstrates just how effec-
tive it can be.

Foundations

17

Is Reversing Legal?

The legal debate around reverse engineering has been going on for years. It
usually revolves around the question of what social and economic impact
reverse engineering has on society as a whole. Of course, calculating this kind
of impact largely depends on what reverse engineering is used for. The fol-
lowing sections discuss the legal aspects of the various applications of reverse
engineering, with an emphasis on the United States.

It should be noted that it is never going to be possible to accurately predict
beforehand whether a particular reversing scenario is going to be considered
legal or not—that depends on many factors. Always seek legal counsel before
getting yourself into any high-risk reversing project. The following sections
should provide general guidelines on what types of scenarios should be con-
sidered high risk.

Interoperability

Getting two programs to communicate and interoperate is never an easy task.
Even within a single product developed by a single group of people, there are
frequently interfacing issues caused when attempting to get individual com-
ponents to interoperate. Software interfaces are so complex and the programs
are so sensitive that these things rarely function properly on the first attempt.
It is just the nature of the technology. When a software developer wishes to
develop software that communicates with a component developed by another
company, there are large amounts of information that must be exposed by the
other party regarding the interfaces.

A software platform is any program or hardware device that programs can
run on top of. For example, both Microsoft Windows and Sony Playstation are
software platforms. For a software platform developer, the decision of whether
to publish or to not publish the details of the platform’s software interfaces is
a critical one. On one hand, exposing software interfaces means that other
developers will be able to develop software that runs on top of the platform.
This could drive sales of the platform upward, but the vendor might also be
offering their own software that runs on the platform. Publishing software
interfaces would also create new competition for the vendor’s own applica-
tions. The various legal aspects that affect this type of reverse engineering such
as copyright laws, trade secret protections, and patents are discussed in the
following sections.

18

Chapter 1

SEGA VERSUS ACCOLADE

In 1990 Sega Enterprises, a well-known Japanese gaming company, released
their Genesis gaming console. The Genesis’s programming interfaces were not
published. The idea was for Sega and their licensed affiliates to be the only
developers of games for the console. Accolade, a California-based game
developer, was interested in developing new games for the Sega Genesis and in
porting some of their existing games to the Genesis platform. Accolade
explored the option of becoming a Sega licensee, but quickly abandoned the
idea because Sega required that all games be exclusively manufactured for the
Genesis console. Instead of becoming a Sega licensee Accolade decided to use
reverse engineering to obtain the details necessary to port their games to the
Genesis platform. Accolade reverse engineered portions of the Genesis console
and several of Sega’s game cartridges. Accolade engineers then used the
information gathered in these reverse-engineering sessions to produce a
document that described their findings. This internal document was essentially
the missing documentation describing how to develop games for the Sega
Genesis console. Accolade successfully developed and sold several games for
the Genesis platform, and in October of 1991 was sued by Sega for copyright
infringement. The primary claim made by Sega was that copies made by
Accolade during the reverse-engineering process (known as “intermediate
copying”) violated copyright laws. The court eventually ruled in Accolade’s favor
because Accolade’s games didn’t actually contain any of Sega’s code, and
because of the public benefit resulting from Accolade’s work (by way of
introducing additional competition in the market). This was an important
landmark in the legal history of reverse engineering because in this ruling the
court essentially authorized reverse engineering for the purpose of
interoperability.

Competition

When used for interoperability, reverse engineering clearly benefits society
because it simplifies (or enables) the development of new and improved tech-
nologies. When reverse engineering is used in the development of competing
products, the situation is slightly more complicated. Opponents of reverse
engineering usually claim that reversing stifles innovation because developers
of new technologies have little incentive to invest in research and develop-
ment if their technologies can be easily “stolen” by competitors through
reverse engineering. This brings us to the question of what exactly constitutes
reverse engineering for the purpose of developing a competing product.

The most extreme example is to directly steal code segments from a competi-
tor’s product and embed them into your own. This is a clear violation of copy-
right laws and is typically very easy to prove. A more complicated example is

Foundations

19

to apply some kind of decompilation process to a program and recompile its
output in a way that generates a binary with identical functionality but with
seemingly different code. This is similar to the previous example, except that in
this case it might be far more difficult to prove that code had actually been
stolen.

Finally, a more relevant (and ethical) kind of reverse engineering in a com-
peting product situation is one where reverse engineering is applied only to
small parts of a product and is only used for the gathering of information, and
not code. In these cases most of the product is developed independently with-
out any use of reverse engineering and only the most complex and unique
areas of the competitor’s product are reverse engineered and reimplemented
in the new product.

Copyright Law

Copyright laws aim to protect software and other intellectual property from
any kind of unauthorized duplication, and so on. The best example of where
copyright laws apply to reverse engineering is in the development of compet-
ing software. As I described earlier, in software there is a very fine line
between directly stealing a competitor’s code and reimplementing it. One
thing that is generally considered a violation of copyright law is to directly
copy protected code sequences from a competitor’s product into your own
product, but there are other, far more indefinite cases.

How does copyright law affect the process of reverse engineering a com-
petitor’s code for the purpose of reimplementing it in your own product? In
the past, opponents of reverse engineering have claimed that this process vio-
lates copyright law because of the creation of intermediate copies during the
reverse-engineering process. Consider the decompilation of a program as an
example. In order to decompile a program, that program must be duplicated
at least once, either in memory, on disk, or both. The idea is that even if the
actual decompilation is legal, this intermediate copying violates copyright law.
However, this claim has not held up in courts; there have been several cases
including Sega v. Accolade and Sony v. Connectix, where intermediate copying
was considered fair use, primarily because the final product did not actually
contain anything that was directly copied from the original product.

From a technological perspective, this makes perfect sense—intermediate
copies are always created while software is being used, regardless of reverse
engineering. Consider what happens when a program is installed from an
optical media such as a DVD-ROM onto a hard-drive—a copy of the software
is made. This happens again when that program is launched—the executable
tile on disk is duplicated into memory in order for the code to be executed.

20

Chapter 1

Trade Secrets and Patents

When a new technology is developed, developers are usually faced with two
primary options for protecting the unique aspects of it. In some cases, filing a
patent is the right choice. The benefit of patenting is that it grants the inventor
or patent owner control of the invention for up to almost 20 years. The main
catches for the inventor are that the details of the invention must be published
and that after the patent expires the invention essentially becomes public
domain. Of course, reverse engineering of patented technologies doesn’t make
any sense because the information is publicly available anyway.

A newly developed technology that isn’t patented automatically receives
the legal protection of a trade secret if significant efforts are put into its devel-
opment and to keeping it confidential. A trade secret legally protects the devel-
oper from cases of “trade-secret misappropriation” such as having a rogue
employee sell the secret to a competitor. However, a product’s being a trade
secret does not protect its owner in cases where a competitor reverse engineers
the owner’s product, assuming that product is available on the open market
and is obtained legitimately. Having a trade secret also offers no protection in
the case of a competitor independently inventing the same technology—that’s
exactly what patents are for.

The Digital Millenium Copyright Act

The Digital Millennium Copyright Act (DMCA) has been getting much pub-
licity these past few years. As funny as it may sound, the basic purpose of the
DMCA, which was enacted in 1998, is to protect the copyright protection tech-
nologies. The idea is that the copyright protection technologies in themselves
are vulnerable and that legislative action must be taken to protect them. Seri-
ously, the basic idea behind the DMCA is that it legally protects copyright pro-
tection systems from circumvention. Of course, “circumvention of copyright
protection systems” almost always involves reversing, and that is why the
DMCA is the closest thing you’ll find in the United States Code to an anti-
reverse-engineering law. However, it should be stressed that the DMCA only
applies to copyright protection systems, which are essentially DRM technolo-
gies. The DMCA does not apply to any other type of copyrighted software, so
many reversing applications are not affected by it at all. Still, what exactly is
prohibited under the DMCA?

m Circumvention of copyright protection systems: This means that a
person may not defeat a Digital Rights Management technology, even
for personal use. There are several exceptions where this is permitted,
which are discussed later in this section.

Foundations 21

m The development of circumvention technologies: This means that a per-
son may not develop or make available any product or technology that
circumvents a DRM technology. In case you're wondering: Yes, the aver-
age keygen program qualifies. In fact, a person developing a keygen vio-
lates this section, and a person using a keygen violates the previous one.

m |n case you're truly a law-abiding citizen, a keygen is a program that
generates a serial number on the fly for programs that request a serial
number during installation. Keygens are (illegally) available online for
practically any program that requires a serial number. Copy protections
and keygens are discussed in depth in Part III of this book.

Luckily, the DMCA makes several exceptions in which circumvention is
allowed. Here is a brief examination of each of the exemptions provided in the
DMCA:

m Interoperability: reversing and circumventing DRM technologies may
be allowed in circumstances where such work is needed in order to
interoperate with the software product in question. For example, if a
program was encrypted for the purpose of copy protecting it, a soft-
ware developer may decrypt the program in question if that’s the only
way to interoperate with it.

m Encryption research: There is a highly restricted clause in the DMCA
that allows researchers of encryption technologies to circumvent copy-
right protection technologies in encryption products. Circumvention is
only allowed if the protection technologies interfere with the evaluation
of the encryption technology.

m Security testing: A person may reverse and circumvent copyright pro-
tection software for the purpose of evaluating or improving the security
of a computer system.

m Educational institutions and public libraries: These institutions may
circumvent a copyright protection technology in order to evaluate the
copyrighted work prior to purchasing it.

m Government investigation: Not surprisingly, government agencies
conducting investigations are not affected by the DMCA.

m Regulation: DRM Technologies may be circumvented for the purpose
of regulating the materials accessible to minors on the Internet. So, a
theoretical product that allows unmonitored and uncontrolled Internet
browsing may be reversed for the purpose of controlling a minor’s use
of the Internet.

m Protection of privacy: Products that collect or transmit personal infor-
mation may be reversed and any protection technologies they include
may be circumvented.

22

Chapter 1

DMCA Cases

The DMCA is relatively new as far as laws go, and therefore it hasn’t really
been used extensively so far. There have been several high-profile cases in
which the DMCA was invoked. Let’s take a brief look at two of those cases.

Felten vs. RIAA: In September, 2000, the SDMI (Secure Digital Music Initia-
tive) announced the Hack SDMI challenge. The Hack SDMI challenge
was a call for security researchers to test the level of security offered by
SDM], a digital rights management system designed to protect audio
recordings (based on watermarks). Princeton university professor
Edward Felten and his research team found weaknesses in the system
and wrote a paper describing their findings [Craver]. The original Hack
SDMI challenge offered a $10,000 reward in return for giving up owner-
ship of the information gathered. Felten’s team chose to forego this
reward and retain ownership of the information in order to allow them
to publish their findings. At this point, they received legal threats from
SDMI and the RIAA (the Recording Industry Association of America)
claiming liability under the DMCA. The team decided to withdraw their
paper from the original conference to which it was submitted, but were
eventually able to publish it at the USENIX Security Symposium. The
sad thing about this whole story is that it is a classic case where the
DMCA could actually reduce the level of security provided by the
devices it was created to protect. Instead of allowing security researchers
to publish their findings and force the developers of the security device
to improve their product, the DMCA can be used for stifling the very
process of open security research that has been historically proven to
create the most robust security systems.

US vs. Sklyarov: In July, 2001, Dmitry Sklyarov, a Russian programmer,
was arrested by the FBI for what was claimed to be a violation of the
DMCA. Sklyarov had reverse engineered the Adobe eBook file format
while working for ElcomSoft, a software company from Moscow. The
information gathered using reverse engineering was used in the creation
of a program called Advanced eBook Processor that could decrypt such
eBook files (these are essentially encrypted .pdf files that are used for
distributing copyrighted materials such as books) so that they become
readable by any PDF reader. This decryption meant that any original
restriction on viewing, printing, or copying eBook files was bypassed,
and that the files became unprotected. Adobe filed a complaint stating
that the creation and distribution of the Advanced eBook Processor is a
violation of the DMCA, and both Sklyarov and ElcomSoft were sued by
the government. Eventually both Sklyarov and ElcomSoft were acquit-
ted because the jury became convinced that the developers were origi-
nally unaware of the illegal nature of their actions.

Foundations

23

License Agreement Considerations

In light of the fact that other than the DMCA there are no laws that directly
prohibit or restrict reversing, and that the DMCA only applies to DRM prod-
ucts or to software that contains DRM technologies, software vendors add
anti-reverse-engineering clauses to shrink-wrap software license agreements.
That’s that very lengthy document you are always told to “accept” when
installing practically any software product in the world. It should be noted
that in most cases just using a program provides the legal equivalent of sign-
ing its license agreement (assuming that the user is given an opportunity to
view it).

The main legal question around reverse-engineering clauses in license
agreements is whether they are enforceable. In the U.S., there doesn’t seem to
be a single, authoritative answer to this question—it all depends on the spe-
cific circumstances in which reverse engineering is undertaken. In the Euro-
pean Union this issue has been clearly defined by the Directive on the Legal
Protection of Computer Programs [EC1]. This directive defines that decompi-
lation of software programs is permissible in cases of interoperability. The
directive overrides any shrink-wrap license agreements, at least in this matter.

Code Samples & Tools

This book contains many code samples and demonstrates many reversing
tools. In an effort to avoid any legal minefields, particularly those imposed by
the DMCA, this book deals primarily with sample programs that were specif-
ically created for this purpose. There are several areas where third-party code
is reversed, but this is never code that is in any way responsible for protecting
copyrighted materials. Likewise, I have intentionally avoided any tool whose
primary purpose is reversing or defeating any kind of security mechanisms.
All of the tools used in this book are either generic reverse-engineering tools or
simply software development tools (such as debuggers) that are doubled as
reversing tools.

Conclusion

In this chapter, we introduced the basic ground rules for reversing. We dis-
cussed some of the most popular applications of reverse engineering and the
typical reversing process. We introduced the types of tools that are commonly
used by reversers and evaluated the legal aspects of the process. Armed with
this basic understanding of what it is all about, we head on to the next chap-
ters, which provide an overview of the technical basics we must be familiar
with before we can actually start reversing.

Low-Level Software

This chapter provides an introduction to low-level software, which is a critical
aspect of the field of reverse engineering. Low-level software is a general name
for the infrastructural aspects of the software world. Because the low-level
aspects of software are often the only ones visible to us as reverse engineers,
we must develop a firm understanding of these layers that together make up
the realm of low-level software.

This chapter opens with a very brief overview of the conventional, high-level
perspective of software that every software developer has been exposed to. We
then proceed to an introduction of low-level software and demonstrate how
fundamental high-level software concepts map onto the low-level realm. This
is followed by an introduction to assembly language, which is a key element in
the reversing process and an important part of this book. Finally, we introduce
several auxiliary low-level software topics that can assist in low-level software
comprehension: compilers and software execution environments.

If you are an experienced software developer, parts of this chapter might
seem trivial, particularly the high-level perspectives in the first part of this
chapter. If that is the case, it is recommended that you start reading from the
section titled “Low-Level Perspectives” later in this chapter, which provides a
low-level perspective on familiar software development concepts.

25

26

Chapter 2

High-Level Perspectives

Let’s review some basic software development concepts as they are viewed
from the perspective of conventional software engineers. Even though this
view is quite different from the one we get while reversing, it still makes sense
to revisit these topics just to make sure they are fresh in your mind before
entering into the discussion of low-level software.

The following sections provide a quick overview of fundamental software
engineering concepts such as program structure (procedures, objects, and the
like), data management concepts (such as typical data structures, the role of
variables, and so on), and basic control flow constructs. Finally, we briefly com-
pare the most popular high-level programming languages and evaluate their
“reversibility.” If you are a professional software developer and feel that these
topics are perfectly clear to you, feel free to skip ahead to the section titled
“Low-Level Perspectives” later in this chapter. In any case, please note that
this is an ultra-condensed overview of material that could fill quite a few books.
This section was not written as an introduction to software development—
such an introduction is beyond the scope of this book.

Program Structure

When I was a kid, my first programming attempts were usually long chunks
of BASIC code that just ran sequentially and contained the occasional goto
commands that would go back and forth between different sections of the pro-
gram. That was before I had discovered the miracle of program structure. Pro-
gram structure is the thing that makes software, an inherently large and
complex thing, manageable by humans. We break the monster into small
chunks where each chunk represents a “unit” in the program in order to con-
veniently create a mental image of the program in our minds. The same
process takes place during reverse engineering. Reversers must try and recon-
struct this map of the various components that together make up a program.
Unfortunately, that is not always easy.

The problem is that machines don’t really need program structure as much
as we do. We humans can’t deal with the concept of working on and under-
standing one big complicated thing—objects or concepts need to be broken up
into manageable chunks. These chunks are good for dividing the work among
various people and also for creating a mental division of the work within one’s
mind. This is really a generic concept about human thinking—when faced
with large tasks we’re naturally inclined to try to break them down into a
bunch of smaller tasks that together make up the whole.

Machines on the other hand often have a conflicting need for eliminating
some of these structural elements. For example, think of how the process of
compiling and linking a program eliminates program structure: individual

Low-Level Software

27

source files and libraries are all linked into a single executable, many function
boundaries are eliminated through inlining and are simply pasted into the
code that calls them. The machine is eliminating redundant structural details
that are not needed for efficiently running the code. All of these transforma-
tions affect the reversing process and make it somewhat more challenging. I
will be dealing with the process of reconstructing the structure of a program in
the reversing projects throughout this book.

How do software developers break down software into manageable
chunks? The general idea is to view the program as a set of separate black
boxes that are responsible for very specific and (hopefully) accurately defined
tasks. The idea is that someone designs and implements a black box, tests it
and confirms that it works, and then integrates it with other components in the
system. A program can therefore be seen as a large collection of black boxes
that interact with one another. Different programming languages and devel-
opment platforms approach these concepts differently, but the general idea is
almost always the same.

Likewise, when an application is being designed it is usually broken down
into mental black boxes that are each responsible for a chunk of the applica-
tion. For instance, in a word processor you could view the text-editing compo-
nent as one box and the spell checker component as another box. This process
is called encapsulation because each component box encapsulates certain func-
tionality and simply makes it available to whoever needs it, without exposing
unnecessary details about the internal implementation of the component.

Component boxes are frequently developed by different people or even by
different groups, but they still must be able to interact. Boxes vary in size: Some
boxes implement entire application features (like the earlier spell checker
example), while others represent far smaller and more primitive functionality
such as sorting functions and other low-level data management functions.
These smaller boxes are usually made to be generic, meaning that they can be
used anywhere in the program where the specific functionality they provide is
required.

Developing a robust and reliable product rests primarily on two factors: that
each component box is well implemented and reliably performs its duties, and
that each box has a well defined interface for communicating with the outside
world.

In most reversing scenarios, the first step is to determine the component
structure of the application and the exact responsibilities of each component.
From there, one usually picks a component of interest and delves into the
details of its implementation.

The following sections describe the various technical tools available to soft-
ware developers for implementing this type of component-level encapsulation
in the code. We start with large components, such as static and dynamic mod-
ules, and proceed to smaller units such as procedures and objects.

28

Chapter 2

Modules

The largest building block for a program is the module. Modules are simply
binary files that contain isolated areas of a program’s executable (essentially
the component boxes from our previous discussion). There are two basic types
of modules that can be combined together to make a program: static libraries
and dynamic libraries.

m Static libraries: Static libraries make up a group of source-code files
that are built together and represent a certain component of a program.
Logically, static libraries usually represent a feature or an area of func-
tionality in the program. Frequently, a static library is not an integral
part of the product that’s being developed but rather an external, third-
party library that adds certain functionality to it. Static libraries are
added to a program while it is being built, and they become an integral
part of the program’s binaries. They are difficult to make out and iso-
late when we look at the program from a low-level perspective while
reversing.

m Dynamic libraries: Dynamic libraries (called Dynamic Link Libraries, or
DLLs in Windows) are similar to static libraries, except that they are not
embedded into the program, and they remain in a separate file, even
when the program is shipped to the end user. A dynamic library allows
for upgrading individual components in a program without updating
the entire program. As long as the interface it exports remains constant,
a library can (at least in theory) be replaced seamlessly—without
upgrading any other components in the program. An upgraded library
would usually contain improved code, or even entirely different func-
tionality through the same interface. Dynamic libraries are very easy to
detect while reversing, and the interfaces between them often simplify
the reversing process because they provide helpful hints regarding the
program’s architecture.

Common Code Constructs

There are two basic code-level constructs that are considered the most funda-
mental building blocks for a program. These are procedures and objects.

In terms of code structure, the procedure is the most fundamental unit in soft-
ware. A procedure is a piece of code, usually with a well-defined purpose, that
can be invoked by other areas in the program. Procedures can optionally
receive input data from the caller and return data to the caller. Procedures
are the most commonly used form of encapsulation in any programming
language.

Low-Level Software

29

The next logical leap that supersedes procedures is to divide a program into
objects. Designing a program using objects is an entirely different process than
the process of designing a regular procedure-based program. This process is
called object-oriented design (OOD), and is considered by many to be the most
popular and effective approach to software design currently available.

OOD methodology defines an object as a program component that has both
data and code associated with it. The code can be a set of procedures that is
related to the object and can manipulate its data. The data is part of the object
and is usually private, meaning that it can only be accessed by object code, but
not from the outside world. This simplifies the design processes, because
developers are forced to treat objects as completely isolated entities that can
only be accessed through their well-defined interfaces. Those interfaces usu-
ally consist of a set of procedures that are associated with the object. Those pro-
cedures can be defined as publicly accessible procedures, and are invoked
primarily by clients of the object. Clients are other components in the program
that require the services of the object but are not interested in any of its imple-
mentation details. In most programs, clients are themselves objects that simply
require the other objects’ services.

Beyond the mere division of a program into objects, most object-oriented
programming languages provide an additional feature called inheritance.
Inheritance allows designers to establish a generic object type and implement
many specific implementations of that type that offer somewhat different
functionality. The idea is that the interface stays the same, so the client using
the object doesn’t have to know anything about the specific object type it is
dealing with—it only has to know the base type from which that object is
derived.

This concept is implemented by declaring a base object, which includes a dec-
laration of a generic interface to be used by every object that inherits from that
base object. Base objects are usually empty declarations that offer little or no
actual functionality. In order to add an actual implementation of the object type,
another object is declared, which inherits from the base object and contains the
actual implementations of the interface procedures, along with any support
code or data structures. The beauty of this system is that for a single base object
there can be multiple descendant objects that can implement entirely different
functionalities, but export the same interface. Clients can use these objects with-
out knowing the specific object type they are dealing with—they are only aware
of the base object’s type. This concept is called polymorphism.

Data Management

A program deals with data. Any operation always requires input data, room
for intermediate data, and a way to send back results. To view a program from
below and understand what is happening, you must understand how data is

30

Chapter 2

managed in the program. This requires two perspectives: the high-level per-
spective as viewed by software developers and the low-level perspective that
is viewed by reversers.

High-level languages tend to isolate software developers from the details
surrounding data management at the system level. Developers are usually only
made aware of the simplified data flow described by the high-level language.

Naturally, most reversers are interested in obtaining a view of the program
that matches that simplified high-level view as closely as possible. That’s
because the high-level perspective is usually far more human-friendly than the
machine’s perspective. Unfortunately, most programming languages and soft-
ware development platforms strip (or mangle) much of that human-readable
information from binaries shipped to end users.

In order to be able to recover some or all of that high-level data flow infor-
mation from a program binary, you must understand how programs view and
treat data from both the programmer’s high-level perspective and the low-
level machine-generated code. The following sections take us through a brief
overview of high-level data constructs such as variables and the most common
types of data structures.

Variables

For a software developer, the key to managing and storing data is usually
named variables. All high-level languages provide developers with the means
to declare variables at various scopes and use them to store information.

Programming languages provide several abstractions for these variables.
The level at which variables are defined determines which parts of the pro-
gram will be able to access it, and also where it will be physically stored. The
names of named variables are usually relevant only during compilation. Many
compilers completely strip the names of variables from a program’s binaries
and identify them using their address in memory. Whether or not this is done
depends on the target platform for which the program is being built.

User-Defined Data Structures

User-defined data structures are simple constructs that represent a group of
data fields, each with its own type. The idea is that these fields are all somehow
related, which is why the program stores and handles them as a single unit. The
data types of the specific fields inside a data structure can either be simple data
types such as integers or pointers or they can be other data structures.

While reversing, you'll be encountering a variety of user-defined data struc-
tures. Properly identifying such data structures and deciphering their contents
is critical for achieving program comprehension. The key to doing this suc-
cessfully is to gradually record every tiny detail discovered about them until

Low-Level Software

31

you have a sufficient understanding of the individual fields. This process will
be demonstrated in the reversing chapters in the second part of this book.

Lists

Other than user-defined data structures, programs routinely use a variety of
generic data structures for organizing their data. Most of these generic data
structures represent lists of items (where each item can be of any type, from a
simple integer to a complex user-defined data structure). A list is simply a
group of data items that share the same data type and that the program views
as belonging to the same group. In most cases, individual list entries contain
unique information while sharing a common data layout. Examples include
lists such as a list of contacts in an organizer program or list of e-mail messages
in an e-mail program. Those are the user-visible lists, but most programs will
also maintain a variety of user-invisible lists that manage such things as areas
in memory currently active, files currently open for access, and the like.

The way in which lists are laid out in memory is a significant design deci-
sion for software engineers and usually depends on the contents of the items
and what kinds of operations are performed on the list. The expected number
of items is also a deciding factor in choosing the list’s format. For example, lists
that are expected to have thousands or millions of items might be laid out dif-
ferently than lists that can only grow to a couple of dozens of items. Also, in
some lists the order of the items is critical, and new items are constantly added
and removed from specific locations in the middle of the list. Other lists aren’t
sensitive to the specific position of each item. Another criterion is the ability to
efficiently search for items and quickly access them. The following is a brief
discussion of the common lists found in the average program:

m Arrays: Arrays are the most basic and intuitive list layout—items are
placed sequentially in memory one after the other. Items are referenced
by the code using their index number, which is just the number of items
from the beginning of the list to the item in question. There are also
multidimensional arrays, which can be visualized as multilevel arrays.
For example, a two-dimensional array can be visualized as a simple
table with rows and columns, where each reference to the table requires
the use of two position indicators: row and column. The most signifi-
cant downside of arrays is the difficulty of adding and removing items
in the middle of the list. Doing that requires that the second half of the
array (any items that come after the item we’re adding or removing) be
copied to make room for the new item or eliminate the empty slot pre-
viously occupied by an item. With very large lists, this can be an
extremely inefficient operation.

32

Chapter 2

m Linked lists: In a linked list, each item is given its own memory space
and can be placed anywhere in memory. Each item stores the memory
address of the next item (a link), and sometimes also a link to the previ-
ous item. This arrangement has the added flexibility of supporting the
quick addition or removal of an item because no memory needs to be
copied. To add or remove items in a linked list, the links in the items
that surround the item being added or removed must be changed to
reflect the new order of items. Linked lists address the weakness of
arrays with regard to inefficiencies when adding and removing items
by not placing items sequentially in memory. Of course, linked lists also
have their weaknesses. Because items are randomly scattered through-
out memory, there can be no quick access to individual items based on
their index. Also, linked lists are less efficient than arrays with regard to
memory utilization, because each list item must have one or two link
pointers, which use up precious memory.

m Trees: A tree is similar to a linked list in that memory is allocated sepa-
rately for each item in the list. The difference is in the logical arrange-
ment of the items: In a tree structure, items are arranged hierarchically,
which greatly simplifies the process of searching for an item. The root
item represents a median point in the list, and contains links to the two
halves of the tree (these are essentially branches): one branch links to
lower-valued items, while the other branch links to higher-valued
items. Like the root item, each item in the lower levels of the hierarchy
also has two links to lower nodes (unless it is the lowest item in the
hierarchy). This layout greatly simplifies the process of binary searching,
where with each iteration one eliminates one-half of the list in which it
is known that the item is not present. With a binary search, the number
of iterations required is very low because with each iteration the list
becomes about 50 percent shorter.

Control Flow

In order to truly understand a program while reversing, you'll almost always
have to decipher control flow statements and try to reconstruct the logic behind
those statements. Control flow statements are statements that affect the flow of
the program based on certain values and conditions. In high-level languages,
control flow statements come in the form of basic conditional blocks and loops,
which are translated into low-level control flow statements by the compiler.
Here is a brief overview of the basic high-level control flow constructs:

m Conditional blocks: Conditional code blocks are implemented in most
programming languages using the if statement. They allow for speci-
tying one or more condition that controls whether a block of code is
executed or not.

Low-Level Software 33

m Switch blocks: Switch blocks (also known as n-way conditionals) usually
take an input value and define multiple code blocks that can get exe-
cuted for different input values. One or more values are assigned to
each code block, and the program jumps to the correct code block in
runtime based on the incoming input value. The compiler implements
this feature by generating code that takes the input value and searches
for the correct code block to execute, usually by consulting a lookup
table that has pointers to all the different code blocks.

m Loops: Loops allow programs to repeatedly execute the same code
block any number of times. A loop typically manages a counter that
determines the number of iterations already performed or the number
of iterations that remain. All loops include some kind of conditional
statement that determines when the loop is interrupted. Another way to
look at a loop is as a conditional statement that is identical to a condi-
tional block, with the difference that the conditional block is executed
repeatedly. The process is interrupted when the condition is no longer
satisfied.

High-Level Languages

High-level languages were made to allow programmers to create software
without having to worry about the specific hardware platform on which their
program would run and without having to worry about all kinds of annoying
low-level details that just aren’t relevant for most programmers. Assembly lan-
guage has its advantages, but it is virtually impossible to create large and com-
plex software on assembly language alone. High-level languages were made to
isolate programmers from the machine and its tiny details as much as possible.

The problem with high-level languages is that there are different demands
from different people and different fields in the industry. The primary tradeoff
is between simplicity and flexibility. Simplicity means that you can write a rel-
atively short program that does exactly what you need it to, without having to
deal with a variety of unrelated machine-level details. Flexibility means that
there isn’t anything that you can’t do with the language. High-level languages
are usually aimed at finding the right balance that suits most of their users. On
one hand, there are certain things that happen at the machine-level that pro-
grammers just don’t need to know about. On the other, hiding certain aspects
of the system means that you lose the ability to do certain things.

When you reverse a program, you usually have no choice but to get your
hands dirty and become aware of many details that happen at the machine
level. In most cases, you will be exposed to such obscure aspects of the inner
workings of a program that even the programmers that wrote them were
unaware of. The challenge is to sift through this information with enough
understanding of the high-level language used and to try to reach a close

34

Chapter 2

approximation of what was in the original source code. How this is done
depends heavily on the specific programming language used for developing
the program.

From a reversing standpoint, the most important thing about a high-level
programming language is how strongly it hides or abstracts the underlying
machine. Some languages such as C provide a fairly low-level perspective on
the machine and produce code that directly runs on the target processor. Other
languages such as Java provide a substantial level of separation between the
programmer and the underlying processor.

The following sections briefly discuss today’s most popular programming
languages:

o

The C programming language is a relatively low-level language as high-level
languages go. C provides direct support for memory pointers and lets you
manipulate them as you please. Arrays can be defined in C, but there is no
bounds checking whatsoever, so you can access any address in memory that
you please. On the other hand, C provides support for the common high-level
features found in other, higher-level languages. This includes support for
arrays and data structures, the ability to easily implement control flow code
such as conditional code and loops, and others.

C is a compiled language, meaning that to run the program you must run
the source code through a compiler that generates platform-specific program
binaries. These binaries contain machine code in the target processor’s own
native language. C also provides limited cross-platform support. To run a pro-
gram on more than one platform you must recompile it with a compiler that
supports the specific target platform.

Many factors have contributed to C’s success, but perhaps most important is
the fact that the language was specifically developed for the purpose of writ-
ing the Unix operating system. Modern versions of Unix such as the Linux
operating system are still written in C. Also, significant portions of the
Microsoft Windows operating system were also written in C (with the rest of
the components written in C++).

Another feature of C that greatly affected its commercial success has been its
high performance. Because C brings you so close to the machine, the code
written by programmers is almost directly translated into machine code by
compilers, with very little added overhead. This means that programs written
in C tend to have very high runtime performance.

C code is relatively easy to reverse because it is fairly similar to the machine
code. When reversing one tries to read the machine code and reconstruct the

Low-Level Software

35

original source code as closely as possible (though sometimes simply under-
standing the machine code might be enough). Because the C compiler alters so
little about the program, relatively speaking, it is fairly easy to reconstruct a
good approximation of the C source code from a program’s binaries. Except
where noted, the high-level language code samples in this book were all writ-
tenin C.

C++

The C++ programming language is an extension of C, and shares C’s basic syn-
tax. C++ takes C to the next level in terms of flexibility and sophistication by
introducing support for object-oriented programming. The important thing is
that C++ doesn’t impose any new limits on programmers. With a few minor
exceptions, any program that can be compiled under a C compiler will com-
pile under a C++ compiler.

The core feature introduced in C++ is the class. A class is essentially a data
structure that can have code members, just like the object constructs described
earlier in the section on code constructs. These code members usually manage
the data stored within the class. This allows for a greater degree of encapsula-
tion, whereby data structures are unified with the code that manages them. C++
also supports inheritance, which is the ability to define a hierarchy of classes that
enhance each other’s functionality. Inheritance allows for the creation of base
classes that unify a group of functionally related classes. It is then possible to
define multiple derived classes that extend the base class’s functionality.

The real beauty of C++ (and other object-oriented languages) is polymor-
phism (briefly discussed earlier, in the “Common Code Constructs” section).
Polymorphism allows for derived classes to override members declared in the
base class. This means that the program can use an object without knowing its
exact data type—it must only be familiar with the base class. This way, when a
member function is invoked, the specific derived object’s implementation is
called, even though the caller is only aware of the base class.

Reversing code written in C++ is very similar to working with C code,
except that emphasis must be placed on deciphering the program'’s class hier-
archy and on properly identifying class method calls, constructor calls, etc.
Specific techniques for identifying C++ constructs in assembly language code
are presented in Appendix C.

In case you're not familiar with the syntax of C, C++ draws its name from the C
syntax, where specifying a variable name followed by ++ incdicates that the
variable is to be incremented by 1. c++ is the equivalentof c = ¢ + 1.

36

Chapter 2

Java

Java is an object-oriented, high-level language that is different from other lan-
guages such as C and C++ because it is not compiled into any native proces-
sor’s assembly language, but into the Java bytecode. Briefly, the Java instruction
set and bytecode are like a Java assembly language of sorts, with the difference
that this language is not usually interpreted directly by the hardware, but is
instead interpreted by software (the Java Virtual Machine).

Java’s primary strength is the ability to allow a program’s binary to run on
any platform for which the Java Virtual Machine (JVM) is available.

Because Java programs run on a virtual machine (VM), the process of
reversing a Java program is completely different from reversing programs
written in compiler-based languages such as C and C++. Java executables
don’t use the operating system’s standard executable format (because they are
not executed directly on the system’s CPU). Instead they use .class files, which
are loaded directly by the virtual machine.

The Java bytecode is far more detailed compared to a native processor
machine code such as IA-32, which makes decompilation a far more viable
option. Java classes can often be decompiled with a very high level of accuracy,
so that the process of reversing Java classes is usually much simpler than with
native code because it boils down to reading a source-code-level representa-
tion of the program. Sure, it is still challenging to comprehend a program’s
undocumented source code, but it is far easier compared to starting with a
low-level assembly language representation.

C#

C# was developed by Microsoft as a Java-like object-oriented language that
aims to overcome many of the problems inherent in C++. C# was introduced
as part of Microsoft’s NET development platform, and (like Java and quite a
few other languages) is based on the concept of using a virtual machine for
executing programs.

C# programs are compiled into an intermediate bytecode format (similar to
the Java bytecode) called the Microsoft Intermediate Language (MSIL). MSIL
programs run on top of the common language runtime (CLR), which is essen-
tially the .NET virtual machine. The CLR can be ported into any platform,
which means that .NET programs are not bound to Windows—they could be
executed on other platforms.

C# has quite a few advanced features such as garbage collection and type
safety that are implemented by the CLR. C# also has a special unmanaged mode
that enables direct pointer manipulation.

As with Java, reversing C# programs sometimes requires that you learn the
native language of the CLR—MSIL. On the other hand, in many cases manu-
ally reading MSIL code will be unnecessary because MSIL code contains

Low-Level Software

37

highly detailed information regarding the program and the data types it deals
with, which makes it possible to produce a reasonably accurate high-level lan-
guage representation of the program through decompilation. Because of this
level of transparency, developers often obfuscate their code to make it more
difficult to comprehend. The process of reversing .NET programs and the
effects of the various obfuscation tools are discussed in Chapter 12.

Low-Level Perspectives

The complexity in reversing arises when we try to create an intuitive link
between the high-level concepts described earlier and the low-level perspec-
tive we get when we look at a program’s binary. It is critical that you develop
a sort of “mental image” of how high-level constructs such as procedures,
modules, and variables are implemented behind the curtains. The following
sections describe how basic program constructs such as data structures and
control flow constructs are represented in the lower-levels.

Low-Level Data Management

One of the most important differences between high-level programming lan-
guages and any kind of low-level representation of a program is in data man-
agement. The fact is that high-level programming languages hide quite a few
details regarding data management. Different languages hide different levels
of details, but even plain ANSI C (which is considered to be a relatively low-
level language among the high-level language crowd) hides significant data
management details from developers.
For instance, consider the following simple C language code snippet.

int Multiply (int x, int y)
{

int z;

z =x*Yy;

return z;

}

This function, as simple as it may seem, could never be directly translated
into a low-level representation. Regardless of the platform, CPUs rarely have
instructions for declaring a variable or for multiplying two variables to yield a
third. Hardware limitations and performance considerations dictate and limit
the level of complexity that a single instruction can deal with. Even though
Intel IA-32 CPUs support a very wide range of instructions, some of which
remarkably powerful, most of these instructions are still very primitive com-
pared to high-level language statements.

38 Chapter 2

So, a low-level representation of our little Multiply function would usu-
ally have to take care of the following tasks:

1.
2.
3.

Store machine state prior to executing function code
Allocate memory for z

Load parameters x and y from memory into internal processor memory
(registers)

4. Multiply x by y and store the result in a register

5. Optionally copy the multiplication result back into the memory area

6.
7.

previously allocated for z
Restore machine state stored earlier

Return to caller and send back z as the return value

You can easily see that much of the added complexity is the result of low-
level data management considerations. The following sections introduce the
most common low-level data management constructs such as registers, stacks,
and heaps, and how they relate to higher-level concepts such as variables and
parameters.

HIGH-LEVEL VERSUS LOW-LEVEL DATA MANAGEMENT

One question that pops to mind when we start learning about low-level

software is why are things presented in such a radically different way down
there? The fundamental problem here is execution speed in microprocessors.

In modern computers, the CPU is attached to the system memory using a

high-speed connection (a bus). Because of the high operation speed of the
CPU, the RAM isn't readily available to the CPU. This means that the CPU can't
just submit a read request to the RAM and expect an immediate reply, and
likewise it can’t make a write request and expect it to be completed

immediately. There are several reasons for this, but it is caused primarily by the
combined latency that the involved components introduce. Simply put, when
the CPU requests that a certain memory address be written to or read from, the
time it takes for that command to arrive at the memory chip and be processed,
and for a response to be sent back, is much longer than a single CPU clock
cycle. This means that the processor might waste precious clock cycles simply
waiting for the RAM.

This is the reason why instructions that operate directly on memory-based
operands are slower and are avoided whenever possible. The relatively lengthy
period of time each memory access takes to complete means that having a
single instruction read data from memory, operate on that data, and then write
the result back into memory might be unreasonable compared to the
processor’'s own performance capabilities.

Low-Level Software

39

Registers

In order to avoid having to access the RAM for every single instruction,
microprocessors use internal memory that can be accessed with little or no
performance penalty. There are several different elements of internal memory
inside the average microprocessor, but the one of interest at the moment is the
register. Registers are small chunks of internal memory that reside within the
processor and can be accessed very easily, typically with no performance
penalty whatsoever.

The downside with registers is that there are usually very few of them. For
instance, current implementations of IA-32 processors only have eight 32-bit
registers that are truly generic. There are quite a few others, but they’re mostly
there for specific purposes and can’t always be used. Assembly language code
revolves around registers because they are the easiest way for the processor to
manage and access immediate data. Of course, registers are rarely used for
long-term storage, which is where external RAM enters into the picture. The
bottom line of all of this is that CPUs don’t manage these issues automatically—
they are taken care of in assembly language code. Unfortunately, managing
registers and loading and storing data from RAM to registers and back cer-
tainly adds a bit of complexity to assembly language code.

So, if we go back to our little code sample, most of the complexities revolve
around data management. x and y can’t be directly multiplied from memory,
the code must first read one of them into a register, and then multiply that reg-
ister by the other value that’s still in RAM. Another approach would be to copy
both values into registers and then multiply them from registers, but that
might be unnecessary.

These are the types of complexities added by the use of registers, but regis-
ters are also used for more long-term storage of values. Because registers are so
easily accessible, compilers use registers for caching frequently used values
inside the scope of a function, and for storing local variables defined in the
program’s source code.

While reversing, it is important to try and detect the nature of the values
loaded into each register. Detecting the case where a register is used simply to
allow instructions access to specific values is very easy because the register is
used only for transferring a value from memory to the instruction or the other
way around. In other cases, you will see the same register being repeatedly
used and updated throughout a single function. This is often a strong indica-
tion that the register is being used for storing a local variable that was defined
in the source code. I will get back to the process of identifying the nature of val-
ues stored inside registers in Part II, where I will be demonstrating several
real-world reversing sessions.

40

Chapter 2

The Stack

Let’s go back to our earlier Multiply example and examine what happens in
Step 2 when the program allocates storage space for variable “z”. The specific
actions taken at this stage will depend on some seriously complex logic that
takes place inside the compiler. The general idea is that the value is placed
either in a register or on the stack. Placing the value in a register simply means
that in Step 4 the CPU would be instructed to place the result in the allocated
register. Register usage is not managed by the processor, and in order to start
using one you simply load a value into it. In many cases, there are no available
registers or there is a specific reason why a variable must reside in RAM and
not in a register. In such cases, the variable is placed on the stack.

A stack is an area in program memory that is used for short-term storage of
information by the CPU and the program. It can be thought of as a secondary
storage area for short-term information. Registers are used for storing the most
immediate data, and the stack is used for storing slightly longer-term data.
Physically, the stack is just an area in RAM that has been allocated for this pur-
pose. Stacks reside in RAM just like any other data—the distinction is entirely
logical. It should be noted that modern operating systems manage multiple
stacks at any given moment—each stack represents a currently active program
or thread. I will be discussing threads and how stacks are allocated and man-
aged in Chapter 3.

Internally, stacks are managed as simple LIFO (last in, first out) data struc-
tures, where items are “pushed” and “popped” onto them. Memory for stacks
is typically allocated from the top down, meaning that the highest addresses
are allocated and used first and that the stack grows “backward,” toward the
lower addresses. Figure 2.1. demonstrates what the stack looks like after push-
ing several values onto it, and Figure 2.2. shows what it looks like after they’re
popped back out.

A good example of stack usage can be seen in Steps 1 and 6. The machine
state that is being stored is usually the values of the registers that will be used
in the function. In these cases, register values always go to the stack and are
later loaded back from the stack into the corresponding registers.

Low-Level Software 41

Code Executed:

PUSH Value 1
PUSH Value 2
PUSH Value 3

After PUSH
<+——32Bits———»
Unknown Data (Unused) k?jv(\j’gs'\sﬂ:smory
Unknown Data (Unused) c
o
> Value 3 E
val 8
alue 2 i
1))
Value 1 E
ESP — ;
Previously Stored Value :('jg dr:rsiimory

Figure 2.1 A view of the stack after three values are pushed in.

Code Executed:

POP EAX
POP EBX
POP ECX

After pOP

<+———32 Bits——»

Lower Memory

Unknown Data (Unused) Addresses

Unknown Data (Unused)

Unknown Data (Unused)

Unknown Data (Unused)

pOP Direction

ESP Unknown Data (Unused)

) Higher Memory
|—> Previously Stored Value 4| Addresses

Figure 2.2 A view of the stack after the three values are popped out.

42 Chapter 2

If you try to translate stack usage to a high-level perspective, you will see
that the stack can be used for a number of different things:

m Temporarily saved register values: The stack is frequently used for
temporarily saving the value of a register and then restoring the saved
value to that register. This can be used in a variety of situations—when
a procedure has been called that needs to make use of certain registers.
In such cases, the procedure might need to preserve the values of regis-
ters to ensure that it doesn’t corrupt any registers used by its callers.

m Local variables: It is a common practice to use the stack for storing
local variables that don’t fit into the processor’s registers, or for vari-
ables that must be stored in RAM (there is a variety of reasons why that
is needed, such as when we want to call a function and have it write a
value into a local variable defined in the current function). It should be
noted that when dealing with local variables data is not pushed and
popped onto the stack, but instead the stack is accessed using offsets,
like a data structure. Again, this will all be demonstrated once you enter
the real reversing sessions, in the second part of this book.

m Function parameters and return addresses: The stack is used for imple-
menting function calls. In a function call, the caller almost always
passes parameters to the callee and is responsible for storing the current
instruction pointer so that execution can proceed from its current posi-
tion once the callee completes. The stack is used for storing both para-
meters and the instruction pointer for each procedure call.

Heaps

Aheap is a managed memory region that allows for the dynamic allocation of
variable-sized blocks of memory in runtime. A program simply requests a
block of a certain size and receives a pointer to the newly allocated block
(assuming that enough memory is available). Heaps are managed either by
software libraries that are shipped alongside programs or by the operating
system.

Heaps are typically used for variable-sized objects that are used by the pro-
gram or for objects that are too big to be placed on the stack. For reversers,
locating heaps in memory and properly identifying heap allocation and free-
ing routines can be helpful, because it contributes to the overall understanding
of the program’s data layout. For instance, if you see a call to what you know
is a heap allocation routine, you can follow the flow of the procedure’s return
value throughout the program and see what is done with the allocated block,
and so on. Also, having accurate size information on heap-allocated objects
(block size is always passed as a parameter to the heap allocation routine) is
another small hint towards program comprehension.

Low-Level Software

43

Executable Data Sections

Another area in program memory that is frequently used for storing applica-
tion data is the executable data section. In high-level languages, this area typi-
cally contains either global variables or preinitialized data. Preinitialized data
is any kind of constant, hard-coded information included with the program.
Some preinitialized data is embedded right into the code (such as constant
integer values, and so on), but when there is too much data, the compiler
stores it inside a special area in the program executable and generates code
that references it by address. An excellent example of preinitialized data is any
kind of hard-coded string inside a program. The following is an example of
this kind of string.

char szWelcome = "This string will be stored in the executable's
preinitialized data section";

This definition, written in C, will cause the compiler to store the string in the
executable’s preinitialized data section, regardless of where in the code szWelcome
is declared. Even if szWelcome is a local variable declared inside a function, the
string will still be stored in the preinitialized data section. To access this string,
the compiler will emit a hard-coded address that points to the string. This is
easily identified while reversing a program, because hard-coded memory
addresses are rarely used for anything other than pointing to the executable’s
data section.

The other common case in which data is stored inside an executable’s data
section is when the program defines a global variable. Global variables provide
long-term storage (their value is retained throughout the life of the program)
that is accessible from anywhere in the program, hence the term global. In most
languages, a global variable is defined by simply declaring it outside of the
scope of any function. As with preinitialized data, the compiler must use hard-
coded memory addresses in order to access global variables, which is why
they are easily recognized when reversing a program.

Control Flow

Control flow is one of those areas where the source-code representation really
makes the code look user-friendly. Of course, most processors and low-level
languages just don’t know the meaning of the words 1 £ orwhile. Looking at
the low-level implementation of a simple control flow statement is often con-
fusing, because the control flow constructs used in the low-level realm are
quite primitive. The challenge is in converting these primitive constructs back
into user-friendly high-level concepts.

44

Chapter 2

One of the problems is that most high-level conditional statements are just
too lengthy for low-level languages such as assembly language, so they are
broken down into sequences of operations. The key to understanding these
sequences, the correlation between them, and the high-level statements from
which they originated, is to understand the low-level control flow constructs
and how they can be used for representing high-level control flow statements.
The details of these low-level constructs are platform- and language-specific;
we will be discussing control flow statements in IA-32 assembly language in
the following section on assembly language.

Assembly Language 101

In order to understand low-level software, one must understand assembly lan-
guage. For most purposes, assembly language is the language of reversing, and
mastering it is an essential step in becoming a real reverser, because with most
programs assembly language is the only available link to the original source
code. Unfortunately, there is quite a distance between the source code of most
programs and the compiler-generated assembly language code we must work
with while reverse engineering. But fear not, this book contains a variety of
techniques for squeezing every possible bit of information from assembly lan-
guage programs!

The following sections provide a quick introduction to the world of assem-
bly language, while focusing on the IA-32 (Intel’s 32-bit architecture), which is
the basis for all of Intel’s x86 CPUs from the historical 80386 to the modern-day
implementations. I've chosen to focus on the Intel IA-32 assembly language
because it is used in every PC in the world and is by far the most popular
processor architecture out there. Intel-compatible CPUs, such as those made
by Advanced Micro Devices (AMD), Transmeta, and so on are mostly identical
for reversing purposes because they are object-code-compatible with Intel’s
processors.

Registers

Before starting to look at even the most basic assembly language code, you
must become familiar with IA-32 registers, because you'll be seeing them ref-
erenced in almost every assembly language instruction you'll ever encounter.
For most purposes, the IA-32 has eight generic registers: EAX, EBX, ECX, EDX,

Low-Level Software

45

ESI, EDI, EBP, and ESP. Beyond those, the architecture also supports a stack
of floating-point registers, and a variety of other registers that serve specific
system-level requirements, but those are rarely used by applications and
won’t be discussed here. Conventional program code only uses the eight
generic registers.

Table 2.1 provides brief descriptions of these registers and their most com-
mon uses.

Notice that all of these names start with the letter E, which stands for
extended. These register names have been carried over from the older 16-bit
Intel architecture, where they had the exact same names, minus the Es (so that
EAX was called AX, etc.). This is important because sometimes you’ll run into
32-bit code that references registers in that way: MOV AX, 0x1000, and so on.
Figure 2.3. shows all general purpose registers and their various names.

Table 2.1 Generic IA-32 Registers and Their Descriptions

EAX, EBX, EDX These are all generic registers that can be used for any
integer, Boolean, logical, or memory operation.

ECX Generic, sometimes used as a counter by repetitive
instructions that require counting.

ESI/EDI Generic, frequently used as source/destination pointers
in instructions that copy memory (ST stands for Source
Index, and DI stands for Destination Index).

EBP Can be used as a generic register, but is mostly used as
the stack base pointer. Using a base pointer in
combination with the stack pointer creates a stack
frame. A stack frame can be defined as the current
function’s stack zone, which resides between the stack
pointer (EsP) and the base pointer (EBP). The base
pointer usually points to the stack position right after the
return address for the current function. Stack frames are
used for gaining quick and convenient access to both
local variables and to the parameters passed to the
current function.

ESP This is the CPUs stack pointer. The stack pointer stores
the current position in the stack, so that anything pushed
to the stack gets pushed below this address, and this
register is updated accordingly.

46

Chapter 2

AH AL BH BL
<8 Bits-»«48 Bits» <8 Bits-»«8 Bits»
AX BX
<+—16 Bits—» <+—16 Bits—»
EAX EBX
< 32 Bits > < 32 Bits >
CH CL DH DL
<8 Bits-»«8 Bits» <8 Bits-»«8 Bits»
CX DX
<+—16 Bits—» <+—16 Bits—»
ECX EDX
< 32 Bits > < 32 Bits >
SP BP
<+—16 Bits—» <+—16 Bits—»
ESP EBP
< 32 Bits > < 32 Bits >
SI DI
<+—16 Bits—» <+—16 Bits—»
ESI EDI
< 32 Bits > < 32 Bits >

Figure 2.3 General-purpose registers in I1A-32.

Flags

IA-32 processors have a special register called EFLAGS that contains all kinds
of status and system flags. The system flags are used for managing the various
processor modes and states, and are irrelevant for this discussion. The status
flags, on the other hand, are used by the processor for recording its current log-
ical state, and are updated by many logical and integer instructions in order to
record the outcome of their actions. Additionally, there are instructions that
operate based on the values of these status flags, so that it becomes possible to

Low-Level Software

47

create sequences of instructions that perform different operations based on dif-
ferent input values, and so on.

In IA-32 code, flags are a basic tool for creating conditional code. There are
arithmetic instructions that test operands for certain conditions and set proces-
sor flags based on their values. Then there are instructions that read these flags
and perform different operations depending on the values loaded into the
flags. One popular group of instructions that act based on flag values is the
Jcc (Conditional Jump) instructions, which test for certain flag values
(depending on the specific instruction invoked) and jump to a specified code
address if the flags are set according to the specific conditional code specified.

Let’s look at an example to see how it is possible to create a conditional state-
ment like the ones we’re used to seeing in high-level languages using flags.
Say you have a variable that was called bSuccess in the high-level language,
and that you have code that tests whether it is false. The code might look like
this:

if (bSuccess == FALSE) return 0;

What would this line look like in assembly language? It is not generally pos-
sible to test a variable’s value and act on that value in a single instruction—
most instructions are too primitive for that. Instead, we must test the value of
bSuccess (which will probably be loaded into a register first), set some flags
that record whether it is zero or not, and invoke a conditional branch instruc-
tion that will test the necessary flags and branch if they indicate that the
operand handled in the most recent instruction was zero (this is indicated by
the Zero Flag, ZF). Otherwise the processor will just proceed to execute the
instruction that follows the branch instruction. Alternatively, the compiler
might reverse the condition and branch if bSuccess is nonzero. There are
many factors that determine whether compilers reverse conditions or not. This
topic is discussed in depth in Appendix A.

Instruction Format

Before we start discussing individual assembly language instructions, I'd like
to introduce the basic layout of IA-32 instructions. Instructions usually consist
of an opcode (operation code), and one or two operands. The opcode is an
instruction name such as MOV, and the operands are the “parameters” that
the instruction receives (some instructions have no operands). Naturally, each
instruction requires different operands because they each perform a different
task. Operands represent data that is handled by the specific instruction (just
like parameters passed to a function), and in assembly language, data comes in
three basic forms:

48

Chapter 2

m Register name: The name of a general-purpose register to be read from
or written to. In IA-32, this would be something like EAX, EBX, and so on.

m Immediate: A constant value embedded right in the code. This often
indicates that there was some kind of hard-coded constant in the origi-
nal program.

m Memory address: When an operand resides in RAM, its memory
address is enclosed in brackets to indicate that it is a memory address.
The address can either be a hard-coded immediate that simply tells the
processor the exact address to read from or write to or it can be a regis-
ter whose value will be used as a memory address. It is also possible to
combine a register with some arithmetic and a constant, so that the reg-
ister represents the base address of some object, and the constant repre-
sents an offset into that object or an index into an array.

The general instruction format looks like this:

Instruction Name (opcode) Destination Operand, Source Operand

Some instructions only take one operand, whose purpose depends on the
specific instruction. Other instructions take no operands and operate on pre-
defined data. Table 2.2 provides a few typical examples of operands and
explains their meanings.

Basic Instructions

Now that you're familiar with the IA-32 registers, we can move on to some
basic instructions. These are popular instructions that appear everywhere in a
program. Please note that this is nowhere near an exhaustive list of IA-32
instructions. It is merely an overview of the most common ones. For detailed
information on each instruction refer to the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A and Volume 2B [Intel2, Intel3]. These are the
(freely available) IA-32 instruction set reference manuals from Intel.

Table 2.2 Examples of Typical Instruction Operands and Their Meanings

OPERAND DESCRIPTION

EAX Simply references Eax, either for reading or writing

0x30004040 An immediate number embedded in the code (like a
constant)

[0x4000349e] An immediate hard-coded memory address—this can be a

global variable access

Low-Level Software 49

THE AT&T ASSEMBLY LANGUAGE NOTATION

Even though the assembly language instruction format described here follows
the notation used in the official 1A-32 documentation provided by Intel, it is not
the only notation used for presenting 1A-32 assembly language code. The AT&T
Unix notation is another notation for assembly language instructions that is
quite different from the Intel notation. In the AT&T notation the source operand
usually precedes the destination operand (the opposite of how it is done in the
Intel notation). Also, register names are prefixed with an % (so that Eax is
referenced as $cax). Memory addresses are denoted using parentheses, so that
% (ebx) means “the address pointed to by EBx.” The AT&T notation is mostly
used in Unix development tools such as the GNU tools, while the Intel notation
is primarily used in Windows tools, which is why this book uses the Intel
notation for assembly language listings.

Moving Data

The MOV instruction is probably the most popular IA-32 instruction. MOV takes
two operands: a destination operand and a source operand, and simply moves
data from the source to the destination. The destination operand can be either
a memory address (either through an immediate or using a register) or a reg-
ister. The source operand can be an immediate, register, or memory address,
but note that only one of the operands can contain a memory address, and
never both. This is a generic rule in IA-32 instructions: with a few exceptions,
most instructions can only take one memory operand. Here is the “prototype”
of the MOV instruction:

MOV DestinationOperand, SourceOperand

Please see the “Examples” section later in this chapter to get a glimpse of
how MOV and other instructions are used in real code.

Arithmetic

For basic arithmetic operations, the IA-32 instruction set includes six basic
integer arithmetic instructions: ADD, SUB, MUL, DIV, IMUL, and IDIV. The fol-
lowing table provides the common format for each instruction along with a
brief description. Note that many of these instructions support other configu-
rations, with different sets of operands. Table 2.3 shows the most common con-
figuration for each instruction.

50 Chapter 2

Table 2.3 Typical Configurations of Basic IA-32 Arithmetic Instructions

INSTRUCTION DESCRIPTION

ADD Operandl, Operand2 Adds two signed or unsigned integers. The
result is typically stored in Operandl.

SUB Operandl, Operand2 Subtracts the value at Operand2 from the
value at Operandl. The result is typically stored
in Operandl. This instruction works for both
signed and unsigned operands.

MUL Operand Multiplies the unsigned operand by Eax and
stores the result in a 64-bit value in EDX : EAX.
EDX:EAX means that the low (least significant)
32 bits are stored in EaX and the high (most
significant) 32 bits are stored in £Dx. This is a
common arrangement in 1A-32 instructions.

DIV Operand Divides the unsigned 64-bit value stored in
EDX : EAX by the unsigned operand. Stores the
quotient in EAx and the remainder in EDX.

IMUL Operand Multiplies the signed operand by Eax and
stores the result in a 64-bit value in EDX : EAX.

IDIV Operand Divides the signed 64-bit value stored in
EDX : EAX by the signed operand. Stores the
quotient in EAx and the remainder in EDX.

Comparing Operands
Operands are compared using the CMP instruction, which takes two operands:

CMP
Operandl, Operand?2

CMP records the result of the comparison in the processor’s flags. In essence,
CMP simply subtracts Operand2 from Operandl and discards the result,
while setting all of the relevant flags to correctly reflect the outcome of the sub-
traction. For example, if the result of the subtraction is zero, the Zero Flag (zF)
is set, which indicates that the two operands are equal. The same flag can be
used for determining if the operands are not equal, by testing whether ZF is
not set. There are other flags that are set by CMP that can be used for determin-
ing which operand is greater, depending on whether the operands are signed
or unsigned. For more information on these specific flags refer to Appendix A.

Low-Level Software

51

Conditional Branches

Conditional branches are implemented using the Jcc group of instructions.
These are instructions that conditionally branch to a specified address, based
on certain conditions. Jcc is just a generic name, and there are quite a few dif-
ferent variants. Each variant tests a different set of flag values to decide
whether to perform the branch or not. The specific variants are discussed in
Appendix A.

The basic format of a conditional branch instruction is as follows:

Jcc TargetCodeAddress

If the specified condition is satisfied, Jcc will just update the instruction
pointer to point to TargetCodeAddress (without saving its current value). If
the condition is not satisfied, Jcc will simply do nothing, and execution will
proceed at the following instruction.

Function Calls

Function calls are implemented using two basic instructions in assembly lan-
guage. The CALL instruction calls a function, and the RET instruction returns
to the caller. The CALL instruction pushes the current instruction pointer onto
the stack (so that it is later possible to return to the caller) and jumps to the
specified address. The function’s address can be specified just like any other
operand, as an immediate, register, or memory address. The following is the
general layout of the CALL instruction.

CALL FunctionAddress

When a function completes and needs to return to its caller, it usually
invokes the RET instruction. RET pops the instruction pointer pushed to the
stack by CALL and resumes execution from that address. Additionally, RET can
be instructed to increment ESP by the specified number of bytes after popping
the instruction pointer. This is needed for restoring ESP back to its original
position as it was before the current function was called and before any para-
meters were pushed onto the stack. In some calling conventions the caller is
responsible for adjusting ESP, which means that in such cases RET will be used
without any operands, and that the caller will have to manually increment
ESP by the number of bytes pushed as parameters. Detailed information on
calling conventions is available in Appendix C.

52

Chapter 2

Examples

Let’s have a quick look at a few short snippets of assembly language, just to
make sure that you understand the basic concepts. Here is the first example:

cmp ebx, 0x£020
jnz 10026509

The first instruction is CMP, which compares the two operands specified. In
this case CMP is comparing the current value of register EBX with a constant:
0x£020 (the “0x” prefix indicates a hexadecimal number), or 61,472 in deci-
mal. As you already know, CMP is going to set certain flags to reflect the out-
come of the comparison. The instruction that follows is JNZ. JNZ is a version of
the Jcc (conditional branch) group of instructions described earlier. The spe-
cific version used here will branch if the zero flag (ZF) is not set, which is why
the instruction is called JNZ (jump if not zero). Essentially what this means is
that the instruction will jump to the specified code address if the operands com-
pared earlier by CMP are not equal. That is why JNZ is also called JNE (jump if
not equal). JNE and JNZ are two different mnemonics for the same instruc-
tion—they actually share the same opcode in the machine language.

Let’s proceed to another example that demonstrates the moving of data and
some arithmetic.

mov edi, [ecx+0x5b0]
mov ebx, [ecx+0x5b4]
imul edi, ebx

This sequence starts with an MOV instruction that reads an address from
memory into register EDI. The brackets indicate that this is a memory access,
and the specific address to be read is specified inside the brackets. In this case,
MOV will take the value of ECX, add 0x5b0 (1456 in decimal), and use the result
as a memory address. The instruction will read 4 bytes from that address and
write them into EDI. You know that 4 bytes are going to be read because of the
register specified as the destination operand. If the instruction were to refer-
ence DI instead of EDI, you would know that only 2 bytes were going to be
read. EDT is a full 32-bit register (see Figure 2.3 for an illustration of IA-32 reg-
isters and their sizes).

The following instruction reads another memory address, this time from
ECX plus 0x5b4 into register EBX. You can easily deduce that ECX points to
some kind of data structure. 0x5b0 and 0x5b4 are offsets to some members
within that data structure. If this were a real program, you would probably
want to try and figure out more information regarding this data structure that
is pointed to by ECX. You might do that by tracing back in the code to see
where ECX is loaded with its current value. That would tell you where this

Low-Level Software

53

structure’s address is obtained, and might shed some light on the nature of
this data structure. I will be demonstrating all kinds of techniques for investi-
gating data structures in the reversing examples throughout this book.

The final instruction in this sequence is an IMUL (signed multiply) instruc-
tion. IMUL has several different forms, but when specified with two operands
as it is here, it means that the first operand is multiplied by the second, and
that the result is written into the first operand. This means that the value of
EDI will be multiplied by the value of EBX and that the result will be written
back into EDT.

If you look at these three instructions as a whole, you can get a good idea of
their purpose. They basically take two different members of the same data
structure (Whose address is taken from ECX), and multiply them. Also, because
IMUL is used, you know that these members are signed integers, apparently
32-bits long. Not too bad for three lines of assembly language code!

For the final example, let’s have a look at what an average function call
sequence looks like in IA-32 assembly language.

push eax

push edi

push ebx

push esi

push dword ptr [esp+0x24]
call 0x10026eeb

This sequence pushes five values into the stack using the PUSH instruction.
The first four values being pushed are all taken from registers. The fifth and
final value is taken from a memory address at ESP plus 0x24. In most cases,
this would be a stack address (ESP is the stack pointer), which would indicate
that this address is either a parameter that was passed to the current function
or a local variable. To accurately determine what this address represents, you
would need to look at the entire function and examine how it uses the stack. I
will be demonstrating techniques for doing this in Chapter 5.

A Primer on Compilers and Compilation

It would be safe to say that 99 percent of all modern software is implemented
using high-level languages and goes through some sort of compiler prior to
being shipped to customers. Therefore, it is also safe to say that most, if not all,
reversing situations you’ll ever encounter will include the challenge of deci-
phering the back-end output of one compiler or another.

Because of this, it can be helpful to develop a general understanding of com-
pilers and how they operate. You can consider this a sort of “know your
enemy” strategy, which will help you understand and cope with the difficul-
ties involved in deciphering compiler-generated code.

54

Chapter 2

Compiler-generated code can be difficult to read. Sometimes it is just so dif-
ferent from the original code structure of the program that it becomes difficult to
determine the software developer’s original intentions. A similar problem hap-
pens with arithmetic sequences: they are often rearranged to make them more
efficient, and one ends up with an odd looking sequence of arithmetic opera-
tions that might be very difficult to comprehend. The bottom line is that devel-
oping an understanding of the processes undertaken by compilers and the way
they “perceive” the code will help in eventually deciphering their output.

The following sections provide a bit of background information on compil-
ers and how they operate, and describe the different stages that take place
inside the average compiler. While it is true that the following sections could
be considered optional, I would still recommend that you go over them at
some point if you are not familiar with basic compilation concepts. I firmly
believe that reversers must truly know their systems, and no one can truly
claim to understand the system without understanding how software is cre-
ated and built.

It should be emphasized that compilers are extremely complex programs
that combine a variety of fields in computer science research and can have mil-
lions of lines of code. The following sections are by no means comprehen-
sive—they merely scratch the surface. If you'd like to deepen your knowledge
of compilers and compiler optimizations, you should check out [Cooper]
Keith D. Copper and Linda Torczon. Engineering a Compiler. Morgan Kauf-
mann Publishers, 2004, for a highly readable tutorial on compilation tech-
niques, or [Muchnick] Steven S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers, 1997, for a more detailed dis-
cussion of advanced compilation materials such as optimizations, and so on.

Defining a Compiler

At its most basic level, a compiler is a program that takes one representation of
a program as its input and produces a different representation of the same pro-
gram. In most cases, the input representation is a text file containing code that
complies with the specifications of a certain high-level programming lan-
guage. The output representation is usually a lower-level translation of the
same program. Such lower-level representation is usually read by hardware or
software, and rarely by people. The bottom line is usually that compilers trans-
form programs from their high-level, human-readable form into a lower-level,
machine-readable form.

During the translation process, compilers usually go through numerous
improvement or optimization steps that take advantage of the compiler’s
“understanding” of the program and employ various algorithms to improve
the code’s efficiency. As I have already mentioned, these optimizations tend to
have a strong “side effect”: they seriously degrade the emitted code’s read-
ability. Compiler-generated code is simply not meant for human consumption.

Low-Level Software

55

Compiler Architecture

The average compiler consists of three basic components. The front end is
responsible for deciphering the original program text and for ensuring that its
syntax is correct and in accordance with the language’s specifications. The
optimizer improves the program in one way or another, while preserving its
original meaning. Finally, the back end is responsible for generating the plat-
form-specific binary from the optimized code emitted by the optimizer. The
following sections discuss each of these components in depth.

Front End

The compilation process begins at the compiler’s front end and includes several
steps that analyze the high-level language source code. Compilation usually
starts with a process called lexical analysis or scanning, in which the compiler
goes over the source file and scans the text for individual tokens within it.
Tokens are the textual symbols that make up the code, so that in a line such as:

if (Remainder != 0)

The symbols if, (, Remainder, and != are all tokens. While scanning for
tokens, the lexical analyzer confirms that the tokens produce legal “sentences”
in accordance with the rules of the language. For example, the lexical analyzer
might check that the token if is followed by a (, which is a requirement in
some languages. Along with each word, the analyzer stores the word’s mean-
ing within the specific context. This can be thought of as a very simple version
of how humans break sentences down in natural languages. A sentence is
divided into several logical parts, and words can only take on actual meaning
when placed into context. Similarly, lexical analysis involves confirming the
legality of each token within the current context, and marking that context. If
a token is found that isn’t expected within the current context, the compiler
reports an error.

A compiler’s front end is probably the one component that is least relevant
to reversers, because it is primarily a conversion step that rarely modifies the
program’s meaning in any way—it merely verifies that it is valid and converts
it to the compiler’s intermediate representation.

Intermediate Representations

When you think about it, compilers are all about representations. A compiler’s
main role is to transform code from one representation to another. In the
process, a compiler must generate its own representation for the code. This
intermediate representation (or internal representation, as it’s sometimes called), is
useful for detecting any code errors, improving upon the code, and ultimately
for generating the resulting machine code.

56

Chapter 2

Properly choosing the intermediate representation of code in a compiler is
one of the compiler designer’s most important design decisions. The layout
heavily depends on what kind of source (high-level language) the compiler
takes as input, and what kind of object code the compiler spews out. Some
intermediate representations can be very close to a high-level language and
retain much of the program’s original structure. Such information can be use-
ful if advanced improvements and optimizations are to be performed on the
code. Other compilers use intermediate representations that are closer to a
low-level assembly language code. Such representations frequently strip
much of the high-level structures embedded in the original code, and are suit-
able for compiler designs that are more focused on the low-level details of the
code. Finally, it is not uncommon for compilers to have two or more interme-
diate representations, one for each stage in the compilation process.

Optimizer

Being able to perform optimizations is one of the primary reasons that
reversers should understand compilers (the other reason being to understand
code-level optimizations performed in the back end). Compiler optimizers
employ a wide variety of techniques for improving the efficiency of the code.
The two primary goals for optimizers are usually either generating the most
high-performance code possible or generating the smallest possible program
binaries. Most compilers can attempt to combine the two goals as much as pos-
sible.

Optimizations that take place in the optimizer are not processor-specific and
are generic improvements made to the original program’s code without any
relation to the specific platform to which the program is targeted. Regardless of
the specific optimizations that take place, optimizers must always preserve the
exact meaning of the original program and not change its behavior in any way.

The following sections briefly discuss different areas where optimizers can
improve a program. It is important to keep in mind that some of the opti-
mizations that strongly affect a program’s readability might come from the
processor-specific work that takes place in the back end, and not only from the
optimizer.

Code Structure

Optimizers frequently modify the structure of the code in order to make it
more efficient while preserving its meaning. For example, loops can often be
partially or fully unrolled. Unrolling a loop means that instead of repeating the
same chunk of code using a jump instruction, the code is simply duplicated so
that the processor executes it more than once. This makes the resulting binary
larger, but has the advantage of completely avoiding having to manage a
counter and invoke conditional branches (which are fairly inefficient—see the

Low-Level Software

57

section on CPU pipelines later in this chapter). It is also possible to partially
unroll a loop so that the number of iterations is reduced by performing more
than one iteration in each cycle of the loop.

When going over switch blocks, compilers can determine what would be
the most efficient approach for searching for the correct case in runtime. This
can be either a direct table where the individual blocks are accessed using the
operand, or using different kinds of tree-based search approaches.

Another good example of a code structuring optimization is the way that
loops are rearranged to make them more efficient. The most common high-
level loop construct is the pretested loop, where the loop’s condition is tested
before the loop’s body is executed. The problem with this construct is that it
requires an extra unconditional jump at the end of the loop’s body in order to
jump back to the beginning of the loop (for comparison, posttested loops only
have a single conditional branch instruction at the end of the loop, which
makes them more efficient). Because of this, it is common for optimizers to
convert pretested loops to posttested loops. In some cases, this requires the
insertion of an if statement before the beginning of the loop, so as to make
sure the loop is not entered when its condition isn’t satisfied.

Code structure optimizations are discussed in more detail in Appendix A.

Redundancy Elimination

Redundancy elimination is a significant element in the field of code optimization
that is of little interest to reversers. Programmers frequently produce code that
includes redundancies such as repeating the same calculation more than once,
assigning values to variables without ever using them, and so on. Optimizers
have algorithms that search for such redundancies and eliminate them.

For example, programmers routinely leave static expressions inside loops,
which is wasteful because there is no need to repeatedly compute them—they
are unaffected by the loop’s progress. A good optimizer identifies such state-
ments and relocates them to an area outside of the loop in order to improve on
the code’s efficiency.

Optimizers can also streamline pointer arithmetic by efficiently calculating
the address of an item within an array or data structure and making sure that
the result is cached so that the calculation isn’t repeated if that item needs to be
accessed again later on in the code.

Back End

A compiler’s back end, also sometimes called the code generator, is responsi-
ble for generating target-specific code from the intermediate code generated
and processed in the earlier phases of the compilation process. This is where
the intermediate representation “meets” the target-specific language, which is
usually some kind of a low-level assembly language.

58

Chapter 2

Because the code generator is responsible for the actual selection of specific
assembly language instructions, it is usually the only component that has
enough information to apply any significant platform-specific optimizations.
This is important because many of the transformations that make compiler-
generated assembly language code difficult to read take place at this stage.

The following are the three of the most important stages (at least from our
perspective) that take place during the code generation process:

m Instruction selection: This is where the code from the intermediate rep-
resentation is translated into platform-specific instructions. The selec-
tion of each individual instruction is very important to overall program
performance and requires that the compiler be aware of the various
properties of each instruction.

m Register allocation: In many intermediate representations there is an
unlimited number of registers available, so that every local variable can
be placed in a register. The fact that the target processor has a limited
number of registers comes into play during code generation, when the
compiler must decide which variable gets placed in which register, and
which variable must be placed on the stack.

m Instruction scheduling: Because most modern processors can handle
multiple instructions at once, data dependencies between individual
instructions become an issue. This means that if an instruction performs
an operation and stores the result in a register, immediately reading
from that register in the following instruction would cause a delay;,
because the result of the first operation might not be available yet. For
this reason the code generator employs platform-specific instruction
scheduling algorithms that reorder instructions to try to achieve the
highest possible level of parallelism. The end result is interleaved code,
where two instruction sequences dealing with two separate things are
interleaved to create one sequence of instructions. We will be seeing
such sequences in many of the reversing sessions in this book.

Listing Files

A listing file is a compiler-generated text file that contains the assembly lan-
guage code produced by the compiler. It is true that this information can be
obtained by disassembling the binaries produced by the compiler, but a listing
file also conveniently shows how each assembly language line maps to the
original source code. Listing files are not strictly a reversing tool but more of a
research tool used when trying to study the behavior of a specific compiler by
feeding it different code and observing the output through the listing file.

Low-Level Software

59

Most compilers support the generation of listing files during the compila-
tion process. For some compilers, such as GCC, this is a standard part of the
compilation process because the compiler doesn’t directly generate an object
file, but instead generates an assembly language file which is then processed
by an assembler. In such compilers, requesting a listing file simply means that
the compiler must not delete it after the assembler is done with it. In other
compilers (such as the Microsoft or Intel compilers), a listing file is an optional
feature that must be enabled through the command line.

Specific Compilers

Any compiled code sample discussed in this book has been generated with
one of three compilers (this does not include third-party code reversed in the
book):

m GCC and G++ version 3.3.1: The GNU C Compiler (GCC) and GNU
C++ Compiler (G++) are popular open-source compilers that generate
code for a large number of different processors, including IA-32. The
GNU compilers (also available for other high-level languages) are com-
monly used by developers working on Unix-based platforms such as
Linux, and most Unix platforms are actually built using them. Note that
it is also possible to write code for Microsoft Windows using the GNU
compilers. The GNU compilers have a powerful optimization engine
that usually produces results similar to those of the other two compilers
in this list. However, the GNU compilers don’t seem to have a particu-
larly aggressive IA-32 code generator, probably because of their ability
to generate code for so many different processors. On one hand, this
frequently makes the IA-32 code generated by them slightly less effi-
cient compared to some of the other popular IA-32 compilers. On the
other hand, from a reversing standpoint this is actually an advantage
because the code they produce is often slightly more readable, at least
compared to code produced by the other compilers discussed here.

m Microsoft C/C++ Optimizing Compiler version 13.10.3077: The
Microsoft Optimizing Compiler is one of the most common compilers for
the Windows platform. This compiler is shipped with the various ver-
sions of Microsoft Visual Studio, and the specific version used through-
out this book is the one shipped with Microsoft Visual C++ .NET 2003.

m Intel C++ Compiler version 8.0: The Intel C/C++ compiler was devel-
oped primarily for those that need to squeeze the absolute maximum
performance possible from Intel’s IA-32 processors. The Intel compiler
has a good optimization stage that appears to be on par with the other
two compilers on this list, but its back end is where the Intel compiler

60

Chapter 2

shines. Intel has, unsurprisingly, focused on making this compiler gen-
erate highly optimized IA-32 code that takes the specifics of the Intel
NetBurst architecture (and other Intel architectures) into account. The
Intel compiler also supports the advanced SSE, SSE2, and SSE3 exten-
sions offered in modern IA-32 processors.

Execution Environments

An execution environment is the component that actually runs programs. This
can be a CPU or a software environment such as a virtual machine. Execution
environments are especially important to reversers because their architectures
often affect how the program is generated and compiled, which directly affects
the readability of the code and hence the reversing process.

The following sections describe the two basic types of execution environ-
ments, which are virtual machines and microprocessors, and describe how a
program’s execution environment affects the reversing process.

Software Execution Environments (Virtual Machines)

Some software development platforms don’t produce executable machine
code that directly runs on a processor. Instead, they generate some kind of
intermediate representation of the program, or bytecode. This bytecode is then
read by a special program on the user’s machine, which executes the program
on the local processor. This program is called a virtual machine. Virtual
machines are always processor-specific, meaning that a specific virtual
machine only runs on a specific platform. However, many bytecode formats
have multiple virtual machines that allow running the same bytecode pro-
gram on different platforms.

Two common virtual machine architectures are the Java Virtual Machine
(JVM) that runs Java programs, and the Common Language Runtime (CLR)
that runs Microsoft .NET applications.

Programs that run on virtual machines have several significant benefits
compared to native programs executed directly on the underlying hardware:

m Platform isolation: Because the program reaches the end user in a
generic representation that is not machine-specific, it can theoretically
be executed on any computer platform for which a compatible execu-
tion environment exists. The software vendor doesn’t have to worry
about platform compatibility issues (at least theoretically)—the execu-
tion environment stands between the program and the system and
encapsulates any platform-specific aspects.

Low-Level Software

61

m Enhanced functionality: When a program is running under a virtual
machine, it can (and usually does) benefit from a wide range of
enhanced features that are rarely found on real silicon processors. This
can include features such as garbage collection, which is an automated
system that tracks resource usage and automatically releases memory
objects once they are no longer in use. Another prominent feature is
runtime type safety: because virtual machines have accurate data type
information on the program being executed, they can verify that type
safety is maintained throughout the program. Some virtual machines
can also track memory accesses and make sure that they are legal.
Because the virtual machine knows the exact length of each memory
block and is able to track its usage throughout the application, it can
easily detect cases where the program attempts to read or write beyond
the end of a memory block, and so on.

Bytecodes

The interesting thing about virtual machines is that they almost always have
their own bytecode format. This is essentially a low-level language that is just
like a hardware processor’s assembly language (such as the IA-32 assembly
language). The difference of course is in how such binary code is executed.
Unlike conventional binary programs, in which each instruction is decoded
and executed by the hardware, virtual machines perform their own decoding
of the program binaries. This is what enables such tight control over every-
thing that the program does; because each instruction that is executed must
pass through the virtual machine, the VM can monitor and control any opera-
tions performed by the program.

The distinction between bytecode and regular processor binary code has
slightly blurred during the past few years. Several companies have been
developing bytecode processors that can natively run bytecode languages,
which were previously only supported on virtual machines. In Java, for
example, there are companies such as Imsys and alile that offer “direct
execution processors” that directly execute the Java bytecode without the use
of a virtual machine.

Interpreters

The original approach for implementing virtual machines has been to use
interpreters. Interpreters are programs that read a program’s bytecode exe-

62

Chapter 2

cutable and decipher each instruction and “execute” it in a virtual environ-
ment implemented in software. It is important to understand that not only are
these instructions not directly executed on the host processor, but also that the
data accessed by the bytecode program is managed by the interpreter. This
means that the bytecode program would not have direct access to the host
CPU'’s registers. Any “registers” accessed by the bytecode would usually have
to be mapped to memory by the interpreter.

Interpreters have one major drawback: performance. Because each instruc-
tion is separately decoded and executed by a program running under the real
CPU, the program ends up running significantly slower than it would were it
running directly on the host’s CPU. The reasons for this become obvious when
one considers the amount of work the interpreter must carry out in order to
execute a single high-level bytecode instruction.

For each instruction, the interpreter must jump to a special function or code
area that deals with it, determine the involved operands, and modify the sys-
tem state to reflect the changes. Even the best implementation of an interpreter
still results in each bytecode instruction being translated into dozens of
instructions on the physical CPU. This means that interpreted programs run
orders of magnitude slower than their compiled counterparts.

Just-in-Time Compilers

Modern virtual machine implementations typically avoid using interpreters
because of the performance issues described above. Instead they employ just-
in-time compilers, or JiTs. Just-in-time compilation is an alternative approach for
running bytecode programs without the performance penalty associated with
interpreters.

The idea is to take snippets of program bytecode at runtime and compile
them into the native processor’s machine language before running them.
These snippets are then executed natively on the host’s CPU. This is usually an
ongoing process where chunks of bytecode are compiled on demand, when-
ever they are required (hence the term just-in-time).

Reversing Strategies

Reversing bytecode programs is often an entirely different experience com-
pared to that of conventional, native executable programs. First and foremost,
most bytecode languages are far more detailed compared to their native
machine code counterparts. For example, Microsoft .NET executables contain
highly detailed data type information called metadata. Metadata provides
information on classes, function parameters, local variable types, and much
more.

Low-Level Software

63

Having this kind of information completely changes the reversing experi-
ence because it brings us much closer to the original high-level representation
of the program. In fact, this information allows for the creation of highly effec-
tive decompilers that can reconstruct remarkably readable high-level lan-
guage representations from bytecode executables. This situation is true for
both Java and .NET programs, and it presents a problem to software vendors
working on those platforms, who have a hard time protecting their executa-
bles from being easily reverse engineered. The solution in most cases is to use
obfuscators—programs that try to eliminate as much sensitive information
from the executable as possible (while keeping it functional).

Depending on the specific platform and on how aggressively an executable
is obfuscated, reversers have two options: they can either use a decompiler to
reconstruct a high-level representation of the target program or they can learn
the native low-level language in which the program is presented and simply
read that code and attempt to determine the program’s design and purpose.
Luckily, these bytecode languages are typically fairly easy to deal with because
they are not as low-level as the average native processor assembly language.
Chapter 12 provides an introduction to Microsoft’s .NET platform and to its
native language, the Microsoft Intermediate Language (MSIL), and demonstrates
how to reverse programs written for the INET platform.

Hardware Execution Environments in Modern Processors

Since this book focuses primarily on the reversing process for native IA-32 pro-
grams, it might make sense to take a quick look at how code is executed inside
these processors to see if you can somehow harness that information to your
advantage while reversing.

In the early days of microprocessors things were much simpler. A micro-
processor was a collection of digital circuits that could perform a variety of
operations and was controlled using machine code that was read from mem-
ory. The processor’s runtime consisted simply of an endlessly repeating
sequence of reading an instruction from memory, decoding it, and triggering
the correct circuit to perform the operation specified in the machine code. The
important thing to realize is that execution was entirely serial. As the demand
for faster and more flexible microprocessors arose, microprocessor designers
were forced to introduce parallelism using a variety of techniques.

The problem is that backward compatibility has always been an issue. For
example, newer version of IA-32 processors must still support the original IA-
32 instruction set. Normally this wouldn’t be a problem, but modern proces-
sors have significant support for parallel execution, which is difficult to
achieve considering that the instruction set wasn’t explicitly designed to sup-
port it. Because instructions were designed to run one after the other and not
in any other way, sequential instructions often have interdependencies which

64

Chapter 2

prevent parallelism. The general strategy employed by modern IA-32 proces-
sors for achieving parallelism is to simply execute two or more instructions at
the same time. The problems start when one instruction depends on informa-
tion produced by the other. In such cases the instructions must be executed in
their original order, in order to preserve the code’s functionality.

Because of these restrictions, modern compilers employ a multitude of tech-
niques for generating code that could be made to run as efficiently as possible
on modern processors. This naturally has a strong impact on the readability of
disassembled code while reversing. Understanding the rationale behind such
optimization techniques might help you decipher such optimized code.

The following sections discuss the general architecture of modern IA-32
processors and how they achieve parallelism and high instruction throughput.

This subject is optional and is discussed here because it is always best to know
why things are as they are. In this case, having a general understanding of why
optimized IA-32 code is arranged the way it is can be helpful when trying to
decipher its meaning.

IA-32 COMPATIBLE PROCESSORS

Over the years, many companies have attempted to penetrate the lucrative
IA-32 processor market (which has been completely dominated by Intel
Corporation) by creating 1A-32 compatible processors. The strategy has usually
been to offer better-priced processors that are 100 percent compatible with
Intel’s 1A-32 processors and offer equivalent or improved performance. AMD
(Advanced Micro Devices) has been the most successful company in this
market, with an average market share of over 15 percent in the 1A-32 processor
market.

While getting to know 1A-32 assembly language there isn’t usually a need to
worry about other brands because of their excellent compatibility with the Intel
implementations. Even code that’s specifically optimized for Intel’s NetBurst
architecture usually runs extremely well on other implementations such as the
AMD proacessors, so that compilers rarely have to worry about specific
optimizations for non-Intel processors.

One substantial AMD-specific feature is the 3DNow! instruction set. 3DNow!
defines a set of SIMD (single instruction multiple data) instructions that can
perform multiple floating-point operations per clock cycle. 3DNow! stands in
direct competition to Intel’s SSE, SSE2, and SSE3 (Streaming SIMD Extensions).
In addition to supporting their own 3DNow! instruction set, AMD processors
also support Intel’s SSE extensions in order to maintain compatibility. Needless
to say, Intel processors don’t support 3DNow!.

Low-Level Software

65

Intel NetBurst

The Intel NetBurst microarchitecture is the current execution environment for
many of Intel’s modern IA-32 processors. Understanding the basic architec-
ture of NetBurst is important because it explains the rationale behind the opti-
mization guidelines used by almost every IA-32 code generator out there.

uops (Micro-0Ops)

IA-32 processors use microcode for implementing each instruction supported
by the processor. Microcode is essentially another layer of programming that
lies within the processor. This means that the processor itself contains a much
more primitive core, only capable of performing fairly simple operations
(though at extremely high speeds). In order to implement the relatively com-
plex IA-32 instructions, the processor has a microcode ROM, which contains
the microcode sequences for every instruction in the instruction set.

The process of constantly fetching instruction microcode from ROM can cre-
ate significant performance bottlenecks, so IA-32 processors employ an execu-
tion trace cache that is responsible for caching the microcodes of frequently
executed instructions.

Pipelines

Basically, a CPU pipeline is like a factory assembly line for decoding and exe-

cuting program instructions. An instruction enters the pipeline and is broken

down into several low-level tasks that must be taken care of by the processor.
In NetBurst processors, the pipeline uses three primary stages:

1. Front end: Responsible for decoding each instruction and producing
sequences of nops that represent each instruction. These pops are then
fed into the Out of Order Core.

2. Out of Order Core: This component receives sequences of pops from
the front end and reorders them based on the availability of the various
resources of the processor. The idea is to use the available resources as
aggressively as possible to achieve parallelism. The ability to do this
depends heavily on the original code fed to the front end. Given the
right conditions, the core will actually emit multiple pops per clock
cycle.

3. Retirement section: The retirement section is primarily responsible for
ensuring that the original order of instructions in the program is pre-
served when applying the results of the out-of-order execution.

Chapter 2

In terms of the actual execution of operations, the architecture provides four
execution ports (each with its own pipeline) that are responsible for the actual
execution of instructions. Each unit has different capabilities, as shown in
Figure 2.4.

Port O

Double Speed ALU Floating Point Move

ADD/SUB Floating Point Moves
Logic Operations Floating Point Stores

Branches Floating Point Exchange (FXCH)
Store Data Operations

Port 1

Double Speed ALU Integer Unit Floating Point Execute

Floating Point Addition
Floating Point Multiplication
Shift and Rotate Floating Point Division

Operations Other Floating Point

Operations
MMX Operations

ADD/SUB

Port 2 Port 3

Memory Loads Memory Writes

Address Store Operations

(this component writes the

All Memory Reads address to be written into

the bus, and does not send
the actual data).

Figure 2.4 lIssue ports and individual execution units in Intel NetBurst processors.

Low-Level Software

67

Notice how port 0 and port 1 both have double-speed ALUs (arithmetic log-
ical units). This is a significant aspect of IA-32 optimizations because it means
that each ALU can actually perform two operations in a single clock cycle. For
example, it is possible to perform up to four additions or subtractions during
a single clock cycle (two in each double-speed ALU). On the other hand, non-
SIMD floating-point operations are pretty much guaranteed to take at least
one cycle because there is only one unit that actually performs floating-point
operations (and another unit that moves data between memory and the FPU
stack).

Figure 2.4 can help shed light on instruction ordering and algorithms used by
NetBurst-aware compilers, because it provides a rationale for certain otherwise-
obscure phenomenon that we’ll be seeing later on in compiler-generated code
sequences.

Most modern IA-32 compiler back ends can be thought of as NetBurst-
aware, in the sense that they take the NetBurst architecture into consideration
during the code generation process. This is going to be evident in many of the
code samples presented throughout this book.

Branch Prediction

One significant problem with the pipelined approach described earlier has to
do with the execution of branches. The problem is that processors that have a
deep pipeline must always know which instruction is going to be executed
next. Normally, the processor simply fetches the next instruction from memory
whenever there is room for it, but what happens when there is a conditional
branch in the code?

Conditional branches are a problem because often their outcome is not
known at the time the next instruction must be fetched. One option would be
to simply wait before processing instructions currently in the pipeline until the
information on whether the branch is taken or not becomes available. This
would have a detrimental impact on performance because the processor only
performs at full capacity when the pipeline is full. Refilling the pipeline takes
a significant number of clock cycles, depending on the length of the pipeline
and on other factors.

The solution to these problems is to try and predict the result of each condi-
tional branch. Based on this prediction the processor fills the pipeline with
instructions that are located either right after the branch instruction (when the
branch is not expected to be taken) or from the branch’s target address (when
the branch is expected to be taken). A missed prediction is usually expensive
and requires that the entire pipeline be emptied.

The general prediction strategy is that backward branches that jump to an
earlier instruction are always expected to be taken because those are typically
used in loops, where for every iteration there will be a jump, and the only time

68

Chapter 2

such branch is not be taken is in the very last iteration. Forward branches (typ-
ically used in if statements) are assumed to not be taken.

In order to improve the processor’s prediction abilities, IA-32 processors
employ a branch trace buffer (BTB) which records the results of the most recent
branch instructions processed. This way when a branch is encountered, it is
searched in the BTB. If an entry is found, the processor uses that information
for predicting the branch.

Conclusion

In this chapter, we have introduced the concept of low-level software and gone
over some basic materials required for successfully reverse engineering pro-
grams. We have covered basic high-level software concepts and how they
translate into the low-level world, and introduced assembly language, which
is the native language of the reversing world. Additionally, we have covered
some more hard core low-level topics that often affect the reverse-engineering
process, such as compilers and execution environments. The next chapter pro-
vides an introduction to some additional background materials and focuses on
operating system fundamentals.

Windows Fundamentals

Operating systems play a key role in reversing. That’s because programs are
tightly integrated with operating systems, and plenty of information can be
gathered by probing this interface. Moreover, the eventual bottom line of
every program is in its communication with the outside world (the program
receives user input and outputs data on the screen, writes to a file, and so on),
which means that identifying and understanding the bridging points between
application programs and the operating system is critical.

This chapter introduces the architecture of the latest generations of the
Microsoft Windows operating system, which is the operating system used
throughout this book. Some of this material is quite basic. If you feel perfectly
comfortable with operating systems in general and with the Windows archi-
tecture in particular, feel free to skip this chapter.

It is important to realize that this discussion is really a brief overview of
information that could fill several thick books. I've tried to make it as complete
as possible and yet as focused on reversing as possible. If you feel as if you
need additional information on certain subjects discussed in this chapter I've
listed a couple of additional sources at the end of this chapter.

69

70

Chapter 3

Components and Basic Architecture

Before getting into the details of how Windows works, let’s start by taking a
quick look at how it evolved to its current architecture, and by listing its most
fundamental features.

Brief History

As you probably know, there used to be two different operating systems called
Windows: Windows and Windows NT. There was Windows, which was
branded as Windows 95, Windows 98, and Windows Me and was a descen-
dent of the old 16-bit versions of Windows. Windows NT was branded as Win-
dows 2000 and more recently as Windows XP and Windows Server 2003.
Windows NT is a more recent design that Microsoft initiated in the early 1990s.
Windows NT was designed from the ground up as a 32-bit, virtual memory
capable, multithreaded and multiprocessor-capable operating system, which
makes it far more suited for use with modern-day hardware and software.

Both operating systems were made compatible with the Win32 API, in order
to make applications run on both operating systems. In 2001 Microsoft finally
decided to eliminate the old Windows product (this should have happened
much earlier in my opinion) and to only offer NT-based systems. The first
general-public, consumer version of Windows NT was Windows XP, which
offered a major improvement for Windows 9x users (and a far less significant
improvement for users of its NT-based predecessor—Windows 2000). The
operating system described in this chapter is essentially Windows XP, but
most of the discussion deals with fundamental concepts that have changed
very little between Windows NT 4.0 (which was released in 1996), and Win-
dows Server 2003. It should be safe to assume that the materials in this chapter
will be equally relevant to the upcoming Windows release (currently code-
named “Longhorn”).

Features
The following are the basic features of the Windows NT architecture.

Pure 32-bit Architecture Now that the transition to 64-bit computing is
already well on the way this may not sound like much, but Windows NT
is a pure 32-bit computing environment, free of old 16-bit relics. Current
versions of the operating system are also available in 64-bit versions.

Supports Virtual-Memory Windows NT’s memory manager employs a
full-blown virtual-memory model. Virtual memory is discussed in detail
later in this chapter.

Windows Fundamentals

71

Portable Unlike the original Windows product, Windows NT was writ-
ten in a combination of C and C++, which means that it can be recom-
piled to run on different processor platforms. Additionally, any physical
hardware access goes through a special Hardware Abstraction Layer
(HAL), which isolates the system from the hardware and makes it easier
to port the system to new hardware platforms.

Multithreaded Windows NT is a fully preemptive, multithreaded sys-
tem. While it is true that later versions of the original Windows product
were also multithreaded, they still contained nonpreemptive compo-
nents, such as the 16-bit implementations of USER and GDI (the Win-
dows GUI components). These components had an adverse effect on
those systems” ability to achieve concurrency.

Multiprocessor-Capable The Windows NT kernel is multiprocessor-
capable, which means that it’s better suited for high-performance com-
puting environments such as large data-center servers and other
CPU-intensive applications.

Secure Unlike older versions of Windows, Windows NT was designed
with security in mind. Every object in the system has an associated
Access Control List (ACL) that determines which users are allowed to
manipulate it. The Windows NT File System (NTFS) also supports an
ACL for each individual file, and supports encryption of individual files
or entire volumes.

Compatible Windows NT is reasonably compatible with older applica-
tions and is capable of running 16-bit Windows applications and some
DOS applications as well. Old applications are executed in a special iso-
lated virtual machine where they cannot jeopardize the rest of the system.

Supported Hardware

Originally, Windows NT was designed as a cross-platform operating system,
and was released for several processor architectures, including IA-32, DEC
Alpha, and several others. With recent versions of the operating system, the
only supported 32-bit platform has been 1A-32, but Microsoft now also sup-
ports 64-bit architectures such as AMD64, Intel IA-64, and Intel EMT64.

Memory Management

This discussion is specific to the 32-bit versions of Windows. The fact is that
64-bit versions of Windows are significantly different from a reversing stand-
point, because 64-bit processors (regardless of which specific architecture) use

72

Chapter 3

a different assembly language. Focusing exclusively on 32-bit versions of Win-
dows makes sense because this book only deals with the IA-32 assembly lan-
guage. It looks like it is still going to take 64-bit systems a few years to become
a commodity. I promise I will update this book when that happens!

Virtual Memory and Paging

Virtual memory is a fundamental concept in contemporary operating systems.
The idea is that instead of letting software directly access physical memory, the
processor, in combination with the operating system, creates an invisible layer
between the software and the physical memory. For every memory access, the
processor consults a special table called the page table that tells the process
which physical memory address to actually use. Of course, it wouldn’t be
practical to have a table entry for each byte of memory (such a table would be
larger than the total available physical memory), so instead processors divide
memory into pages.

Pages are just fixed-size chunks of memory; each entry in the page table
deals with one page of memory. The actual size of a page of memory differs
between processor architectures, and some architectures support more than
one page size. IA-32 processors generally use 4K pages, though they also sup-
port 2 MB and 4 MB pages. For the most part Windows uses 4K pages, so you
can generally consider that to be the default page size.

When first thinking about this concept, you might not immediately see the
benefits of using a page table. There are several advantages, but the most
important one is that it enables the creation of multiple address spaces. An
address space is an isolated page table that only allows access to memory that
is pertinent to the current program or process. Because the process prevents
the application from accessing the page table, it is impossible for the process to
break this boundary. The concept of multiple address spaces is a fundamental
feature in modern operating systems, because it ensures that programs are
completely isolated from one another and that each process has its own little
“sandbox” to run in.

Beyond address spaces, the existence of a page table also means that it is
very easy to instruct the processor to enforce certain rules on how memory is
accessed. For example, page-table entries often have a set of flags that deter-
mine certain properties regarding the specific entry such as whether it is acces-
sible from nonprivileged mode. This means that the operating system code can
actually reside inside the process’s address space and simply set a flag in the
page-table entries that restricts the application from ever accessing the operat-
ing system’s sensitive data.

This brings us to the fundamental concepts of kernel mode versus user mode.
Kernel mode is basically the Windows term for the privileged processor mode
and is frequently used for describing code that runs in privileged mode or

Windows Fundamentals

73

memory that is only accessible while the processor is in privileged mode. User
mode is the nonprivileged mode: when the system is in user mode, it can only
run user-mode code and can only access user-mode memory.

Paging

Paging is a process whereby memory regions are temporarily flushed to the
hard drive when they are not in use. The idea is simple: because physical
memory is much faster and much more expensive than hard drive space, it
makes sense to use a file for backing up memory areas when they are not in
use. Think of a system that’s running many applications. When some of these
applications are not in use, instead of keeping the entire applications in phys-
ical memory, the virtual memory architecture enables the system to dump all
of that memory to a file and simply load it back as soon as it is needed. This
process is entirely transparent to the application.

Internally, paging is easy to implement on virtual memory systems. The sys-
tem must maintain some kind of measurement on when a page was last
accessed (the processor helps out with this) and use that information to locate
pages that haven’t been used in a while. Once such pages are located, the sys-
tem can flush their contents to a file and invalidate their page-table entries.
The contents of these pages in physical memory can then be discarded and the
space can be used for other purposes.

Later, when the flushed pages are accessed, the processor will generate page
fault (because their page-table entries are invalid), and the system will know
that they have been paged out. At this point the operating system will access
the paging file (which is where all paged-out memory resides), and read the
data back into memory.

One of the powerful side effects of this design is that applications can actu-
ally use more memory than is physically available, because the system can use
the hard drive for secondary storage whenever there is not enough physical
memory. In reality, this only works when applications don’t actively use more
memory than is physically available, because in such cases the system would
have to move data back and forth between physical memory and the hard
drive. Because hard drives are generally about 1,000 times slower than physi-
cal memory, such situations can cause systems to run incredibly slowly.

Page Faults

From the processor’s perspective, a page fault is generated whenever a mem-
ory address is accessed that doesn’t have a valid page-table entry. As end
users, we've grown accustomed to the thought that a page-fault equals bad
news. That’s akin to saying that a bacterium equals bad news to the human

74

Chapter 3

body; nothing could be farther from the truth. Page faults have a bad reputa-
tion because any program or system crash is usually accompanied by a mes-
sage informing us of an unhandled page fault. In reality, page faults are
triggered thousands of times each second in a healthy system. In most cases,
the system deals with such page faults as a part of its normal operations. A
good example of a legitimate page fault is when a page has been paged out to
the paging file and is being accessed by a program. Because the page’s page-
table entry is invalid, the processor generates a page fault, which the operating
system resolves by simply loading the page’s contents from the paging file and
resuming the program that originally triggered the fault.

Working Sets

A working set is a per-process data structure that lists the current physical
pages that are in use in the process’s address space. The system uses working
sets to determine each process’s active use of physical memory and which
memory pages have not been accessed in a while. Such pages can then be
paged out to disk and removed from the process’s working set.

It can be said that the memory usage of a process at any given moment can
be measured as the total size of its working set. That’s generally true, but is a
bit of an oversimplification because significant chunks of the average process
address space contain shared memory, which is also counted as part of the
total working set size. Measuring memory usage in a virtual memory system
is not a trivial task!

Kernel Memory and User Memory

Probably the most important concept in memory management is the distinc-
tions between kernel memory and user memory. It is well known that in order
to create a robust operating system, applications must not be able to access the
operating system’s internal data structures. That’s because we don’t want a
single programmer’s bug to overwrite some important data structure and
destabilize the entire system. Additionally, we want to make sure malicious
software can’t take control of the system or harm it by accessing critical oper-
ating system data structures.

Windows uses a 32-bit (4 gigabytes) memory address that is typically
divided into two 2-GB portions: a 2-GB application memory portion, and a
2-GB shared kernel-memory portion. There are several cases where 32-bit sys-
tems use a different memory layout, but these are not common. The general
idea is that the upper 2 GB contain all kernel-related memory in the system
and are shared among all address spaces. This is convenient because it means

Windows Fundamentals

75

that the kernel memory is always available, regardless of which process is cur-
rently running. The upper 2 GB are, of course, protected from any user-mode
access.

One side effect of this design is that applications only have a 31-bit address
space—the most significant bit is always clear in every address. This provides
a tiny reversing hint: A 32-bit number whose first hexadecimal digit is 8 or
above is not a valid user-mode pointer.

The Kernel Memory Space

So what goes on inside those 2 GB reserved for the kernel? Those 2 GB are
divided between the various kernel components. Primarily, the kernel space
contains all of the system’s kernel code, including the kernel itself and any
other kernel components in the system such as device drivers and the like.
Most of the 2 GB are divided among several significant system components.
The division is generally static, but there are several registry keys that can
somewhat affect the size of some of these areas. Figure 3.1 shows a typical lay-
out of the Windows kernel address space. Keep in mind that most of the com-
ponents have a dynamic size that can be determined in runtime based on the
available physical memory and on several user-configurable registry keys.

Paged and Nonpaged Pools The paged pool and nonpaged pool are
essentially kernel-mode heaps that are used by all the kernel compo-
nents. Because they are stored in kernel memory, the pools are inher-
ently available in all address spaces, but are only accessible from kernel
mode code. The paged pool is a (fairly large) heap that is made up of
conventional paged memory. The paged pool is the default allocation
heap for most kernel components.The nonpaged pool is a heap that is
made up of nonpageable memory. Nonpagable memory means that the
data can never be flushed to the hard drive and is always kept in physi-
cal memory. This is beneficial because significant areas of the system are
not allowed to use pagable memory.

System Cache The system cache space is where the Windows cache man-
ager maps all currently cached files. Caching is implemented in Win-
dows by mapping files into memory and allowing the memory manager
to manage the amount of physical memory allocated to each mapped
file. When a program opens a file, a section object (see below) is created
for it, and it is mapped into the system cache area. When the program
later accesses the file using the ReadFile or WriteFile APISs, the file
system internally accesses the mapped copy of the file using cache man-
ager APIs such as CcCopyRead and CcCopyWrite.

76

Chapter 3

0x80000000
Kernel Code
0x8073B000
0x80DA6000
Non-Paged Pool
12Mb (Actual size calculated in
runtime)
0x819A6000
Additional System PTEs
(Actual size calculated in runtime)
0xBE0O000O0OO
Terminal Services Session Space
32Mb (session-private)
0xC0000000
Page Tables (process-private)
0xC0400000
Hyper Space (process-private)
0xC0800000
0xC0C00000
System Working Set
4Mb
0xC1000000
System Cache Space
512Mb
0xE1000000
Paged Pool
192Mb (Actual size calculated in
runtime)
0xEDO00000O0
System PTEs
200Mb (Actual size calculated in
runtime)
0xF96A8000
Extra Non-Paged Pool
100Mb (Actual size calculated in
runtime)
OxFFBEOOOO

Figure 3.1 A typical layout of the Windows kernel memory address space.

Terminal Services Session Space This memory area is used by the kernel
mode component of the Win32 subsystem: WIN32K. SYS (see the section
on the Win32 subsystem later in this chapter). The Terminal Services
component is a Windows service that allows for multiple, remote GUI

Windows Fundamentals

77

sessions on a single Windows system. In order to implement this feature,
Microsoft has made the Win32 memory space “session private,” so that
the system can essentially load multiple instances of the Win32 subsys-
tem. In the kernel, each instance is loaded into the same virtual address,
but in a different session space. The session space contains the
WIN32K.SYS executable, and various data structures required by the
Win32 subsystem. There is also a special session pool, which is essentially
a session private paged pool that also resides in this region.

Page Tables and Hyper Space These two regions contain process-specific
data that defines the current process’s address space. The page-table
area is simply a virtual memory mapping of the currently active page
tables. The Hyper Space is used for several things, but primarily for
mapping the current process’s working set.

System Working Set The system working set is a system-global data
structure that manages the system’s physical memory use (for pageable
memory only). It is needed because large parts of the contents of the ker-
nel memory address space are pageable, so the system must have a way
of keeping track of the pages that are currently in use. The two largest
memory regions that are managed by this data structure are the paged
pool and the system cache.

System Page-Table Entries (PTE) This is a large region that is used for
large kernel allocations of any kind. This is not a heap, but rather just a
virtual memory space that can be used by the kernel and by drivers
whenever they need a large chunk of virtual memory, for any purpose.
Internally, the kernel uses the System PTE space for mapping device dri-
ver executables and for storing kernel stacks (there is one for each thread
in the system). Device drivers can allocate System PTE regions by calling
the MmAllocateMappingAddress kernel APL

Section Objects

The section object is a key element of the Windows memory manager. Gener-
ally speaking a section object is a special chunk of memory that is managed by
the operating system. Before the contents of a section object can be accessed,
the object must be mapped. Mapping a section object means that a virtual
address range is allocated for the object and that it then becomes accessible
through that address range.

One of the key properties of section objects is that they can be mapped to
more than one place. This makes section objects a convenient tool for applica-
tions to share memory between them. The system also uses section objects to
share memory between the kernel and user-mode processes. This is done by

78

Chapter 3

mapping the same section object into both the kernel address space and one or
more user-mode address spaces. Finally, it should be noted that the term “sec-
tion object” is a kernel concept—in Win32 (and in most of Microsoft’s docu-
mentation) they are called memory mapped files.

There are two basic types of section objects:

Pagefile-Backed A pagefile-backed section object can be used for tempo-
rary storage of information, and is usually created for the purpose of
sharing data between two processes or between applications and the
kernel. The section is created empty, and can be mapped to any address
space (both in user memory and in kernel memory). Just like any other
paged memory region, a pagefile-backed section can be paged out to a
pagefile if required.

File-Backed A file-backed section object is attached to a physical file on
the hard drive. This means that when it is first mapped, it will contain the
contents of the file to which it is attached. If it is writable, any changes
made to the data while the object is mapped into memory will be written
back into the file. A file-backed section object is a convenient way of
accessing a file, because instead of using cumbersome APIs such as
ReadFile and WriteFile, a program can just directly access the data
in memory using a pointer. The system uses file-backed section objects
for a variety of purposes, including the loading of executable images.

VAD Trees

A Virtual Address Descriptor (VAD) tree is the data structure used by Windows
for managing each individual process’s address allocation. The VAD tree is
a binary tree that describes every address range that is currently in use. Each
process has its own individual tree, and within those trees each entry describes
the memory allocation in question. Generally speaking, there are two distinct
kinds of allocations: mapped allocations and private allocations. Mapped allo-
cations are memory-mapped files that are mapped into the address space. This
includes all executables loaded into the process address space and every
memory-mapped file (section object) mapped into the address space. Private
allocations are allocations that are process private and were allocated locally.
Private allocations are typically used for heaps and stacks (there can be multi-
ple stacks in a single process—one for each thread).

User-Mode Allocations

Let’s take a look at what goes on in user-mode address spaces. Of course we
can’t be as specific as we were in our earlier discussion of the kernel address

Windows Fundamentals

79

space—every application is different. Still, it is important to understand how
applications use memory and how to detect different memory types.

Private Allocations Private allocations are the most basic type of mem-
ory allocation in a process. This is the simple case where an application
requests a memory block using the VirtualAlloc Win32 API. This is
the most primitive type of memory allocation, because it can only allo-
cate whole pages and nothing smaller than that. Private allocations are
typically used by the system for allocating stacks and heaps (see below).

Heaps Most Windows applications don’t directly call virtualAlloc—
instead they allocate a heap block by calling a runtime library function
such asmalloc or by calling a system heap API such as HeapAlloc. A
heap is a data structure that enables the creation of multiple variable-
sized blocks of memory within a larger block. Interally, a heap tries to
manage the available memory wisely so that applications can conve-
niently allocate and free variable-sized blocks as required. The operating
system offers its own heaps through the HeapAlloc and HeapFree
Win32 APIs, but an application can also implement its own heaps by
directly allocating private blocks using the VvirtualAlloc APL

Stacks User-mode stacks are essentially regular private allocations, and
the system allocates a stack automatically for every thread while it is
being created.

Executables Another common allocation type is a mapped executable
allocation. The system runs application code by loading it into memory
as a memory-mapped file.

Mapped Views (Sections) Applications can create memory-mapped files
and map them into their address space. This is a convenient and com-
monly used method for sharing memory between two or more programs.

Memory Management APIs

The Windows Virtual Memory Manager is accessible to application programs
using a set of Win32 APIs that can directly allocate and free memory blocks in
user-mode address spaces. The following are the popular Win32 low-level
memory management APIs.

VirtualAlloc This function allocates a private memory block within a
user-mode address space. This is a low-level memory block whose size
must be page-aligned; this is not a variable-sized heap block such as
those allocated by malloc (the C runtime library heap function). A
block can be either reserved or actually committed. Reserving a block
means that we simply reserve the address space but don’t actually use

Chapter 3

up any memory. Committing a block means that we actually allocate
space for it in the system page file. No physical memory will be used
until the memory is actually accessed.

VirtualProtect This function sets a memory region’s protection settings,
such as whether the block is readable, writable, or executable (newer
versions of Windows actually prevent the execution of nonexecutable
blocks). It is also possible to use this function to change other low-level
settings such whether the block is cached by the hardware or not, and
so on.

VirtualQuery This function queries the current memory block (essen-
tially retrieving information for the block’s VAD node) for various
details such as what type of block it is (a private allocation, a section, or
an image), and whether its reserved, committed, or unused.

VirtualFree This function frees a private allocation block (like those allo-
cated using VirtualAlloc).

All of these APIs deal with the currently active address space, but Windows
also supports virtual-memory operations on other processes, if the process is
privileged enough to do that. All of the APIs listed here have an Ex version
(VirtualAllocEx, VirtualQueryEx, and so on.) that receive a handle
to a process object and can operate on the address spaces of processes other
than the one currently running. As part of that same functionality, Windows
also offers two APIs that actually access another process’s address space
and can read or write to it. These APIs are ReadProcessMemory and
WriteProcessMemory.

Another group of important memory-manager APIs is the section object
APIs. In Win32 a section object is called a memory-mapped file and can be cre-
ated using the CreateFileMapping APIL A section object can be mapped
into the user-mode address space using the MapviewOfFileEx API, and can
be unmapped using the UnmapviewOfFile APL

Objects and Handles

The Windows kernel manages objects using a centralized object manager com-
ponent. The object manager is responsible for all kernel objects such as sec-
tions, file, and device objects, synchronization objects, processes, and threads.
It is important to understand that this component only manages kernel-related
objects. GUI-related objects such as windows, menus, and device contexts
are managed by separate object managers that are implemented inside
WIN32K.SYS. These are discussed in the section on the Win32 Subsystem later
in this chapter.

Windows Fundamentals

Viewing objects from user mode, as most applications do, gives them a
somewhat mysterious aura. It is important to understand that under the hood
all of these objects are merely data structures—they are typically stored in non-
paged pool kernel memory. All objects use a standard object header that
describes the basic object properties such as its type, reference count, name,
and so on. The object manager is not aware of any object-specific data struc-
tures, only of the generic header.

Kernel code typically accesses objects using direct pointers to the object data
structures, but application programs obviously can’t do that. Instead, applica-
tions use handles for accessing individual objects. A handle is a process specific
numeric identifier which is essentially an index into the process’s private han-
dle table. Each entry in the handle table contains a pointer to the underlying
object, which is how the system associates handles with objects. Along with
the object pointer, each handle entry also contains an access mask that deter-
mines which types of operations that can be performed on the object using this
specific handle. Figure 3.2 demonstrates how process each have their own
handle tables and how they point to the actual objects in kernel memory.

The object’s access mask is a 32-bit integer that is divided into two 16-bit
access flag words. The upper word contains generic access flags such as
GENERIC_READ and GENERIC_WRITE. The lower word contains object spe-
cific flags such as PROCESS_TERMINATE, which allows you to terminate a
process using its handle, or KEY_ENUMERATE_SUB_KEYS, which allows you
to enumerate the subkeys of an open registry key. All access rights constants
are defined in WinNT . H in the Microsoft Platform SDK.

For every object, the kernel maintains two reference counts: a kernel refer-
ence count and a handle count. Objects are only deleted once they have zero
kernel references and zero handles.

Named objects

Some kernel objects can be named, which provides a way to uniquely identify
them throughout the system. Suppose, for example, that two processes are
interested in synchronizing a certain operation between them. A typical
approach is to use a mutex object, but how can they both know that they are
dealing with the same mutex? The kernel supports object names as a means of
identification for individual objects. In our example both processes could try
to create a mutex named MyMutex. Whoever does that first will actually cre-
ate the MyMutex object, and the second program will just open a new handle
to the object. The important thing is that using a common name effectively
guarantees that both processes are dealing with the same object. When an
object creation API such as CreateMutex is called for an object that already
exists, the kernel automatically locates that object in the global table and
returns a handle to it.

'sa|qe} a|puey ssad0id pue spalqo T'g anSBiy

ainpnins
eleq oj10ads 13 108la0

JapeaH labeuepy 108[q0

ainjnis
'leq 910ads :q 109[q0

A

JapeoH Jebeuel 109[q0

aInnis
'leq 9108ds :0 109[q0 B 17
1RO WBIGO |y o caroy | OHXO BIPUEH
JapeaH Jabeuep 108[q0
By Iy .
SWH I : sawod palgo | S :0X0 8lpueH
18O 109MA0 | oSy | FOX0 BIPURH SE 58600y
ainpnins >_CO peay
A —> . :
Jajulod 109[q0 ”xmﬁ_\w Mmmwmomi 8X0 dpueH eleq oj0ads :g 109lq0 Ja1ui0d 198[00 SISe 55800 8X0 9[pueH
aleleq ¢ . JapeaH Jabeuep 108[q0 1M peay . soue
sowiod dla0 | ORI M cpxo erpuet sowog 100a0 | MR | g oppueny
(881 AId) @19E L 8|PUEH SS820.d amonns (e62 AId) @lge L BlPUBH SS820Id
x>
'

eleq o}10ads 1y 109ld0

JapeaH Jabeuely 109[q0

SPOY\-jouley

*
_
_
_
_
L

88| SS820.d

—_——_—_ — —

262 Ssed0.d

apo-1esn

Windows Fundamentals

83

Named objects are arranged in hierarchical directories, but the Win32 API
restricts user-mode applications” access to these directories. Here’s a quick
run-though of the most interesting directories:

BaseNamedObjects This directory is where all conventional Win32
named objects, such as mutexes, are stored. All named-object Win32
APIs automatically use this directory—application programs have no
control over this.

Devices This directory contains the device objects for all currently active
system devices. Generally speaking each device driver has at least one
entry in this directory, even those that aren’t connected to any physical
device. This includes logical devices such as Tcp, and physical devices
such as Harddisk0. Win32 APIs can never directly access object in this
directory—they must use symbolic links (see below).

GLOBAL?? This directory (also named ?? in older versions of Windows)
is the symbolic link directory. Symbolic links are old-style names for ker-
nel objects. Old-style naming is essentially the DOS naming scheme,
which you’ve surely used. Think about assigning each drive a letter,
such as C:, and about accessing physical devices using an 8-letter name
that ends with a colon, such as COM1:. These are all DOS names, and in
modern versions of Windows they are linked to real devices in the
Devices directory using symbolic links. Win32 applications can only
access devices using their symbolic link names.

Some kernel objects are unnamed and are only identified by their handles or
kernel object pointers. A good example of such an object is a thread object,
which is created without a name and is only represented by handles (from user
mode) and by a direct pointer into the object (from kernel mode).

Processes and Threads

Processes and threads are both basic structural units in Windows, and it is cru-
cial that you understand exactly what they represent. The following sections
describe the basic concepts of processes and threads and proceed to discuss
the details of how they are implemented in Windows.

84

Chapter 3

Processes

A process is a fundamental building block in Windows. A process is many
things, but it is predominantly an isolated memory address space. This
address space can be used for running a program, and address spaces are cre-
ated for every program in order to make sure that each program runs in its
own address space. Inside a process’s address space the system can load code
modules, but in order to actually run a program, a process must have at least
one thread running.

Threads

A thread is a primitive code execution unit. At any given moment, each proces-
sor in the system is running one thread, which effectively means that it’s just
running a piece of code; this can be either program or operating system code,
it doesn’t matter. The idea with threads is that instead of continuing to run a
single piece of code until it is completed, Windows can decide to interrupt a
running thread at any given moment and switch to another thread. This
process is at the very heart of Windows’ ability to achieve concurrency.

It might make it easier to understand what threads are if you consider how
they are implemented by the system. Internally, a thread is nothing but a data
structure that has a CONTEXT data structure telling the system the state of the
processor when the thread last ran, combined with one or two memory blocks
that are used for stack space. When you think about it, a thread is like a little
virtual processor that has its own context and its own stack. The real physical
processor switches between multiple virtual processors and always starts exe-
cution from the thread’s current context information and using the thread’s
stack.

The reason a thread can have two stacks is that in Windows threads alternate
between running user-mode code and kernel-mode code. For instance, a typi-
cal application thread runs in user mode, but it can call into system APIs that
are implemented in kernel mode. In such cases the system API code runs in
kernel mode from within the calling thread! Because the thread can run in both
user mode and kernel mode it must have two stacks: one for when it’s running
in user mode and one for when it’s running in kernel mode. Separating the
stacks is a basic security and robustness requirement. If user-mode code had
access to kernel stacks the system would be vulnerable to a variety of mali-
cious attacks and its stability could be compromised by application bugs that
could overwrite parts of a kernel stack.

The components that manage threads in Windows are the scheduler and the
dispatcher, which are together responsible for deciding which thread gets to
run for how long, and for performing the actual context switch when its time to
change the currently running thread.

Windows Fundamentals

85

An interesting aspect of the Windows architecture is that the kernel is pre-
emptive and interruptible, meaning that a thread can usually be interrupted
while running in kernel mode just as it can be interrupted while running in
user mode. For example, virtually every Win32 API is interruptible, as are
most internal kernel components. Unsurprisingly, there are some components
or code areas that can’t be interrupted (think of what would happen if the
scheduler itself got interrupted . . .), but these are usually very brief passages
of code.

Context Switching

People sometimes find it hard to envision the process of how a multithreaded
kernel achieves concurrency with multiple threads, but it’s really quite simple.
The first step is for the kernel to let a thread run. All this means in reality is to
load its context (this means entering the correct memory address space and ini-
tializing the values of all CPU registers) and let it start running. The thread
then runs normally on the processor (the kernel isn’t doing anything special at
this point), until the time comes to switch to a new thread. Before we discuss
the actual process of switching contexts, let’s talk about how and why a thread
is interrupted.

The truth is that threads frequently just give up the CPU on their own voli-
tion, and the kernel doesn’t even have to actually interrupt them. This hap-
pens whenever a program is waiting for something. In Windows one of the
most common examples is when a program calls the GetMessage Win32 APL
GetMessage is called all the time—it is how applications ask the system if the
user has generated any new input events (such as touching the mouse or key-
board). In most cases, GetMessage accesses a message queue and just extracts
the next event, but in some cases there just aren’t any messages in the queue.
In such cases, GetMessage just enters a waiting mode and doesn’t return
until new user input becomes available. Effectively what happens at this point
is that GetMessage is telling the kernel: “I'm all done for now, wake me up
when a new input event comes in.” At this point the kernel saves the entire
processor state and switches to run another thread. This makes a lot of sense
because one wouldn’t want the processor to just stall because a single program
is idling at the moment—perhaps other programs could use the CPU.

Of course, GetMessage is just an example—there are dozens of other cases.
Consider for example what happens when an applications performs a slow
I/0O operation such as reading data from the network or from a relatively slow
storage device such as a DVD. Instead of just waiting for the operation to com-
plete, the kernel switches to run another thread while the hardware is per-
forming the operation. The kernel then goes back to running that thread when
the operation is completed.

86

Chapter 3

What happens when a thread doesn’t just give up the processor? This could
easily happen if it just has a lot of work to do. Think of a thread performing
some kind of complex algorithm that involves billions of calculations. Such
code could take hours before relinquishing the CPU—and could theoretically
jam the entire system. To avoid such problems operating systems use what’s
called preemptive scheduling, which means that threads are given a limited
amount of time to run before they are interrupted.

Every thread is assigned a quantum, which is the maximum amount of time
the thread is allowed to run continuously. While a thread is running, the oper-
ating system uses a low-level hardware timer interrupt to monitor how long
it’s been running. Once the thread’s quantum is up, it is temporarily inter-
rupted, and the system allows other threads to run. If no other threads need
the CPU, the thread is immediately resumed. The process of suspending and
resuming the thread is completely transparent to the thread—the kernel stores
the state of all CPU registers before suspending the thread and restores that
state when the thread is resumed. This way the thread has no idea that is was
ever interrupted.

Synchronization Objects

For software developers, the existence of threads is a mixed blessing. On one
hand, threads offer remarkable flexibility when developing a program; on the
other hand, synchronizing multiple threads within the same programs is not
easy, especially because they almost always share data structures between
them. Probably one of the most important aspects of designing multithreaded
software is how to properly design data structures and locking mechanisms
that will ensure data validity at all times.

The basic design of all synchronization objects is that they allow two or
more threads to compete for a single resource, and they help ensure that only
a controlled number of threads actually access the resource at any given
moment. Threads that are blocked are put in a special wait state by the kernel
and are not dispatched until that wait state is satisfied. This is the reason why
synchronization objects are implemented by the operating system; the sched-
uler must be aware of their existence in order to know when a wait state has
been satisfied and a specific thread can continue execution.

Windows supports several built-in synchronization objects, each suited to
specific types of data structures that need to be protected. The following are
the most commonly used ones:

Events An event is a simple Boolean synchronization object that can be
set to either True or False. An event is waited on by one of the standard
Win32 wait APIs such as WaitForSingleObject or WaitForMulti-
pleObjects.

Windows Fundamentals

87

Mutexes A mutex (from mutually exclusive) is an object that can only be

acquired by one thread at any given moment. Any threads that attempt
to acquire a mutex while it is already owned by another thread will
enter a wait state until the original thread releases the mutex or until it
terminates. If more than one thread is waiting, they will each receive
ownership of the mutex in the original order in which they requested it.

Semaphores A semaphore is like a mutex with a user-defined counter

that defines how many simultaneous owners are allowed on it. Once
that maximum number is exceeded, a thread that requests ownership of
the semaphore will enter a wait state until one of the threads release the
semaphore.

Critical Sections A critical section is essentially an optimized implemen-

tation of a mutex. It is logically identical to a mutex, but with the differ-
ence that it is process private and that most of it is implemented in user
mode. All of the synchronization objects described above are managed
by the kernel’s object manager and implemented in kernel mode, which
means that the system must switch into the kernel for any operation that
needs to be performed on them. A critical section is implemented in user
mode, and the system only switches to kernel mode if an actual wait is
necessary.

Process Initialization Sequence

In many reversing experiences, I've found that it’s important to have an
understanding of what happens when a process is started. The following pro-
vides a brief description of the steps taken by the system in an average process
creation sequence.

1.

The creation of the process object and new address space is the first
step: When a process calls the Win32 API CreateProcess, the API
creates a process object and allocates a new memory address space for
the process.

CreateProcess maps NTDLL . DLL and the program executable
(the . exe file) into the newly created address space.

CreateProcess creates the process’s first thread and allocates stack
space for it.

The process’s first thread is resumed and starts running in the
LdrpInitialize function inside NTDLL .DLL.

LdrpInitialize recursively traverses the primary executable’s
import tables and maps into memory every executable that is required
for running the primary executable.

Chapter 3

6. At this point control is passed into LdrpRunInitializeRoutines,
which is an internal NTDLL . DLL routine responsible for initializing all
statically linked DLLs currently loaded into the address space. The ini-
tialization process consists of calling each DLL’s entry point with the
DLL_PROCESS_ATTACH constant.

7. Once all DLLs are initialized, LdrpInitialize calls the thread’s real
initialization routine, which is the BaseProcessStart function from
KERNEL3?2 . DLL. This function in turn calls the executable’s WinMain
entry point, at which point the process has completed its initialization
sequence.

Application Programming Interfaces

An application programming interface (API) is a set of functions that the operat-
ing system makes available to application programs for communicating with
the operating system. If you're going to be reversing under Windows, it is
imperative that you develop a solid understanding of the Windows APIs and of
the common methods of doing things using these APIs.

The Win32 API

I'm sure you've heard about the Win32 API. The Win32 is a very large set of
functions that make up the official low-level programming interface for Win-
dows applications. Initially when Windows was introduced, numerous pro-
grams were actually developed using the Win32 API, but as time went by
Microsoft introduced simpler, higher-level interfaces that exposed most of the
features offered by the Win32 API. The most well known of those interfaces is
MEC (Microsoft Foundation Classes), which is a hierarchy of C++ objects that
can be used for interacting with Windows. Internally, MFC uses the Win32 API
for actually calling into the operating system. These days, Microsoft is pro-
moting the use of the .NET Framework for developing Windows applications.
The .NET Framework uses the System class for accessing operating system
services, which is again an interface into the Win32 APL

The reason for the existence of all of those artificial upper layers is that the
Win32 API is not particularly programmer-friendly. Many operations require
calling a sequence of functions, often requiring the initialization of large data
structures and flags. Many programmers get frustrated quickly when using
the Win32 API. The upper layers are much more convenient to use, but they
incur a certain performance penalty, because every call to the operating system
has to go through the upper layer. Sometimes the upper layers do very little,
and at other times they contain a significant amount of “bridging” code.

Windows Fundamentals

89

If you're going to be doing serious reversing of Windows applications, it is
going to be important for you to understand the Win32 API. That’s because no
matter which high-level interface an application employs (if any), it is eventu-
ally going to use the Win32 API for communicating with the OS. Some appli-
cations will use the native API, but that’s quite rare—see section below on the

native APL

The Core Win32 API contains roughly 2000 APIs (it depends on the specific
Windows version and on whether or not you count undocumented Win32
APIs). These APIs are divided into three categories: Kernel, USER, and GDI.
Figure 3.3 shows the relation between the Win32 interface DLLs, NTDLL . DLL,

and the kernel components.

KERNEL32.DLL

Component

BASE API Client |4 — — —

Application Modules

Application Process ,

v v v
USER32.DLL GDI32.DLL
.NTDLL'DLL The USER APl — —» GDI API Client
Native API Interface .
Client Component Component
! ! !
I I I
I I I
User-Mode | - _| r—
| 1 I
1 |
Kernel-Mode I_ _ | I
1 | !
' v
WIN32K.SYS
NTOSKRNL'EXE — — The Win32 Kernel
The Windows Kernel .
Implementation

Figure 3.3 The Win32 interface DLLs and their relation to the kernel components.

90

Chapter 3

The following are the key components in the Win32 API:

m Kernel APIs (also called the BASE APIs) are implemented in the
KERNEL3?2 . DLL module and include all non-GUI-related services, such
as file I/O, memory management, object management, process and
thread management, and so on. KERNEL32 . DLL typically calls low-
level native APIs from NTDLL . DLL to implement the various services.
Kernel APIs are used for creating and working with kernel-level objects
such as files, synchronization objects, and so on, all of which are imple-
mented in the system’s object manager discussed earlier.

m GDI APIs are implemented in the GDI32.DLL and include low-level
graphics services such as those for drawing a line, displaying a bitmap,
and so on. GDI is generally not aware of the existence of windows or
controls. GDI APIs are primarily implemented in the kernel, inside the
WIN32K.SYS module. GDI APIs make system calls into WIN32K. SYS
to implement most APIs. The GDI revolves around GDI objects used for
drawing graphics, such as device contexts, brushes, pens, and so on.
These objects are not managed by the kernel’s object manager.

m USER APIs are implemented in the USER32 . DLL module and include
all higher-level GUI-related services such as window-management,
menus, dialog boxes, user-interface controls, and so on. All GUI objects
are drawn by USER using GDI calls to perform the actual drawing;
USER heavily relies on GDI to do its business. USER APlIs revolve
around user-interface related objects such as windows, menus, and the
like. These objects are not managed by the kernel’s object manager.

The Native API

The native API is the actual interface to the Windows NT system. In Windows
NT the Win32 API is just a layer above the native API. Because the NT kernel
has nothing to do with GUI, the native API doesn’t include any graphics-
related services. In terms of functionality, the native API is the most direct
interface into the Windows kernel, providing interfaces for direct interfacing
with the memory manager, I/O System, object manager, processes and
threads, and so on.

Application programs are never supposed to directly call into the native
API—that would break their compatibility with Windows 9x. This is one of the
reasons why Microsoft never saw fit to actually document it; application pro-
grams are expected to only use the Win32 APIs for interacting with the system.
Also, by not exposing the native API, Microsoft retained the freedom to
change and revise it without affecting Win32 applications.

Windows Fundamentals

91

Sometimes calling or merely understanding a native APl is crucial, in which
case it is always possible to reverse its implementation in order to determine
its purpose. If I had to make a guess I would say that now that the older ver-
sions of Windows are being slowly phased out, Microsoft won’t be so con-
cerned about developers using the native API and will soon publish some
level of documentation for it.

Technically, the native API is a set of functions exported from both
NTDLL.DLL (for user-mode callers) and from NTOSKRNL.EXE (for kernel-
mode callers). APIs in the native API always start with one of two prefixes:
either Nt or zw, so that functions have names like NtCreateFile or
ZwCreateFile.If you're wondering what Zw stands for—I'm sorry, have no
idea. The one thing I do know is that every native API has two versions, an Nt
version and a Zw version.

In their user-mode implementation in NTDLL . DLL, the two groups of APIs
are identical and actually point to the same code. In kernel mode, they are dif-
ferent: the Nt versions are the actual implementations of the APIs, while the Zw
versions are stubs that go through the system-call mechanism. The reason you
would want to go through the system-call mechanism when calling an API
from kernel mode is to “prove” to the API being called that you're actually
calling it from kernel mode. If you don’t do that, the API might think it is being
called from user-mode code and will verify that all parameters only contain
user-mode addresses. This is a safety mechanism employed by the system to
make sure user mode calls don’t corrupt the system by passing kernel-memory
pointers. For kernel-mode code, calling the Zw APIs is a way to simplify the
process of calling functions because you can pass regular kernel-mode pointers.

If you’d like to use or simply understand the workings of the native AP, it
has been almost fully documented by Gary Nebbett in Windows NT/2000
Native API Reference, Macmillan Technical Publishing, 2000, [Nebbett].

System Calling Mechanism

It is important to develop a basic understanding of the system calling
mechanism—you’re almost guaranteed to run into code that invokes system
calls if you ever step into an operating system API. A system call takes place
when user-mode code needs to call a kernel-mode function. This frequently
happens when an application calls an operating system APIL The user-mode
side of the API usually performs basic parameter validation checks and calls
down into the kernel to actually perform the requested operation. It goes
without saying that it is not possible to directly call a kernel function from user
mode—that would create a serious vulnerability because applications could
call into invalid address within the kernel and crash the system, or even call
into an address that would allow them to take control of the system.

92

Chapter 3

This is why operating systems use a special mechanism for switching from
user mode to kernel mode. The general idea is that the user-mode code
invokes a special CPU instruction that tells the processor to switch to its priv-
ileged mode (the CPUs terminology for kernel-mode execution) and call a spe-
cial dispatch routine. This dispatch routine then calls the specific system
function requested from user mode.

The specific details of how this is implemented have changed after Win-
dows 2000, so I'll just quickly describe both methods. In Windows 2000 and
earlier, the system would invoke interrupt 2E in order to call into the kernel.
The following sequence is a typical Windows 2000 system call.

ntdll!ZwReadFile:

77£8c552 mov eax, Oxal
77£8c557 lea edx, [esp+0x4]
77£8c55b int 2e

77£8c55d ret 0x24

The EAX register is loaded with the service number (we’ll get to this in a
minute), and EDX points to the first parameter that the kernel-mode function
receives. When the int 2e instruction is invoked, the processor uses the inter-
rupt descriptor table (IDT) in order to determine which interrupt handler to call.
The IDT is a processor-owned table that tells the processor which routine to
invoke whenever an interrupt or an exception takes place. The IDT entry for
interrupt number 2E points to an internal NTOSKRNL function called KiSys-
temService, which is the kernel service dispatcher. KiSystemService ver-
ifies that the service number and stack pointer are valid and calls into the
specific kernel function requested. The actual call is performed using the
KiServiceTable array, which contains pointers to the various supported
kernel services. KiSystemService simply uses the request number loaded
into EAX as an index into KiServiceTable.

More recent versions of the operating systems use an optimized version of
the same mechanism. Instead of invoking an interrupt in order to perform the
switch to kernel mode, the system now uses the special SYSENTER instruction
in order to perform the switch. SYSENTER is essentially a high-performance
kernel-mode switch instruction that calls into a predetermined function whose
address is stored at a special model specific register (MSR) called
SYSENTER_EIP_MSR. Needless to say, the contents of MSRs can only be
accessed from kernel mode. Inside the kernel the new implementation is quite
similar and goes through KiSystemService and KiServiceTable in the
same way it did in Windows 2000 and older systems. The following is a typi-
cal system API in recent versions of Windows such as Windows Server 2003
and Windows XP.

Windows Fundamentals

93

ntdll!ZwReadFile:

77£4302f mov eax, 0xbf
77£43034 mov edx, 0x7f£fe0300
77£43039 call edx

77£4303b ret 0x24

This function calls into SharedUserData!SystemCallStub (every sys-
tem call goes through this function). The following is a disassembly of the code
at 7££e0300.

SharedUserData!SystemCallStub:
7f£e0300 mov edx, esp
7ffe0302 sysenter

7f£fe0304 ret

If you're wondering why this extra call is required (instead of just invoking
SYSENTER from within the system API), it’s because SYSENTER records no
state information whatsoever. In the previous implementation, the invocation
of int 2e would store the current value of the EIP and EFLAGS registers.
SYSENTER on the other hand stores no state information, so by calling into the
SystemCallStub the operating system is recording the address of the cur-
rent user-mode stub in the stack, so that it later knows where to return. Once
the kernel completes the call and needs to go back to user mode, it simply
jumps to the address recorded in the stack by that call from the API into
SystemCallStub; the RET instruction at 7££e0304 is never actually executed.

Executable Formats

A basic understanding of executable formats is critical for reversers because a
program’s executable often gives significant hints about a program’s architec-
ture. I'd say that in general, a true hacker must understand the system’s exe-
cutable format in order to truly understand the system.

This section will cover the basic structure of Windows’ executable file for-
mat: the Portable Executable (PE). To avoid turning this into a boring listing of
the individual fields, I will only discuss the general concepts of portable exe-
cutables and the interesting fields. For a full listing of the individual fields, you
can use the MSDN (at http://msdn.microsoft.com) to look up the spe-
cific data structures specified in the section titled “Headers.”

Basic Concepts

Probably the most important thing to bear in mind when dealing with exe-
cutable files is that they’re relocatable. This simply means that they could be

94

Chapter 3

loaded at a different virtual address each time they are loaded (but they can
never be relocated after they have been loaded). Relocation happens because
an executable does not exist in a vacuum—it must coexist with other executa-
bles that are loaded in the same address space. Sure, modern operating sys-
tems provide each process with its own address space, but there are many
executables that are loaded into each address space. Other than the main exe-
cutable (that’s the .exe file you launch when you run a program), every pro-
gram has a certain number of additional executables loaded into its address
space, regardless of whether it has DLLs of its own or not. The operating sys-
tem loads quite a few DLLs into each program’s address space—it all depends
on which OS features are required by the program.

Because multiple executables are loaded into each address space, we effec-
tively have a mix of executables in each address space that wasn’t necessarily
preplanned. Therefore, it’s likely that two or more modules will try to use the
same memory address, which is not going to work. The solution is to relocate one
of these modules while it’s being loaded and simply load it in a different address
than the one it was originally planned to be loaded at. At this point you may be
wondering why an executable even needs to know in advance where it will be
loaded? Can't it be like any regular file and just be loaded wherever there’s
room? The problem is that an executable contains many cross-references, where
one position in the code is pointing at another position in the code. Consider,
for example, the sequence that accesses a global variable.

MOV EAX, DWORD PTR [pGlobalVariable]

The preceding instruction is a typical global variable access. The storage for
such a global variable is stored inside the executable image (because many
variables have a preinitialized value). The question is, what address should
the compiler and linker write as the address to pGlobalVariable while gen-
erating the executable? Usually, you would just write a relative address—an
address that’s relative to the beginning of the file. This way you wouldn’t have
to worry about where the file gets loaded. The problem is this is a code
sequence that gets executed directly by the processor. You could theoretically
generate logic that would calculate the exact address by adding the relative
address to the base address where the executable is currently mapped, but that
would incur a significant performance penalty. Instead, the loader just goes
over the code and modifies all absolute addresses within it to make sure that
they point to the right place.

Instead of going through this process every time a module is loaded, each
module is assigned a base address while it is being created. The linker then
assumes that the executable is going to be loaded at the base address—if it
does, no relocation will take place. If the module’s base address is already
taken, the module is relocated.

Windows Fundamentals

95

Relocations are important for several reasons. First of all, they’re the reason
why there are never absolute addresses in executable headers, only in code.
Whenever you have a pointer inside the executable header, it'll always be in
the form of a relative virtual address (RVA). An RVA is just an offset into the file.
When the file is loaded and is assigned a virtual address, the loader calculates
real virtual addresses out of RVAs by adding the module’s base address
(where it was loaded) to an RVA.

Image Sections

An executable image is divided into individual sections in which the file’s con-
tents are stored. Sections are needed because different areas in the file are
treated differently by the memory manager when a module is loaded. A com-
mon division is to have a code section (also called a text section) containing the
executable’s code and a data section containing the executable’s data. In load
time, the memory manager sets the access rights on memory pages in the dif-
ferent sections based on their settings in the section header. This determines
whether a given section is readable, writable, or executable.

The code section contains the executable’s code, and the data sections con-
tain the executable’s initialized data, which means that they contain the con-
tents of any initialized variable defined anywhere in the program. Consider
for example the following global variable definition:

char szMessage[] = "Welcome to my program!";

Regardless of where such a line is placed within a C/C++ program (inside
or outside a function), the compiler will need to store the string somewhere in
the executable. This is considered initialized data. The string and the variable
that point to it (szMessage) will both be stored in an initialized data section.

Section Alignment

Because individual sections often have different access settings defined in the
executable header, and because the memory manager must apply these access
settings when an executable image is loaded, sections must typically be page-
aligned when an executable is loaded into memory. On the other hand, it
would be wasteful to actually align executables to a page boundary on disk—
that would make them significantly bigger than they need to be.

Because of this, the PE header has two different kinds of alignment fields:
Section alignment and file alignment. Section alignment is how sections are
aligned when the executable is loaded in memory and file alignment is how
sections are aligned inside the file, on disk. Alignment is important when
accessing the file because it causes some interesting phenomena. The problem

96

Chapter 3

is that an RVA is relative to the beginning of the image when it is mapped as an
executable (meaning that distances are calculated using section alignment).
This means that if you just open an executable as a regular file and try to access
it, you might run into problems where RVAs won’t point to the right place.
This is because RVAs are computed using the file’s section alignment (which is
effectively its in-memory alignment), and not using the file alignment.

Dynamically Linked Libraries

Dynamically linked libraries (DLLs) are a key feature in a Windows. The idea
is that a program can be broken into more than one executable file, where each
executable is responsible for one feature or area of program functionality. The
benefit is that overall program memory consumption is reduced because exe-
cutables are not loaded until the features they implement are required. Addi-
tionally, individual components can be replaced or upgraded to modify or
improve a certain aspect of the program. From the operating system’s stand-
point, DLLs can dramatically reduce overall system memory consumption
because the system can detect that a certain executable has been loaded into
more than one address space and just map it into each address space instead of
reloading it into a new memory location.

It is important to differentiate DLLs from build-time static libraries (. 1ib
files) that are permanently linked into an executable. With static libraries, the
code in the .1ib file is statically linked right into the executable while it is
built, just as if the code in the . 1ib file was part of the original program source
code. When the executable is loaded the operating system has no way of
knowing that parts of it came from a library. If another executable gets loaded
that is also statically linked to the same library, the library code will essentially
be loaded into memory twice, because the operating system will have no idea
that the two executables contain parts that are identical.

Windows programs have two different methods of loading and attaching to
DLLs in runtime. Static linking (not to be confused with compile-time static
linking!) refers to a process where an executable contains a reference to
another executable within its import table. This is the typical linking method
that is employed by most application programs, because it is the most conve-
nient to use. Static linking is implementing by having each module list the
modules it uses and the functions it calls within each module (this is called the
import table). When the loader loads such an executable, it also loads all mod-
ules that are used by the current module and resolves all external references so
that the executable holds valid pointers to all external functions it plans on
calling.

Runtime linking refers to a different process whereby an executable can
decide to load another executable in runtime and call a function from that exe-
cutable. The principal difference between these two methods is that with

Windows Fundamentals

97

dynamic linking the program must manually load the right module in runtime
and find the right function to call by searching through the target executable’s
headers. Runtime linking is more flexible, but is also more difficult to imple-
ment from the programmer’s perspective. From a reversing standpoint, static
linking is easier to deal with because it openly exposes which functions are
called from which modules.

Headers

A PE file starts with the good old DOS header. This is a common backward-
compatible design that ensures that attempts to execute PE files on DOS sys-
tems will fail gracefully. In this case failing gracefully means that you'll just get
the well-known “This program cannot be run in DOS mode” message. It goes
without saying that no PE executable will actually run on DOS—this message
is as far as they’ll go. In order to implement this message, each PE executable
essentially contains a little 16-bit DOS program that displays it.

The most important field in the DOS header (which is defined in the
IMAGE_DOS_HEADER structure) is the e_1 fanew member, which points to the
real PE header. This is an extension to the DOS header—DOS never reads it.
The “new” header is essentially the real PE header, and is defined as follows.

typedef struct _IMAGE_NT_HEADERS {
DWORD Signature;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADER32 OptionalHeader;
} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

This data structure references two data structures which contain the actual
PE header. They are:

typedef struct _IMAGE_FILE_HEADER {
WORD Machine;
WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

typedef struct _IMAGE_OPTIONAL_HEADER {
// Standard fields.

WORD Magic;
BYTE MajorLinkerVersion;
BYTE MinorLinkerVersion;

DWORD SizeOfCode;

98 Chapter 3

DWORD SizeOfInitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;

DWORD BaseOfData;

// NT additional fields.
DWORD ImageBase;

DWORD SectionAlignment;
DWORD FileAlignment;

WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorImageVersion;

WORD MinorImageVersion;

WORD MajorSubsystemVersion;

WORD MinorSubsystemVersion;

DWORD Win32VersionValue;

DWORD SizeOfImage;

DWORD SizeOfHeaders;

DWORD CheckSum;

WORD Subsystem;

WORD DllCharacteristics;

DWORD SizeOfStackReserve;

DWORD SizeOfStackCommit;

DWORD SizeOfHeapReserve;

DWORD SizeOfHeapCommit ;

DWORD LoaderFlags;

DWORD NumberOfRvaAndSizes;

IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

All of these headers are defined in the Microsoft Platform SDK in the
WinNT.H header file.

Most of these fields are self explanatory, but several notes are in order. First
of all, it goes without saying that all pointers within these headers (such as
AddressOfEntryPoint or BaseOfCode) are RVAs and not actual pointers.
Additionally, it should be noted that most of the interesting contents in a PE
header actually resides in the DataDirectory, which is an array of addi-
tional data structures that are stored inside the PE header. The beauty of this
layout is that an executable doesn’t have to have every entry, only the ones it
requires. For more information on the individual directories refer to the sec-
tion on directories later in this chapter.

Windows Fundamentals

99

Imports and Exports

Imports and exports are the mechanisms that enable the dynamic linking
process of executables described earlier. Consider an executable that refer-
ences functions in other executables while it is being compiled and linked. The
compiler and linker have no idea of the actual addresses of the imported func-
tions. It is only in runtime that these addresses will be known. To solve this
problem, the linker creates a special import table that lists all the functions
imported by the current module by their names. The import table contains a
list of modules that the module uses and the list of functions called within each
of those modules.

When the module is loaded, the loader loads every module listed in the
import table, and goes to find the address of each of the functions listed in each
module. The addresses are found by going over the exporting module’s export
table, which contains the names and RVAs of every exported function.

When the importing module needs to call into an imported function, the
calling code typically looks like this:

call [SomeAddress]

Where SomeAddress is a pointer into the executable import address table
(IAT). When the modue is linked the IAT is nothing but an list of empty values,
but when the module is loaded, the linker resolves each entry in the IAT to
point to the actual function in the exporting module. This way when the call-
ing code is executed, SomeAddress will point to the actual address of the
imported function. Figure 3.4 illustrates this process on three executables:
ImportingModule.EXE, SomeModule.DLL, and AnotherModule.DLL.

Directories

PE Executables contain a list of special optional directories, which are essen-
tially additional data structures that executables can contain. Most directories
have a special data structure that describes their contents, and none of them is
required for an executable to function properly.

100 Chapter 3

SomeModule.DLL

Export Section

Function1
Function2

ImportingModule.EXE

Code Section

Export Section

Function1
Function2
Function3

AnotherModule.DLL

Export Section

Function1
—» Function2 —
> Code Section Function3
Import Section
SomeModule.DLL:
Function1 L
Function2 Code Section !
AnotherModule.DLL:)

Function4
Function 9

Figure 3.4 The dynamic linking process and how modules can be interconnected using
their import and export tables.

Table 3.1 lists the common directories and provides a brief explanation on
each one.

Windows Fundamentals 101

Table 3.1 The Optional Directories in the Portable Executable File Format.

ASSOCIATED DATA
NAME DESCRIPTION STRUCTURE

Export Table Lists the names and RVAs of IMAGE_EXPORT _
all exported functions in the DIRECTORY
current module.

Import Table Lists the names of module IMAGE_IMPORT _
and functions that are DESCRIPTOR
imported from the current
module. For each function, the
list contains a name string
(or an ordinal) and an RVA that
points to the current function’s
import address table entry.

This is the entry that receives
the actual pointer to the
imported function in runtime,
when the module is loaded.

Resource Table Points to the executable’s IMAGE_RESOURCE _
resource directory. A resource DIRECTORY
directory is a static definition
or various user-interface
elements such as strings,
dialog box layouts, and menus.

Base Relocation Table Contains a list of addresses IMAGE_BASE_
within the module that must RELOCATION
be recalculated in case the
module gets loaded in any
address other than the one it
was built for.

Debugging Information Contains debugging IMAGE_DEBUG_
information for the executable. DIRECTORY
This is usually presented in
the form of a link to an external
symbol file that contains the
actual debugging information.

Thread Local Storage Table Points to a special thread-local IMAGE_TLS_
section in the executable that DIRECTORY
can contain thread-local
variables. This functionality is
managed by the loader when
the executable is loaded.

(continued)

102 Chapter 3

Table 3.1 (continued)

ASSOCIATED DATA
NAME DESCRIPTION STRUCTURE

Load Configuration Table Contains a variety of image IMAGE_LOAD_
configuration elements, such CONFIG_
as a special LOCK prefix table =~ DIRECTORY
(which can modify an image
in load time to accommodate
for uniprocessor or
multiprocessor systems). This
table also contains information
for a special security feature
that lists the legitimate
exception handlers in the
module (to prevent malicious
code from installing an illegal
exception handler).

Bound Import Table Contains an additional IMAGE_BOUND_
import-related table that IMPORT_
contains information on DESCRIPTOR

bound import entries. A

bound import means that the
importing executable contains
actual addresses into the
exporting module. This
directory is used for confirming
that such addresses are

still valid.

Import Address Table (IAT) Contains a list of entries for A list of 32-bit
each function imported from pointers
the current module. These
entries are initialized in load
time to the actual addresses
of the imported functions.

Delay Import Descriptor Contains special information ImgDelayDescr
that can be used for
implementing a delayed-load
importing mechanism whereby
an imported function is only
resolved when it is first called.
This mechanism is not
supported by the operating
system and is implemented
by the C runtime library.

Windows Fundamentals

103

Input and Output

I/O can be relevant to reversing because tracing a program’s communications
with the outside world is much easier than doing code-level reversing, and can
at times be almost as informative. In fact, some reversing sessions never reach
the code-level reversing phase—by simply monitoring a program’s I/O we
can often answer every question we have regarding our target program.

The following sections provide a brief introduction to the various I/O chan-
nels implemented in Windows. These channels can be roughly divided into
two layers: the low-level layer is the I/O system which is responsible for com-
municating with the hardware, and so on. The higher-level layer is the Win32
subsystem, which is responsible for implementing the GUI and for processing
user input.

The 1/0 System

The I/O system is a combination of kernel components that manage the device
drivers running in the system and the communication between applications
and device drivers. Device drivers register with the I/O system, which enables
applications to communicate with them and make generic or device-specific
requests from the device. Generic requests include basic tasks such having a
file system read or writing to a file. The I/O system is responsible for relaying
such request from the application to the device driver responsible for per-
forming the operation.

The I/O system is layered, which means that for each device there can be
multiple device drivers that are stacked on top of each other. This enables the
creation of a generic file system driver that doesn’t care about the specific stor-
age device that is used. In the same way it is possible to create generic storage
drivers that don’t care about the specific file system driver that will be used to
manage the data on the device. The I/O system will take care of connecting the
two components together, and because they use well-defined I/O System
interfaces, they will be able to coexist without special modifications.

This layered architecture also makes it relatively easy to add filter drivers,
which are additional layers that monitor or modify the communications
between drivers and the applications or between two drivers. Thus it is possi-
ble to create generic data processing drivers that perform some kind of pro-
cessing on every file before it is sent to the file system (think of a transparent
file-compression or file-encryption driver).

The I/0 system is interesting to us as reversers because we often monitor it
to extract information regarding our target program. This is usually done by
tools that insert special filtering code into the device hierarchy and start mon-
itoring the flow of data. The device being monitored can represent any kind of

104 Chapter 3

I/0 element such as a network interface, a high-level networking protocol, a
file system, or a physical storage device.

Of course, the position in which a filter resides on the I/O stack makes a very
big difference, because it affects the type of data that the filtering component is
going to receive. For example, if a filtering component resides above a high-
level networking protocol component (such as TCP for example), it will see the
high-level packets being sent and received by applications, without the vari-
ous low-level TCP, IP, or Ethernet packet headers. On the other hand, if that fil-
ter resides at the network interface level, it will receive low-level networking
protocol headers such as TCP, IP, and so on.

The same concept applies to any kind of I/O channel, and the choice of
where to place a filter driver really depends on what information we’re look-
ing to extract. In most cases, we will not be directly making these choices for
ourselves—we’ll simply need to choose the right tool that monitors things at
the level that’s right for our needs.

The Win32 Subsystem

The Win32 subsystem is the component responsible for every aspect of the
Windows user interface. This starts with the low-level graphics engine, the
graphics device interface (GDI), and ends with the USER component, which is
responsible for higher-level GUI constructs such as windows and menus, and
for processing user input.

The inner workings of the Win32 subsystem is probably the least-docu-
mented area in Windows, yet I think it’s important to have a general under-
standing of how it works because it is the gateway to all user-interface in
Windows. First of all, it’s important to realize that the components considered
the Win32 subsystem are not responsible for the entire Win32 API, only for the
USER and GDI portions of it. As described earlier, the BASE API exported from
KERNEL32 .DLL is implemented using direct calls into the native API, and has
really nothing to do with the Win32 subsystem.

The Win32 subsystem is implemented inside the WIN32K. SYS kernel com-
ponent and is controlled by the USER32.DLL and GDI32.DLL user compo-
nents. Communications between the user-mode DLLs and the kernel
component is performed using conventional system calls (the same mecha-
nism used throughout the system for calling into the kernel).

It can be helpful for reversers to become familiar with USER and GDI and
with the general architecture of the Win32 subsystem because practically all
user-interaction flows through them. Suppose, for example, that you're trying
to find the code in a program that displays a certain window, or the code that
processes a certain user event. The key is to know how to track the flow of such
events inside the Win32 subsystem. From there it becomes easy to find the pro-
gram code that’s responsible for receiving or generating such events.

Windows Fundamentals

105

Object Management

Because USER and GDI are both old components that were ported from
ancient versions of Windows, they don’t use the kernel object manager dis-
cussed earlier. Instead they each use their own little object manager mecha-
nism. Both USER and GDI maintain object tables that are quite similar in
layout. Handles to Win32 objects such as windows and device contexts are
essentially indexes into these object tables. The tables are stored and managed
in kernel memory, but are also mapped into each process’s address space for
read-only access from user mode.

Because the USER and GDI handle tables are global, and because handles
are just indexes into those tables, it is obvious that unlike kernel object han-
dles, both USER and GDI handles are global—if more than one process needs
to access the same objects, they all share the same handles. In reality, the Win32
subsystem doesn’t always allow more than one process to access the same
objects; the specific behavior object type.

Structured Exception Handling

An exception is a special condition in a program that makes it immediately
jump to a special function called an exception handler. The exception handler
then decides how to deal with the exception and can either correct the problem
and make the program continue from the same code position or resume exe-
cution from another position. An exception handler can also decide to termi-
nate the program if the exception cannot be resolved.

There are two basic types of exceptions: hardware exceptions and software
exceptions. Hardware exceptions are exceptions generated by the processor, for
example when a program accesses an invalid memory page (a page fault) or
when a division by zero occurs. A software exception is generated when a pro-
gram explicitly generates an exception in order to report an error. In C++ for
example, an exception can be raised using the throw keyword, which is a
commonly used technique for propagating error conditions (as an alternative
to returning error codes in function return values). In Windows, the throw
keyword is implemented using the RaiseException Win32 API, which goes
down into the kernel and follows a similar code path as a hardware exception,
eventually returning to user mode to notify the program of the exception.

Structured exception handling means that the operating system provides
mechanisms for “distributing” exceptions to applications in an organized
manner. Each thread is assigned an exception-handler list, which is a list of rou-
tines that can deal with exceptions when they occur. When an exception
occurs, the operating system calls each of the registered handlers and the han-
dlers can decide whether they would like to handle the exception or whether
the system should keep on looking.

106 Chapter 3

The exception handler list is stored in the thread information block (TIB) data
structure, which is available from user mode and contains the following fields:

_NT_TIB:
+0x000 ExceptionList : 0x0012fecc
+0x004 StackBase : 0x00130000
+0x008 StackLimit : 0x0012e000
+0x00c SubSystemTib : (null)
+0x010 FiberData : 0x00001e00
+0x010 Version : 0x1e00
+0x014 ArbitraryUserPointer : (null)
+0x018 Self : 0x7f£de000

The TIB is stored in a regular private-allocation user-mode memory. We
already know that a single process can have multiple threads, but all threads
see the same memory; they all share the same address space. This means that
each process can have multiple TIB data structures. How does a thread find its
own TIB in runtime? On IA-32 processors, Windows uses the FS segment reg-
ister as a pointer to the currently active thread-specific data structures. The
current thread’s TIB is always available at FS: [0].

The ExceptionList member is the one of interest; it is the head of the cur-
rent thread’s exception handler list. When an exception is generated, the proces-
sor calls the registered handler from the IDT. Let’s take a page-fault exception as
an example. When an invalid memory address is accessed (an invalid memory
address is one that doesn’t have a valid page-table entry), the processor gener-
ates a page-fault interrupt (interrupt #14), and invokes the interrupt handler
from entry 14 at the IDT. In Windows, this entry usually points to the KiTrapOE
function in the Windows kernel. KiTrapOE decides which type of page fault has
occurred and dispatches it properly. For user-mode page faults that aren’t
resolved by the memory manager (such as faults caused by an application
accessing an invalid memory address), Windows calls into a user-mode excep-
tion dispatcher routine called KiUserExceptionDispatcher in NTDLL.DLL.
KiUserExceptionDispatcher calls into Rt1DispatchException, which
is responsible for going through the linked list at ExceptionList and looking
for an exception handler that can deal with the exception. The linked list is
essentially a chain of _EXCEPTION_REGISTRATION_RECORD data structures,
which are defined as follows:

_EXCEPTION_REGISTRATION_RECORD:
+0x000 Next : Ptr32 _EXCEPTION_REGISTRATION_RECORD
+0x004 Handler : Ptr32

Windows Fundamentals

107

A bare-bones exception handler set up sequence looks something like this:

00411F8A push ExceptionHandler

00411F8F mov eax,dword ptr f£s:[00000000h]
00411F95 push eax

00411F96 mov dword ptr fs:[0],esp

This sequence simply adds an _EXCEPTION_REGISTRATION_RECORD
entry into the current thread’s exception handler list. The items are stored on
the stack.

In real-life you will rarely run into simple exception handler setup
sequences such as the one just shown. That’s because compilers typically aug-
ment the operating system’s mechanism in order to provide support for nested
exception-handling blocks and for multiple blocks within the same function.
In the Microsoft compilers, this is done by routing exception to the
_except_handler3 exception handler, which then calls the correct excep-
tion filter and exception handler based on the current function’s layout. To
implement this functionality, the compiler manages additional data structures
that manage the hierarchy of exception handlers within a single function. The
following is a typical Microsoft C/C++ compiler SEH installation sequence:

00411F83 push OFFFFFFFFh

00411F85 push 425090h

00411F8A push offset @QILT+420(__except_handler3) (4111A%h)
00411F8F mov eax,dword ptr f£s:[00000000h]

00411F95 push eax

00411F96 mov dword ptr fs:[0],esp

As you can see, the compiler has extended the _EXCEPTION_REGISTRA-
TION_RECORD data structure and has added two new members. These mem-
bers will be used by _except_handler3 to determine which handler should
be called.

Beyond the frame-based exception handlers, recent versions of the operating
system also support a vector of exception handlers, which is a linear list of han-
dlers that are called for every exception, regardless which code generated it.
Vectored exception handlers are installed using the Win32 API Addvectored
ExceptionHandler.

Conclusion

This concludes our (extremely brief) journey through the architecture and
internals of the Windows operating system. This chapter provides the very
basics that every reverser must know about the operating system he or she is
using.

108 Chapter 3

The bottom line is that knowledge of operating systems can be useful to
reversers at many different levels. First of all, understanding the system’s exe-
cutable file format is crucial, because executable headers often pack quite a few
hints regarding programs and their architectures. Additionally, having a basic
understanding of how the system communicates with the outside world is
helpful for effectively observing and monitoring applications using the vari-
ous system monitoring tools. Finally, understanding the basic APIs offered by
the operating system can be helpful in deciphering programs. Imagine an
application making a sequence of system API calls. The application is essen-
tially talking to the operating system, and the API is the language; if you
understand the basics of the API in question, you can tune in to that conversa-
tion and find out what the application is saying. . . .

FURTHER READING

If you'd like to proceed to develop a better understanding of operating systems,
check out Operating System, Design and Implementation by Andrew S.
Tanenbaum and Albert S. Woodhull [Tanenbaum?2] Andrew S. Tanenbaum,
Albert S. Woodhull, Operating Systems: Design and Implementation, Second
Edition, Prentice Hall, 1997 for a generic study of operating systems concepts.
For highly detailed information on the architecture of NT-based Windows
operating systems, see Microsoft Windows Internals, Fourth Edition: Microsoft
Windows Server 2003, Windows XP, and Windows 2000 by Mark E. Russinovich
and David A. Solomon [Russinovich]. That book is undoubtedly the authoritative
guide on the Windows architecture and internals.

Reversing Tools

Reversing is impossible without the right tools. There are hundreds of differ-
ent software tools available out there that can be used for reversing, some free-
ware and others costing thousands of dollars. Understanding the differences
between these tools and choosing the right ones is critical.

There are no all-in-one reversing tools available (at least not at the time of
writing). This means that you need to create your own little toolkit that will
include every type of tool that you might possibly need. This chapter describes
the different types of tools that are available and makes recommendations for
the best products in each category. Some of these products are provided free-
of-charge by their developers, while others are quite expensive.

We will be looking at a variety of different types of tools, starting with basic
reversing tools such as disassemblers and low-level debuggers, and proceed-
ing to decompilers and a variety of system-monitoring tools. Finally, we will
discuss some executable patching and dumping tools that can often be helpful
in the reversing process.

It is up to you to decide whether your reversing projects justify spending
several hundreds of U.S. dollars on software. Generally, I'd say that it’s possi-
ble to start reversing without spending a dime on software, but some of these
commercial products will certainly make your life easier.

109

110 Chapter 4

Different Reversing Approaches

There are many different approaches for reversing and choosing the right one
depends on the target program, the platform on which it runs and on which it
was developed, and what kind of information you're looking to extract. Gen-
erally speaking, there are two fundamental reversing methodologies: offline
analysis and live analysis.

Offline Code Analysis (Dead-Listing)

Offline analysis of code means that you take a binary executable and use a dis-
assembler or a decompiler to convert it into a human-readable form. Reversing
is then performed by manually reading and analyzing parts of that output.
Offline code analysis is a powerful approach because it provides a good out-
line of the program and makes it easy to search for specific functions that are
of interest.

The downside of offline code analysis is usually that a better understanding
of the code is required (compared to live analysis) because you can’t see the
data that the program deals with and how it flows. You must guess what type
of data the code deals with and how it flows based on the code. Offline analy-
sis is typically a more advanced approach to reversing.

There are some cases (particularly cracking-related) where offline code
analysis is not possible. This typically happens when programs are “packed,”
so that the code is encrypted or compressed and is only unpacked in runtime.
In such cases only live code analysis is possible.

Live Code Analysis

Live Analysis involves the same conversion of code into a human-readable
form, but here you don’t just statically read the converted code but instead run
it in a debugger and observe its behavior on a live system. This provides far
more information because you can observe the program’s internal data and
how it affects the flow of the code. You can see what individual variables con-
tain and what happens when the program reads or modifies that data. Gener-
ally, I'd say that live analysis is the better approach for beginners because it
provides a lot more data to work with. For tools that can be used for live code
analysis, please refer to the section on debuggers, later in this chapter.

Disassemblers

The disassembler is one of the most important reversing tools. Basically, a dis-
assembler decodes binary machine code (which is just a stream of numbers)

Reversing Tools

into a readable assembly language text. This process is somewhat similar to
what takes place within a CPU while a program is running. The difference is
that instead of actually performing the tasks specified by the code (as is done
by a processor), the disassembler merely decodes each instruction and creates
a textual representation for it.

Needless to say, the specific instruction encoding format and the resulting
textual representation are entirely platform-specific. Each platform supports a
different instruction set and has a different set of registers. Therefore a disas-
sembler is also platform-specific (though there are disassemblers that contain
specific support for more than one platform).

Figure 4.1 demonstrates how a disassembler converts a sequence of IA-32
opcode bytes into human-readable assembly language. The process typically
starts with the disassembler looking up the opcode in a translation table that
contains the textual name of each instructions (in this case the opcode is 8B
and the instruction is MOV) along with their formats. IA-32 instructions are like
functions, meaning that each instruction takes a different set of “parameters”
(usually called operands). The disassembler then proceeds to analyze exactly
which operands are used in this particular instruction.

DISTINGUISHING CODE FROM DATA

It might not sound like a serious problem, but it is often a significant challenge
to teach a disassembler to distinguish code from data. Executable images
typically have . text sections that are dedicated to code, but it turns out that
for performance reasons, compilers often insert certain chunks of data into the
code section. In order to properly distinguish code from data, disassemblers
must use recursive traversal instead of the conventional linear sweep
Benjamin Schwarz, Saumya Debray, and Gregory Andrews. Disassembly of
Executable Code Revisited. Proceedings of the Ninth Working Conference on
Reverse Engineering, 2002. [Schwarz]. Briefly, the difference between the two is
that recursive traversal actually follows the flow of the code, so that an address
is disassembled only if it is reachable from the code disassembled earlier. A
linear sweep simply goes instruction by instruction, which means that any data
in the middle of the code could potentially confuse the disassembler.

The most common example of such data is the jump table sometimes used
by compilers for implementing switch blocks. When a disassembler reaches
such an instruction, it must employ some heuristics and loop through the jump
table in order to determine which instruction to disassemble next. One
problematic aspect of dealing with these tables is that it’s difficult to determine
their exact length. Significant research has been done on algorithms for
accurately distinguishing code from data in disassemblers, including
[Cifuentes1] and [Schwarz].

112

Chapter 4

Instruction MOD/RM ..
Displacement

Opcode Byte
8B 79 04
MOV Opcode MOD/RM Byte:
Defined as: Specifies a register and memory-address pair. .
MOV Register, Displacement Byte
Register/Memory MOD (2 bits) | REG (3 bits) | R/M (bits)
T [

S T Specifies a

e /" Specifiesa / i)

. Describes the ™. f p i register for the !

register / N i A
i formatofthe ! 9 \\a‘ddress su{(»e/

‘.. address side ./

MOV EDI, DWORD PTR| ECX +4

Figure 4.1 Translating an IA-32 instruction from machine code into human-readable
assembly language.

IDA Pro

IDA (Interactive Disassembler) by DataRescue (www.datarescue.com)is an
extremely powerful disassembler that supports a variety of processor architec-
tures, including 1A-32, IA-64 (Itanium), AMD64, and many others. IDA also
supports a variety of executable file formats, such as PE (Portable Executable,
used in Windows), ELF (Executable and Linking Format, used in Linux), and
even XBE, which is used on Microsoft’s Xbox. IDA is not cheap at $399 for the

Reversing Tools

113

Standard edition (the Advanced edition is currently $795 and includes support
for a larger number of processor architectures), but it’s definitely worth it if
you're going to be doing a significant amount of reversing on large programs.
At the time of writing, DataRescue was offering a free time-limited trial ver-
sion of IDA. If you're serious about reversing, I'd highly recommend that you
give IDA a try—it is one of the best tools available. Figure 4.2 shows a typical
IDA Pro screen.

Feature wise, here’s the ground rule: Any feature you can think of that is pos-
sible to implement is probably already implemented in IDA. IDA is a remark-
ably flexible product, providing highly detailed disassembly, along with a
plethora of side features that assist you with your reversing tasks.

IDA is capable of producing powerful flowcharts for a given function. These
are essentially logical graphs that show chunks of disassembled code and pro-
vide a visual representation of how each conditional jump in the code affects
the function’s flow. Each box represents a code snippet or a stage in the func-
tion’s flow. The boxes are connected by arrows that show the flow of the code
based on whether the conditional jump is satisfied or not. Figure 4.3 shows an
IDA-generated function flowchart.

[7 xe LEE

Fl= Cdt lmp Search Yew Debucgsr Opticns Widows Help

LI T IR M M #] |=+x] [22m2

= =
Sme BRENY (FRE ST FAA (Enenel [v]s &
Boen | WAME - =NX |- B-wSHKM- 7 Wh| (a2 ¥ A s

<A | 1101

| [0 10w viewa | 5] Hexview)| BB Ewponts| B Impoits |) Furctions | " Stings || B Stuctues)| En Enumes

(Z1104 View-1 B M Functions war e
LLext:BBRATANG ; vold sub_4ATANRACuoid) e e e— |
text:AREATAAE Sub _Hmﬁﬂll proc near : DATA XREF uh HATASA 18T \I" an14me
.text:UBaEiARG e
.text:BO4E1ARE var_ 40 = duord ptr —46h Db dmatd
.LexL:BBRATARD SR tmag

* Ltext:BONATANA push ebp iz 401414

* .text:ROAR1AAT mow ehp, esp i) sub_amsnD

* .text:OBRE1RAT sub esp, 4ih) aub_d0A10

e 'f“f:gmmg pus:l ebx i aub_10A50
Lexkc push L= o

* L Texb:RBEATANS push edi {_‘fi—:g';:gg'

* .text:ROBRTARY 1ea edi, [ebpruar 4u]

* .text:BBAB1RAL mou ecx, 1ih Db 02470]

* text:BORE1ABA mov eax, BCCCOCLCCh aoh. 12400 11

® LLexL:BBNATABG rep stosd

® .text:RBRATARE mow e, OFFSEt unk_428348 Line: 576 af E24

* .text:ROBRTADD call sub_4@113

* .text:OBRE1ACE pop edi

° .text:DOAB1ACE pop esi = —d =

* LtexL:BONATACH pop ebx g

* Ltext:RRNATACS ani esp, 400 T CProgestindow

* text:ROBRIACH cmp ebp, esp C Frages Window

* .text:OBaE1ACA call _chkesp C o st enter text for snanch

° .text:DBARB1ACF mow esp, ebp C Allmodulas inaded

© texb:pBsATADT o) eh ~ .)

* . TexT:RREATADS e ? r eleciliony o
.text:@NSE1ADZ sub_4IMAAN endp £ COMHEND URDATE PR
.text:OBRE1ADZ € Modke
SEEREIBBRBIADR ; e = = = A S Symbd

* Ltex:ADNATADE align 1@h C o enliiae weale found.
text:RREATAER T %derines weie lond
.text:OUBHIAEY loc SIMAEW: ; CODE SREF: sub_BO11FETj L e e s I

L text:BBHE1AER push ebp %] 1 3
< 1 |3 1 Vinm 4 ok 427, %
£] B
Rtrieving infarmation from L database AL ids Down | Disk: 83 DOODOEAD DOSDEAND: sub <DLAM]

Figure 4.2 A typical IDA Pro screen, showing code disassembly, a function list, and a string
list.

114 Chapter 4

X WinGraph32 - Graph of _InputApca12)=k
Flle Yew Zoom Move Help

| alalxn+| [ooz [N

InputApc(x,= =0 —A-J
= edi, edi
push ebp
=] ebp, esp
push es1
o esi, [ebprerg_4]
dec duerd pte [eaiedin]
test byte ptr [esi+0ER], B0h
inz =hort, loc_BFESE435
: | |
fal== true
TBFESE4ED
oy ear, [ebprarg B]
cnp dword ptr [ea=], 0
il short, loc_BFBSE4ED L
true falee
TBFESE4TS :
cnp dword ptr [esitlCh], 0
Jz short loc_BFESE4ES
|
true false
TBFESE4TE :
movz< eax, byte ptr [esi+iCh]
mul ea-, dbh <
b aed
il | -

183.33% (-111,0) 9 nodes, 28 edos segments, O crossings

Figure 4.3 An IDA-generated function flowchart.

IDA can produce interfunction charts that show you which functions call
into a certain API or internal function. Figure 4.4 shows a call graph that visu-
ally illustrates the flow of code within a part of the loaded program (the com-
plete graph was just too large to fit into the page). The graph shows internal
subroutines and illustrates the links between every one of those subroutines.
The arrows coming out of each subroutine represents function calls made from
that subroutine. Arrows that point to a subroutine show you who in the pro-
gram calls that subroutine. The graph also illustrates the use of external APIs
in the same manner—some of the boxes are lighter colored and have API
names on them, and you can use the connecting arrows to determine who in
the program is calling those APIs. You even get a brief textual description of
some of the APIs!

IDA also has a variety of little features that make it very convenient to use,
such as the highlighting of all instances of the currently selected operand. For
example, if you click the word EAX in an instruction, all references to EAX in
the current page of disassembled code will be highlighted. This makes it much
easier to read disassembled listings and gain an understanding of how data
flows within the code.

Reversing Tools 115

|.-':‘t WinGraph32 - Call flow of cryptex.exe Lr_uﬂﬁ

Fl= Uew Zoom Mave Help

3| alamzle| ¥ ooz [

Kl 5] ﬂ

[35.75% (103,170 78 rodes, 127 edae segments, 162 crossings
Figure 4.4 An IDA-generated intrafunction flowchart that shows how a program’s internal
subroutines are connected to one another and which APIs are called by which subroutine.

ILDasm

ILDasm is a disassembler for the Microsoft Intermediate Language (MSIL),
which is the low-level assembly language—like language used in .NET pro-
grams. It is listed here because this book also discusses .NET reversing, and
ILDasm is a fundamental tool for .NET reversing.

Figure 4.5 shows a common ILDasm view. On the left is ILDasm’s view of
the current program’s classes and their internal members. On the right is a dis-
assembled listing for one of the functions. Of course the assembly language is
different from the IA-32 assembly language that’s been described so far—it is
MSIL. This language will be described in detail in Chapter 12. One thing to
notice is the rather cryptic function and class names shown by ILDasm. That’s
because the program being disassembled has been obfuscated by PreEmptive
Solutions” DotFuscator.

116 Chapter 4

7o
@ g peevale clags [System ahrddove Fonrs|System Wirndows Foms Combo3ox ~
@ 1 prvaie s [Sushem \windaves Fom]S pstem Windaks Fams Combofior
@ s piivele class [System W indows Fooms Sysem ' rdows Form CorbaBex
W b pivaie int32
@ u pervale clasz |System Wirdows Forms|System Windaws Foms Menubem
LR [Systam \a/indows F ome| Systom ‘Windavs Foms Mamer.

@ w mivels class [Syztem Wincows. Forms [Syztem Mindows Forms Merullem
Lt oz Foemnz [y sam e/ indows Fonme Marud tem
&y ‘windows Forms ystam Windows Forms Meruiiem
@&z
L]
M a
B & vaidichiect clazs [Syztem Wincoss Forme Bystem Windows Forme Keylvartngs]
B a:voidichiec class [System wincows FomslSystem W indows Fome TreeviawCanceEventiigs|
B a:vad]
_E]
Ha i P-..mr-mmrrmm sl [System Windowss Forms Sysbem Windrws Foma TresHads]
Ha 5 I'S\,s em]Sysem Disgicslics PailomarcaCounter]
Ha et class [Spstem Wincoes TR
B . vidlice vt frncarblSysian] 2 -8 V0ud) =Jokd
B b i) IL_poB#: ldstr “arial” ol
B . vonlcbisd v [rweblSysend] IL_BOBd: ldo.rh 8.
B o] IL_B992: newobj instance void class [System.Drauving]System.Drawing.Font::.ctor{ste
F1r
:j::::::biw.classlmcubis_mcm :II: :;;:E i:::;i;t instance woid class [System.MWindows Forns]System.Windows _Forms._ Cor
a e:"‘ufd:l s i . IL_699d: 1dfld class [System.Uindows.Forms]System.\indows.Forms.Label b::l
B o voidichiec class [recoria]System 1L D9az: 1dc.ih 0180
B | vadabject class [mrcodi|Spstem £ W ma7: 1dc.ib.s 24
:f ""i!l IL_M9a%: mnewnhj instance uwoid valuetype [System.Drauing]System_Drawing.Point::.cto
8 vocy
B g:vodichiect class [recodilfvetemyl JL_@Rae: callwirt instance void class [System.Windows.Forns]System.Windows.Forns.Cor
B b vodichiect clazs [racorifSystem 3| TL_pOb3: 1dary.0
=Ec TL_R9b4: 1dF1d class [System.Hndows.Forms]System. WHndous. Forms.Label b::l
b class pu:lca aley :nslh:ln efiskdnt IL_M9h%: ldstr “labela™
IL_#%be: callvirt instance woid class [System.Windows.Forns|System.Windows.Forms.Cor
@ a:private class [Syshem Windows F IL_@9cZ: ldarg.@
& b private class [Sycem Windows IL_BRch: 1dfld class [System.Uindows.Forms]System Windows.Forms.Label b::l
o vl closs [ysem Wi Fo TL_B9ce: ldc.is.s 48
IE IL_Rgch: ldc.id.s 16 (5]
Exramby PelMon IL_W9cd: newobj instance woid waluetype [System.Drawing|System.Drawing.Size::.cto

}-"C"-U-‘35333755 IL_B9u2: callvirl instance void class [System.Windows.Forns]System.Windows.Forms.Coi||

£ » |

Figure 4.5 A screenshot of ILDasm, Microsoft's .NET IL disassembler.

Debuggers

Debuggers exist primarily to assist software developers with locating and cor-
recting errors in their programs, but they can also be used as powerful revers-
ing tools. Most native code debuggers have some kind of support for stepping
through assembly language code when no source code is available. Debuggers
that support this mode of operation make excellent reversing tools, and there
are several debuggers that were designed from the ground up with assembly
language-level debugging in mind.

The idea is that the debugger provides a disassembled view of the currently
running function and allows the user to step through the disassembled code
and see what the program does at every line. While the code is being stepped
through, the debugger usually shows the state of the CPU’s registers and a
memory dump, usually showing the currently active stack area. The following
are the key debugger features that are required for reversers.

Reversing Tools

Powerful Disassembler A powerful disassembler is a mandatory feature
in a good reversing debugger, for obvious reasons. Being able to view
the code clearly, with cross-references that reveal which branch goes
where and where a certain instruction is called from, is critical. It’s also
important to be able to manually control the data/code recognition
heuristics, in case they incorrectly identify code as data or vice versa (for
code/data ambiguities in disassemblers refer to the section on disassem-
blers in this chapter).

Software and Hardware Breakpoints Breakpoints are a basic debugging
feature, and no debugger can exist without them, but it’s important to be
able to install both software and hardware breakpoints. Software break-
points are instructions added into the program’s code by the debugger
at runtime. These instructions make the processor pause program execu-
tion and transfer control to the debugger when they are reached during
execution. Hardware breakpoints are a special CPU feature that allow
the processor to pause execution when a certain memory address is
accessed, and transfer control to the debugger. This is an especially pow-
erful feature for reversers because it can greatly simplify the process of
mapping and deciphering data structures in a program. All a reverser
must do is locate a data structure of interest and place hardware break-
points on specific areas of interest in that data structure. The hardware
breakpoints can be used to expose the relevant code areas in the program
that are responsible for manipulating the data structure in question.

View of Registers and Memory A good reversing debugger must pro-
vide a good visualization of the important CPU registers and of system
memory. It is also helpful to have a constantly updated view of the stack
that includes both the debugger’s interpretation of what’s in it and a raw
view of its contents.

Process Information It is very helpful to have detailed process informa-
tion while debugging. There is an endless list of features that could fall
into this category, but the most basic ones are a list of the currently loaded
executable modules and the currently running threads, along with a
stack dump and register dump for each thread.

Debuggers that contain powerful disassemblers are not common, but the
ones that do are usually the best reversing tools you'll find because they pro-
vide the best of both worlds. You get both a highly readable and detailed rep-
resentation of the code, and you can conveniently step through it and see what
the code does at every step, what kind of data it receives as input, and what
kind of data it produces as output.

In modern operating systems debuggers can be roughly divided into two
very different flavors: user-mode debuggers and kernel-mode debuggers. User-mode

118 Chapter 4

debuggers are the more conventional debuggers that are typically used by soft-
ware developers. As the name implies, user-mode debuggers run as normal
applications, in user mode, and they can only be used for debugging regular
user-mode applications. Kernel-mode debuggers are far more powerful. They
allow unlimited control of the target system and provide a full view of every-
thing happening on the system, regardless of whether it is happening inside
application code or inside operating system code.

The following sections describe the pros and cons of user-mode and kernel-
mode debuggers and provide an overview on the most popular tools in each
category.

User-Mode Debuggers

If you've ever used a debugger, it was most likely a user-mode debugger. User-
mode debuggers are conventional applications that attach to another process
(the debugee) and can take full control of it. User-mode debuggers have the
advantage of being very easy to set up and use, because they are just another
program that’s running on the system (unlike kernel-mode debuggers).

The downside is that user-mode debuggers can only view a single process
and can only view user mode code within that process. Being limited to a sin-
gle process means that you have to know exactly which process you’d like to
reverse. This may sound trivial, but sometimes it isn’t. For example, some-
times you'll run into programs that have several processes that are somehow
interconnected. In such cases, you may not know which process actually runs
the code you're interested in.

Being restricted to viewing user-mode code is not usually a problem unless
the product you're debugging has its own kernel-mode components (such as
device drivers). When a program is implemented purely in user mode there’s
usually no real need to step into operating system code that runs in the kernel.

Beyond these limitations, some user-mode debuggers are also unable to
debug a program before execution reaches the main executable’s entry point
(this is typically the .exe file’s WinMain callback). This can be a problem in
some cases because the system runs a significant amount of user-mode code
before that, including calls to the DlIMain callback of each DLL that is stati-
cally linked to the executable.

The following sections present some user-mode debuggers that are well
suited for reversing.

OllyDbg

For reversers, OllyDbg, written by Oleh Yuschuk, is probably the best user-
mode debugger out there (though the selection is admittedly quite small). The

Reversing Tools

119

beauty of Olly is that it appears to have been designed from the ground up as
a reversing tool, and as such it has a very powerful built-in disassembler. I've
seen quite a few beginners attempting their first steps in reversing with com-
plex tools such as Numega SoftICE. The fact is that unless you're going to be
reversing kernel-mode code, or observing the system globally across multiple
processes, there’s usually no need for kernel-mode debugging—OllyDbg is
more than enough.

OllyDbg’s greatest strength is in its disassembler, which provides powerful
code-analysis features. OllyDbg’s code analyzer can identify loops, switch
blocks, and other key code structures. It shows parameter names for all known
functions and APIs, and supports searching for cross-references between code
and data—in all possible directions. In fact, it would be fair to say that Olly has
the best disassembly capabilities of all debuggers I have worked with (except
for the IDA Pro debugger), including the big guns that run in kernel mode.

Besides powerful disassembly features, OllyDbg supports a wide variety of
views, including listing imports and exports in modules, showing the list of
windows and other objects that are owned by the debugee, showing the cur-
rent chain of exception handlers, using import libraries (.lib files) for properly
naming functions that originated in such libraries, and others.

OllyDbg also includes a built-in assembling and patching engine, which
makes it a cracker’s favorite. It is possible to type in assembly language code
over any area in a program and then commit the changes back into the exe-
cutable if you so require. Alternatively, OllyDbg can also store the list of patches
performed on a specific program and apply some or all of those patches while
the program is being debugged—when they are required.

Figure 4.6 shows a typical OllyDbg screen. Notice the list of NTDLL names
on the left—OllyDbg not only shows imports and exports but also internal
names (if symbols are available). The bottom-left view shows a list of currently
open handles in the process.

OllyDbg is an excellent reversing tool, especially considering that it is free
software—it doesn’t cost a dime. For the latest version of OllyDbg go to
http://home.t-online.de/home/011ydbg.

User Debugging in WinDbg

WinDbg is a free debugger provided by Microsoft as part of the Debugging
Tools for Windows package (available free of charge at www.microsoft.com/
whdc/devtools/debugging/default.mspx). While some of its features
can be controlled from the GUI, WinDbg uses a somewhat inconvenient com-
mand-line interface as its primary user interface. WinDbg's disassembler is quite
limited, and has some annoying anomalies (such as the inability to scroll back-
ward in the disassembly window).

120

Chapter 4

|*' OllyDbg - Defender exe LT—"-EJE

Fl= iew Cebug Hugrs Opacns Wincow el

=TI e Y LA A S L O ekl =

@.. - vl " [€] ey - main thread, module Defondsr ’Q@

Address ||| Hane ~| [l oosazina > co LERUE ~|Registers (rPu)

7C92078F || _RtlpCGetLengthUithoutlastPathl peha2Ea7 L. €3 RETH EAY 7FFDEBDD

7C92088F | _RE1pDeterninebosPathHaneType. noLE2ERY | S 51 PUSH ECX ECY HU12FFEO

70920040 (| _RE1pWnIZNtRoot HOROZEAD | . G4:A1 2008008) MOV EAX,DWORD PTR FS:[3@] EDY 7COBEBON ntull.KiFasts

76920048 (| _RE1pWNaZHERo0tS1ash | wonozcar | CTITEZY | MDU DWORD PTR SS:[ESP],EAX EBX TFFDE W0

70920958 T7_CA_19MICOBCKERTSAAT2TSARTZ || DONGZEEZ | . 8BOAZL WOV EAX,DWORD PTR SS:[ESP] ESP GB12FFAS

TC92005F || _RT1Read0UEDFPrOCESSHEmIFYSTr npsAZEDS | . BO4D A0 HOU ERX,DWORD PTR DS:[ERXSC] fppp guizirco

7c920n12 | _RtlStatMenoryStrean@i? Gona2EES | . 8BNE BC HOU EAX,DWORD PTR DS:[EAXC] |Es1 FRFFFFFF

TCIZONTE || _GUTD_NULL RbsazEon | . BEND WOU EAX,DUORD PTR DS:[EAX] | _lpp1 7eg1e738 ntdll 7e91073

1| “Ldr OEPY R =||f ponazeEn || . 8BuE 18 MOY EAX,DWORD PTR DS:[EAX+18 —

76920008 !ltll:reatmctiuatiancontext@? puzEch | . 59 POP ECK LG R ACEEE DELONOSY -RAAD

7C920CBE || _RtlplalidateActivationCentex || BOME2ECT L. €3 RETH € 0 ES 8823 320it O(FFFFF

FC920E34 | _RE1FinalReleascOutOfProcessH WORAZECZ . A1 ARGANARR MOV ERX,DWDRD PTR DSI[MAGRO0 |y 5 s ogpio azbit ogrrrrs

JCY20ECE || _RtlSetCurrentDirectory U@y BBRAE2ECT| . 8BCE HOU ECX,ERX f 0 S5 8823 32bit O(FFFFF

76921129 || _LdrpCopyUnicodestring@s ARNAZECY . REAH MOV EA%,DWORD PTR DS:[EAX] 1 D5 0R23 37bit W{FFFFT

70924198 _RtllnitializeResource@ BORGEZECE| ..EB 6C JHP SHORT Defender. G04O2EDD $ @ FS B03B 32bit FFFDDOA

76921240 || _wesstr MANAZECD| > 30 AEDBBFDT | CHP EAX,T1BF DBAE T 0 RS AAAD HULL

FEO24950 :lltlbestrnyl—.nuirnnnentuﬂ BORGZEDZ .. T4 10 JE SHORT Defender.BG4BZEEL (]

. 1 2301 0R AN ECX & SEEFP CES

76921462 || _RL1Splay@h _lis winx:?FFDEssn 0 0 LastErr EAROR_SUCCESS

Ml Handi - =/ |l stack SS:[eMZFFAS]-AR1ZFFED EFL @BD8824E (HD,NB,E,BE,H

Handle |Tuype REFS |Necess "i STO empty -UNORH BOEC 0165

NARPABRE | Director 108 14

000006 4 Dil'Ectnrﬁ 76. | BAOF 0AEF Address | 32-bit long "w MEAZEFRR| |~

BARRAAZA| Fuent 2. | AR1FpARa 0O E6 000 =| EBP-14 B84 B4 23E

0060008C | File (dir) 2. | 08100020 LITTLIRT EBP-1R 76910728

0A8RAAAY | KeyedEvent 74.| 0ADFPAAI 004 66028 EBP-C FFFFFFFF

08000EHE | Port 3. | 0E1F 8001 AL B30 EQP-# PIIZFFRR

000pAA2Y | Uindowstation | 165.| BARFO37F 80485840 EBP-4 BE1ZFFED
ROKGEASD ERP -=3 | DFZFFFA
BONEGR6E EBP+ 7C816D4F
POREGATE ERP+8 76910738
BOhEGBER EBP+L FFFFFFFF
AORAGAY A ERP+1B | TFFDEAAA
BOhEEBAE EBP+14 BOS4EBI8
ROKOGARD ERP+18 BMZFFCE
BOhEGBCE EBP+1C BEFA1DAS
ROROEADD ERP+2B | FFFFFFFF
BORGGOED EBP+2Y 7C8399F3 | |3

||| onund or g ARARARRA AARAARRD AARRAARD nanpaAan | |s) EBF+28 7CH16058 | (s

| | Pawsed

Figure 4.6 A typical OllyDbg screen

Unsurprisingly, one place where WinDbg is unbeatable and far surpasses
OllyDbg is in its integration with the operating system. WinDbg has powerful
extensions that can provide a wealth of information on a variety of internal
system data structures. This includes dumping currently active user-mode
heaps, security tokens, the PEB (Process Environment Block) and the TEB
(Thread Environment Block), the current state of the system loader (the com-
ponent responsible for loading and initializing program executables), and so
on. Beyond the extensions, WinDbg also supports stepping through the earli-
est phases of process initialization, even before statically linked DLLs are ini-
tialized. This is different from OllyDbg, where debugging starts at the primary
executable’s WinMain (this is the .exe file launched by the user), after all stati-
cally linked DLLs are initialized. Figure 4.7 shows a screenshot from WinDbg.
Notice how the code being debugged is a part of the NTDLL loader code that
initializes DLLs while the process is coming up—not every user-mode debug-
ger can do that.

Reversing Tools 121

[# c:\bocuments and Settings\Eidad Ei B exe" - WinDbg:6.3.0017.0 L=E

Fl= Edt Mew Debug Window Hek

2 0] aEEE Belel o BEEEEEE) [R A 2

mary E] Disnssembly g
wirtual: [§5scopeap Frevias | Med | Offsst:| Preveus | Hest |
Display format: |L: Hex ~| |7c93edba £fLE7BIEEEEE mmzh dvord ptr [ebp-0x38]

e JEceg =l peaieiss & bush ed:)
7c93edol difE438h 2201248 Tof7clil fe2895e9 Jc93ed?l A8dctSY93ic push Ox?c5345dc
Jo93eddl 944ECTEE UUUJUUU\‘_ -{‘:c O7eb 00000=54 7o920d7E AREEFE937C mzh D=Tc33fEEd
7o92ede0 340456200 Ao B3d 7c9%ed?h 50 push eax
7c93edil f22B9==9 9445 Jolded?c Gakbi push Ox57
J=tdiesll 21328048 7 ¢ 7c92edTe eBalfdidff call atdll!DbePrintEz (7c®1eb25)
7c92esll 62057500 ToI3fE94 7c9%ed@3 QbBETOLELLLE o eax, |'=b|.—0 8E]
7c93esl0 I3LEb0GE 0e75007C 7c93=dB9 A3c418 add esp. Oxl
#=93==30 =5723400 75007=97 o 5 e0ii0zeb 7o92edic edecl9fef inp ntdll 'I.:ln:In tializi E’:mcasswx].lca (7oRE1TTE
7c93eedl fEIESB5E 10637c%3 B07c93E7 d2ed67sa e9%eddl 803|_21|_1.3""|_ a cnp que ptz [otdlllSh naps (7ef7=121)].0x0
7c93esbl Sbiffdic [f31sbce 29 A 3d30f:§s 7c93ed9B 75 Inm LITArpInitia cesz+0xfbl (7o93edab
7c93mmil 72972121 7500 03750072 7c93edda 8036?4253??::20 ocnp byta ptr [ntdll!ShovErrcrs (7c37e574)]1.0=(
7c93es70 575e0362 93I7506E f’?ESSS?C 6@:6?0:3 Jc98edal 7505 oz nLJ].|].A:|"pln1.t1=\].12~f"‘u|:ess+0:(tb" {7=93edak
7c92%es80 [o9E ? cPBbiiid =914cdBl fifelBed 7o93edal Aall mush
7=93mma0 - 74696m45 GIECRLET TESOR5TA Jo9%edab 58 pop
7c93esal 00000073 3a5244dc 20732520 Jo9iedat =b02 Ing nt:l LILd:rplr.u.t1=sz=l"::|:e'ss+le:bJ {79 3edas
c93esbl bebd6cbd BREA20ET 73756183 7093edag 3300 Eiy cmz =434
7c93emcl 65772065 72657 BEF520E5 6 Ic93edaa 57 puskh
7c92ead0 206£7420 20?]6 20E5E8T c9ledab GHA4ERYITC push :Ix feilfbdd

|Jctie==l 01622065 B1 B5¥264EL 7373 7c93edbl 635cfRIET push Jx"c 3fBEC
7293000 20257025 T4?]bi7l1 50206563 47414443 7c93edbs 50
7c93edbt =9=4000000

o
=
E

2

:r.ll |LdrplnaitializeProcess+lxllb= {(7=93e=72

G & f"‘938db]: eS?E‘HfCEf c:\Ll atdll IDheBreakPoint (709012307
FCEE 1 |7e9%edel Bb4Z6d F= eax, [ebx+0xEE] de. 002370 ideleB=0000007
TORF_ERTHY_PROCESSED e
= = L] ?rﬂpnﬂ rHﬁE =hr zex |
€Ik . 32 L] oc93edot 2401 and
feOipAZEds dx‘}ij&?‘;?f’?;ﬂm;ﬁ;i‘l i Icdiede? a221c1977c new o] ShowSnaps (7e97e121)].a
0x7c913156 Siz D=000RI000 7o93edoc mA9E2RFaFf snp ntdllITdrplnitializePr |-"=.5+Flwll'ﬂF| (7297 166E
Flags 0300]350]4 LoadCount 7c93eddl c745340d4000000 now dword ptr [ebp-Oxéc].lzd
UxOD00f£EE TlsIndex 0%00000000 Jo93eddl =b07 gnp ntdll ILr.lrpln:\t1alxz=k‘:uc-ss+leLJb IEEEEEE
LDEF_IHAGE_DLL 7o93edda 7453402000000 now dword prr [shp-0zéc]. D=a
LORF Losh IH EROGRESS 7c93edsl Sa04 push Ozd
LORF_ENTRY_FROCES: Yolded=d dd4594 l=a max, [=bp-lxbe]
LLREF_PROCESS_ATTACH_CALIED 7c93edst 50 puzh GaE
H_CALLED 7033eds? 6222 pusk 0wz
I=00242010 ©:~UINDOWS systeni2 kernsl32 d11 Z=gg=§ G;é;fm - pUﬂ- h:éil'z ST i raEISE
Ba: 0=x7c300000 EntryPoint Jodae = = ==0 n Mot lntormat 1onl CEEE cHla)
Lac cdume: e U000t 4000 Ie S35aa8iatl Snp medlllLdrplnitializeProcssa+0zl0da {72921692
0z00085004 LoadCount 5 £7453402000000 mew dword prr [ehp-DxGc]. 0x?
10000 £2E Tiatades 0M30003905 =31729aft I wedlllLdrpla tialiscProcs=si0zltds (72921716
J_md ' IHAGE_DLL | 80'3021._].3‘7'%_ a cnp Jn,-le ptz [otdlllShouSaaps (Fe97=121)
T LOAD_TH_PRUGRES inm nedlllTdrpnatializeProcess+0xl117 (7295 ..:F
L[)Rp EHTRY F?CCISSF.‘B Tc93ealla 8036?425:?% 0 cnp byte ptr [ntdll!ShovErrces (7c37eE74)].0=0
LORP_PROCESS_ATTACH_CALLED L :_:3 :ez 12: U'-‘ ;uzh u:EIl_iélLd.rpln:t 1alireProcess+0x1117 {7c93e=1E
hu/j7o250e13 o miey s

[o-ooos | <l 3
[inG,Col0 SysOiclocel> | ProcO00bec | Thed 000:b%c |

Figure 4.7 A screenshot of WinDbg while it is attached to a user-mode process.

WinDbg has been improved dramatically in the past couple of years, and new
releases that include new features and bug fixes have been appearing regularly.
Still, for reversing applications that aren’t heavily integrated with the operating
systems, OllyDbg has significant advantages. Olly has a far better user interface,
has a better disassembler, and provides powerful code analysis capabilities that
really make reversing a lot easier. Costwise they are both provided free of
charge, so that’s not a factor, but unless you are specifically interested in debug-
ging DLL initialization code, or are in need of the special debugger extension
features that WinDbg offers, I'd recommend that you stick with OllyDbg.

IDA Pro

Besides it being a powerful disassembler, IDA Pro is also a capable user-mode
debugger, which successfully combines IDA’s powerful disassembler with
solid debugging capabilities. I personally wouldn’t purchase IDA just for its
debugging capabilities, but having a debugger and a highly capable disassem-
bler in one program definitely makes IDA the Swiss Army Knife of the reverse
engineering community.

122

Chapter 4

PEBrowse Professional Interactive

PEBrowse Professional Interactive is an enhanced version of the PEBrowse Pro-
fessional PE Dumping software (discussed in the “Executable Dumping Tools”
section later in this chapter) that also includes a decent debugger. PEBrowse
offers multiple informative views on the process such as a detailed view of the
currently active memory heaps and the allocated blocks within them.

Beyond its native code disassembly and debugging capabilities, PEBrowse
is also a decent intermediate language (IL) debugger and disassembler for
NET programs. PEBrowse Professional Interactive is available for download
free of charge at www . smidgeonsoft.com.

Kernel-Mode Debuggers

Kernel-mode debugging is what you use when you need to get a view of the
system as a whole and not on a specific process. Unlike a user-mode debugger,
a kernel-mode debugger is not a program that runs on top of the operating
system, but is a component that sits alongside the system’s kernel and allows
for stopping and observing the entire system at any given moment. Kernel-
mode debuggers typically also allow user-mode debugging, but this can some-
times be a bit problematic because the debugger must be aware of the
changing memory address space between the running processes.

Kernel-mode debuggers are usually aimed at kernel-level developers such
as device driver developers and developers of various operating system exten-
sions, but they can be useful for other purposes as well. For reversers, kernel-
mode debuggers are often incredibly helpful because they provide a full view
of the system and of all running processes. In fact, many reversers use kernel
debuggers exclusively, regardless of whether they are reversing kernel-mode
or user-mode code. Of course, a kernel-mode debugger is mandatory when it
is kernel-mode code that is being reversed.

One powerful application of kernel-mode debuggers is the ability to place
low-level breakpoints. When you're trying to determine where in a program a
certain operation is performed, a common approach is to set a breakpoint on
an operating system API that would typically be called in order to perform
that operation. For instance, when a program moves a window and you’d like
to locate the program code responsible for moving it, you could place a break-
point on the system API that moves windows. The problem is that there are
quite a few APIs that could be used for moving windows, and you might not
even know exactly which process is responsible for moving the window. Ker-
nel debuggers offer an excellent solution: set a breakpoint on the low-level
code in the operating system that is responsible for moving windows around.
Whichever APl is used by the program to move the window, it is bound to end
up in that low-level operating system code.

Reversing Tools

123

Unfortunately, kernel-mode debuggers are often difficult to set up and usu-
ally require a dedicated system, because they destabilize the operating system
to which they are attached. Also, because kernel debuggers suspend the entire
system and not just a single process, the system is always frozen while they are
open, and no threads are running. Because of these limitations I would recom-
mend that you not install a kernel-mode debugger unless you've specifically
confirmed that none of the available user-mode debuggers fit your needs. For
typical user-mode reversing scenarios, a kernel-mode debugger is really an
overkill.

Kernel Debugging in WinDbg

WinDbg is primarily a kernel-mode debugger. The way this works is that the
same program used for user-mode debugging also has a kernel-debugging
mode. Unlike the user-mode debugging functionality, WinDbg’s kernel-mode
debugging is performed remotely, on a separate system from the one running
the WinDbg GUI. The target system is booted with the /DEBUG switch (set in the
boot.ini configuration file) which enables a special debugging code inside
the Windows kernel. The debugee and the controlling system that runs
WinDbg are connected using either a serial null-modem cable, or a high-speed
FireWire (IEEE 1394) connection.

The same kernel-mode debugging facilities that WinDbg offers are also acces-
sible through KD, a console mode program that connects to the debugee in the
exact same way. KD provides identical functionality to WinDbg, minus the GUL

Functionally, WinDbg is quite flexible. It has good support for retrieving
symbolic information from symbol files (including retrieving symbols from a
centralized symbol server on demand), and as in the user-mode debugger, the
debugger extensions make it quite powerful. The user interface is very limited,
and for the most part it is still essentially a command-line tool (because so
many features are only accessible using the command line), but for most appli-
cations it is reasonably convenient to use.

WinDbg is quite limited when it comes to user-mode debugging—placing
user-mode breakpoints almost always causes problems. The severity of this
problem depends on which version of the operating system is being debugged.
Older operating systems such as Windows NT 4.0 were much worse than newer
ones such as Windows Server 2003 in this regard.

One disadvantage of using a null-modem cable for debugging is perfor-
mance. The maximum supported speed is 115,200 bits per second, which is
really not that fast, so when significant amounts of information must be trans-
ferred between the host and the target, it can create noticeable delays. The
solution is to either use a FireWire cable (only supported on Windows XP and

124

Chapter 4

later), or to run the debugee on a virtual machine (discussed below in the
“Kernel Debugging on Virtual Machines” section).

As I've already mentioned with regards to the user-mode debugging features
of WinDbg, it is provided by Microsoft free of charge, and can be downloaded at
www.microsoft.com/whdc/devtools/debugging/default .mspx.

Figure 4.8 shows what WinDbg looks like when it is used for kernel-mode
debugging. Notice that the disassembly window on the right is disassembling
kernel-mode code from the nt module (this is ntoskrnl . exe, the Windows
kernel).

Numega SoftICE

All things being equal, SoftICE is probably the most popular reversing debug-
ger out there. Originally, SoftICE was developed as a device-driver develop-
ment tool for Windows, but it is used by quite a few reversers. The unique
quality of SoftICE that really sets it apart from WinDbg is that it allows for
local kernel-debugging. You can theoretically have just one system and still
perform kernel-debugging, but I wouldn’t recommend it.

|cgJ Kernel ‘com:port=\\.\pipe\win2k_pipe pipe, baud=1152000" - WinDbg:6.3.0017.0 !___Jl_nj@
Flle Edit View Debug Window Help

@] (e =R veleo] 8 5|6900@|E|0) [15 A R

Calls - I L] Disassembl e
[AtTRtIizeilliccassectranted I Offset: | Previous | MNest |
winid2k!CheckGrantediccess+lxs
wind2k! xuxCreatelindovEx+0xcd 804ac33e mov ecx. [saxt+lz8] ;
wind?k | HtUesrCrestelindovEx+Dx1a? 804ac941 jz nt |IRt1GetGroupSecurityDescs
nt |KiSystenService+lxcd 804ac943 test EoK, B :
USER32 | HtUserCreatelindovEx+0xb 804ac945 Iz nt |RtlGetGroupSecurityDescs
USER32 | CreatelindovEsU+0z2e 804ac3d? add ecx, eax
NOTEPAD I NPInit+0=133 8042949 mov edx. [esp+ixd]
NOTEPAD ! WinHain+0x4d 804ac9dd nov [edx], ecx
NOTEPAD ! JinMainCRTStartup+0x156 Audacdds: moy al.lsax+ial |
KERNEL3? | BaseProcessStart+0x3d Adacise kuy ecx. [sp+lxc]
804ac956 and al Dx2
80422958 sub al, 0x2
804ac95a neg al
B04ac%5c sbh Sax, 2ax
G04ac95e inc eax
804ac95f mow [ecxz].al
804ac961 =or eax, eax
] 504ac963 ret O=c
= — |ntiRtlAredllAiccessestranted:
U L TR OO | ([o eax, [espti=zd]
Loading unloaded module list 804ac96a not =ax
804ac96c and eax, [esp+i=g]
Loading User Symbols 8042970 neg =ax
R SR 804ac972 sbb 23K, 23X
kd: t 804ac974 inc eax
nt |RtliredlliccessesGranted: 804ac975 ret 0=x8
804ac966 mov eax. [esp+lzd) nt IRt lAirednviccessestGranted:
kd> lprocess -1 0 804ac978 mov eax. [esp+lzd]
FROCESS 811fa740 Sessionld: 0 Cid: 0438 Feb: 804ac97c and eax. [esp+lzd]
DirBase: 0b2a7000 ObjectTable: 2115dcd48 Tabl 2042c980 neg sax
Image: notepad. exe 2042c932 sbb eax. eax
1 |B04ac984 neg sax
¥| |B04ac986 ret 0x8
< | i | > nt IRt I1MapGenericHask:
BNAdw~0a9 -y mny [eerdlied 1
fed> | <] >
Ln0, Col0 | SysOikdSrv:S | Proc 000:0 | Thrd 000:0 OYR M

Figure 4.8 A screenshot from WinDbg when it is attached to a system for performing
kernel-mode debugging.

Reversing Tools

125

SoftICE is used by hitting a hotkey on the debugee (the hotkey can be hit at
anytime, regardless of what the debugee is doing), which freezes the sys-
tem and opens the SoftICE screen. Once inside the SoftICE screen, users can
see whatever the system was doing when the hotkey was hit, step through ker-
nel-mode (or user-mode) code, or set breakpoints on any code in the system.
SoftICE supports the loading of symbol files through a dedicated Symbol
Loader program (symbols can be loaded from a local file or from a symbol
server).

SoftICE offers dozens of system information commands that dump a variety
of system data structures such as processes and threads, virtual memory infor-
mation, handles and objects, and plenty more. SoftICE is also compatible with
WinDbg extensions and can translate extensions DLLs and make their com-
mands available within the SoftICE environment.

SoftICE is an interesting technology, and many people don’t really under-
stand how it works, so let’s run a brief overview. Fundamentally, SoftICE is a
Windows kernel-mode driver. When SoftICE is loaded, it hooks the system’s
keyboard driver, and essentially monitors keystrokes on the system. When
it detects that the SoftICE hotkey has been hit (the default is Ctrl+D), it manu-
ally freezes the system’s current state and takes control over it. It starts by
drawing a window over whatever is currently displayed on the screen. It is
important to realize that this window is not in any way connected to Win-
dows, because Windows is completely frozen at this point. SoftICE internally
manages this window and any other user-interface elements required while it
is running. When SoftICE is opened, it disables all interrupts, so that thread
scheduling is paused, and it takes control of all processors in multiprocessor
systems. This effectively freezes the system so that no code can run other than
SoftICE itself.

It goes without saying that this approach of running the debugger locally on
the target system has certain disadvantages. Even though the Numega devel-
opers have invested significant effort into making SoftICE as transparent
as possible to the target system, it still sometimes affects it in ways that
WinDbg wouldn’t. First of all, the system is always slightly less stable when
SoftICE is running. In my years of using it, I've seen dozens of SoftICE related
blue screens. On the other hand, SoftICE is fast. Regardless of connection
speeds, WinDbg appears to always be somewhat sluggish; SoftICE on the
other hand always feels much more “immediate.” It instantly responds to user
input. Another significant advantage of SoftICE over WinDbg is in user-mode
debugging. SoftICE is much better at user-mode debugging than WinDbg, and
placing user-mode breakpoints in SoftICE is much more reliable than in
WinDbg.

126 Chapter 4

Other than stability issues, there are also functional disadvantages to the
local debugging approach. The best example is the code that SoftICE uses for
showing its window—any code that accesses the screen is difficult to step
through in SoftICE because it tries to draw to the screen, while SoftICE is
showing its debugging window.

m Many people wonder about SoftICE’s name, and it is actually quite
interesting. ICE stands for in circuit emulator, which is a popular tool for
performing extremely low-level debugging. The idea is to replace the system’s
CPU with an emulator that acts just like the real CPU and is capable of running
software, except that it can be debugged at the hardware level. This means that
the processor can be stopped and that its state can be observed at any time.
SoftICE stands for a Software ICE, which implies that SoftICE is like a software
implementation of an in circuit emulator.

Figure 4.9 shows what SoftICE looks like when it is opened. The original
Windows screen stays in the background, and the SoftICE window is opened
in the center of the screen. It is easy to notice that the SoftICE window has no
border and is completely detached from the Windows windowing system.

t View Favorites Tools Help

Back » = - 3] | @search [YFoders o | B2 B X = | E-
Address |D C:\mebsymbalsintaskinl pdbl EEES0EIL

80416B3E

gquireResourceExclusivelite

ko5 313

LEBF+B81
PTR [ECX+@C]1, 80

98
TR L[ECX+8E]l,80
1. EAX

R [ECX+1C]

[EBF+@C]1, 86

er TER Process([3&
FhE@es 1EMPLOREC288)

!Exncgulj reResourceExclusivelite+@@083
EntenCri t+@01A
“HtliserSe tHindowPos+@00E

849 KB [\ My Computer
Fstart ||| (] & |5 || 2 windows 2000 Corfigure .| & SoftICE Symbol Loader -[...| (y3EEBS0RS1 | [$@3 isem
Figure 4.9 NuMega SoftICE running on a Windows 2000 system.

Reversing Tools

127

Kernel Debugging on Virtual Machines

Because kernel debugging freezes and potentially destabilizes the operating sys-
tem on which it is performed, it is highly advisable to use a dedicated system for
kernel debugging, and to never use a kernel debugger on your primary com-
puter. This can be problematic for people who can’t afford extra PCs or for fre-
quent travelers who need to be able to perform kernel debugging on the road.

The solution is to use a single computer with a virtual machine. Virtual
machines are programs that essentially emulate a full-blown PC’s hardware
through software. The guest system’s display is shown inside a window on the
host system, and the contents of its hard drives are stored in a file on the host’s
hard drive.

Virtual machines are perfect for kernel debugging because they allow for
the creation of isolated systems that can be kernel debugged at any time, and
even concurrently (assuming the host has enough memory to support them),
without having any effect on the stability of the host.

Virtual machines also offer a variety of additional features that make them
attractive for users requiring kernel debugging. Having the system’s hard drive
in a single file on the host really simplifies management and backups. For
instance, it is possible to store one state of the system and then make some con-
figuration changes—going back to the original configuration is just a matter of
copying the original file back, much easier than with a nonvirtual system.
Additionally, some virtual machine products support nonpersistent drives that
discard anything written to the hard drive when the system is shut down or
restarted. This feature is perfect for dealing with malicious software that might
try to corrupt the disk or infect additional files because any changes made
while the system is running are discarded when the system is shut down.

Unsurprisingly, virtual machines require significant resources from the host.
The host must have enough memory to contain the host operating system, any
applications running on top of it, and the memory allocated for the guest sys-
tems currently running. The amount of memory allocated to each guest system
is typically user-configurable. Regarding the CPU, some virtual machines actu-
ally emulate the processor, which allows for emulating any system on any plat-
form, but that incurs a significant performance penalty. The more practical
application for virtual machines is to run guest operating systems that are com-
patible with the host’s processor, and to try to let the guest system run directly
on the host’s processor as much as possible. This appears to be the only way to
get decent performance out of the guest systems, but the problem is that the
guest can’t just be allowed to run on the host directly because that would inter-
fere with the host operating system. Instead, modern virtual machines allow
“checked” sequences of guest code to run directly on the host processor and
intervene whenever it’s necessary to ensure that the guest and host are properly
isolated from one another.

128 Chapter 4

Virtual machine technologies for PCs have really matured in recent years
and can now offer a fast, stable solution for people who require more than one
computer but that don’t need the processing power of multiple computers. The
two primary virtual machine technologies currently available are Virtual PC
from Microsoft Corporation and VMWare Workstation from VMWare Inc.
Functionally the two products are very similar, both being able to run Win-
dows and non-Windows operating systems. One difference is that VMWare
also runs on non-Windows hosts such as Linux, allowing Linux systems to run
versions of Windows (or other Linux installations) inside a virtual machine.
Both products have full support for performing kernel-debugging using either
WinDbg or NuMega SoftICE. Figure 4.10 shows a VMWare Workstation win-
dow with a Windows Server 2003 system running inside it.

Ejl Windows Server 2003 - VMware Waorkstation g (m

© Fille Edit Wiew WM Power Snapshat Windows Help
‘H W i|@ B 5o [:d =t | {T] Bl &

(U] Windows Server 2003 [JEETERIE SIS E ST

#8 My Computer

-—\“/ Windows Explorer B’ Control Panel 3
-m Administrative Tools 4

Caommand Prompk 9
- Printers and Faxes
@ Motepad
@ Help and Support
é Irkermet Explorer ,) Saarch
® ‘Windows Media Player = Bun..,
A
ﬁ Remats Deskiop Connection
Dot Player
ol = |

All Programs D

g] Log Off @| Shyt Down

Y251 PM

Figure 4.10 A screenshot of VMWare Workstation version 4.5 running a Windows Server
2003 operating system on top of a Windows XP host.

Reversing Tools

129

Decompilers

Decompilers are a reverser’s dream tool—they attempt to produce a high-level
language source-code-like representation from a program binary. Of course, it
is never possible to restore the original code in its exact form because the com-
pilation process always removes some information from the program. The
amount of information that is retained in a program’s binary executable
depends on the high-level language, the low-level language to which the pro-
gram is being translated by the compiler, and on the specific compiler used.
For example, NET programs written in one of the NET-compatible program-
ming languages and compiled to MSIL can typically be decompiled with
decent results (assuming that no obfuscation is applied to the program). For
details on specific decompilers for the .NET platform, please see Chapter 12.

For native IA-32 code, the situation is a bit more complicated. IA-32 binaries
contain far less high-level information, and recovering a decent high-level rep-
resentation from them is not currently possible. There are several native code
decompilers currently in development, though none of them has been able to
demonstrate accurate high-level output so far. Hopefully, this situation will
improve in the coming years. Chapter 13 discusses decompilers (with a focus
on native decompilation) and provides an insight into their architecture.

System-Monitoring Tools

System monitoring is an important part of the reversing process. In some cases
you can actually get your questions answered using system-monitoring tools
and without ever actually looking at code. System-monitoring tools is a general
category of tools that observe the various channels of I/O that exist between
applications and the operating system. These are tools such as file access moni-
tors that display every file operation (such as file creation, reading or writing to
a file, and so on) made from every application on the system. This is done by
hooking certain low-level components in the operating system and monitoring
any relevant calls made from applications.

There are quite a few different kinds of system-monitoring tools, and endless
numbers of such tools available for Windows. My favorite tools are those offered
on thewww. sysinternals.com Web site, written by Mark Russinovich (coau-
thor of the authoritative text on Windows internals [Russinovich]) and Bryce
Cogswell. This Web site offers quite a few free system-monitoring tools that
monitor a variety of aspects of the system and at several different levels. For

130

Chapter 4

example, they offer two tools for monitoring hard drive traffic: one at the file
system level and another at the physical storage device level. Here is a brief
overview of their most interesting tools.

FileMon This tool monitors all file-system-level traffic between programs
and the operating system, and can be used for viewing the file I/O
generated by every process running on the system. With this tool we
can see every file or directory that is opened, and every file read /write
operation performed from any process in the system.

TCPView This tool monitors all active TCP and UDP network connec-
tions on every process. Notice that it doesn’t show the actual traffic, only
a list of which connections are opened from which process, along with
the connection type (TCP or UDP), port number and the address of the
system at the other end.

TDIMon TDIMon is similar to TCPView, with the difference that it moni-
tors network traffic at a different level. TDIMon provides information
on any socket-level operation performed from any process in the system,
including the sending and receiving of packets, and so on.

RegMon RegMon is a registry activity monitor that reports all registry
access from every program. This is highly useful for locating registry
keys and configuration data maintained by specific programs.

PortMon PortMon is a physical port monitor that monitors all serial
and parallel I/O traffic on the system. Like their other tools, PortMon
reports traffic separately for each process on the system.

WinObj This tool presents a hierarchical view of the named objects in
the system (for information on named objects refer to Chapter 3), and
can be quite useful for identifying various named synchronization
objects, and for viewing system global objects such as physical devices,
and so on.

Process Explorer Process Explorer is like a turbo-charged version of the
built-in Windows Task Manager, and was actually designed to replace it.
Process Explorer can show processes, DLLs loaded within their address
spaces, handles to objects within each process, detailed information on
open network connections, CPU and memory usage graphs, and the list
just goes on and on. Process Explorer is also able to show some level of
code-related details such as the user and kernel stacks of each thread
in every process, complete with symbolic information if it is available.
Figure 4.11 shows some of the information that Process Explorer can
display.

Reversing Tools

131

|'\-!:' Process Explorer - Sysinternals: www.sysinternals.com EE‘J@
Fl= Cpbons View Pracsss Fod Hende Help

CREIEEEEN

Frocess PIl | CPU Descriplicn User Mame Py | Harellos | “window Tilke [ad
=] Spstenn ke Process a MT ADTHORITYAEYSTEM o o
—Intemapts nia Hardvanne Inbesipis n n
TIDFCs nlz Defzied Frocedure Cals o]
Tsystem 4 HT ALTHORITYSYS TEN [5E1
= [armsene £12 indowes NT Sessi Managen MT ADTHORITYWSYSTEM 11 20
CEE DHE ERd Cliesat Sesver Auptime Frozess MT AUTHORITYAS VI TEM 13 a3
wirkgon exe et windows NT Logen Appizelicn MT AUTHORITYAEYSTEM 12]
= [emvdces cxn 74 Senvices and Conioll son MT AUTHORITYASYSTEM 8 354
Fibmpmzve.ene 935 i
atizewmg ens oM
wch 5 Geneiiz Host Frocess (e | Perfamence | Peifomares Giaph | Theads | T0RAP | Secuiyp | 410]
BTSra kServerouz 3300 Blictooth Stack COM
et e 4244 Logicl Disk Menager | ["[p © | CopilchDeka] SiatAddass =
Elevchostcon 1ue2 Gengiic Heal Fozeay piranedUT erinal3 ervai eques Thaad
= Y svchozlen 1164 Geneic Hosl Frocess viraredPNatFicationT heaed
[T wzaliy. s 1542 Windawe Sezuity Cel CERS q\adpcs“ﬁe:w-ﬂh,m
ﬁn suck exe =) fuiicmakic Updeles e
— Peuchootowa 124z Gesarin Heel Brosess
< 2|
Ka. ¢ Ty Aocesz Mame ieateSystemThicadz o
Ot KepedEvent OIFOI02 SKemeldbecthCitSeclulide hipiFlequest Thiead
01 Dirzchay 000N KDl CEASAY AICzARFlequestThicad
0 File T000 CIND DSyl wir—
10 Dirsctony CWOIFOIOF “Segsor\ENOLINES Tel ==
14 Koy QOI20NS HELMASYSTEM Corrcl3 anl0l”
18 Symivolicl i< ODOTFDO0T Sessions\ENOILINKS Thisad|D: 792 | o r*:wriexdhsvupfunwvlﬂe
T Die=chary IOFOOF \SessionsiD i 2 i
) Diractom IOFOUF SSessons Ui DasDevices Stat Tine: G2933FM B |2
24 Diractony OWOODFO00F windows: EEER wailwillzaiRe | |
025 Diachoy CLDODFOO0F BaseNamedDbjests Femal Time: OO4EA1E I
2 Directoy MEMIOFN00F SBaneflamedDhjectz Feshicted &
0 Seclian LOOI0E SHLSMIsSechionnicode fleatiner LR i
el Seclion 0000004 SHLSMISecliorlocale Corkedt Spitches: 126286944 | a i
Beld Sectian Q0000 SHLEWIgectionCType lla :ﬂmldmlifwf:fédm.gc;e:amm
2 Seztion QLOI00I04 SHLEWMIsSactionSoikay
04C Setion IOODOINE SHLS WIS ecicnGonThz ;
D Key OO0 HELM o
[r=3] Er =k DTFON0E B aseMaredDbpclaSuckThieadt wenl |I|
CODTFOSFF cores exelB34) 704
D200 “BaseMamedDbiosts
DHMIFOFE o exelFad) 706 -

U USEDC 100% | Commit Charga: 71,70% Prooesses: BT | Paused

Figure 4.11 A screenshot of Process Explorer from Sysinternals.

Patching Tools

Patching is not strictly a reversing-related activity. Patching is the process of
modifying code in a binary executable to somehow alter its behavior. Patching
is related to reversing because in order to know where to patch, one must
understand the program being patched. Patching almost always comes after a
reversing session in which the program is analyzed and the code position that
needs to be modified is located.

Patching is typically performed by crackers when the time arrives to “fix”
the protected program. In the context of this book, you'll be using patching
tools to crack several sample crackme programs.

Hex Workshop

Hex Workshop by BreakPoint Software, Inc. is a decent hex-dumping and
patching tool for files and even for entire disks. It allows for viewing data

132

Chapter 4

in different formats and for modifying it as you please. Unfortunately, Hex
Workshop doesn’t support disassembly or assembly of instructions, so if you
need to modify an instruction in a program I'd generally recommend using
OllyDbg, where patching can be performed at the assembly language level.
Besides being a patching tool, Hex Workshop is also an excellent program
for data reverse engineering, because it supports translating data into orga-
nized data structures. Unfortunately, Hex Workshop is not free; it can be pur-

chased at www .bpsoft.com.

The screenshot in Figure 4.12 shows a typical Hex Workshop screen. On the
right you can see the raw dumped data, both in a hexadecimal and in a textual
view. On the left you can see Hex Workshop's structure viewer. The structure
viewer takes a data structure definition and uses it to display formatted data
from the current file. The user can select where in the file this structured data

resides.

|E Hex Workshap - [Reversing.zip]

[Fie Edt D% Cptens Took Wndow Heb

clev|a|weEs LUl |@Ea)n

al dn gﬁ [

¥4 '#E_

FaHE F =R

et MR ER L | g - om s DA
= =ix
Strucues Yiewer (2p-format.hsl) =+
Addr=ss | Nams Wehie
(=/00000000 struct LeczFlzHeader 4ot

HI00I0000 Signekure! PED

QU004 WORD Werseaieeded ToEstract 20

Q000006 WORD GaneaPurpaseitFlag 0

Q00J000E COMFRESSION_METHOO Compression™,,, DEFLATED (3)

Q0000004 COSTIME LastHeFieTime

A0ACO0C BOSTATE LastodFieiats a0

ANICOE CAYORD D32 ATEELREAT

Q0000012 CAYCRD Campressscsios 10624

Q00I001E CAYGRD UncamaresssdSios <g5z |=

Q0000014 WORE Fl=lemel ength
AU0I001C YAORD ExtraFiedLargth
Z000A001E FlakamelFlabameLength]
Q00I0035 ExreField[ExraFiskdencth]
[SI000023EG struck LecalFisHeader
FOMIFEE Signaburels]
ON0JZ98% WORD YersonMesded TeExtrack
0IZHEE WORD G2reraPuroseitFlzg
Q00IZHED COMPRESIION_METHCD Compressionts.
O000Z9EF DCSTINE LasthodFieTime
Q0032001 DOSDATE LastodFieDats
A00IZHCI DWORD Cresz
Q0002557 DWAIRD CompressedSioe
000978 DMACRE UncomprassedSize
OO0 WAORD FleMamelength
A00IZ901 WORE ExtraFishLargth
H00002803 FleNeamelFiktlzmeLergth]
AO0IEE ExbraField| Exrafiskd encth]
[SIODEAEEF smuct CentrallirectaryHisHeader
H0008325F Signatureld]
Q0053263 VERSION_MALE_EY VersionMadsdy
055265 WORD ersonieedsdTcExtrack

23
0
Paversing - Mew TOC.doc

4t
FEm

Ell

0

DEFLATED {3)

392001
27704
7H3z

334848

15

a
S74317_Chi3.doc

fot
PRI
20
20

o0ooonooo
gooooooc
00000018
00000024
0o0o0no3o
ooooooac
ooooono4s
00000054
0oooonos0
ooooooac
00000078
00000084 145
00000090 |A85E
0000009 [F7Da BE)
00000048 |B2FF
00000084 (3287
goooooco (ooal
00000nce (46597
gooooong
00000N0E4

000000FQ |7
oooonoF:
gooooLog
nononii4

gooooLzo

0000012c | 3097
00000138 (7240

00000ni4d |FFec
00000150 (705D
00000152 |SEFA 7
00000168 (3748
00000174 | 1458 23F
00000180 [FI5F E

00000162 |A958 D
00000198 [326F
00000144 |7978 2
O000001BO |EFEA

S045 0304
0831 E7
ooon
BIEE &
432E 6
E:

271

1400
EZF3
oooo
ZD0Z0
E3ELD
4343
2213
E3JAE
410
AFD

<
T, DetaInmecoar), Shructure Viewer |

Found at peskion 0x00002565 (10677),

B fedes B Revesngzp

Qffsst: 0008325F

Ve 80 HOESSE byles

Figure 4.12 A screenshot of Breakpoint Software’s Hex Workshop.

Reversing Tools

133

Miscellaneous Reversing Tools

The following are miscellaneous tools that don’t fall under any of the previous
categories.

Executable-Dumping Tools

Executable dumping is an important step in reversing, because understanding
the contents of the executable you are trying to reverse is important for gain-
ing an understanding of what the program does and which other components
it interacts with. There are numerous executable-dumping tools available, and
in order to be able to make use of their output, you'll probably need to become
comfortable with the PE header structure, which is discussed in detail in
Chapter 3. The following sections discuss the ones that I personally consider to
be highly recommended.

DUMPBIN

DUMPBIN is Microsoft’s console-mode tool for dumping a variety of aspects
of Portable Executable files. Besides being able to show the main headers and
section lists, DUMPBIN can dump a module’s import and export directories,
relocation tables, symbol information, and a lot more. Listing 4.1 shows a typ-
ical DUMPBIN output.

Microsoft (R) COFF/PE Dumper Version 7.10.3077
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file user32.dll
PE signature found
File Type: DLL
FILE HEADER VALUES
14C machine (x86)
4 number of sections

411096B8 time date stamp Wed Aug 04 10:56:40 2004

Listing 4.1 A typical DUMPBIN output for USER32.DLL launched with the /HEADERS
option (continued).

134 Chapter 4

EO
210E

file pointer to symbol table
number of symbols
size of optional header
characteristics
Executable
Line numbers stripped
Symbols stripped
32 bit word machine
DLL

OPTIONAL HEADER VALUES

10B magic # (PE32)
7.10 linker version
5EE00 size of code
2E200 size of initialized data
0 size of uninitialized data
10EB9 entry point (77D50EB9)
1000 base of code
5B000 base of data
77D40000 image base (77D40000 to 77DCFFFF)
1000 section alignment
200 file alignment
5.01 operating system version
5.01 image version
4.00 subsystem version
0 Win32 version
90000 size of image
400 size of headers
9CA60 checksum
2 subsystem (Windows GUI)
0 DLL characteristics
40000 size of stack reserve
1000 size of stack commit
100000 size of heap reserve
1000 size of heap commit
0 loader flags
10 number of directories
38B8 [4BA9] RVA [size] of Export Directory
5E168 [50] RVA [size] of Import Directory
62000 [2A098] RVA [size] of Resource Directory
0 [0] RVA [size] of Exception Directory
0 [0] RVA [size] of Certificates Directory
8D000 [2DB4] RVA [size] of Base Relocation Directory
5FD48 [38] RVA [size] of Debug Directory
Listing 4.1 (continued)

Reversing Tools

135

0 [0] RVA [size] of Architecture Directory
0 [0] RVA [size] of Global Pointer Directory
0 [0] RVA [size] of Thread Storage Directory
3ED30 [48] RVA [size] of Load Configuration Directory
270 [4C] RVA [size] of Bound Import Directory
1000 [4E4] RVA [size] of Import Address Table Directory
5DE70 [AQ0] RVA [size] of Delay Import Directory
0 [0] RVA [size] of COM Descriptor Directory
0 [0] RVA [size] of Reserved Directory

SECTION HEADER #1
.text name
5EDA7 virtual size
1000 virtual address (77D41000 to 77D9FDA6)
5EE00 size of raw data
400 file pointer to raw data (00000400 to OOO5F1FF)
0 file pointer to relocation table
0 file pointer to line numbers
0 number of relocations
0 number of line numbers
60000020 flags
Code
Execute Read

Debug Directories

Time Type Size RVA Pointer
41107EEC cv 23 0005FD84 5Fr184 Format: RSDS,
{036A117A-6A5C-43DE-835A-E71302E90504}, 2, user32.pdb
41107EEC (A) 4 0005FD8O 5F180 BB030D70

SECTION HEADER #2
.data name
1160 virtual size
60000 virtual address (77DA0000 to 77DA1l15F)
C00 size of raw data
5F200 file pointer to raw data (0005F200 to OOOS5FDFF)
0 file pointer to relocation table
0 file pointer to line numbers
0 number of relocations
0 number of line numbers

Listing 4.1 (continued)

136 Chapter 4

C0000040

flags
Initialized Data
Read Write

SECTION HEADER #3

.ESEC
2A098
62000
27200
5FE0OQ

0
0
0
0
40000040

name

virtual size
virtual address (77DA2000 to 77DCC097)

size of raw data

file pointer to raw data (0005FE0O0 to 00089FFF)
file pointer to relocation table

file pointer to line numbers

number of relocations

number of line numbers

flags

Initialized Data

Read Only

SECTION HEADER #4

.reloc
2DB4
8D000
2E00
8A000

0

0

0

0
42000040

Summary

2000
3000
2B000O
5F000

name

virtual size
virtual address (77DCD000 to 77DCFDB3)
size of raw data

file pointer to raw data (0008A000 to O008CDFF)
file pointer to relocation table

file pointer to line numbers

number of relocations

number of line numbers

flags

Initialized Data

Discardable

Read Only

.data
.reloc
.rsrc
.text

Listing 4.1 (continued)

DUMPBIN is distributed along with the various Microsoft software devel-
opment tools such as Visual Studio .NET.

Reversing Tools

137

PEView

PEView is a powerful freeware GUI executable-dumping tool. It allows for a
good GUI visualization of all important PE data structures, and also provides
a raw view that shows the raw bytes of a chosen area in a file. Figure 4.13
shows a typical PEview screen. PEView can be downloaded free of charge at
Www .magma .ca/~wjr.

PEBrowse Professional

PEBrowse Professional is an excellent PE-dumping tool that can also be used
as a disassembler (the name may sound familiar from our earlier discussion on
debuggers—this not the same product, PEBrowse Professional doesn’t pro-
vide any live debugging capabilities). PEBrowse Professional is capable of
dumping all PE-related headers both as raw data and as structured header
information. In addition to its PE dumping abilities, PEBrowse also includes a
solid disassembler and a function tree view on the executable. Figure 4.14
shows PEBrowse Professional’s view of an executable that includes disassem-
bled code and a function tree window.

|<-‘ PEview - C-WINDC nlpa.exe EJ_I'EJ%
Fi= Uew &0 bep
20000 Eowd uxo
SECTION_HEADER PAGHA pFile Data Dascnpiion alug i
“TION_HEADER PAGL ([IRRRLINEE | O01D54F0 HinkMama RvA 0008 Vidinitishze
STIOM_HEADER PAGL 00104058 COTD&E0C HinkMame Fyia 0003 “idDreplayStnng

IraGE_SECTION_HEADER PAGL OOMD4DSC COIDS4CA HinbName Riva 0008 WidSetTaxtColor
IMAGE_SECTION_HEADER PAGL 00104060 DOMDS4EE HinkMame Ry 0o0a “idSohdColorFill
IAGE_SECTION_HEADER PAGL O01D40E4 CO1DS4AL HinkMame Ry 0000 idEnsi
IrAGE_SECTION_HEADER PAGL 00104068 ODMDE4%2 HinlMame Ry 0001 WidBuferToScreanSit
IMAGE_SECTION_HEADER IMIT OO1D4DEC O01DS474 HintMame Ry ooo?
IMAGE_SECTION _HEADER s 00104070 ODDSIES HintMame Ry noog
IMAGE_SECTION_HEADER sloc 00104074 D01D5454 HintMame Ry noo2

w SECTION text 00104078 ODIDSE00 HintMame RivA 0008 VidSerSerolRegion
SECTION POCLIM) _ODIDACTE DOOO0O00 End of mparts BOOTVID dl
SECTION MISYSPTE O01D40ED COIDEFAR HintName Ry 0020 HalRzgonResourcellsag

SECTION POOLCODE OMD40ES OOIDLFCO HintHame Ria 0005 Hald/ProcessarsStanzd

SECTION data O01D40EE DTDAFDE HinbMName Ry OME HalQueryRealTimzClock
SECTION [MITDATA 001 D40aC O01DWFFZ Hint/MName Ryia O00E Hal®locatefdapterThannel
SECTION IMITCONS 001040so O01DS00E Hint/Mame Riyia 0048 KeStallEzecutionProcessor
SECTION PAGE O01040sg 00105024 Hinb/Mams RyA 0027 HaMrznslateBusAddress
SECTION PA ooi1ndose 0010504 Hinb/Mama RWA 004F KiReleaszSpinlock
SECTION PAGEYRFY oo1D4cac 0210E058 HinbMame R4 004T KFAcquireZpinLock
SECTION PAGEWMI CO1D4080 0010060 HinkMama RVA 0015 HalGetBesDataly Cfset
SECTION PAGEKD 001 D40AE 0010E08d HinkMama FVA 0025 HalS=tDusDatabyOfsst
SECTION PA PEC || DoDanes 001050EC HinkMama RV 0042 KeQueryPerfermanceCounter
SECTION PASEHDLS | O0aDAar O01DSOBE Hinb'Mame RVA 0023 HalRstumToFimmware

& SECTION edata CO1D40B0 COIDSOCE HinkMams Ryvia 0053 READ_PORT_UCHAR
SECTION PAZEDATA 01D40B4 OO1D50ED HinkMame R 0055 READ_PORT_USHORT
SECTION PA 3 O01D40BE DO1D50F4 HinkMame R 0054 READ_PORT_ULONG
SECTION P, OMD4DBEC DJIDEI06 HinlMama R 0059 WWRITE_PORT_UCHAR
SECTION PAGECONS 010400 00105994 HinlName Ry 0055 WRTE_PORT_USHORT
SECTION PAGELICO 0iD40ce O01D5I2E HintMame Ry 0054 WRITE_PORT_ULONG
SECTION PAGEVRF OI0£DCE 00MDE142 HintMame Ry D014 HalinitializeProcessor
SECTION PAGEVRFD O004DCE D01DSISC HintMame R 0005 HalCalibrateP edormanceCaunter

1= SECTION [WIT ipscon 001DSI7E HintName Ry 0028 HalSaiRealTimeCinck

IIMPGE'_ Directary Table | COID4ons 000E14 HintMame Ry 0018 HalHandleMil
i 001 0L0nR On1DstAd Hint/Mame R 0004 HalSeginSystemintermpt
| O0104DDC OOIDS1BE Hint/Mame RWA 0010 HalEndSvsternlntarrupt w
121 L | £ <| >

Wiewdrg MPORT Name Table

Figure 4.13 A typical PEview screen for ntkrnlpa.exe.

138 Chapter 4

[e

L=

Fl= Edt Mew Toos Wind
Ddd a' i@k

[[005 Heade

AR SERAw A

=1 Fib Hazder 4 Defender exe Entry Point (0x00404232) =%
| = 2 Dpticnal Heaces Ond04E2E: 55 push ebp ~
| Jwd042EE: SBEC xov ok, esp
anapazzs: sL pusn zox
anacazze: sL push zox
|é+-£3 Seci andoazzT: S6 push ezt
Judndzze: 57 push aadr
p'm"’a&‘ | 0%40d2E5; TEEAECFFEER call Oxd0Zaas
i [idata 04404233: 50 push anx
7 daz 04404725 TBADFIFFFR eall 02403341
58 he77wm V
| = £ Impantz £ »|
| =3 KERNELZZOLL
| [lsDebupgsiFresenl CUAR:Dxd D=0040426F, 0x004047AS, DzO04042D0
[File Image VAR Dxf Oz00404266, Dx0040456F, 000404790, 0x0040474%, 000404204, 0x004047D9
£ >
aE 7o i
Tanla 0L:
Taperzi 1am
Thuskil (558, T =)
=
ForwarderChain: 0500000000
NameElia: OxDDDOS04C (EERNELIZ o1l
Trumh TableBiA: OxDODOE000
TrumhOl = (665, L 3
Table #2: (Pirectory Delimiter)
Tapcrt LoclopTab LeDih:
Timeharestanp: 3300000000
Forvarderhain : 2400000000
NaueEA 1400000000
TrukTablaRVA 7400000000
AR i *

[opnonal Haadar: Impart

Figure 4.14 Screenshot of PEBrowse Professional dumping an executable and disassem-
bling some code within it.

Conclusion

In this chapter I have covered the most basic tools that should be in every
reverser’s toolkit. You have looked at disassemblers, debuggers, system-
monitoring tools, and several other miscellaneous classes of reversing tools
that are needed in certain conditions. Armed with this knowledge, you are
ready to proceed to Chapter 5 to make your first attempt at a real reversing
session.

Beyond the
Documentation

Twenty years ago, programs could almost exist in isolation, barely having to
interface with anything other than the underlying hardware, with which they
frequently communicated directly. Needless to say, things have changed quite
a bit since then. Nowadays the average program runs on top of a humongous
operating system and communicates with dozens of libraries, often developed
by a number of different people.

This chapter deals with one of the most important applications of reversing:
reversing for achieving interoperability. The idea is that by learning reversing
techniques, software developers can more efficiently interoperate with third-
party code (which is something every software developer does every day). That’s
possible because reversing provides the ultimate insight into the third-party’s
code—it takes you beyond the documentation.

In this chapter, I will be demonstrating the relatively extreme case where
reversing techniques are used for learning how to use undocumented system
APIs. I have chosen a relatively complex API set from the Windows native API,
and I will be dissecting the functions in that API to the point where you fully
understand what that each function does and how to use it. I consider this an
extreme case because in many cases one does have some level of documenta-
tion—it just tends to be insufficient.

141

142 Chapter 5

Reversing and Interoperability

For a software engineer, interoperability can be a nightmare. From the indi-
vidual engineer’s perspective, interoperability means getting the software to
cooperate with software written by someone else. This other person can be
someone else working in the same company on the same product or the devel-
oper of some entirely separate piece of software. Modern software compo-
nents frequently interact: applications with operating systems, applications
with libraries, and applications with other applications.

Getting software to communicate with other components of the same pro-
gram, other programs, software libraries, and the operating system can be one
of the biggest challenges in large-scale software development. In many cases,
when you're dealing with a third-party library, you have no access to the source
code of the component with which you're interfacing. In such cases you're
forced to rely exclusively on vendor-supplied documentation. Any seasoned
software developer knows that this rarely turns out to be a smooth and easy
process. The documentation almost always neglects to mention certain func-
tions, parameters, or entire features.

One excellent example is the Windows operating system, which has histori-
cally contained hundreds of such undocumented APIs. These APIs were kept
undocumented for a variety of reasons, such as to maintain compatibility with
other Windows platforms. In fact, many people have claimed that Windows
APIs were kept undocumented to give Microsoft an edge over one software
vendor or another. The Microsoft product could take advantage of a special
undocumented API to provide better features, which would not be available to
a competing software vendor.

This chapter teaches techniques for digging into any kind of third-party
code on your own. These techniques can be useful in a variety of situations, for
example when you have insufficient documentation (or no documentation at
all) or when you are experiencing problems with third-party code and you
have no choice but to try to solve these problems on your own. Sure, you
should only consider this approach of digging into other people’s code as a
last resort and at least try and get answers through the conventional channels.
Unfortunately, I've often found that going straight to the code is actually faster
than trying to contact some company’s customer support department when
you have a very urgent and very technical question on your hands.

Laying the Ground Rules

Before starting the first reversing session, let’s define some of the ground rules
for every reversing session in this book. First of all, the reversing sessions in

Beyond the Documentation

143

this book are focused exclusively on offline code analysis, not on live analysis.
This means that you'll primarily just read assembly language listings and try
to decipher them, as opposed to running programs in the debugger and step-
ping through them. Even though in many cases you’ll want to combine the
two approaches, I've decided to only use offline analysis (dead listing) because
it is easier to implement in the context of a written guide.

I could have described live debugging sessions throughout this book, but
they would have been very difficult to follow, because any minor environ-
mental difference (such as a different operating system version of even a dif-
ferent service pack) could create confusing differences between what you see
on the screen on what'’s printed on the page. The benefit of using dead listings
is that you will be able to follow along everything I do just by reading the code
listings from the page and analyzing them with me.

In the next few chapters, you can expect to see quite a few longish, uncom-
mented assembly language code listings, followed by detailed explanations of
those listings. I have intentionally avoided commenting any of the code, because
that would be outright cheating. The whole point is that you will look at raw
assembly language code just as it will be presented to you in a real reversing ses-
sion, and try to extract the information you're seeking from that code. I've made
these analysis sessions very detailed, so you can easily follow the comprehen-
sion process as it takes place.

The disassembled listings in this book were produced using more than one
disassembler, which makes sense considering that reversers rarely work with
just a single tool throughout an entire project. Generally speaking, most of the
code listings were produced using OllyDbg, which is one of the best freeware
reversing tools available (it’s actually distributed as shareware, but registra-
tion is performed free of charge—it’s just a formality). Even though OllyDbg is
a debugger, I find its internal disassembler quite powerful considering that it
is 100 percent free—it provides highly accurate disassembly, and its code analy-
sis engine is able to extract a decent amount of high-level information regard-
ing the disassembled code.

Locating Undocumented APIs

AsI've already mentioned, in this chapter you will be taking a group of undoc-
umented Windows APIs and practicing your reversing skills on them. Before
introducing the specific APIs you will be working with, let’s take a quick look
at how I found those APIs and how it is generally possible to locate such
undocumented functions or APIs, regardless of whether they are part of the
operating system or of some other third-party library.

The next section describes the first steps in dealing with undocumented
code: how to find undocumented APIs and locate code that uses them.

144 Chapter 5

What Are We Looking For?

Typically, the search for undocumented code starts with a requirement. What
functionality is missing? Which software component can be expected to offer
this functionality? This is where a general knowledge of the program in ques-
tion comes into play. You need to be aware of the key executable modules that
make up the program and to be familiar with the interfaces between those
modules. Interfaces between binary modules are easy to observe simply by
dumping the import and export directories of those modules (this is described
in detail in Chapter 3).

In this particular case, I have decided to look for an interesting Windows API
to dissect. Knowing that the majority of undocumented user-mode services in
Windows are implemented in NTDLL . DLL (because that’s where the native API
is implemented), I simply dumped the export directory of NTDLL.DLL and
visually scanned that list for groups of APIs that appear related (based on their
names).

Of course, this is a somewhat unusual case. In most cases, you won't just be
looking for undocumented APIs just because they’re undocumented (unless you
just find it really cool to use undocumented APIs and feel like trying it out) —
you will have a specific feature in mind. In this case, you might want to search
that export directory for relevant keywords. Suppose, for example, that you
want to look for some kind of special memory allocation API. In such a case, you
should just search the export list of NTDLL . DLL (or any DLL in which you sus-
pect your API might be implemented) for some relevant keywords such as
memory, alloc, and so on.

Once you find the name of an undocumented API and the name of the DLL
that exports it, it’s time to look for binaries that use it. Finding an executable
that calls the API will serve two purposes. First, it might shed some additional
light on what the API does. Second, it provides a live sample of how the APl is
used and exactly what data it receives as input and what it returns as output.
Finding an example of how a function is used by live code can be invaluable
when trying to learn how to use it.

There are many different approaches for locating APIs and code that uses
them. The traditional approach uses a kernel-mode debugger such as Numega
SoftICE or Microsoft WinDbg. Kernel-mode debuggers make it very easy to
look for calls to a particular function systemwide, even if the function you're
interested in is not a kernel-mode function. The idea is that you can install sys-
temwide breakpoints that will get hit whenever any process calls some func-
tion. This greatly simplifies the process of finding code that uses a specific
function. You could theoretically do this with a user-mode debugger such as
OllyDbg but it would be far less effective because it would only show you calls
made within the process you're currently debugging.

Beyond the Documentation

145

Case Study: The Generic Table API in NTDLL.DLL

Let’s dive headfirst into our very first hands-on reverse-engineering session.
In this session, I will be taking an undocumented group of Windows APIs and
analyzing them until I gather enough information to use them in my own
code. In fact, I've actually written a little program that uses these APIs, in order
to demonstrate that it’s really possible. Of course, the purpose of this chapter
is not to serve as a guide for this particular API, but rather to provide a live
demonstration of how reversing is performed on real-world code.

The particular API chosen for this chapter is the generic table API. This API is
considered part of the Windows native API, which was discussed in Chapter 3.

The native API contains numerous APIs with different prefixes for different
groups of functions. For this exercise, I've chosen a set of functions from the
RTL group. These are the runtime library functions that typically aren’t used
for communicating with the operating system, but simply as a toolkit contain-
ing commonly required services such as string manipulation, data manage-
ment, and so on.

Once you've locked on to the generic table API, the next step is to look
through the list of exported symbols in NTDLL.DLL (which is where the
generic table APl is implemented) for every function that might be relevant. In
this particular case any function that starts with the letters Rt 1 and mentions
a generic table would probably be of interest. After dumping the NTDLL . DLL
exports using DUMPBIN (see the section on DUMPBIN in Chapter 4) I searched
for any Rt1 APIs that contain the term GenericTable in them. I came up
with the following function names.

Rt1lNumberGenericTableElements

RtlDeleteElementGenericTable

RtlGetElementGenericTable

RtlEnumerateGenericTable

RtlEnumerateGenericTablelLikeADirectory

RtlEnumerateGenericTableWithoutSplaying

RtlInitializeGenericTable

RtlIsGenericTableEmpty

RtlInsertElementGenericTable

RtlLookupElementGenericTable

If you try this by yourself and go through the NTDLL . DLL export list, you'll
probably notice that there are also versions of most of these APIs that have the

suffix Av1. Since the generic table API is large enough as it is, I'll just ignore
these functions for the purposes of this discussion.

146 Chapter 5

From their names alone, you can make some educated guesses about these
APIs. It's obvious that this is a group of APIs that manage some kind of a
generic list (generic probably meaning that the elements can contain any type
of data). There is an API for inserting, deleting, and searching for an element.
Rt1NumberGenericTableElements probably returns the total number of
elements in the list, and Rt 1GetElementGenericTable most likely allows
direct access to an element based on its index. Before you can start using a
generic table you most likely need to call Rt 1InitializeGenericTable to
initialize some kind of a root data structure.

Generally speaking, reversing sessions start with data—we must figure out
the key data structures that are managed by the code. Because of this, it would
be a good idea to start with Rt 1InitializeGenericTable, in the hope that
it would shed some light on the generic table data structures.

As I've already explained, I will be relying exclusively on offline code analy-
sis, and not on live debugging. If you want to try out the generic table code in a
debugger, you can use GenericTable.EXE, which is a little program I have
written based on my findings after reversing the generic table API. If you didn’t
have GenericTable.EXE, you'd have to either rely exclusively on a dead list-
ing, or find some other piece of code that uses the generic table. In a quick search
I conducted, I was only able to find kernel-mode components that do that (the
generic table also has a kernel-mode implementation inside the Windows ker-
nel), but no user-mode components. GenericTable.EXE is available along
with its source code on this book’s Web site at www.wiley.com/go/eeilam.

The following reversing session delves into each of the important functions in
the generic table API and demonstrates its inner workings. It should be noted
that I will be going a bit farther than I have to, just to demonstrate what can be
achieved using advanced reverse-engineering techniques. If this were a real
reversing session in which you simply needed the function prototypes in order
to make use of the generic table API, you could probably stop a lot sooner, as
soon as you had all of those function prototypes. In this session, I will proceed to
go after the exact layout of the generic table data structures, but this is only done
in order to demonstrate some of the more advanced reversing techniques.

RtlinitializeGenericTable

As I've said earlier, the best place to start the investigation of the generic table
APl is through its data structures. Even though you don’t necessarily need to
know everything about their layout, getting a general idea regarding their con-
tents might help you figure out the purpose of the API. Having said that, let’s
start the investigation from a function that (judging from its name) is very
likely to provide a few hints regarding those data structures: Rt 1Initialize
GenericTable is a disassembly of Rt 1InitializeGenericTable, gener-
ated by OllyDbg (see Listing 5.1).

Beyond the Documentation

147

7C921A39 MOV EDI, EDI

7C921A3B PUSH EBP

7C921A3C MOV EBP, ESP

7C921A3E MOV EAX,DWORD PTR SS: [EBP+8]
7C921A41 XOR EDX, EDX

7C921A43 LEA ECX,DWORD PTR DS:[EAX+4]
7C921A46 MOV DWORD PTR DS: [EAX], EDX
7C921A48 MOV DWORD PTR DS: [ECX+4],ECX
7C921A4B MOV DWORD PTR DS: [ECX],ECX
7C921A4D MOV DWORD PTR DS: [EAX+C],ECX
7C921A50 MOV ECX,DWORD PTR SS: [EBP+C]
7C921A53 MOV DWORD PTR DS: [EAX+18],ECX
7C921A56 MOV ECX,DWORD PTR SS: [EBP+10]
7C921A59 MOV DWORD PTR DS: [EAX+1C],ECX
7C921A5C MOV ECX,DWORD PTR SS: [EBP+14]
7C921A5F MOV DWORD PTR DS: [EAX+20],ECX
7C921A62 MOV ECX,DWORD PTR SS: [EBP+18]
7C921A65 MOV DWORD PTR DS: [EAX+14],EDX
7C921A68 MOV DWORD PTR DS: [EAX+10], EDX
7C921A6B MOV DWORD PTR DS: [EAX+24],ECX
7C921A6E POP EBP

7C921A6F RET 14

Listing 5.1 Disassembly of Rt 1InitializeGenericTable.

Before attempting to determine what this function does and how it works
let’s start with the basics: what is the function’s calling convention and how
many parameters does it take? The calling convention is the layout that is used
for passing parameters into the function and for defining who is responsible
for clearing the stack once the function completes. There are several standard
calling conventions, but Windows tends to use stdcall by default. stdcall
functions are responsible for clearing their own stack, and they take parame-
ters from the stack in their original left-to-right order (meaning that the caller
must push parameters onto the stack in the reverse order). Calling conven-
tions are discussed in depth in Appendix C.

In order to answer the questions about the function’s calling convention, one
basic step you can take is to find the RET instruction that terminates this func-
tion. In this particular function, you will quickly notice the RET 14 instruction
at the end. This is a RET instruction with a numeric operand, and it provides two
important pieces of information. The operand passed to RET tells the processor
how many bytes of stack to unwind (in addition to the return value). The very
fact that the function is unwinding its own stack tells you that this isnota cdecl
function because cdecl functions always let the caller unwind the stack. So,
which calling convention is this?

148 Chapter 5

Let’s continue this process of elimination in order to determine the func-
tion’s calling convention and observe that the function isn’t taking any regis-
ters from the caller because every register that is accessed is initialized within
the function itself. This shows that this isn’ta _fastcall calling convention
because _fastcall functions receive parameters through ECX and EDX, and
yet these registers are initialized at the very beginning of this function.

The other common calling conventions are stdcall and the C++ member
function calling convention. You know that this is not a C++ member function
because you have its name from the export directory, and you know that it is
undecorated. C++ functions are always decorated with the name of their class
and the exact type of each parameter they receive. It is easy to detect decorated
C++ names because they usually include numerous nonalphanumeric charac-
ters and more than one name (class name and method name at the minimum).

By process of elimination you've established that the function is an stdcall,
and you now know that the number 14 after the RET instruction tells you how
many parameters it receives. In this case, OllyDbg outputs hexadecimal num-
bers, so 14 in hexadecimal equals 20 in decimal. Because you're working in a
32-bit environment parameters are aligned to 32 bits, which are equivalent to
4 bytes, so you can assume that the function receives five parameters. It is possi-
ble that one of these parameters would be larger than 4 bytes, in which case the
function receives less than five parameters, but it can’t possibly be more than
five because parameters are 32-bit aligned.

In looking at the function’s prologue, you can see that it uses a standard EBP
stack frame. The current value of EBP is saved on the stack, and EBP takes the
value of ESP. This allows for convenient access to the parameters that were
passed on the stack regardless of the current value of ESP while running the
function (ESP constantly changes whenever the function pushes parameters
into the stack while calling other functions). In this very popular layout, the
tirst parameter is placed at [EBP + 8], thesecond at [ebp + <], and so on. If
you're not sure why that is so please refer to Appendix C for a detailed expla-
nation of stack frames.

Typically, a function would also allocate room for local variables by sub-
tracting ESP with the number of bytes needed for local variable storage, but
this doesn’t happen in this function, indicating that the function doesn’t store
any local variables in the stack.

Let us go over the function from Listing 5.1 instruction by instruction and
see what it does. As I mentioned earlier, you might want to do this using live
analysis by stepping through this code in the debugger and actually seeing
what happens during its execution using GenericTable.EXE. If you're feel-
ing pretty comfortable with assembly language by now, you could probably
just read through the code in Listing 5.1 without using GenericTable.EXE.

Let’s dig further into the function and determine how it works and what it
does.

Beyond the Documentation

149

7C921A3E MOV EAX,DWORD PTR SS: [EBP+8]
7C921A41 XOR EDX, EDX
7C921A43 LEA ECX,DWORD PTR DS:[EAX+4]

The first line loads [ebp+8] into EAX. We've already established that
[ebp+8] is the first parameter passed to the function. The second line per-
forms a logical XOR of EDX against itself, which effectively sets EDX to zero. The
compiler is using XOR because the machine code generated for xor edx, edx
is shorter than mov edx, 0, which would have been far more intuitive. This
gives a good idea of what reversers often have to go through—optimizing
compilers always favor small and fast code to readable code.

The stack address is preceded by ss :. This means that the address is read using
SS, the stack segment register. IA-32 processors support special memory
management constructs called segments, but these are not used in Windows
and can be safely ignored in most cases. There are several segment registers in
IA-32 processors: CS, DS, FS, ES, and SS. On Windows, any mentioning of any of
those can be safely ignored except for FS, which allows access to a small area
of thread-local memory. Memory accesses that start with rs: are usually
accessing that thread-local area. The remainder of code listings in this book
only include segment register names when they’re specifically called for.

The third instruction, LEA, might be a bit confusing when you first look at it.
LEA (load effective address) is essentially an arithmetic instruction—it doesn’t
perform any actual memory access, but is commonly used for calculating
addresses (though you can calculate general purpose integers with it). Don’t
let the DWORD PTR prefix fool you; this instruction is purely an arithmetic
operation. In our particular case, the LEA instruction is equivalent to: ECX =
EAX + 4.

You still don’t know much about the data types you've encountered so far.
Most importantly, you're not sure about the type of the first parameter you've
received: [ebp+8]. Proceed to the next code snippet to see what else you can
find out.

7C921A46 MOV DWORD PTR DS: [EAX], EDX
7C921A48 MOV DWORD PTR DS: [ECX+4],ECX
7C921A4B MOV DWORD PTR DS: [ECX],ECX
7C921A4D MOV DWORD PTR DS: [EAX+C],ECX

This code chunk exposes one very important piece of information: The first
parameter in the function is a pointer to some data structure, and that data struc-
ture is being initialized by the function. It is very likely that this data structure is
the key or root of the generic table, so figuring out the layout of this data struc-
ture will be key to your success in learning to use these generic tables.

150 Chapter 5

One interesting thing about the data structure is the way it is accessed—
using two different registers. Essentially, the function keeps two pointers into
the data structure, EAX and ECX. EAX holds the original value passed through
the first parameter, and ECX holds the address of EAX + 4.Some members are
accessed using EAX and others via ECX.

Here’s what the preceding code does, step by step.

1. Sets the first member of the structure to zero (using EDX). The structure
is accessed via EAX.

2. Sets the third member of the structure to the address of the second
member of the structure (this is the value stored in ECX: EAX + 4). This
time the structure is accessed through ECX instead of EAX.

3. Sets the second member to the same address (the one stored in ECX).

4. Sets the fourth member to the same address (the one stored in ECX).

If you were to translate the snippet into C, it would look something like the
following code:

UnknownStruct->Memberl = 0;

UnknownStruct->Member3 = &UnknownStruct->Member?2;
UnkownStruct->Member2 = &UnknownStruct->Member?2;
UnknownStruct->Member4d = &UnknownStruct->Member?2;

At first glance this doesn’t really tell us much about our structure, except that
members 2, 3, and 4 (in offsets +4, +8, and +c) are all pointers. The last three
members are initialized in a somewhat unusual fashion: They are all being ini-
tialized to point to the address of the second member. What could that possibly
mean? Essentially it tells you that each of these members is a pointer to a group
of three pointers (because that’s what pointed to by UnknownStruct->
Member2—a group of three pointers). The slightly confusing element here is the
fact that this structure is pointing to itself, but this is most likely just a place-
holder. If I had to guess I'd say these members will later be modified to point to
other places.

Let’s proceed to the next four lines in the disassembled function.

7C921A50 MOV ECX,DWORD PTR SS: [EBP+C]

7C921A53 MOV DWORD PTR DS:[EAX+18],ECX
7C921A56 MOV ECX,DWORD PTR SS: [EBP+10]
7C921A59 MOV DWORD PTR DS: [EAX+1C],ECX

The first two lines copy the value from the second parameter passed into the
function into offset +18 in the present structure (offset +18 is the 7th member).
The second two lines copy the third parameter into offset +1c in the structure
(offset +1c is the 8th member). Converted to C, the preceding code would look
like the following.

Beyond the Documentation

151

UnknownStruct->Member7 = Param2;
UnknownStruct->Member8 = Param3;

Let’s proceed to the next section of Rt1InitializeGenericTable.

7C921A5C MOV ECX,DWORD PTR SS: [EBP+14]
7C921A5F MOV DWORD PTR DS: [EAX+20], ECX
7C921A62 MOV ECX,DWORD PTR SS: [EBP+18]
7C921A65 MOV DWORD PTR DS: [EAX+14],EDX
7C921A68 MOV DWORD PTR DS: [EAX+10], EDX
7C921A6B MOV DWORD PTR DS: [EAX+24],ECX

This is pretty much the same as before—the rest of the structure is being ini-
tialized. In this section, offset +20 is initialized to the value of the fourth
parameter, offset +14 and +10 are both initialized to zero, and offset +24 is ini-
tialized to the value of the fifth parameter.

This concludes the structure initialization sequence in RtlInitialize
GenericTable. Unfortunately, without looking at live values passed into this
function in a debugger, you know little about the data types of the parameters
or of the structure members. What you do know is that the structure is most
likely 40 bytes long. You know this because the last offset that is accessed is
+24. This means that the structure is 28 bytes long (in hexadecimal), which is
40 bytes in decimal. If you work with the assumption that each member in the
structure is 4 bytes long, you can assume that our structure has 10 members. At
this point, you can create a vague definition of the structure, which you will
hopefully be able to improve on later.

struct TABLE
{

UNKNOWN Memberl ;
UNKNOWN_PTR Member? ;
UNKNOWN__PTR Member3;
UNKNOWN_PTR Member4;
UNKNOWN Member5;
UNKNOWN Member6 ;
UNKNOWN Member7;
UNKNOWN Members8;
UNKNOWN Member9;
UNKNOWN MemberlO0;

RtINumberGenericTableElements

Let’s proceed to investigate what is hopefully a simple function: Rt INumber
GenericTableElements. The idea is that if the root data structure has a
member that represents the total number of elements in the table, this function
would expose it. If not, this function would iterate through all the elements

152 Chapter 5

and just count them while doing that. The following is the OllyDbg output for
Rt1lNumberGenericTableElements.

Rt1lNumberGenericTableElements:

7C923FD2
7C923FD3
7C923FD5
7C923FD8
7C923FDB
7C923FDC

PUSH EBP

MOV EBP, ESP

MOV EAX,DWORD PTR [EBP+8]
MOV EAX,DWORD PTR [EAX+14]
POP EBP

RET 4

Well, it seems that the question has been answered. This function simply
takes a pointer to what one can only assume is the same structure as before,
and returns whatever is in offset +14. Clearly, offset +14 contains the number
of elements in a generic table data structure. Let’s update the definition of the
TABLE structure.

struct TABLE

{
UNKNOWN
UNKNOWN_PT
UNKNOWN_PT
UNKNOWN_PT
UNKNOWN
ULONG
UNKNOWN
UNKNOWN
UNKNOWN
UNKNOWN

Memberl ;

R Member2 ;

R Member3;

R Member4 ;
Member5;
NumberOfElements;
Member7;
MemberS8;
Member9 ;
Memberl0;

RtlisGenericTableEmpty

There is one other (hopefully) trivial function in the generic table API that
might shed some light on the data structure: Rt 1IsGenericTableEmpty. Of
course, it is also possible that Rt1IsGenericTableEmpty uses the same
NumberOfElements member used in Rt INumberGenericTableElements.
Let’s take a look.

RtlIsGeneric
7C92715B
7C92715C
7C92715E
7C927161
7C927163
7C927165
7C927168
7C927169

TableEmpty:

PUSH EBP

MOV EBP, ESP

MOV ECX,DWORD PTR [EBP+8]
XOR EAX, EAX

CMP DWORD PTR [ECX],EAX
SETE AL

POP EBP

RET 4

Beyond the Documentation

153

As hoped, Rt1IsGenericTableEmpty seems to be quite simple. The
function loads ECX with the value of the first parameter (which should be the
root data structure from before), and sets EAX to 0. The function then compares
the first member (at offset +0) with EAX, and sets AL to 1 if they're equal using
the SETE instruction (for more information on the SETE instruction refer to
Appendix A).

Effectively what this function does is it checks whether offset +0 of the data
structure is 0, and if it is the function returns TRUE. If it’s not, the function
returns zero. So, you now know that there must be some important member at
offset +0 that is always nonzero when there are elements in the table. Again,
we add this little bit of information to our data structure definition.

struct TABLE
{

UNKNOWN_PTR Memberl; // This is nonzero when table has elements.
UNKNOWN_PTR Member?2 ;

UNKNOWN_PTR Member3;

UNKNOWN_PTR Member4;

UNKNOWN Member5;

ULONG NumberOfElements;

UNKNOWN Member7;

UNKNOWN Members8;

UNKNOWN Member9 ;

UNKNOWN Memberl0;

RtlGetElementGenericTable

There are three functions in the generic table API that seem to be made for find-
ing and retrieving elements. These are RtlGetElementGenericTable,
RtlEnumerateGenericTable, and RtlLookupElementGenericTable.
Based on their names, it’s pretty easy to make some educated guesses on what
they do. The easiest is Rt LEnumerateGenericTable because it’s obvious that
it enumerates some or all of the elements in the list. The next question is what
is the difference between Rt1lGetElementGenericTable and RtlLookup
ElementGenericTable? It’s really impossible to know without looking at the
code, but if I had to guess I'd say Rt 1GetElementGenericTable provides
some kind of direct access to an element (probably using an index), and Rt1
LookupElementGenericTable has to search for the right element.

If I'm right, RtlGetElementGenericTable will probably be the
simpler function of the two. Listing 5.2 presents the full disassembly for
RtlGetElementGenericTable. See if you can figure some of it out by your-
self before you proceed to the analysis that follows.

154 Chapter 5

RtlGetElementGenericTable:

7C9624E0
7C9624E1
7C9624E3
7C9624E6
7C9624E9
7C9624EC
7C9624ED
7C9624EE
7C9624F1
7C9624F2
7C9624F5
7C9624F8
7C9624FB
7C9624FD
7C9624FF
7C962501
7C962503
7C962505
7C962507
7C962509
7C96250B
7C96250D
7C96250F
7C962511
7C962513
7C962514
7C962517
7C962519
7C96251B
7C96251D
7C962520
7C962522
7C962524
7C962525
7C962527
7C962529
7C96252B
7C96252D
7C96252F
7C962531
7C962532
7C962534
7C962536
7C962538
7C96253A
7C96253B

PUSH EBP

MOV EBP, ESP

MOV ECX,DWORD PTR [EBP+8]
MOV EDX,DWORD PTR [ECX+14]
MOV EAX,DWORD PTR [ECX+C]
PUSH EBX

PUSH ESI

MOV ESI,DWORD PTR [ECX+10]
PUSH EDI

MOV EDI,DWORD PTR [EBP+C]
CMP EDT, -1

LEA EBX,DWORD PTR [EDI+1]
JE SHORT ntdll.7C962559
CMP EBX, EDX

JA SHORT ntdll.7C962559
CMP ESTI, EBX

JE SHORT ntdll.7C962554
JBE SHORT ntdll.7C96252B
MOV EDX,ESI

SHR EDX, 1

CMP EBX, EDX

JBE SHORT ntdll.7C96251B
SUB ESI, EBX

JE SHORT ntdll.7C96254E
DEC ESI

MOV EAX,DWORD PTR [EAX+4]
JNZ SHORT ntdll.7C962513
JMP SHORT ntdll.7C96254E
TEST EBX, EBX

LEA EAX,DWORD PTR [ECX+4]
JE SHORT ntdll.7C96254E
MOV EDX, EBX

DEC EDX

MOV EAX,DWORD PTR [EAX]
JNZ SHORT ntdll.7C962524
JMP SHORT ntdll.7C96254E
MOV EDI, EBX

SUB EDX, EBX

SUB EDI,ESI

INC EDX

CMP EDI, EDX

JA SHORT ntdll.7C962541
TEST EDI, EDI

JE SHORT ntdll.7C96254E
DEC EDI

MOV EAX,DWORD PTR [EAX]

Listing 5.2 Disassembly of Rt 1GetElementGenericTable.

Beyond the Documentation

155

7C96253D JNZ SHORT ntdll.7C96253A
7C96253F JMP SHORT ntdll.7C96254E

7C962541 TEST EDX, EDX

7C962543 LEA EAX,DWORD PTR [ECX+4]
7C962546 JE SHORT ntdll.7C96254E
7C962548 DEC EDX

7C962549 MOV EAX,DWORD PTR [EAX+4]
7C96254C JNZ SHORT ntdll.7C962548
7C96254E MOV DWORD PTR [ECX+C],EAX
7C962551 MOV DWORD PTR [ECX+10],EBX
7C962554 ADD EAX, 0C

7C962557 JMP SHORT ntdll.7C96255B
7C962559 XOR EAX, EAX

7C96255B POP EDI

7C96255C POP ESIT

7C96255D POP EBX

7C96255E POP EBP

7C96255F RET 8

Listing 5.2 (continued)

As you can see, Rt1GetElementGenericTable is a somewhat more
involved function compared to the ones you've looked at so far. The following
sections provide a detailed analysis of the disassembled code from Listing 5.2.

Setup and Initialization

Just like the previous APIs, Rt1GetElementGenericTable starts with a
conventional stack frame setup sequence. This tells you that this function’s
parameters are going to be accessed using EBP instead of ESP. Let’s examine
the first few lines of Rt 1GetElementGenericTable.

7C9624E3 MOV ECX,DWORD PTR [EBP+8]
7C9624E6 MOV EDX,DWORD PTR [ECX+14]
7C9624E9 MOV EAX,DWORD PTR [ECX+C]

Generic table APIs all seem to take the root table data structure as their first
parameter, and there is no reason to assume that Rt 1GetElementGeneric
Table is any different. In this sequence the function loads the root table pointer
into ECX, and then loads the value stored at offset +14 into EDX. Recall that in
the dissection of Rt1NumberGenericTableElements it was established
that offset +14 contains the total number of elements in the table. The next
instruction loads the third pointer at offset +0Oc from the three pointer group
into EAX. Let’s proceed to the next sequence.

156 Chapter 5

7C9624EC PUSH EBX

7C9624ED PUSH ESI

7C9624EE MOV ESI,DWORD PTR [ECX+10]
7C9624F1 PUSH EDI

7C9624F2 MOV EDI,DWORD PTR [EBP+C]
7C9624F5 CMP EDT, -1

7C9624F8 LEA EBX,DWORD PTR [EDI+1]
7C9624FB JE SHORT ntdll.7C962559
7C9624FD CMP EBX, EDX

7C9624FF JA SHORT ntdll.7C962559

This code starts out by pushing EBX and EST into the stack in order to pre-
serve their original values (we know this because there are no function calls
anywhere to be seen). The code then proceeds to load the value from offset +10
of the root structure into EST, and then pushes EDT in order to start using it. In
the following instruction, EDT is loaded with the value pointed to by EBP + C.

You know that EBP + C points to the second parameter, just like EBP + 8
pointed to the first parameter. So, the instruction at ntdl1.7C9624F2 loads
EDI with the value of the second parameter passed into the function. Immedi-
ately afterward, EDI is compared against —1 and you see a classic case of inter-
leaved code, which is a very common phenomena in code generated for modern
IA-32 processors (see the section on execution environments in Chapter 2). Inter-
leaved code means that instructions aren’t placed in the code in their natural
order, but instead pairs of interdependent instructions are interleaved so that in
runtime the CPU has time to complete the first instruction before it must execute
the second one. In this case, you can tell that the code is interleaved because the
conditional jump doesn’t immediately follow the CMP instruction. This is done
to allow the highest level of parallelism during execution.

Following the comparison is another purely arithmetical application of the
LEA instruction. This time, LEA is used simply to perform an EBX = EDI + 1.
Typically, compilers would use INC EDI, but in this case the compiler wanted
to keep both the original and the incremented value, so LEA is an excellent
choice. It increments EDI by one and stores the result in EBX—the original
value remains in EDT.

Next you can see the JE instruction that is related to the CMP instruction from
7C9624F5. As a reminder, EDI (the second parameter passed to the function)
was compared against —1. This instruction jumps to ntdl1.7C962559 if EDI
== -1. If you go back to Listing 5.2 and take a quick look at the code at
ntdll.7C962559, you can quickly see that it is a failure or error condition of
some kind, because it sets EAX (the return value) to zero, pops the registers pre-
viously pushed onto the stack, and returns. So, if you were to translate the pre-
ceding conditional statement back into C, it would look like the following code:

if (Param2 == Oxffffffff)
return 0;

Beyond the Documentation

157

The last two instructions in the current chunk perform another check on that
same parameter, except that this time the code is using EBX, which as you
might recall is the incremented version of EDI. Here EBX is compared against
EDX, and the program jumps tontd11.7C962559 if EBX is greater. Notice that
the jump target address, ntd11.7C962559, is the same as the address of the
previous conditional jump. This is a strong indication that the two jumps are
part of what was a single compound conditional statement in the source code.
They are just two conditions tested within a single conditional statement.

Another interesting and informative hint you find here is the fact that the
conditional jump instruction used is JA (jump if above), which uses the carry
flag (CF). This indicates that EBX and EDX are both treated as unsigned values.
If they were signed, the compiler would have used JG, which is the signed ver-
sion of the instruction. For more information on signed and unsigned condi-
tional codes refer to Appendix A.

If you try to put the pieces together, you'll discover that this last condition
actually reveals an interesting piece of information about the second parameter
passed to this function. Recall that EDX was loaded from offset +14 in the struc-
ture, and that this is the member that stores the total number of elements in the
table. This indicates that the second parameter passed to Rt1GetElement
GenericTable is an index into the table. These last two instructions simply
confirm that it is a valid index by comparing it against the total number of ele-
ments. This also sheds some light on why the index was incremented. It was
done in order to properly compare the two, because the index is probably zero-
based, and the total element count is certainly not. Now that you understand
these two conditions and know that they both originated in the same conditional
statement, you can safely assume that the validation done on the index parame-
ter was done in one line and that the source code was probably something like
the following:

ULONG AdjustedElementToGet = ElementToGet + 1;

if (ElementToGet == Oxffffffff ||
AdjustedElementToGet > Table->TotalElements)
return O;

How can you tell whether ElementToGet + 1 was calculated within the
if statement or if it was calculated into a variable first? You don’t really know
for sure, but when you look at all the references to EBX in Listing 5.2 you can
see that the value ElementToGet + 1 is being used repeatedly throughout
the function. This suggests that the value was calculated once into a local vari-
able and that this variable was used in later references to the incremented
value. The compiler has apparently assigned EBX to store this particular local
variable rather than place it on the stack.

On the other hand, it is also possible that the source code contained multiple
copies of the statement ElementToGet + 1, and that the compiler simply

158

Chapter 5

optimized the code by automatically declaring a temporary variable to store
the value instead of computing it each time it is needed. This is another case
where you just don’t know—this information was lost during the compilation
process.

Let’s proceed to the next code sequence:

7C962501 CMP ESI,EBX

7C962503 JE SHORT ntdll.7C962554

7C962505 JBE SHORT ntdll.7C96252B
7C962507 MOV EDX,ESI

7C962509 SHR EDX, 1

7C96250B CMP EBX, EDX

7C96250D JBE SHORT ntdll.7C96251B
7C96250F SUB ESI, EBX

7C962511 JE SHORT ntdll.7C96254E

This section starts out by comparing EST (which was taken earlier from offset
+10 at the table structure) against EBX. This exposes the fact that offset +10 also
points to some kind of an index into the table (because it is compared against
EBX, which you know is an index into the table), but you don’t know exactly
what thatindex is. If EST == EBX, the code jumpstontdll.7C962554, and if
ESI <= EBX,itgoestontdll.7C96252B. Itis not clear at this point why the
second jump uses JBE even though the operands couldn’t be equal at this point
or the first jump would have been taken.

Let’s first explore what happens inntd11.7C962554:

7C962554 ADD EAX, 0C
7C962557 JMP SHORT ntdll.7C96255B

This code does EAX = EAX + 12, and unconditionally jumps to ntdll.
7C96255B. If you go back to Listing 5.2, you can see that ntd11.7C96255B is
right near the end of the function, so the preceding code snippet simply returns
EAX + 12 to the caller. Recall that EAX was loaded earlier from the table structure
at offset +C, and that while dissecting Rt1InitializeGenericTable, you
were working under the assumption that offsets +4, +8, and +C are all pointers
into the same three-pointer data structure (they were all initialized to point at
offset +4). At this point one, of these pointers is incremented by 12 and returned
to the caller. This is a powerful hint about the structure of the generic tables. Let’s
examine the hints one by one:

m You know that there is a group of three pointers starting in offset +4 in
the root data structure.

m You know that each one of these pointers point into another group of
three pointers. Initially, they all point to themselves, but you can safely
assume that this changes later on when the table is filled.

Beyond the Documentation

159

m You know that Rt 1GetElementGenericTable is returning the value
of one of these pointers to the caller, but not before it is incremented by
12. Note that 12 also happens to be the total size of those three pointers.

m You have established that Rt 1GetElementGenericTable takes two
parameters and that the first is the table data structure pointer and the
second is an index into the table. You can safely assume that it returns
the element through the return value.

All of this leads to one conclusion. Rt1GetElementGenericTable is
returning a pointer to an element, and adding 12 simply skips the element’s
header and gets directly to the element’s data. It seems very likely that this
header is another three-pointer data structure just like that in offset +4 in the
root data structure. Furthermore, it would make sense that each of those point-
ers point to other items with three-pointer headers, just like this one. One other
thing you have learned here is that offset +10 is the index of the cached
element—the same element pointed to by the third pointer, at offset +c. The
difference is that +c is a pointer to memory, and offset +10 is an index into the
table, which is equivalent to an element number.

To me, this is the thrill of reversing—one by one gathering pieces of evi-
dence and bringing them together to form partial explanations that slowly
evolve into a full understanding of the code. In this particular case, we’ve made
progress in what is undoubtedly the most important piece of the puzzle: the
generic table data structure.

Logic and Structure

There is one key element that’s been quietly overlooked in all of this: What is
the structure of this function? Sure, you can treat all of those conditional and
unconditional jumps as a bunch of goto instructions and still get away with
understanding the flow of relatively simple code. On the other hand, what
happens when there are too many of these jumps to the point where it gets
hard to keep track of all of them? You need to start thinking the code’s logic
and structure, and the natural place to start is by trying to logically place all of
these conditional and unconditional jumps. Remember, the assembly language
code you're reversing was generated by a compiler, and the original code was
probably written in C. In all likelihood all of this logic originated in neatly
organized if-else statements. How do you reconstruct this layout?

Let’s start with the first interesting conditional jump in Listing 5.2—the JE
that goes tontd11.7C962554 (I'm ignoring the first two conditions that jump
to ntdl1l.7C962559 because we've already discussed those). How would
you conditionally skip over so much code in a high-level language? Simple,
the condition tested in the assembly language code is the opposite of what was

160 Chapter 5

tested in the source code. That’s because the processor needs to know whether
to skip code, and high-level languages have a different perspective—which
terms must be satisfied in order to enter a certain conditional block. In this case,
the test of whether EST equals EBX must have been originally stated as if
(ESI !'= EBX), and there was a very large chunk of code within those curly
braces. The address to which JE is jumping is simply the code that comes right
after the end of that conditional block.

It is important to realize that, according to this theory, every line between
that JE and the address to which it jumps resides in a conditional block, so any
additional conditions after this can be considered nested logic.

Let’s take this logical analysis approach a bit further. The conditional jump
that immediately follows the JE tests the same two registers, EST and EBX, and
jumps to ntdl1.7C96252B if ESI < EBX. Again, we're working under the
assumption that the condition is reversed (a detailed discussion of when condi-
tions are reversed and when they’re not can be found in Appendix A). This
means that the original condition in the source code must have been (EST >
EBX). If it isn’t satisfied, the jump is taken, and the conditional block is skipped.

One important thing to notice about this particular condition is the uncon-
ditional JMP that comes right before ntdl1l.7C96252B. This means that
ntdll.7C96252B is a chunk of code that wouldn’t be executed if the condi-
tional block is executed. This means that ntd11.7C96252B is only executed
when the high-level conditional block is skipped. Why is that? When you
think about it, this is a most popular high-level language programming con-
struct: It is simply an if-else statement. The else block starts at ntdll
.7C96252B, which is why there is an unconditional jump after the i f block—
we only want one of these blocks to run, not both.

Whenever you find a conditional jump that skips a code block that ends with a
forward-pointing unconditional Jvp, you're probably looking at an i f-else
block. The block being skipped is the if block, and the code after the
unconditional Jp is the else block. The end of the e1se block is marked by
the target address of the unconditional Jup.

For more information on compiler-generated logic please refer to Appendix A.

Let’s now proceed to investigate the code chunk we were looking at earlier
before we examined the code at ntd11.7C962554. Remember that we were
at a condition that compared ESTI (which is the index from offset +10) against
EBX (which is apparently the index of the element we are trying to get). There
were two conditional jumps. The first one (which has already been examined)
is taken if the operands are equal, and the second goes tontdl1l.7C96252B if
ESI < EBX. We'll go back to this conditional section later on. It’s important to

Beyond the Documentation

161

realize that the code that follows these two jumps is only executed if EST >
EBX, because we’ve already tested and conditionally jumped if EST == EBX
orif EST < EBX.

When none of the branches are taken, the code copies EST into EDX and
shifts it by one binary position to the right. Binary shifting is a common way to
divide or multiply numbers by powers of two. Shifting integer x to the left by
n bits is equivalent to x x 2" and shifting right by n bits is equivalent to x/2n. In
this case, right shifting EDX by one means EDX/2', or EDX/2. For more infor-
mation on how to decipher arithmetic sequences refer to Appendix B.

Let’s proceed to compare EDX (which now contains ESI/2) with EBX
(which is the incremented index of the element we’re after), and jump to
ntdll.7C96251B if EBX < EDX. Again, the comparison uses JBE, which
assumes unsigned operands, so it’s pretty safe to assume that table indexes are
defined as unsigned integers. Let’s ignore the conditional branch for a moment
and proceed to the code that follows, as if the branch is not taken.

Here EBX is subtracted from ESI and the result is stored in ESI. The fol-
lowing instruction might be a bit confusing. You can see a JE (which is jump if
equal) after the subtraction because subtraction and comparison are the same
thing, except that in a comparison the result of the subtraction is discarded,
and only the flags are kept. This JE branch will be taken if EBX == ESI before
the subtraction or if EST == 0 after the subtraction (which are two different
ways of looking at what is essentially the same thing). Notice that this exposes
a redundancy in the code—you’ve already compared EBX against EST earlier
and exited the function if they were equal (remember the jump to ntdll
.7C9625547?), so EST couldn’t possibly be zero here. The programmer who
wrote this code apparently had a pretty good reason to double-check that the
code that follows this check is never reached when EST == EBX. Let’s now see
why that is so.

Search Loop 1

At this point, you have completed the analysis of the code section starting at
ntdll.7C962501 and ending at ntdll.7c¢962511. The next sequence
appears to be some kind of loop. Let’s take a look at the code and try and fig-
ure out what it does.

7C962513 DEC EST

7C962514 MOV EAX,DWORD PTR [EAX+4]
7C962517 JNZ SHORT ntdll.7C962513
7C962519 JMP SHORT ntdll.7C96254E

As I've mentioned, the first thing to notice about these instructions is that
they form a loop. The JNZ will keep on jumping back to ntd11.7Cc962513

162 Chapter 5

(which is the beginning of the loop) for as long as EST != 0. What does this
loop do? Remember that EAX is the third pointer from the three-pointer group
in the root data structure, and that you're currently working under the
assumption that each element starts with the same three-pointer structure.
This loop really supports that assumption, because it takes offset +4 in what
we believe is some element from the list and treats it as another pointer. Not
definite proof, but substantial evidence that +4 is the second in a series of three
pointers that precede each element in a generic table.

Apparently the earlier subtraction of EBX from EST provided the exact num-
ber of elements you need to traverse in order to get from EAX to the element you
are looking for (remember, you already know EST is the index of the element
pointed to by EAX). The question now is, in which direction are you moving rel-
ative to EAX? Are you going toward lower-indexed elements or higher-indexed
elements? The answer is simple, because you've already compared EST with
EBX and branched out for cases where EST < EBX, so you know that in this par-
ticular case ESTI > EBX. This tells you that by taking each element’s offset +4
you are moving toward the lower-indexed elements in the table.

Recall that earlier I mentioned that the programmer must have really
wanted to double-check cases where EST < EBX? This loop clarifies that
issue. If you ever got into this loop in a case where ESI < EBX, ESI would
immediately become a negative number because it is decremented at the very
beginning. This would cause the loop to run unchecked until it either ran into
an invalid pointer and crashed or (if the elements point back to each other in a
loop) until EST went back to zero again. In a 32-bit machine this would take
4,294,967,296 iterations, which may sound like a lot, but today’s high-speed
processors might actually complete this many iterations so quickly that if it
happened rarely the programmer might actually miss it! This is why from a
programmer’s perspective crashing the program is sometimes better than let-
ting it keep on running with the problem—it simplifies the program’s stabi-
lization process.

When our loop ends the code takes an unconditional jump to ntdll
.7C96254E. Let’s see what happens there.

7C96254E MOV DWORD PTR [ECX+C], EAX
7C962551 MOV DWORD PTR [ECX+10],EBX

Well, very interesting indeed. Here, you can get a clear view on what offsets
+C and +10 in the root data structure contain. It appears that this is some kind
of an optimization for quickly searching and traversing the table. Offset +C
receives the pointer to the element you've been looking for (the one you've
reached by going through the loop), and offset +10 receives that element’s
index. Clearly the reason this is done is so that repeated calls to this function

Beyond the Documentation

163

(and possibly to other functions that traverse the list) would require as few
iterations as possible. This code then proceeds into ntdl1.7¢962554, which
you've already looked at. ntd11.7C962554 skips the element’s header by
adding 12 and returns that pointer to the caller.

You’'ve now established the basics of how this function works, and a little bit
about how a generic table is laid out. Let’s proceed with the other major cases
that were skipped over earlier.

Let’s start with the case where the condition EST < EBX is satisfied (the
actual check is for EST < EBX, but you could never be here if EST == EBX). Here
is the code that executes in this case.

7C96252B MOV EDI, EBX

7C96252D SUB EDX, EBX

7C96252F SUB EDI,ESI

7C962531 INC EDX

7C962532 CMP EDI, EDX

7C962534 JA SHORT ntdll.7C962541
7C962536 TEST EDI, EDI

7C962538 JE SHORT ntdll.7C96254E

This code performs EDX = (Table->TotalElements - ElementToGet
+ 1) + 1 and EDI = ElementToGet + 1 - LastIndexFound. In plain
English, EDX now has the distance (in elements) from the element you're look-
ing for to the end of the list, and EDT has the distance from the element you're
looking for to the last index found.

Search Loop 2

Having calculated the two distances above, you now reach an important junc-
tion in which you enter one of two search loops. Let’s start by looking at the
tirst conditional branch that jumps tontd11.7C962541 if EDI > EDX.

7C962541 TEST EDX, EDX

7C962543 LEA EAX,DWORD PTR [ECX+4]
7C962546 JE SHORT ntdll.7C96254E
7C962548 DEC EDX

7C962549 MOV EAX,DWORD PTR [EAX+4]

7C96254C JNZ SHORT ntdll.7C962548

This snippet checks that EDX != 0, and starts looping on elements starting
with the element pointed by offset +4 of the root table data structure. Like the
previous loop you've seen, this loop also traverses the elements using offset +4
in each element. The difference with this loop is the starting pointer. The pre-
vious loop you saw started with offset + c in the root data structure, which is a

164 Chapter 5

pointer to the last element found. This loop starts with offset +4. Which ele-
ment does offset +4 point to? How can you tell? There is one hint available.

Let’s see how many elements this loop traverses, and how you get to that
number. The number of iterations is stored in EDX, which you got by calculating
the distance between the last element in the table and the element that you're
looking for. This loop takes you the distance between the end of the list and the
element you're looking for. This means that offset +4 in the root structure points
to the last element in the list! By taking offset +4 in each element you are going
backward in the list toward the beginning. This makes sense, because in the pre-
vious loop (the one at ntd11.7C962513) you established that taking each ele-
ment’s offset +4 takes you “backward” in the list, toward the lowered-indexed
elements. This loop does the same thing, except that it starts from the very end
of the list. All Rt 1GetElementGenericTable is doing is it’s trying to find the
right element in the lowest possible number of iterations.

By the time EDX gets to zero, you know that you've found the element. The
code then flows into ntd11.7C96254E, which you've examined before. This
is the code that caches the element you’ve found into offsets +c and +10 of the
root data structure. This code flows right into the area in the function that
returns the pointer to our element’s data to the caller.

What happens when (in the previous sequence) EDI == 0, and the jump to
ntdll.7C96254E is taken? This simply skips the loop and goes straight to
the caching of the found element, followed by returning it to the caller. In this
case, the function returns the previously found element—the one whose
pointer is cached in offset +c of the root data structure.

Search Loop 3

If neither of the previous two branches is taken, you know that EDI < EDX
(because you've examined all other possible options). In this case, you know
that you must move forward in the list (toward higher-indexed elements) in
order to get from the cached element in offset +c to the element you are look-
ing for. Here is the forward-searching loop:

7C962513 DEC ESI

7C962514 MOV EAX,DWORD PTR [EAX+4]
7C962517 JNZ SHORT ntdll.7C962513
7C962519 JMP SHORT ntdll.7C96254E

The most important thing to notice about this loop is that it is using a differ-
ent pointer in the element’s header. The backward-searching loops you
encountered earlier were both using offset +4 in the element’s header, and this
one is using offset +0. That’s really an easy one—this is clearly a linked list of
some sort, where offset +0 stores the NextElement pointer and offset +4
stores the PrevElement pointer. Also, this loop is using EDI as the counter,

Beyond the Documentation

165

and EDI contains the distance between the cached element and the element
that you're looking for.

Search Loop 4

There is one other significant search case that hasn’t been covered yet. Remem-
ber how before we got into the first backward-searching loop we tested for a
case where the index was lower than LastIndexFound / 2? Let’s see what
the function does when we get there:

7C96251B TEST EBX, EBX

7C96251D LEA EAX,DWORD PTR [ECX+4]
7C962520 JE SHORT ntdll.7C96254E
7C962522 MOV EDX, EBX

7C962524 DEC EDX

7C962525 MOV EAX,DWORD PTR [EAX]
7C962527 JNZ SHORT ntdll.7C962524
7C962529 JMP SHORT ntdll.7C96254E

This sequence starts with the element at offset +4 in the root data structure,
which is the one we’ve previously defined as the last element in the list. It then
starts looping on elements using offset +0 in each element’s header. Offset +0 has
just been established as the element’s NextElement pointer, so what’s going
on? How could we possibly be going forward from the last element in the list? It
seems that we must revise our definition of offset +4 in the root data structure a
little bit. It is not really the last element in the list, but it is the head of a circular
linked list. The term circular means that the Next Element pointer in the last ele-
ment of the list points back to the beginning and that the PrevElement pointer
in the first element points to the last element.

Because in this case the index is lower than Last IndexFound / 2, it would
just be inefficient to start our search from the last element found. Instead, we
start the search from the first element in the list and move forward until
we find the right element.

Reconstructing the Source Code

This concludes the detailed analysis of Rt 1IGetElementGenericTable. Itis
not a trivial function, and it includes several slightly confusing control flow
constructs and some data structure manipulation. Just to demonstrate the
power of reversing and just how accurate the analysis is, I've attempted to
reconstruct the source code of that function, along with a tentative declaration
of what must be inside the TABLE data structure. Listing 5.3 shows what you
currently know about the TABLE data structure. Listing 5.4 contains my recon-
structed source code for Rt 1GetElementGenericTable.

166 Chapter 5

Listing 5.3

struct TABLE

{

¥

far.

PVOID Unknownl ;

LIST_ENTRY *LLHead;
LIST_ENTRY *SomeEntry;
LIST_ENTRY *LastElementFound;
ULONG LastElementIndex;
ULONG NumberOfElements;
ULONG Unknownl ;

ULONG Unknown?2 ;

ULONG Unknown3 ;

ULONG Unknown4 ;

The contents of the TABLE data structure, based on what has been learned so

PVOID stdcall MyRtlGetElementGenericTable (TABLE *Table, ULONG
ElementToGet)

{

ULONG TotalElementCount = Table->NumberOfElements;
LIST_ENTRY *ElementFound = Table->LastElementFound;
ULONG LastElementFound = Table->LastElementIndex;
ULONG AdjustedElementToGet = ElementToGet + 1;

if

(ElementToGet == -1 || AdjustedElementToGet > TotalElementCount)

return 0;

// If the element is the last element found, we just return it.

if

{

(AdjustedElementToGet != LastIndexFound)

// If the element isn't LastElementFound, go search for it:
if (LastIndexFound > AdjustedElementToGet)
{
// The element is located somewhere between the first element and
// the LastElementIndex. Let's determine which direction would
// get us there the fastest.
ULONG HalfWayFromLastFound = LastIndexFound / 2;
if (AdjustedElementToGet > HalfWayFromLastFound)
{
// We start at LastElementFound (because we're closer to it) and
// move backward toward the beginning of the list.
ULONG ElementsToGo = LastIndexFound - AdjustedElementToGet;

while (ElementsToGo--)
ElementFound = ElementFound->Blink;

Listing 5.4 A source-code level reconstruction of RtlGetElementGenericTable.

Beyond the Documentation 167

}

else

{
// We start at the beginning of the list and move forward:
ULONG ElementsToGo = AdjustedElementToGet;
ElementFound = (LIST_ENTRY *) &Table->LLHead;

while (ElementsToGo--)
ElementFound = ElementFound->Flink;

}
else

{

// The element has a higher index than LastElementIndex. Let's see
// if it's closer to the end of the list or to LastElementIndex:

ULONG ElementsToLastFound = AdjustedElementToGet - LastIndexFound;
ULONG ElementsToEnd = TotalElementCount - AdjustedElementToGet+ 1;

if (ElementsToLastFound <= ElementsToEnd)
{
// The element is closer (or at the same distance) to the last
// element found than to the end of the list. We traverse the
// list forward starting at LastElementFound.
while (ElementsToLastFound--)
ElementFound = ElementFound->Flink;
}
else

{
// The element is closer to the end of the list than to the last

// element found. We start at the head pointer and traverse the
// list backward.
ElementFound = (LIST_ENTRY *) &Table->LLHead;
while (ElementsToEnd--)
ElementFound = ElementFound->Blink;

// Cache the element for next time.
Table->LastElementFound = ElementFound;
Table->LastElementIndex = AdjustedElementToGet;

// Skip the header and return the element.

// Note that we don't have a full definition for the element struct
// yet, so I'm just incrementing by 3 ULONGs.

return (PVOID) ((PULONG) ElementFound + 3);

Listing 5.4 (continued)

168 Chapter 5

It's quite amazing to think that with a few clever deductions and a solid
understanding of assembly language you can convert those two pages of
assembly language code to the function in Listing 5.4. This function does
everything the disassembled code does at the same order and implements the
exact same logic.

If you're wondering just how close my approximation is to the original
source code, here’s something to consider: If compiled using the right com-
piler version and the right set of flags, the preceding source code will produce
the exact same binary code as the function we disassembled earlier from
NTDLL, byte for byte. The compiler in question is the one shipped with
Microsoft Visual C++ .NET 2003—Microsoft 32-bit C/C++ Optimizing Compiler
Version 13.10.3077 for 80x86.

If you'd like to try this out for yourself, keep in mind that Windows is not
built using the compiler’s default settings. The following are the optimization
and code generation flags I used in order to get binary code that was identical
to the one in NTDLL. The four optimization flags are: /0x for enabling maxi-
mum optimizations, /Og for enabling global optimizations, /Os for favoring
code size (as opposed to code speed), and /Oy - for ensuring the use of frame
pointers. I also had /GA enabled, which optimizes the code specifically for
Windows applications.

Standard reversing practices rarely require such a highly accurate recon-
struction of a function’s source code. Simply figuring out the basic data struc-
tures and the generally idea of the logic that takes place in the function is
enough for most purposes. Determining the exact compiler version and com-
piler flags in order to produce the exact same binary code as the one we started
with is a nice exercise, but it has limited practical value for most purposes.

Whew! You've just completed your first attempt at reversing a fairly com-
plicated and involved function. If you've never attempted reversing before,
don’t worry if you missed parts of this session—it’ll be easier to go back to this
function once you develop a full understanding of the data structures. In my
opinion, reading through such a long reversing session can often be much
more productive when you already know the general idea of what the code
does and how data is laid out.

RtlinsertElementGenericTable

Let’s proceed to see how an element is added to the table by looking at
RtlInsertElementGenericTable. Listing 5.5 contains the disassembly of
RtlInsertElementGenericTable.

Beyond the Documentation

169

7C924DCO PUSH EBP

7C924DC1 MOV EBP, ESP

7C924DC3 PUSH EDI

7C924DC4 MOV EDI,DWORD PTR [EBP+8]
7C924DC7 LEA EAX,DWORD PTR [EBP+8]
7C924DCA PUSH EAX

7C924DCB PUSH DWORD PTR [EBP+C]
7C924DCE CALL ntdl1l.7C92147B
7C924DD3 PUSH EAX

7C924DD4 PUSH DWORD PTR [EBP+8]
7C924DD7 PUSH DWORD PTR [EBP+14]
7C924DDA PUSH DWORD PTR [EBP+10]
7C924DDD PUSH DWORD PTR [EBP+C]
7C924DEO PUSH EDI

7C924DE1L CALL ntdll.7C924DFO0
7C924DE6 POP EDI

7C924DE7 POP EBP

7C924DE8 RET 10

Listing 5.5 A disassembly of RtlinsertElementGenericTable, produced using OllyDbg.

We’ve already discussed the first two instructions—they create the stack
frame. The instruction that follows pushes EDI onto the stack. Generally speak-
ing, there are three common scenarios where the PUSH instruction is used in a
function:

m When saving the value of a register that is about to be used as a local
variable by the function. The value is then typically popped out of the
stack near the end of the function. This is easy to detect because the
value must be popped into the same register.

m When pushing a parameter onto the stack before making a function call.

m When copying a value, a PUSH instruction is sometimes immediately
followed by a POP that loads that value into some other register. This
is a fairly unusual sequence, but some compilers generate it from time
to time.

In the function we must try and figure out whether EDT is being pushed as
the last parameter of ntd11.7C92147B, which is called right afterward, or if
it is a register whose value is being saved. Because you can see that EDT is
overwritten with a new value immediately after the PUSH, and you can also
see that it’s popped back from the stack at the very end of the function, you
know that the compiler is just saving the value of EDI in order to be able to use
that register as a local variable within the function.

170 Chapter 5

The next two instructions in the function are somewhat interesting.

7C924DC4 MOV EDI,DWORD PTR [EBP+8]
7C924DC7 LEA EAX,DWORD PTR [EBP+8]

The first line loads the value of the first parameter passed into the function
(we’ve already established that [ebp+8] is the address of the first parameter
in a function) into the local variable, EDI. The second loads the pointer to the
first parameter into EAX. Notice that difference between the MOV and LEA
instructions in this sequence. MOV actually goes to memory and retrieves the
value pointed to by [ebp+8] while LEA simply calculates EBP + 8 and loads
that number into EAX.

One question that quickly arises is whether EAX is another local variable,
just like EDI. In order to answer that, let’s examine the code that immediately

follows.
7C924DCA PUSH EAX
7C924DCB PUSH DWORD PTR [EBP+C]

7C924DCE CALL ntdl1l.7C92147B

You can see that the first parameter pushed onto the stack is the value of
EAX, which strongly suggests that EAX was not assigned for a local variable,
but was used as temporary storage by the compiler because two instructions
were needed into order to push the pointer of the first parameter onto the
stack. This is a very common limitation in assembly language: Most instruc-
tions aren’t capable of receiving complex arguments like LEA and MOV can.
Because of this, the compiler must use MOV or LEA and store their output into
a register and then use that register in the instruction that follows.

To go back to the code, you can quickly see that there is a function, ntdl1l
.7C92147B, that takes two parameters. Remember that in the stdcall calling
convention (which is the convention used by most Windows code) parameters
are always pushed onto the stack in the reverse order, so the first PUSH instruc-
tion (the one that pushes EAX) is really pushing the second parameter. The first
parameter that ntd11.7C92147B receives is [ebp+C], which is the second
parameter that was passed to Rt 1InsertElementGenericTable.

RtILocateNodeGenericTable

Let’s now follow the function call made from RtlInsertElementGeneric
Table into ntdl1.7C92147B and analyze that function, which I have tenta-
tively titled Rt1LocateNodeGenericTable. The full disassembly of that
function is presented in Listing 5.6.

Beyond the Documentation

171

7C92147B MOV EDI, EDI

7C92147D PUSH EBP

7C92147E MOV EBP, ESP

7C921480 PUSH ESIT

7C921481 MOV ESI,DWORD PTR [EDI]
7C921483 TEST ESI,EST

7C921485 JE ntdll.7C924E8C
7C92148B LEA EAX,DWORD PTR [ESI+18]
7C92148E PUSH EAX

7C92148F PUSH DWORD PTR [EBP+8]
7C921492 PUSH EDI

7C921493 CALL DWORD PTR [EDI+18]
7C921496 TEST EAX, EAX

7C921498 JE ntdll.7C924F14
7C92149E CMP EAX, 1

7C9214A1 JNZ SHORT ntdll.7C9214BB
7C9214A3 MOV EAX,DWORD PTR [ESI+8]
7C9214A6 TEST EAX, EAX

7C9214A8 JNZ ntdll.7C924F22
7C9214AE PUSH 3

7C9214B0 POP EAX

7C9214B1 MOV ECX,DWORD PTR [EBP+C]
7C9214B4 MOV DWORD PTR [ECX],ESI
7C9214B6 POP ESI

7C9214B7 POP EBP

7C9214B8 RET 8

7C9214BB XOR EAX, EAX

7C9214BD INC EAX

7C9214BE JMP SHORT ntdll.7C9214B1

Listing 5.6 Disassembly of the internal, nonexported function at ntd11.7c921478.

Before even beginning to reverse this function, there are a couple of slight
oddities about the very first few lines in Listing 5.6 that must be considered.
Notice the first line: MOV EDI, EDI. It does nothing! It is essentially dead code
that was put in place by the compiler as a placeholder, in case someone wanted
to trap this function. Trapping means that some external component adds a JMP
instruction that is used as a notification whenever the trapped function is called.
By placing this instruction at the beginning of every function, Microsoft essen-
tially set an infrastructure for trapping functions inside NTDLL. Note that these
placeholders are only implemented in more recent versions of Windows (in
Windows XP, they were introduced in Service Pack 2), so you may or may not
see them on your system.

The next few lines also exhibit a peculiarity. After setting up the traditional
stack frame, the function is reading a value from EDI, even though that regis-
ter has not been accessed in this function up to this point. Isn’t EDI’s value just
going to be random at this point?

172 Chapter 5

If you look at Rt 1L InsertElementGenericTable again (in Listing 5.5), it
seems that the value of the first parameter passed to that function (which is
probably the address of the root TABLE data structure) is loaded into EDI
before the function from Listing 5.6 is called. This implies that the compiler is
simply using EDI in order to directly pass that pointer into Rt 1LocateNode
GenericTable, but the question is which calling convention passes parame-
ters through EDI? The answer is that no standard calling convention does that,
but the compiler has chosen to do this anyway. This indicates that the compiler
controls all points of entry into this function.

Generally speaking, when a function is defined within an object file, the
compiler has no way of knowing what its scope is going to be. It might be
exported by the linker and called by other modules, or it might be internal to
the executable but called from other object files. In any case, the compiler must
honor the specified calling convention in order to ensure compatibility with
those unknown callers. The only exception to this rule occurs when a function
is explicitly defined as local to the current object file using the static key-
word. This informs the compiler that only functions within the current source
file may call the function, which allows the compiler to give such static func-
tions nonstandard interfaces that might be more efficient.

In this particular case, the compiler is taking advantage of the static key-
word by avoiding stack usage as much as possible and simply passing some of
the parameters through registers. This is possible because the compiler is tak-
ing advantage of having full control of register allocation in both the caller and
the callee.

Judging by the number of bytes passed on the stack (8 from looking at the
RET instruction), and by the fact that EDT is being used without ever being ini-
tialized, we can safely assume that this function takes three parameters. Their
order is unknown to us because of that register, but judging from the previous
functions we can safely assume that the root data structure is always passed as
the first parameter. As I said, Rt 1InsertElementGenericTable loads EDI
with the value of the first parameter passed on to it, so we pretty much know
that EDI contains our root data structure.

Let’s now proceed to examine the first lines of the actual body of this function.

7C921481 MOV ESI,DWORD PTR [EDI]
7C921483 TEST ESI,ESI
7C921485 JE ntdll.7C924E8C

In this snippet, you can quickly see that EDT is being treated as a pointer to
something, which supports the assumption about its being the table data struc-
ture. In this case, the first member (offset +0) is being tested for zero (remem-
ber that you're reversing the conditions), and the function jumps to ntdll
.7C924E8C if that condition is satisfied.

Beyond the Documentation

173

You might have noticed an interesting fact: the address ntd11.7C924E8C
is far away from the address of the current code you're looking at! In fact, that
code was not even included in Listing 5.6—it resides in an entirely separate
region in the executable file. How can that be—why would a function be scat-
tered throughout the module like that? The reason this is done has to do with
some Windows memory management issues.

Remember we talked about working sets in Chapter 3? While building exe-
cutable modules, one of the primary concerns is to arrange the module in a way
that would allow the module to consume as little physical memory as possible
while it is loaded into memory. Because Windows only allocates physical mem-
ory to areas that are in active use, this module (and pretty much every other
component in Windows) is arranged in a special layout where popular code
sections are placed at the beginning of the module, while more esoteric code
sequences that are rarely executed are pushed toward the end. This process is
called working-set tuning, and is discussed in detail in Appendix A.

For now just try to think of what you can learn from the fact that this condi-
tional block has been relocated and sent to a higher memory address. It most
likely means that this conditional block is rarely executed! Granted, there are
various reasons why a certain conditional block would rarely be executed, but
there is one primary explanation that is probably true for 90 percent of such
conditional blocks: the block implements some sort of error-handling code.
Error-handling code is a typical case in which conditional statements are cre-
ated that are rarely, if ever, actually executed.

Let’s now proceed to examine the code at ntd11.7C924E8C and see if it is
indeed an error-handling statement.

7C924E8C XOR EAX, EAX
7CO24E8E JMP ntdll.7C9214B6

As expected, all this sequence does is set EAX to zero and jump back to the
function’s epilogue. Again, this is not definite, but all evidence indicates that
this is an error condition.

At this point, you can proceed to the code that follows the conditional state-
ment at ntdll.7C92148B, which is clearly the body of the function.

The Callback

The body of Rt 1LocateNodeGenericTable performs a somewhat unusual
function call that appears to be the focal point of this entire function. Let’s take
a look at that code.

7C92148B LEA EAX,DWORD PTR [ESI+18]
7C92148E PUSH EAX

7C92148F PUSH DWORD PTR [EBP+8]
7C921492 PUSH EDI

7C921493 CALL DWORD PTR [EDI+18]

174 Chapter 5

7C921496 TEST EAX, EAX

7C921498 JE ntdll.7C924F14
7C92149E CMP EAX, 1

7C9214A1 JNZ SHORT ntdll.7C9214BB

This snippet does something interesting that you haven’t encountered so far.
It is obvious that the first five instructions are all part of the same function call
sequence, but notice the address that is being called. It is not a hard-coded
address as usual, but rather the value at offset +18 in EDI. This exposes another
member in the root table data structure at offset +18 as a callback function of
some sort. If you go back to Rt1InitializeGenericTable, you'll see that
that offset +18 was loaded from the second parameter passed to that function.
This means that offset +18 contains some kind of a user-defined callback.

The function seems to take three parameters, the first being the table data
structure; the second, the second parameter passed to the current function;
and the third, EST + 18.Remember that EST was loaded earlier with the value
at offset +0 of the root structure. This indicates that offset +0 contains some
other data structure and that the callback is getting a pointer to offset +18 at
this structure. You don’t really know what this data structure is at this point.

Once the callback function returns, you can test its return value and jump to
ntdll.7C924F14 if itis zero. Again, that address is outside of the main body
of the function. Another error handling code? Let’s find out. The following is
the code snippet found at ntd11.7C924F14.

7C924F14 MOV EAX,DWORD PTR [ESI+4]
7C924F17 TEST EAX,EAX

7C924F19 JNZ SHORT ntdll.7C924F22
7C924F1B PUSH 2

7C924F1D JMP ntdll.7C9214B0
T7C924F22 MOV ESI,EAX

7C924F24 JMP ntdll.7C92148B

This snippet loads offset +4 from the unknown structure in EST and tests if
it is zero. If it is nonzero, the code jumps tontdl1.7C924F22, a two-line seg-
ment that jumps back to ntd11.7C92148B (which is back inside the main
body of our function), but not before it loads EST with the value from offset +4
in the unknown data structure (which is currently stored in EAX). If offset +4 at
the unknown structure is zero, the code pushes the number 2 onto the stack
and jumps back intontdl1.7C9214B0, which is another address at the main
body of Rt 1LocateNodeGenericTable.

It is important at this point to keep track of the various branches you've
encountered in the code so far. This is a bit more confusing than it could have
been because of the way the function is scattered throughout the module. Essen-
tially, the test for offset +4 at the unknown structure has one of two outcomes. If
the value is zero the function returns to the caller (ntd11.7C9214B0 is near the

Beyond the Documentation

175

very end of the function). If there is a nonzero value at that offset, the code loads
that value into EST and jumps back tontd11.7C92148B, which is the callback
calling code you just examined.

It looks like you're looking at a loop that constantly calls into the callback
and traverses some kind of linked list that starts at offset +0 of the root data
structure. Each item seems to be at least Ox1c bytes long, because offset +18 of
that structure is passed as the last parameter in the callback.

Let’s see what happens when the callback returns a nonzero value.

7C92149E CMP EAX, 1

7C9214A1 JNZ SHORT ntdll.7C9214BB
7C9214A3 MOV EAX,DWORD PTR [ESI+8]
7C9214A6 TEST EAX, EAX

7C9214A8 JNZ ntdll.7C924F22
7C9214AE PUSH 3

7C9214B0 POP EAX

7C9214B1 MOV ECX,DWORD PTR [EBP+C]
7C9214B4 MOV DWORD PTR [ECX],ESI
7C9214B6 POP ESI

7C9214B7 POP EBP

7C9214B8 RET 8

First of all, it seems that the callback returns some kind of a number and not a
pointer. This could be a Boolean, but you don’t know for sure yet. The first check
tests for Returnvalue !'= 1 and loads offset +8 into EAX if that condition is
not satisfied. Offset +8 in EST is then tested for a nonzero value, and if it is zero
the code sets EAX to 3 (using the PUSH-POP method described earlier), and pro-
ceeds to what is clearly this function’s epilogue. At this point, it becomes clear
that the reason for loading the value 3 into EAX was to return the value 3 to the
caller. Notice how the second parameter is treated as a pointer, and that this
pointer receives the current value of ESI, which is that unknown structure we
discussed. This is important because it seems that this function is traversing a
different list than the one you’ve encountered so far. Apparently, there is some
kind of a linked list that starts at offset +0 in the root table data structure.

So far you've seen what happens when the callback returns 0 or when it
returns 1. When the callback returns some other value, the conditional jump
you looked at earlier is taken and execution continues at ntd11.7C9214BB.
Here is the code at that address:

7C9214BB XOR EAX, EAX
7C9214BD INC EAX
7C9214BE JMP SHORT ntdll.7C9214B1

This snippet sets EAX to 1 and jumps back into ntdl11l.7C9214B1, that
you've just examined. Recall that that sequence doesn’t affect EAX, so it is effec-
tively returning 1 to the caller.

176 Chapter 5

If you go back to the code that immediately follows the invocation of the
callback, you can see that when the check for EST offset +8 finds a nonzero
value, the code jumps to ntdl1l.7C924F22, which is an address you've
already looked at. This is the code that loads EST from EAX and jumps back to
the beginning of the loop.

At this point, you have gathered enough information to make some edu-
cated guesses on this function. This function loops on code that calls some call-
back and acts differently based on the return value received. The callback
function receives items in what appears to be some kind of a linked list. The
first item in that list is accessed through offset +0 in the root data structure.

The continuation of the loop and the direction in which it goes depend on
the callback’s return value.

1. If the callback returns 0, the loop continues on offset +4 in the current
item. If offset +4 contains zero, the function returns 2.

2. If the callback returns 1, the function loads the next item from offset +8
in the current item. If offset +8 contains zero the function returns 3.
When offset +8 is non-NULL, the function continues looping on offset +4
starting with the new item.

3. If the callback returns any other value, the loop terminates and the cur-
rent item is returned. The return value is 1.

High-Level Theories

It is useful to take a little break from all of these bits, bytes, and branches, and
look at the big picture. What are we seeing here, what does this function do?
It’s hard to tell at this point, but the repeated callback calls and the direction
changes based on the callback return values indicate that the callback might be
used for determining the relative position of an element within the list. This is
probably defined as an element comparison callback that receives two ele-
ments and compares them. The three return values probably indicate smaller
than, larger than, or equal.

It’s hard to tell at this point which return value means what. If we were to
draw on our previous conclusions regarding the arrangement of next and pre-
vious pointers we see that the next pointer comes first and is followed by the
previous pointer. Based on that arrangement we can make the following
guesses:

m A return value of 0 from the callback means that the new element is
higher valued than the current element and that we need to move for-
ward in the list.

m A return value of 1 would indicate that the new element is lower valued
than the current element and that we need to move backward in the list.

Beyond the Documentation

177

m Any value other than 1 or 0 indicates that the new element is identical
to one already in the list and that it shouldn’t be added.

You've made good progress, but there are several pieces that just don’t seem
to fit in. For instance, assuming that offsets +4 and +8 in the new unknown struc-
ture do indeed point to a linked list, what is the point of looping on offset +4
(which is supposedly the next pointer), and then when finding a lower-valued
element to take one element from offset +8 (supposedly the prev pointer) only
to keep looping on offset +4? If this were a linked list, this would mean that if
you found a lower-valued element you’d go back one element, and then keep
moving forward. It’s not clear how such a sequence could be useful, which sug-
gests that this just isn’t a linked list. More likely, this is a tree structure of some
sort, where offset +4 points to one side of the tree (let’s assume it’s the one with
higher-valued elements), and offset +8 points to the other side.

The beauty of this tree theory is that it would explain why the loop would
take offset +8 from the current element and then keep looping on offset +4.
Assuming that offset +4 does indeed point to the right node and that offset +8
points to the left node, it makes total sense. The function is looping toward
higher-valued elements by constantly moving to the next node on the right
until it finds a node whose middle element is higher-valued than the element
you're looking for (which would indicate that the element is somewhere in the
left node). Whenever that happens the function moves to the left node and
then continues to move to the right from there until the element is found. This
is the classic binary search algorithm defined in Donald E. Knuth. The Art of Com-
puter Programming - Volume 3: Sorting and Searching (Second Edition). Addison
Wesley. [Knuth3]. Of course, this function is probably not searching for an
existing element, but is rather looking for a place to fit the new element.

Callback Parameters

Let’s take another look at the parameters passed to the callback and try to
guess their meaning. We already know what the first parameter is—it is read
from EDI, which is the root data structure. We also know that the third param-
eter is the current node in what we believe is a binary search, but why is the
callback taking offset +18 in that structure? It is likely that +18 is not exactly
an offset into a structure, but is rather just the total size of the element’s
headers. By adding 18 to the element pointer the function is simply skipping
these headers and is getting to the actual element data, which is of course
implementation-specific.

The second parameter of the callback is taken from the first parameter
passed to the function. What could it possible be? Since we think that this func-
tion is some kind of an element comparison callback, we can safely assume
that the second parameter points to the new element. It would have to be
because if it isn’t, what would the comparison callback compare? This means

178 Chapter 5

that the callback takes a TABLE pointer, a pointer to the data of the element
being added, and a pointer to the data of the current element. The function is
comparing the new element with the data of the element we’re currently tra-
versing. Let’s try and define a prototype for the callback.

typedef int (stdcall * TABLE_COMPARE_ELEMENTS) (
TABLE *pTable,
PVOID pElementl,
PVOID pElement?2
)

Summarizing the Findings

Let’s try and summarize all that has been learned about Rt1LocateNode
GenericTable. Because we have a working theory on the parameters passed
into it, let’s revisit the code in RtlInsertElementGenericTable that
called into Rt 1LocateNodeGenericTable, just to try and use this knowl-
edge to learn something about the parameters that RtlInsertElement
GenericTable takes. The following is the sequence that calls Rt 1Locate
NodeGenericTable from Rt1InsertElementGenericTable.

7C924DC7 LEA EAX,DWORD PTR [EBP+8]
7C924DCA PUSH EAX
7C924DCB PUSH DWORD PTR [EBP+C]

7C924DCE CALL ntdll.7C92147B

It looks like the second parameter passed to Rt 1InsertElementGeneric
Table at [ebp+C] is the new element currently being inserted. Because you
now know thatntdl1l.7C92147B (RtlLocateNodeGenericTable)locates
a node in the generic table, you can now give it an estimated prototype.

int RtlLocateNodeGenericTable (
TABLE “*pTable,
PVOID ElementToLocate,
NODE **NodeFound;
)i

There are still many open questions regarding the data layout of the generic
table. For example, what was that linked list we encountered in Rt1Get
ElementGenericTable and how is it related to the binary tree structure
we’ve found?

RtIRealIlnsertElementWorker

After ntd11.7C92147B returns, Rt1InsertElementGenericTable pro-
ceeds by calling ntd11l.7C924DF0, which is presented in Listing 5.7. You don’t
have to think much to know that since the previous function only searched for

Beyond the Documentation 179

the right node where to insert the element, surely this function must do the
actual insertion into the table.

Before looking at the implementation of the function, let’s go back and look
at how it’s called from Rt1InsertElementGenericTable. Since you now
have some information on some of the data that Rt 1InsertElementGeneric
Table deals with, you might be able to learn a bit about this function before
you even start actually disassembling it. Here’s the sequence in RtlInsert
ElementGenericTable that calls the function.

7C924DD3
7C924DD4
7C924DD7
7C924DDA
7C924DDD
7C924DEO
7C924DE1L

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CALL

EAX
DWORD
DWORD
DWORD
DWORD
EDI
ntdll.

PTR [EBP+8]
PTR [EBP+14]
PTR [EBP+10]
PTR [EBP+C]

7C924DF0

It appears that ntd11.7C924DF0 takes six parameters. Let’s go over each
one and see if we can figure out what it contains.

Argument 6 This snippet starts right after the call to position the new
element, so the sixth argument is essentially the return value from
ntdll.7C92147B, which could either be 1, 2, or 3.

Argument 5 This is the address of the first parameter passed to
RtlInsertElementGenericTable. However, it no longer contains
the value passed to Rt 1InsertElementGenericTable from the
caller. It has been used for receiving a binary tree node pointer from the
search function. This is essentially the pointer to the node to which the
new element will be added.

Argument 4 This is the fourth parameter passed to Rt 1Insert
ElementGenericTable. You don’t currently know what it contains.

Argument 3 This is the third parameter passed to Rt 1InsertElement
GenericTable. You don’t currently know what it contains.

Argument 2 Based on our previous assessment, the second parameter
passed to Rt 1InsertElementGenericTable is the actual element
we’ll be adding.

Argument1 EDI contains the root table data structure.

Let’s try to take all of this information and use it to make a temporary pro-
totype for this function.

UNKNOWN RtlRealInsertElementWorker (
TABLE *pTable,
PVOID ElementData,
UNKNOWN Unknownl,
UNKNOWN Unknownz2,

180 Chapter 5

NODE *pNode,
ULONG SearchResult
)

You now have some basic information on RtlRealInsertElement
Worker. At this point, you're ready to take on the complete listing and try to
figure out exactly how it works. The full disassembly of Rt1RealInsert
ElementWorker is presented in Listing 5.7.

7C924DF0 MOV EDI, EDI

7C924DF2 PUSH EBP

7C924DF3 MOV EBP, ESP

7C924DF5 CMP DWORD PTR [EBP+1C],1
7C924DF9 PUSH EBX

7C924DFA PUSH ESI

7C924DFB PUSH EDI

7C924DFC JE ntdll.7C935D5D
7C924E02 MOV EDI,DWORD PTR [EBP+10]
7C924E05 MOV ESI,DWORD PTR [EBP+8]
7C924E08 LEA EAX,DWORD PTR [EDI+18]
7C924E0B PUSH EAX

7C924E0C PUSH ESI

7C924E0D CALL DWORD PTR [ESI+1C]
7C924E10 MOV EBX, EAX

7C924E12 TEST EBX, EBX

7C924E14 JE ntdll.7C94D4BE
TCO924E1A AND DWORD PTR [EBX+41,0
7C924E1E AND DWORD PTR [EBX+8]1,0
7C924E22 MOV DWORD PTR [EBX], EBX
7C924E24 LEA ECX,DWORD PTR [ESI+4]
T7C924E27 MOV EDX,DWORD PTR [ECX+4]
TC924E2A LEA EAX,DWORD PTR [EBX+C]
7C924E2D MOV DWORD PTR [EAX],ECX
TCO924E2F MOV DWORD PTR [EAX+4],EDX
7C924E32 MOV DWORD PTR [EDX], EAX
7C924E34 MOV DWORD PTR [ECX+4],EAX
7C924E37 INC DWORD PTR [ESI+14]
T7C924E3A CMP DWORD PTR [EBP+1C],0
TCO924E3E JE SHORT ntdll.7C924E88
7C924E40 CMP DWORD PTR [EBP+1C],2
7C924E44 MOV EAX,DWORD PTR [EBP+18]

7C924E47 JE ntdll.7C924F0C
7C924E4D MOV DWORD PTR [EAX+8],EBX

7C924E50 MOV DWORD PTR [EBX], EAX
7C924E52 MOV ESI,DWORD PTR [EBP+C]
7C924E55 MOV ECX, EDI

7C924E57 MOV EAX, ECX

Listing 5.7 Disassembly of function at ntd11.7Cc924DFO.

Beyond the Documentation

7C924E59 SHR ECX, 2

7C924E5C LEA EDI,DWORD PTR [EBX+18]
7C924E5F REP MOVS DWORD PTR ES: [EDI],DWORD PTR [ESI]
7C924E61 MOV ECX, EAX

7C924E63 AND ECX,3

7C924E66 REP MOVS BYTE PTR ES:[EDI],BYTE PTR [ESI]
7C924E68 PUSH EBX

7C924E69 CALL ntdll.RtlSplay
7C924E6E MOV ECX,DWORD PTR [EBP+8]
7C924E71 MOV DWORD PTR [ECX],EAX
7C924E73 MOV EAX,DWORD PTR [EBP+14]
7C924E76 TEST EAX, EAX

7C924E78 JNZ ntdll.7C935D4F
7C924E7E LEA EAX,DWORD PTR [EBX+18]
7C924E81 POP EDI

7C924E82 POP ESI

7C924E83 POP EBX

7C924E84 POP EBP

7C924E85 RET 18

7C924E88 MOV DWORD PTR [ESI],EBX
7C924E8A JMP SHORT ntdll.7C924E52
7C924E8C XOR EAX, EAX

7C924ESE JMP ntdll.7C9214B6

Listing 5.7 (continued)

Like the function at Listing 5.6, this one also starts with that dummy MOV
EDI, EDI instruction. However, unlike the previous function, this one doesn’t
seem to receive any parameters through registers, indicating that it was proba-
bly not defined using the static keyword. This function starts out by checking
the value of the SearchResult parameter (the last parameter it takes), and
making one of those remote, out of function jumps if SearchResult == 1.
We'll deal with this condition later.

For now, here’s the code that gets executed when that condition isn’t satisfied.

7C924E02 MOV EDI,DWORD PTR [EBP+10]
7C924E05 MOV ESI,DWORD PTR [EBP+8]
7C924E08 LEA EAX,DWORD PTR [EDI+18]
7C924E0B PUSH EAX

7C924E0C PUSH ESI

7C924E0D CALL DWORD PTR [ESI+1C]

It seems that the TABLE data structure contains another callback pointer. Off-
set +1c appears to be another callback function that takes two parameters. Let’s
examine those parameters and try to figure out what the callback does. The first
parameter comes from ESTI and is quite clearly the TABLE pointer. What does

182 Chapter 5

the second parameter contain? Essentially, it is the value of the third parameter
passed to Rt1lRealInsertElementWorker plus 18 bytes (hex). When you
looked earlier at the parameters that Rt IRealInsertElementWorker takes,
you had no idea what the third parameter was, but the number 0x18 sounds
somehow familiar. Remember how RtlLocateNodeGenericTable added
0x18 (24 in decimal) to the pointer of the current element before it passed it to
the TABLE_COMPARE_ELEMENTS callback? I suspected that adding 24 bytes
was a way of skipping the element’s header and getting to the actual data. This
corroborates that assumption—it looks like elements in a generic table are each
stored with 24-byte headers that are followed by the element’s data.

Let’s dig further into this function to try and figure out how it works and
what the callback does. Here’s what happens after the callback returns.

7C924E10 MOV EBX, EAX

7C924E12 TEST EBX, EBX

7C924E14 JE ntdll.7C94D4BE
7C924E1A AND DWORD PTR [EBX+4],0
7C924E1E AND DWORD PTR [EBX+8],0
7CO24E22 MOV DWORD PTR [EBX],EBX
7C924E24 LEA ECX,DWORD PTR [ESI+4]
7C924E27 MOV EDX,DWORD PTR [ECX+4]
TCO924E2A LEA EAX,DWORD PTR [EBX+C]
7C924E2D MOV DWORD PTR [EAX],ECX
T7CO924E2F MOV DWORD PTR [EAX+4],EDX
7CO24E32 MOV DWORD PTR [EDX], EAX
7CO24E34 MOV DWORD PTR [ECX+4],EAX
7C924E37 INC DWORD PTR [ESI+14]
7C924E3A CMP DWORD PTR [EBP+1C],0
7C924E3E JE SHORT ntdll.7C924E88
7C924E40 CMP DWORD PTR [EBP+1C],2
7C924E44 MOV EAX,DWORD PTR [EBP+18]
TC924E47 JE ntdll.7C924F0C
7C924E4D MOV DWORD PTR [EAX+8],EBX
7C924E50 MOV DWORD PTR [EBX],EAX

This code tests the return value from the callback. If it’s zero, the function
jumps into a remote block. Let’s take a quick look at that block.

7C94D4BE MOV EAX,DWORD PTR [EBP+14]
7C94D4C1 TEST EAX, EAX

7C94D4C3 JE SHORT ntdll.7C94D4C7
7C94D4C5 MOV BYTE PTR [EAX],BL
7C94D4C7 XOR EAX, EAX

7C94D4C9 JMP ntdll.7C924E81

This appears to be some kind of failure mode that essentially returns 0 to the
caller. Notice how this sequence checks whether the fourth parameter at

Beyond the Documentation

183

[ebp+14] is nonzero. If it is, the function is treating it as a pointer, writing a
single byte containing 0 (because we know EBX is going to be zero at this point)
into the address pointed by it. It would appear that the fourth parameter is a
pointer to some Boolean that’s used for notifying the caller of the function’s
success or failure.

Let’s proceed to look at what happens when the callback returns a non-
NULL value. It’s not difficult to see that this code is initializing the header of
the newly allocated element, using the callback’s return value as the address.
Before we try to figure out the details of this initialization, let’s pause for a sec-
ond and try to realize what this tells us about the callback function we just
observed. It looks as if the purpose of the callback function was to allocate
memory for the newly created element. We know this because EBX now con-
tains the return value from the callback, and it’s definitely being used as a
pointer to a new element that’s currently being initialized. With this informa-
tion, let’s try to define this callback.

typedef NODE * (_stdcall * TABLE_ALLOCATE_ELEMENT) (
TABLE ‘*pTable,
ULONG ElementSize
)

How did I know that the second parameter is the element’s size? It’s simple.
This is a value that was passed along from the caller of Rt 1InsertElement
GenericTableinto Rt 1RealInsertElementWorker, was incremented by
24, and was finally fed into TABLE_ALLOCATE_ELEMENT. Clearly the applica-
tion calling Rt 1InsertElementGenericTable is supplying the size of this
element, and the function is adding 24 because that’s the length of the node’s
header. Because of this we now also know that the third parameter passed into
RtlRealInsertElementWorker is the user-supplied element length. We've
also found out that the fourth parameter is an optional pointer into some
Boolean that contains the outcome of this function. Let’s correct the original

prototype.

UNKNOWN RtlRealInsertElementWorker (
TABLE *pTable,
PVOID ElementData,
ULONG ElementSize,
BOOLEAN *pResult OPTIONAL,
NODE *pNode,
ULONG SearchResult
)

You may notice that we’ve been accumulating quite a bit of information on the
parameters that Rt 1 InsertElementGenericTable takes. We're now ready
to start looking at the prototype for Rt 1InsertElementGenericTable.

184 Chapter 5

UNKNOWN NTAPI RtlInsertElementGenericTable (
TABLE *pTable,
PVOID ElementData,
ULONG DataLength,
BOOLEAN *pResult OPTIONAL,
)

At this point in the game, you've gained quite a bit of knowledge on this API
and associated data structures. There’s probably no real need to even try and
figure out each and every member in a node’s header, but let’s look at that
code sequence and try and figure out how the new element is linked into the
existing data structure.

Linking the Element

First of all, you can see that the function is accessing the element header
through EBX, and then it loads EAX with EBX + ¢, and accesses members
through EAX. This indicates that there is some kind of a data structure at offset
+c of the element’s header. Why else would the compiler access these members
through another register? Why not just use EBX for accessing all the members?

Also, you're now seeing distinct proof that the generic table maintains both
a linked list and a tree. EAX is loaded with the starting address of the linked list
header (LIST_ENTRY *), and EBX is used for accessing the binary tree mem-
bers. The function checks the SearchResult parameter before the tree node
gets attached to the rest of the tree. If it is 0, the code jumps to ntdll
.7C924E88, which is right after the end of the function’s main body. Here is
the code for that condition.

7C924E88 MOV DWORD PTR [ESI],EBX
7C924E8A JMP SHORT ntdll.7C924E52

In this case, the node is attached as the root of the tree. If SearchResult is
nonzero, the code proceeds into what is clearly an if-else block that is
entered when SearchResult != 2. If that conditional block is entered
(when SearchResult != 2), the code takes the pNode parameter (which is
the node that was found in Rt1LocateNodeGenericTable), and attaches
the newly created node as the left child (offset +8). If SearchResult == 2,
the code jumps to the following sequence.

7C924F0C MOV DWORD PTR [EAX+4],EBX
7C924FO0F JMP ntdll.7C924E50

Here the newly created element is attached as the right child of pNode (offset
+4). Clearly, the search result indicates whether the new element is smaller or
larger than the value represented by pNode. Immediately after the ‘if-else’

Beyond the Documentation

185

block a pointer to pNode is stored in offset +0 at the new entry. This indicates
that offset +0 in the node header contains a pointer to the parent element. You
can now properly define the node header data structure.

struct NODE
{

NODE *ParentNode;
NODE *RightChild;
NODE *LeftChild;
LIST_ENTRY LLEntry;
ULONG Unknown;

Copying the Element

After allocating the new node and attaching it to pNode, you reach an inter-
esting sequence that is actually quite common and is one that you're probably
going to see quite often while reversing IA-32 assembly language code. Let’s
take a look.

7C924E52 MOV ESI,DWORD PTR [EBP+C]

7C924E55 MOV ECX, EDI

7C924E57 MOV EAX, ECX

7C924E59 SHR ECX, 2

7C924E5C LEA EDI,DWORD PTR [EBX+18]

7C924E5F REP MOVS DWORD PTR ES:[EDI],DWORD PTR [ESI]
7C924E61 MOV ECX, EAX

7C924E63 AND ECX,3

7C924E66 REP MOVS BYTE PTR ES:[EDI],BYTE PTR [ESTI]

This code loads ESI with ElementData, EDI with the end of the new
node’s header, ECX with ElementSize * 4, and starts copying the element
data, 4 bytes at a time. Notice that there are two copying sequences. The first is
for 4-byte chunks, and the second checks whether there are any bytes left to be
copied, and copies those (notice how the first MOVS takes DWORD PTR argu-
ments and the second takes BYTE PTR operands).

I say that this is a common sequence because this is a classic memcpy imple-
mentation. In fact, it is very likely that the source code contained a memcpy call
and that the compiler simply implemented it as an intrinsic function (intrinsic
functions are briefly discussed in Chapter 7).

Splaying the Table

Let’s proceed to the next code sequence. Notice that there are two different
paths that could have gotten us to this point. One is through the path I have
just covered in which the callback is called and the structure is initialized, and

186 Chapter 5

the other is taken when SearchResult == 1 atthat first branch in the begin-
ning of the function (atntd11.7C924DFC). Notice that this branch doesn’t go
straight to where we are now—it goes through a relocated block at ntdll
.7C935D5D. Regardless of how we got here, let’s look at where we are now.

7C924E68 PUSH EBX

7C924E69 CALL ntdll.RtlSplay
7C924E6E MOV ECX,DWORD PTR [EBP+8]
7C924E71 MOV DWORD PTR [ECX],EAX
7C924E73 MOV EAX,DWORD PTR [EBP+14]
7C924E76 TEST EAX, EAX

7C924E78 JNZ ntdll.7C935DAF
7C924E7E LEA EAX,DWORD PTR [EBX+18]

This sequence calls a function called Rt1Splay (whose name you have
because it is exported—remember, I'm not using the Windows debug symbol
files!). Rt 1Splay takes one parameter. If SearchResult == 1 that parame-
ter is the pNode parameter passed to Rt 1IRealInsertElementWorker. If
it’s anything else, Rt 1Splay takes a pointer to the new element that was just
inserted. Afterward the tree root pointer at pTable is set to the return value of
RtlSplay, which indicates that Rt 1Splay returns a tree node, but you don’t
really know what that node is at the moment.

The code that follows checks for the optional Boolean pointer and if it exists
it is set to TRUE if SearchResult != 1. The function then loads the return
value into EAX. It turns out that Rt1RealInsertElementWorker simply
returns the pointer to the data of the newly allocated element. Here’s a cor-
rected prototype for Rt 1RealInsertElementWorker.

PVOID RtlRealInsertElementWorker (
TABLE *pTable,
PVOID ElementData,
ULONG ElementSize,
BOOLEAN *pResult OPTIONAL,
NODE *pNode,
ULONG SearchResult
)

Also, because RtlInsertElementGenericTable returns the return
value of Rt1RealInsertElementWorker, you can also update the proto-
type for Rt 1InsertElementGenericTable.

PVOID NTAPI RtlInsertElementGenericTable (
TABLE *pTable,
PVOID ElementData,
ULONG DataLength,
BOOLEAN *pResult OPTIONAL,
)

Beyond the Documentation

187

Splay Trees

At this point, one thing you're still not sure about is that Rt 1Splay function.
I will not include it here because it is quite long and convoluted, and on top of
that it appears to be distributed throughout the module, which makes it even
more difficult to read. The fact is that you can pretty much start using the
generic table without understanding Rt 1Splay, but you should probably still
take a quick look at what it does, just to make sure you fully understand the
generic table data structure.

The algorithm implemented in Rt1Splay is quite involved, but a quick
examination of what it does shows that it has something to do with the rebal-
ancing of the tree structure. In binary trees, rebalancing is the process of
restructuring the tree so that the elements are divided as evenly as possible
under each side of each node. Normally, rebalancing means that an algorithm
must check that the root node actually represents the median value repre-
sented by the tree. However, because elements in the generic table are user-
defined, Rt1Splay would have to make a callback into the user’s code in
order to compare elements, and there is no such callback in this function.

A more careful inspection of Rt1Splay reveals that it’s basically taking
the specified node and moving it upward in the tree (you might want to run
Rt1lSplay in a debugger in order to get a clear view of this process). Eventu-
ally, the function returns the pointer to the same node it originally starts with,
except that now this node is the root of the entire tree, and the rest of the ele-
ments are distributed between the current element’s left and right child nodes.

Once I realized that this is what Rt1Splay does the picture became a bit
clearer. It turns out that the generic table is implemented using a splay tree [Tar-
jan] Robert Endre Tarjan, Daniel Dominic Sleator. Self-adjusting binary search
trees. Journal of the ACM (JACM). Volume 32, Issue 3, July 1985, which is essen-
tially a binary tree with a unique organization scheme. The problem of properly
organizing a binary tree has been heavily researched and there are quite a few
techniques that deal with it (If you're patient, Knuth provides an in-depth exam-
ination of most of them in [Knuth3] Donald E. Knuth. The Art of Computer Pro-
gramming—Volume 3: Sorting and Searching (Second Edition). Addison Wesley. The
primary goal is, of course, to be able to reach elements using the lowest possible
number of iterations.

A splay tree (also known as a self-adjusting binary search tree) is an interesting
solution to this problem, where every node that is touched (in any operation) is
immediately brought to the top of the tree. This makes the tree act like a cache of
sorts, whereby the most recently used items are always readily available, and
the least used items are tucked at the bottom of the tree. By definition, splay trees
always rotate the most recently used item to the top of the tree. This is why

188 Chapter 5

you're seeing a call to Rt 1Splay immediately after adding a new element (the
new element becomes the root of the tree), and you should also see a call to the
same function after deleting and even just searching for an element.

Figures 5.1 through 5.5 demonstrate how Rt1Splay progressively raises
the newly added item in the tree’s hierarchy until it becomes the root node.

RtlLookupElementGenericTable

Remember how before you started digging into the generic table I mentioned
two functions (Rt1GetElementGenericTable and RtlLookupElement
GenericTable) that appeared to be responsible for retrieving elements?
Because you know that Rt 1GetElementGenericTable searches for an ele-
ment by its index, Rt 1LookupElementGenericTable must be the one that
provides some sort of search capabilities for a generic table. Let’s have a look
at Rt1LookupElementGenericTable (see Listing 5.8).

Root Node

Item We've
Just Added

Figure 5.1 Binary tree after adding a new item. New item is connected to the tree at the
most appropriate position, but no other items are moved.

Beyond the Documentation

189

Root Node

Item We’ve
Just Added

Figure 5.2 Binary tree after first splaying step. The new item has been moved up by one
level, toward the root of the tree. The previous parent of our new item is now its child.

Root Node

Item We’ve
Just Added

Figure 5.3 Binary tree after second splaying step. The new item has been moved up by
another level.

190 Chapter 5

Root Node

Item We've
Just Added

Figure 5.4 Binary tree after third splaying step. The new item has been moved up by yet
another level.

7C9215BB PUSH EBP

7C9215BC MOV EBP, ESP

7C9215BE LEA EAX,DWORD PTR [EBP+C]
7C9215C1 PUSH EAX

7C9215C2 LEA EAX,DWORD PTR [EBP+8]
7C9215C5 PUSH EAX

7C9215C6 PUSH DWORD PTR [EBP+C]
7C9215C9 PUSH DWORD PTR [EBP+8]
7C9215CC CALL ntdll.7C9215DA
7C9215D1 POP EBP

7C9215D2 RET 8

Listing 5.8 Disassembly of RtlLookupElementGenericTable.

Beyond the Documentation

191

Root Node

Item We’ve
Just Added

Figure 5.5 Binary after splaying process. The new item is now the root node, and the rest
of the tree is centered on it.

From its name, you can guess that RtlLookupElementGenericTable per-
forms a binary tree search on the generic table, and that it probably takes the
TABLE structure and an element data pointer for its parameters. It appears that
the actual implementation resides in ntdl1.7C9215DA, so let’s take a look at
that function. Notice the clever stack use in the call to this function. The first
two parameters are the same parameters that were passed to Rt1Lookup
ElementGenericTable. The second two parameters are apparently point-
ers to some kind of output values that ntdl1.7C9215DA returns. They're
apparently not used, but instead of allocating local variables that would con-
tain them, the compiler is simply using the stack area that was used for pass-
ing parameters into the function. Those stack slots are no longer needed after
they are read and passed on to ntdl1l.7C9215DA. Listing 5.9 shows the dis-
assembly for ntd11.7C9215DA.

192 Chapter 5

7C9215DA MOV EDI, EDI

7C9215DC PUSH EBP

7C9215DD MOV EBP, ESP

7C9215DF PUSH ESI

7C9215E0 MOV ESI,DWORD PTR [EBP+10]
7C9215E3 PUSH EDI

7C9215E4 MOV EDI,DWORD PTR [EBP+8]
7C9215E7 PUSH EST

7C9215E8 PUSH DWORD PTR [EBP+C]
7C9215EB CALL ntdl1.7C92147B
7C9215F0 TEST EAX, EAX

7C9215F2 MOV ECX,DWORD PTR [EBP+14]
7C9215F5 MOV DWORD PTR [ECX],EAX
7C9215F7 JE SHORT ntdll.7C9215FE
7C9215F9 CMP EAX,1

7C9215FC JE SHORT ntdll.7C921606
7C9215FE XOR EAX, EAX

7C921600 POP EDI

7C921601 POP ESI

7C921602 POP EBP

7C921603 RET 10

7C921606 PUSH DWORD PTR [EST]
7C921608 CALL ntdll.RtlSplay
7C92160D MOV DWORD PTR [EDI],EAX
7C92160F MOV EAX,DWORD PTR [ESTI]

7C921611 ADD EAX,18
7C921614 JMP SHORT ntdll.7C921600

Listing 5.9 Disassembly of ntdll.7C9215DA, tentatively titled RtlLookupElementGeneric
TableWorker.

At this point, you're familiar enough with the generic table that you hardly
need to investigate much about this function—we’ve discussed the two
core functions that this API uses: Rt1LocateNodeGenericTable (ntdll
.7C92147B) and Rt1Splay. Rt1LocateNodeGenericTable is used for the
actual locating of the element in question, just as it was used in Rt1Insert
ElementGenericTable. After RtlLocateNodeGenericTable returns,
Rt1Splay is called because, as mentioned earlier, splay trees are always splayed
after adding, removing, or searching for an element. Of course, Rt1Splay is
only actually called if Rt1LocateNodeGenericTable locates the element
sought.

Based on the parameters passed into RtlLocateNodeGenericTable,
you can immediately see that Rt 1LookupElementGenericTable takes the
TABLE pointer and the Element pointer as its two parameters. As for the
return value, the add eax, 18 shows that the function takes the located node

Beyond the Documentation

193

and skips its header to get to the return value. As you would expect, this func-
tion returns the pointer to the found element’s data.

RtiDeleteElementGenericTable

So we've covered the basic usage cases of adding, retrieving, and searching for
elements in the generic table. One case that hasn’t been covered yet is deletion.
How are elements deleted from the generic table? Let’s take a quick look at
RtlDeleteElementGenericTable.

T7C924FFF MOV EDI,EDI

7C925001 PUSH EBP

7C925002 MOV EBP,ESP

7C925004 PUSH EDI

7C925005 MOV EDI,DWORD PTR [EBP+8]
7C925008 LEA EAX,DWORD PTR [EBP+C]
7C92500B PUSH EAX

7C92500C PUSH DWORD PTR [EBP+C]
7C92500F CALL ntdl1l.7C92147B
7C925014 TEST EAX,EAX

7C925016 JE SHORT ntdll.7C92504E
7C925018 CMP EAX,1

7C92501B JNZ SHORT ntdll.7C92504E
7C92501D PUSH EST

7C92501E MOV ESI,DWORD PTR [EBP+C]
7C925021 PUSH ESI

7C925022 CALL ntdll.RtlDelete
7C925027 MOV DWORD PTR [EDI],EAX
7C925029 MOV EAX,DWORD PTR [ESI+C]
7C92502C MOV ECX,DWORD PTR [ESI+10]
7C92502F MOV DWORD PTR [ECX],EAX
7C925031 MOV DWORD PTR [EAX+4],ECX
7C925034 DEC DWORD PTR [EDI+14]
7C925037 AND DWORD PTR [EDI+10],0
7C92503B PUSH ESI

7C92503C LEA EAX,DWORD PTR [EDI+4]
7C92503F PUSH EDI

7C925040 MOV DWORD PTR [EDI+C],EAX
7C925043 CALL DWORD PTR [EDI+20]
7C925046 MOV AL, 1

7C925048 POP ESI

7C925049 POP EDI

7C92504A POP EBP

7C92504B RET 8

7C92504E XOR AL, AL

7C925050 JMP SHORT ntdll.7C925049

Listing 5.10 Disassembly of RtIDeleteElementGenericTable.

194 Chapter 5

RtlDeleteElementGenericTable has three primary steps. First of all it
uses the famous Rt1lLocateNodeGenericTable (ntdll.7C92147B) for
locating the element to be removed. It then calls the (exported) Rt 1Delete to
actually remove the element. I will not go into the actual algorithm that
RtlDelete implements in order to remove elements from the tree, but one
thing that’s important about it is that after performing the actual removal it
also calls Rt1Splay in order to restructure the table.

The last function call made by Rt1lDeleteElementGenericTable is
actually quite interesting. It appears to be a callback into user code, where the
callback function pointer is accessed from offset +20 in the TABLE structure. It
is pretty easy to guess that this is the element-free callback that frees the mem-
ory allocated in the TABLE_ALLOCATE_ELEMENT callback earlier. Here is a
prototype for TABLE_FREE_ELEMENT:

typedef void (_stdcall * TABLE_FREE_ELEMENT) (
TABLE *pTable,
PVOID Element
)

There are two things to note here. First of all, TABLE_FREE_ELEMENT clearly
doesn’t have a return value, and if it does Rt 1DeleteElementGenericTable
certainly ignores it (see how right after the callback returns AL is set to 1). Sec-
ond, keep in mind that the Element pointer is going to be a pointer to the begin-
ning of the NODE data structure, and not to the beginning of the element’s data,
as you've been seeing all along. That’s because the caller allocated this entire
memory block, including the header, so it’s now up to the caller to free this entire
memory block.

RtlDeleteElementGenericTable returns a Boolean that is set to TRUE
if an element is found by RtlLocateNodeGenericTable, and FALSE if
RtlLocateNodeGenericTable returns NULL.

Putting the Pieces Together

Whenever a reversing session of this magnitude is completed, it is advisable to
prepare a little document that describes your findings. It is an elegant way to
summarize the information obtained while reversing, not to mention that
most of us tend to forget this stuff as soon as we get up to get a cup of coffee or
a glass of chocolate milk (my personal favorite).

The following listings can be seen as a formal definition of the generic table
API, which is based on the conclusions from our reversing sessions. Listing
5.11 presents the internal data structures, Listing 5.12 presents the callbacks
prototypes, and Listing 5.13 presents the function prototypes for the APIs.

Beyond the Documentation

195

struct NODE
{
NODE
NODE
NODE
LIST_ENTRY
ULONG
0¥

struct TABLE

{
NODE
LIST_ENTRY
LIST_ENTRY
ULONG
ULONG
TABLE_COMPARE_ELEMENTS
TABLE_ALLOCATE_ELEMENT
TABLE_FREE_ELEMENT
ULONG

}i

*ParentNode;
*RightChild;
*LeftChild;
LLEntry;
Unknown ;

*TopNode ;

LLHead;
*LastElementFound;
LastElementIndex;
NumberOfElements;
CompareElements;
AllocateElement;
FreeElement;
Unknown ;

Listing 5.11 Definitions of internal generic table data structures discovered in this chapter.

typedf int (NTAPI * TABLE COMPARE_ELEMENTS) (

TABLE *pTable,
PVOID pElementl,
PVOID pElement?2
)

typedef NODE * (NTAPI * TABLE_ALLOCATE ELEMENT) (

TABLE *pTable,

ULONG TotalElementSize

) 7

typedef void (NTAPI * TABLE FREE_ELEMENT) (

TABLE *pTable,
PVOID Element
) 7

Listing 5.12 Prototypes of generic table callback functions that must be implemented by

the caller.

196 Chapter 5

void NTAPI RtlInitializeGenericTable (
TABLE *pGenericTable,
TABLE_COMPARE_ELEMENTS CompareElements,
TABLE_ALLOCATE_ELEMENT AllocateElement,
TABLE_FREE_ELEMENT FreeElement,
ULONG Unknown
) 5

ULONG NTAPI RtlNumberGenericTableElements (
TABLE *pGenericTable
)8

BOOLEAN NTAPI RtlIsGenericTableEmpty (
TABLE *pGenericTable
) ;

PVOID NTAPI RtlGetElementGenericTable (
TABLE *pGenericTable,
ULONG ElementNumber
) 7

PVOID NTAPI RtlInsertElementGenericTable (
TABLE *pGenericTable,
PVOID ElementData,
ULONG DataLength,
OUT BOOLEAN *IsNewElement
)i

PVOID NTAPI RtlLookupElementGenericTable (
TABLE *pGenericTable,
PVOID ElementToFind
) 7

BOOLEAN NTAPI RtlDeleteElementGenericTable (
TABLE *pGenericTable,
PVOID ElementToFind

) 5

Listing 5.13 Prototypes of the basic generic table APIs.

Conclusion

In this chapter, I demonstrated how to investigate, use, and document a rea-
sonably complicated set of functions. If there is one important moral to this

Beyond the Documentation

197

story, it is that reversing is always about meeting the low-level with the high-
level. If you just keep tracing through registers and bytes, you'll never really
get anywhere. The secret is to always keep your eye on the big picture that’s
slowly materializing in front of you while you're reversing. I've tried to
demonstrate this process as clearly as possible in this chapter. If you feel as if
you’'ve missed some of the steps we took in order to get to this point, fear not.
I highly recommend that you go over this chapter more than once, and per-
haps use a live debugger to step through this code while reading the text.

Deciphering
File Formats

Most of this book describes how to reverse engineer programs in order to get
an insight into their internal workings. This chapter discusses a slightly differ-
ent aspect of this craft: the general process of deciphering program data. This
data can be an undocumented file format, a network protocol, and so on. The
process of deciphering such data to the point where it is possible to actually use
it for the creation of programs that can accept and produce compatible data is
another branch of reverse engineering that is often referred to as data reverse
engineering. This chapter demonstrates data reverse-engineering techniques
and shows what can be done with them.

The most common reason for performing any kind of data reverse engineer-
ing is to achieve interoperability with a third party’s software product. There are
countless commercial products out there that use proprietary, undocumented
data formats. These can be undocumented file formats or networking protocols
that cannot be accessed by any program other than those written by the original
owner of the format—no one else knows the details of the proprietary format.
This is a major inconvenience to end users because they cannot easily share their
files with people that use a competing program—only the products developed
by the owner of the file format can access the proprietary file format.

This is where data reverse engineering comes into play. Using data reverse
engineering techniques it is possible to obtain that missing information
regarding a proprietary data format, and write code that reads or even gener-
ates data in the proprietary format. There are numerous real-world examples

199

200 Chapter 6

where this type of reverse engineering has been performed in order to achieve
interoperability between the data formats of popular commercial products.
Consider Microsoft Word for example. This program has an undocumented
file format (the famous . doc format), so in order for third-party programs to
be able to open or create .doc files (and there are actually quite a few pro-
grams that do that) someone had to reverse engineer the Microsoft Word file
format. This is exactly the type of reverse engineering demonstrated in this
chapter.

Cryptex

Cryptex is a little program I've written as a data reverse-engineering exercise.
It is basically a command-line data encryption tool that can encrypt files using
a password. In this c