heweh Application

Hacker's
Handbook

Discovering and Exploiting
Security Flaws

—_— B Dafydd Stuttard MMarcus Pinto

The Web Application
Hacker’'s Handbook_

Discovering and Exploiting Security Flaws

Datydd Stuttard
Marcus Pinto

uuuuuuuuuuu

ssssssssssss

Wiley Publishing, Inc.

The Web Application
Hacker’'s Handbook_

Discovering and Exploiting Security Flaws

Datydd Stuttard
Marcus Pinto

uuuuuuuuuuu

ssssssssssss

Wiley Publishing, Inc.

The Web Application Hacker’s Handbook: Discovering and Exploiting Security Flaws

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2008 by Dafydd Stuttard and Marcus Pinto.
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-17077-9

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies con-
tained herein may not be suitable for every situation. This work is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Website is referred to in this work as a citation and/or a potential source of further information does
not mean that the author or the publisher endorses the information the organization or Website may
provide or recommendations it may make. Further, readers should be aware that Internet Websites
listed in this work may have changed or disappeared between when this work was written and when
it is read.

For general information on our other products and services or to obtain technical support, please con-
tact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993
or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data

Stuttard, Dafydd, 1972-

The web application hacker's handbook : discovering and exploiting security flaws / Dafydd Stut-
tard, Marcus Pinto.

p.cm.

Includes index.

ISBN 978-0-470-17077-9 (pbk.)

1. Internet--Security measures. 2. Computer security. I. Pinto, Marcus, 1978- II. Title.

TK5105.875.157585 2008

005.8--dc22

2007029983

Trademarks: Wiley and related trade dress are registered trademarks of Wiley Publishing, Inc., in the
United States and other countries, and may not be used without written permission. All other trade-
marks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any
product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

www.wiley.com

About the Authors

Dafydd Stuttard is a Principal Security Consultant at Next Generation Secu-
rity Software, where he leads the web application security competency. He has
nine years’ experience in security consulting and specializes in the penetration
testing of web applications and compiled software.

Dafydd has worked with numerous banks, retailers, and other enterprises
to help secure their web applications, and has provided security consulting to
several software manufacturers and governments to help secure their com-
piled software. Dafydd is an accomplished programmer in several languages,
and his interests include developing tools to facilitate all kinds of software
security testing.

Dafydd has developed and presented training courses at the Black Hat secu-
rity conferences around the world. Under the alias “PortSwigger,” Dafydd cre-
ated the popular Burp Suite of web application hacking tools. Dafydd holds
master’s and doctorate degrees in philosophy from the University of Oxford.

Marcus Pinto is a Principal Security Consultant at Next Generation Security
Software, where he leads the database competency development team, and
has lead the development of NGS” primary training courses. He has eight
years’ experience in security consulting and specializes in penetration testing
of web applications and supporting architectures.

Marcus has worked with numerous banks, retailers, and other enterprises to
help secure their web applications, and has provided security consulting to the
development projects of several security-critical applications. He has worked
extensively with large-scale web application deployments in the financial ser-
vices industry.

Marcus has developed and presented database and web application train-
ing courses at the Black Hat and other security conferences around the world.
Marcus holds a master’s degree in physics from the University of Cambridge.

iv

Credits

Executive Editor
Carol Long

Development Editor
Adaobi Obi Tulton

Production Editor
Christine O’Connor

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Osborn

Compositor
Happenstance Type-O-Rama

Proofreader
Kathryn Duggan

Indexer
Johnna VanHoose Dinse

Anniversary Logo Design
Richard Pacifico

Contents

Acknowledgments xxiii
Introduction XXV
Chapter 1 Web Application (In)security 1
The Evolution of Web Applications 2

Common Web Application Functions 3

Benefits of Web Applications 4

Web Application Security 5

“This Site Is Secure” 6

The Core Security Problem: Users Can Submit Arbitrary Input 8

Key Problem Factors 9

Immature Security Awareness 9

In-House Development 9

Deceptive Simplicity 9

Rapidly Evolving Threat Profile 10

Resource and Time Constraints 10

Overextended Technologies 10

The New Security Perimeter 10

The Future of Web Application Security 12

Chapter Summary 13

Chapter 2 Core Defense Mechanisms 15
Handling User Access 16
Authentication 16

Session Management 17

Access Control 18

Handling User Input 19

Varieties of Input 20

Approaches to Input Handling 21

vi Contents
“Reject Known Bad” 21
“Accept Known Good” 21
Sanitization 22
Safe Data Handling 22
Semantic Checks 23
Boundary Validation 23
Multistep Validation and Canonicalization 26
Handling Attackers 27
Handling Errors 27
Maintaining Audit Logs 29
Alerting Administrators 30
Reacting to Attacks 31
Managing the Application 32
Chapter Summary 33
Questions 34
Chapter 3 Web Application Technologies 35
The HTTP Protocol 35
HTTP Requests 36
HTTP Responses 37
HTTP Methods 38
URLs 40
HTTP Headers 41
General Headers 41
Request Headers 41
Response Headers 42
Cookies 43
Status Codes 44
HTTPS 45
HTTP Proxies 46
HTTP Authentication 47
Web Functionality 47
Server-Side Functionality 48
The Java Platform 49
ASPNET 50
PHP 50
Client-Side Functionality 51
HTML 51
Hyperlinks 51
Forms 52
JavaScript 54
Thick Client Components 54
State and Sessions 55
Encoding Schemes 56
URL Encoding 56
Unicode Encoding 57

Contents vii
HTML Encoding 57
Base64 Encoding 58
Hex Encoding 59
Next Steps 59
Questions 59
Chapter 4 Mapping the Application 61
Enumerating Content and Functionality 62
Web Spidering 62
User-Directed Spidering 65
Discovering Hidden Content 67
Brute-Force Techniques 67
Inference from Published Content 70
Use of Public Information 72
Leveraging the Web Server 75
Application Pages vs. Functional Paths 76
Discovering Hidden Parameters 79
Analyzing the Application 79
Identifying Entry Points for User Input 80
Identifying Server-Side Technologies 82
Banner Grabbing 82
HTTP Fingerprinting 82
File Extensions 84
Directory Names 86
Session Tokens 86
Third-Party Code Components 87
Identifying Server-Side Functionality 88
Dissecting Requests 88
Extrapolating Application Behavior 90
Mapping the Attack Surface 91
Chapter Summary 92
Questions 93
Chapter 5 Bypassing Client-Side Controls 95
Transmitting Data via the Client 95
Hidden Form Fields 96
HTTP Cookies 99
URL Parameters 99
The Referer Header 100
Opaque Data 101
The ASP.NET ViewState 102
Capturing User Data: HTML Forms 106
Length Limits 106
Script-Based Validation 108
Disabled Elements 110
Capturing User Data: Thick-Client Components 111
Java Applets 112

viii Contents
Decompiling Java Bytecode 114
Coping with Bytecode Obfuscation 117
ActiveX Controls 119
Reverse Engineering 120
Manipulating Exported Functions 122
Fixing Inputs Processed by Controls 123
Decompiling Managed Code 124
Shockwave Flash Objects 124
Handling Client-Side Data Securely 128
Transmitting Data via the Client 128
Validating Client-Generated Data 129
Logging and Alerting 131
Chapter Summary 131
Questions 132
Chapter 6 Attacking Authentication 133
Authentication Technologies 134
Design Flaws in Authentication Mechanisms 135
Bad Passwords 135
Brute-Forcible Login 136
Verbose Failure Messages 139
Vulnerable Transmission of Credentials 142
Password Change Functionality 144
Forgotten Password Functionality 145
“Remember Me” Functionality 148
User Impersonation Functionality 149
Incomplete Validation of Credentials 152
Non-Unique Usernames 152
Predictable Usernames 154
Predictable Initial Passwords 154
Insecure Distribution of Credentials 155
Implementation Flaws in Authentication 156
Fail-Open Login Mechanisms 156
Defects in Multistage Login Mechanisms 157
Insecure Storage of Credentials 161
Securing Authentication 162
Use Strong Credentials 162
Handle Credentials Secretively 163
Validate Credentials Properly 164
Prevent Information Leakage 166
Prevent Brute-Force Attacks 167
Prevent Misuse of the Password Change Function 170
Prevent Misuse of the Account Recovery Function 170
Log, Monitor, and Notify 172
Chapter Summary 172

Contents

Chapter 7

Chapter 8

Chapter 9

Attacking Session Management
The Need for State
Alternatives to Sessions
Weaknesses in Session Token Generation
Meaningful Tokens
Predictable Tokens
Concealed Sequences
Time Dependency
Weak Random Number Generation
Weaknesses in Session Token Handling
Disclosure of Tokens on the Network
Disclosure of Tokens in Logs
Vulnerable Mapping of Tokens to Sessions
Vulnerable Session Termination
Client Exposure to Token Hijacking
Liberal Cookie Scope
Cookie Domain Restrictions
Cookie Path Restrictions
Securing Session Management
Generate Strong Tokens
Protect Tokens throughout Their Lifecycle
Per-Page Tokens
Log, Monitor, and Alert
Reactive Session Termination
Chapter Summary
Questions

Attacking Access Controls
Common Vulnerabilities
Completely Unprotected Functionality
Identifier-Based Functions
Multistage Functions
Static Files
Insecure Access Control Methods
Attacking Access Controls
Securing Access Controls
A Multi-Layered Privilege Model
Chapter Summary
Questions

Injecting Code
Injecting into Interpreted Languages
Injecting into SQL
Exploiting a Basic Vulnerability
Bypassing a Login
Finding SQL Injection Bugs
Injecting into Different Statement Types

175
176
178
180
180
182
184
185
187
191
192
196
198
200
201
203
203
205
206
206
208
211
212
212
213
214

217
218
219
220
222
222
223
224
228
231
234
235

237
238
240
241
243
244
247

X

Contents

The UNION Operator
Fingerprinting the Database
Extracting Useful Data
An Oracle Hack
An MS-SQL Hack
Exploiting ODBC Error Messages (MS-SQL Only)
Enumerating Table and Column Names
Extracting Arbitrary Data
Using Recursion
Bypassing Filters
Second-Order SQL Injection
Advanced Exploitation
Retrieving Data as Numbers
Using an Out-of-Band Channel
Using Inference: Conditional Responses
Beyond SQL Injection: Escalating the Database Attack
MS-SQL
Oracle
MySQL
SQL Syntax and Error Reference
SQL Syntax
SQL Error Messages
Preventing SQL Injection
Partially Effective Measures
Parameterized Queries
Defense in Depth
Injecting OS Commands
Example 1: Injecting via Perl
Example 2: Injecting via ASP
Finding OS Command Injection Flaws
Preventing OS Command Injection
Injecting into Web Scripting Languages
Dynamic Execution Vulnerabilities
Dynamic Execution in PHP
Dynamic Execution in ASP
Finding Dynamic Execution Vulnerabilities
File Inclusion Vulnerabilities
Remote File Inclusion
Local File Inclusion
Finding File Inclusion Vulnerabilities
Preventing Script Injection Vulnerabilities
Injecting into SOAP
Finding and Exploiting SOAP Injection
Preventing SOAP Injection
Injecting into XPath
Subverting Application Logic

251
255
256
257
260
262
263
265
266
267
271
272
273
274
277
285
286
288
288
289
290
292
296
296
297
299
300
300
302
304
307
307
307
308
308
309
310
310
311
312
312
313
315
316
316
317

Contents

Informed XPath Injection 318
Blind XPath Injection 319
Finding XPath Injection Flaws 320
Preventing XPath Injection 321
Injecting into SMTP 321
Email Header Manipulation 322
SMTP Command Injection 323
Finding SMTP Injection Flaws 324
Preventing SMTP Injection 326
Injecting into LDAP 326
Injecting Query Attributes 327
Modifying the Search Filter 328
Finding LDAP Injection Flaws 329
Preventing LDAP Injection 330
Chapter Summary 331
Questions 331
Chapter 10 Exploiting Path Traversal 333
Common Vulnerabilities 333
Finding and Exploiting Path Traversal Vulnerabilities 335
Locating Targets for Attack 335
Detecting Path Traversal Vulnerabilities 336
Circumventing Obstacles to Traversal Attacks 339
Coping with Custom Encoding 342
Exploiting Traversal Vulnerabilities 344
Preventing Path Traversal Vulnerabilities 344
Chapter Summary 346
Questions 346
Chapter 11 Attacking Application Logic 349
The Nature of Logic Flaws 350
Real-World Logic Flaws 350
Example 1: Fooling a Password Change Function 351
The Functionality 351

The Assumption 351

The Attack 352
Example 2: Proceeding to Checkout 352
The Functionality 352

The Assumption 353

The Attack 353
Example 3: Rolling Your Own Insurance 354
The Functionality 354

The Assumption 354

The Attack 355
Example 4: Breaking the Bank 356
The Functionality 356

The Assumption 357

The Attack 358

X

Contents

Chapter 12

Example 5: Erasing an Audit Trail
The Functionality
The Assumption
The Attack
Example 6: Beating a Business Limit
The Functionality
The Assumption
The Attack
Example 7: Cheating on Bulk Discounts
The Functionality
The Assumption
The Attack
Example 8: Escaping from Escaping
The Functionality
The Assumption
The Attack
Example 9: Abusing a Search Function
The Functionality
The Assumption
The Attack
Example 10: Snarfing Debug Messages
The Functionality
The Assumption
The Attack
Example 11: Racing against the Login
The Functionality
The Assumption
The Attack
Avoiding Logic Flaws
Chapter Summary
Questions

Attacking Other Users
Cross-Site Scripting
Reflected XSS Vulnerabilities
Exploiting the Vulnerability
Stored XSS Vulnerabilities
Storing XSS in Uploaded Files
DOM-Based XSS Vulnerabilities
Real-World XSS Attacks
Chaining XSS and Other Attacks
Payloads for XSS Attacks
Virtual Defacement
Injecting Trojan Functionality
Inducing User Actions
Exploiting Any Trust Relationships
Escalating the Client-Side Attack

359
359
359
359
360
360
361
361
362
362
362
362
363
363
364
364
365
365
365
365
366
366
367
367
368
368
368
368
370
372
372

375
376
377
379
383
385
386
388
390
391
391
392
394
394
396

Contents

xiii

Delivery Mechanisms for XSS Attacks
Delivering Reflected and DOM-Based XSS Attacks
Delivering Stored XSS Attacks
Finding and Exploiting XSS Vulnerabilities
Finding and Exploiting Reflected XSS Vulnerabilities
Finding and Exploiting Stored XSS Vulnerabilities
Finding and Exploiting DOM-Based XSS Vulnerabilities
HttpOnly Cookies and Cross-Site Tracing
Preventing XSS Attacks
Preventing Reflected and Stored XSS
Preventing DOM-Based XSS
Preventing XST

Redirection Attacks

Finding and Exploiting Redirection Vulnerabilities
Circumventing Obstacles to Attack
Preventing Redirection Vulnerabilities

HTTP Header Injection

Exploiting Header Injection Vulnerabilities
Injecting Cookies
Delivering Other Attacks
HTTP Response Splitting

Preventing Header Injection Vulnerabilities

Frame Injection

Exploiting Frame Injection
Preventing Frame Injection

Request Forgery

On-Site Request Forgery

Cross-Site Request Forgery
Exploiting XSRF Flaws
Preventing XSRF Flaws

JSON Hijacking

JSON
Attacks against JSON
Overriding the Array Constructor
Implementing a Callback Function
Finding JSON Hijacking Vulnerabilities
Preventing JSON Hijacking

Session Fixation

Finding and Exploiting Session Fixation Vulnerabilities
Preventing Session Fixation Vulnerabilities

Attacking ActiveX Controls

Finding ActiveX Vulnerabilities
Preventing ActiveX Vulnerabilities

Local Privacy Attacks

Persistent Cookies
Cached Web Content

399
399
400
401
402
415
417
421
423
423
427
428
428
429
431
433
434
434
435
436
436
438
438
439
440
440
441
442
443
444
446
446
447
447
448
449
450
450
452
453
454
455
456
458
458
458

Xiv.__ Contents
Browsing History 459
Autocomplete 460
Preventing Local Privacy Attacks 460
Advanced Exploitation Techniques 461
Leveraging Ajax 461
Making Asynchronous Off-Site Requests 463
Anti-DNS Pinning 464
A Hypothetical Attack 465
DNS Pinning 466
Attacks against DNS Pinning 466
Browser Exploitation Frameworks 467
Chapter Summary 469
Questions 469
Chapter 13 Automating Bespoke Attacks 471
Uses for Bespoke Automation 472
Enumerating Valid Identifiers 473
The Basic Approach 474
Detecting Hits 474
HTTP Status Code 474
Response Length 475
Response Body 475
Location Header 475
Set-cookie Header 475
Time Delays 476
Scripting the Attack 476
JAttack 477
Harvesting Useful Data 484
Fuzzing for Common Vulnerabilities 487
Putting It All Together: Burp Intruder 491
Positioning Payloads 492
Choosing Payloads 493
Configuring Response Analysis 494
Attack 1: Enumerating Identifiers 495
Attack 2: Harvesting Information 498
Attack 3: Application Fuzzing 500
Chapter Summary 502
Questions 502
Chapter 14 Exploiting Information Disclosure 505
Exploiting Error Messages 505
Script Error Messages 506
Stack Traces 507
Informative Debug Messages 508
Server and Database Messages 509
Using Public Information 511
Engineering Informative Error Messages 512

Contents

XV

Gathering Published Information
Using Inference
Preventing Information Leakage
Use Generic Error Messages
Protect Sensitive Information
Minimize Client-Side Information Leakage
Chapter Summary
Questions

Chapter 15 Attacking Compiled Applications

Buffer Overflow Vulnerabilities

Stack Overflows

Heap Overflows

“Off-by-One” Vulnerabilities

Detecting Buffer Overflow Vulnerabilities
Integer Vulnerabilities

Integer Overflows

Signedness Errors

Detecting Integer Vulnerabilities
Format String Vulnerabilities

Detecting Format String Vulnerabilities
Chapter Summary
Questions

Chapter 16 Attacking Application Architecture
Tiered Architectures
Attacking Tiered Architectures
Exploiting Trust Relationships between Tiers
Subverting Other Tiers
Attacking Other Tiers
Securing Tiered Architectures
Minimize Trust Relationships
Segregate Different Components
Apply Defense in Depth
Shared Hosting and Application Service Providers
Virtual Hosting
Shared Application Services
Attacking Shared Environments
Attacks against Access Mechanisms
Attacks between Applications
Securing Shared Environments
Secure Customer Access
Segregate Customer Functionality
Segregate Components in a Shared Application
Chapter Summary
Questions

513
514
516
516
517
517
518
518

521
522
522
523
524
527
529
529
529
530
531
532
533
534

535
535
536
537
538
539
540
540
541
542
542
543
543
544
545
546
549
549
550
551
551
551

xvi Contents

Chapter 17

Chapter 18

Attacking the Web Server
Vulnerable Web Server Configuration
Default Credentials
Default Content
Debug Functionality
Sample Functionality
Powerful Functions
Directory Listings
Dangerous HTTP Methods
The Web Server as a Proxy
Misconfigured Virtual Hosting
Securing Web Server Configuration
Vulnerable Web Server Software
Buffer Overflow Vulnerabilities
Microsoft IIS ISAPI Extensions
Apache Chunked Encoding Overflow
Microsoft IIS WebDav Overflow
iPlanet Search Overflow
Path Traversal Vulnerabilities
Accipiter DirectServer
Alibaba
Cisco ACS Acme.server
McAfee EPolicy Orcestrator
Encoding and Canonicalization Vulnerabilities
Allaire JRun Directory Listing Vulnerability
Microsoft IIS Unicode Path Traversal Vulnerabilities
Oracle PL/SQL Exclusion List Bypasses
Finding Web Server Flaws
Securing Web Server Software
Choose Software with a Good Track Record
Apply Vendor Patches
Perform Security Hardening
Monitor for New Vulnerabilities
Use Defense-in-Depth
Chapter Summary
Questions

Finding Vulnerabilities in Source Code
Approaches to Code Review
Black-Box vs. White-Box Testing
Code Review Methodology
Signatures of Common Vulnerabilities
Cross-Site Scripting
SQL Injection
Path Traversal
Arbitrary Redirection

553
553
554
555
555
556
557
559
560
562
564
565
566
566
567
567
567
567
568
568
568
568
568
568
569
569
570
571
572
572
572
573
573
573
574
574

577
578
578
579
580
580
581
582
583

Contents xvii

OS Command Injection 584
Backdoor Passwords 584
Native Software Bugs 585
Buffer Overflow Vulnerabilities 585
Integer Vulnerabilities 586
Format String Vulnerabilities 586
Source Code Comments 586
The Java Platform 587
Identifying User-Supplied Data 587
Session Interaction 589
Potentially Dangerous APIs 589
File Access 589
Database Access 590
Dynamic Code Execution 591
OS Command Execution 591
URL Redirection 592
Sockets 592
Configuring the Java Environment 593
ASPNET 594
Identifying User-Supplied Data 594
Session Interaction 595
Potentially Dangerous APIs 596
File Access 596
Database Access 597
Dynamic Code Execution 598
OS Command Execution 598
URL Redirection 599
Sockets 600
Configuring the ASPNET Environment 600
PHP 601
Identifying User-Supplied Data 601
Session Interaction 603
Potentially Dangerous APIs 604
File Access 604
Database Access 606
Dynamic Code Execution 607
OS Command Execution 607
URL Redirection 608
Sockets 608
Configuring the PHP Environment 609
Register Globals 609
Safe Mode 610
Magic Quotes 610
Miscellaneous 611
Perl 611

Identifying User-Supplied Data 612

xviii Contents

Session Interaction
Potentially Dangerous APIs
File Access
Database Access
Dynamic Code Execution
OS Command Execution
URL Redirection
Sockets
Configuring the Perl Environment
JavaScript
Database Code Components
SQL Injection
Calls to Dangerous Functions
Tools for Code Browsing
Chapter Summary
Questions

Chapter 19 A Web Application Hacker's Toolkit
Web Browsers
Internet Explorer
Firefox
Opera
Integrated Testing Suites
How the Tools Work
Intercepting Proxies
Web Application Spiders
Application Fuzzers and Scanners
Manual Request Tools
Feature Comparison
Burp Suite
Paros
WebScarab
Alternatives to the Intercepting Proxy
Tamper Data
TamperlE
Vulnerability Scanners
Vulnerabilities Detected by Scanners
Inherent Limitations of Scanners
Every Web Application Is Different
Scanners Operate on Syntax
Scanners Do Not Improvise
Scanners Are Not Intuitive
Technical Challenges Faced by Scanners
Authentication and Session Handling
Dangerous Effects
Individuating Functionality
Other Challenges to Automation

613
613
613
613
614
614
615
615
615
616
617
617
618
619
620
621

623
624
624
624
626
627
628
628
633
636
637
640
643
644
645
646
647
647
649
649
651
652
652
652
653
653
653
654
655
655

Contents

XIX

Chapter 20

Current Products
Using a Vulnerability Scanner
Other Tools
Nikto
Hydra
Custom Scripts
Wget
Curl
Netcat
Stunnel
Chapter Summary

A Web Application Hacker's Methodology
General Guidelines
1. Map the Application’s Content
1.1. Explore Visible Content
1.2. Consult Public Resources
1.3. Discover Hidden Content
1.4. Discover Default Content
1.5. Enumerate Identifier-Specified Functions
1.6. Test for Debug Parameters
2. Analyze the Application
2.1. Identify Functionality
2.2. Identify Data Entry Points
2.3. Identify the Technologies Used
2.4. Map the Attack Surface
3. Test Client-Side Controls
3.1. Test Transmission of Data via the Client
3.2. Test Client-Side Controls over User Input
3.3. Test Thick-Client Components
3.3.1. Test Java Applets
3.3.2. Test ActiveX controls
3.3.3. Test Shockwave Flash objects
4. Test the Authentication Mechanism
4.1. Understand the Mechanism
4.2. Test Password Quality
4.3. Test for Username Enumeration
4.4. Test Resilience to Password Guessing
4.5. Test Any Account Recovery Function
4.6. Test Any Remember Me Function
4.7. Test Any Impersonation Function
4.8. Test Username Uniqueness
4.9. Test Predictability of Auto-Generated Credentials
4.10. Check for Unsafe Transmission of Credentials
4.11. Check for Unsafe Distribution of Credentials

656
658
659
660
660
661
662
662
663
663
664

665
667
669
669
670
670
671
671
672
672
673
673
673
674
675
675
676
677
677
678
678
679
680
680
680
681
682
682
683
683
684
684
685

XX Contents

4.12. Test for Logic Flaws 685
4.12.1. Test for Fail-Open Conditions 685
4.12.2. Test Any Multistage Mechanisms 686

4.13. Exploit Any Vulnerabilities to Gain Unauthorized Access 687

5. Test the Session Management Mechanism 688

5.1. Understand the Mechanism 689

5.2. Test Tokens for Meaning 689

5.3. Test Tokens for Predictability 690

5.4. Check for Insecure Transmission of Tokens 691

5.5. Check for Disclosure of Tokens in Logs 692

5.6. Check Mapping of Tokens to Sessions 692

5.7. Test Session Termination 693

5.8. Check for Session Fixation 694

5.9. Check for XSRF 694

5.10. Check Cookie Scope 695

6. Test Access Controls 696

6.1. Understand the Access Control Requirements 696

6.2. Testing with Multiple Accounts 697

6.3. Testing with Limited Access 697

6.4. Test for Insecure Access Control Methods 698

7. Test for Input-Based Vulnerabilities 699

7.1. Fuzz All Request Parameters 699

7.2. Test for SQL Injection 702

7.3. Test for XSS and Other Response Injection 704
7.3.1. Identify Reflected Request Parameters 704
7.3.2. Test for Reflected XSS 705
7.3.3. Test for HTTP Header Injection 705
7.3.4. Test for Arbitrary Redirection 706
7.3.5. Test for Stored Attacks 706

7.4. Test for OS Command Injection 707

7.5. Test for Path Traversal 709

7.6. Test for Script Injection 711

7.7. Test for File Inclusion 711

8. Test for Function-Specific Input Vulnerabilities 712

8.1. Test for SMTP Injection 712

8.2. Test for Native Software Vulnerabilities 713
8.2.1. Test for Buffer Overflows 713
8.2.2. Test for Integer Vulnerabilities 714
8.2.3. Test for Format String Vulnerabilities 714

8.3. Test for SOAP Injection 715

8.4. Test for LDAP Injection 715

8.5. Test for XPath Injection 716

9. Test for Logic Flaws 717

9.1. Identify the Key Attack Surface 717

9.2. Test Multistage Processes 718

9.3. Test Handling of Incomplete Input 718

Contents xxi

9.4. Test Trust Boundaries 719
9.5. Test Transaction Logic 719
10. Test for Shared Hosting Vulnerabilities 720
10.1. Test Segregation in Shared Infrastructures 720
10.2. Test Segregation between ASP-Hosted Applications 721
11. Test for Web Server Vulnerabilities 721
11.1. Test for Default Credentials 722
11.2. Test for Default Content 722
11.3. Test for Dangerous HTTP Methods 722
11.4. Test for Proxy Functionality 723
11.5. Test for Virtual Hosting Misconfiguration 723
11.6. Test for Web Server Software Bugs 723
12. Miscellaneous Checks 724
12.1. Check for DOM-Based Attacks 724
12.2. Check for Frame Injection 725
12.3. Check for Local Privacy Vulnerabilities 726
12.4. Follow Up Any Information Leakage 726
12.5. Check for Weak SSL Ciphers 727

Index 729

Acknowledgments

Our primary debt is to the directors and our other colleagues at Next Genera-
tion Security Software, who have provided a creative working environment,
promoted sharing of knowledge, and supported us during the months spent
producing this book. In particular, we received direct assistance from Chris
Anley, Dave Armstrong, Dominic Beecher, David Litchfield, Adam Matthews,
Dave Spencer, and Peter Winter-Smith.

In addition to our immediate colleagues, we are greatly indebted to the
wider community of researchers who have shared their ideas and contributed
to the collective understanding of web application security issues that exists
today. Because this is a practical handbook rather than a work of scholarship,
we deliberately avoided filling it with a thousand citations of influential arti-
cles, books, and blog postings which spawned the ideas involved. We hope
that people whose work we discuss anonymously are content with the general
credit given here.

We are grateful to the people at Wiley, in particular to Carol Long for enthusi-
astically supporting our project from the outset, to Adaobi Obi Tulton for helping
to polish our manuscript and coaching us in the quirks of “American English,”
and to Christine O’Connor’s team for delivering a first-rate production.

A large measure of thanks is due to our respective partners, Becky and
Susan, for tolerating the significant distraction and time involved in producing
a book of this size.

Both authors are indebted to the people who led us into our unusual line of
work. Dafydd would like to thank Martin Law. Martin is a great guy who first
taught me how to hack, and encouraged me to spend my time developing tech-
niques and tools for attacking applications. Marcus would like to thank his par-
ents for a great many things, a significant one being getting me into computers.
I've been getting into computers ever since.

Introduction

This book is a practical guide to discovering and exploiting security flaws in
web applications. By “web application” we mean an application that is accessed
by using a web browser to communicate with a web server. We examine a wide
variety of different technologies, such as databases, file systems, and web ser-
vices, but only in the context in which these are employed by web applications.
If you want to learn how to run port scans, attack firewalls, or break into
servers in other ways, we suggest you look elsewhere. But if you want to know
how to hack into a web application, steal sensitive data, and perform unau-
thorized actions, then this is the book for you. There is enough that is interest-
ing and fun to say on that subject without straying into any other territory.

Overview of This Book

The focus of this book is highly practical. While we include sufficient back-
ground and theory for you to understand the vulnerabilities that web applica-
tions contain, our primary concern is with the tasks and techniques that you
need to master in order to break into them. Throughout the book, we spell out
the specific steps that you need to take to detect each type of vulnerability, and
how to exploit it to perform unauthorized actions. We also include a wealth of
real-world examples, derived from the authors” many years of experience, illus-
trating how different kinds of security flaw manifest themselves in today’s web
applications.

Security awareness is usually a two-edged sword. Just as application devel-
opers can benefit from understanding the methods used by attackers, hackers

xxvi

Introduction

can gain from knowing how applications can effectively defend themselves. In
addition to describing security vulnerabilities and attack techniques, we also
describe in detail the countermeasures that applications can take to thwart an
attacker. For those of you who perform penetration tests of web applications,
this will enable you to provide high-quality remediation advice to the owners
of the applications you compromise.

Who Should Read This Book

The primary audience for this book is anyone with a personal or professional
interest in attacking web applications. It is also aimed at anyone responsible
for developing and administering web applications — knowing how your
enemy operates will help you to defend against them.

We assume that the reader is familiar with core security concepts, such as
logins and access controls, and has a basic grasp of core web technologies,
such as browsers, web servers, and HTTP. However, any gaps in your current
knowledge of these areas will be easy to remedy, through either the explana-
tions contained within this book or references elsewhere.

In the course of illustrating many categories of security flaws, we provide
code extracts showing how applications can be vulnerable. These examples
are simple enough to be understood without any prior knowledge of the lan-
guage in question but will be most useful if you have some basic experience of
reading or writing code.

How This Book Is Organized

This book is organized roughly in line with the dependencies between the dif-
ferent topics covered. If you are new to web application hacking, you should
read the book through from start to finish, acquiring the knowledge and under-
standing you need to tackle later chapters. If you already have some experience
in this area, you can jump straight into any chapter or subsection that particu-
larly interests you. Where necessary, we have included cross-references to other
chapters, which you can use to fill in any gaps in your understanding.

We begin with three context-setting chapters describing the current state of
web application security and the trends that indicate how it is likely to evolve
in the near future. We examine the core security problem affecting web appli-
cations and the defense mechanisms that applications implement to address
this problem. We also provide a primer in the key technologies used in today’s
web applications.

The bulk of the book is concerned with our core topic — the techniques that
you can use to break into web applications. This material is organized around

Introduction xxvii

the key tasks that you need to perform to carry out a comprehensive attack:
from mapping the application’s functionality, scrutinizing and attacking its
core defense mechanisms, to probing for specific categories of security flaws.

The book concludes with three chapters that pull together the various
strands introduced within the book. We describe the process of finding vul-
nerabilities in an application’s source code, review the tools that can assist you
when hacking web applications, and present a detailed methodology for per-
forming a comprehensive and deep attack against a specific target.

Chapter 1, “Web Application (In)security,” describes the current state of
security in web applications on the Internet today. Despite common assur-
ances, the majority of applications are insecure and can be compromised in
some way with a modest degree of skill. Vulnerabilities in web applications
arise because of a single core problem: users can submit arbitrary input. In this
chapter, we examine the key factors that contribute to the weak security pos-
ture of today’s applications, and describe how defects in web applications can
leave an organization’s wider technical infrastructure highly vulnerable to
attack.

Chapter 2, “Core Defense Mechanisms,” describes the key security mecha-
nisms that web applications employ to address the fundamental problem that
all user input is untrusted. These mechanisms are the means by which an
application manages user access, handles user input, and responds to attack-
ers, and the functions provided for administrators to manage and monitor the
application itself. The application’s core security mechanisms also represent
its primary attack surface, and you need to understand how these mechanisms
are intended to function before you can effectively attack them.

Chapter 3, “Web Application Technologies,” provides a short primer on the
key technologies that you are likely to encounter when attacking web applica-
tions. This covers all relevant aspects of the HTTP protocol, the technologies
commonly used on the client and server sides, and various schemes used for
encoding data. If you are already familiar with the main web technologies,
then you can quickly skim through this chapter.

Chapter 4, “Mapping the Application,” describes the first exercise that you
need to take when targeting a new application, which is to gather as much
information as possible about it, in order to map its attack surface and formu-
late your plan of attack. This process includes exploring and probing the appli-
cation to catalogue all of its content and functionality, identifying all of the
entry points for user input and discovering the technologies in use.

Chapter 5, “Bypassing Client-Side Controls,” describes the first area of
actual vulnerability, which arises when an application relies upon controls
implemented on the client side for its security. This approach is normally
flawed, because any client-side controls can, of course, be circumvented. The
two main ways in which applications make themselves vulnerable are (a) to
transmit data via the client in the assumption that this will not be modified,

xxviii Introduction

and (b) to rely upon client-side checks on user input. In this chapter, we exam-
ine a range of interesting technologies, including lightweight controls imple-
mented within HTML, HTTP, and JavaScript, and more heavyweight controls
using Java applets, ActiveX controls, and Shockwave Flash objects.

Chapters 6 to 8 examine some of the most important defense mechanisms
implemented within web applications: those responsible for controlling user
access. Chapter 6, “Attacking Authentication,” examines the various functions
by which applications gain assurance of the identity of their users. This
includes the main login function and also the more peripheral authentication-
related functions such as user registration, password changing, and account
recovery. Authentication mechanisms contain a wealth of different vulnerabil-
ities, in both design and implementation, which an attacker can leverage to
gain unauthorized access. These range from obvious defects, such as bad pass-
words and susceptibility to brute-force attacks, to more obscure problems
within the authentication logic. We also examine in detail the type of multi-
stage login mechanisms used in many security-critical applications, and
describe the new kinds of vulnerability which these frequently contain.

Chapter 7, “Attacking Session Management,” examines the mechanism by
which most applications supplement the stateless HTTP protocol with the con-
cept of a stateful session, enabling them to uniquely identify each user across
several different requests. This mechanism is a key target when you are attack-
ing a web application, because if you can break it, then you can effectively
bypass the login and masquerade as other users without knowing their cre-
dentials. We look at various common defects in the generation and transmis-
sion of session tokens, and describe the steps you can take to discover and
exploit these.

Chapter 8, “Attacking Access Controls,” examines the ways in which appli-
cations actually enforce access controls, relying upon the authentication and
session management mechanisms to do so. We describe various ways in which
access controls can be broken and the ways in which you can detect and
exploit these weaknesses.

Chapter 9, “Injecting Code,” covers a large category of related vulnerabili-
ties, which arise when applications embed user input into interpreted code in
an unsafe way. We begin with a detailed examination of SQL injection vulner-
abilities, covering the full range of attacks from the most obvious and trivial to
advanced exploitation techniques involving out-of-band channels, inference,
and time delays. For each kind of vulnerability and attack technique, we
describe the relevant differences between three common types of databases:
MS-SQL, Oracle, and MySQL. We then cover several other categories of injec-
tion vulnerability, including the injection of operating system commands,
injection into web scripting languages, and injection into the SOAP, XPath,
SMTP, and LDAP protocols.

Introduction

Chapter 10, “Exploiting Path Traversal,” examines a small but important
category of vulnerabilities that arise when user input is passed to file system
APIs in an unsafe way, enabling an attacker to retrieve or modify arbitrary
files on the web server. We describe various bypasses that may be effective
against the defenses commonly implemented to prevent path traversal
attacks.

Chapter 11, “Attacking Application Logic,” examines a significant, and fre-
quently overlooked, area of every application’s attack surface: the internal
logic which it carries out to implement its functionality. Defects in an applica-
tion’s logic are extremely varied and are harder to characterize than common
vulnerabilities like SQL injection and cross-site scripting. For this reason, we
present a series of real-world examples where defective logic has left an appli-
cation vulnerable, and thereby illustrate the variety of faulty assumptions
made by application designers and developers. From these different individ-
ual flaws, we w derive a series of specific tests that you can perform to locate
many types of logic flaws that often go undetected.

Chapter 12, “Attacking Other Users,” covers a large and very topical area of
related vulnerabilities which arise when defects within a web application can
enable a malicious user of the application to attack other users and compro-
mise them in various ways. The largest vulnerability of this kind is cross-site
scripting, a hugely prevalent flaw affecting the vast majority of web applica-
tions on the Internet. We examine in detail all of the different flavors of XSS
vulnerabilities, and describe an effective methodology for detecting and
exploiting even the most obscure manifestations of these. We then look at sev-
eral other types of attacks against other users, including redirection attacks,
HTTP header injection, frame injection, cross-site request forgery, session fixa-
tion, exploiting bugs in ActiveX controls, and local privacy attacks.

Chapter 13, “Automating Bespoke Attacks,” does not introduce any new
categories of vulnerability, but instead, describes a crucial technique which
you need to master to attack web applications effectively. Because every web
application is different, most attacks are bespoke (or custom-made) in some
way, tailored to the application’s specific behavior and the ways you have dis-
covered to manipulate it to your advantage. They also frequently require issu-
ing a large number of similar requests and monitoring the application’s
responses. Performing these requests manually is extremely laborious and one
is prone to make mistakes. To become a truly accomplished web application
hacker, you need to automate as much of this work as possible, to make your
bespoke attacks easier, faster, and more effective. In this chapter, we describe
in detail a proven methodology for achieving this.

Chapter 14, “Exploiting Information Disclosure,” examines various ways in
which applications leak information when under active attack. When you are
performing all of the other types of attacks described in this book, you should
always monitor the application to identify further sources of information

Introduction

disclosure that you can exploit. We describe how you can investigate anom-
alous behavior and error messages to gain a deeper understanding of the
application’s internal workings and fine-tune your attack. We also cover ways
of manipulating defective error handling to systematically retrieve sensitive
information from the application.

Chapter 15, “Attacking Compiled Applications,” examines a set of impor-
tant vulnerabilities which arise in applications written in native code lan-
guages like C and C++. These vulnerabilities include buffer overflows, integer
vulnerabilities, and format string flaws. This is a potentially huge topic, and
we focus on ways of detecting these vulnerabilities in web applications, and
look at some real-world examples of how these have arisen and been
exploited.

Chapter 16, “Attacking Application Architecture,” examines an important
area of web application security that is frequently overlooked. Many applica-
tions employ a tiered architecture, and a failure to segregate different tiers
properly often leaves an application vulnerable, enabling an attacker who has
found a defect in one component to quickly compromise the entire applica-
tion. A different range of threats arises in shared hosting environments, where
defects or malicious code in one application can sometimes be exploited to
compromise the environment itself and other applications running within it.

Chapter 17, “Attacking the Web Server,” describes various ways in which
you can target a web application by targeting the web server on which it is
running. Vulnerabilities in web servers are broadly composed of defects in
their configuration and security flaws within the web server software. This
topic is on the boundary of the scope of this book, because the web server is
strictly a different component in the technology stack. However, most web
applications are intimately bound up with the web server on which they run;
therefore, attacks against the web server are included in the book because they
can often be used to compromise an application directly, rather than indirectly
by first compromising the underlying host.

Chapter 18, “Finding Vulnerabilities in Source Code,” describes a com-
pletely different approach to finding security flaws than those described else-
where within this book. There are many situations in which it may be possible
to perform a review of an application’s source code, not all of which require
any cooperation from the application’s owner. Reviewing an application’s
source code can often be highly effective in discovering vulnerabilities that
would be difficult or time-consuming to detect by probing the running appli-
cation. We describe a methodology, and provide a language-by-language cheat
sheet, to enable you to perform an effective code review even if you have very
limited programming experience yourself.

Chapter 19, “A Web Application Hacker’s Toolkit,” pulls together in one place
the various tools described in the course of this book, and which the authors use
when attacking real-world web applications. We describe the strengths and

Introduction

XXXi

weaknesses of different tools, explain the extent to which any fully automated
tool can be effective in finding web application vulnerabilities, and provide
some tips and advice for getting the most out of your toolkit.

Chapter 20, “A Web Application Hacker’s Methodology,” contains a com-
prehensive and structured collation of all the procedures and techniques
described in this book. These are organized and ordered according to the logi-
cal dependencies between tasks when you are carrying out an actual attack. If
you have read and understood all of the vulnerabilities and techniques
described in this book, you can use this methodology as a complete checklist
and work plan when carrying out an attack against a web application.

Tools You Will Need

This book is strongly geared towards the hands-on techniques that you can use
to attack web applications. After reading the book, you will understand the
specifics of each individual task, what it involves technically, and why it works
in helping you detect and exploit vulnerabilities. The book is emphatically not
about downloading some tool, pointing it at a target application, and believing
what the tool’s output tells you about the state of the application’s security.

That said, there are several tools which you will find useful, and sometimes
indispensable, when performing the tasks and techniques that we describe. All
of these are easily available on the Internet, and we recommended that you
download and experiment with each tool at the point where it appears in the
course of the book.

What's on the Web Site

The companion web site for this book at www.wiley.com/go/webhacker con-
tains several resources that you will find useful in the course of mastering the
techniques we describe and using them to attack actual applications. In partic-
ular, the web site contains the following;:

m Source code to some of the scripts we present in the book.

m A list of current links to all of the tools and other resources discussed in
the book.

m A handy checklist of the tasks involved in attacking a typical application.
m Answers to the questions posed at the end of each chapter.

m A hacking challenge containing many of the vulnerabilities described in
the book.

xxxii Introduction

Bring It On

Web application security is a fun and thriving subject. We enjoyed writing this
book as much as we continue to enjoy hacking into web applications on a daily
basis. We hope that you will also take pleasure from learning about the differ-
ent techniques we describe and how these can be defended against.

Before going any further, we should mention an important caveat. In most
countries, attacking computer systems without the owner’s permission is
against the law. The majority of the techniques we describe are illegal if carried
out without consent.

The authors are professional penetration testers who routinely attack web
applications on behalf of clients, to help them improve their security. In recent
years, numerous security professionals and others have acquired criminal
records, and ended their careers, by experimenting on or actively attacking
computer systems without permission. We urge you to use the information
contained in this book only for lawful purposes.

Web Application (In)security

There is no doubt that web application security is a current and very news-
worthy subject. For all concerned, the stakes are high: for businesses that
derive increasing revenue from Internet commerce, for users who trust web
applications with sensitive information, and for criminals who can make big
money by stealing payment details or compromising bank accounts. Reputa-
tion plays a critical role: few people want to do business with an insecure web
site, and so few organizations want to disclose details about their own security
vulnerabilities or breaches. Hence, it is not trivial to obtain reliable informa-
tion about the state of web application security today.

This chapter takes a brief look at how web applications have evolved and the
many benefits they provide. We present some metrics about vulnerabilities in
current web applications, drawn from the authors’ direct experience, demon-
strating that the majority of applications are far from secure. We describe the
core security problem facing web applications — that users can supply arbi-
trary input — and the various factors that contribute to their weak security pos-
ture. Finally, we describe the latest trends in web application security and the
ways in which these may be expected to develop in the near future.

Chapter 1 =« Web Application (In)security

The Evolution of Web Applications

In the early days of the Internet, the World Wide Web consisted only of web sites.
These were essentially information repositories containing static documents,
and web browsers were invented as a means of retrieving and displaying those
documents, as shown in Figure 1-1. The flow of interesting information was one-
way, from server to browser. Most sites did not authenticate users, because there
was no need to — each user was treated in the same way and presented with the
same information. Any security threats arising from hosting a web site related
largely to vulnerabilities in web server software (of which there were many). If
an attacker compromised a web server, he would not normally gain access to
any sensitive information, because the information held on the server was
already open to public view. Rather, an attacker would typically modify the files
on the server to deface the web site’s contents, or use the server’s storage and
bandwidth to distribute “warez.”

¥)paul Wrights Future Employer Page - Mozilla Firefox e o |EI|5|

File Edit \Wew Go Bookmarks Tools Help

(\;:l - [:> - @ I:I @ I‘—‘ ikt f Py kot org, uk/paulf j © o IlGL

Dear prospective future employer, I—
This 13 the CV site of Paul Michael Wright, Oracle Security Consultant, Developer and Forensic Analyst for NGS
Software in Sutton, Surrey (South London) where I have worked for the last two years and previously in a similar

role for Pentest Ltd of Cheshire. I am a non-smoking, British, 38 year old, married man, relocatable with no crimmnal
record, disabilities or health problems and can be identified by this photograph of my wife and T

Introductory swnmary:

-Consulting to top banks and technology companies on the subject of Cracle security and general IT security.
-Eesponsible for writing the Oracle security checks in NGE SQuirrell for Oracle.

-Currently the most qualified SAMNI-GIAC person outside of U3 and Span with 2 certs including the G
speciahised m Oracle Forensics.

-Credited by Oracle in their April 2007 CPT with finding and ethically reporting a security vulnerability in the Oracle
RDBMSE. Thave fve mote to cotne in fiature CPT's,

-Author of Oracle Forensics by Rampant Techpress. ISBIN 0-9776715-2-6

-Teacher for SANS of Oracle security, Incident Handling and Metasploit courses

-Author of many papers ncliding a NISE. paper on Oracle passwords (in Japanese), Oracle forensics for
vulnerabiity detection m the 3ANS Readng Room and the first paper published on the subject of Oracle Forensics at
GIAC,

=
4

| Done

Figure 1-1: A traditional web site containing static information

Today, the World Wide Web is almost unrecognizable from its earlier form.
The majority of sites on the web are in fact applications (see Figure 1-2). They
are highly functional, and rely upon two-way flow of information between the
server and browser. They support registration and login, financial transactions,
search, and the authoring of content by users. The content presented to users is
generated dynamically on the fly, and is often tailored to each specific user.
Much of the information processed is private and highly sensitive. Security is

Chapter 1 =« Web Application (In)security

therefore a big issue: no one wants to use a web application if they believe their
information will be disclosed to unauthorized parties.

Web applications bring with them new and significant security threats. Each
application is different and may contain unique vulnerabilities. Most applica-
tions are developed in-house, and many by developers who have little under-
standing of the security problems that may arise in the code they are
producing. To deliver their core functionality, web applications normally
require connectivity to internal computer systems that contain highly sensitive
data and are able to perform powerful business functions. Ten years ago, if you
wanted to make a funds transfer, you visited your bank and someone per-
formed it for you; today, you can visit their web application and perform it
yourself. An attacker who compromises a web application may be able to steal
personal information, carry out financial fraud, and perform malicious actions
against other users.

¥)Main Page - Wikipedia, the free encyclopedia - Mozilla Firefox] 5]

File Edit VWiew Go Bookmatks Tools Help

<::| = L‘r> 5 @ O @ I“;‘r http: /en.wikipedia.orgfwikifMain_Page j ® 6o Ilg,

2 Sign in/create account =

main page discussion vigw source histary
Your eoti fons keep waning!
Welcome to Wikipedia, " At = History = Sociely
the free encyclopedia that anyone can edit. = Biography = Mathemstics = Technology
1,754,249 articles in English = Geography = Science = Allportals
The Free Encyclopedia Overview - Editing - Questions - Help Contents - Categaories - Featured content- A-Z index
navigstion
= Main page Today's featured article In the news
= Cortents
= Festured content Mayan languages are a = Fighting
- g“":m E‘:_FTS language family spoken in between the
= Random article :
tesoamerica and northern Lebanese
interaction Central America. Mayan Armed Forces
= Apaut Wikipedia languages are spoken by at and Fatah
= Community portal least & million indigenous al-lslam kills at
= Recert changes Maya, primarily in Guatemala, least seventy people in norther
= Upload file Mexico, and Belize. The Mayan Lebanon.
= Cortact us

language family is one of the = Cuthe Sark fnicturad]_a 10th =
| Daone VA

Figure 1-2 A typical web application

Common Web Application Functions

Web applications have been created to perform practically every useful func-
tion one could possibly implement online. Examples of web application func-
tions that have risen to prominence in recent years include:

m Shopping (Amazon)
m Social networking (MySpace)

4

Chapter 1 =« Web Application (In)security

m Banking (Citibank)
m Web search (Google)
m Auctions (eBay)

m Gambling (Betfair)
m Web logs (Blogger)
m Web mail (Hotmail)

m [nteractive information (Wikipedia)

In addition to the public Internet, web applications have been widely
adopted inside organizations to perform key business functions, including
accessing HR services and managing company resources. They are also fre-
quently used to provide an administrative interface to hardware devices such
as printers, and other software such as web servers and intrusion detection
systems.

Numerous applications that predated the rise of web applications have been
migrated to this technology. Business applications like enterprise resource
planning (ERP) software, which were previously accessed using a proprietary
thick-client application, can now be accessed using a web browser. Software
services such as email, which originally required a separate email client, can
now be accessed via web interfaces like Outlook Web Access. This trend is con-
tinuing as traditional desktop office applications such as word processors and
spreadsheets are migrated to web applications, through services like Google
Apps and Microsoft Office Live.

The time is fast approaching when the only client software that most com-
puter users will need is a web browser. A hugely diverse range of functions
will have been implemented using a shared set of protocols and technologies,
and in so doing will have inherited a distinctive range of common security
vulnerabilities.

Benefits of Web Applications

It is not difficult to see why web applications have enjoyed such a dramatic
rise to prominence. Several technical factors have worked alongside the obvi-
ous commercial incentives to drive the revolution that has occurred in the way
we use the Internet:

m HTTDP, the core communications protocol used to access the World Wide
Web, is lightweight and connectionless. This provides resilience in the
event of communication errors and avoids the need for the server to
hold open a network connection to every user as was the case in many

Chapter 1 =« Web Application (In)security

5

legacy client-server applications. HTTP can also be proxied and tun-
neled over other protocols, allowing for secure communication in any
network configuration.

m Every web user already has a browser installed on their computer.
Web applications deploy their user interface dynamically to the
browser, avoiding the need to distribute and manage separate client
software, as was the case with pre-web applications. Changes to the
interface only need to be implemented once, on the server, and take
effect immediately.

m Today’s browsers are highly functional, enabling rich and satisfying
user interfaces to be built. Web interfaces use standard navigational and
input controls that are immediately familiar to users, avoiding the need
to learn how each individual application functions. Client-side scripting
enables applications to push part of their processing to the client side,
and browsers’ capabilities can be extended in arbitrary ways using
thick-client components where necessary.

m The core technologies and languages used to develop web applications
are relatively simple. A wide range of platforms and development tools
are available to facilitate the development of powerful applications by
relative beginners, and a large quantity of open source code and other
resources is available for incorporation into custom-built applications.

Web Application Security

As with any new class of technology, web applications have brought with
them a new range of security vulnerabilities. The set of most commonly
encountered defects has evolved somewhat over time. New attacks have been
conceived that were not considered when existing applications were devel-
oped. Some problems have become less prevalent as awareness of them has
increased. New technologies have been developed that have introduced new
possibilities for exploitation. Some categories of flaws have largely gone away
as the result of changes made to web browser software.

Throughout this evolution, compromises of prominent web applications
have remained in the news, and there is no sense that a corner has been turned
and that these security problems are on the wane. Arguably, web application
security is today the most significant battleground between attackers and
those with computer resources and data to defend, and it is likely to remain so
for the foreseeable future.

Chapter 1 =« Web Application (In)security

“This Site Is Secure”

There is a widespread awareness that security is an “issue” for web applica-
tions. Consult the FAQ page of a typical application, and you will be reassured
that it is in fact secure. For example:

This site is absolutely secure. It has been designed to use 128-bit Secure Socket
Layer (SSL) technology to prevent unauthorized users from viewing any of your
information. You may use this site with peace of mind that your data is safe with us.

In virtually every case, web applications state that they are secure because
they use SSL. Users are often urged to verify the site’s certificate, admire the
advanced cryptographic protocols in use, and on this basis, trust it with their
personal information.

In fact, the majority of web applications are insecure, and in ways that have
nothing to do with SSL. The authors of this book have tested hundreds of web
applications in recent years. Figure 1-3 shows the proportions of those appli-
cations tested during 2006 and 2007 that were found to be affected by some
common categories of vulnerability. These are explained briefly below:

m Broken authentication (67%) — This category of vulnerability encom-
passes various defects within the application’s login mechanism, which
may enable an attacker to guess weak passwords, launch a brute-force
attack, or bypass the login altogether.

m Broken access controls (78%) — This involves cases where the appli-
cation fails to properly protect access to its data and functionality,
potentially enabling an attacker to view other users’ sensitive data held
on the server, or carry out privileged actions.

m SQL injection (36%) — This vulnerability enables an attacker to sub-
mit crafted input to interfere with the application’s interaction with
back-end databases. An attacker may be able to retrieve arbitrary data
from the application, interfere with its logic, or execute commands on
the database server itself.

m Cross-site scripting (91%) — This vulnerability enables an attacker to
target other users of the application, potentially gaining access to their
data, performing unauthorized actions on their behalf, or carrying out
other attacks against them.

m Information leakage (81%) — This involves cases where an applica-
tion divulges sensitive information that is of use to an attacker in devel-
oping an assault against the application, through defective error
handling or other behavior.

Chapter 1 =« Web Application (In)security

Broken authentication

Broken access controls

SQL injection

91%

Cross-site scripting

Information leakage 81%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Incidence in recently tested applications

Figure 1-3 The incidence of some common web application vulnerabilities in
applications recently tested by the authors (based on a sample of more than 100)

SSL is an excellent technology that protects the confidentiality and integrity
of data in transit between the user’s browser and the web server. It helps to
defend against eavesdroppers, and it can provide assurance to the user of the
identity of the web server they are dealing with. But it does not stop attacks
that directly target the server or client components of an application, as most
successful attacks do. Specifically, it does not prevent any of the vulnerabilities
listed previously, or many others that can render an application critically
exposed to attack. Regardless of whether or not they use SSL, most web appli-
cations still contain security flaws.

.m Although SSL has nothing to do with the majority of web application
vulnerabilities, do not infer that it is unnecessary to an application’s security.
Properly used, SSL provides an effective defense against several important
attacks. An occasional mistake by developers is to eschew industry-standard
cryptography in favor of a home-grown solution, which as a rule is more
expensive and less effective. Consider the following (actual) FAQ answer, which
rings even louder alarm bells than the orthodox wisdom described previously:

This site is secure. For your safety (and our peace of mind) we do not use
“standard” security procedures such as SSL but proprietary protocols which we
won't disclose in detail here but permit immediate transfer of any data you
submit to a completely secure location. In other words the data never stays on
a server “floating in cyberspace,” which allows us to keep potential
malfeasants in the dark.

Chapter 1 =« Web Application (In)security

The Core Security Problem:
Users Can Submit Arbitrary Input

As with most distributed applications, web applications face a fundamental
problem which they must address in order to be secure. Because the client is
outside of the application’s control, users can submit completely arbitrary
input to the server-side application. The application must assume that all input
is potentially malicious, and must take steps to ensure that attackers cannot use
crafted input to compromise the application by interfering with its logic and
behavior and gaining unauthorized access to its data and functionality.
This core problem manifests itself in various ways:

m Users can interfere with any piece of data transmitted between the
client and the server, including request parameters, cookies, and HTTP
headers. Any security controls implemented on the client side, such as
input validation checks, can be easily circumvented.

m Users can send requests in any sequence, and can submit parameters at
a different stage than the application expects, more than once, or not at
all. Any assumption which developers make about how users will
interact with the application may be violated.

m Users are not restricted to using only a web browser to access the appli-
cation. There are numerous widely available tools that operate along-
side, or independently of, a browser, to help attack web applications.
These tools can make requests that no browser would ordinarily make,
and can generate huge numbers of requests quickly to find and exploit
problems.

The majority of attacks against web applications involve sending input to
the server which is crafted to cause some event that was not expected or
desired by the application’s designer. Some examples of submitting crafted
input to achieve this objective are as follows:

m Changing the price of a product transmitted in a hidden HTML form
field, to fraudulently purchase the product for a cheaper amount.

m Modifying a session token transmitted in an HTTP cookie, to hijack the
session of another authenticated user.

m Removing certain parameters that are normally submitted, to exploit a
logic flaw in the application’s processing.

m Altering some input that will be processed by a back-end database, to
inject a malicious database query and so access sensitive data.

Needless to say, SSL does nothing to stop an attacker from submitting
crafted input to the server. If the application uses SSL, this simply means that

Chapter 1 =« Web Application (In)security

other users on the network cannot view or modify the attacker’s data in tran-
sit. Because the attacker controls her end of the SSL tunnel, she can send any-
thing she likes to the server through this tunnel. If any of the previously
mentioned attacks are successful, then the application is emphatically vulner-
able, regardless of what its FAQ may tell you.

Key Problem Factors

The core security problem faced by web applications arises in any situation
where an application must accept and process untrusted data that may be
malicious. However, in the case of web applications, there are several factors
which have combined to exacerbate the problem, and which explain why
so many web applications on the Internet today do such a poor job of address-
ing it.

Immature Security Awareness

There is a less mature level of awareness of web application security issues
than there is in longer-established areas such as networks and operating sys-
tems. While most people working in IT security have a reasonable grasp of the
essentials of securing networks and hardening hosts, there is still widespread
confusion and misconception about many of the core concepts involved in
web application security. It is common to meet experienced web application
developers to whom an explanation of many basic types of flaws comes as a
complete revelation.

In-House Development

Most web applications are developed in-house by an organization’s own staff
or contractors. Even where an application employs third-party components,
these are typically customized or bolted together using new code. In this situ-
ation, every application is different and may contain its own unique defects.
This stands in contrast to a typical infrastructure deployment in which an
organization can purchase a best-of-breed product and install it in line with
industry-standard guidelines.

Deceptive Simplicity

With today’s web application platforms and development tools, it is possible
for a novice programmer to create a powerful application from scratch in a
short period of time. But there is a huge difference between producing code
that is functional and code that is secure. Many web applications are created

Chapter 1 =« Web Application (In)security

by well-meaning individuals who simply lack the knowledge and experience
to identify where security problems may arise.

Rapidly Evolving Threat Profile

As a result of its relative immaturity, research into web application attacks and
defenses is a thriving area in which new concepts and threats are conceived at
a faster rate than is now the case for older technologies. A development team
that begins a project with a complete knowledge of current threats may well
have lost this status by the time the application is completed and deployed.

Resource and Time Constraints

Most web application development projects are subject to strict constraints on
time and resources, arising from the economics of in-house, one-off develop-
ment. It is not usually possible to employ dedicated security expertise in the
design or development teams, and due to project slippage security testing by
specialists is often left until very late in the project’s lifecycle. In the balancing
of competing priorities, the need to produce a stable and functional applica-
tion by a deadline normally overrides less tangible security considerations. A
typical small organization may be willing to pay for only a few man-days of
consulting time to evaluate a new application. A quick penetration test will
often find the low-hanging fruit, but it may miss more subtle vulnerabilities
that require time and patience to identify.

Overextended Technologies

Many of the core technologies employed in web applications began life when
the landscape of the World Wide Web was very different, and have since been
pushed far beyond the purposes for which they were originally conceived —
for example, the use of JavaScript as a means of data transmission in many
AJAX-based applications. As the expectations placed on web application func-
tionality have rapidly evolved, the technologies used to implement this func-
tionality have lagged behind the curve, with old technologies stretched and
adapted to meet new requirements. Unsurprisingly, this has led to security
vulnerabilities as unforeseen side effects emerge.

The New Security Perimeter

Before the rise of web applications, organizations’ efforts to secure themselves
against external attack were largely focused on the network perimeter. Defend-
ing this perimeter entailed hardening and patching the services that it needed
to expose, and firewalling access to others.

Chapter 1 =« Web Application (In)security

Web applications have changed all of this. For an application to be accessi-
ble by its users, the perimeter firewall must allow inbound connections to the
server over HTTP/S. And for the application to function, the server must be
allowed to connect to supporting back-end systems, such as databases, main-
frames, and financial and logistical systems. These systems often lie at the core
of the organization’s operations and reside behind several layers of network-
level defenses.

If a vulnerability exists within a web application, then an attacker on the
public Internet may be able to compromise the organization’s core back-end
systems solely by submitting crafted data from his web browser. This data will
sail past all of the organization’s network defenses, in just the same way as
does ordinary, benign traffic to the web application.

The effect of widespread deployment of web applications is that the security
perimeter of a typical organization has moved. Part of that perimeter is still
embodied in firewalls and bastion hosts. But a significant part of it is now
occupied by the organization’s web applications. Because of the manifold
ways in which web applications receive user input and pass this to sensitive
back-end systems, they are the potential gateways for a wide range of attacks,
and defenses against these attacks must be implemented within the applica-
tions themselves. A single line of defective code in a single web application can
render an organization’s internal systems vulnerable. The statistics described
previously, of the incidence of vulnerabilities within this new security perime-
ter, should give every organization pause for thought.

.m For an attacker targeting an organization, gaining access to the
network or executing arbitrary commands on servers may well not be what
they really want to achieve. Often, and perhaps typically, what an attacker
really desires is to perform some application-level action such as stealing
personal information, transferring funds, or making cheap purchases. And the
relocation of the security perimeter to the application layer may greatly assist
an attacker in achieving these objectives.

For example, suppose that an attacker wishes to “hack in” to a bank’s systems
and steal money from users’ accounts. Before the bank deployed a web
application, the attacker might have needed to find a vulnerability in a publicly
reachable service, exploit this to gain a toehold on the bank’s DMZ, penetrate
the firewall restricting access to its internal systems, map the network to find
the mainframe computer, decipher the arcane protocol used to access it, and
then guess some credentials in order to log in. However, if the bank deploys a
vulnerable web application, then the attacker may be able to achieve the same
outcome simply by modifying an account number in a hidden field of an HTML
form.

12

Chapter 1 =« Web Application (In)security

A second way in which web applications have moved the security perime-
ter arises from the threats that users themselves face when they access a vul-
nerable application. A malicious attacker can leverage a benign but vulnerable
web application to attack any user who visits it. If that user is located on an
internal corporate network, the attacker may harness the user’s browser to
launch an attack against the local network from the user’s trusted position.
Without any cooperation from the user, the attacker may be able to carry out
any action that the user could perform if she were herself malicious.

Network administrators are familiar with the idea of preventing their users
from visiting malicious web sites, and end users themselves are gradually
becoming more aware of this threat. But the nature of web application vulner-
abilities means that a vulnerable application may present no less of a threat to
its users and their organization than a web site that is overtly malicious. Cor-
respondingly, the new security perimeter imposes a duty of care on all appli-
cation owners to protect their users from attacks against them delivered via
the application.

The Future of Web Application Security

Several years after their widespread adoption, web applications on the Internet
today are still rife with vulnerabilities. Understanding of the security threats
facing web applications, and effective ways of addressing these, remains imma-
ture within the industry. There is currently little indication that the problem fac-
tors described previously are going to go away in the near future.

That said, the details of the web application security landscape are not sta-
tic. While old and well understood vulnerabilities like SQL injection continue
to appear, their prevalence is gradually diminishing. Further, the instances
that remain are becoming more difficult to find and exploit. Much current
research is focused on developing advanced techniques for attacking more
subtle manifestations of vulnerabilities which a few years ago could be easily
detected and exploited using only a browser.

A second prominent trend is a gradual shift in attention from traditional
attacks against the server side of the application to those that target other
users. The latter kind of attack still leverages defects within the application
itself, but it generally involves some kind of interaction with another user, to
compromise that user’s dealings with the vulnerable application. This is a
trend that has been replicated in other areas of software security. As awareness
of security threats matures, flaws in the server side are the first to be well
understood and addressed, leaving the client side as a key battleground as the
learning process continues. Of all the attacks described in this book, those
against other users are evolving the most quickly, and are the focus of most
current research.

Chapter 1 =« Web Application (In)security

13

Chapter Summary

In a few short years, the World Wide Web has evolved from purely static infor-
mation repositories into highly functional applications that process sensitive
data and perform powerful actions with real-world consequences. During this
development, several factors have combined to bring about the weak security
posture demonstrated by the majority of today’s web applications.

Most applications face the core security problem that users can submit arbi-
trary input. Every aspect of the user’s interaction with the application may be
malicious and should be regarded as such unless proven otherwise. Failure to
properly address this problem can leave applications vulnerable to attack in
numerous ways.

All of the evidence about the current state of web application security indi-
cates that this problem has not been resolved on any significant scale, and that
attacks against web applications present a serious threat both to the organiza-
tions that deploy them and to the users who access them.

Core Defense Mechanisms

The fundamental security problem with web applications — that all user
input is untrusted — gives rise to a number of security mechanisms that appli-
cations use to defend themselves against attack. Virtually all applications
employ mechanisms that are conceptually similar, although the details of the
design and the effectiveness of the implementation differ very widely indeed.

The defense mechanisms employed by web applications comprise the fol-
lowing core elements:

m Handling user access to the application’s data and functionality, to pre-
vent users from gaining unauthorized access.

m Handling user input to the application’s functions, to prevent mal-
formed input from causing undesirable behavior.

m Handling attackers, to ensure that the application behaves appropri-
ately when being directly targeted, taking suitable defensive and offen-
sive measures to frustrate the attacker.

m Managing the application itself, by enabling administrators to monitor
its activities and configure its functionality.

Because of their central role in addressing the core security problem, these
mechanisms also make up the vast majority of a typical application’s attack
surface. If knowing your enemy is the first rule of warfare, then understanding
these mechanisms thoroughly is the main prerequisite to being able to attack

15

Chapter 2 = Core Defense Mechanisms

applications effectively. If you are new to hacking web applications, and even
if you are not, you should be sure to take time to understand how these core
mechanisms work in each of the applications you encounter, and identify the
weak points that leave them vulnerable to attack.

Handling User Access

A central security requirement that virtually any application needs to meet is
to control users” access to its data and functionality. In a typical situation, there
are several different categories of user; for example, anonymous users, ordi-
nary authenticated users, and administrative users. Further, in many situa-
tions different users are permitted to access a different set of data; for example,
users of a web mail application should be able to read their own email but not
other people’s.

Most web applications handle access using a trio of interrelated security
mechanisms:

m Authentication
m Session management

m Access control

Each of these mechanisms represents a significant area of an application’s
attack surface, and each is absolutely fundamental to an application’s overall
security posture. Because of their interdependencies, the overall security pro-
vided by the mechanisms is only as strong as the weakest link in the chain. A
defect in any single component may enable an attacker to gain unrestricted
access to the application’s functionality and data.

Authentication

The authentication mechanism is logically the most basic dependency in an
application’s handling of user access. Authenticating a user involves estab-
lishing that the user is in fact who he claims to be. Without this facility, the
application would need to treat all users as anonymous — the lowest possible
level of trust.

The majority of today’s web applications employ the conventional authenti-
cation model in which the user submits a username and password, which the
application checks for validity. Figure 2-1 shows a typical login function. In secu-
rity-critical applications such as those used by online banks, this basic model is
usually supplemented by additional credentials and a multistage login process.
When security requirements are higher still, other authentication models may be
used, based on client certificates, smartcards, or challenge-response tokens. In

Chapter 2 = Core Defense Mechanisms

17

addition to the core login process, authentication mechanisms often employ a
range of other supporting functionality, such as self-registration, account recov-
ery, and a password change facility.

Login

Please log in below by completing the details requested, then select Log In'

For security reasons, you have & limited nurmber of atternpts to provide the correct inforrmation. Ifyou do
not provide the correct information, access to your Intelligent Finance plan will be suspended. [Tthis
happens, please call 0845 609 4343 and we will send you a new Plan Security Code. You will then be
able to access your plan by following the reactivation process.

ITyou are not sure about your login details or require help, please call us.

Online Username | This must be atleast & charactors long and

can have Jefters and or nurmbers, but no
S02CES.

Online Password I This rnust be at least 6 characters long and

st have both lstiers and numbers, but

no SPACES.
Log In

Figure 2-1: A typical login function

Despite their superficial simplicity, authentication mechanisms suffer from
a wide range of defects, in both design and implementation. Common prob-
lems may enable an attacker to identify other users’ usernames, guess their
passwords, or bypass the login function altogether by exploiting defects in its
logic. When you are attacking a web application, you should invest a signifi-
cant amount of attention in the various authentication-related functions that it
contains. Surprisingly frequently, defects in this functionality will enable you
to gain unauthorized access to sensitive data and functionality.

Session Management

The next logical task in the process of handling user access is to manage the
authenticated user’s session. After successfully logging in to the application,
the user will access various pages and functions, making a series of HTTP
requests from their browser. At the same time, the application will be receiving
countless other requests from different users, some of whom are authenticated
and some of whom are anonymous. In order to enforce effective access control,
the application needs a way of identifying and processing the series of requests
that originate from each unique user.

Virtually all web applications meet this requirement by creating a session
for each user and issuing the user a token that identifies the session. The ses-
sion itself is a set of data structures held on the server, which are used to track
the state of the user’s interaction with the application. The token is a unique
string that the application maps to the session. When a user has received a

Chapter 2 = Core Defense Mechanisms

token, the browser automatically submits this back to the server in each sub-
sequent HTTP request, enabling the application to associate the request with
that user. HTTP cookies are the standard method for transmitting session
tokens, although many applications use hidden form fields or the URL query
string for this purpose. If a user does not make a request for a given period,
then the session is ideally expired, as in Figure 2-2.

In terms of attack surface, the session management mechanism is highly
dependent on the security of its tokens, and the majority of attacks against it
seek to compromise the tokens issued to other users. If this is possible, an
attacker can masquerade as the victim user and use the application just as if
they had actually authenticated as that user. The principal areas of vulnerabil-
ity arise from defects in the way tokens are generated, enabling an attacker to
guess the tokens issued to other users, and defects in the way tokens are sub-
sequently handled, enabling an attacker to capture other users’ tokens.

Your Account Session has ended

Sorry - for your own protection we have had to leg you out of your online account
because you did not use the service for more than 10 minutes. To re-enter your account,
please login again.

Would you like to log in now?

Figure 2-2: An application enforcing session timeout

A small number of applications dispense with the need for session tokens by
using other means of re-identifying users across multiple requests. If HTTP’s
built-in authentication mechanism is used, then the browser automatically
resubmits the user’s credentials with each request, enabling the application to
identify the user directly from these. In other cases, the application stores the
state information on the client side rather than the server, usually in encrypted
form to prevent tampering.

Access Control

The final logical step in the process of handling user access is to make and
enforce correct decisions regarding whether each individual request should be
permitted or denied. If the preceding mechanisms are functioning correctly,
the application knows the identity of the user from whom each request is
received. On this basis, it needs to decide whether that user is authorized to
perform the action, or access the data, that he is requesting (see Figure 2-3).
The access control mechanism usually needs to implement some fine-
grained logic, with different considerations being relevant to different areas of

Chapter 2 = Core Defense Mechanisms

19

the application and different types of functionality. An application might sup-
port numerous different user roles, each involving different combinations of
specific privileges. Individual users may be permitted to access a subset of the
total data held within the application. Specific functions may implement trans-
action limits and other checks, all of which need to be properly enforced based
on the user’s identity.

Home

Access Denied [403]

We're sorry...

You are not authorized to access this page.

Loain to the site.

.
+ If you typed the page url, check the spelling.

e Click your browser's back button and try another link.
.

Consider telling us about the broken link that led you to this page.

We apologize for the inconvenience, and hope we'll see you again soon.

Figure 2-3: An application enforcing access control

Because of the complex nature of typical access control requirements, this
mechanism is a frequent source of security vulnerabilities that enable an
attacker to gain unauthorized access to data and functionality. Developers
very often make flawed assumptions about how users will interact with the
application, and frequently make oversights by omitting access control checks
from some application functions. Probing for these vulnerabilities is often
laborious because essentially the same checks need to be repeated for each
item of functionality. Because of the prevalence of access control flaws, how-
ever, this effort is always a worthwhile investment when you are attacking a
web application.

Handling User Input

Recall the fundamental security problem described in Chapter 1: all user input
is untrusted. A huge variety of different attacks against web applications
involve submitting unexpected input, crafted to cause behavior that was not
intended by the application’s designers. Correspondingly, a key requirement
for an application’s security defenses is that it must handle user input in a safe
manner.

Input-based vulnerabilities can arise anywhere within an application’s func-
tionality, and in relation to practically every type of technology in common use.
“Input validation” is often cited as the necessary defense against these attacks.
However, there is no single protective mechanism that can be employed every-

20

Chapter 2 = Core Defense Mechanisms

where, and defending against malicious input is often not as straightforward as
it sounds.

Varieties of Input

A typical web application processes user-supplied data in a range of different
forms. Some kinds of input validation may not be feasible or desirable for all
of these forms of input. Figure 2-4 shows the kind of input validation often
performed by a user registration function.

In many cases, an application may be able to impose very stringent valida-
tion checks on a specific item of input. For example, a username submitted to
a login function may be required to have a maximum length of eight charac-
ters and contain only alphabetical letters.

In other cases, the application must tolerate a wider range of possible input.
For example, an address field submitted to a personal details page might legit-
imately contain letters, numbers, spaces, hyphens, apostrophes, and other char-
acters. For this item, there are still restrictions that can feasibly be imposed,
however. The data should not exceed a reasonable length limit (such as 50 char-
acters), and should not contain any HTML mark-up.

In some situations, an application may need to accept completely arbitrary
input from users. For example, a user of a blogging application may create a
blog whose subject is web application hacking. Posts and comments made to
the blog may quite legitimately contain explicit attack strings that are being
discussed. The application may need to store this input within a database,
write it to disk, and display it back to users in a safe way. It cannot simply
reject the input because it looks potentially malicious without substantially
diminishing the value of the application to some of its user base.

First Name
a Must contain at least 4 characters

Last Name
a Must contain at least 4 characters

Email

a Please provide a valid email address

Phone numkber
a Must contain only numbers

Figure 2-4: An application performing input validation

In addition to the various kinds of input that is entered by users via the
browser interface, a typical application also receives numerous items of data
that began their life on the server and that are sent to the client so that the client

Chapter 2 = Core Defense Mechanisms

21

can transmit them back to the server on subsequent requests. This includes
items such as cookies and hidden form fields, which are not seen by ordinary
users of the application but which an attacker can of course view and modify.
In these cases, applications can often perform very specific validation of the
data received. For example, a parameter might be required to have one of a
specific set of known values, such as a cookie indicating the user’s preferred
language, or to be in a specific format, such as a customer ID number. Further,
when an application detects that server-generated data has been modified in a
way that is not possible for an ordinary user with a standard browser, this is
often an indication that the user is attempting to probe the application for vul-
nerabilities. In these cases, the application should reject the request and log the
incident for potential investigation (see the “Handling Attackers” section later
in this chapter).

Approaches to Input Handling

There are various broad approaches that are commonly taken to the problem
of handling user input. Different approaches are often preferable for different
situations and different types of input, and a combination of approaches may
sometimes be desirable.

“Reject Known Bad”

This approach typically employs a blacklist containing a set of literal strings or
patterns that are known to be used in attacks. The validation mechanism
blocks any data that matches the blacklist and allows everything else.

In general, this is regarded as the least effective approach to validating user
input, for two main reasons. First, a typical vulnerability in a web application
can be exploited using a wide variety of different input, which may be
encoded or represented in various different ways. Except in the simplest of
cases, it is likely that a blacklist will omit some patterns of input that can be
used to attack the application. Second, techniques for exploitation are con-
stantly evolving. Novel methods for exploiting existing categories of vulnera-
bility are unlikely to be blocked by current blacklists.

“Accept Known Good”

This approach employs a white list containing a set of literal strings or pat-
terns, or a set of criteria, that is known to match only benign input. The vali-
dation mechanism allows data that matches the white list, and blocks
everything else. For example, before looking up a requested product code in
the database, an application might validate that it contains only alphanumeric

22

Chapter 2 = Core Defense Mechanisms

characters and is exactly six characters long. Given the subsequent processing
that will be done on the product code, the developers know that input passing
this test cannot possibly cause any problems.

In cases where this approach is feasible, it is regarded as the most effective
way of handling potentially malicious input. Provided that due care is taken in
constructing the white list, an attacker will not be able to use crafted input to
interfere with the application’s behavior. However, there are numerous situa-
tions in which an application must accept data for processing that does not
meet any reasonable criteria for what is known to be “good.” For example,
some people’s names contain the apostrophe and hyphen characters. These
can be used in attacks against databases, but it may be a requirement that the
application should permit anyone to register under their real name. Hence,
while it is often extremely effective, the white-list-based approach does not
represent an all-purpose solution to the problem of handling user input.

Sanitization

This approach recognizes the need to sometimes accept data that cannot be
guaranteed as safe. Instead of rejecting this input, the application sanitizes it in
various ways to prevent it from having any adverse effects. Potentially mali-
cious characters may be removed from the data altogether, leaving only what
is known to be safe, or they may be suitably encoded or “escaped” before fur-
ther processing is performed.

Approaches based on data sanitization are often highly effective, and in
many situations they can be relied upon as a general solution to the problem of
malicious input. For example, the usual defense against cross-site scripting
attacks is to HTML-encode dangerous characters before these are embedded
into pages of the application (see Chapter 12). However, effective sanitization
may be difficult to achieve if several kinds of potentially malicious data need
to be accommodated within one item of input. In this situation, a boundary
validation approach is desirable, as described later.

Safe Data Handling

Very many web application vulnerabilities arise because user-supplied data is
processed in unsafe ways. It is often the case that vulnerabilities can be
avoided, not by validating the input itself but by ensuring that the processing
that is performed on it is inherently safe. In some situations, there are safe pro-
gramming methods available that avoid common problems. For example, SQL
injection attacks can be prevented through the correct use of parameterized
queries for database access (see Chapter 9). In other situations, application
functionality can be designed in such a way that inherently unsafe practices,

Chapter 2 = Core Defense Mechanisms

23

such as passing user input to an operating system command interpreter, are
avoided altogether.

This approach cannot be applied to every kind of task that web applications
need to perform, but where it is available it is an effective general approach to
handling potentially malicious input.

Semantic Checks

The defenses described so far all address the need to defend the application
against various kinds of malformed data whose content has been crafted to
interfere with the application’s processing. However, with some vulnerabili-
ties the input supplied by the attacker is identical to the input that an ordinary,
non-malicious user may submit. What makes it malicious is the different cir-
cumstances in which it is submitted. For example, an attacker might seek to
gain access to another user’s bank account by changing an account number
transmitted in a hidden form field. No amount of syntactic validation will dis-
tinguish between the user’s data and the attacker’s. To prevent unauthorized
access, the application needs to validate that the account number submitted
belongs to the user who has submitted it.

Boundary Validation

The idea of validating data across trust boundaries is a familiar one. The core
security problem with web applications arises because data received from
users is untrusted. While input validation checks implemented on the client
side may improve performance and the user’s experience, they do not provide
any assurance over the data that actually reaches the server. The point at
which user data is first received by the server-side application represents a
huge trust boundary, at which the application needs to take measures to
defend itself against malicious input.

Given the nature of the core problem, it is tempting to think of the input val-
idation problem in terms of a frontier between the Internet, which is “bad” and
untrusted, and the server-side application, which is “good” and trusted. In
this picture, the role of input validation is to clean potentially malicious data
on arrival and then pass the clean data to the trusted application. From this
point onwards, the data may be trusted and processed without any further
checks or concern about possible attacks.

As will become evident when we begin to examine some actual vulnerabil-
ities, this simple picture of input validation is inadequate, for several reasons:

m Given the wide range of functionality that applications implement, and
the different technologies in use, a typical application needs to defend
itself against a huge variety of input-based attacks, each of which may

24 Chapter 2 = Core Defense Mechanisms

employ a diverse set of crafted data. It would be very difficult to devise
a single mechanism at the external boundary to defend against all of
these attacks.

m Many application functions involve chaining together a series of
different types of processing. A single piece of user-supplied input
might result in a number of operations in different components, with
the output of each being used as the input for the next. As the data is
transformed, it might come to bear no resemblance to the original
input, and a skilled attacker may be able to manipulate the application
to cause malicious input to be generated at a key stage of the process-
ing, attacking the component which receives this data. It would be
extremely difficult to implement a validation mechanism at the external
boundary to foresee all of the possible results of processing each piece
of user input.

m Defending against different categories of input-based attack may entail
performing different validation checks on user input that are incompat-
ible with one another. For example, preventing cross-site scripting
attacks may require HTML-encoding the > character as gt ; while pre-
venting command injection attacks may require blocking input contain-
ing the & and ; characters. Attempting to prevent all categories of attack
simultaneously at the application’s external boundary may sometimes
be impossible.

A more effective model uses the concept of boundary validation. Here, each
individual component or functional unit of the server-side application treats
its inputs as coming from a potentially malicious source. Data validation is
performed at each of these trust boundaries, in addition to the external frontier
between the client and server. This model provides a solution to the problems
described in the previous list. Each component can defend itself against the
specific types of crafted input to which it may be vulnerable. As data passes
through different components, validation checks can be performed against
whatever value the data has as a result of previous transformations. And
because the various validation checks are implemented at different stages of
processing, they are unlikely to come into conflict with one another.

Figure 2-5 illustrates a typical situation where boundary validation is the
most effective approach to defending against malicious input. The user login
results in several steps of processing being performed on user-supplied input,
and suitable validation is performed at each step:

1. The application receives the user’s login details. The form handler vali-
dates that each item of input contains only permitted characters, is
within a specific length limit, and does not contain any known attack
signatures.

Chapter 2 = Core Defense Mechanisms

2. The application performs an SQL query to verify the user’s credentials.
To prevent SQL injection attacks, any characters within the user input
that may be used to attack the database are escaped before the query is
constructed.

3. If the login succeeds, the application passes certain data from the user’s
profile to a SOAP service to retrieve further information about her
account. To prevent SOAP injection attacks, any XML metacharacters
within the user’s profile data are suitably encoded.

4. The application displays the user’s account information back to the
user’s browser. To prevent cross-site scripting attacks, the application
HTML-encodes any user-supplied data that is embedded into the
returned page.

J

,,,,,,,,,,,, 2. Clean SQL |

Login submission o= SQL query
/\ ;) Database

A

Display account
details

Application P .
777777777777 server ! 3. Encode XML
SOAP :\ metacharacters ;

message \ 02 TTTTTTTTTTTT

SOAP service

Figure 2-5: An application function using boundary validation at multiple stages of
processing

The specific vulnerabilities and defenses involved in the described scenario
will be examined in detail in later chapters. If variations on this functionality
involved passing data to further application components, then similar
defenses would need to be implemented at the relevant trust boundaries. For
example, if a failed login caused the application to send a warning email to the
user, then any user data incorporated into the email may need to be checked
for SMTP injection attacks.

26

Chapter 2 = Core Defense Mechanisms

Multistep Validation and Canonicalization

A common problem encountered by input-handling mechanisms arises when
user-supplied input is manipulated across several steps as part of the valida-
tion logic. If this process is not handled carefully, then an attacker may be able
to construct crafted input that succeeds in smuggling malicious data through
the validation mechanism. One version of this problem occurs when an appli-
cation attempts to sanitize user input by removing or encoding certain charac-
ters or expressions. For example, an application may attempt to defend against
some cross-site scripting attacks by stripping the expression

<script>

from any user-supplied data. However, an attacker may be able to bypass the
filter by supplying the following input:

<scr<script>ipt>

When the blocked expression is removed, the surrounding data contracts to
restore the malicious payload, because the filter is not being applied recursively.

Similarly, if more than one validation step is performed on user input, an
attacker may be able to exploit the ordering of these steps to bypass the filter.
For example, if the application first removes script tags recursively and then
strips any quotation marks, the following input can be used to defeat the vali-
dation:

<scr"ipt>

A different problem arises in relation to data canonicalization. When input
is sent from the user’s browser, it may be encoded in various ways. These
encoding schemes exist in order that unusual characters and binary data may
be transmitted safely over HTTP (see Chapter 3 for more details). Canonical-
ization is the process of converting or decoding data into a common character
set. If any canonicalization is carried out after input filters have been applied,
then an attacker may be able to use encoding to bypass the validation mecha-
nism. For example, an application may attempt to defend against some SQL
injection attacks by removing the apostrophe character from user input. How-
ever, if the sanitized data is subsequently canonicalized, then an attacker may
be able to use the URL-encoded form

%27

to defeat the validation. If the application strips this URL-encoded form, but also
performs further canonicalization, then the following bypass may be effective:

%%2727

Chapter 2 = Core Defense Mechanisms

27

Throughout this book, we will describe numerous attacks of this kind which
are effective in defeating many applications’ defenses against common input-
based vulnerabilities.

Avoiding problems with multistep validation and canonicalization can
sometimes be difficult, and there is no single solution to the problem. One
approach is to perform sanitization steps recursively, continuing until no fur-
ther modifications have been made on an item of input. However, where the
desired sanitization involves escaping a problematic character, this may result
in an infinite loop. Often, the problem can only be addressed on a case-by-case
basis, based upon the types of validation being performed. Where feasible, it
may be preferable to avoid attempting to clean some kinds of bad input, and
simply reject it altogether.

Handling Attackers

Anyone designing an application for which security is remotely important
must work on the assumption that it will be directly targeted by dedicated and
skilled attackers. A key function of the application’s security mechanisms is to
be able to handle and react to these attacks in a controlled way. These mecha-
nisms often incorporate a mix of defensive and offensive measures designed to
frustrate an attacker as much as possible, and provide appropriate notification
and evidence to the application’s owners of what has taken place. Measures
implemented to handle attackers typically include the following tasks:

m Handling errors
m Maintaining audit logs
m Alerting administrators

m Reacting to attacks

Handling Errors

However careful an application’s developers are in validating user input, it is
virtually inevitable that some unanticipated errors will occur. Errors resulting
from the actions of ordinary users are likely to be identified during functional-
ity and user acceptance testing, and so will be taken account of before the
application is deployed in a production context. However, it is very difficult to
anticipate every possible way in which a malicious user may interact with the
application, and so further errors should be expected when the application
comes under attack.

28

Chapter 2 = Core Defense Mechanisms

A key defense mechanism is for the application to handle unexpected
errors in a graceful manner, and either recover from them or present a suit-
able error message to the user. In a production context, the application
should never return any system-generated messages or other debug infor-
mation in its responses. As you will see throughout this book, overly verbose
error messages can greatly assist malicious users in furthering their attacks
against the application. In some situations, an attacker can leverage defective
error handling to retrieve sensitive information within the error messages
themselves, providing a valuable channel for stealing data from the applica-
tion. Figure 2-6 shows an example of an unhandled error resulting in a ver-
bose error message.

) Mozilla Firefox =10l x|

Fle Edit Wiew Go Bookmarks Tools Help

<Z| - LD’ - @ O @ I https: ffwahh-app.com/store ﬂj @ Go I@,

[07/05/22 08:25:19.702] I—
java lang Estception

[0705/22 08:25:19.687] SQL Exception

OFA-00921: unexpected end of QL command SQLState: 42000 VendorErrer: 521

select price_cale from contentowners where ownernbr=

SQL,at org apache. jsp.dStore_jsp._jspService(dStore_jsp. java:124), at

org.apache jasper. runtime HitpJspBase service(HttplspBase java: 137); at

\javaz serviet hitp Hitp Servlet service(Http Serviet java:853); at

org.apache. jasper. servlet. Jop ServletWrapper. service (Jsp ServletWrapper. java: 204); at
org apache jasper servlet JspServlet servicelspFile(TspServlet java:295);

java Jang Exception.
[07/05/22 08:25:19.687] SOL Exception

ORA-008921: unexpected end of SQL command
SQLState: 42000 VendorError: 921

select price_cale from contentowners where ownernbr=

2L, at org apache. jsp.dStore_jsp._jspService(dStore_jsp.java:124), at

org apache jasper runtime HitpIspBase service{HttpIspBase java: 137); at

\javaz serviet hitp HitpServlet service(Http Serviet java:853); at

org.apache. jasper. servlet. Jop ServletWrapper. service(Jsp ServletWrapper java 204); at
org.apache jasper. servlet. TspServlet serviceJspFile (TspServlet java:295);

Bl

|Dnne articleworks cadmus.com (%)~

Figure 2-6: An unhandled error

Most web development languages provide good error-handling support
through try-catch blocks and checked exceptions. Application code should
make extensive use of these constructs to catch specific and general errors and
handle them appropriately. Further, most application servers can be configured
to deal with unhandled application errors in customized ways, for example by

Chapter 2 = Core Defense Mechanisms

29

presenting an uninformative error message. See Chapter 14 for more details of
these measures.

Effective error handling is often integrated with the application’s logging
mechanisms, which record as much debug information as possible about
unanticipated errors. Very often, unexpected errors point to defects within the
application’s defenses that can be addressed at the source if the application’s
owner has the required information.

Maintaining Audit Logs

Audit logs are primarily of value when investigating intrusion attempts against
an application. Following such an incident, effective audit logs should enable
the application’s owners to understand exactly what has taken place, which
vulnerabilities (if any) were exploited, whether the attacker gained unautho-
rized access to data or performed any unauthorized actions, and as far as pos-
sible, provide evidence as to the intruder’s identity.

In any application for which security is important, key events should be
logged as a matter of course. At a minimum, these typically include:

m All events relating to the authentication functionality, such as successful
and failed login, and change of password.

m Key transactions, such as credit card payments and funds transfers.
m Access attempts that are blocked by the access control mechanisms.

m Any requests containing known attack strings that indicate overtly
malicious intentions.

In many security-critical applications, such as those used by online banks,
every single client request is logged in full, providing a complete forensic
record that can be used to investigate any incidents.

Effective audit logs typically record the time of each event, the IP address
from which the request was received, the session token, and the user’s account
(if authenticated). Such logs need to be strongly protected against unautho-
rized read or write access. An effective approach is to store audit logs on an
autonomous system that accepts only update messages from the main appli-
cation. In some situations, logs may be flushed to write-once media to ensure
their integrity in the event of a successful attack.

In terms of attack surface, poorly protected audit logs can provide a gold
mine of information to an attacker, disclosing a host of sensitive information
such as session tokens and request parameters that may enable them to imme-
diately compromise the entire application (see Figure 2-7).

30

Chapter 2 = Core Defense Mechanisms

¥ Mozilla Firefox _ ol x|
File Edit Wew Go Bookmatks Tools Help
<:| = L;:’ = @ |_| @ I http: fwahh-app. comflogs) 20070305, b j @ o I@,

[05/Mar/2007:19:31:25 +0100] "POST /lx-ocffice-erp/adwin.pl HTTP/1.1" 200 1085 "'ht,;l
[05/Mar/2007:19:34:39 +0100] "GET /lx-office-erp/adwin.pl?action=edit&login=andre:
[05/Mar/2007:19:34:56 +0100] "POST /lx-office-erp/adwin.pl HTTR/1.1" Z00 2858 "ht
[05/Mar/2007:18:35:09 +0100] "POST /lx-office-erp/login.pl HTTR/1.1" Z00 5368 "ht
[05/Mar/2007:19:35:22 +0100] "GET /lx—office-erp/menuvi.pl?login=andreasépassword:
[05/Mar/2007:19:35:23 +0100] "GET /lx-office-erp/css/menuvi.css?id=94273 HTTP/1.1—
[05/Mar/2007:19:35:23 +0100] "GET /lx-office-erp/image/by _titel.gif HTTR/1.1" 200
[05/Mar/2007:19:35:23 +0100] "GET /lx-office-erp/image/byg_css menu.png HTTF/L1.1" |
[05/Mar/2007:19:35:23 +0100] "GET /lx—office-erp/login.pl?login=andreasipassword=:
[05/Mar/2007:19:35:25 +0100] "GET /lx—office-erp/image/right.gif HTTP/1.1" Z00 &0
[05/Mar/2007:19:35:28 +0100] "GET /lx-office-erp/ct.pl?action=searchelevel=Naster
[05/Mar/2007:18:35:31 +0100] "POST /lx-office-erp/ct.pl HTTP/1.1" 200 14708 "http
[05/Mar/2007:19:35:38 +0100] "GET /lx-office-erp/ar.pl?action=search&level=iR—-Re
[05/Mar/2007:19:35:39 +0100] "GET /lx-office-erp/isfiscalendar/calendar-winZk-1.civ
4l | .

| Done v

Figure 2-7: Poorly protected application logs containing sensitive
information submitted by other users

Alerting Administrators

Audit logs enable an application’s owners to retrospectively investigate intru-
sion attempts, and if possible, take legal action against the perpetrator. How-
ever, in many situations it is desirable to take much more immediate action, in
real time, in response to attempted attacks. For example, administrators may
block the IP address or user account being used by an attacker. In extreme
cases, they may even take the application offline while the attack is investi-
gated and remedial action taken. Even if a successful intrusion has already
occurred, its practical effects may be mitigated if defensive action is taken at an
early stage.

In most situations, alerting mechanisms must balance the conflicting objec-
tives of reporting each genuine attack reliably and of not generating so many
alerts that these come to be ignored. A well-designed alerting mechanism can
use a combination of factors to diagnose that a determined attack is underway,
and can aggregate related events into a single alert where possible. Anomalous
events monitored by alerting mechanisms often include:

m Usage anomalies, such as large numbers of requests being received
from a single IP address or user, indicating a scripted attack.

m Business anomalies, such as an unusual number of funds transfers
being made to or from a single bank account.

m Requests containing known attack strings.

m Requests where data that is hidden from ordinary users has been
modified.

Chapter 2 = Core Defense Mechanisms

31

Some of these functions can be provided reasonably well by off-the-shelf
application firewalls and intrusion detection products. These typically use a
mixture of signature- and anomaly-based rules to identify malicious use of the
application, and may reactively block malicious requests as well as issue alerts
to administrators. These products can form a valuable layer of defense pro-
tecting a web application, particularly in the case of existing applications
known to contain problems but where resources to fix these are not immedi-
ately available. However, their effectiveness is normally limited by the fact
that each web application is different, and so the rules employed are inevitably
generic to some extent. Web application firewalls are normally good at identi-
fying the most obvious attacks, where an attacker submits standard attack
strings in each request parameter. However, many attacks are more subtle than
this, for example modifying the account number in a hidden field to access
another user’s data, or submitting requests out of sequence to exploit defects
in the application’s logic. In these cases, a request submitted by an attacker
may be identical to that submitted by a benign user — what makes it mali-
cious are the circumstances in which it is made.

In any security-critical application, the most effective way to implement
real-time alerting is to integrate this tightly with the application’s input vali-
dation mechanisms and other controls. For example, if a cookie is expected to
have one of a specific set of values, then any violation of this indicates that its
value has been modified in way that is not possible for ordinary users of the
application. Similarly, if a user changes an account number in a hidden field to
identify a different user’s account, this strongly indicates malicious intent. The
application should already be checking for these attacks as part of its primary
defenses, and these protective mechanisms can easily hook into the applica-
tion’s alerting mechanism to provide fully customized indicators of malicious
activity. Because these checks have been tailored to the application’s actual
logic, with a fine-grained knowledge of how ordinary users should be behav-
ing, they are much less prone to false positives than any off-the-shelf solution,
however configurable or able to learn that solution may be.

Reacting to Attacks

In addition to alerting administrators, many security-critical applications con-
tain built-in mechanisms to react defensively to users who are identified as
potentially malicious.

Because each application is different, most real-world attacks require an
attacker to probe systematically for vulnerabilities, submitting numerous
requests containing crafted input designed to indicate the presence of various
common vulnerabilities. Effective input validation mechanisms will identify
many of these requests as potentially malicious, and block the input from

32

Chapter 2 = Core Defense Mechanisms

having any undesirable effect on the application. However, it is sensible to
assume that some bypasses to these filters exist, and that the application does
contain some actual vulnerabilities waiting to be discovered and exploited. At
some point, an attacker working systematically is likely to discover these
defects.

For this reason, some applications take automatic reactive measures to frus-
trate the activities of an attacker who is working in this way, for example by
responding increasingly slowly to the attacker’s requests or by terminating the
attacker’s session, requiring him to log in or perform other steps before con-
tinuing the attack. While these measures will not defeat the most patient and
determined attacker, they will deter many more casual attackers, and will buy
additional time for administrators to monitor the situation and take more
drastic action if desired.

Reacting to apparent attackers is not, of course, a substitute for fixing any
vulnerabilities that exist within the application. However, in the real world,
even the most diligent efforts to purge an application of security flaws may
leave some exploitable defects remaining. Placing further obstacles in the way
of an attacker is an effective defense-in-depth measure that reduces the likeli-
hood that any residual vulnerabilities will be found and exploited.

Managing the Application

Any useful application needs to be managed and administered, and this facil-
ity often forms a key part of the application’s security mechanisms, providing
a way for administrators to manage user accounts and roles, access monitoring
and audit functions, perform diagnostic tasks, and configure aspects of the
application’s functionality.

In many applications, administrative functions are implemented within the
application itself, accessible through the same web interface as its core nonse-
curity functionality, as shown in Figure 2-8. Where this is the case, the admin-
istrative mechanism represents a critical part of the application’s attack
surface. Its primary attraction for an attacker is as a vehicle for privilege esca-
lation, for example:

m Weaknesses in the authentication mechanism may enable an attacker
to gain administrative access, effectively compromising the entire
application.

m Many applications do not implement effective access control of some of
their administrative functions. An attacker may find a means of creat-
ing a new user account with powerful privileges.

Chapter 2 = Core Defense Mechanisms

33

m Administrative functionality often involves displaying data that origi-
nated from ordinary users. Any cross-site scripting flaws within the
administrative interface can lead to compromise of a user session that is
guaranteed to have powerful privileges.

m Administrative functionality is often subjected to less rigorous security
testing, because its users are deemed to be trusted, or because penetra-
tion testers are given access to only low-privileged accounts. Further, it
often has a need to perform inherently dangerous operations, involving
access to files on disk or operating system commands. If an attacker can
compromise the administrative function, they can often leverage it to
take control of the entire server.

¥ PHP-Nuke Powered Site - Administration Menu - Mozilla Firefox =13l =|
File Edit Wew Go Bookmarks Tools Help

QII - [:> - @ O @ I hitp:f fwwahh-app, comiphprukeadmin,php l:._Jj © I@v

Administration System Login
Horme

' AvantGo

* Downloads adrnin IDI

 Feedback Password

* Journal M

" Private Messanes
" Recornmend Us

* Search

+ Statistics

Dane

a0

Figure 2-8: An administrative interface within a web application.

Chapter Summary

Despite their extensive differences, virtually all web applications employ the
same core security mechanisms in some shape or form. These mechanisms
represent an application’s primary defenses against malicious users, and
therefore also comprise the bulk of the application’s attack surface. The vul-
nerabilities we shall examine later in this book mainly arise from defects
within these core mechanisms.

Of these components, the mechanisms for handling user access and user
input are the most important and should take up most of your attention when

34

Chapter 2 = Core Defense Mechanisms

you are targeting an application. Defects in these mechanisms often lead to
complete compromise of the application, enabling you to access data belong-
ing to other users, perform unauthorized actions, and inject arbitrary code and
commands.

Questions

Answers can be found at www. wiley.com/go/webhacker.

1. Why are an application’s mechanisms for handling user access only as
strong as the weakest of these components?

2. What is the difference between a session and a session token?

3. Why is it not always possible to use a whitelist-based approach to input
validation?

4. You are attacking an application that implements an administrative
function. You do not have any valid credentials to use the function.
Why should you nevertheless pay very close attention to it?

5. An input validation mechanism designed to block cross-site scripting
attacks performs the following sequence of steps on an item of input:

Strip any <script> expressions that appear.
Truncate the input to 50 characters.

Remove any quotation marks within the input.
URL-decode the input.

If any items were deleted, return to step 1.

Ol N e

Can you bypass this validation mechanism to smuggle the following
data past it?

"><script>alert ("foo")</script>

Web Application Technologies

Web applications employ a myriad of different technologies to implement
their functionality. This chapter contains a short primer on the key technolo-
gies that you are likely to encounter when attacking web applications. We shall
examine the HTTP protocol, the technologies commonly employed on the
server and client sides, and the encoding schemes used to represent data in
different situations. These technologies are in general easy to understand, and
a grasp of their relevant features is key to performing effective attacks against
web applications.

If you are already familiar with the key technologies used in web applications,
you can quickly skim through this chapter to confirm that there is nothing new
in here for you. If you are still learning how web applications work, you should
read this primer before continuing to the later chapters on specific vulnerabili-
ties. For further reading on any of the areas covered, we recommended HTTP:
The Definitive Guide by David Gourley and Brian Totty (O’Reilly, 2002).

The HTTP Protocol

The hypertext transfer protocol (HTTP) is the core communications protocol
used to access the World Wide Web and is used by all of today’s web applica-
tions. It is a simple protocol that was originally developed for retrieving static
text-based resources, and has since been extended and leveraged in various

35

36

Chapter 3 =« Web Application Technologies

ways to enable it to support the complex distributed applications that are now
commonplace.

HTTP uses a message-based model in which a client sends a request mes-
sage, and the server returns a response message. The protocol is essentially
connectionless: although HTTP uses the stateful TCP protocol as its transport
mechanism, each exchange of request and response is an autonomous transac-
tion, and may use a different TCP connection.

HTTP Requests

All HTTP messages (requests and responses) consist of one or more headers,
each on a separate line, followed by a mandatory blank line, followed by an
optional message body. A typical HTTP request is as follows:

GET /books/search.asp?g=wahh HTTP/1.1

Accept: image/gif, image/xxbitmap, image/jpeg, image/pjpeg,
application/xshockwaveflash, application/vnd.msexcel,
application/vnd.mspowerpoint, application/msword, */*

Referer: http://wahh-app.com/books/default.asp

Accept-Language: en-gb,en-us;g=0.5

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: wahh-app.com

Cookie: lang=en; JSESSIONID=0000tI8rk7joMx44S2Uu85nSWc_:vsnlc502

The first line of every HTTP request consists of three items, separated by
spaces:

m A verb indicating the HTTP method. The most commonly used method
is GET, whose function is to retrieve a resource from the web server. GET
requests do not have a message body, so there is no further data follow-
ing the blank line after the message headers.

m The requested URL. The URL functions as a name for the resource
being requested, together with an optional query string containing
parameters that the client is passing to that resource. The query string is
indicated by the » character in the URL, and in the example there is a
single parameter with the name g and the value wahn.

m The HTTP version being used. The only HTTP versions in common use
on the Internet are 1.0 and 1.1, and most browsers use version 1.1 by
default. There are a few differences between the specifications of these
two versions; however, the only difference you are likely to encounter
when attacking web applications is that in version 1.1 the Host request
header is mandatory.

Chapter 3 =« Web Application Technologies 37

Some other points of interest in the example request are:

m The Referer header is used to indicate the URL from which the request
originated (for example, because the user clicked a link on that page).
Note that this header was misspelled in the original HTTP specification,
and the misspelled version has been retained ever since.

m The User-agent header is used to provide information about the
browser or other client software that generated the request. Note that
the Mozilla prefix is included by most browsers for historical reasons —
this was the user-agent string used by the originally dominant Net-
scape browser, and other browsers wished to assert to web sites that
they were compatible with this standard. As with many quirks from
computing history, it has become so established that it is still retained,
even on the current version of Internet Explorer, which made the
request shown in the example.

m The Host header is used to specify the hostname that appeared in the
full URL being accessed. This is necessary when multiple web sites are
hosted on the same server, because the URL sent in the first line of the
request does not normally contain a hostname. (See Chapter 16 for
more information about virtually hosted web sites.)

m The cookie header is used to submit additional parameters that the
server has issued to the client (described in more detail later in this
chapter).

HTTP Responses
A typical HTTP response is as follows:

HTTP/1.1 200 OK

Date: Sat, 19 May 2007 13:49:37 GMT

Server: IBM_HTTP_SERVER/1.3.26.2 Apache/1.3.26 (Unix)
Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT

Content-Type: text/html;charset=IS0-8859-1
Content-Language: en-US

Content-Length: 24246

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html;
charset=1s0-8859-1">

38 Chapter 3 « Web Application Technologies

The first line of every HTTP response consists of three items, separated by
spaces:

m The HTTP version being used.

m A numeric status code indicating the result of the request. 200 is the
most common status code; it means that the request was successful and
the requested resource is being returned.

m A textual “reason phrase” further describing the status of the response.
This can have any value and is not used for any purpose by current
browsers.

Some other points of interest in the previous response are:

m The server header contains a banner indicating the web server soft-
ware being used, and sometimes other details such as installed modules
and the server operating system. The information contained may or
may not be accurate.

m The set-cookie header is issuing the browser a further cookie; this will
be submitted back in the cookie header of subsequent requests to this
server.

m The pragma header is instructing the browser not to store the response
in its cache, and the Expires header also indicates that the response
content expired in the past and so should not be cached. These instruc-
tions are frequently issued when dynamic content is being returned, to
ensure that browsers obtain a fresh version of this content on subse-
quent occasions.

m Almost all HTTP responses contain a message body following the blank
line after the headers, and the content-Type header indicates that the
body of this message contains an HTML document.

m The content-Length header indicates the length of the message body in
bytes.

HTTP Methods

When you are attacking web applications, you will be dealing almost exclu-
sively with the most commonly used methods: GET and posT. There are some
important differences between these methods which you need to be aware of,
and which can affect an application’s security if overlooked.

The GeT method is designed for retrieval of resources. It can be used to send
parameters to the requested resource in the URL query string. This enables users
to bookmark a URL for a dynamic resource that can be reused by themselves or

Chapter 3 =« Web Application Technologies 39

other users to retrieve the equivalent resource on a subsequent occasion (as in a
bookmarked search query). URLs are displayed on-screen, and are logged in
various places, such as the browser history and the web server’s access logs.
They are also transmitted in the rReferer header to other sites when external
links are followed. For these reasons, the query string should not be used to
transmit any sensitive information.

The posT method is designed for performing actions. With this method,
request parameters can be sent both in the URL query string and in the body
of the message. Although the URL can still be bookmarked, any parameters
sent in the message body will be excluded from the bookmark. These parame-
ters will also be excluded from the various locations in which logs of URLs are
maintained and from the Referer header. Because the posT method is
designed for performing actions, if a user clicks the Back button of the browser
to return to a page that was accessed using this method, the browser will not
automatically reissue the request but will warn the user of what it is about to
do, as shown in Figure 3-1. This prevents users from unwittingly performing
an action more than once. For this reason, posT requests should always be used
when an action is being performed.

Windows Internet Explorer x|

AN

To display the webpage again, Inkernet Explorer needs to
resend the information you've previously submitted,

If you were making a purchase, you should click Cancel to
avoid & duplicate transaction. Otherwise, click Retry to display

the webpage again.
Cancel

Figure 3-1: Browsers do not automatically reissue POST requests made by users,
because these might result in an action being performed more than once

In addition to the GeT and posT methods, the HTTP protocol supports
numerous other methods that have been created for specific purposes. The
other methods you are most likely to require knowledge of are:

m HEAD — This functions in the same way as a GET request except that

the server should not return a message body in its response. The server
should return the same headers that it would have returned to the cor-
responding GET request. Hence, this method can be used for checking
whether a resource is present before making a GET request for it.

TRACE — This method is designed for diagnostic purposes. The server
should return in the response body the exact contents of the request
message that it received. This can be used to detect the effect of any
proxy servers between the client and server that may manipulate the

40 Chapter 3 =« Web Application Technologies

request. It can also sometimes be used as part of an attack against other
application users (see Chapter 12).

m OPTIONS — This method asks the server to report the HTTP methods
that are available for a particular resource. The server will typically
return a response containing an A11ow header that lists the available
methods.

m PUT — This method attempts to upload the specified resource to the
server, using the content contained in the body of the request. If this
method is enabled, then you may be able to leverage it to attack the
application; for example, by uploading an arbitrary script and execut-
ing this on the server.

Many other HTTP methods exist that are not directly relevant to attacking
web applications. However, a web server may expose itself to attack if certain
dangerous methods are available. See Chapter 17 for further details on these
and examples of using them in an attack.

URLs

A uniform resource locator (URL) is a unique identifier for a web resource, via
which that resource can be retrieved. The format of most URLs is as follows:

protocol://hostname|:port]/[path/]file[?param=value]

Several components in this scheme are optional, and the port number is nor-
mally only included if it diverges from the default used by the relevant proto-
col. The URL used to generate the HTTP request shown earlier is:

http://wahh-app.comm/books/search.asp?g=wahh

In addition to this absolute form, URLs may be specified relative to a partic-
ular host, or relative to a particular path on that host, for example:

/books/search.asp?g=wahh
search.asp?g=wahh

These relative forms are often used in web pages to describe navigation
within the web site or application itself.

.]m] The correct technical term for a URL is actually UR/ (or uniform
resource identifier), but this term is really only used in formal specifications
and by those who wish to exhibit their pedantry.

Chapter 3 « Web Application Technologies

a

HTTP Headers

HTTP supports a large number of different headers, some of which are
designed for specific unusual purposes. Some headers can be used for both
requests and responses, while others are specific to one of these message types.
The headers you are likely to encounter when attacking web applications are
listed here.

General Headers

m Connection — This is used to inform the other end of the communica-
tion whether it should close the TCP connection after the HTTP trans-
mission has completed or keep it open for further messages.

m Content-Encoding — This is used to specify what kind of encoding is
being used for the content contained in the message body, such as gzip,
which is used by some applications to compress responses for faster
transmission.

m Content-Length — This is used to specify the length of the message
body, in bytes (except in the case of responses to HEAD requests, when it
indicates the length of the body in the response to the corresponding
GET request).

m Content-Type — This is used to specify the type of content contained in
the message body; for example, text/html for HTML documents.

m Transfer-Encoding — This is used to specify any encoding that was
performed on the message body to facilitate its transfer over HTTP. It is
normally used to specify chunked encoding when this is employed.

Request Headers

m Accept — This is used to tell the server what kinds of content the client
is willing to accept, such as image types, office document formats, and
SO on.

m Accept-Encoding — This is used to tell the server what kinds of content
encoding the client is willing to accept.

m Authorization — This is used to submit credentials to the server for one
of the built-in HTTP authentication types.

m Cookie — This is used to submit cookies to the server which were pre-
viously issued by it.

42 Chapter 3 = Web Application Technologies

m Host — This is used to specify the hostname that appeared in the full
URL being requested.

m If-Modified-Since — This is used to specify the time at which the
browser last received the requested resource. If the resource has not
changed since that time, the server may instruct the client to use its
cached copy, using a response with status code 304.

m If-None-Match — This is used to specify an entity tag, which is an iden-
tifier denoting the contents of the message body. The browser submits
the entity tag that the server issued with the requested resource when it
was last received. The server can use the entity tag to determine
whether the browser may use its cached copy of the resource.

m Referer — This is used to specify the URL from which the current
request originated.

m User-Agent — This is used to provide information about the browser or
other client software that generated the request.

Response Headers

m Cache-Control — This is used to pass caching directives to the browser
(for example, no-cache).

m ETag — This is used to specify an entity tag. Clients can submit this
identifier in future requests for the same resource in the If-None-Match
header to notify the server which version of the resource the browser
currently holds in its cache.

m Expires — This is used to instruct the browser how long the contents of
the message body are valid for. The browser may use the cached copy
of this resource until this time.

m Location — This is used in redirection responses (those with a status
code starting with 3) to specify the target of the redirect.

m Pragma — This is used to pass caching directives to the browser (for
example, no-cache).

m Server — This is used to provide information about the web server soft-
ware being used.

m Set-Cookie — This is used to issue cookies to the browser that it will
submit back to the server in subsequent requests.

m WWW-Authenticate — This is used in responses with a 401 status code
to provide details of the type(s) of authentication supported by the
server.

Chapter 3 « Web Application Technologies

43

Cookies

Cookies are a key part of the HTTP protocol which most web applications rely
upon, and which can frequently be used as a vehicle for exploiting vulnerabil-
ities. The cookie mechanism enables the server to send items of data to the
client, which the client stores and resubmits back to the server. Unlike the
other types of request parameters (those within the URL query string or the
message body), cookies continue to be resubmitted in each subsequent request
without any particular action required by the application or the user.

A server issues a cookie using the set-cookie response header, as already
observed:

Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc

The user’s browser will then automatically add the following header to sub-
sequent requests back to the same server:

Cookie: tracking=tI8rk7joMx44S2Uu85nSWc

Cookies normally consist of a name/value pair, as shown, but may consist
of any string that does not contain a space. Multiple cookies can be issued by
using multiple set-cookie headers in the server’s response, and are all sub-
mitted back to the server in the same cookie header, with a semicolon sepa-
rating different individual cookies.

In addition to the cookie’s actual value, the set-cookie header can also
include any of the following optional attributes, which can be used to control
how the browser handles the cookie:

m expires — Used to set a date until which the cookie is valid. This will
cause the browser to save the cookie to persistent storage, and it will be
reused in subsequent browser sessions until the expiration date is
reached. If this attribute is not set, the cookie is used only in the current
browser session.

m domain — Used to specify the domain for which the cookie is valid.

This must be the same or a parent of the domain from which the cookie
is received.

m path — Used to specify the URL path for which the cookie is valid.

m secure — If this attribute is set, then the cookie will only ever be submit-
ted in HTTPS requests.

m HttpOnly — If this attribute is set, then the cookie cannot be directly
accessed via client-side JavaScript, although not all browsers support
this restriction.

44

Chapter 3 =« Web Application Technologies

Each of these cookie attributes can impact the security of the application,
and the primary impact is on the ability of an attacker to directly target other
users of the application. See Chapter 12 for further details.

Status Codes

Each HTTP response message must contain a status code in its first line, indi-
cating the result of the request. The status codes fall into five groups, accord-
ing to the first digit of the code:

m 1xx — Informational.

m 2xx — The request was successful.

m 3xx — The client is redirected to a different resource.
m 4xx — The request contains an error of some kind.

m 5xx — The server encountered an error fulfilling the request.

There are numerous specific status codes, many of which are used only in
specialized circumstances. The status codes you are most likely to encounter
when attacking a web application are listed here, together with the usual rea-
son phrase associated with them:

m 100 Continue — This response is sent in some circumstances when a
client submits a request containing a body. The response indicates that
the request headers were received and that the client should continue
sending the body. The server will then return a second response when
the request has been completed.

m 200 Ok — This indicates that the request was successful and the
response body contains the result of the request.

m 201 Created — This is returned in response to a puT request to indicate
that the request was successful.

m 301 Moved Permanently — This redirects the browser permanently to a
different URL, which is specified in the Location header. The client
should use the new URL in the future rather than the original.

m 302 Found — This redirects the browser temporarily to a different URL,
which is specified in the Location header. The client should revert to
the original URL in subsequent requests.

m 304 Not Modified — This instructs the browser to use its cached copy
of the requested resource. The server uses the 1f-Modified-Since and
If-None-Match request headers to determine whether the client has the
latest version of the resource.

Chapter 3 =« Web Application Technologies 45

m 400 Bad Request — This indicates that the client submitted an invalid
HTTP request. You will probably encounter this when you have modi-
fied a request in certain invalid ways, for example by placing a space
character into the URL.

m 401 Unauthorized — The server requires HTTP authentication before
the request will be granted. The www-Authenticate header contains
details of the type(s) of authentication supported.

m 403 Forbidden — This indicates that no one is allowed to access the
requested resource, regardless of authentication.

m 404 Not Found — This indicates that the requested resource does not
exist.

m 405 Method Not Allowed — This indicates that the method used in the
request is not supported for the specified URL. For example, you may
receive this status code if you attempt to use the puT method where it is
not supported.

m 413 Request Entity Too Large — If you are probing for buffer overflow
vulnerabilities in native code, and so submitting long strings of data,
this indicates that the body of your request is too large for the server to
handle.

m 414 Request URI Too Long — Similar to the previous response, this

indicates that the URL used in the request is too large for the server to
handle.

m 500 Internal Server Error — This indicates that the server encountered
an error fulfilling the request. This normally occurs when you have sub-
mitted unexpected input that caused an unhandled error somewhere
within the application’s processing. You should review the full contents
of the server’s response closely for any details indicating the nature of
the error.

m 503 Service Unavailable — This normally indicates that, although
the web server itself is functioning and able to respond to requests, the
application accessed via the server is not responding. You should verify
whether this is the result of any action that you have performed.

HTTPS

The HTTP protocol uses plain TCP as its transport mechanism, which is unen-
crypted and so can be intercepted by an attacker who is suitably positioned on
the network. HTTPS is essentially the same application-layer protocol as

46

Chapter 3 =« Web Application Technologies

HTTP, but this is tunneled over the secure transport mechanism, Secure Sock-
ets Layer (SSL). This protects the privacy and integrity of all data passing over
the network, considerably reducing the possibilities for noninvasive intercep-
tion attacks. HTTP requests and responses function in exactly the same way
regardless of whether SSL is used for transport.

.m SSL has now strictly been superseded by transport layer security (TLS),
but the latter is still normally referred to using the older name.

HTTP Proxies

An HTTP proxy server is a server that mediates access between the client
browser and the destination web server. When a browser has been configured
to use a proxy server, it makes all of its requests to that server, and the proxy
relays the requests to the relevant web servers, and forwards their responses
back to the browser. Most proxies also provide additional services, including
caching, authentication, and access control.

There are two differences in the way HTTP works when a proxy server is
being used, which you should be aware of:

m When a browser issues an HTTP request to a proxy server, it places the
full URL into the request, including the protocol prefix http:// and the
hostname of the server. The proxy server extracts the hostname and
uses this to direct the request to the correct destination web server.

m When HTTPS is being used, the browser cannot perform the SSL hand-
shake with the proxy server, as this would break the secure tunnel and
leave the communications vulnerable to interception attacks. Hence, the
browser must use the proxy as a pure TCP-level relay, which passes all
network data in both directions between the browser and the destina-
tion web server, with which the browser performs an SSL handshake as
normal. To establish this relay, the browser makes an HTTP request to
the proxy server using the connEcT method and specifying the destina-
tion hostname and port number as the URL. If the proxy allows the
request, it returns an HTTP response with a 200 status, keeps the TCP
connection open, and from that point onwards acts as a pure TCP-level
relay to the destination web server.

By some measure, the most useful item in your toolkit when attacking web
applications is a specialized kind of proxy server that sits between your
browser and the target web site and allows you to intercept and modify all
requests and responses, even those using HTTPS. We will begin examining
how you can use this kind of tool in the next chapter.

Chapter 3 =« Web Application Technologies 47

HTTP Authentication

The HTTP protocol includes its own mechanisms for authenticating users,
using various authentication schemes, including:

m Basic — This is a very simple authentication mechanism that sends
user credentials as a Base64-encoded string in a request header with
each message.

m NTLM — This is a challenge-response mechanism and uses a version of
the Windows NTLM protocol.

m Digest — This is a challenge-response mechanism and uses MD5
checksums of a nonce with the user’s credentials.

Itis relatively rare to encounter these authentication protocols being used by
web applications deployed on the Internet, although they are more commonly
used within organizations to access intranet-based services.

(LD AAN B “Basic authentication is insecure”

Basic authentication places credentials in unencrypted form within the HTTP
request, and so it is frequently stated that the protocol is insecure and should
not be used. But forms-based authentication, as used by numerous banks, also
places credentials in unencrypted form within the HTTP request.

Any HTTP message can be protected from eavesdropping attacks by

using HTTPS as a transport mechanism, which should be done by every
security-conscious application. In relation to eavesdropping at least, basic
authentication is in itself no worse than the methods used by the majority of
today’s web applications.

Web Functionality

In addition to the core communications protocol used to send messages
between client and server, web applications employ numerous different tech-
nologies to deliver their functionality. Any reasonably functional application
may employ dozens of distinct technologies within its server and client com-
ponents. Before you can mount a serious attack against a web application, you
need a basic understanding of how its functionality is implemented, how the
technologies used are designed to behave, and where their weak points are
likely to lie.

48

Chapter 3 =« Web Application Technologies

Server-Side Functionality

The early World Wide Web contained entirely static content. Web sites con-
sisted of various resources such as HTML pages and images, which were sim-
ply loaded onto a web server and delivered to any user who requested them.
Each time a particular resource was requested, the server responded with the
same content.

Today’s web applications still typically employ a fair number of static
resources. However, a large amount of the content that they present to users is
generated dynamically. When a user requests a dynamic resource, the server’s
response is created on the fly, and each user may receive content that is
uniquely customized for them.

Dynamic content is generated by scripts or other code executing on the
server. These scripts are akin to computer programs in their own right — they
have various inputs, perform processing on these, and return their outputs to
the user.

When a user’s browser makes a request for a dynamic resource, it does not
normally simply ask for a copy of that resource. In general, it will also submit
various parameters along with its request. It is these parameters that enable
the server-side application to generate content that is tailored to the individual
user. There are three main ways in which HTTP requests can be used to send
parameters to the application:

m In the URL query string.
m [n HTTP cookies.

m n the body of requests using the posT method.

In addition to these primary sources of input, the server-side application
may in principle use any part of the HTTP request as an input to its processing.
For example, an application may process the user-agent header to generate
content that is optimized for the type of browser being used.

Like computer software in general, web applications employ a wide range
of technologies on the server side to deliver their functionality. These include:

m Scripting languages such as PHP, VBScript, and Perl.

m Web application platforms such as ASP.NET and Java.

m Web servers such as Apache, IIS, and Netscape Enterprise.

m Databases such as MS-SQL, Oracle, and MySQL.

m Other back-end components such as file systems, SOAP-based web ser-

vices, and directory services.

All of these technologies and the types of vulnerabilities that can arise in
relation to them will be examined in detail throughout this book. Some of the

Chapter 3 « Web Application Technologies

49

most common web application platforms and languages you are likely to
encounter are described in the following sections.

The Java Platform

For several years, the Java Platform, Enterprise Edition (formerly known as
J2EE) has been a de facto standard for large-scale enterprise applications.
Developed by Sun Microsystems, it lends itself to multi-tiered and load-bal-
anced architectures, and is well suited to modular development and code
reuse. Because of its long history and widespread adoption, there are many
high-quality development tools, application servers, and frameworks avail-
able to assist developers. The Java Platform can be run on several underlying
operating systems, including Windows, Linux, and Solaris.

Descriptions of Java-based web applications often employ a number of
potentially confusing terms that you may need to be aware of:

m An Enterprise Java Bean (EJB) is a relatively heavyweight software
component that encapsulates the logic of a specific business function
within the application. E]Bs are intended to take care of various techni-
cal challenges that application developers must address, such as trans-
actional integrity.

m A Plain Old Java Object (POJO) is an ordinary Java object, as distinct
from a special object like an EJB. POJO is normally used to denote
objects that are user-defined and much simpler and more lightweight
than EJBs and those used in other frameworks.

m A Java Servlet is an object that resides on an application server and
receives HTTP requests from clients and returns HTTP responses. There
are numerous useful interfaces that Servlet implementations can use to
facilitate the development of useful applications.

m AJava web container is a platform or engine that provides a runtime
environment for Java-based web applications. Examples of Java web
containers are Apache Tomcat, BEA WebLogic, and JBoss.

Many Java web applications employ third-party and open source compo-
nents alongside custom-built code. This is an attractive option because it
reduces development effort, and Java is well-suited to this modular approach.
Examples of components commonly used for key application functions are:

m Authentication — JAAS, ACEGI
m Presentation layer — SiteMesh, Tapestry
m Database object relational mapping — Hibernate

m Logging — Log4]

50

Chapter 3 =« Web Application Technologies

If you can determine which open source packages are used in the applica-
tion you are attacking, you can download these and perform a code review or
install them to experiment on. A vulnerability in any of these may be
exploitable to compromise the wider application.

ASP.NET

ASP.NET is Microsoft’s web application framework and is a direct competitor
to the Java Platform. ASPNET is several years younger than its counterpart
but has made some inroads into Java’s territory.

ASPNET uses Microsoft’s .NET Framework, which provides a virtual
machine (the Common Language Runtime) and a set of powerful APIs. Hence,
ASP.NET applications can be written in any .NET language, such as C# or
VB.NET.

ASP.NET lends itself to the event-driven programming paradigm which is
normally used in conventional desktop software, rather than the script-based
approach used in most earlier web application frameworks. This, together
with the powerful development tools provided with Visual Studio, make
developing a functional web application extremely easy for anyone with min-
imal programming skills.

The ASPNET framework helps to protect against some common web appli-
cation vulnerabilities such as cross-site scripting, without requiring any effort by
the developer. However, one practical downside of its apparent simplicity is that
many small-scale ASPNET applications are actually created by beginners who
lack any awareness of the core security problems faced by web applications.

PHP

The PHP language emerged out of a hobby project (the acronym originally
stood for personal home page). It has since evolved almost unrecognizably
into a highly powerful and rich framework for developing web applications. It
is often used in conjunction with other free technologies in what is known as
the LAMP stack (comprising Linux, Apache, MySQL, and PHP).

Numerous open source applications and components have been developed
using PHP. Many of these provide off-the-shelf solutions for common applica-
tion functions, which are often incorporated into wider custom-built applica-
tions, for example:

m Bulletin boards — PHPBB, PHP-Nuke

m Administrative front ends — PHPMyAdmin
m Web mail — SquirrelMail, IlohaMail

m Photo galleries — Gallery

Chapter 3 « Web Application Technologies

51

m Shopping carts — osCommerce, ECW-Shop
m Wikis — MediaWiki, WakkaWikki

Because PHP is free and easy to use, it has often been the language of choice
for many beginners writing web applications. Further, the design and default
configuration of the PHP framework has historically made it easy for pro-
grammers to unwittingly introduce security bugs into their code. These factors
have meant that applications written in PHP have suffered from a dispropor-
tionate number of security vulnerabilities. In addition to this, several defects
have existed within the PHP platform itself, which could often be exploited via
applications running on it. See Chapter 18 for details of common defects aris-
ing in PHP applications.

Client-Side Functionality

In order for the server-side application to receive user input and actions, and
present the results of these back to the user, it needs to provide a client-side
user interface. Because all web applications are accessed via a web browser,
these interfaces all share a common core of technologies. However, these have
been built upon in various diverse ways, and the ways in which applications
leverage client-side technology has continued to evolve rapidly in recent
years.

HTML

The core technology used to build web interfaces is the hypertext markup lan-
guage (HTML). This is a tag-based language that is used to describe the struc-
ture of documents that are rendered within the browser. From its simple
beginnings as a means of providing basic formatting to text documents,
HTML has developed into a rich and powerful language that can be used to
create highly complex and functional user interfaces.

Hyperlinks

A large amount of communication from client to server is driven by the user
clicking on hyperlinks. In web applications, hyperlinks frequently contain pre-
set request parameters. These are items of data which are never entered by the
user but which are submitted because the server placed them into the target
URL of the hyperlink on which the user clicks. For example, a web application
might present a series of links to news stories, each having the following form:

Sale now on!

52 Chapter 3 « Web Application Technologies

When a user clicks on this link, the browser makes the following request:

GET /news/showStory?newsid=19371130&lang=en HTTP/1.1
Host: wahh-app.com

The server receives the two parameters in the query string (newsid and
lang) and uses their values to determine what content should be presented to
the user.

Forms

While hyperlink-based navigation is responsible for the majority of client-to-
server communications, in most web applications there is a need for more flex-
ible ways of gathering input and receiving actions from users. HTML forms
are the usual mechanism for allowing users to enter arbitrary input via their
browser. A typical form is as follows:

<form action="/secure/login.php?app=quotations" method="post">
username: <input type="text" name="username">

password: <input type="password" name="password">

<input type="hidden" name="redir" value="/secure/home.php">
<input type="submit" name="submit" value="log in">

</form>

When the user enters values into the form and clicks the submit button, the
browser makes a request like the following;:

POST /secure/login.php?app=quotations HTTP/1.1
Host: wahh-app.com

Content-Type: application/x-www-form-urlencoded
Content-Length: 39

Cookie: SESS=GTnrpx2ss2tSWSnhXJGyGOLJ47MXRsjcFM6BdA

username=daf&password=foo&redir=/secure/home.php&submit=1log+in

In this request, there are several points of interest reflecting how different
aspects of the request are used to control server-side processing;:

m Because the HTML form tag contained an attribute specifying the posT
method, the browser uses this method to submit the form, and places
the data from the form into the body of the request message.

m [n addition to the two items of data entered by the user, the form con-
tains a hidden parameter (redir) and a submit parameter (submit).
Both of these are submitted in the request and may be used by the
server-side application to control its logic.

Chapter 3 « Web Application Technologies

m The target URL for the form submission contains a preset parameter
(app), as in the hyperlink example shown previously. This parameter
may be used to control the server-side processing.

m The request contains a cookie parameter (sEss), which was issued to
the browser in an earlier response from the server. This parameter may
be used to control the server-side processing.

The previous request contains a header specifying that the type of content in
the message body is x-www-form-urlencoded. This means that parameters are
represented in the message body as name/value pairs in the same way as they
are in the URL query string. The other content type you are likely to encounter
when form data is submitted is multipart/form-data. An application can
request that browsers use multipart encoding by specifying this in an enctype
attribute in the form tag. With this form of encoding, the content-Type header
in the request will also specify a random string that is used as a separator for
the parameters contained in the request body. For example, if the form speci-
fied multipart encoding, the resulting request would look like the following:

POST /secure/login.php?app=quotations HTTP/1.1

Host: wahh-app.com

Content-Type: multipart/form-data; boundary=------------ 7d71385d0ala
Content-Length: 369

Cookie: SESS=GTnrpx2ss2tSWSnhXJGyGOLJ47MXRsjcFM6BA

____________ 7d71385d0ala

Content-Disposition: form-data; name="username"

———————————— 7d71385d0ala
Content-Disposition: form-data; name="password"

777777777777 7d71385d0ala
Content-Disposition: form-data; name="redir"
/secure/home.php

———————————— 7d71385d0ala
Content-Disposition: form-data; name="submit"

———————————— 7d71385d0ala--

54

Chapter 3 =« Web Application Technologies

JavaScript

Hyperlinks and forms can be used to create a rich user interface capable of eas-
ily gathering most kinds of input which web applications require. However,
most applications employ a more distributed model, in which the client side is
used not simply to submit user data and actions but also to perform actual pro-
cessing of data. This is done for two primary reasons:

m [t can improve the application’s performance, because certain tasks can
be carried out entirely on the client component, without needing to
make a round trip of request and response to the server.

m [t can enhance usability, because parts of the user interface can be
dynamically updated in response to user actions, without needing to
load an entirely new HTML page delivered by the server.

JavaScript is a relatively simple but powerful programming language that
can be easily used to extend web interfaces in ways that are not possible using
HTML alone. It is commonly used to perform the following tasks:

m Validating user-entered data before this is submitted to the server, to
avoid unnecessary requests if the data contains errors.

m Dynamically modifying the user interface in response to user actions;
for example, to implement drop-down menus and other controls famil-
iar from non-web interfaces.

m Querying and updating the document object model (DOM) within the
browser to control the browser’s behavior.

A significant development in the use of JavaScript has been the appearance
of AJAX techniques for creating a smoother user experience which is closer to
that provided by traditional desktop applications. AJAX (or Asynchronous
JavaScript and XML) involves issuing dynamic HTTP requests from within an
HTML page, to exchange data with the server and update the current web
page accordingly, without loading a new page altogether. These techniques
can provide very rich and satisfying user interfaces. They can also sometimes
be used by attackers to powerful effect, and may introduce vulnerabilities of
their own if not carefully implemented (see Chapter 12).

Thick Client Components

Going beyond the capabilities of JavaScript, some web applications employ
thicker client technologies that use custom binary code to extend the browser’s
built-in capabilities in arbitrary ways. These components may be deployed as
bytecode that is executed by a suitable browser plug-in, or may involve

Chapter 3 =« Web Application Technologies 55

installing native executables onto the client computer itself. The thick-client
technologies you are likely to encounter when attacking web applications are:

m Java applets
m ActiveX controls

m Shockwave Flash objects

These technologies are described in detail in Chapter 5.

State and Sessions

The technologies described so far enable the server and client components of a
web application to exchange and process data in numerous ways. To imple-
ment most kinds of useful functionality, however, applications need to track
the state of each user’s interaction with the application across multiple
requests. For example, a shopping application may allow users to browse a
product catalogue, add items to a cart, view and update the cart contents, pro-
ceed to checkout, and provide personal and payment details.

To make this kind of functionality possible, the application must maintain a
set of stateful data generated by the user’s actions across several requests. This
data is normally held within a server-side structure called a session. When a
user performs an action, such as adding an item to her shopping cart, the
server-side application updates the relevant details within the user’s session.
When the user later views the contents of her cart, data from the session is
used to return the correct information to the user.

In some applications, state information is stored on the client component
rather than the server. The current set of data is passed to the client in each
server response, and is sent back to the server in each client request. Of course,
because any data transmitted via the client component may be modified by the
user, applications need to take measures to protect themselves from attackers
who may change this state information in an attempt to interfere with the
application’s logic. The ASP.NET platform makes use of a hidden form field
called the ViewState to store state information about the user’s web interface
and so reduce overhead on the server. By default, the contents of the ViewState
include a keyed hash to prevent tampering.

Because the HTTP protocol is itself stateless, most applications need a
means of re-identifying individual users across multiple requests, in order for
the correct set of state data to be used to process each request. This is normally
achieved by issuing each user a token which uniquely identifies that user’s
session. These tokens may be transmitted using any type of request parameter,
but HTTP cookies are used by most applications. Several kinds of vulnerabil-
ity arise in relation to session handling, and these are described in detail in
Chapter 7.

56

Chapter 3 =« Web Application Technologies

Encoding Schemes

Web applications employ several different encoding schemes for their data.
Both the HTTP protocol and the HTML language are historically text-based,
and different encoding schemes have been devised to ensure that unusual
characters and binary data can be safely handled by these mechanisms. When
you are attacking a web application, you will frequently need to encode data
using a relevant scheme to ensure that it is handled in the way you intend. Fur-
ther, in many cases you may be able to manipulate the encoding schemes used
by an application to cause behavior that its designers did not intend.

URL Encoding

URLs are permitted to contain only the printable characters in the US-ASCII
character set — that is, those whose ASCII code is in the range 0x20-0x7e
inclusive. Further, several characters within this range are restricted because
they have special meaning within the URL scheme itself or within the HTTP
protocol.

The URL encoding scheme is used to encode any problematic characters
within the extended ASCII character set so that they can be safely transported
over HTTP. The URL-encoded form of any character is the % prefix followed by
the character’s two-digit ASCII code expressed in hexadecimal. Some exam-
ples of characters that are commonly URL-encoded are shown here:

%$3d
%25
%20 space

o0

$0a new line
%00 null byte

A further encoding to be aware of is the + character, which represents a URL-
encoded space (in addition to the %20 representation of a space).

.]ma For the purpose of attacking web applications, you should URL-encode
any of the following characters when you are inserting them as data into an
HTTP request:

space % ? & = ; + #

(Of course, you will often need to use these characters with their special
meaning when modifying a request — for example, to add an additional request
parameter to the query string. In this case, they should be used in their literal
form.)

Chapter 3 « Web Application Technologies

57

Unicode Encoding

Unicode is a character encoding standard that is designed to support all of the
writing systems used in the world. It employs various encoding schemes, some
of which can be used to represent unusual characters in web applications.

16-bit Unicode encoding works in a similar way to URL-encoding. For
transmission over HTTP, the 16-bit Unicode-encoded form of a character is the
su prefix followed by the character’s Unicode code point expressed in hexa-
decimal. For example:

$u2215 /
%u00e9 é

UTF-8 is a variable-length encoding standard that employs one or more
bytes to express each character. For transmission over HTTP, the UTF-8
encoded form of a multi-byte character simply uses each byte expressed in
hexadecimal and preceded by the % prefix. For example:

%c2%a9 ©
%e2%89%al #

For the purpose of attacking web applications, Unicode encoding is primar-
ily of interest because it can sometimes be used to defeat input validation
mechanisms. If an input filter blocks certain malicious expressions, but the
component that subsequently processes the input understands Unicode
encoding, then it may be possible to bypass the filter using various standard
and malformed Unicode encodings.

HTML Encoding

HTML encoding is a scheme used to represent problematic characters so that
they can be safely incorporated into an HTML document. Various characters
have special meaning as meta-characters within HTML and are used to define
the structure of a document rather than its content. To use these characters
safely as part of the document’s content, it is necessary to HTML-encode them.

HTML encoding defines numerous HTML entities to represent specific lit-
eral characters, for example:

"
'
& ;
<
> ;

58

Chapter 3 =« Web Application Technologies

In addition, any character can be HTML-encoded using its ASCII code in
decimal form, for example:

"
'

or by using its ASCII code in hexadecimal form (prefixed by an x), for example:

&H#x22;
'

When you are attacking a web application, your main interest in HTML
encoding is likely to be when probing for cross-site scripting vulnerabilities. If
an application returns user input unmodified within its responses, then it is
probably vulnerable, whereas if dangerous characters are HTML-encoded
then it is probably safe. See Chapter 12 for more details of these vulnerabilities.

Base64 Encoding

Base64 encoding allows any binary data to be safely represented using only
printable ASCII characters. It is commonly used for encoding email attach-
ments for safe transmission over SMTP, and is also used to encode user cre-
dentials in basic HTTP authentication.

Base64 encoding processes input data in blocks of three bytes. Each of these
blocks is divided into four chunks of six bits each. Six bits of data allow for 64
different possible permutations, and so each chunk can be represented using a
set of 64 characters. Base64 encoding employs the following character set,
which contains only printable ASCII characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/

If the final block of input data results in less than three chunks of output
data, then the output is padded with one or two = characters.

For example, the Base64-encoded form of The Web Application Hacker’s Hand-
book is:

VGhlIFdlYiBBcHBsaWNhdGlvbiBIYWNrZXIncyBIYWS5kYmOvaw==

Many web applications make use of Base64 encoding for transmitting
binary data within cookies and other parameters, and even for obfuscating
sensitive data to prevent trivial modification. You should always look out for,
and decode, any Base64 data that is issued to the client. Base64-encoded
strings can often be easily recognized from their specific character set and the
presence of padding characters at the end of the string.

Chapter 3 « Web Application Technologies

59

Hex Encoding

Many applications use straightforward hexadecimal encoding when transmit-
ting binary data, using ASCII characters to represent the hexadecimal block.
For example, hex-encoding the username “daf” within a cookie would result in:

646166

As with Base64, hex-encoded data is usually easy to spot, and you should
always attempt to decode any such data that the server sends to the client, to
understand its function.

Next Steps

So far, we have described the current state of web application (in)security,
examined the core mechanisms by which web applications can defend them-
selves, and taken a brief look at the key technologies employed in today’s
applications. With this groundwork in place, we are now in a position to start
looking at the actual practicalities of attacking web applications.

In any attack, your first task is to map the target application’s content and
functionality, to establish how it functions, how it attempts to defend itself,
and what technologies it uses. The next chapter examines this mapping
process in detail and shows how you can use it to obtain a deep understand-
ing of an application’s attack surface that will prove vital when it comes to
finding and exploiting security flaws within your target.

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. What is the oprI0NS method used for?

2. What are the 1£-Modified-Since and If-None-Match headers used for?
Why might you be interested in these when attacking an application?

3. What is the significance of the secure flag when a server sets a cookie?
4. What is the difference between the common status codes 301 and 302?

5. How does a browser interoperate with a web proxy when SSL is being
used?

Mapping the Application

The first step in the process of attacking an application is to gather and exam-
ine some key information about it, in order to gain a better understanding of
what you are up against.

The mapping exercise begins by enumerating the application’s content and
functionality, in order to understand what the application actually does and
how it behaves. Much of this functionality will be easy to identify, but some of
it may be hidden away, and require a degree of guesswork and luck in order to
discover.

Having assembled a catalogue of the application’s functionality, the princi-
pal task is to closely examine every aspect of its behavior, its core security
mechanisms, and the technologies being employed (on both client and server).
This will enable you to identify the key attack surface that the application
exposes and hence the most interesting areas on which to target subsequent
probing to find exploitable vulnerabilities.

In this chapter, we will describe the practical steps you need to follow dur-
ing application mapping, various techniques and tricks you can use to maxi-
mize its effectiveness, and some tools that can assist you in the process.

61

62

Chapter 4 =« Mapping the Application

Enumerating Content and Functionality

In a typical application, the majority of the content and functionality can be
identified via manual browsing. The basic approach is to walk through the
application starting from the main initial page, following every link and navi-
gating through all multistage functions (such as user registration or password
resetting). If the application contains a “site map,” this can provide a useful
starting point for enumerating content.

However, to perform a rigorous inspection of the enumerated content, and
to obtain a comprehensive record of everything identified, it is necessary to
employ some more advanced techniques than simple browsing.

Web Spidering

Various tools exist which perform automated spidering of web sites. These
tools work by requesting a web page, parsing it for links to other content,
and then requesting these, continuing recursively until no new content is
discovered.

Building on this basic function, web application spiders attempt to achieve
a higher level of coverage by also parsing HTML forms and submitting these
back to the application using various preset or random values. This can enable
them to walk through multistage functionality, and to follow forms-based nav-
igation (e.g., where drop-down lists are used as content menus). Some tools
also perform some parsing of client-side JavaScript to extract URLs pointing to
further content. The following free tools all do a decent job of enumerating
application content and functionality (see Chapter 19 for a detailed analysis of
their capabilities):

m Paros
m Burp Spider (part of Burp Suite)
m WebScarab

Figure 4-1 shows the results of using Burp Spider to map part of an application.

m Many web servers contain a file named robots. txt in the web root,
which contains a list of URLs that the site does not wish web spiders to visit or
search engines to index. Sometimes, this file contains references to sensitive
functionality, which you are certainly interested in spidering. Some spidering
tools designed for attacking web applications will check for the robots. txt
file and use all URLs within it as seeds in the spidering process.

- = -
Chapter 4 » Mapping the Application 63
-1l x|
tree | table |
L = =4[linked from
@ httpiimsdn2.microsoft. cormfen-abid efault. as px
=@
-3
-3
o=] /mahbile B
9 3 imobility =
[[302] idefault aspx ||
& T
= links to
-@ hitpfic microsoft cormtrans_pixel asp?source=mi*
D hitpfic.microsoft.comtrans_pixel.asp?source=m
¢ ' nodehomes hitp:fgo.microsoft comf?linkid=2025438
¢ 3 foraphics hittpfigo.microsoft comi?linkid=317027
[irry_msdn_connection jog hitpfign micros oft comifwlinki?Linkld=82987 &ele|_|
- i |
5 ‘ i
™) Eod sttt | s
o 33 response
-3 texd [htrnl |
o [C]dpractices HTTFI .1 200 0K =
9 =4 irecent Connection: close =
Date: Man, 05 Mar 2007 08:54:50 GMT
o= default.aspx '
D D Server: Microsof-I1556.0
PaP: CP="ALL IND DSP COR ADM COMND CUR
« @ CUSao VAo MWDo PEA PSD TAI TELo OUR
o (73 SaMo CHNT COM INT MAY ONL PHY PRE PLIR
-3 = 0 matches

Figure 4-1: Mapping part of an application using Burp Spider

While it can often be effective, there are some important limitations of this
kind of fully automated approach to content enumeration:

m Unusual navigation mechanisms (such as menus dynamically created
and handled using complicated JavaScript code) are often not handled
properly by these tools, and so they may miss whole areas of an appli-
cation.

m Multistage functionality often implements fine-grained input validation
checks, which do not accept the values that may be submitted by an auto-
mated tool. For example, a user registration form may contain fields for
name, email address, telephone number, and ZIP code. An automated
application spider will typically submit a single test string in each
editable form field, and the application will return an error message say-
ing that one or more of the items submitted were invalid. Because the spi-
der is not intelligent enough to understand and act upon this message, it
will not proceed past the registration form and so will not discover any
further content or functions accessible beyond it.

m Automated spiders typically use URLs as identifiers of unique content.
To avoid continuing spidering indefinitely, they recognize when linked
content has already been requested and do not request it again. How-
ever, many applications use forms-based navigation in which the same
URL may return very different content and functions. For example, a

64

Chapter 4 =« Mapping the Application

banking application may implement every user action via a POST
request to /account.jsp, and use parameters to communicate the
action being performed. If a spider refuses to make multiple requests to
this URL, it will miss most of the application’s content. Some applica-
tion spiders attempt to handle this situation (for example, Burp Spider
can be configured to individuate form submissions based on parameter
names and values); however, there may still be situations where a fully
automated approach is not completely effective.

m Conversely to the previous point, some applications place volatile data
within URLSs that is not actually used to identify resources or functions
(for example, parameters containing timers or random number seeds).
Each page of the application may contain what appears to be a new set
of URLSs that the spider must request, causing it to continue running
indefinitely.

m Where an application uses authentication, an effective application spi-
der must be able to handle this in order to access the functionality that
it protects. The spiders mentioned previously can achieve this, by man-
ually configuring them either with a token for an authenticated session
or with credentials to submit to the login function. However, even
when this is done, it is common to find that the operation of the spider
breaks the authenticated session for various reasons:

m By following all URLSs, the spider will at some point request the
logout function, causing its session to break.

m [f the spider submits invalid input to a sensitive function, the appli-
cation may defensively terminate the session.

m [f the application uses per-page tokens, the spider will almost cer-
tainly fail to handle these properly by requesting pages out of their
expected sequence, probably causing the entire session to be termi-
nated.

m In some applications, running even a simple web spider that
parses and requests links can be extremely dangerous. For example, an

application may contain administrative functionality that deletes users, shuts
down a database, restarts the server, and the like. If an application-aware
spider is used, great damage can be done if the spider discovers and uses
sensitive functionality. The authors have encountered an application that
included functionality to edit the actual content of the main application. This
functionality was discoverable via the site map and was not protected by any
access control. If an automated spider were run against this site, it would find
the edit function and begin sending arbitrary data, resulting in the main web
site being defaced in real time while the spider was running.

Chapter 4 =« Mapping the Application

65

User-Directed Spidering

This is a more sophisticated and controlled technique, which is usually prefer-
able to automated spidering. Here, the user walks through the application in
the normal way using a standard browser, attempting to navigate through all
of the application’s functionality. As he does so, the resulting traffic is passed
through a tool combining an intercepting proxy and spider, which monitors all
requests and responses. The tool builds up a map of the application, incorpo-
rating all of the URLs visited by the browser, and also parses all of the applica-
tion’s responses in the same way as a normal application-aware spider and
updates the site map with the content and functionality it discovers. The spi-
ders within Burp Suite and WebScarab can be used in this way (see Chapter 19
for further information).

Compared with the basic spidering approach, this technique carries numer-
ous benefits:

m Where the application uses unusual or complex mechanisms for navi-
gation, the user can follow these using a browser in the normal way.
Any functions and content accessed by the user will be processed by
the proxy/spider tool.

m The user controls all data submitted to the application and can ensure
that data validation requirements are met.

m The user can log in to the application in the usual way, and ensure that
the authenticated session remains active throughout the mapping
process. If any action performed results in session termination, the user
can log in again and continue browsing.

m Any dangerous functionality, such as deleteuser. jsp, will be fully
enumerated and incorporated into the site map, because links to it will
be parsed out of the application’s responses. But the user can use his
discretion in deciding which functions to actually request or carry out.

m In addition to the proxy/spider tools just described, another range of
tools that are often useful during application mapping are the various browser
extensions that can perform HTTP and HTML analysis from within the browser
interface. For example, the IEWatch tool illustrated in Figure 4-2, which runs
within Microsoft Internet Explorer, monitors all details of requests and
responses, including headers, request parameters, and cookies, and analyzes
every application page to display links, scripts, forms, and thick-client
components. While all of this information can, of course, be viewed in
your intercepting proxy, having a second record of useful mapping data can
only help you better understand the application and enumerate all of its
functionality. See Chapter 19 for more information about tools of this kind.

Chapter 4 =« Mapping the Application

(,‘ MSDN Home Page {United Kingdom - English) - Windows Internet Explorer 13l x|
Ia htip: /frnsdn2. microsoft.com/en-gb/default. aspx j 8o A [0 ISearch Google paliis
J Fle Edt Wiew Favorites Tools Help
e ‘& MSDN Home Page {United Kingdam - English) J M- [l - &= - rPage - o Tools - ' &
Welcome Sign In United Kingdom - English v | Microsoft.com +
msdn_ —
—_—
MSDM Home Developer Centres Library Downloads How To Buy Subscribers My MSDN Cor -
] | _>l_I
* o w [G5 [%] Ti- 8- | @-| nE
|HTML Summary g X |
HTHML Summay Iterm HTML Summary Value
Page URL http: //mzdn microsoft. comden-gb/default. aspx
Page Title MSDM Hame Page [United Kingdam - English]
Page Load Time: BE25 s
Page Weight 272.340KB
Character Set utf-8
Last Modified 03/04/2007 13:46:19
Total Link Count 133
2 Total Image Count 13
||| Total Script Count 10
& || Tatal Style Sheet Caunt 3
§ Total AppletsActiver Count a
5 ||| Total Form Count 1
=
S| SHTML Summary =] Can... [s=Li.. |Ema.. |$1sc.. [Alstyles.. |8 Flash/sct.. [EFo.. [# soriptimme.., |
o E————
&i|| @ HTTP Analysis [HTML Analysis

I ’_,_,_,_’_’T|@ Inkernet [®100% - 4
Figure 4-2: |IEWatch performing HTTP and HTML analysis from within the browser

B Configure your browser to use either Burp or WebScarab as a local proxy
(see Chapter 19 for specific details about how to do this if you are unsure).

H Browse the entire application normally, attempting to visit every single
link/URL you discover, submitting every single form, and proceeding
through all multistep functions to completion. Try browsing with
JavaScript enabled and disabled, and with cookies enabled and disabled.
Many applications can handle various browser configurations, and you
may reach different content and code paths within the application.

H Review the site map generated by the proxy/spider tool, and identify any
application content or functions that you did not browse manually.
Establish how the spider enumerated each item — for example, in Burp
Spider, check the Linked From details. Using your browser, access the
item manually, so that the response from the server is parsed by the
proxy/spider tool to identify any further content. Continue this step
recursively until no further content or functionality is identified.

H Optionally, tell the tool to actively spider the site using all of the already
enumerated content as a starting point. To do this, first identify any URLs
that are dangerous or likely to break the application session, and config-
ure the spider to exclude these from its scope. Run the spider and review
the results for any additional content that it discovers.

H The site map generated by the proxy/spider tool contains a wealth of
information about the target application, which will be useful later in
identifying the various attack surfaces exposed by the application.

Chapter 4 =« Mapping the Application

67

Discovering Hidden Content

It is very common for applications to contain content and functionality which
is not directly linked or reachable from the main visible content. A common
example of this is functionality that has been implemented for testing or
debugging purposes and has never been removed.

Another example arises where the application presents different functional-
ity to different categories of users (for example, anonymous users, authenti-
cated regular users, and administrators). Users at one privilege level who
perform exhaustive spidering of the application may miss functionality that is
visible to users at other levels. An attacker who discovers the functionality
may be able to exploit it to elevate her privileges within the application.

There are countless other cases in which interesting content and functional-
ity may exist that the mapping techniques previously described would not
identify, including;:

m Backup copies of live files. In the case of dynamic pages, their file exten-
sion may have changed to one that is not mapped as executable,
enabling you to review the page source for vulnerabilities that can then
be exploited on the main page.

m Backup archives that contain a full snapshot of files within (or indeed
outside) the web root, possibly enabling you to easily identify all con-
tent and functionality within the application.

m New functionality that has been deployed to the server for testing but
not yet linked from the main application.

m Old versions of files that have not been removed from the server. In the
case of dynamic pages, these may contain vulnerabilities that have been
fixed in the current version but can still be exploited in the old version.

m Configuration and include files containing sensitive data such as data-
base credentials.

m Source files out of which the live application’s functionality has been
compiled.

m [og files that may contain sensitive information such as valid user-
names, session tokens, URLs visited, actions performed, and so on.

Effective discovery of hidden content requires a combination of automated
and manual techniques, and often relies upon a degree of luck.

Brute-Force Techniques

In Chapter 13, we will describe how automated techniques can be leveraged to
speed up just about any attack against an application. In the present context,
automation can be used to make huge numbers of requests to the web server,
attempting to guess the names or identifiers of hidden functionality.

68 Chapter 4 = Mapping the Application

For example, suppose that your user-directed spidering has identified the
following application content:

https://wahh-app.com/login.php
https://wahh-app.com/home/myaccount .php
https://wahh-app.com/home/logout.php
https://wahh-app.com/help/
https://wahh-app.com/register.php
https://wahh-app.com/menu.js
https://wahh-app.com/scripts/validate.js

The first step in an automated effort to identify hidden content might
involve the following requests, to locate additional directories:

https://wahh-app.com/access/
https://wahh-app.com/account/
https://wahh-app.com/accounts/
https://wahh-app.com/accounting/
https://wahh-app.com/admin/
https://wahh-app.com/agent/
https://wahh-app.com/agents/

Next, the following requests could be made, to locate additional pages:

https://wahh-app.com/access.php
https://wahh-app.com/account.php
https://wahh-app.com/accounts.php
https://wahh-app.com/accounting.php
https://wahh-app.com/admin.php
https://wahh-app.com/agent.php
https://wahh-app.com/agents.php

https://wahh-app.com/home/access.php
https://wahh-app.com/home/account.php
https://wahh-app.com/home/accounts.php
https://wahh-app.com/home/accounting.php
https://wahh-app.com/home/admin.php
https://wahh-app.com/home/agent .php
https://wahh-app.com/home/agents.php

.m Do not assume that the application will respond with “200 OK" if a
requested resource exists, and “404 Not Found” if it does not. Many
applications handle requests for nonexistent resources in a customized way,
often returning a bespoke error message and a 200 response code. Further,
some requests for existent resources may receive a non-200 response. The
following is a rough guide to the likely meaning of the response codes that you
may encounter during a brute-forcing exercise looking for hidden content:

m 302 Found — If the redirect is to a login page, the resource may be
accessible only by authenticated users. If it is to an error message, this
may disclose a different reason. If it is to another location, the redirect

Chapter 4 » Mapping the Application 69

may be part of the application’s intended logic, and this should be
investigated further.

= 400 Bad Request — The application may use a custom naming scheme
for directories and files within URLs, which a particular request has not
complied with. More likely, however, is that the wordlist you are using
contains some whitespace characters or other invalid syntax.

= 401 Unauthorized or 403 Forbidden - This usually indicates that the
requested resource exists but may not be accessed by any user,
regardless of authentication status or privilege level. It often occurs when
directories are requested, and you may infer that the directory exists.

= 500 Internal Server Error — During content discovery, this usually
indicates that the application expects certain parameters to be
submitted when requesting the resource.

The various possible responses that may indicate the presence of interesting
content mean that is difficult to write a fully automated script to output a list-
ing of valid resources. The best approach is to capture as much information as
possible about the application’s responses during the brute-force exercise, and
manually review it.

Burp Intruder can be used to iterate through a list of common directory
names and capture details of the server’s responses, which can be reviewed to
identify valid directories. Figure 4-3 shows Burp Intruder being configured to
probe for common directories residing at the web root.

@hurp suite ¥1.01 professional - |EI 5[

burp intruder repeater window help

prowy | spider | intruder rrepeater rcnmms raler‘ts |
target | positions rpaylnads rnptmns |

attack type |sniper |V|

GET #%§i HTTPM 1 add §
Accept imagelgif, imagel-cbitmap, imagefpen, imageipjpea,
applicationf-shockwave-flash, applicationind.ms-excel,
applicationfnd.me-powerpaint, applicationmsward, =~

UA-CPLU: 286

Accept-Encoding: gzip, deflate

UserAgent Mozillafa.0 icompatible; MSIE 7.0; Windows NT 5.1, MET CLR
2.0.50727; FOM; InfaPath.1) refresh
Host www.wahh-app.com
Connection: Keep-Alive
AcceptLanguage: en-gh en-us;g=0.5

clear §

auto &

ElblE

clear

'

1 positions length: 416

Figure 4-3: Burp Intruder being configured to probe for common directories

70

Chapter 4 =« Mapping the Application

When the attack has been executed, clicking on column headers such as
“status” and “length” will sort the results accordingly, enabling anomalies to
be quickly picked out, as shown in Figure 4-4.

-loxd

attack save view

reguest payload status | error flimen lenath
27 2|downloads 200 a3
38dlimages 200 B8
A77|public 200 678
288|error 400 267
ABladmin 401 204
A5 private 4m 295
148|ci-hin 403 255

1 404 261

2/10 404 261
AnAd il

finished |

Figure 4-4: The results of a test probing for common directories

B Make some manual requests for known valid and invalid resources, and
identify how the server handles the latter.

H Use the site map generated through user-directed spidering as a basis for
automated discovery of hidden content.

B Make automated requests for common filenames and directories within
each directory or path known to exist within the application. Use Burp
Intruder or a custom script, together with wordlists of common files and
directories, to quickly generate large numbers of requests. If you have
identified a particular way in which the application handles requests for
invalid resources (e.g., a customized “file not found” page), configure
Intruder or your script to highlight these results so they can be ignored.

B Capture the responses received from the server, and manually review
these to identify valid resources.

B Perform the exercise recursively as new content is discovered.

Inference from Published Content

Most applications employ some kind of naming scheme for their content and
functionality. By inferring from the resources already identified within the
application, it is possible to fine-tune your automated enumeration exercise to
increase the likelihood of discovering further hidden content.

Chapter 4 =« Mapping the Application 71

B Review the results of your user-directed browsing and basic brute-force
exercises. Compile lists of the names of all enumerated subdirectories,
file stems, and file extensions.

B Review these lists to identify any naming schemes in use. For example,
if there are pages called AddDocument . jsp and ViewDocument . jsp,
then there may also be pages called Edi tDocument . jsp and
RemoveDocument . jsp. You can often get a feel for the naming habits of
developers just by reading a few examples. For example, depending on
their personal style, developers may be verbose (addaNewUser . asp),
succinct (AddUser . asp), use abbreviations (AddUsr . asp), or even be
more cryptic (AddU. asp). Getting a feel for the naming styles in use may
help you guess the precise names of content that you have not already
identified.

B Sometimes, the naming scheme used for different content employs
identifiers such as numbers and dates, which can make inferring hidden
content extremely easy. This is most commonly encountered in the
names of static resources, rather than dynamic scripts. For example,
if a company’s web site links to AnnualReport2004.pdf and Annual
Report2005.pdf, it ought to be a short step to identifying what the next
report will be called. Somewhat incredibly, there have been notorious
cases of companies placing files containing financial results onto their
web servers before these were publicly announced, only to have wily
journalists discover them based on the naming scheme used in earlier
years.

B Review all client-side code such as HTML and JavaScript to identify any
clues about hidden server-side content. These may include HTML com-
ments relating to protected or unlinked functions, and HTML forms with
disabled suBMIT elements, and the like. Often, comments are automati-
cally generated by the software that has been used to generate web con-
tent, or by the platform on which the application is running. References
to items such as server-side include files are of particular interest —
these files may actually be publicly downloadable and may contain
highly sensitive information such as database connection strings and
passwords. In other cases, developers’ comments may contain all kinds
of useful tidbits, such as database names, references to back-end com-
ponents, SQL query strings, and so on. Thick-client components such as
Java applets and ActiveX controls may also contain sensitive data that
you can extract. See Chapter 14 for further ways in which the application
may disclose information about itself.

(continued)

72 Chapter 4 =« Mapping the Application

HACK STEPS (continued)

B Add to the lists of enumerated items any further potential names conjec-
tured on the basis of these. Also add to the file extension list common
extensions such as txt, bak, src, inc, and o1d, which may uncover the
source to backup versions of live pages, as well as extensions associated
with the development languages in use, such as Java and cs, which may
uncover source files that have been compiled into live pages (see the tips
described later in this chapter for identifying technologies in use). The
Paros tool carries out this test when used to perform a vulnerability scan
(see Chapter 19).

B Search for temporary files which may have been created inadvertently by
developer tools and file editors — for example, the .Ds_stoxre file, which
contains a directory index under OSX, or file.php~1, which is a tempo-
rary file created when file.php is edited.

B Perform further automated exercises, combining the lists of directories,
file stems, and file extensions to request large numbers of potential
resources. For example, in a given directory, request each file stem com-
bined with each file extension. Or request each directory name as a sub-
directory of every known directory.

B Where a consistent naming scheme has been identified, consider per-
forming a more focused brute-force exercise on the basis of this. For
example, if AddDocument . jsp and ViewDocument . jsp are known to
exist, you may create a list of actions (edit, delete, create, etc.) and make
requests of the form xxxDocument . jsp. Alternatively, create a list of
types of item (user, account, file, etc.) and make requests of the form
AddXxxX.Jsp.

B Perform each exercise recursively, using new enumerated content and
patterns as the basis for further user-directed spidering, and further
automated content discovery. You are limited only by your imagination,
time available, and the importance you attach to discovering hidden con-
tent within the application you are targeting.

Use of Public Information

There may be content and functionality within the application that is not
presently linked from its main content, but has been linked in the past. In this
situation, it is likely that various historical repositories will still contain refer-
ences to the hidden content. There are two main types of publicly available
resources that are useful here:

m Search engines such as Google, Yahoo and MSN. These maintain a
fine-grained index of all content which their powerful spiders have

Chapter 4 » Mapping the Application 73

discovered, and also cached copies of much of this content, which per-
sists even after the original content has been removed.

m Web archives such as the WayBack Machine located at
web.archive.org. These archives maintain a historical record of a very
large number of web sites, and in many cases allow users to browse a
fully replicated snapshot of a given site as it existed at various dates
going back several years.

In addition to content that has been linked in the past, these resources are
also likely to contain references to content that is linked from third-party sites,
but not from within the target application itself. For example, some applica-
tions contain restricted functionality for use by their business partners. Those
partners may disclose the existence of the functionality in ways that the appli-
cation itself does not.

B Use several different search engines and web archives (listed previously)
to discover what content they indexed or stored for the application you
are attacking.

B When querying a search engine, you can use various advanced tech-
niques to maximize the effectiveness of your research. The following sug-
gestions apply to Google — you can find the corresponding queries on
other engines by selecting their Advanced Search option:

B site:www.wahh-target.com — This will return every resource within
the target site which Google has a reference to.

B site:www.wahh-target.com login — This will return all of the
pages containing the expression 1ogin. In a very large and complex
application, this technique can be used to quickly home in on interest-
ing resources, such as site maps, password reset functions, adminis-
trative menus, and the like.

B 1link:www.wahh-target.com — This will return all of the pages on
other web sites and applications that contain a link to the target. This
may include links to old content, or functionality that is intended for
use only by third parties, such as partner links.

B related:www.wahh-target.com — This returns pages that are “simi-
lar” to the target, and so will include a lot of irrelevant material. How-
ever, it may also include discussion about the target on other sites,
which may be of interest.

® For each search, perform it not only in the default Web section of
Google, but also Groups and News, which may contain different
results.
(continued)

74 Chapter 4 =« Mapping the Application

HACK STEPS (continued)

Browse to the last page of search results for a given query, and select
Repeat the Search with the Omitted Results Included. By default,
Google attempts to filter out redundant results by removing pages that
it believes are sufficiently similar to others included in the results.
Overriding this behavior may uncover subtly different pages that are
of interest to you when attacking the application.

View the cached version of interesting pages, including any content
that is no longer present in the actual application. In some cases,
search engine caches contain resources that cannot be directly
accessed in the application without authentication or payment.

Perform the same queries on other domain names belonging to the
same organization, which may contain useful information about the
application you are targeting.

Bl If your research identifies old content and functionality that is no longer
linked to within the main application, it may still be present and usable.
The old functionality may contain vulnerabilities that do not exist else-
where within the application.

B Even where old content has been removed from the live application,
details about the content obtained from a search engine cache or web
archive may contain references to or clues about other functionality that is
still present within the live application, and that can be used to attack it.

A further public source of useful information about the target application is
any posts that developers and others have made to Internet forums. There are
numerous such forums in which software designers and programmers ask
and answer technical questions. Often, items posted to these forums will con-
tain information about an application that is of direct benefit to an attacker,
including the technologies in use, the functionality implemented, problems
encountered during development, known security bugs, configuration and
log files submitted to assist troubleshooting, and even extracts of source code.

B Compile a list containing every name and email address you can discover
relating to the target application and its development. This should include
any known developers, names found within HTML source code, names found
in the contact information section of the main company web site, and any
names disclosed within the application itself, such as administrative staff.

Using the search techniques described previously, search for each identi-
fied name, to find any questions and answers they have posted to Inter-

net forums. Review any information found for clues about functionality

or vulnerabilities within the target application.

Chapter 4 =« Mapping the Application

75

Leveraging the Web Server

Vulnerabilities may exist at the web server layer that enable you to discover
content and functionality that is not linked within the web application itself.
For example, there have been numerous bugs within web server software that
allow an attacker to list the contents of directories, or obtain the raw source for
dynamic server-executable pages. See Chapter 17 for some examples of these
vulnerabilities, and ways in which you can identify them. If such a bug exists,
you may be able to exploit it to directly obtain a listing of all pages and other
resources within the application.

Many web servers ship with default content that may assist you in attacking
them — for example, sample and diagnostic scripts that may contain known
vulnerabilities, or contain functionality that may be leveraged for some mali-
cious purpose. Further, many web applications incorporate common third-
party components that they use for various standard functions — for example,
scripts to implement a shopping cart or interface to email servers. Nikto is a
handy tool that issues requests for a wide range of default web server content,
third-party application components, and common directory names. While
Nikto will not rigorously test for any hidden bespoke functionality, it can often
be useful in discovering other resources that are not linked within the applica-
tion and that may be of interest in formulating an attack:

manicsprout@king nikto-1.35]1# perl nikto.pl

- Nikto 1.34/1.29 - www.cirt.net

+ Target IP: 127.0.0.1

+ Target Hostname: localhost

+ Target Port: 80

+ Start Time: Sat Feb 3 12:03:36 2007

- Scan is dependent on "Server" string which can be faked, use -g to
override

+ Server ID string not sent

- Server did not understand HTTP 1.1, switching to HTTP 1.0

+ /bin/ - This might be interesting... (GET)

+ /client/ - This might be interesting... (GET)

+ /oracle - Redirects to /oracle/ , This might be interesting...
+ /temp/ - This might be interesting... (GET)

+ /cgi-bin/login.pl - This might be interesting... (GET)

+ 3198 items checked - 6 item(s) found on remote host(s)

+ End Time: Sat Feb 3 12:03:55 2007 (19 seconds)

76

Chapter 4 =« Mapping the Application

There are several useful options available when running Nikto:

H If you believe that the server is using a nonstandard location for interest-
ing content that Nikto checks for (for example /cgi/cgi-bin instead of
/cgi-bin) you can specify this alternate location using the option -root
/cgi/. For the specific case of CGI directories, these can also be speci-
fied using the option -Ccgidirs.

B If the site uses a custom “file not found” page that does not return the
HTTP 404 status code, you can specify a particular string that identifies
this page by using the -404 option.

B Be aware that Nikto does not perform any intelligent verification of

potential issues and so is prone to report false positives. Always check
any results returned by Nikto manually.

Application Pages vs. Functional Paths

The enumeration techniques described so far have been implicitly driven by
one particular picture of how web application content may be conceptualized
and catalogued. This picture is inherited from the pre-application days of the
World Wide Web, in which web servers functioned as repositories of static
information, retrieved using URLs that were effectively filenames. To publish
some web content, an author simply generated a bunch of HTML files and
copied these into the relevant directory on a web server. When users followed
hyperlinks, they navigated around the set of files created by the author,
requesting each file via its name within the directory tree residing on the
server.

Although the evolution of web applications has fundamentally changed the
experience of interacting with the Web, the picture just described is still applic-
able to the majority of web application content and functionality. Individual
functions are typically accessed via a unique URL, which is usually the name
of the server-side script that implements the function. The parameters to the
request (residing in either the URL query string or the body of a posT request)
do not tell the application what function to perform — they tell it what infor-
mation to use when performing it. In this context, the methodology of con-
structing a URL-based map can be effective in cataloging the functionality of
the application.

In some applications, however, the picture based on application “pages” is
inappropriate. While it may be logically possible to shoehorn any application’s
structure into this form of representation, there are many cases in which a

Chapter 4 =« Mapping the Application

77

different picture, based on functional paths, is far more useful for cataloging
its content and functionality. Consider an application that is accessed using

only requests of the following form:

POST /bank.jsp HTTP/1.1

Host: wahh-bank.com
Content-Length:

servlet=TransferFunds&method=confirmTransfer&fromAccount=10372918&toAcco

unt=3910852&amount=291.23&Submit=0k

Here, every request is made to a single URL. The parameters to the request
are used to tell the application what function to perform, by naming the Java
servlet and method to invoke. Further parameters provide the information to
use in performing the function. In the picture based on application pages, the
application will appear to have only a single function, and a URL-based map
will not elucidate its functionality. However, if we map the application in
terms of functional paths, we can obtain a much more informative and useful
catalogue of its functionality. Figure 4-5 is a partial map of the functional paths

that exist within the application.

Figure 4-5: A mapping of the functional paths within a web application

WahhBank.
login
WahhBank.
home
TransferFunds. BillPayment. BillPayment. WahhBank.
selectAccounts addPayee selectPayee logout
TransferFunds. BillPayment.
enterAmount enterAmount
TransferFunds. BillPayment.
confirmTransfer confirmPayment

78

Chapter 4 =« Mapping the Application

Representing an application’s functionality in this way is often more useful
even in cases where the usual picture based on application pages can be
applied without any problems. The logical relationships and dependencies
between different functions may not correspond to the directory structure
used within URLs. It is these logical relationships that are of most interest to
you, both in understanding the core functionality of the application, and in
formulating possible attacks against it. By identifying these, you can better
understand the expectations and assumptions of the application’s developers
when implementing the functions, and attempt to find ways of violating these
assumptions, causing unexpected behavior within the application.

In applications where functions are identified using a request parameter,
rather than the URL, this has implications for the enumeration of application
content. In the previous example, the content discovery exercises described so
far are unlikely to uncover any hidden content. Those techniques need to be
adapted to the mechanisms actually used by the application for accessing
functionality.

H Identify any instances where application functionality is accessed not by
requesting a specific page for that function (e.g., /admin/editUser. jsp)
but by passing the name of a function in a parameter (e.g., /admin
.jsp?action=editUser).

B Modify the automated techniques described for discovering URL-
specified content to work on the content-access mechanisms in use
within the application. For example, if the application uses parameters
which specify servlet and method names, first determine its behavior
when an invalid servlet and/or method is requested, and when a valid
method is requested with invalid other parameters. Try to identify attrib-
utes of the server’s responses that indicate “hits” — i.e., valid servlets and
methods. If possible, find a way of attacking the problem in two stages,
first enumerating servlets and then methods within these. Using a similar
method to the one used for URL-specified content, compile lists of com-
mon items, add to these by inferring from the names actually observed,
and generate large numbers of requests based on these.

B If applicable, compile a map of application content based on functional
paths, showing all of the enumerated functions and the logical paths and
dependencies between them.

Chapter 4 =« Mapping the Application

79

Discovering Hidden Parameters

A variation on the situation where an application uses request parameters to
specify which function should be performed arises where other parameters
are used to control the application’s logic in significant ways. For example, an
application may behave differently if the parameter debug=true is added to
the query string of any URL —it might turn off certain input validation
checks, allow the user to bypass certain access controls, or display verbose
debug information in its response. In many cases, the fact that the application
handles this parameter cannot be directly inferred from any of its content (for
example, it does not include debug=false in the URLs that it publishes as
hyperlinks). The effect of the parameter can only be detected by guessing a
range of values until the correct one is submitted.

B Using lists of common debug parameter names (debug, test, hide, source,
etc.) and common values (true, yes, on, 1, etc.), make a large number of
requests to a known application page or function, iterating through all
permutations of name and value. For POST requests, insert the added
parameter both into the URL query string and into the message body.

B Burp Intruder can be used to perform this test using multiple payload
sets and the “cluster bomb” attack type (see Chapter 13 for more
details).

B Monitor all responses received to identify any anomalies that may indi-
cate that the added parameter has had an effect on the application’s
processing.

B Depending on the time available, target a number of different pages or
functions for hidden parameter discovery. Choose functions where it is
most likely that developers have implemented debug logic, such as login,
search, file uploading and downloading, and the like.

Analyzing the Application

Enumerating as much of the application’s content as possible is only one ele-
ment of the mapping process. Equally important is the task of analyzing the
application’s functionality, behavior, and technologies employed, in order to
identify the key attack surfaces that it exposes, and begin formulating an
approach to probing the application for exploitable vulnerabilities.

80 Chapter 4 = Mapping the Application

Some key areas to investigate are:

m The core functionality of the application — the actions that it can be
leveraged to perform when used as intended.

m Other more peripheral behavior of the application, including off-site
links, error messages, administrative and logging functions, use of redi-
rects, and so on.

m The core security mechanisms and how they function, in particular
management of session state, access controls, and authentication mech-
anisms and supporting logic (user registration, password change,
account recovery, etc.).

m All of the different locations at which user-supplied input is processed
by the application — every URL, query string parameter, item of posT
data, cookie, and the like.

m The technologies employed on the client side, including forms, client-
side scripts, thick-client components (Java applets, ActiveX controls,
and Flash), and cookies.

m The technologies employed on the server side, including static and
dynamic pages, the types of request parameters employed, use of SSL,
web server software, interaction with databases, email systems and
other back-end components.

m Any other details that may be gleaned about the internal structure and
functionality of the server-side application — the mechanisms it uses
behind the scenes to deliver the functionality and behavior that is visi-
ble from the client perspective.

Identifying Entry Points for User Input

The majority of ways in which the application captures user input for server-
side processing should be obvious when reviewing the HTTP requests that are
generated as you walk through the application’s functionality. The key loca-
tions to pay attention to are:

m Every URL string up to the query string marker.

m Every parameter submitted within the URL query string.

m Every parameter submitted within the body of a posT request.

m Every cookie.

m Every other HTTP header that in rare cases may be processed by the
application, in particular the user-aAgent, Referer, Accept, Accept-
Language, and Host headers.

Chapter 4 =« Mapping the Application

Some applications do not employ the standard query string format (which
was described in Chapter 3), but employ their own custom scheme, which
may use nonstandard query string markers and field separators, may embed
other data schemes such as XML within the query string, or may effectively
place the query string within what appears to be the directory or filename por-
tion of the URL. Here are some examples of nonstandard query string formats
that the authors have encountered in the wild:

m /dir/file; foo=bar&foo2=bar2
/dir/file?foo=bar$foo2=bar2
/dir/file/foo%3dbar%26foo2%3dbar2
/dir/foo.bar/file
/dir/foo=bar/file

/dir/file?param=foo:bar

/dir/file?data=

$3cfoo%3ebar%3c%2ffoo%3e%3cfoo2%3ebar2%3c%2ffoo2%3e

If a nonstandard query string format is being used, then you will need to
take account of this when probing the application for all kinds of common vul-
nerabilities. For example, when testing the final URL in this list, if you were to
ignore the custom format and simply treat the query string as containing a sin-
gle parameter called data, and so submit various kinds of attack payloads as
the value of this parameter, you would miss many kinds of vulnerability that
may exist in the processing of the query string. If, conversely, you dissect the
format and place your payloads within the embedded XML data fields, you
may immediately discover a critical bug such as SQL injection or path
traversal.

A final class of entry points for user input includes any out-of-band channel
by which the application receives data that you may be able to control. Some
of these entry points may be entirely undetectable if you simply inspect the
HTTP traffic generated by the application, and finding them usually requires
an understanding of the wider context of the functionality that the application
implements. Some examples of web applications that receive user-controllable
data via an out-of-band channel include:

m A web mail application which processes and renders email messages
received via SMTP.

m A publishing application that contains a function to retrieve content via
HTTP from another server.

m An intrusion detection application that gathers data using a network
sniffer and presents this using a web application interface.

82

Chapter 4 =« Mapping the Application

Identifying Server-Side Technologies

It is normally possible to fingerprint the technologies employed on the server
via various clues and indicators.

Banner Grabbing

Many web servers disclose fine-grained version information, both about the
web server software itself and about other components that have been
installed. For example, the HTTP server header discloses a huge amount of
detail about some installations:

Server: Apache/1.3.31 (Unix) mod_gzip/1.3.26.1la mod_auth_passthrough/1.8
mod_log_bytes/1.2 mod_bwlimited/1.4 PHP/4.3.9 FrontPage/5.0.2.2634a
mod_ssl1/2.8.20 OpenSSL/0.9.7a

In addition to the server header, other locations where the type and version
of software may be disclosed are:

m Templates used to build HTML pages
m Custom HTTP headers

m URL query string parameters

HTTP Fingerprinting

In principle, any item of information returned by the server may be cus-
tomized or even deliberately falsified, and banners like the server header are
no exception. Some web server software includes a facility for administrators
to set an arbitrary value for the server header. Further, there are security prod-
ucts that use various methods to try to prevent a web server’s software from
being detected, such as ServerMask by Port80 Software.

Attempting to grab the server banner from Port80’s own web server does
not appear to disclose much useful information:

HEAD / HTTP/1.0
Host: www.port80software.com

HTTP/1.1 200 OK

Date: Sun, 04 Mar 2007 16:14:26 GMT

Server: Yes we are using ServerMask!

Set-Cookie: countrycode=UK; path=/

Set-Cookie: ALT.COOKIE.NAME.2=89QMSN102,S620S21C51N2NP, ,0105,N7; path=/
Cache-control: private

Content-Length: 27399

Chapter 4 =« Mapping the Application

83

Connection: Keep-Alive
Content-Type: text/html
Set-Cookie: Coyote-2-d1£579d9=ac1000d49:0; path=/

Despite measures such as this, it is usually possible for a determined
attacker to use other aspects of the web server’s behavior to determine the
software in use, or at least narrow down the range of possibilities. The HTTP
specification contains a lot of detail that is optional or left to an implementer’s
discretion. Further, many web servers deviate from or extend the specification
in various different ways. As a result, there are numerous subtle ways in which
a web server can be fingerprinted, other than via its server banner. Httprint is
a handy tool that performs a number of tests in an attempt to fingerprint a web
server’s software. In the case of Port80 Software’s server, it reports with a 58%
degree of confidence that the server software in use is in fact Microsoft IIS ver-
sion 5.1, as shown in Figure 4-6.

i
Input Fil & o =
BE “wiebappshittprinthinput. tat |j’| Load Is §
nmap

Signature File
“C:\wabapps\hltprint\sigmatures.txt B"‘l ‘

Host Port & | Banner Repartad Baniner Deduced Conf.%
O (| R

wivars, portB0zoftware, com a0 D Ve we are using Servertd ask! ticrosoft-15/5.7, MicrosoftH1S/5.0 45P.... | 58.43

v redhat. com 443 Apache Apaches1.3.27 8434

WebSTAR
B11C9DCSE2CER920811C9DC5811C9DC5811C9DC5505FCFER4276E4BBA11C9DCS
0D7A45B5811C9DCE24200B4CCDA71B7CE11CADCSE11CIDC5811CODC5811C9DCE
E2CE6920E2CE6923E2CEAY20811CIDCSE2CEA927811CIDCSAED3C2955811C9DCE
E2CE6920E2CE69202A200B4C6EDIC2956ED3C2956ED3C2956ED3C295E2CERT23
E2CE69236ED3C295811C9DCEEZCER927EZCER T2

Apache-2 0.m: 90 54 22 ﬁ’ =
Apaches1.3.26: 85 49.89

Apache-1.3.27: 88 49.89

Apache-1.3.[4-24]: 87 47.82 =l =
Repart Fil

E @ html sl | | |
C:\webappsshttprintshttprintoutput. hirml n © csv m || Clear &l Options

|httpr|nt has been completed.. |

Figure 4-6: Httprint fingerprinting various different web servers

The screenshot also illustrates how Httprint can defeat other kinds of
attempts to mislead about the web server software being used. The Found-
stone web site uses a misleading banner, but Httprint can still discover the
actual software. And the RedHat server is configured to present the nonver-
bose banner “Apache,” but Httprint is able to deduce the specific version of
Apache being used with a high degree of confidence.

84

Chapter 4 =« Mapping the Application

File Extensions

File extensions used within URLs often disclose the platform or programming
language used to implement the relevant functionality. For example:

m asp — Microsoft Active Server Pages

m aspx — Microsoft ASPNET

jsp — Java Server Pages

cfm — Cold Fusion

php — the PHP language

d2w — WebSphere

pl — the Perl language

py — the Python language

d11 — usually compiled native code (C or C++)

nsf or ntf — Lotus Domino

Even if an application does not employ a particular file extension in its pub-
lished content, it is usually possible to verify whether the technology support-
ing that extension is implemented on the server. For example, if ASP.NET is
installed, requesting a nonexistent .aspx file will return a customized error
page generated by the ASP.NET framework, as shown in Figure 4-7, whereas
requesting a nonexistent file with a different extension returns a generic error
message generated by the web server, as shown in Figure 4-8.

¥ The resource cannot be found. - Mozilla Firefox _ |EI|1|

File Edit Wiew Go Bookmatks Tools Help

Q:I - [_D) - @ |:| @ I hitp:{ fwahh-app, comjfoo, aspsx j @ & I@'

Server Error in '/' Application.

The resource cannot be found.

Description: HTTP 404, The resource you sre looking for (or one of ts dependencies) could have been removed, had its name changed, or is tempararily
unavailable. Please review the following URL and make sure that it is spelled correctly

Requested URL: /foo.aspx

Yersion Information: Microsoft MNET Framewaork Version:2.0.50727 42, ASP NET Yersion:2 .0 50727 210

| Done 7

Figure 4-7: A customized error page indicating that the ASP.NET platform is present
on the server

Chapter 4 =« Mapping the Application

85

%9 The page cannot be found - Mozilla Firefox gl x|

File Edit \Wiew Go Bookmatks Tools Help

<:| - [_;/\) - @ |:| @ I http:{ fwahh-app. comjfoo. aspu: j © e I@-

| »

The page cannot be found

The page you are looking for might have been removed, had its
nare changed, or is termporarily unavailable,

Flease try the following:

#+ If you typed the page address in the Address bar, make sure
that it is spelled correctly.

+ Open the murphy home page, and then look for links to the
infarmation you want,

Click the Back button to try another link.

=

| Done v

Figure 4-8: A generic error message created when an unrecognized file extension is
requested

Using the automated content discovery techniques already described, it is
possible to request a large number of common file extensions and quickly con-
firm whether any of the associated technologies are implemented on the
server.

The divergent behavior described arises because many web servers map
specific file extensions to particular server-side components. Each different
component may handle errors (including requests for nonexistent content) in
a different way. Figure 4-9 shows the various extensions that are mapped to
different handler DLLs in a default installation of IIS 5.0.

x
App Mappings | App Options | App Debugging |
—Application b apping:
Extension | Executable Path | Werbs -
it CAWINNTASpstem32vwebhits. dl GETHEAD
Jda CAWIMNTASystern324idg.dil GET.HEAD
idg CAWINNT System324idg dil GET HEAD
.asp CAWINNT S pstem32hinetsrvhasp.dil GET.HE&D
el CAWINNT S pstem32hinetsrvhasp. dil GET.HEAD
cdx CAWINNT S ystem32hinetsrvhasp.dil GET.HEAD
.aza CAWIMNT System32hinetsrvhasp.dil GET.HE&D
htr CAWIMMT \apstemn324ingterhasp.dl GET.POST—
.idc CAWINNTASestem32vinetsrvshitpodbe. dil OPTIONS.C
.shtm CAWIMNT System32hinetsvhesine.dl GET,POST
shtml CAWINNT A System32hing i GET.POST _
b CALIRI A TA Cosbara 234 inatkar if GRET POCT
O | B
aid | Edit Remove |

ak. I Cancel | Apply | Help |
Figure 4-9: File extension mappings in IIS 5.0

Chapter 4 =« Mapping the Application

It is possible to detect the presence of each file extension mapping via the
different error messages generated when that file extension is requested.
In some cases, discovering a particular mapping may indicate the presence
of a web server vulnerability — for example, the .printer and .ida/.idg
handlers in IIS have in the past been found vulnerable to buffer overflow
vulnerabilities.

Another common fingerprint to be aware of are URLs that look like the
following;:

https://wahh-app/news/0,,2-421206,00.html

The comma-separated numbers towards the end of the URL are usually gen-
erated by the Vignette content management platform.

Directory Names

It is common to encounter subdirectory names that indicate the presence of an
associated technology. For example:

m servlet — Java servlets

m pls — Oracle Application Server PL/SQL gateway

m cfdocs or cfide — Cold Fusion

m 5ilverStream — The SilverStream web server

m [ebObjects Or {function}.woa — Apple WebObjects
|

rails — Ruby on Rails

Session Tokens

Many web servers and web application platforms generate session tokens by
default with names that provide information about the technology in use. For
example:

JSESSTONID — The Java Platform

ASPSESSIONID — Microsoft IIS server

||
|
W ASP.NET_ SessionId — Microsoft ASPNET
m cr1D/CFTOKEN — Cold Fusion

|

PHPSESSID — PHP

Chapter 4 =« Mapping the Application

87

Third-Party Code Components

Many web applications incorporate third-party code components to imple-
ment common functionality such as shopping carts, login mechanisms, and
message boards. These may be open source or may have been purchased from
an external software developer. When this is the case, the same components
often appear within numerous other web applications on the Internet, which
you can inspect to understand how the component functions. Often, different
features of the same component will be made use of by other applications,
enabling you to identify additional behavior and functionality beyond what is
directly visible in the target application. Also, the software may contain known
vulnerabilities that have been discussed elsewhere, or you may be able to
download and install the component yourself and perform a source code
review or probe it for defects in a controlled way:.

B Identify all entry points for user input, including URLs, query string para-
meters, POST data, cookies, and other HTTP headers processed by the
application.

B Examine the query string format used by the application. If it does not
employ the standard format described in Chapter 3, try to understand
how parameters are being transmitted via the URL. Virtually all custom
schemes still employ some variation on the name/value model, so try to
understand how name/value pairs are being encapsulated into the non-
standard URLs you have identified.

B Identify any out-of-bound channels via which user-controllable or other
third-party data is being introduced into the application’s processing.

B View the HTTP Server banner returned by the application. Note that in
some cases, different areas of the application are handled by different
back-end components, and so different server headers may be
received.

B Check for any other software identifiers contained within any custom
HTTP headers or HTML source code comments.

H Run the Httprint tool to fingerprint the web server.

B If fine-grained information is obtained about the web server and other
components, research the software versions in use to identify any vulner-
abilities that may be exploited to advance an attack (see Chapter 17).

B Review your map of application URLSs, to identify any interesting-looking
file extensions, directories, or other subsequences that may provide clues
about the technologies in use on the server.

(continued)

88 Chapter 4 = Mapping the Application

HACK STEPS (continued)

B Review the names of all session tokens issued by the application to iden-
tify the technologies being used.

H Use lists of common technologies, or Google, to establish which tech-
nologies may be in use on the server, or discover other web sites and
applications that appear to be employing the same technologies.

B Perform searches on Google for the names of any unusual cookies,
scripts, HTTP headers, and the like that may belong to third-party soft-
ware components. If you locate other applications in which the same
components are being used, review these to identify any additional
functionality and parameters that the components support, and verify
whether these are also present in your target application. Note that third-
party components may look and feel quite different in each implementa-
tion, due to branding customizations, but the core functionality, including
script and parameter names, is often the same. If possible, download and
install the component and analyze it to fully understand its capabilities
and if possible discover any vulnerabilities. Consult repositories of
known vulnerabilities to identify any known defects with the component
in question.

Identifying Server-Side Functionality

It is often possible to infer a great deal about server-side functionality and
structure, or at least make an educated guess, by observing clues that the
application discloses to the client.

Dissecting Requests
Consider the following URL, which is used to access a search function:

https://wahh-app.com/calendar.jsp?name=new%$20applicants&isExpired=
O&startDate=22%2F09%2F2006&endDate=22%2F03%2F2007&0rderBy=name

As we have seen, the . jsp file extension indicates that Java Server Pages are
in use. You may guess that a search function will retrieve its information from
either an indexing system or a database; the presence of the ordersy parame-
ter suggests that a back-end database is being used, and that the value you
submit may be used as the orDER BY clause of a SQL query. This parameter
may well be vulnerable to SQL injection, as may any of the other parameters if
they are used in database queries (see Chapter 9).

Chapter 4 =« Mapping the Application

89

Also of interest among the other parameters is the isExpired field. This
appears to be a Boolean flag specifying whether the search query should
include content which is expired. If the application designers did not expect
ordinary users to be able retrieve any expired content, changing this parame-
ter from 0 to 1 could identify an access control vulnerability (see Chapter 8).

The following URL, which allows users to access a content management
system, contains a different set of clues:

https://wahh-app.com/workbench.aspx?template=NewBranch.tpl&loc=
/default&ver=2.31&edit=false

Here, the .aspx file extension indicates that this is an ASPNET application.
It also appears highly likely that the template parameter is used to specify a
filename, and the 1oc parameter is used to specify a directory. The possible file
extension . tpl appears to confirm this, as does the location /default, which
could very well be a directory name. It is possible that the application retrieves
the template file specified and includes the contents into its response. These
parameters may well be vulnerable to path traversal attacks, allowing arbi-
trary files to be read from the server (see Chapter 10).

Also of interest is the edit parameter, which is set to false. It may be that
changing this value to true will modify the registration functionality, poten-
tially enabling an attacker to edit items that the application developer did not
intend to be editable. The ver parameter does not have any readily guessable
purpose, but it may be that modifying this will cause the application to per-
form a different set of functions that may be exploitable by an attacker.

Finally, consider the following request, which is used to submit a question to
application administrators:

POST /feedback.php HTTP/1.1
Host: wahh-app.com
Content-Length: 389

from=user@wahh-mail.com&to=helpdesk@wahh-app.com&subject=
Problem+logging+in&message=Please+help. ..

As with the other examples, the .php file extension indicates that the func-
tion is implemented using the PHP language. Further, it is extremely likely
that the application is interfacing with an external email system, and it appears
that user-controllable input is being passed to that system in all relevant fields
of the email. The function may be exploitable to send arbitrary messages to
any recipient, and any of the fields may also be vulnerable to email header
injection (see Chapter 9).

20

Chapter 4 =« Mapping the Application

B Review the names and values of all parameters being submitted to the
application, in the context of the functionality which they support.

H Try to think like a programmer, and imagine what server-side mecha-
nisms and technologies are likely to have been used to implement the
behavior that you can observe.

Extrapolating Application Behavior

Often, an application behaves in a consistent way across the range of its func-
tionality. This may be because different functions were written by the same
developer, or to the same design specification, or share some common code
components. In this situation, it may be possible to draw conclusions about
server-side functionality in one area and extrapolate these to another area.

For example, the application may enforce some global input validation
checks, such as sanitizing various kinds of potentially malicious input before
it is processed. Having identified a blind SQL injection vulnerability, you may
encounter problems exploiting it, because your crafted requests are being
modified in unseen ways by the input validation logic. However, there may be
other functions within the application that provide good feedback about the
kind of sanitization being performed — for example, a function that echoes
some user-supplied data back to the browser. You may be able to use this func-
tion to test different encodings and variations of your SQL injection payload,
to determine what raw input must be submitted to achieve the desired attack
string after the input validation logic has been applied. If you are lucky, the
validation works in the same way across the application, enabling you to
exploit the injection flaw.

Some applications use custom obfuscation schemes when storing sensitive
data on the client, to prevent casual inspection and modification of this data by
users (see Chapter 5). Some such schemes may be extremely difficult to deci-
pher given access to only a sample of obfuscated data. However, there may be
functions within the application where a user can supply an obfuscated string
and retrieve the original — for example, an error message may include the
deobfuscated data which led to the error. If the same obfuscation scheme is
used throughout the application, it may be possible to take an obfuscated
string from one location (for example a cookie), and feed it into the other func-
tion to decipher its meaning. It may also be possible to reverse engineer the
obfuscation scheme by submitting systematically varying values to the func-
tion and monitoring their deobfuscated equivalents.

Chapter 4 =« Mapping the Application

91

Finally, errors are often handled in an inconsistent manner within the appli-
cation, with some areas trapping and handling errors gracefully, while other
areas simply crash and return verbose debugging information to the user (see
Chapter 14). In this situation, it may be possible to gather information from the
error messages returned in one area and apply it to other areas where errors
are gracefully handled. For example, by manipulating request parameters in
systematic ways and monitoring the error messages received, it may be possi-
ble to determine the internal structure and logic of the application component
concerned; if you are lucky, aspects of this structure may be replicated in other
areas.

B Try to identify any locations within the application that may contain clues
about the internal structure and functionality of other areas.

B It may not be possible to draw any firm conclusions here; however, the
cases identified may prove useful at a later stage of the attack when
attempting to exploit any potential vulnerabilities.

Mapping the Attack Surface

The final stage of the mapping process is to identify the various attack surfaces
exposed by the application, and the potential vulnerabilities that are com-
monly associated with each one. The following is a rough guide to some key
types of behavior and functionality that you may identify, and the kinds of
vulnerability that are most commonly found within each one. The remainder
of this book will be concerned with the practical details of how you can detect
and exploit each of these problems:

m Client-side validation — Checks may not be replicated on the server.
m Database interaction — SQL injection.

m File uploading and downloading — Path traversal vulnerabilities.

m Display of user-supplied data — Cross-site scripting.

m Dynamic redirects — Redirection and header injection attacks.

m [ogin — Username enumeration, weak passwords, ability to use brute
force.

m Multistage login — Logic flaws.
m Session state — Predictable tokens, insecure handling of tokens.

m Access controls — Horizontal and vertical privilege escalation.

92 Chapter 4 = Mapping the Application

m User impersonation functions — Privilege escalation.

m Use of cleartext communications — Session hijacking, capture of cre-
dentials and other sensitive data.

m Off-site links — Leakage of query string parameters in the Referer
header.

m Interfaces to external systems — Shortcuts in handling of sessions
and/or access controls.

m Error messages — Information leakage.

m Email interaction — Email and/or command injection.

m Native code components or interaction — Buffer overflows.

m Use of third-party application components — Known vulnerabilities.

m Jdentifiable web server software — Common configuration weak-
nesses, known software bugs.

HACK STEPS

B Understand the core functionality implemented within the application
and the main security mechanisms in use.

H Identity all features of the application’s functionality and behavior that
are often associated with common vulnerabilities.

B Formulate a plan of attack prioritizing the most interesting-looking func-
tionality and the most serious of the associated potential vulnerabilities.

Chapter Summary

Mapping the application is a key prerequisite to attacking it. While it may be
tempting to dive straight in and start probing for actual bugs, taking time to
gain a sound understanding of the application’s functionality, technologies,
and attack surface will pay dividends down the line.

As with almost all of web application hacking, the most effective approach
is to use manual techniques supplemented where appropriate by controlled
automation. There is no fully automated tool that can carry out a thorough
mapping of the application in a safe way. To do this, you need to use your
hands and draw on your own experience. The core methodology we have out-
lined involves:

m Manual browsing and user-directed spidering, to enumerate the appli-
cation’s visible content and functionality.

Chapter 4 » Mapping the Application 93

m Use of brute force combined with human inference and intuition to dis-
cover as much hidden content as possible.

m An intelligent analysis of the application, to identify its key functional-
ity, behavior, security mechanisms, and technologies.

m An assessment of the application’s attack surface, highlighting the most
promising functions and behavior for more focused probing into
exploitable vulnerabilities.

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. While mapping an application, you encounter the following URL:
https://wahh-app.com/CookieAuth.dl1?GetLogon?curl=
Z2Fdefault.aspx

What information can you deduce about the technologies employed on
the server, and how it is likely to behave?

2. The application you are targeting implements web forum functionality.
The only URL you have discovered is:
http://wahh-app.com/forums/ucp.php?mode=register
How might you obtain a listing of forum members?

3. While mapping an application, you encounter the following URL:
https://wahh-app.com/public/profile/Address.asp?action=
view&location=default

What information can you infer about server-side technologies? What
can you conjecture about other content and functionality that may
exist?

4. A web server’s responses include the following header:

Server: Apache-Coyote/1.1
What does this indicate about the technologies in use on the server?

5. You are mapping two different web applications, and you request the
URL /admin.cpf from each application. The response headers returned

94 Chapter 4 = Mapping the Application

by each request are shown here. From these headers alone, what can
you deduce about the presence of the requested resource within each
application?

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Expires: Mon, 25 Jun 2007 14:59:21 GMT

Content-Location: http://wahh-app.com/includes/error.htm?404;http://
wahh-app.com/admin.cpf

Date: Mon, 25 Jun 2007 14:59:21 GMT

Content-Type: text/html

Accept-Ranges: bytes

Content-Length: 2117

HTTP/1.1 401 Unauthorized

Server: Apache-Coyote/1.1

WwW-Authenticate: Basic realm="Wahh Administration Site"
Content-Type: text/html;charset=utf-8

Content-Length: 954

Date: Mon, 25 Jun 2007 15:07:27 GMT

Connection: close

Bypassing Client-Side Controls

Chapter 1 described how the core security problem with web applications
arises because clients can submit arbitrary input. Despite this fact, a large pro-
portion of web applications nevertheless rely upon various kinds of measures
implemented on the client side to control the data that it submits to the server.
In general, this represents a fundamental security flaw: the user has full con-
trol over the client and the data it submits, and can bypass any controls which
are implemented on the client side and not replicated on the server.

There are two broad ways in which an application may rely upon client-side
controls to restrict user input. First, an application may transmit data via the
client component, using some mechanism that it assumes will prevent the user
from modifying that data. Second, when an application gathers data that is
entered by the user, it may implement measures on the client side that control
the contents of that data before it is submitted. This may be achieved using
HTML form features, client-side scripts, or thick-client technologies.

We will look at examples of each kind of client-side control and describe
ways in which they can be bypassed.

Transmitting Data via the Client

It is very common to see an application passing data to the client in a form that
is not directly visible or modifiable by the end user, in the expectation that this

95

96

Chapter 5 = Bypassing Client-Side Controls

data will be sent back to the server in a subsequent request. Often, the appli-
cation’s developers simply assume that the transmission mechanism used
will ensure that the data transmitted via the client will not be modified along
the way.

Because everything submitted from the client to the server is within the
user’s full control, the assumption that data transmitted via the client will not
be modified is usually false, and often leaves the application vulnerable to one
or more attacks.

You may reasonably wonder why;, if a particular item of data is known and
specified by the server, the application would ever need to transmit this value
to the client and then read it back. In fact, writing applications in this way is
often an easier task for developers, because it removes the need to keep track
of all kinds of data within the user’s session. Reducing the amount of per-
session data being stored on the server can also improve the application’s
performance. Further, if an application is deployed on several load-balanced
servers, with users potentially interacting with more than one server to per-
form a multistep action, then it may not be straightforward to share server-
side data between the hosts that may handle the same user’s requests. Using
the client to transmit data can present a tempting solution to the problem.

However, transmitting sensitive data in this way is usually unsafe and has
been the cause of countless vulnerabilities in applications.

Hidden Form Fields

Hidden HTML form fields are a common mechanism for transmitting data
via the client in a superficially unmodifiable way. If a field is flagged as hid-
den, it is not displayed on-screen. However, the field’s name and value are
stored within the form and sent back to the application when the user submits
the form.

The classic example of this security flaw is a retailing application that stores
the prices of products within hidden form fields. In the early days of web
applications, this vulnerability was extremely widespread, and it by no means
has been eliminated today. Figure 5-1 shows a typical form.

Please enter your order quantity:

Product: Sony VAIO A217S

Quantity: [l

Figure 5-1: A typical HTML form

Chapter 5 = Bypassing Client-Side Controls 97

The code behind this form is as follows:

<form action="order.asp" method="post">
<p>Product: Sony VAIO A217S</p>

<p>Quantity: <input size="2" name="quantity">
<input name="price" type="hidden" value="1224.95">
<input type="submit" value="Buy!"></p>

</form>

Notice the form field called price, which is flagged as hidden. This field will
be sent to the server when the user submits the form:

POST /order.asp HTTP/1.1
Host: wahh-app.com
Content-Length: 23

quantity=1&price=1224.95

Now, although the price field is not displayed on-screen, and it is not
editable by the user, this is solely because the application has instructed the
browser to hide the field. Because everything that occurs on the client side is
ultimately within the user’s control, this restriction can be circumvented in
order to edit the price.

One way to achieve this is to save the source code for the HTML page, edit
the value of the field, reload the source into a browser, and click the Buy but-
ton. However, a more elegant and easier method is to use an intercepting
proxy to modify the desired data on the fly.

An intercepting proxy is tremendously useful when attacking a web appli-
cation and is the one truly indispensable tool that you need in your arsenal.
There are numerous such tools available, but the most functional and popu-
lar are:

m Burp Proxy (part of Burp Suite)

m WebScarab

m Paros

The proxy sits between your web browser and the target application. It
intercepts every request issued to the application, and every response received
back, for both HTTP and HTTPS. It can trap any intercepted message for

inspection or modification by the user. The proxies listed also have numerous
advanced functions to make your job easier, including:

m Fine-grained rules to control which messages are trapped.

m Regex-based replacement of message content.

98 Chapter 5 = Bypassing Client-Side Controls

m Automatic updating of the content-Length header when messages are
modified.

m Browsing history and message cache.
m Ability to replay and remodify individual requests.

m [ntegration with other tools such as spiders and fuzzers.

If you have not installed or used a proxy tool before, see Chapter 19 for
instructions and for a comparison of the main tools available.

Once an intercepting proxy has been installed and suitably configured, you
can trap the request that submits the form, and modify the price field to any
value, as shown in Figure 5-2.

ehurp suite ¥1.01 professional - |E| ﬂ

burp intruder repeater window help
oy rspider rimruder rrepeater rcomms raler‘ts |
l/imercem romions rhistow |

request to hitpfwahh-app.com:80 [192.168.10.28]

| forward H drop H intercept an || action | @ text () param O hex

FPOST forderasp HTTRM

Accept imaneloif, imagetsxhitmap, imagelpey, image/piped, applicationt-shockwave-ash,
applicationivnd. ms-excel, applicationind. ms-powerpoint, application/msword, <~
Accept-Language: en-ghen-us;g=0.5

Content-Type: applicationt-waw-forrm-utlencoded

UA-CPLE 36

Accept-Encoding: gzip, deflate

Uszer-Agent Mozillaid.0 (compatible; MSIE 7.0; Windows WT 5.1; MET CLR 2.0.80727F; FDM; InfaPath.1)
Host: wahh-app.com

Proxy-Connection: Keep-Alive

Fragma. no-cache

Content-Length: 23

guantit=1&price=1224.94

Cedledl

| 0 matches

Figure 5-2: Modifying the values of hidden form fields using an intercepting proxy

If the application processes the transaction based on the price submitted,
then you can purchase the product for any price of your choosing.

m If you find an application that is vulnerable in this way, see whether you
can submit a negative amount as the price. In some cases, applications have
actually accepted transactions using negative prices. The attacker receives a
refund to their credit card and also the goods which they ordered — a win-win
situation if ever there was one.

Chapter 5 = Bypassing Client-Side Controls

99

HTTP Cookies

Another common mechanism for transmitting data via the client is HTTP cook-
ies. As with hidden form fields, these are not normally displayed on-screen or
directly modifiable by the user. They can, of course, be modified using an inter-
cepting proxy, either by changing the server response that sets them, or subse-
quent client requests that issue them.

Consider the following variation on the previous example. When a cus-
tomer logs in to the application, she receives the following response:

HTTP/1.1 302 Found

Location: /home.asp
Set-Cookie: SessId=191041-1042
Set-Cookie: UID=1042
Set-Cookie: DiscountAgreed=25

This response sets three cookies, all of which are interesting. The first
appears to be a session token, which may be vulnerable to sequencing or other
attacks. The second appears to be a user identifier, which can potentially be
leveraged to exploit access control weaknesses. The third appears to represent
a discount rate that the customer will receive on purchases.

This third cookie points towards a classic case of relying on client-side con-
trols (the fact that cookies are normally unmodifiable) to protect data trans-
mitted via the client. If the application trusts the value of the biscountagreed
cookie when it is submitted back to the server, then customers can obtain arbi-
trary discounts by modifying its value. For example:

POST /order.asp HTTP/1.1

Host: wahh-app.com

Cookie: SessId=191041-1042; UID=1042; DiscountAgreed=99
Content-Length: 23

quantity=1l&price=1224.95

URL Parameters

Applications frequently transmit data via the client using preset URL parame-
ters. For example, when a user browses the product catalogue, the application
may provide them with hyperlinks to URLs like the following:

https://wahh-app.com/browse.asp?product=VAIOA217S&price=1224.95

When a URL containing parameters is displayed in the browser’s location
bar, any parameters can be trivially modified by any user without the use of

100 Chapter 5 = Bypassing Client-Side Controls

tools. However, there are many instances in which an application may expect
that ordinary users cannot view or modify URL parameters. For example:

m Where embedded images are loaded using URLs containing parameters.

m Where URLSs containing parameters are used to load the contents of a
frame.

m Where a form uses the posT method and its target URL contains preset
parameters.

m Where an application uses pop-up windows or other techniques to con-
ceal the browser location bar.

Of course, in any such case the values of any URL parameters can be modi-
tied as previously using an intercepting proxy.

The Referer Header

Browsers include the referer header within most HTTP requests. This is used
to indicate the URL of the page from which the current request originated —
either because the user clicked a hyperlink or submitted a form, or because the
page referenced other resources such as images. Hence, it can be leveraged as
a mechanism for transmitting data via the client: because the URLs processed
by the application are within its control, developers may assume that the ref-
erer header can be used to reliably determine which URL generated a partic-
ular request.

For example, consider a mechanism that enables users to reset their pass-
word if they have forgotten it. The application requires users to proceed
through several steps in a defined sequence, before they actually reset their
password’s value with the following request:

POST /customer/ResetForgotPassword.asp HTTP/1.1

Referer: http://wahh-app.com/customer/ForgotPassword.asp
Host: wahh-app.com

Content-Length: 44

uname=manicsprout&pass=secret&confirm=secret

The application may use the Referer header to verify that this request orig-
inated from the correct stage (ForgotPassword.asp), and if so allow the user to
reset their password.

However, because the user controls every aspect of every request, including
the HTTP headers, this control can be trivially circumvented by proceeding
directly to ResetForgotPassword.asp, and using an intercepting proxy to fix
the value of the referer header to the value that the application requires.

Chapter 5 = Bypassing Client-Side Controls

101

The referer header is strictly optional according to w3.org standards.
Hence although most browsers implement it, using it to control application
functionality should be regarded as a “hack.”

It is often assumed that HTTP headers are somehow
more “tamper-proof” than other parts of the request, such as the URL. This
may lead developers to implement functionality that trusts the values
submitted in headers such as Cookie and Referer, while performing proper
validation of other data such as URL parameters. This perception is false —
given the multitude of intercepting proxy tools that are freely available, any
amateur hacker who targets an application can change all request data with
trivial ease. It is rather like supposing that when the teacher comes to search
your desk;, it is safer to hide your water pistol in the bottom drawer, because
she will need to bend down further to discover it.

B Locate all instances within the application where hidden form fields,
cookies, and URL parameters are apparently being used to transmit data
via the client.

B Attempt to determine or guess the purpose that the item plays in the
application’s logic, based on the context in which it appears and on clues
such as the parameter’s name.

B Modify the item’s value in ways that are relevant to its purpose in the
application. Ascertain whether the application processes arbitrary values
submitted in the parameter, and whether this exposes the application to
any vulnerabilities.

Opaque Data

Sometimes, data transmitted via the client is not transparently intelligible,
because it has been encrypted or obfuscated in some way. For example, instead
of seeing a product’s price stored in a hidden field, you may see some cryptic
value being transmitted:

<form action="order.asp" method="post">

<p>Product: Sony VAIO A217S</p>

<p>Quantity: <input size="2" name="quantity">

<input name="enc" type="hidden" value="262a4844206559224f456864206668643
265772031383932654448a352484634667233683277384£2245556533327233666455225
242452a526674696f6471">

<input type="submit" value="Buy! "></p>

</form>

102 Chapter 5 = Bypassing Client-Side Controls

When this is observed, you may reasonably infer that when the form is sub-
mitted, the server-side application will decrypt or deobfuscate the opaque string
and perform some processing on its plaintext value. This further processing may
be vulnerable to any kind of bug; however, in order to probe for and exploit this,
you will first need to wrap up your payload in the appropriate way.

Faced with opaque data being transmitted via the client, there are a several
possible avenues of attack:

B If you know the value of the plaintext behind the opaque string, you can
attempt to decipher the obfuscation algorithm being employed.

B As described in Chapter 4, the application may contain functions else-
where that you can leverage to return the opaque string resulting from a
piece of plaintext you control. In this situation, you may be able to
directly obtain the required string to deliver an arbitrary payload to the
function you are targeting.

B Even if the opaque string is completely impenetrable, it may be possible
to replay its value in other contexts, to achieve some malicious effect. For
example, the enc parameter in the previously shown form may contain
an encrypted version of the product’s price. Although it is not possible to
produce the encrypted equivalent for an arbitrary price of your choosing,
you may be able to copy the encrypted price from a different, cheaper
product and submit this in its place.

B If all else fails, you can attempt to attack the server-side logic that will
decrypt or deobfuscate the opaque string, by submitting malformed vari-
ations of it — for example, containing overlong values, different character
sets, and the like.

The ASP.NET ViewState

One commonly encountered mechanism for transmitting opaque data via the
client is the ASPNET ViewState. This is a hidden field that is created by default
in all ASPNET web applications, and contains serialized information about
the state of the current page. The ASP.NET platform employs the ViewState to
enhance server performance —it enables the server to preserve elements
within the user interface across successive requests without needing to main-
tain all of the relevant state information on the server side. For example, the
server may populate a drop-down list on the basis of parameters submitted by
the user. When the user makes subsequent requests, the browser does not
submit the contents of the list back to the server. However, the browser does
submit the hidden ViewState field, which contains a serialized form of the list.
The server deserializes the ViewState and recreates the same list that is pre-
sented back to the user again.

Chapter 5 = Bypassing Client-Side Controls

103

In addition to this core purpose of the ViewState, developers can use it to
store arbitrary information across successive requests. For example, instead of
saving the product’s price in a hidden form field, an application may save it in
the ViewState as follows:

string price = getPrice(prodno) ;
ViewState.Add ("price", price);

The form returned to the user will now look something like this:

<form method="post" action="order.aspx">

<input type="hidden" name="__VIEWSTATE" id="__ VIEWSTATE"
value="/wWEPDWUKMTIXNDIyOTMOMg8WAh4FcHIpY2UFBzEYM]jQuOTVKZA==" />
<p>Product: Sony VAIO A217S</p>

<p>Quantity: <input name="quantity" id="quantity" />

<input type="submit" name="buy" value="Buy!" />

</form>

and when the user submits the form, their browser will send the following:

POST /order.aspx HTTP/1.1
Host: wahh-app.com
Content-Length: 95

_ VIEWSTATE=%2FWEPDWUKMTIXNDIyOTMOMg8WAh4FcHIpY2UFBzEYM]jQuOTVKZA%3D%$3D&q
uantity=1&buy=Buy%21

The request apparently does not contain the product price — only the quan-
tity ordered and the opaque ViewState parameter. Changing that parameter at
random results in an error message, and the purchase is not processed.

The ViewState parameter is actually a Base64-encoded string, which can be
easily decoded:

FF 01 OF OF 05 OD OA 31 32 31 34 32 32 39 33 34 ; V...... 121422934
32 OF 16 02 1E 05 70 72 69 63 65 05 07 31 32 32 ; 2..... price..122
34 2E 39 35 64 64 ; 4.95dd

m When you are attempting to decode what appears to be a Base64-
encoded string, a common mistake is to begin decoding at the wrong position
within the string. Because of the way Base64 encoding works, if you start at the
wrong position, the decoded string will contain gibberish. Base64 is a block-
based format in which each 4 bytes of encoded data translates into 3 bytes of
decoded data. Hence, if your attempts to decode a Base64 string do not
uncover anything meaningful, try starting from four adjacent offsets into the
encoded string. For example, cycling through the first four offsets into
Hh4aGVsbG8gd29ybGQu generates the following results:

- - [E 00>
tTtVEEO V+&E
diett¥ YWEZL
hello world.

104 Chapter 5 = Bypassing Client-Side Controls

There are two versions of the ViewState format, corresponding to different
versions of ASPNET. Version 1.1 is a simple text-based format that is effec-
tively a compressed form of XML. Version 2, which is becoming more preva-
lent, is a binary format and is shown in the example. String-based data can be
easily spotted, and the decoded ViewState clearly contains the product price
that was previously stored in a hidden HTML form field. You can simply
change the value of the price parameter in a hex editor.

FF 01 OF OF 05 0D OA 31 32 31 34 32 32 39 33 34 ; V...... 121422934
32 OF 16 02 1E 05 70 72 69 63 65 05 01 31 64 64 ; 2..... price..ldd

.]ma Strings within version 2 of the ViewState are length-prepended, so
changing the price parameter from 1224.95 to 1 also requires that you change
the length from 7 to 1, shown here.

You can then reencode the modified structure as Base64, and submit the
new ViewState value to the application:

POST /order.aspx HTTP/1.1
Host: wahh-app.com
Content-Length: 87

_ VIEWSTATE=%2FwWEPDWUKMTIXNDIyOTMOMg8WAh4FcHIpY2UFATFkZA%3d%3d&quantity=
1l&cmdBuy=Buy%21

which enables you to purchase the product at a price of 1.

Unfortunately, however, hacking ASP.NET applications is not usually as
simple as this. There is an option within ASP.NET for the platform to include a
keyed hash within the ViewState structure. This option is often on by default
but can be explicitly activated by adding the following to the page declaration:

EnablevViewStateMac="true"

The EnableviewstateMac option is activated in around 90% of today’s
ASP.NET applications, meaning that the ViewState parameter cannot be
tampered with without breaking the hash. In the previous example, using this
option results in the following ViewState:

FF 01 OF OF 05 OA 31 32 31 34 32 32 39 33 34 32 ; V..... 1214229342
OF 16 02 1E 05 70 72 69 63 65 05 07 31 32 32 34 ; price..1224
2E 39 35 64 64 C4 75 60 70 9F 10 8B 61 04 15 27 ; .95ddAu’p¥.<a..’
Al 06 1E FO 35 16 FO 46 A8 ; i..05.0F"

The additional data after the end of the serialized form data is the keyed hash
of the preceding structure. If you now try to modify the price parameter, you
cannot create a valid hash without knowing the secret key, which is stored on the
server. Changing the price alone returns the error message shown in Figure 5-3.

Chapter 5 = Bypassing Client-Side Controls 105

/> validation of viewstate MAC failed. If this application is hosted by a Web Farm: []
&~ [E)ntm: fhvahbeapp/order.aspx =] [ezarn cogle ol

| Ele Edt View Favortes Toos Help

H@'E‘@'d‘Eagev@Tgu\s- >

o e (& validation of vievstate MAC faied. IF this applica. .

Server Error in /' Application.

Validation of viewstate MAC failed. If this application is hosted
by a Web Farm or cluster, ensure that <machineKey>
configuration specifies the same validationKey and validation
algorithm. AutoGenerate cannot be used in a cluster.

Description: An unhandled exception eccurred during the execution of the current web request. Please review the stack
trace for more information about the errer and where it originated in the code.

Exception Details: System Web. HitpException: Validation of viewstate MAC falled. If this application is hostsd by a Web.
Farm or cluster, ensure that <machineKey> configuration specifies the same validationKey and validation algorithm.
AutoGenerate cannot be used in a cluster.

Source Error:

y | |

Done [[[3 memet [®10% - 4

Figure 5-3: ASP.NET rejects requests containing a modified ViewState
when the EnableViewStateMac option is set.

Even if the ViewState parameter is properly protected to prevent tampering,
it may still contain sensitive data stored by the application that could be of use
to an attacker. You can use the ViewState deserializer in Burp Proxy to decode
and render the ViewState on any given page to identify any sensitive data it
contains, as shown in Figure 5-4.

&) burp suite ¥1.02 professional i [w] 3]

burp intruder repeater window help

prowy | spider | intruder | repeater | comms a\ens|

intercept | options hislmy‘

reguest to hittp:ibwwaw koders com:80 [67.43.162.250]

| forward H drop H intercept on H action |

raw params | headers hex | render wewstate|

9 ViewState v2.0 compatible [MAC is not enabled]

MDD

¢ Pair
¢ Pair
string 930612313
¢ Pair
null
% List
int 1
¢ Pair
o= List
null
int 5
¢ Pair
¢ Pair
¢ List
string FilelD

int 13022987
string ProjectiD
int 31334

null

[T

0|

i [o1 Jof Jor Jos Jog (39 (33 [30 (36 (¢ (32 [33 [31 [33 [0 [yoooOo9306
64 |1E og 02 |01 |0f 16 |02 |1e |04 |54 |65 |78 |74 |05 |0f |dO00000OOC

MD

5 |of o 1e |06 |46 c 65 |4 02 |k |OOO0O0O0COON

4

0

1

2

3

4 ee |93 6 e |0 5 72 |6f |Ba 3 74 |4 02 |ef [1300Prajectil;
R T T (T of E 16 e (07 |5 73 |89 |6OdeOO0O0,
6

4

48 |§r 4 65 [r2 |73 20 [2d |20 e |69 |7 63 E Koders - initc
0

62 |6c |6 |68 |64 |54 |02 |Ob |Of |64 |16 |04 |02 |01 |0f B4 |hiehddoood

[4

I [[

Figure 5-4: Burp Proxy can decode and render the ViewState, allowing you to review its
contents and edit these if the EnableViewStateMac option is not set.

106 Chapter 5 = Bypassing Client-Side Controls

H If you are attacking an ASP.NET application, verify whether the
EnableViewStateMac option is activated. This is indicated by the pres-
ence of a 20-byte hash at the end of the ViewState structure, and you can
use the decoder in Burp Proxy to confirm whether this is present.

H Even if the ViewState is protected, decode the ViewState parameter on
various different application pages to discover whether the application is
using the ViewState to transmit any sensitive data via the client.

H Try to modify the value of a specific parameter within the ViewState,
without interfering with its structure, and see whether an error message
results.

H If you can modify the ViewState without causing errors, you should
review the function of each parameter within the ViewState, and whether
the application uses it to store any custom data. Try to submit crafted
values as each parameter, to probe for common vulnerabilities, as you
would for any other item of data being transmitted via the client.

H Note that the keyed hash option may be enabled or disabled on a per-
page basis, so it may be necessary to test each significant page of the
application for ViewState hacking vulnerabilities.

Capturing User Data: HTML Forms

The other principal way in which applications use client-side controls to
restrict data submitted by clients occurs with data that was not originally spec-
ified by the server but was gathered on the client computer itself.

HTML forms are the simplest and most common mechanism for capturing
input from the user and submitting it to the server. In the most basic uses of this
method, users type data into named text fields, which are submitted to the server
as name/value pairs. However, forms can be used in other ways, which are
designed to impose restrictions or perform validation checks on the user-supplied
data. When an application employs these client-side controls as a security mech-
anism, to defend itself against malicious input, the controls can usually be triv-
ially circumvented, leaving the application potentially vulnerable to attack.

Length Limits

Consider the following variation on the original HTML form, which imposes a
maximum length of 3 on the quantity field:

<form action="order.asp" method="post">
<p>Product: Sony VAIO A217S</p>
<p>Quantity: <input size="2" maxlength="3" name="quantity">

Chapter 5 = Bypassing Client-Side Controls

107

<input name="price" type="hidden" value="1224.95">
<input type="submit" value="Buy!"></p>
</form>

Here, the browser will prevent the user from entering any more than three
characters into the input field, and so the server-side application may assume
that the quantity parameter it receives will be no longer than this. However,
the restriction can be easily circumvented either by intercepting the request
containing the form submission to enter an arbitrary value, or by intercepting
the response containing the form to remove the maxlength attribute.

INTERCEPTING RESPONSES

When you are attempting to intercept and modify server responses, you may
find that the relevant message displayed in your proxy looks like this:

HTTP/1.1 304 Not Modified

Date: Wed, 21 Feb 2007 22:40:20 GMT
Etag: "6¢7-5fcc0900"

Expires: Thu, 22 Feb 2007 00:40:20 GMT
Cache-Control: max-age=7200

This response arises because the browser already possesses a cached copy
of the resource it requested. When the browser requests a cached resource, it
typically adds two additional headers to the request, called 1f-Modified-
Since and If-None-Match:

GET /scripts/validate.js HTTP/1.1

Host: wahh-app.com

If-Modified-Since: Sat, 17 Feb 2007 19:48:20 GMT
If-None-Match: "6c¢c7-5fcc0900"

These headers tell the server the time at which the browser last updated its
cached copy, and the Etag string, which the server provided with that copy of
the resource. The Etag is a kind of serial number that the server assigns to
each cacheable resource and that it updates each time the resource is
modified. If the server possesses a newer version of the resource than the date
specified in the If-Modified-Since header, or if the Etag of the current
version does match the one specified in the 1f-None-Match header, then the
server will respond with the latest version of the resource. Otherwise, it will
return a 304 response as shown here, informing the browser that the resource
has not been modified and that the browser should use its cached copy.

When this occurs, and you need to intercept and modify the resource that
the browser has cached, you can intercept the relevant request and remove the
If-Modified-Since and If-None-Match headers, causing the server to
respond with the full version of the requested resource. Burp Proxy contains an
option to strip these headers from every request, thereby overriding all cache
information sent by the browser.

108 Chapter 5 = Bypassing Client-Side Controls

B Look for form elements containing a maxlength attribute. Submit data
that is longer than this length but that is validly formatted in other
respects (e.g., is numeric if the application is expecting a number).

B If the application accepts the overlong data, you may infer that the
client-side validation is not replicated on the server.

H Depending on the subsequent processing that the application performs
on the parameter, you may be able to leverage the defects in validation
to exploit other vulnerabilities such as SQL injection, cross-site scripting,
or buffer overflows.

Script-Based Validation

The input validation mechanisms built into HTML forms themselves are
extremely simple, and are insufficiently fine-grained to perform relevant vali-
dation of many kinds of input. For example, a user registration form might
contain fields for name, email address, telephone number, and ZIP code, all of
which expect different types of input. It is therefore very common to see cus-
tomized client-side input validation implemented within scripts. Consider the
following variation on the original example:

<script>
function vValidateForm(theForm)
{
var isInteger = /"\d+$/
if (!isInteger.test (theForm.quantity.value))
{
alert ("Please enter a valid quantity");
return false;
}
return true;
}

</script>

<form action="order.asp" method="post" onsubmit="return
ValidateForm(this) ">

<p>Product: Sony VAIO A217S</p>

<p>Quantity: <input size="2" name="quantity">

<input name="price" type="hidden" value="1224.95">
<input type="submit" name="buy" value="Buy!"></p>
</form>

The onsubmit attribute of the form tag instructs the browser to execute the
validateForm function when the user clicks the submit button and to submit the
form only if this function returns true. This mechanism enables the client-side

Chapter 5 = Bypassing Client-Side Controls

109

logic to intercept an attempted form submission, perform customized validation
checks on the user’s input, and decide whether to accept that input accordingly.
In the above example, the validation is extremely simple and checks whether the
data entered in the amount field is an integer.

Client-side controls of this kind are usually trivial to circumvent, and it is
normally sufficient to disable JavaScript within the browser. If this is done, the
onsubmit attribute is ignored, and the form is submitted without any custom
validation.

However, disabling JavaScript altogether may break the application if it
depends upon client-side scripting for its normal operation (such as construct-
ing parts of the user interface). A neater approach is to enter a benign value
into the input field in the browser, and then intercept the validated submission
with your proxy and modify the data to your desired value.

Alternatively, you can intercept the server’s response that contains the
JavaScript validation routine and modify the script to neutralize its effect — in
the previous example, by changing the validateForm function to return true in
every case.

B Identify any cases where client-side JavaScript is used to perform input
validation prior to form submission.

B Submit data to the server that the validation would ordinarily have
blocked, either by modifying the submission request to inject invalid
data or by modifying the form validation code to neutralize it.

B As with length restrictions, determine whether the client-side controls
are replicated on the server, and if not, whether this can be exploited for
any malicious purpose.

B Note that if multiple input fields are subjected to client-side validation
prior to form submission, you need to test each field individually with
invalid data, while leaving valid values in all of the other fields. If you
submit invalid data in multiple fields simultaneously, it is possible that
the server will stop processing the form when it identifies the first invalid
field, and so your testing is not reaching all possible code paths within
the application.

.m Client-side JavaScript routines to validate user input are extremely
common in web applications but do not infer that every such application is
vulnerable. The application is exposed only if client-side validation is not
replicated on the server, and even then only if crafted input that circumvents
client-side validation can be used to cause some undesirable behavior by the
application.

110 Chapter 5 = Bypassing Client-Side Controls

In the majority of cases, client-side validation of user input has beneficial
effects on the application’s performance and the quality of the user experience.
For example, when filling out a detailed registration form, an ordinary user
might make various mistakes, such as omitting required fields or formatting
their telephone number incorrectly. In the absence of client-side validation,
correcting these mistakes may entail several reloads of the page, and round-
trip messages to the server. Inplementing basic validation checks on the client
side makes the user’s experience much smoother and reduces the load on the
server.

Disabled Elements

If an element on an HTML form is flagged as disabled, it appears on-screen but
is usually grayed out and is not editable or usable in the way an ordinary con-
trol is. Also, it is not sent to the server when the form is submitted. For exam-
ple, consider the following form:

<form action="order.asp" method="post">

<p>Product: <input disabled="true" name="product" value="Sony VAIO
A217S"></p>

<p>Quantity: <input size="2" name="quantity">

<input name="price" type="hidden" value="1224.95">

<input type="submit" value="Buy!"></p>

</form>

This includes the name of the product as a disabled text field and appears on-
screen as shown in Figure 5-5.

Please enter your order quantity:

Product: [ElEli

Quantity: Il

Figure 5-5: A form containing a disabled input field

The behavior of this form is identical to the original example: the only para-
meters submitted are quantity and price. However, the presence of a dis-
abled field suggests that this parameter may originally have been used by the
application. Earlier versions of the form may have included a hidden or
editable field containing the product name. This would have been submitted
to the server and may have been processed by the application. Modifying the
name of the product may not appear to be as promising an attack as modify-
ing its price. However, if this parameter is processed, then it may be vulnera-
ble to many kinds of bugs such as SQL injection or cross-site scripting, which
are of interest to an attacker.

Chapter 5 = Bypassing Client-Side Controls

111

B Look for disabled elements within each form of the application. When-
ever one is found, try submitting it to the server along with the form’s
other parameters, to determine whether it has any effect.

B Often, submit elements are flagged as disabled so that buttons appear as
grayed out in contexts when the relevant action is not available. You
should always try to submit the names of these elements, to determine
whether the application performs a server-side check before attempting
to carry out the requested action.

B Note that browsers do not include disabled form elements when forms
are submitted, and so you will not identify these if you simply walk
through the application’s functionality monitoring the requests issued by
the browser. To identify disabled elements, you need to monitor the
server’s responses or view the page source in your browser. You can also
use the automated “find and replace” function of your intercepting proxy
to remove occurrences of the disabled attribute within input tags. See
Chapter 19 for details of this feature.

Capturing User Data: Thick-Client Components

Besides HTML forms, the other main method for capturing, validating, and
submitting user data is to use a thick-client component. The technologies you
are most likely to encounter here are Java applets, ActiveX controls, and
Shockwave Flash objects.

Thick-client components can capture data in various different ways, both via
input forms and in some cases by interacting with the client operating system’s
file system or registry. They can perform arbitrarily complex validation and
manipulation of captured data prior to submission to the server. Further,
because their internal workings are less transparently visible than HTML forms
and JavaScript, developers are more likely to assume that the validation they
perform cannot be circumvented. For this reason, thick-client components are
often a fruitful means of discovering vulnerabilities within web applications.

.m Whatever validation and processing a thick-client component performs,
if it submits data to the server in a transparent manner, then this data can be
modified using an intercepting proxy in just the same way as described for HTML
form data. For example, a thick-client component supporting an authentication
mechanism might capture user credentials, perform some validation on these,
and submit the values to the server as plaintext parameters within the request.
The validation can be trivially circumvented without performing any analysis or
attack on the component itself.

112 Chapter 5 = Bypassing Client-Side Controls

Thick-client components present a more interesting and challenging target
when the data they capture is obfuscated in some manner before being
transmitted to the server. In this situation, modifying the submitted values
will typically break the obfuscation and so will be rejected by the server.
To circumvent the validation, it is necessary to look inside the thick-client
component itself, understand the validation and obfuscation it performs,
and subvert its processing in some way so as to achieve your objective.

Java Applets

Java applets are a popular choice of technology for implementing thick-client
components because they are cross-platform and they run in a sandboxed
environment which mitigates against various kinds of security problems that
can afflict more heavyweight thick-client technologies.

As a result of running in a sandbox, Java applets cannot normally access
operating system resources such as the file system. Hence, their main use as a
client-side control is to capture user input or other in-browser information.
Consider the following extract of HTML source, which loads a Java applet con-
taining a game:

<script>
function play ()
{
alert ("you scored " + TheApplet.getScore());
document.location = "submitScore.jsp?score=" +
TheApplet.getObsScore() + "&name=" +
document .playForm.yourName.value;
}
</script>

<form name=playForm>
<p>Enter name: <input type="text" name="yourName" value=""></p>
<input type="button" value="Play" onclick=JavaScript:play()>

</form>

<applet code="https://wahh-game.com/JavaGame.class"
id="TheApplet"></applet>

In this code, the applet tag instructs the browser to load a Java applet from
the specified URL and instantiate it with the name Theapplet. When the user
clicks the Play button, a JavaScript routine executes that invokes the getscore
method of the applet. This is when the actual game play takes place, after which
the score is displayed in an alert dialog. The script then invokes the getobsscore
method of the applet, and submits the returned value as a parameter to the
submitScore.jsp URL, together with the name entered by the user.

Chapter 5 = Bypassing Client-Side Controls 113

For example, playing the game results in a dialog like the one shown in Fig-
ure 5-6, followed by a request for a URL with this form:

https://wahh-game.com/submitScore.jsp?score=
clcc3139323c3e4544464d51515352585a61606a6b&name=daf

which generates an entry in the high-scores table with a value of 38.

Windows Internet E x|

1 you scored 38
LY

Figure 5-6: A dialog produced when
the applet-based game is played

It appears, therefore, that the long string that is returned by the getobsscore
method, and submitted in the score parameter, contains an obfuscated repre-
sentation of your score. If you want to cheat the game and submit an arbitrary
high score, you will need to figure out a way of correctly obfuscating your cho-
sen score, so that it is decoded in the normal way by the server.

One approach you may consider is to harvest a large number of scores
together with their obfuscated equivalents, and attempt to reverse engineer
the obfuscation algorithm. However, suppose that you play the game several
times, always scoring 38 and observe the following values being submitted:

bb58303981393b424d4a5059575¢c616a676d727570818683
5£48303981393b41474951585861606a656£6£7377817£828b
£d20303981393b4149495651555¢c66686a6c73797680848489
370c303981393b42494a505359606361696e76787b828584
b5bc303981393b454549545a5a5€63656569717174818388
1744303981393b43464d515a585£5£646b6£7477767£7e86
£3d4303981393b494a4b5653556162616e6d6£7577827e
de08303981393b474a4d5357595b5d69676a7178757b
dad40303981393b43464b54545b6060676e6d70787e7b7e85
12ec303981393b434d4b5054556266646c6b6e717a7£80

Each time you submit a score of 38, a portion of the obfuscated string
remains constant, but the majority of it changes in unpredictable ways. You
find that if you modify any of the obfuscated score, it is rejected by the server.
Attempting to reverse engineer the algorithm based on observed values could
be a very difficult task.

114 Chapter 5 = Bypassing Client-Side Controls

.m The idea of attacking a Java-based game to submit an arbitrary score
may appear frivolous. However, thick-client components are employed by many
casino web sites, which play for real money. Posting an arbitrary score to an
application like this may be a very serious business!

Decompiling Java Bytecode

A much more promising approach is to decompile the applet to obtain its
source code. Languages like Java are not compiled into native machine
instructions, but to an intermediate language called bytecode, which is inter-
preted at runtime by a virtual machine. Normally, Java bytecode can be
decompiled to recover its original source code without too many problems.

To decompile a client-side applet, you first need to save a copy of it to disk.
You can do this simply by using your browser to request the URL specified in
the code attribute of the applet tag shown previously.

There are various tools available that can decompile Java bytecode. The fol-
lowing example shows partial output from one such tool, Jad:

E:\>jad.exe JavaGame.class
Parsing JavaGame.class... Generating JavaGame.jad

E:\>type JavaGame.jad

// Decompiled by Jad v1.5.8f. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http://www.kpdus.com/jad.html

// Decompiler options: packimports(3)

// Source File Name: JavaGame. java

import java.applet.Applet;
import java.awt.Graphics;

public class JavaGame extends Applet
{
public int getScore()
{
play();
return score;

public String getObsScore()
{
return obfuscate (Integer.toString(score) + “\“ +
Double.toString (Math.random())) ;

public static String obfuscate(String input)
{

Chapter 5 = Bypassing Client-Side Controls

115

return hexEncode (checksum(input) + scramble (input)) ;

private static String scramble(String input)
{
StringBuffer output = new StringBuffer();
for(int i = 0; i < input.length(); i++)
output.append((char) ((input.charAt (i) - 3) + 1 * 4));

return output.toString() ;

private static String checksum(String input)

{

char checksum = '\0';
for(int i = 0; i < input.length(); i++)
{

checksum "= input.charAt (i) ;

checksum <<= '\002"';

return new String(new char[] {
(char) (checksum / 256), (char) (checksum % 256)
1)

.m For various reasons, Jad sometimes does not do a perfect job of
decompiling bytecode, and you may need to tidy up some of its output before it
can be recompiled.

With access to this source code, you can immediately see how your score is
converted into a long obfuscated string that has the characteristics observed.
The applet first appends some random data to your score (separated by the
pipe character). It takes a checksum of the resulting string, and also scrambles
it. It then prepends the checksum to the scrambled string and finally hex-
encodes the result for safe transmission within a URL parameter.

The addition of some random data accounts for the length and unpre-
dictability of the obfuscated string, and the addition of a checksum explains
why changing any part of the obfuscated string causes the server-side decoder
to reject it.

Having decompiled the applet back to its source code, there are various
ways in which you could leverage this to bypass the client-side controls and
submit an arbitrary high score to the server:

m You can modify the decompiled source to change the behavior of the
applet, recompile it to bytecode, and modify the source code of the

116 Chapter 5 = Bypassing Client-Side Controls

HTML page to load the modified applet in place of the original. For
example, you could change the getobsscore method to:

return obfuscate("99999|O.l23456789");

To recompile your modified code, you should use the Java compiler
javac provided with Sun’s Java SDK.

m You can add a main method to the decompiled source to provide the
functionality to obfuscate arbitrary inputs:

public static void main(String[] args)
{
System.out.println(obfuscate(argsl[0]));

}

You can then run the recompiled byte code from the command line to
obfuscate any score you like:

E:\>java JavaGame "99999|0.123456789"
6cad363a3e42468d45474e53585d62676c7176

m You can review the public methods exposed by the applet to determine
whether any of them can be leveraged to achieve your objectives with-
out actually modifying the applet. In the present case, you can see that
the obfuscate method is marked as public, meaning that you can call it
directly from JavaScript with arbitrary input. Hence, you can submit
your chosen score simply by modifying the source code of the HTML
page as follows:

function play ()
{
alert ("you scored " + TheApplet.getScore());
document.location = "submitScore.jsp?score=" +
TheApplet.obfuscate("99999|0.123456789") + "&name=" +
document .playForm.yourName.value;

}

m Often, Java applets are packed up as JAR (Java ARchive) files, which
contain multiple class files and other resources such as sounds and images.
JAR files are really just ZIP archives with the . jar file extension. You can
unpack and repack them using standard archive readers like WinRar or WinZip,
and also using the Jar tool, which is included in Sun’s Java SDK.

m Other useful tools for analyzing and manipulating Java applets are Jode
(a decompiler and bytecode obfuscator) and JSwat (a Java debugger).

Chapter 5 = Bypassing Client-Side Controls

117

B Review all calls made to an applet’s methods, and determine whether
data returned from the applet is being submitted to the server.

B If that data is transparent in nature (i.e., is not obfuscated or encrypted),
probe and attack the server’s processing of the submitted data in the
same way as for any other parameter.

B If the data is opaque, decompile the applet to obtain its source code.

B Review the relevant source code (starting with the implementation of the
method that returns the opaque data) to understand what processing is
being performed.

B Determine whether the applet contains any public methods that can be
used to perform the relevant obfuscation on arbitrary input.

B If not, modify and recompile the applet’s source in such a way as to neu-
tralize any validation it performs or allow you to obfuscate arbitrary
input.

B Then, submit various suitably obfuscated attack strings to the server to
probe for vulnerabilities, as you would for any other parameter.

Coping with Bytecode Obfuscation

Because of the ease with which Java bytecode can be decompiled to recover its
source, various techniques have been developed to obfuscate the bytecode
itself. Applying these techniques results in bytecode that is harder to decom-
pile or that decompiles to misleading or invalid source code that may be very
difficult to understand and impossible to recompile without substantial effort.
For example:

package myapp.interface;

import
import
import
import
import

import

public
{

myapp.class.public;
myapp.interface.else.class;
myapp.throw. throw;
if.if.if.if.else;
if.if.if.if.1if;
java.awt.event .KeyEvent;

class double extends public implements strict

public double(j jl1)

{

_mthif();
_f1dif = §1;

118 Chapter 5 = Bypassing Client-Side Controls

}
private void _mthif (ActionEvent actionevent)
{
_mthif (((KeyEvent) (null)));
switch(_fldif._mthnew()._£fldif)
{
case 0:
_fldfloat.setEnabled(false) ;
_fldboolean.setEnabled(false) ;
_fldinstanceof.setEnabled(false) ;
_fldint.setEnabled(false) ;
break;
case 3:
_fldfloat.setEnabled(true) ;
_fldboolean.setEnabled(true) ;
_fldinstanceof.setEnabled(false) ;
_fldint.setEnabled(false) ;
break;

The obfuscation techniques commonly employed are as follows:

m Meaningful class, method, and member variable names are replaced
with meaningless expressions like a, b, c. This forces the reader of
decompiled code to identify the purpose of each item by studying how
it is used, and can make it very difficult to keep track of different items
while tracing them through the source code.

m Going further, some obfuscators replace item names with Java key-
words such as new and int. Although this technically renders the byte-
code illegal, most JVMs will tolerate the illegal code and it will execute
normally. However, even if a decompiler can handle the illegal byte-
code, the resulting source code will be even less readable than that
described in the previous point. More importantly, the source will not
be recompilable without extensive reworking to rename illegally named
items in a consistent manner.

m Many obfuscators strip unnecessary debug and meta-information from
the bytecode, including source file names and line numbers (which
makes stack traces less informative), local variable names (which frus-
trates debugging), and inner class information (which stops reflection
from working properly).

m Redundant code may be added that creates and manipulates various
kinds of data in significant-looking ways but that is autonomous from
the real data actually being used by the application’s functionality.

m The path of execution through code can be modified in convoluted
ways, through the use of jump instructions, so that the logical sequence

Chapter 5 = Bypassing Client-Side Controls

119

of execution is hard to discern when reading through the decompiled
source.

m [llegal programming constructs may be introduced, such as unreach-
able statements, and code paths with missing return statements. Most
JVMs will tolerate these phenomena in bytecode, but the decompiled
source cannot be recompiled without correcting the illegal code.

Effective tactics for coping with bytecode obfuscation depend upon the
techniques used and the purpose for which you are analyzing the source. Here
are some suggestions:

B You can review an applet for public methods without fully understanding
the source. It should be obvious which methods can be invoked from
JavaScript, and what their signatures are, enabling you to test the behav-
ior of the methods by passing in various inputs.

B If class, method, and member variable names have been replaced with
meaningless expressions (but not Java keywords), then you can use the
refactoring functionality built into many IDEs to assist you in understand-
ing the code. By studying how items are used, you can start to assign
them meaningful names. If you use the “rename” tool within the IDE, it
will do a lot of work for you, tracing the use of the item throughout the
codebase and renaming it everywhere.

B You can actually undo a lot of obfuscation by running the obfuscated
bytecode through an obfuscator a second time and choosing suitable
options. A useful obfuscator to use here is Jode, which can remove
redundant code paths added by another obfuscator, and facilitate the
process of understanding obfuscated names by assigning globally unique
names to items.

ActiveX Controls

ActiveX controls are a much more heavyweight technology than Java applets.
They are effectively native Win32 executables that, once accepted and installed
by the user, execute with the full privileges of that user and can carry out arbi-
trary actions, including interacting with the operating system.

ActiveX can be used to implement practically any client-side control,
including capturing user input and other in-browser data, and verifying that
the client computer meets certain security standards before allowing access to
some function.

From the point of view of HTML page source, ActiveX controls are instanti-
ated and invoked in a very similar way to Java applets. For example, if you

120 Chapter 5 = Bypassing Client-Side Controls

have installed the Adobe Acrobat plug-in for Internet Explorer, the following
code will display a dialog showing the version of Acrobat installed:

<object id="TheAxControl"
classid="CLSID:4F878398-E58A-11D3-BEE9-00C04FAQOD6BA" >
</object>

<form>
<input type="button" value="Show version"
onclick=JavaScript:alert (document.TheAxControl.AcrobatVersion) >
</form>

In addition to looking for code like this, you can easily identify instances
where an application attempts to install a new ActiveX control, because your
browser will present an alert asking for your permission to install it.

.m Poorly written ActiveX controls have been a major source of security
vulnerabilities in recent years, and unwitting users who install defective
controls often leave themselves open to full system compromise at the hands
of any malicious web site that invokes and exploits the control. In Chapter 12,
we describe how you can find and exploit common vulnerabilities in ActiveX
controls to attack other users of an application.

There are various techniques that can be used to circumvent client-side con-
trols implemented using ActiveX.

Reverse Engineering

Because ActiveX controls are typically written in native languages like C and
C++, they cannot be trivially decompiled back to source code in the way that
Java applets can be. Nevertheless, because all of the processing performed by
an ActiveX control occurs on the client computer, it is in principle possible for
a user on that computer to fully scrutinize and control that processing, thereby
circumventing any security functions that it implements.

Reverse engineering is a complex and advanced topic, which extends
beyond the scope of this book. However, there are some basic techniques that
even a relatively inexperienced reverse engineer can use to defeat the client-
side security mechanisms implemented within many ActiveX controls.

B Rather than pursuing a full static disassembly of the component’s code, use
an intuitive GUI-based debugger to monitor and control its execution at run-
time. For example, OllyDbg is an accessible yet powerful debugger that can
be used to achieve many kinds of attacks on compiled software at runtime:

Chapter 5 = Bypassing Client-Side Controls 121

HACK STEPS (continued)

OllyDbg - IEXPLORE.EXE - [CPU - thread 00000EZ0, mod: = ID ﬂ
Eﬁile Wiew Debug Plugins Op;\nns windnw Help |2 il
(Bilx] vIn| w]+ #4 o]+ o/e]sriw]acl/[x|nln]s] ;
fAddress [Hex dump Disassembly Registers (FPUI

Fo:nE FEF 5105 DUORD FTR ESITEOTI—| & rrosoaie

3905544 SB4424 38 MOU ERX, S55: [ESP+38] EC# FFEFCC4

AL SB5424 18 Moy EDK SS L[ESP+18] ED¥ BLASEFFC

SAC '4C a308 RDD ED EEx FFEFFFS3

EACSFAE| 46 ESF B1ASEFD4

ZACSFYF| 3BFS the ESI _I EBF FFFFFFIC

EACIFS1| 895424 18 HOU 55 |:Esp+13:| S1 BEHEHHG

SACSESS 72 HF £B_SHORT nDdlUH32 BoAceras £01 aderoaan

hCorce| BE FOR Eo1 EIF B3ACSF42 npdive32. BIACIFE2

ISACZFS?| 50 POP EEP C @ ES 8923 32biv BIFFEFFFF 1

ISACZFSH| 6B POP EB¥ P 1 CS5 BElB 22biv BIFFEFFFF 1

EACSFSE| 59 FOF ECH A6 S5 8623 32hit af i

SACSFSE| €3 RETH Z 0 DS 8623 32bit af)

EACIFED| S50 TEST EA%, EAX +l5 1 FS 0o3E 32hic TFFODAGGEIFFF)
loZocoror CEsc slooooon i TG &5 BeEe HOLL

ECA=FFFFCC94 (decimal 4294354132.) oa

ERX=FF232348 0@ LastErr ERROR_SUCCESS (B000B0EE
ES: [EDII=[03BFRORRI=??? EFL B820B236 (NO,ME,ME,A, 8, FE,L,LE)
Address | Hex dump » | Address | Ualue Canment a

B414a868BE AF 94 B0 92 HF Ho B AF BD A2 B8] A9 BO EF:

B414@1e| CE AB 27 80 CY B3 90 B@| 01 B2 27 88 E4 BE 88 BIRSEFDE| FFFF

iB414028| CS BS A7 99 3F CE B 98| BB CA BS @5 OC CA 9E B1RASEFDC| B3ZB4334

4 14056| FE ES &6 68| 0B C3 AS @6| 03 CC BS ©6|ES CF AS | A1ASEFEE| FFFFFFESC

i34 140da| FS D4 A5 68| EE OS5 BA AG| 83 C9 09 66|53 OC DE | A1ASEFE4| FFFFFFESC

3414050\ A3 CC C2 @0 93 DS ES o8| S0 EE EF @833 E7 Fo | G1ASEFES| 83ABDCGZ|RETURN to npdis

0414060 97 F7 Fr 03 50 EC P2 09\ A3 FB FF 68\BA FD FF. | QIASEFEC| OSBEDSEQ _I

3414978 | ED DE CA @@ F& E9 09 23| C2 FB FF 88| FF FF FF ASEFFA| SRRERGAL

B4 14R2E| B0 QE 05 B0 G0 9O 00 GO 50 08 G BE 00 00 0O o BIHEEFF4 BEEEEEHE) -
Access violation when wiitihg to [03BFADDD] - uge Shift+F7/F8/F9 to pass exception to program Pausged

B Identify the methods exported by the control and its subcomponents,
and also any interesting operating system functions which the control
imports — in particular, any cryptographic functions. Set breakpoints on
these functions within the debugger.

B When a breakpoint is hit, review the call stack to identify any relevant
data being passed to the function — in particular, any user-supplied data
that is being subjected to validation. By tracing the path of this data,
attempt to understand the processing being performed on it.

B It is often easy to use a debugger to subvert the execution path of a
process in useful ways — for example, by modifying the parameters on
the stack being passed as inputs to a function, modifying the EAX regis-
ter used to pass the return value back from a function, or rewriting key
instructions like comparisons and jumps to change the logic imple-
mented within a function. If possible, use these techniques to circumvent
validation controls, causing potentially malicious data to be accepted for
further processing.

B If data validation is performed before further manipulation such as
encryption or obfuscation, you can exploit this separation by supplying
valid data to the control, and then intercept and modify the data after it
has passed the validation steps, so that your potentially malicious data is
appropriately manipulated before being transmitted to the server-side
application.

B If you find a means of manually altering the control’s processing to
defeat the validation it is performing, you can automate the execution of
this attack either by modifying the control’s binary on-disk (OllyDbg has
a facility to update binaries to reflect changes you have made to its code
within the debugger) or by hooking into the target process at runtime,
using an instrumentation framework such as Microsoft Detours.

122 Chapter 5 = Bypassing Client-Side Controls

The following are some useful resources if you’d like to find out more about
reverse engineering and related topics:

m Reversing: Secrets of Reverse Engineering by Eldad Eilam
m Hacker Disassembling Uncovered by Kris Kaspersky

m The Art of Software Security Assessment by Mark Dowd, John McDonald,
and Justin Schuh

W ywww.acm.uiuc.edu/sigmil/RevEng

B www.uninformed.org/?v=1&a="7

Manipulating Exported Functions

As with Java applets, it may be possible to manipulate and repurpose an
ActiveX control’s processing solely by invoking methods that it exposes to the
browser through its normal interface.

ActiveX controls may expose numerous methods that the application never
actually invokes from HTML, which you may not be aware of without exam-
ining the control itself. COMRaider by iDefense is a useful tool that can dis-
play all of a control’s methods and their signatures, as shown in Figure 5-7.

&*COMRaider Only showing class {67DABFEF-DOAB-41fa-9C46-CCOF: =1ox|
COM Server [C:\Pragram Files\D ivi<ADiii< \web Player\npdiv32.dI 2| ¥ Show only fuzzable
W DivBrowserPluginLib Sub Open { ﬁ
=423 DivBrowserPlugin Byval URL As String
-2 1DideBrowssPlugin)

=% Resize

=% Seek
=% SetBufferingtode
=8 SetMinersion
= SetMode

=% Sefvolume

o o

Use right click menu on treeview to generate fuzz files
Loaded class from lve instance Mare > Hext>>

Figure 5-7: COMRaider showing the methods exposed by an ActiveX control

B Developers typically use meaningful names for ActiveX methods, and it
may be possible to identify useful methods simply from their names.

H You can sometimes determine the purpose of a function by systemati-
cally invoking it with different inputs and monitoring both the visible
behavior of the control and its internal workings using your debugger.

Chapter 5 = Bypassing Client-Side Controls

123

Fixing Inputs Processed by Controls

A common use to which ActiveX controls are put is as a client-side control to
verify that the client computer complies with specific security standards before
access is granted to certain server-side functionality. For example, in an attempt
to mitigate against keylogging attacks, an online banking application may
install a control that checks for the presence of a virus scanner, and the operat-
ing system patch level, before permitting a user to log in to the application.

If you need to circumvent this type of client-side control, it is usually easy to
do. The ActiveX control will typically read various details from the local com-
puter’s file system and registry as input data for its checks. You can monitor
the information being read and feed arbitrary inputs into the control that com-
ply with its security checks.

The Filemon and Regmon tools originally developed by Sysinternals (and
now owned by Microsoft) enable you to monitor all of a process’s interaction
with the computer’s file system and registry. You can filter the tools” output to
display only the activity of the process you are interested in. When an ActiveX
control is performing security checks on the client computer, you will typically
see it querying security-relevant files and registry keys, such as items created
by antivirus products, as shown in Figure 5-8.

¢« Registry Monitor - Sysinternals: www.sysinternals.com = |E| 5[
File Edit Options Help

HeE | AaBRT | v 2 | g |

Fequest | Path ‘ Result -
Openkey HELMA\SOFTWARE Samerica OnlinetS afety and S ecuritysCompanents\Antivirug MOT FOUND
Openkey HELMASOF T'wWARESémenica OnlineSafety and SecuribysCompanents\Antivirus MOT FOUMD
Openkey HELEASOF T'wiARENComputerfissociates\S canE nginetPath MOT FOUND
Openkey HELM\SOF T'w/ARE S Computerdssociatessdnti-Virusiinstall MOT FOUMD
Openkey HELM\SOF WA RE S Computerdssociatessdnti-irusinstall MOT FOUND
Openkey HELMASOF ' RENComputerdssociates\S canE nginePath MOT FOUND
Openkey HELRAS OF T'wiARENComputerdseociatesS cank nginehPath MOT FOUND
Openkey HELMA\SOFTWARE D ata Fellows\F-5S ecurehdnti-irus SUCCESS
Openkey HELMASOF TwW/ARE D ata Fellows\F-Securehdntivirus SUCCESS
Quenalue HKLMASOFT'WwW/ARED ata Fellows\F-5 ecuretdntiius\CurentersionE MOT FOUND
CloseKey HELMA\SOFTwARE D ata Fellows\F-S ecurehdntivirus SUCCESS
Closekey HELMASOFTwWARE D ata Fellows\F-S ecurehdnti-irus SUCCESS
Openkey HELEASOF T'w/ARE Data Fellows\F-5 ecurehdntiirs SUCCESS
Openkey HELMAS OF T'wW/AREND ata Fellows\F-5 ecurehdntivirs SUCCESS
Quentfalue HELMASOFTWAREND ata Fellows\F-5 ecurehdntiVinus\CurmentyersionE MOT FOUND
Closekey HELMASOF TwW/ARE D ata Fellows\F-Securehdntivirus SUCCESS
Clozekey HELEASOF T'wW/ARE D ata Fellows\F-5 ecurehdntiirs SUCCESS
Openkey HELMASOF TR ESMicrozoftwindowsA\CurrentyersionsU ningtallantivir PersonalEdition Classic MOT FOUND
Openkey HELMASOF TR ESMicrosoftwindows \CurrentersioniUningtalantivir PersonalEdition Classic MOT FOUND
Openkey HELEAS OF T'wia R E MicrosofthwindowshCurrenty'ersion Uninstalbdnthin PersonalEdition Classic MOT FOUND
Openkey HELM\SOFT'wARE K asperskyl abhinstalledProducts\F.aspersky Antivirug Personaly MOT FOUMD
Openkey HELMA\SOFT'wWARE K asperskylabhnstalledProducts\F.aspersky Antitirug Personal Prob MOT FOUND -
4 | 3

Figure 5-8: Regmon being used to capture the registry access carried
out by an ActiveX control

In this situation, it is usually sufficient to manually create the relevant file or
registry key, to convince the control that the corresponding software is installed.
If for some reason you do not wish to interfere with the actual operating system,

124 Chapter 5 = Bypassing Client-Side Controls

you can achieve the same effect using the debugging or instrumentation tech-
niques described previously, to fix the data returned to the control by the rele-
vant file system or registry APIs.

Decompiling Managed Code

Occasionally, you may encounter thick-client components written in C#. As
with Java applets, these can normally be decompiled to recover the original
source code.

A useful tool for performing this task is .NET Reflector by Lutz Roeder (see
Figure 5-9).

7 Lutz Roeder's .NET Reflector N [m] 3]

JEIE Miew Tools Help

o2&l Rl Al |

-3 mscorlib

A System
o S\Yu'stem anl private void GameLoop() ;I
’ i
-3 System.Data Thread. Sleep{200);
-3 System.\Web Graphics g = base, CreateGraphics();
- System.Drawing while ((this != null) && !base.IsDisposed)
{3 System,Windows, Forms {
[=] «3 tetris if (g !=null)
= W ketris.dil

i References if (Ithis. _TrisGrid.MainLoop(g, this._Repaint})

(- MessageBox.Show("Game Over™, "Tetris);

Bl L} tetris retum;
[“i§ TrisCantrol 3
] Base Types this, _Repaint = false;
(™ Derived Types

3
& .ctord) Thread. Sleep(Dx 10);

¢ Dispose(Boolean) : Void
2% GameLoop() : Void

2% InitializeComponent() : void -
| | 3

-
private void GameLoop(); —I
Declaring Type: tetris. TrisContral
Assembly: tetris, Version=1.0.2603. 2692
E E
A

Figure 5-9: The .NET Reflector tool being used to decompile an
ActiveX control written in C#

Similar code obfuscation issues can arise in relation to C# assemblies as arise
with Java bytecode.

Shockwave Flash Objects

Flash is very popular on the Internet. It is often used as a means of providing
increased interactivity in informational web sites, but it is also employed in
web applications. Some online stores have Flash-based user interfaces, and it
is often used in jukebox software such as Pandora radio. The most common

Chapter 5 = Bypassing Client-Side Controls

125

use of Flash in an application context is in online games. These vary in nature
from purely recreational games to serious casino functionality, where real
money is involved. Many such games have been targeted by correspondingly
recreational and serious attackers.

Given what we have observed about the fallible nature of client-side con-
trols, the idea of implementing an online gambling application using a thick-
client component that runs locally on a potential attacker’s machine is an
intriguing one. If any aspect of the game play is controlled within the Flash
component instead of by the server, an attacker could manipulate the game
with fine precision to improve odds, change the rules, or alter the scores sub-
mitted back to the server.

Like the other thick-client components examined, Flash objects are con-
tained within a compiled file that the browser downloads from the server and
executes in a virtual machine, which in this case is a Flash player implemented
in a browser plug-in. The SWF file contains bytecode that is interpreted by the
Flash VM (virtual machine), and as with Java bytecode, this can be decompiled
to recover the original ActionScript source code, using appropriate tools. An
alternative means of attack, which is often more effective, is to disassemble
and modify the bytecode itself, without actually fully decompiling it to source.

Flasm is a disassembler and assembler for SWF bytecode and can be used to
extract a human-readable representation of the bytecode from an SWF file and
then reassemble modified bytecode into a new SWF file:

C:\flash>flasm
Flasm 1.61 build May 31 2006

(c) 2001 Opaque Industries, (c) 2002-2005 Igor Kogan, (c) 2005 Wang Zhen
All rights reserved. See LICENSE.TXT for terms of use.

Usage: flasm [command] filename

Commands :
-d Disassemble SWF file to the console
-a Assemble Flasm project (FLM)
-u Update SWF file, replace Flasm macros
-b Assemble actions to _ _bytecode_ instruction or byte sequence
-z Compress SWF with zLib
-x Decompress SWF

Backups with $Swf extension are created for altered SWF files.
To save disassembly or _ bytecode__ to file, redirect it:
flasm -d foo.swf > foo.flm

flasm -b foo.txt > foo.as

Read flasm.html for more information.

126 Chapter 5 = Bypassing Client-Side Controls

The following example shows Flasm being used to extract a human-
readable representation of bytecode from an SWF file for a simple Flash-based

car racing game:

C:\flash>flasm racer.swf > racer.flm
C:\flash>more racer.flm

movie 'racer.swf' compressed // flash 7, total frames: 3, frame rate:

fps, 64
0x500 px

exportAssets
1 as 'engineStart'
end // of exportAssets

exportAssets
2 as 'engineLoop'
end // of exportAssets

frame 0
stop
push 'carl'
getVariable
push 'code', 'player'
setMember
push 'totalLaps', 10
setVariable
push 'acceleration', 1.9
setVariable
push 'gravity', 0.4
setVariable
push 'speedDecay', 0.96
setVariable
push 'rotationStep', 10
setVariable
push 'maxSpeed', 10
setVariable
push 'backSpeed', 1
setVariable
push 'currentCheckpointl', 1
setVariable
push 'currentLapl', 0.0
setVariable
push 'checkpoints', 2
setVariable
push 'currentLapTXT', '1/10'
setVariable

end // of frame 0

frame 0
constants 'car', 'code', 'player', 'speed'
'isDown', '

’

'speedDecay',

"Key',

24

Chapter 5 = Bypassing Client-Side Controls

127

Here, you can immediately see various bytecode instructions that are of
interest to someone wishing to attack and modify the game. For example, you
could change the value of the maxspeed variable from 10 to something a bit
more competitive. After doing this, the modified disassembly can then be con-
verted back into bytecode in a new SWF file, as follows:

C:\flash>flasm -a racer.flm
racer.flm successfully assembled to racer.swf, 31212 bytes

The car should now virtually fly around the track (to make it literally fly,
you could try changing the gravity variable!).

In the previous example, the functionality implemented within the Flash
object was sufficiently simple that an attacker could fundamentally reengineer
the object by inspecting the disassembled bytecode and changing a single vari-
able. In more complex Flash objects, this may not be possible, and it may be
necessary to recover the original source and review it in detail to discover how
the object works and where best to attack it. The Flare tool can be used to
decompile an SWF file back into the original ActionScript source:

C:\flash>flare racer.swf && more racer.flr
movie 'racer.swf' {
// flash 7, total frames: 3, frame rate: 24 fps, 640x500 px, compressed

frame 1 {
stop () ;
carl.code = 'player';
totallLaps = 10;
acceleration = 1.9;
gravity = 0.4
speedDecay = 0.96;
rotationStep = 10;
maxSpeed = 10;
backSpeed = 1;
currentCheckpointl = 1;
currentLapl = 0;
checkpoints =

[N S}

currentLapTXT '1/10";

While modifying recreational games is usually straightforward and may be
fun for personal amusement and beating a coworker, the client-side controls
implemented within the Flash objects used by enterprise applications and
online casinos are typically better protected. As with Java, obfuscation tech-
niques have been devised in an attempt to hinder decompilation attacks. Two
available tools are ActionScript Obfuscator and Viewer Screwer, which can
change both meaningful variable names and text references into scrambled
sequences of letters, making the decompiled code harder to understand.

128 Chapter 5 = Bypassing Client-Side Controls

The tools described can be obtained from:

m Flasm — www.nowrap.de/flasm
m Flare — www.nowrap.de/flare
m ActionScript Obfuscator — www.genable.com/aso.html

m Viewer Screwer — www.debreuil.com/vs

B Explore the functionality of the Flash object within your browser. Use an
intercepting proxy to monitor any requests made to the server, to under-
stand which actions are executed entirely within the client-side compo-
nent itself and which may involve some server-side processing and
controls.

H Any time you see data being submitted to the server, determine whether
this is transparent in nature, or has been obfuscated or encrypted in
some way. If the former is the case, you can bypass any controls imple-
mented within the object by simply modifying this data directly.

B If the data that the object submits is opaque in nature, use Flasm to dis-
assemble the object into human-readable bytecode, and use Flare to
decompile the object into ActionScript source.

B As with decompiled Java applets, review the bytecode and source to
identify any attack points that will enable you to reengineer the Flash
object and bypass any controls implemented within it.

Handling Client-Side Data Securely

As you have seen, the core security problem with web applications arises
because client-side components and user input are outside of the server’s
direct control. The client, and all of the data received from it, is inherently
untrustworthy.

Transmitting Data via the Client

Many applications leave themselves exposed because they transmit critical
data such as product prices and discount rates via the client in an unsafe
manner.

If possible, applications should avoid transmitting this kind of data via the
client altogether. In virtually any conceivable scenario, it is possible to hold
such data on the server, and reference it directly from server-side logic when

Chapter 5 = Bypassing Client-Side Controls

129

needed. For example, an application that receives users’ orders for various dif-
ferent products should allow users to submit a product code and quantity, and
look up the price of each requested product in a server-side database. There is
no need for users to submit the prices of items back to the server. Even where
an application offers different prices or discounts to different users, there is no
need to depart from this model. Prices can be held within the database on a
per-user basis, and discount rates can be stored in user profiles or even session
objects. The application already possesses, server-side, all of the information it
needs to calculate the price of a specific product for a specific user — it must,
otherwise it would not be able, on the insecure model, to store this price in a
hidden form field.

If developers decide they have no alternative but to transmit critical data via
the client, then the data should be signed and/or encrypted to prevent tam-
pering by the user. If this course of action is taken, then there are two impor-
tant pitfalls to avoid:

m Some ways of using signed or encrypted data may be vulnerable
to replay attacks. For example, if the product price is encrypted
before being stored in a hidden field, it may be possible to copy the
encrypted price of a cheaper product, and submit this in place of the
original price. To prevent this attack, the application needs to include
sufficient context within the encrypted data to prevent it from being
replayed in a different context. For example, the application could con-
catenate the product code and price, encrypt the result as a single item,
and then validate that the encrypted string submitted with an order
actually matches the product being ordered.

m [f users know and/or control the plaintext value of encrypted strings
that are sent to them, then they may be able to mount various crypto-
graphic attacks to discover the encryption key being used by the server.
Having done this, they can encrypt arbitrary values and fully circum-
vent the protection offered by the solution.

In applications running on the ASP.NET platform, it is advisable to never
store any customized data within the ViewState, and certainly never anything
sensitive that you would not want to be displayed on-screen to users. The
option to enable the ViewState MAC should always be activated.

Validating Client-Generated Data

Data generated on the client and transmitted to the server cannot in principle
be validated securely on the client:

m Lightweight client-side controls like HTML form fields and JavaScript
can be very trivially circumvented, and provide zero assurance about
the input received by the server.

130 Chapter 5 = Bypassing Client-Side Controls

m Controls implemented in thick-client components are sometimes more
difficult to circumvent, but this may merely slow down an attacker for a
short period.

m Using heavily obfuscated or packed client-side code provides addi-
tional obstacles; however, a determined attacker will always be able to
overcome these. (A point of comparison in other areas is the use of
DRM technologies to prevent users from copying digital media files.
Many companies have invested very heavily in these client-side con-
trols, and each new solution is usually broken within a short interval.)

The only secure way to validate client-generated data is on the server side of
the application. Every item of data received from the client should be regarded
as tainted and potentially malicious.

(LN A@N B Itis sometimes perceived that any use of client-

side controls must be automatically bad. In particular, some professional
penetration testers report the presence of client-side controls as a “finding”
without verifying whether they are replicated on the server or whether there is
any nonsecurity explanation for their existence. In fact, despite the significant
caveats arising from the various attacks described in this chapter, there are
nevertheless ways of using client-side controls in ways that do not give rise to
any security vulnerabilities:

m Client-side scripts can be used to validate input as a means of
enhancing usability, avoiding the need for round-trip communication
with the server. For example, if the user enters their date of birth in an
incorrect format, alerting them to the problem via a client-side script
provides a much more seamless experience. Of course, the application
must revalidate the item submitted when it arrives at the server.

m There are occasional cases where client-side data validation can be
effective as a security measure — for example, as a defense against
DOM-based cross-site scripting attacks. However, these are cases
where the direct focus of the attack is another application user, rather
than the server-side application, and exploiting a potential
vulnerability does not necessarily depend upon transmitting any
malicious data to the server. See Chapter 12 for further details of this
kind of scenario.

m As described previously, there are ways of transmitting encrypted data
via the client that are not vulnerable to tampering or replay attacks.

Chapter 5 = Bypassing Client-Side Controls

131

Logging and Alerting

When mechanisms such as length limits and JavaScript-based validation are
employed by an application to enhance performance and usability, these
should be integrated with server-side intrusion detection defenses. The server-
side logic which performs validation of client-submitted data should be aware
of the validation that has already occurred on the client side. If data that would
have been blocked by client-side validation is received, the application may
infer that a user is actively circumventing this validation, and so is likely to be
malicious. Anomalies should be logged and, if appropriate, application
administrators should be alerted in real time so that they can monitor any
attempted attack and take suitable action as required. The application may
also actively defend itself by terminating the user’s session or even suspend-
ing his account.

.m In some cases where JavaScript is employed, the application is still
usable by users who have disabled JavaScript within their browser. In this
situation, JavaScript-based form validation code is simply skipped by the
browser, and the raw input entered by the user is submitted. To avoid false
positives, the logging and alerting mechanism should be aware of where and
how this can arise.

Chapter Summary

Virtually all client-server applications must accept the fact that the client com-
ponent, and all processing that occurs on it, cannot be trusted to behave as
expected. As you have seen, the transparent communications methods gener-
ally employed by web applications mean that an attacker equipped with sim-
ple tools and minimal skill can trivially circumvent most controls
implemented on the client. Even where an application makes attempts to
obfuscate data and processing residing on the client side, a determined
attacker will be able to compromise these defenses.

In every instance where you identify data being transmitted via the client, or
validation of user-supplied input being implemented on the client, you should
test how the server responds to unexpected data that bypasses those controls.
Very often, serious vulnerabilities are to be found lurking behind an applica-
tion’s assumptions about the protection afforded to it by defenses that are
implemented at the client.

132 Chapter 5 = Bypassing Client-Side Controls

Questions

Answers can be found at www.wiley.com/go/webhacker.

1. How can data be transmitted via the client in a way that prevents tam-
pering attacks?

2. An application developer wishes to stop an attacker from performing
brute-force attacks against the login function. Because the attacker may
target multiple usernames, the developer decides to store the number of
failed attempts in an encrypted cookie, blocking any request if the num-
ber of failed attempts exceeds five.

How can this defense be bypassed?

3. An application contains an administrative page that is subject to rigor-
ous access controls. The page contains links to diagnostic functions
located on a different web server. Access to these functions should also
be restricted to administrators only. Without implementing a second
authentication mechanism, which of the following client-side mecha-
nisms (if any) could be used to safely control access to the diagnostic
functionality? Is there any further information you would need to help
choose a solution?

(a) The diagnostic functions could check the HTTP referer header, to
confirm that the request originated on the main administrative page.

(b) The diagnostic functions could validate the supplied cookies, to con-
firm that these contain a valid session token for the main applica-
tion.

(c) The main application could set an authentication token in a hidden
field that is included within the request. The diagnostic function
could validate this to confirm that the user has a session on the main
application.

4. If a form field includes the attribute disabled=true, it will not be sub-
mitted with the rest of the form. How can you change this behavior?

5. Are there any means by which an application can ensure that a piece of
input validation logic has been run on the client?

Attacking Authentication

On the face of it, authentication is conceptually among the simplest of all the
security mechanisms employed within web applications. In the typical case, a
user supplies her username and password, and the application must verify
that these items are correct. If so, it lets the user in. If not, it does not.

Authentication also lies at the heart of an application’s protection against
malicious attack. It is the front line of defense against unauthorized access, and
if an attacker can defeat those defenses, they will often gain full control of the
application’s functionality, and unrestricted access to the data held within it.
Without robust authentication to rely upon, none of the other core security
mechanisms (such as session management and access control) can be effective.

In fact, despite its apparent simplicity, devising a secure authentication
function is an extremely subtle business, and in real-world web applications
authentication is very often the weakest link, which enables an attacker to gain
unauthorized access. The authors have lost count of the number of applica-
tions that we have fundamentally compromised as a result of various defects
in authentication logic.

This chapter will look in detail at the wide variety of design and implemen-
tation flaws that commonly afflict web applications. These typically arise
because the application designers and developers fail to ask a simple question:
What could an attacker achieve if he were to target our authentication mecha-
nism? In the majority of cases, as soon as this question is asked in earnest of a

133

134 Chapter 6 = Attacking Authentication

particular application, a number of potential vulnerabilities materialize, any
one of which may be sufficient to break the application.

Many of the most common authentication vulnerabilities are literally no-
brainers. Anyone can type dictionary words into a login form in an attempt to
guess valid passwords. In other cases, subtle defects may lurk deep within the
application’s processing, which can only be uncovered and exploited after
painstaking analysis of a complex multistage login mechanism. We will
describe the full spectrum of these attacks, including techniques which have
succeeded in breaking the authentication of some of the most security-critical
and robustly defended web applications on the planet.

Authentication Technologies

There is a wide range of different technologies available to web application
developers when implementing authentication mechanisms:

m HTML forms-based authentication.

m Multi-factor mechanisms, such as those combining passwords and
physical tokens.

m Client SSL certificates and /or smartcards.
m HTTP basic and digest authentication.
m Windows-integrated authentication using NTLM or Kerberos.

m Authentication services.

By far the most common authentication mechanism employed by web
applications uses HTML forms to capture a username and password and sub-
mit these to the application. This mechanism accounts for well over 90% of
applications you are likely to encounter on the Internet.

In more security-critical Internet applications, such as online banking, this
basic mechanism is often expanded into multiple stages, requiring the user to
submit additional credentials, such as PIN numbers or selected characters from
a secret word. HTML forms are still typically used to capture relevant data.

In the most security-critical applications, such as private banking for high-
worth individuals, it is common to encounter multi-factor mechanisms using
physical tokens. These tokens typically produce a stream of one-time pass-
codes, or perform a challenge-response function based on input specified by
the application. As the cost of this technology falls over time, it is likely that
more applications will employ this kind of mechanism. However, many of
these solutions do not actually address the threats for which they were
devised — primarily phishing attacks and those employing client-side Trojans.

Chapter 6 = Attacking Authentication

135

Some web applications employ client-side SSL certificates or cryptographic
mechanisms implemented within smartcards. Because of the overhead of
administering and distributing these items, they are typically used only in
security-critical contexts where an application’s user base is small.

The HTTP-based authentication mechanisms (basic, digest, and Windows-
integrated) are rarely used on the Internet, and are much more commonly
encountered in intranet environments where an organization’s internal users
gain access to corporate applications by supplying their normal network or
domain credentials, which are processed by the application via one of these
technologies.

Third-party authentication services such as Microsoft Passport are occasion-
ally encountered, but at the present time have not been adopted on any signif-
icant scale.

Most of the vulnerabilities and attacks that arise in relation to authentication
can be applied to any of the technologies mentioned. Because of its over-
whelming dominance, we will describe each specific vulnerability and attack
in the context of HTML forms-based authentication, and where relevant will
point towards any specific differences and attack methodologies that are rele-
vant to the other available technologies.

Design Flaws in Authentication Mechanisms

Authentication functionality is subject to more design weaknesses than any
other security mechanism commonly employed in web applications. Even in
the apparently simple, standard model where an application authenticates
users based on their username and password, shortcomings in the design of
this model can leave the application highly vulnerable to unauthorized access.

Bad Passwords

Many web applications employ no or minimal controls over the quality of
users’ passwords. It is common to encounter applications that allow pass-
words that are:

m Very short or blank
m Common dictionary words or names
m Set to the same as the username

m Still set to a default value

Figure 6-1 shows an example of weak password quality rules. End users
typically display little awareness of security issues. Hence, it is highly likely
that an application that does not enforce strong password standards will con-

136 Chapter 6 = Attacking Authentication

tain a large number of user accounts with weak passwords set. These pass-
words can be easily guessed by an attacker, granting them unauthorized
access to the application.

EIFAQ - Mosilla Firefox 31 x|
Fle Edit Wiew Go EBookmarks Tools Help

15N ~
<:| - LV’ - @ LX) @ I ikt f ey riddlzburyaluni, orgfdef ault, aspx?Page=F A0 j ® @ I@,

LyPE UPOETCaSE T IO R TITOUET M ToCOe JCCEPLEL, TETTY UL TTEdlE g TUSET TIdMME, U SUTE THUT
to include spaces or punctuation. For example: RobertSmith, robertsmith and roberthismith are fing;
Bob Smith, Robert Smith or Robert H. Smith are not.

Are there minimum and mazimum lengths for passwords?

The minimum password length is four characters, and the maximum length is 25 characters,

Do my Panthernet user name and password work for other alumni online services?

Your user name and password are used for accessing the online directory, alumni lifelong e-mail
services, MiddMet career networking, and alumni discussion groups.

What if I can't remember my password? Is there a hint system for passwords?

If you forget your password and can't log in, first click on the "Forget Your Password?" link at the

log-on page. This will allow you to answer a passwaord hint question that you set up when you

registered at PantherMet, and then reset your password, If you have forgotten both your user -

| Dione 4

Figure 6-1: An application that enforces weak password quality rules

Attempt to discover any rules regarding password quality:

B Review the web site for any description of the rules.

B If self-registration is possible, attempt to register several accounts with
different kinds of weak passwords to discover what rules are in place.

H If you control a single account and password change is possible, attempt
to change your password to various weak values.

.]m] If password quality rules are enforced only through client-side controls,
this is not itself a security issue because ordinary users will still be protected. It
is not normally a threat to an application’s security that a crafty attacker can
assign themselves a weak password.

Brute-Forcible Login

Login functionality presents an open invitation for an attacker to try and guess
usernames and passwords, and so gain unauthorized access to the application.
If the application allows an attacker to make repeated login attempts with dif-
ferent passwords until the correct one is guessed, then it is highly vulnerable

Chapter 6 = Attacking Authentication 137

even to an amateur attacker who manually enters some common usernames
and passwords into their browser. Values frequently encountered even in pro-
duction systems include:

H test
testuser
admin
administrator
demo
demouser
password
passwordl
passwordl23
qwerty
testl23

letmein

[organization's name]

In this situation, any serious attacker will use automated techniques to
attempt to guess passwords, based on lengthy lists of common values. Given
today’s bandwidth and processing capabilities, it is possible to make thou-
sands of login attempts per minute from a standard PC and DSL connection.
Even the most robust passwords will be eventually broken in this scenario.

Various techniques and tools for using automation in this way are described
in detail in Chapter 13. Figure 6-2 demonstrates a successful password guess-
ing attack against a single account using Burp Intruder. The successful login
attempt can be clearly distinguished by the difference in the HTTP response
code, the response length, and the absence of the “login incorrect” message.

.m In some applications, client-side controls are employed in an attempt
to prevent password-guessing attacks. For example, an application may set a
cookie such as failedlogins=1, and increment this following each
unsuccessful attempt. When a certain threshold is reached, the server will
detect this in the submitted cookie and refuse to process the login attempt.
This kind of client-side defense may prevent a manual attack being launched
using only a browser, but it can of course be trivially bypassed as described in
Chapter 5.

138 Chapter 6 = Attacking Authentication

=T
attack save view
requleus:}l — payload ws;tatuB error_fimeo. | Ienthw login incorrect
1068 [administrator 200 2688 ¥ =
1068 |adminttd 200 2688 ¥
1070]admn 200 2688 v
1071 |admpw 200 2688 ¥
1072 [adrian 200 2688 I
1073adrianna 200 2688 ¥
107 4[adiran 200 2688 v
1075[adveorms00349 200 2688 ¥
1076 |advil 200 2688 I
1077|aeh 200 2688 ¥
1078aerohics 200 2688 v -
(L T — L 357 =
10280[alaska 200 2688 I
1021 |[albany 200 2688 ¥
1082]albatross 200 2688 v
1083]albert 200 2688 ¥
1084]alex 200 2688 ¥ -
1561 of 3424 |

Figure 6-2: A successful password-guessing attack

B Manually submit several bad login attempts for an account you control,
monitoring the error messages received.

B After around 10 failed logins, if the application has not returned any
message about account lockout, attempt to login correctly. If this suc-
ceeds, there is probably no account lockout policy.

H If you do not control any accounts, attempt to enumerate a valid username
(see the “Verbose Failure Messages” section) and make several bad logins
using this, monitoring for any error messages about account lockout.

H To mount a brute-force attack, first identify a difference in the application’s
behavior in response to successful and failed logins, which can be used to
discriminate between these during the course of the automated attack.

B Obtain a list of enumerated or common usernames and a list of common
passwords. Use any information obtained about password quality rules
to tailor the password list so as to avoid superfluous test cases.

H Use a suitable tool or a custom script to quickly generate login requests
using all permutations of these usernames and passwords. Monitor the
server's responses to identify login attempts that are successful. Chapter
13 describes in detail various techniques and tools for performing cus-
tomised attacks using automation.

H If you are targeting several usernames at once, it is usually preferable to
perform this kind of brute-force attack in a breadth-first rather than a
depth-first manner. This involves iterating through a list of passwords
(starting with the most common) and attempting each password in turn
on every username. This approach has two benefits: first, you will dis-
cover accounts with common passwords more quickly, and second, you
are less likely to trigger any account lockout defenses, because there is a
time delay between successive attempts using each individual account.

Chapter 6 = Attacking Authentication

139

Verbose Failure Messages

A typical login form requires the user to enter two pieces of information (user-
name and password), and some applications require several more (for exam-
ple, date of birth, a memorable place, or a PIN number).

When a login attempt fails, you can of course infer that at least one piece of
information was incorrect. However, if the application informs you as to
which piece of information was invalid, you can exploit this behavior to con-
siderably diminish the effectiveness of the login mechanism.

In the simplest case, where a login requires a username and password, an
application might respond to a failed login attempt by indicating whether the
reason for the failure was an unrecognized username or the wrong password,
as illustrated in Figure 6-3.

€3 error €D error
Account Username was not found! The Password was incorrect!
You have entered a password protected area. You have entered a password protected area.
Please enter your username & password to continue. Please enter your username & password to continue.
Username: Imadeupname Username: |admin
Password: I Password:
I Remember Me "' Remember Me
Figure 6-3: Verbose login failure messages indicating when a valid username has been
guessed

In this instance, you can use an automated attack to iterate through a large
list of common usernames to enumerate which of these are valid. Of course,
usernames are not normally considered a secret (they are not masked during
login, for instance). However, providing an easy means for an attacker to iden-
tify valid usernames increases the likelihood that they will compromise the
application with a given level of time, skill, and effort. A list of enumerated
usernames can be used as the basis for various subsequent attacks, including
password guessing, attacks on user data or sessions, or social engineering.

m Many authentication mechanisms disclose usernames either implicitly
or explicitly. In a web mail account, the username is often the email address,
which is common knowledge by design. Many other sites expose usernames
within the application without considering the advantage this grants to an
attacker, or allow usernames to be easily guessed (for example, user1842).

140 Chapter 6 = Attacking Authentication

In more complex login mechanisms, where an application requires the user
to submit several pieces of information, or proceed through several stages,
verbose failure messages or other discriminators can enable an attacker to tar-
get each stage of the login process in turn, increasing the likelihood that they
will gain unauthorized access.

.m This vulnerability may arise in more subtle ways than illustrated
here. Even if the error messages returned in response to a valid and invalid
username are superficially similar, there may be small differences between
them that can be used to enumerate valid usernames. For example, if multiple
code paths within the application return the “same” failure message, there may
be minor typographical differences between each instance of the message. In
some cases, the application’s responses may be identical on-screen but contain
subtle differences hidden within the HTML source, such as comments or layout
differences. If no obvious means of enumerating usernames presents itself, you
should perform a very close comparison of the application’s responses to valid
and invalid usernames.

H If you already know one valid username (for example, an account you
control), submit one login using this username and an incorrect pass-
word, and another login using a completely random username.

B Record every detail of the server’s responses to each login attempt,
including the status code, any redirects, information displayed on screen,
and any differences hidden away in the HTML page source. Use your
intercepting proxy to maintain a full history of all traffic to and from the
server.

B Attempt to discover any obvious or subtle differences in the server's
responses to the two login attempts.

B If this fails, repeat the exercise everywhere within the application where
a username can be submitted (for example, self-registration, password
change, and forgotten password).

B If a difference is detected in the server’'s responses to valid and invalid
usernames, obtain a list of common usernames and use a custom script
or automated tool to quickly submit each username and filter the
responses that signify that the username is valid (see Chapter 13).

(continued)

Chapter 6 = Attacking Authentication

141

HACK STEPS (continued)

B Before commencing your enumeration exercise, verify whether the appli-
cation performs any account lockout after a certain number of failed
login attempts (see the “Brute-Forcible Login” section). If so, it is desir-
able to design your enumeration attack with this fact in mind. For exam-
ple, if the application will grant you only three failed login attempts with
any given account, you run the risk of “wasting” one of these for every
username that you discover through automated enumeration. Therefore,
when performing your enumeration attack, do not submit a completely
far-fetched password with each login attempt, but rather submit either
(a) a single common password such as “password1” or (b) the username
itself as the password. If password quality rules are weak, it is highly
likely that some of the attempted logins that you perform as part of your
enumeration exercise will actually be successful and disclose both the
username and password in one single hit. To implement option (b) and
set the password field to the same as the username, you can use the
“battering ram” attack mode in Burp Intruder to insert the same payload
at multiple positions in your login request.

Even if an application’s responses to login attempts containing valid and
invalid usernames are identical in every intrinsic respect, it may yet be possi-
ble to enumerate usernames based on the time taken for the application to
respond to the login request. Applications often perform very different back-
end processing on a login request, depending on whether it contains a valid
username. For example, when a valid username is submitted, the application
may retrieve user details from a back-end database, perform various process-
ing on these details (for example, checking whether the account is expired),
and then validate the password (which may involve a resource-intensive hash
algorithm), before returning a generic message if the password is incorrect.
The timing difference between the two responses may be too subtle to detect
when working with only a browser, but an automated tool may be able to dis-
criminate between them. Even if the results of such an exercise contain a large
ratio of false positives, it is still better to have a list of 100 usernames approxi-
mately 50% of which are valid than a list of 10,000 usernames approximately
0.5% of which are valid. See Chapter 14 for a detailed methodology for how to
detect and exploit this type of timing difference to extract information from the
application.

m In addition to the login functionality itself, there may be other sources of
information where you can obtain valid usernames. Review all of the source code
comments discovered during application mapping (see Chapter 4) to identify any
apparent usernames. Any email addresses of developers or other personnel
within the organization may be valid usernames, either in full or just the user-
specific prefix. Any accessible logging functionality may disclose usernames.

142 Chapter 6 = Attacking Authentication

Vulnerable Transmission of Credentials

If an application uses an unencrypted HTTP connection to transmit login cre-
dentials, an eavesdropper who is suitably positioned on the network will of
course be able to intercept them. Depending on the user’s location, potential
eavesdroppers may reside:

m On the user’s local network

m Within the user’s IT department

m Within the user’s ISP

m On the Internet backbone

m Within the ISP hosting the application

m Within the IT department managing the application

.m Any of these locations may be occupied by authorized personnel but
also potentially by an external attacker who has compromised the relevant
infrastructure through some other means. Even if the intermediaries on a
particular network are believed to be trusted, it is safer to use secure transport
mechanisms when passing sensitive data over it.

Even if login occurs over HTTPS, credentials may still be disclosed to unau-
thorized parties if the application handles them in an unsafe manner:

m [f credentials are transmitted as query string parameters, as opposed to
in the body of a posT request, then these are liable to be logged in vari-
ous places — for example, within the user’s browser history, within the
web server logs, and within the logs of any reverse proxies employed
within the hosting infrastructure. If an attacker succeeds in compromis-
ing any of these resources, then he may be able to escalate privileges by
capturing the user credentials stored there.

m Although most web applications do use the body of a posT request to
submit the HTML login form itself, it is surprisingly common to see the
login request being handled via a redirect to a different URL with the
same credentials passed as query string parameters. Why application
developers consider it necessary to perform these bounces is not clear,
but having elected to do so, it is easier to implement them as 302 redi-
rects to a URL than as posT requests using a second HTML form sub-
mitted via JavaScript.

m Web applications sometimes store user credentials in cookies, usually to
implement poorly designed mechanisms for login, password change,
“remember me,” and so on. These credentials are vulnerable to capture

Chapter 6 = Attacking Authentication

via attacks that compromise user cookies, and in the case of persistent
cookies, by anyone who gains access to the client’s local file system.
Even if the credentials are encrypted, an attacker can still simply replay
the cookie and so log in as a user without actually knowing her creden-
tials. Chapter 12 describes various ways in which an attacker can target
other users to capture their cookies.

Many applications use HTTP for unauthenticated areas of the application
and switch to HTTPS at the point of login. If this is the case, then the correct
place to switch to HTTPS is when the login page is loaded in the browser,
enabling a user to verify that the page is authentic before entering credentials.
However, it is common to encounter applications that load the login page itself
using HTTP, and switch to HTTPS at the point where credentials are submit-
ted. This is unsafe, because a user cannot verify the authenticity of the login
page itself and so has no assurance that the credentials will be submitted
securely. A suitably positioned attacker can intercept and modify the login
page, changing the target URL of the login form to use HTTP. By the time an
astute user realizes that the credentials have been submitted using HTTP, they
will have been compromised.

m Carry out a successful login while monitoring all traffic in both directions
between the client and server.

m |dentify every case in which the credentials are transmitted in either
direction. You can set interception rules in your intercepting proxy to flag
messages containing specific strings (see Chapter 19).

m If any instances are found in which credentials are submitted in a URL
query string, or as a cookie, or are transmitted back from the server to
the client, understand what is happening and try to ascertain what pur-
pose the application developers were attempting to achieve. Try to find
every means by which an attacker might interfere with the application’s
logic to compromise other users’ credentials.

m |f any sensitive information is transmitted over an unencrypted channel,
this is, of course, vulnerable to interception.

m If no cases of actual credentials being transmitted insecurely are identi-
fied, pay close attention to any data that appears to be encoded or
obfuscated. If this includes sensitive data, it may be possible to reverse
engineer the obfuscation algorithm.

m [If credentials are submitted using HTTPS but the login form is loaded
using HTTP, then the application is vulnerable to a man-in-the-middle
attack, which may be used to capture credentials.

144 Chapter 6 = Attacking Authentication

Password Change Functionality

Surprisingly, many web applications do not provide any way for users to
change their password. However, this functionality is necessary for a well-
designed authentication mechanism for two reasons:

m Periodic enforced password change mitigates the threat of password
compromise by reducing the window in which a given password can be
targeted in a guessing attack and by reducing the window in which a
compromised password can be used without detection by the attacker.

m Users who suspect that their passwords may have been compromised
need to be able to quickly change their password to reduce the threat of
unauthorized use.

Although it is a necessary part of an effective authentication mechanism,
password change functionality is often vulnerable by design. It is frequently
the case that vulnerabilities that are deliberately avoided in the main login
function reappear in the password change function. There are many web
applications whose password change functions are accessible without authen-
tication and that:

m Provide a verbose error message indicating whether the requested user-
name is valid.

m Allow unrestricted guesses of the “existing password” field.

m Only check whether the “new password” and “confirm new password”
fields have the same value after validating the existing password,
thereby allowing an attack to succeed in discovering the existing pass-
word noninvasively.

B Identify any password change functionality within the application. If this
is not explicitly linked from published content, it may still be imple-
mented. Chapter 4 describes various techniques for discovering hidden
content within an application.

B Make various requests to the password change function, using invalid
usernames, invalid existing passwords, and mismatched “new password”
and “confirm new password” values.

H Try to identify any behavior that can be used for username enumeration
or brute-force attacks (as described in the “Brute-Forcible Login” and
“Verbose Failure Messages” sections).

Chapter 6 = Attacking Authentication

m If the password change form is only accessible by authenticated users
and does not contain a username field, it may still be possible to supply an
arbitrary username. The form may store the username in a hidden field, which
can easily be modified. If not, try supplying an additional parameter containing
the username, using the same parameter name as is used in the main login
form. This trick sometimes succeeds in overriding the username of the current
user, enabling you to brute force the credentials of other users even when this
is not possible at the main login.

Forgotten Password Functionality

Like password change functionality, mechanisms for recovering from a forgot-
ten password situation often introduce problems that may have been avoided
in the main login function, such as username enumeration.

In addition to this range of defects, design weaknesses in forgotten pass-
word functions frequently make this the weakest link at which to attack the
application’s overall authentication logic. Several kinds of design weaknesses
can often be found:

m The forgotten password functionality often involves presenting the user
with a secondary challenge in place of the main login, as shown in Fig-
ure 6-4. This challenge is often much easier for an attacker to respond to
than attempting to guess the user’s password. Questions about moth-
ers’ maiden names, memorable dates, favorite colors, and the like will
generally have a much smaller set of potential answers than the set of
possible passwords. Further, they often concern information that is
publicly known or that a determined attacker can discover with a
modest degree of effort.

Forgot Your Password or User ID?
User Id: Tim
YWhen you registered your User |d, you provided a secret question.

Your secret question, provided during registration, is:
what street did you live an in sierra vista

Enter the answer to your secret question:

(- ICEIRTE

Figure 6-4: A secondary challenge used in an account
recovery function

146 Chapter 6 = Attacking Authentication

In many cases, the application allows users to set their own password
recovery challenge and response during registration, and users are
inclined to set extremely insecure challenges, presumably on the false
assumption that only they will ever be presented with them, for example:
“Do I own a boat?” In this situation, an attacker wishing to gain access
can use an automated attack to iterate through a list of enumerated or
common usernames, log all of the password recovery challenges, and
select those that appear most easily guessable. (See Chapter 13 for tech-
niques regarding how to grab this kind of data in a scripted attack.)

m As with password change functionality, application developers com-
monly overlook the possibility of brute forcing the response to a pass-
word recovery challenge, even when they block this attack on the main
login page. If an application allows unrestricted attempts to answer
password recovery challenges, then it is highly likely to be compro-
mised by a determined attacker.

m [n some applications, the recovery challenge is replaced with a simple
password “hint” that is configurable by users during registration. Users
commonly set extremely obvious hints, even one that is identical to the
password itself, on the false assumption that only they will ever see them.
Again, an attacker with a list of common or enumerated usernames can
easily capture a large number of password hints and then start guessing.

m The mechanism by which an application enables users to regain control
of their account after correctly responding to a challenge is often vul-
nerable. One reasonably secure means of implementing this is to send a
unique, unguessable, time-limited recovery URL to the email address
that the user provided during registration. Visiting this URL within a
few minutes enables the user to set a new password. However, other
mechanisms for account recovery are often encountered that are inse-
cure by design:

m Some applications disclose the existing, forgotten password to the
user after successful completion of a challenge, enabling an attacker
to use the account indefinitely without any risk of detection by the
owner. Even if the account owner subsequently changes the blown
password, the attacker can simply repeat the same challenge to
obtain the new password.

m Some applications immediately drop the user into an authenticated
session after successful completion of a challenge, again enabling an
attacker to use the account indefinitely without detection, and with-
out ever needing to know the user’s password.

m Some applications employ the mechanism of sending a unique
recovery URL but send this to an email address specified by the user

Chapter 6 » Attacking Authentication 147

at the time the challenge is completed. This provides absolutely no
enhanced security of the recovery process beyond possibly logging
the email address used by an attacker.

m Even if the application does not provide an on-screen field for you to
provide an email address to receive the recovery URL, the application may
transmit the address via a hidden form field or cookie. This presents a double
opportunity: you can discover the email address of the user you have
compromised, and you can modify its value to receive the recovery URL at an
address of your choosing.

m Some applications allow users to reset their password’s value directly
after successful completion of a challenge and do not send any email
notification to the user. This means that the compromising of an
account by an attacker will not be noticed until the owner happens to
attempt to log in again, and may even remain unnoticed if the owner
assumes that they must have forgotten their own password and so
resets it in the same way. An attacker who simply desires some access
to the application can then compromise a different user’s account for
a period and so continue using the application indefinitely.

B Identify any forgotten password functionality within the application. If
this is not explicitly linked from published content, it may still be imple-
mented (see Chapter 4).

B Understand how the forgotten password function works by doing a com-
plete walk-through using an account you control.

B If the mechanism uses a challenge, determine whether users are able to
set or select their own challenge and response. If so, use a list of enu-
merated or common usernames to harvest a list of challenges, and
review this for any that appear easily guessable.

B If the mechanism uses a password “hint,” do the same exercise to har-
vest a list of password hints, and target any that are easily guessable.

H Try to identify any behavior in the forgotten password mechanism that
can be exploited as the basis for username enumeration or brute-force
attacks (see the previous details).

B If the application generates an email containing a recovery URL in
response to a forgotten password request, obtain a number of these
URLs, and attempt to identify any patterns that may enable you to predict
the URLs issued to other users. Employ the same techniques as are rele-
vant to analyzing session tokens for predictability (see Chapter 7).

148 Chapter 6 = Attacking Authentication

“Remember Me” Functionality

Applications often implement “remember me” functions as a convenience to
users, to prevent them needing to reenter their username and password each
time they use the application from a specific computer. These functions are
often insecure by design and leave the user exposed to attack both locally and
by users on other computers:

m Some “remember me” functions are implemented using a simple per-
sistent cookie, such as RememberUser=peterwiener (see Figure 6-5).
When this cookie is submitted to the initial application page, the appli-
cation trusts the cookie to authenticate the user, and creates an applica-
tion session for that person, bypassing the login. An attacker can use a
list of common or enumerated usernames to gain full access to the
application without any authentication.

@ burp suite v1.01 professional |21 x|

burp intruder repeater window help

proxy rspider rmtruder rrepeater rcummS ralens ‘

intercept ruptmns rh\stury ‘

B requestto https iwwahh-app.com:443

| forward || drop || intercept on H action | ® text) param) hex

GET foginiindesx jsp HTTRM A

Accept imagelaif, imagelsxhitmap, imageipen, imagefpjped, applicationf:shockwave-lash,
applicationfnd.ms-excel, applicationivnd ms-powerpoint, applicationimsword, =~

Accepl-Language; en-gh en-us,g=0.5

UA-CPLU: 286

ActeptEncoding: ozip, deflate

UserAgent: Mozillaf4.0 (compatible; MSIE 7.0, Windows MT 5.1; MET CLR 2.0.807 27; FDM; InfoPath.1)
Host: www wahh-app.com

Connection: Keep-Alive

Cookie: unarme=peterwiener, autologin=true

Ll

| omatches

Figure 6-5: A vulnerable “remember me” function

m Some “remember me” functions set a cookie which does not contain
the username but rather a kind of persistent session identifier — for
example, RememberUser=1328. When the identifier is submitted to the
login page, the application looks up the user associated with it and
creates an application session for that user. As with ordinary session
tokens, if the session identifiers of other users can be predicted or
extrapolated, an attacker can iterate through a large number of poten-
tial identifiers to find those associated with application users, and so
gain access to their accounts without authentication. See Chapter 7 for
techniques for performing this attack.

Chapter 6 = Attacking Authentication

149

m Even if the information stored in a cookie for re-identifying users is
suitably protected (e.g., encrypted) to prevent other users from deter-
mining or guessing it, the information may still be vulnerable to cap-
ture through a bug such as cross-site scripting (see Chapter 12).

B Activate any “remember me” functionality, and determine whether the
functionality indeed does fully “remember” the user or whether it only
remembers their username and still requires them to enter a password
on subsequent visits. If the latter is the case, the functionality is much
less likely to expose any security flaw.

B Closely inspect all persistent cookies that are set. Look for any saved
data that identifies the user explicitly or appears to contain some pre-
dictable identifier of the user.

B Even where data stored appears to be heavily encoded or obfuscated,
review this closely and compare the results of “remembering” several
very similar usernames and/or passwords to identify any opportunities
for reverse engineering the original data. Here, use the same techniques
that are described in Chapter 7 for detecting meaning and patterns in
session tokens.

B Attempt to modify the contents of the persistent cookie to try and con-
vince the application that another user has saved his details on your
computer.

User Impersonation Functionality

Some applications implement the facility for a privileged user of the applica-
tion to impersonate other users, in order to access data and carry out actions
within their user context. For example, some banking applications allow
helpdesk operators to verbally authenticate a telephone user and then switch
their application session into that user’s context in order to assist them.
Various design flaws commonly exist within impersonation functionality:

m [t may be implemented as a “hidden” function, which is not subject to
proper access controls. For example, anyone who knows or guesses the
URL /admin/ImpersonateUser.jsp may be able to make use of the
function and impersonate any other user (see Chapter 8).

m The application may trust user-controllable data when determining
whether the user is performing impersonation. For example, in addition
to a valid session token, a user may also submit a cookie specifying

150 Chapter 6 = Attacking Authentication

which account their session is currently using. An attacker may be able
to modify this value and gain access to other user accounts without
authentication, as shown in Figure 6-6.

@ burp suite v1.01 professional |21 x|

burp intruder repeater window help

proxy rspider rmtruder rrepeater rcummS ralens ‘

intercept ruptmns rh\stury ‘

B requestto hitps dwahh-app.com:443

| forward || drop || intercept on H action | ® text) param) hex

GET MiewAccountjsp HTTRM 4

Accept imagelaif, imagelsxhitmap, imageipen, imagefpjped, applicationf:shockwave-lash,
applicationfnd.ms-excel, applicationivnd ms-powerpoint, applicationimsword, =~

LIA-CPLE 286

Accept-Encoding: gzip, deflate

User-Agent Mozillard 0 (compatible; MSIE 7.0; Windows NT 5.1; NET CLR 2.0.50727; FDM; InfoPath.1)
Host: wahh-app.com

Connection: Keep-Alive

Accept-Language: en-gh en-us;g=0.4

Cookie: jsessionid=409180C5AATF1830344F5467958314F 2, Impersonate=KempPike

‘ | 0matches

Figure 6-6: A vulnerable user impersonation function

m [f an application allows administrative users to be impersonated, then
any weakness in the impersonation logic may result in a vertical privi-
lege escalation vulnerability — rather than simply gaining access to
other ordinary users’ data, an attacker may gain full control of the
application.

m Some impersonation functionality is implemented as a simple “back-
door” password that can be submitted to the standard login page along
with any username in order to authenticate as that user. This design is
highly insecure for many reasons, but the biggest opportunity for
attackers is that they are likely to discover this password when per-
forming standard attacks such as brute forcing of the login. If the back-
door password is matched before the user’s actual password, then the
attacker is likely to discover the function of the backdoor password and
so gain access to every user’s account. Similarly, a brute-force attack
might result in two different “hits,” thereby revealing the backdoor
password as shown in Figure 6-7.

Chapter 6 = Attacking Authentication

151

& intruder attack 11

attack save wiew

=]

request

—slatus

@

I [imeo.

length

Io

137

carnpanile

302

BaS

2024

il oveyou
|

a0z

730

2688

(@

200

2688

|ERE%AE

200

2688

| @RS ET

200

2698

Iroot

200

2688

FSRY

200

2688

o || fen | ok —

Feecuref

200

2688

F3nogury

200

2688

G

200

2688

AL

200

2688

ABC123

200

2688

ACCESS

200

2688

AOLDEMOD

200

2688

ADAIN

200

2688

ALLIMA

200

OO O OO OO OO OO O ey

2688

IREEREEEREEEEREECCE

[»

ann

=00

-

1382013424 |

Figure 6-7: A password-guessing attack with two “hits,”
indicating the presence of a backdoor password

B Identify any impersonation functionality within the application. If this is

not explicitly linked from published content, it may still be implemented
(see Chapter 4).

Attempt to use the impersonation functionality directly to impersonate
other users.

Attempt to manipulate any user-supplied data that is processed by the
impersonation function in an attempt to impersonate other users. Pay
particular attention to any cases where your username is being submit-
ted other than during normal login.

If you succeed in making use of the functionality, attempt to impersonate
any known or guessed administrative users, in order to elevate privileges.

When carrying out password guessing attacks (see the “Brute-Forcible
Login” section), review whether any users appear to have more than one
valid password, or whether a specific password has been matched
against several usernames. Also, log in as many different users with the
credentials captured in a brute-force attack, and review whether every-
thing appears normal. Pay close attention to any “logged in as X” status
message.

152 Chapter 6 = Attacking Authentication

Incomplete Validation of Credentials

Well-designed authentication mechanisms enforce various requirements on
passwords, such as a minimum length or the presence of both uppercase and
lowercase characters. Correspondingly, some poorly designed authentication
mechanisms not only do not enforce these good practices but also do not take
account of users” own attempts to comply with them.

For example, some applications truncate passwords and so only validate the
first n characters. Some applications perform a case-insensitive check of pass-
words. Some applications strip out unusual characters (sometimes on the pre-
text of performing input validation) before checking passwords.

Each of these limitations on password validation reduces by an order of
magnitude the number of variations available in the set of possible passwords.
Through experimentation, you can determine whether a password is being
fully validated, or whether any limitations are in effect. You can then fine-tune
your automated attacks against the login to remove unnecessary test cases,
thereby massively reducing the number of requests necessary to compromise
user accounts.

B Using an account you control, attempt to log in with variations on your
own password: removing the last character, changing the case of a char-
acter, and removing any special typographical characters. If any of these
attempts is successful, continue experimenting to try and understand
what validation is actually occurring.

B Feed any results back into your automated password guessing attacks, to
remove superfluous test cases and improve the chances of success.

Non-Unique Usernames

Some applications that support self-registration allow users to specify their
own username, and do not enforce a requirement that usernames be unique.
Although rare, the authors have encountered more than one application with
this behavior.

This represents a design flaw for two reasons:

m One user who shares a username with another user may also happen to
select the same password as that user, either during registration or in a
subsequent password change. In this eventuality, the application will
either reject the second user’s chosen password or will allow two

Chapter 6 = Attacking Authentication 153

accounts to have identical credentials. In the first instance, the applica-
tion’s behavior will effectively disclose to one user the credentials of a
different user. In the second instance, subsequent logins by one of the
users will result in access to the other user’s account.

m An attacker may exploit this behavior to carry out a successful brute-
force attack, even though this may not be possible elsewhere due to
restrictions on failed login attempts. An attacker can register a specific
username multiple times with different passwords, while monitoring
for the differential response that indicates that an account with that
username and password already existed. The attacker will have ascer-
tained a target user’s password without making a single attempt to log
in as that user.

Badly designed self-registration functionality can also provide a means for
username enumeration. If an application disallows duplicate usernames, then
an attacker may attempt to register large numbers of common usernames to
identify the existing usernames that are rejected.

B If self-registration is possible, attempt to register the same username
twice with different passwords.

B If the application blocks the second registration attempt, you can exploit
this behavior to enumerate existing usernames even if this is not possi-
ble on the main login page or elsewhere. Make multiple registration
attempts with a list of common usernames to identify the already regis-
tered names that the application blocks.

B If the registration of duplicate usernames succeeds, attempt to register
the same username twice with the same password, and determine the
application’s behavior:

= If an error message results, you can exploit this behavior to carry out a
brute-force attack, even if this is not possible on the main login page.
Target an enumerated or guessed username, and attempt to register
this username multiple times with a list of common passwords. When
the application rejects one specific password, you have probably
found the existing password for the targeted account.

= If no error message results, log in using the credentials you specified
and see what happens. You may need to register several users, and
modify different data held within each account, to understand
whether this behavior can be used to gain unauthorized access to
other users’ accounts.

154 Chapter 6 = Attacking Authentication

Predictable Usernames

Some applications automatically generate account usernames according to
some predictable sequence (for example, cust5331, cust5332, etc.). When an
application behaves like this, an attacker who can discern the sequence can
very quickly arrive at a potentially exhaustive list of all valid usernames,
which can be used as the basis for further attacks. Unlike enumeration meth-
ods that rely on making repeated requests driven by wordlists, this means of
determining usernames can be carried out very non-intrusively with minimal
interaction with the application.

H If usernames are generated by the application, try to obtain several user-
names in quick succession and determine whether any sequence or pat-
tern can be discerned.

B If so, extrapolate backwards to obtain a list of possible valid usernames.
This can be used as the basis for a brute-force attack against the login
and other attacks where valid usernames are required, such as the
exploitation of access control flaws (see Chapter 8).

Predictable Initial Passwords

In some applications, users are created all at once or in sizeable batches and are
automatically assigned initial passwords, which are then distributed to them
through some means. The means of generating passwords may enable an
attacker to predict the passwords of other application users. This kind of vul-
nerability is more common on intranet-based corporate applications — for
example, where every employee has an account created on their behalf, and
receives a printed notification of their password.

In the most vulnerable cases, all users receive the same password, or one
closely derived from their username or job function. In other cases, generated
passwords may contain sequences that could be identified or guessed with
access to a very small sample of initial passwords.

H If passwords are generated by the application, try to obtain several pass-
words in quick succession and determine whether any sequence or pat-
tern can be discerned.

H If so, extrapolate the pattern to obtain a list of passwords for other appli-
cation users.

Chapter 6 = Attacking Authentication

155

HACK STEPS (continued)

B If passwords demonstrate a pattern that can be correlated with user-
names, you can try to log in using known or guessed usernames and the
corresponding inferred passwords.

B Otherwise, you can use the list of inferred passwords as the basis for a
brute-force attack with a list of enumerated or common usernames.

Insecure Distribution of Credentials

Many applications employ a process in which credentials for newly created
accounts are distributed to users out-of-band of their normal interaction with
the application (for example, via post or email). Sometimes, this is done for rea-
sons motivated by security concerns — for example, to provide assurance that
the postal or email address supplied by the user actually belongs to that person.

In some cases, this process can present a security risk. For example, if the
message distributed contains both username and password, there is no time
limit on their use, and there is no requirement for the user to change password
on first login, then it is highly likely that a large number, even a majority, of
application users will not modify their initial credentials and that the distribu-
tion messages will remain in existence for a lengthy period during which they
may be accessed by an unauthorized party.

Sometimes, what is distributed is not the credentials themselves, but rather
an “account activation” URL, which enables users to set their own initial pass-
word. If the series of these URLSs sent to successive users manifests any kind of
sequence, then an attacker can identify this by registering multiple users in
close succession, and then infer the activation URLSs sent to recent and forth-
coming users.

B Obtain a new account. If you are not required to set all credentials during
registration, determine the means by which the application distributes
credentials to new users.

B If an account activation URL is used, try to register several new accounts
in close succession and identify any sequence in the URLs you receive. If
a pattern can be determined, try to predict the activation URLs sent to
recent and forthcoming users, and attempt to use these URLs to take
ownership of their accounts.

B Try to reuse a single reactivation URL multiple times, and see if the appli-
cation allows this. If not, try locking out the target account before reusing
the URL, and see if it now works.

156

Chapter 6 = Attacking Authentication

Implementation Flaws in Authentication

Even a well-designed authentication mechanism may be highly insecure due
to mistakes made in its implementation. These mistakes may lead to informa-
tion leakage, complete login bypassing, or a weakening of the overall security
of the mechanism as designed. Implementation flaws tend to be more subtle
and harder to detect than design defects such as poor quality passwords and
brute forcibility. For this reason, they are often a fruitful target for attacks
against the most security-critical applications, where numerous threat models
and penetration tests are likely to have claimed any low-hanging fruit. The
authors have identified each of the implementation flaws described here
within the web applications deployed by large banks.

Fail-Open Login Mechanisms

Fail-open logic is a species of logic flaw (described in detail in Chapter 11) and
one that has particularly serious consequences in the context of authentication
mechanisms.

The following is a fairly contrived example of a login mechanism that fails
open. If the call to db.getUser () throws an exception for some reason (for
example, a null pointer exception arising because the user’s request did not
contain a username or password parameter), then the login will be successful.
Although the resulting session may not be bound to a particular user identity,
and so may not be fully functional, this may still enable an attacker to access
some sensitive data or functionality.

public Response checkLogin(Session session) {
try {
String uname = session.getParameter ("username") ;
String passwd = session.getParameter ("password") ;
User user = db.getUser (uname, passwd) ;
if (user == null) {
// invalid credentials
session.setMessage ("Login failed.");
return doLogin(session) ;
}
}

catch (Exception e) {}

// valid user
session.setMessage ("Login successful.");
return doMainMenu (session) ;

Chapter 6 = Attacking Authentication 157

In the field, one would not expect code like this to pass even the most cur-
sory security review. However, the same conceptual flaw is much more likely
to exist in more complex mechanisms in which numerous layered method
invocations are made, in which many potential errors may arise and be han-
dled in different places, and where the more complicated validation logic may
involve maintaining significant state about the progress of the login.

B Perform a complete, valid login using an account you control. Record
every piece of data submitted to the application, and every response
received, using your intercepting proxy.

B Repeat the login process numerous times, modifying pieces of the data
submitted in unexpected ways. For example, for each request parameter
or cookie sent by the client:

® Submit an empty string as the value.

® Remove the name/value pair altogether.

= Submit very long and very short values.

® Submit strings instead of numbers and vice versa.

= Submit the same item multiple times, with the same and different values.

B For each malformed request submitted, review closely the application’s
response to identify any divergences from the base case.

B Feed these observations back into framing your test cases. When one
modification causes a change in behavior, try to combine this with other
changes to push the application’s logic to its limits.

Defects in Multistage Login Mechanisms

Some applications use elaborate login mechanisms involving multiple stages.
For example:

m Entry of a username and password.
m A challenge for specific digits from a PIN or a memorable word.

m The submission of a value displayed on a changing physical token.

Multistage login mechanisms are designed to provide enhanced security
over the simple model based on username and password. Typically, the first
stage requires the user to identify themselves with a username or similar item,
and subsequent stages perform various authentication checks. Such mecha-
nisms frequently contain security vulnerabilities, and in particular various
logic flaws (see Chapter 11).

158 Chapter 6 = Attacking Authentication

It is often assumed that multistage login mechanisms
are less prone to security bypasses than standard username/password
authentication. This belief is misleading. Performing several authentication
checks may add considerable security to the mechanism. Counterbalancing this,
the process is more prone to flaws in implementation. In several cases where a
combination of flaws is present, it can even result in a solution that is /ess
secure than a normal login based on username and password.

Some implementations of multistage login mechanisms make potentially
unsafe assumptions at each stage about the user’s interaction with earlier
stages. For example:

m An application may assume that a user who accesses stage three must
have cleared stages one and two. Therefore, it may authenticate an
attacker who proceeds directly from stage one to stage three and cor-
rectly completes it, enabling an attacker to log in with only one part of
the various credentials normally required.

m An application may trust some of the data being processed at stage two
because this was validated at stage one. However, an attacker may be
able to manipulate this data at stage two, giving it a different value than
was validated at stage one. For example, at stage one the application
might determine whether the user’s account has expired, is locked out,
or is in the administrative group, or whether it needs to complete fur-
ther stages of the login beyond stage two. If an attacker can interfere
with these flags as the login transitions between different stages, they
may be able to modify the behavior of the application and cause it to
authenticate them with only partial credentials or otherwise elevate
privileges.

m An application may assume that the same user identity is used to com-
plete each stage; however, it might not explicitly check this. For exam-
ple, stage one might involve submitting a valid username and
password, and stage two might involve resubmitting the username
(now in a hidden form field) and a value from a changing physical
token. If an attacker submits valid data pairs at each stage, but for dif-
ferent users, then the application might authenticate the user as either
one of the identities used in the two stages. This would enable an
attacker who possesses his own physical token and discovers another
user’s password to log in as that user (or vice versa). Although the
login mechanism cannot be completely compromised without any prior
information, its overall security posture is substantially weakened and
the substantial expense and effort of implementing the two-factor
mechanism does not deliver the benefits expected.

Chapter 6 = Attacking Authentication

159

B Perform a complete, valid login using an account you control. Record
every piece of data submitted to the application using your intercepting
proxy.

B Identify each distinct stage of the login and the data that is collected at
each stage. Determine whether any single piece of information is col-
lected more than once or is ever transmitted back to the client and
resubmitted, via a hidden form field, cookie, or preset URL parameter
(see Chapter 5).

B Repeat the login process numerous times with various malformed
requests:

® Try performing the login steps in a different sequence.
® Try proceeding directly to any given stage and continuing from there.
m Try skipping each stage and continuing with the next.

® Use your imagination to think of further ways of accessing the differ-
ent stages that the developers may not have anticipated.

B If any data is submitted more than once, try submitting a different value
at different stages, and see whether the login is still successful. It may
be that some of the submissions are superfluous and are not actually
processed by the application. It might be that the data is validated at one
stage and then trusted subsequently — in this instance, try to provide the
credentials of one user at one stage, and then switch at the next to actu-
ally authenticate as a different user. It might be that the same piece of
data is validated at more than one stage, but against different checks —
in this instance, try to provide (for example) the username and password
of one user at the first stage, and the username and PIN number of a dif-
ferent user at the second stage.

B Pay close attention to any data being transmitted via the client that was
not directly entered by the user. This may be used by the application to
store information about the state of the login progress, and may be
trusted by the application. For example, if the request for stage three
includes the parameter “stage2complete=true” then it may be possible
to advance straight to stage three by setting this value. Try to modify the
values being submitted and determine whether this enables you to
advance or skip stages.

Some login mechanisms employ a randomly varying question at one of the
stages of the login process. For example, after submitting a username and
password, the user might be asked one of various “secret” questions (regard-
ing their mother’s maiden name, place of birth, name of first school, etc.) or to
submit two random letters from a secret phrase. The rationale for this behav-

Chapter 6 = Attacking Authentication

ior is that even if an attacker captures everything that a user enters on a single
occasion, this will not enable them to log in as that user on a different occasion,
because different questions will be asked.

In some implementations, this functionality is broken and does not achieve
its objectives:

m The application may present a randomly chosen question, and store
the details of the question within a hidden HTML form field or cookie,
rather than on the server. The user subsequently submits both the
answer and the question itself. This effectively allows an attacker to
choose which question to answer, enabling the attacker to repeat a
login after capturing a user’s input on a single occasion.

m The application may present a randomly chosen question on each login
attempt but not remember which question a given user was asked in the
event that he or she fails to submit an answer. If the same user initiates a
fresh login attempt a moment later, a different random question will be
generated. This effectively allows an attacker to cycle through questions
until they receive one to which they know the answer, enabling them to
repeat a login having captured a user’s input on a single occasion.

.m The second of these conditions is really quite subtle, and as a result,
many real-world applications are vulnerable. An application that challenges a
user for two random letters of a memorable word may appear at first glance to
be functioning properly and providing enhanced security. However, if the letters
are randomly chosen each time the previous authentication stage is passed,
then an attacker who has captured a user’s login on a single occasion can
simply reauthenticate up to this point until the two letters that he knows are
requested, without the risk of account lockout.

B If one of the login stages uses a randomly varying question, verify
whether the details of the question are being submitted together with
the answer. If so, change the question, and submit the correct answer
associated with that question, and verify whether the login is still
successful.

N If the application does not enable an attacker to submit an arbitrary
question and answer, perform a partial login several times with a single
account, proceeding each time as far as the varying question. If the ques-
tion changes on each occasion, then an attacker can still effectively
choose which question to answer.

Chapter 6 = Attacking Authentication

161

.m In some applications where one component of the login varies
randomly, the application collects all of a user’s credentials at a single stage.
For example, the main login page may present a form containing fields for
username, password, and one of various secret questions. Each time the login
page is loaded, the secret question changes. In this situation, the randomness
of the secret question does nothing to prevent an attacker from replaying a
valid login request having captured a user’s input on one occasion, and the
login process cannot be modified to do so in its present form, because an
attacker can simply reload the page until he receives the varying question to
which he knows the answer. In a variation on this scenario, the application may
set a persistent cookie to “ensure” that the same varying question is presented
to any given user until that person answers it correctly. This measure can of
course be trivially circumvented by modifying or deleting the cookie.

Insecure Storage of Credentials

If an application stores login credentials in an insecure manner, then the secu-
rity of the login mechanism is undermined, even though there may be no
inherent flaw in the authentication process itself.

It is very common to encounter web applications in which user credentials
are stored in unencrypted form within the database. Because the database
account used by the application must have full read /write access to those cre-
dentials, many kinds of other vulnerabilities within the application may be
exploitable to enable you to access these credentials — for example, command
or SQL injection flaws (Chapter 9) or access control weaknesses (Chapter 8).

B Review the entire authentication-related functionality of the application,
and also any functions relating to user maintenance. If any instances are
found in which a user’s password is transmitted back to the client, then
this may indicate that passwords are being stored in an insecure manner.

B If any kind of arbitrary command or query execution vulnerability is
identified within the application, attempt to find the location within the
application’s database or file system where user credentials are stored.
Query these to determine whether passwords are being stored in unen-
crypted form.

162

Chapter 6 = Attacking Authentication

Securing Authentication

Implementing a secure authentication solution involves attempting to simul-
taneously meet several key security objectives, and in many cases trade off
against other objectives such as functionality, usability, and total cost. In some
cases “more” security can actually be counterproductive — for example, forc-
ing users to set very long passwords and change them frequently will often
lead users to write their passwords down.

Because of the enormous variety of possible authentication vulnerabilities,
and the potentially complex defenses that an application may need to deploy
in order to mitigate against all of them, many application designers and devel-
opers choose to accept certain threats as a given and concentrate their efforts
on preventing the most serious attacks. Factors to consider in striking an
appropriate balance include:

m The criticality of security given the functionality offered by the applica-
tion.

m The degree to which users will tolerate and work with different types of
authentication controls.

m The cost of supporting a less user-friendly system.

m The financial cost of competing alternatives in relation to the revenue
likely to be generated by the application or the value of the assets it is
protecting.

In this section we will describe the most effective ways possible to defeat the
various attacks against authentication mechanisms and leave readers to
decide which kinds of defenses are most appropriate for them in individual
cases.

Use Strong Credentials

m Suitable minimum password quality requirements should be enforced.
These may include rules regarding: minimum length; the appearance of
alphabetical, numeric, and typographical characters; the appearance of
both uppercase and lowercase characters; the avoidance of dictionary
words, names, and other common passwords; the prevention of a pass-
word being set to the username; and the prevention of a similarity or
match with previously set passwords. As with most security measures,
different password quality requirements may be appropriate for differ-
ent categories of user.

m Usernames should be unique.

Chapter 6 = Attacking Authentication

163

m Any system-generated usernames and passwords should be created
with sufficient entropy that they cannot feasibly be sequenced or pre-
dicted even by an attacker who gains access to a large sample of succes-
sively generated instances.

m Users should be permitted to set sufficiently strong passwords — for
example, long passwords should be allowed, and a wide range of char-
acters should be allowed.

Handle Credentials Secretively

m All credentials should be created, stored, and transmitted in a manner
that does not lead to unauthorized disclosure.

m All client-server communications should be protected using a well-
established cryptographic technology, such as SSL. Custom solutions
for protecting data in transit are neither necessary nor desirable.

m [f it is considered preferable to use HTTP for the unauthenticated areas
of the application, ensure that the login form itself is loaded using
HTTPS, rather than switching to HTTPS at the point of the login
submission.

m Only posT requests should be used for transmitting credentials to the
server. Credentials should never be placed in URL parameters or cook-
ies (even ephemeral ones). Credentials should never be transmitted
back to the client, even in parameters to a redirect.

m All server-side application components should store credentials in a
manner that does not allow their original values to be easily recovered
even by an attacker who gains full access to all the relevant data within
the application’s database. The usual means of achieving this objective
is to use a strong hash function (such as SHA-256, at the time of this
writing), appropriately salted to reduce the effectiveness of precom-
puted offline attacks.

m Client-side “remember me” functionality should in general only
remember nonsecret items such as usernames. In less security-critical
applications, it may be considered appropriate to allow users to opt
in to a facility to remember passwords. In this situation, no clear-text
credentials should be stored on the client (the password should be
stored reversibly encrypted using a key known only to the server), and
users should be warned about the risks from an attacker with physical
access to their computer or who compromises their computer remotely.
Particular attention should be paid to eliminating cross-site scripting

164 Chapter 6 = Attacking Authentication

vulnerabilities within the application that may be used to steal stored
credentials (see Chapter 12).

m A password change facility should be implemented (see the “Prevent
Misuse of the Password Change Function” section), and users should
be obliged to change their password periodically.

m Where credentials for new accounts are distributed to users out-of-
band, these should be sent as securely as possible, be time-limited, and
require the user to change them on first login, and the user should be
told to destroy the communication after first use.

m Where applicable, consider capturing some of the user’s login informa-
tion (for example, single letters from a memorable word) using drop-
down menus rather than text fields. This will prevent any keyloggers
installed on the user’s computer from capturing all of the data they
submit. (Note, however, that a simple keylogger is only one means by
which an attacker can capture user input. If he or she has already com-
promised a user’s computer, then in principle an attacker can log every
type of event, including mouse movements, form submissions over
HTTPS, and screen captures.)

Validate Credentials Properly

m Passwords should be validated in full — that is, in a case-sensitive way,
without filtering or modifying any characters, and without truncating
the password.

m The application should be aggressive in defending itself against unex-
pected events occurring during login processing. For example, depend-
ing on the development language in use, the application should use
catch-all exception handlers around all API calls. These should explic-
itly delete all session and method-local data being used to control the
state of the login processing and should explicitly invalidate the current
session, thereby causing a forced logout by the server even if authenti-
cation is somehow bypassed.

m All authentication logic should be closely code-reviewed, both as
pseudo-code and as actual application source code, to identify logic
errors such as fail-open conditions.

m Jf functionality to support user impersonation is implemented, this
should be strictly controlled to ensure that it cannot be misused to
gain unauthorized access. Because of the criticality of the functionality,
it is often worthwhile to remove this functionality entirely from the

Chapter 6 = Attacking Authentication 165

public-facing application, and implement it only for internal adminis-
trative users, whose use of impersonation should be tightly controlled
and audited.

m Multistage logins should be strictly controlled to prevent an attacker
from interfering with the transitions and relationships between the
stages:

m All data about progress through the stages and the results of previ-
ous validation tasks should be held in the server-side session object
and should never be transmitted to or read from the client.

m No items of information should be submitted more than once by the
user, and there should be no means for the user to modify data that
has already been collected and /or validated. Where an item of data
such as a username is used at multiple stages, this should be stored
in a session variable when first collected, and referenced from there
subsequently.

m The first task carried out at every stage should be to verify that all
prior stages have been correctly completed. If this is not the case, the
authentication attempt should immediately be marked as bad.

m To prevent information leakage about which stage of the login failed
(which would enable an attacker to target each stage in turn), the
application should always proceed through all stages of the login,
even if the user has failed to complete earlier stages correctly, and
even if the original username was invalid. After proceeding through
all of the stages, the application should present a generic “login
failed” message at the conclusion of the final stage, without provid-
ing any information about where the failure occurred.

m Where a login process includes a randomly varying question, ensure
that an attacker is not able to effectively choose his own question:

m Always employ a multistage process in which users identify them-
selves at an initial stage, and the randomly varying question is pre-
sented to them at a later stage.

m When a given user has been presented with a given varying ques-
tion, store that question within their persistent user profile, and
ensure that the same user is presented with the same question on
each attempted login until they successfully answer it.

m When a randomly varying challenge is presented to the user, store
the question that has been asked within a server-side session vari-
able, rather than a hidden field in an HTML form, and validate the
subsequent answer against that saved question.

166 Chapter 6 = Attacking Authentication

.m The subtleties of devising a secure authentication mechanism run
deep here. If care is not taken in the asking of a randomly varying question,
then this can lead to new opportunities for username enumeration. For
example, in order to prevent an attacker from choosing his own question, an
application may store within each user’s profile the last question that user was
asked, and continue presenting that question until the user answers it correctly.
An attacker who initiates several logins using any given user’s username will
be met with the same question. However, if the attacker carries out the same
process using an invalid username, the application may behave differently:
because there is no user profile associated with an invalid username, there
will be no stored question, and so a varying question will be presented. The
attacker can use this difference in behavior, manifested across several login
attempts, to infer the validity of a given username. In a scripted attack, he will
be able to harvest numerous usernames quickly.

If an application wishes to defend itself against this possibility, it must go to
some lengths. When a login attempt is initiated with an invalid username, the
application must record somewhere the random question that it presented for
that invalid username and ensure that subsequent login attempts using the
same username are met with the same question. Going even further, the
application could switch to a different question periodically, to simulate the
nonexistent user having logged in as normal, resulting in a change in their next
question! At some point, however, the application designer must draw a line
and concede that a total victory against an attacker as determined as this is
probably not achievable.

Prevent Information Leakage

m The various authentication mechanisms used by the application should
not disclose any information about authentication parameters, either
through overt messages or through inference from other aspects of the
application’s behavior. An attacker should have no means of determin-
ing which piece of the various items submitted has caused a problem.

m A single code component should be responsible for responding to all
failed login attempts, with a generic message. This avoids a subtle vul-
nerability that can occur when a supposedly uninformative message
returned from different code paths can actually be discriminated by an
attacker, due to typographical differences in the message, different
HTTP status codes, other information hidden in HTML, and the like.

m [f the application enforces some kind of account lockout to prevent
brute-force attacks (as discussed in the next section), then care should

Chapter 6 = Attacking Authentication

167

be taken that this does not lead to any information leakage. For exam-
ple, if an application discloses that a specific account has been sus-
pended for X minutes due to Y failed logins, then this behavior can
easily be used to enumerate valid usernames. In addition, disclosing
the precise metrics of the lockout policy enables an attacker to optimize
any attempt to continue guessing passwords in spite of the policy. To
avoid enumeration of usernames, the application should respond to any
series of failed login attempts from the same browser with a generic
message advising that accounts are suspended if multiple failures occur
and that the user should try again later. This can be achieved using a
cookie or hidden field to track repeated failures originating from the
same browser. (Of course, this mechanism should not be used to
enforce any actual security control — only to provide a helpful message
to ordinary users who are struggling to remember their credentials.)

m [f the application supports self-registration, then it can prevent this func-
tion from being used to enumerate existing usernames in two ways:

m Instead of permitting self-selection of usernames, the application can
create a unique (and unpredictable) username for each new user,
thereby obviating the need to disclose that a username selected
already exists.

m The application can use email addresses as usernames. Here, the
first stage of the registration process requires the user to enter their
email address, whereupon they are told simply to wait for an email
and follow the instructions contained within it. If the email address
is already registered, the user can be informed of this in the email. If
the address is not already registered, the user can be provided with
a unique, unguessable URL to visit to continue the registration
process. This prevents the attacker from enumerating valid user-
names (unless they happen to have already compromised a large
number of email accounts).

Prevent Brute-Force Attacks

m Measures need to be enforced within all of the various challenges
implemented by the authentication functionality in order to prevent
attacks that attempt to meet those challenges using automation. This
includes the login itself, as well as functions to change password, to
recover from a forgotten password situation, and the like.

m Using unpredictable usernames and preventing their enumeration pre-
sents a significant obstacle to completely blind brute-force attacks, and

168 Chapter 6 = Attacking Authentication

requires an attacker to have somehow discovered one or more specific
usernames before mounting an attack.

m Some security-critical applications (such as online banks) simply
disable an account after a small number of failed logins (e.g., three)
and require that the account owner take various out-of-band steps to
reactivate the account, such as telephoning customer support and
answering a series of security questions. Disadvantages of this policy
are that it allows an attacker to deny service to legitimate users by
repeatedly disabling their accounts, and the cost of providing the
account recovery service. A more balanced policy, suitable for most
security-aware applications, is to suspend accounts for a short period
(e.g., 30 minutes) following a small number of failed login attempts
(e.g., three). This serves to massively slow down any password-
guessing attack, while mitigating the risk of denial-of-service attacks
and also reducing call center work.

m [f a policy of temporary account suspension is implemented, care
should be taken to ensure its effectiveness:

m To prevent information leakage leading to username enumeration,
the application should never indicate that any specific account has
been suspended. Rather, it should respond to any series of failed
logins, even those using an invalid username, with a message advis-
ing that accounts are suspended if multiple failures occur and that
the user should try again later (as discussed previously).

m The metrics of the policy should not be disclosed to users. Telling
legitimate users simply to “try again later” does not seriously dimin-
ish their quality of service. But informing an attacker exactly how
many failed attempts are tolerated, and how long the suspension
period is for, enables them to optimize any attempt to continue
guessing passwords in spite of the policy.

m [f an account is suspended, then login attempts should be rejected
without even checking the credentials. Some applications that have
implemented a suspension policy remain vulnerable to brute forcing
because they continue to fully process login attempts during the sus-
pension period, and return a subtly (or not so subtly) different mes-
sage when valid credentials are submitted. This behavior enables an
effective brute-force attack to proceed at full speed regardless of the
suspension policy.

m Per-account countermeasures such as account lockout do not help to
protect against one kind of brute-force attack that is often highly effec-
tive — namely to iterate through a long list of enumerated usernames
checking a single weak password, such as password. If, for example, five

Chapter 6 = Attacking Authentication

169

failed attempts trigger an account suspension, this means an attacker
can attempt four different passwords on every account without causing
any disruption to users. In a typical application containing many weak
passwords, such an attacker is likely to compromise many accounts.

The effectiveness of this kind of attack will, of course, be massively
reduced if other areas of the authentication mechanism are designed
securely. If usernames cannot be enumerated or reliably predicted, an
attacker will be slowed down by the need to perform a brute-force exer-
cise in guessing usernames. And if strong requirements are in place for
password quality, it is far less likely that the attacker will choose a pass-
word for testing that even a single user of the application has chosen.

In addition to these controls, an application can specifically protect
itself against this kind of attack through the use of CAPTCHA (“Com-
pletely Automated Public Turing test to tell Computers and Humans
Apart”) challenges on every page that may be a target for brute-force
attacks (see Figure 6-8). If effective, this measure can prevent any auto-
mated submission of data to any application page, thereby restricting
all kinds of password-guessing attacks from being executed manually.
Note that much research has been done into CAPTCHA technologies,
and automated attacks against them have in some cases been reliable.
Further, some attackers have been known to devise CAPTCHA-solving
competitions, in which unwitting members of the public are leveraged
as drones to assist the attacker. However, even if a particular kind of
challenge is not entirely effective, it will still lead most casual attackers
to desist and find an application that does not employ the technique.

AxsiXy

&

Type the characters you see in the picture above.

Figure 6-8: A CAPTCHA control
designed to hinder automated attacks

[TIP you are attacking an application that uses CAPTCHA controls to hinder
automation, always closely review the HTML source for the page in which the
image appears. The authors have encountered cases where the solution to the
puzzle appears in literal form within the ALT attribute of the image tag, or
within a hidden form field, enabling a scripted attack to defeat the protection
without actually solving the puzzle itself.

170 Chapter 6 = Attacking Authentication

Prevent Misuse of the Password Change Function

m A password change function should always be implemented, to allow
periodic password expiration (if required) and to allow users to change
passwords if they wish to for any reason. As a key security mechanism,
this needs to be very well defended against misuse.

m The function should only be accessible from within an authenticated
session.

m There should be no facility to provide a username, either explicitly or
via a hidden form field or cookie — users have no legitimate need to
attempt to change other people’s passwords.

m As a defense-in-depth measure, the function should be protected from
unauthorized access gained via some other security defect in the appli-
cation — such as a session hijacking vulnerability, cross-site scripting,
or even an unattended terminal. To this end, users should be required
to reenter their existing password.

m The new password should be entered twice to prevent mistakes, and
the application should compare the “new password” and “confirm new
password” fields as its first step and return an informative error if they
do not match.

m The function should prevent the various attacks that can be made
against the main login mechanism: a single generic error message
should be used to notify users of any error in existing credentials, and
the function should be temporarily suspended following a small num-
ber of failed attempts to change password.

m Users should be notified out-of-band (e.g., via email) that their pass-
word has been changed, but the message should not contain either their
old or new credentials.

Prevent Misuse of the Account Recovery Function

m |n the most security-critical applications, such as online banking,
account recovery in the event of a forgotten password is handled out-
of-band: a user must make a telephone call and answer a series of secu-
rity questions, and new credentials or a reactivation code are also sent
out-of-band (via conventional mail) to the user’s registered home
address. The majority of applications do not want or need this level of
security, and so an automated recovery function may be appropriate.

m A well-designed password recovery mechanism needs to prevent
accounts from being compromised by an unauthorized party, and mini-
mize any disruption to legitimate users.

Chapter 6 = Attacking Authentication 171

m Features such as password “hints” should absolutely never be used,
since they mainly serve to assist an attacker in trawling for accounts
with obvious hints set.

m The best automated solution for enabling users to regain control of
accounts is to email the user a unique, time-limited, unguessable,
single-use recovery URL. This email should be sent to the address that
the user provided during registration. Visiting the URL will allow the
user to set a new password. After this has been done, a second email
should be sent, indicating that a password change was made. To pre-
vent an attacker denying service to users by continually requesting
password reactivation emails, the user’s existing credentials should
remain valid until such time as they are changed.

m To further protect against unauthorized access, applications may pre-
sent users with a secondary challenge that they must complete before
gaining access to the password reset function. Care must taken to
ensure that the design of this challenge does not introduce new
vulnerabilities:

m The challenge should implement the same question or set of ques-
tions for everyone, mandated by the application during registration.
If users provide their own challenge, it is likely that some of these
will be very weak, and this also enables an attacker to enumerate
valid accounts by identifying those which have a challenge set.

m Responses to the challenge should contain sufficient entropy that
they cannot be easily guessed. For example, asking the user for the
name of their first school is preferable to asking for their favorite
color.

m Accounts should be temporarily suspended following a number of
failed attempts to complete the challenge, to prevent brute-force
attacks.

m The application should not leak any information in the event of
failed responses to the challenge — regarding the validity of the
username, any suspension of the account, and so on.

m Successful completion of the challenge should be followed by the
process described previously, in which a message is sent to the
user’s registered email address containing a reactivation URL.
Under no circumstances should the application disclose the user’s
forgotten password or simply drop the user into an authenticated
session. Even proceeding directly to the password reset function is
undesirable, because the response to the account recovery challenge
will in general be easier for an attacker to guess than the original
password, and so it should not be relied upon on its own to authen-
ticate the user.

172 Chapter 6 = Attacking Authentication

Log, Monitor, and Notify

m All authentication-related events should be logged by the application,
including login, logout, password change, password reset, account sus-
pension, and account recovery. Where applicable, both failed and suc-
cessful attempts should be logged. The logs should contain all relevant
details (e.g., username, and IP address) but no security secrets (e.g.,
passwords). Logs should be strongly protected from unauthorized
access, as they are a critical source of information leakage.

m Anomalies in authentication events should be processed by the applica-
tion’s real-time alerting and intrusion prevention functionality. For
example, application administrators should be made aware of patterns
indicating brute-force attacks, so that appropriate defensive and offen-
sive measures can be considered.

m Users should be notified out-of-band of any critical security events. For
example, the application should send a message to a user’s registered
email address whenever he changes his password.

m Users should be notified in-band of frequently occurring security
events. For example, after a successful login, the application should
inform users of the time and source IP/domain of the last login, and
the number of invalid login attempts made since then. If a user is
made aware that her account is being subjected to a password-
guessing attack, she is more likely to change her password
frequently and set it to a strong value.

Chapter Summary

Authentication functions are perhaps the most prominent target in a typical
application’s attack surface. By definition, they can be reached by unprivi-
leged, anonymous users. If broken, they grant access to protected functional-
ity and sensitive data. They lie at the core of the security mechanisms that an
application employs to defend itself, and are the front line of defense against
unauthorized access.

Real-world authentication mechanisms contain a myriad of design and
implementation flaws. An effective assault against them needs to proceed sys-
tematically, using a structured methodology to work through every possible
avenue of attack. In many cases, open goals present themselves — bad pass-
words, ways to find out usernames, and vulnerability to brute-force attacks. At
the other end of the spectrum, defects may be very hard to uncover, and it may
require meticulous examination of a convoluted login process to establish the

Chapter 6 = Attacking Authentication 173

assumptions being made and spot the subtle logic flaw that can be exploited to
walk right through the door.

The most important lesson when attacking authentication functionality is to
look everywhere. In addition to the main login form, there may be functions to
register new accounts, change passwords, remember passwords, recover for-
gotten passwords, and impersonate other users. Each of these presents a rich
target of potential defects, and problems that have been consciously elimi-
nated within one function very often reemerge within others. Invest the time
to scrutinize and probe every inch of attack surface you can find, and your
rewards may be great.

Questions

Answers can be found at www. wiley.com/go/webhacker.

1.

While testing a web application you log in using your credentials of joe
and pass. During the login process, you see a request for the following
URL appear in your intercepting proxy:

http://www.wahh-app.com/app?action=1login&uname=
joe&password=pass

What three vulnerabilities can you diagnose without probing any
further?

How can self-registration functions introduce username enumeration
vulnerabilities? How can these vulnerabilities be prevented?

Alogin mechanism involves the following steps:
(a) The application requests the user’s username and passcode.

(b) The application requests two randomly chosen letters from the
user’s memorable word.

Why is the required information requested in two separate steps? What
defect would the mechanism contain if this were not the case?

A multistage login mechanism first requests the user’s username and
then various other items across successive stages. If any supplied item
is invalid, the user is immediately returned to the first stage.

What is wrong with this mechanism, and how can the vulnerability be
corrected?

174 Chapter 6 = Attacking Authentication

5. An application incorporates an anti-phishing mechanism into its login
functionality. During registration, each user selects a specific image
from a large bank of memorable images presented to them by the appli-
cation. The login function involves the following steps:

(a) The user enters their username and date of birth.

(b) If these details are correct, the application displays to the user their
chosen image; otherwise, a random image is displayed.

(c) The user verifies that the correct image is displayed, and if so, enters
their password.

The idea behind the anti-phishing mechanism is that it enables the user
to confirm that they are dealing with the authentic application, and not
a clone, because only the real application knows the correct image to
display to the user.

What vulnerability does the anti-phishing mechanism introduce into
the login function? Is the mechanism effective in preventing phishing?

Attacking Session Management

The session management mechanism is a fundamental security component in
the majority of web applications. It is what enables the application to uniquely
identify a given user across a number of different requests, and to handle the
data that it accumulates about the state of that user’s interaction with the
application. Where an application implements login functionality, session
management is of particular importance, as it is what enables the application
to persist its assurance of any given user’s identity beyond the request in
which they supply their credentials.

Because of the key role played by session management mechanisms, they
are a prime target for malicious attacks against the application. If an attacker
can break an application’s session management, then she can effectively
bypass its authentication controls and masquerade as other application users
without knowing their credentials. If an attacker compromises an administra-
tive user in this way, then the attacker can own the entire application.

As with authentication mechanisms, there is a wide variety of defects that can
commonly be found in session management functions. In the most vulnerable
cases, an attacker simply needs to increment the value of a token issued to them
by the application in order to switch their context to that of a different user. In
this situation, the application is wide open for anyone to access all areas. At the
other end of the spectrum, an attacker may have to work extremely hard, deci-
phering several layers of obfuscation and devising a sophisticated automated
attack, before finding a chink in the application’s armor.

175

176

Chapter 7 = Attacking Session Management

In this chapter, we will look at all of the types of weakness that the authors
have encountered in real-world web applications. We will set out in detail the
practical steps that you need to take to find and exploit these defects. Finally,
we will describe the defensive measures that applications should take to pro-
tect themselves against these attacks.

(DL AAN B “We use smartcards for authentication, and users’

sessions cannot be compromised without the card””

However robust an application’s authentication mechanism, subsequent
requests from users are only linked back to that authentication via the resulting
session. If the application’s session management is flawed, then an attacker
can bypass the robust authentication altogether and still compromise users.

The Need for State

The HTTP protocol is essentially stateless. It is based on a simple request-
response model, in which each pair of messages represents an independent
transaction. The protocol itself contains no mechanism for linking together the
series of requests made by one particular user and distinguishing these from
all of the other requests received by the web server. In the early days of the
Web, there was no need for any such mechanism: web sites were used to pub-
lish static HTML pages for anyone to view. Today, things are very different.

The majority of web “sites” are in fact web applications. They allow you to
register and log in. They let you buy and sell goods. They remember your pref-
erences next time you visit. They deliver rich, multimedia experiences with
content created dynamically based on what you click and type. In order to
implement any of this functionality, web applications need to use the concept
of a session.

The most obvious use of sessions is in applications that support logging in.
After entering your username and password, you can go ahead and use the
application as the user whose credentials you have entered, until such time as
you log out or the session expires due to inactivity. Users do not want to have
to reenter their password on every single page of the application. Hence, after
authenticating the user once, the application creates a session for them, and
treats all requests belonging to that session as coming from that user.

Applications that do not have a login function also typically need to use ses-
sions. Many sites selling merchandise do not require customers to create
accounts. However, they allow users to browse the catalog, add items to a
shopping basket, provide delivery details, and make payment. In this sce-
nario, there is no need to authenticate the identity of the user: for the majority

Chapter 7 = Attacking Session Management

177

of their visit, the application does not know or care who the user is. But, in
order to do business with them, it needs to know which series of requests it
receives has originated from the same user.

The simplest and still most common means of implementing sessions is to
issue each user with a unique session token or identifier. On each subsequent
request to the application, the user resubmits this token, enabling the application
to determine which sequence of earlier requests the current request relates to.

In most cases, applications use HTTP cookies as the transmission mecha-
nism for passing these session tokens between server and client. The server’s
first response to a new client contains an HTTP header like the following:

Set-Cookie: ASP.NET_SessionId=mza2ji454s04cwbgwb2ttj55

and subsequent requests from the client contain the header:

Cookie: ASP.NET_SessionId=mza2ji454s04cwbgwb2ttj55

There are various categories of attack to which this standard session man-
agement mechanism is inherently vulnerable. An attacker’s primary objective
in targeting the mechanism is to somehow hijack the session of a legitimate
user and thereby masquerade as them. If the user has been authenticated to the
application, the attacker may be able to access private data belonging to the
user or carry out unauthorized actions on that person’s behalf. If the user is
unauthenticated, the attacker may still be able to view sensitive information
submitted by the user during her session.

As in the previous example of a Microsoft IIS server running ASPNET, most
commercial web servers and web application platforms implement their own
off-the-shelf session management solution based on HTTP cookies. They pro-
vide APIs that web application developers can use to integrate their own
session-dependent functionality with this solution.

Some off-the-shelf implementations of session management have been
found vulnerable to various attacks, which result in users’ sessions being com-
promised (these are discussed later in this chapter). In addition, some devel-
opers find that they need more fine-grained control over session behavior than
is provided for them by the built-in solutions, or wish to avoid some vulnera-
bilities inherent in cookie-based solutions. For these reasons, it is fairly
common to see bespoke and/or non-cookie-based session management mech-
anisms used in security-critical applications such as online banking.

The vulnerabilities that exist in session management mechanisms largely
fall into two categories:

m Weaknesses in the generation of session tokens.

m Weaknesses in the handling of session tokens throughout their lifecycle.

178 Chapter 7 = Attacking Session Management

We will look at each of these areas in turn, describing the different types of
defects that are commonly found in real-world session management mecha-
nisms, and practical techniques for discovering and exploiting these. Finally,
we will describe measures that applications can take to defend themselves
against these attacks.

In many applications that use the standard cookie mechanism for transmitting
session tokens, it is straightforward to identify which item of data contains the
token. However, in other cases it may require some detective work.

B The application may often employ several different items of data collec-
tively as a token, including cookies, URL parameters, and hidden form
fields. Some of these items may be used to maintain session state on dif-
ferent back-end components. Do not assume that a particular parameter
is the session token without proving it, or that sessions are being tracked
using only one item.

B Sometimes, items that appear to be the application’s session token may
not be. In particular, the standard session cookie generated by the web
server or application platform may be present but not actually used by
the application.

B Observe which new items are passed to the browser after authentication.
Often, new session tokens are created after a user authenticates herself.

B To verify which items are actually being employed as tokens, find a page
that is certainly session-dependent (such as a user-specific “my details”
page), and make several requests for it, systematically removing each
item that you suspect is being used as a token. If removing an item
causes the session-dependent page not to be returned, then this may
confirm that the item is a session token. Burp Repeater is a useful tool
for performing these tests.

Alternatives to Sessions

Not every web application employs sessions, and some security-critical appli-
cations containing authentication mechanisms and complex functionality opt
to use other techniques for managing state. There are two possible alternatives
that you are likely to encounter:

m HTTP authentication — Applications using the various HTTP-based
authentication technologies (basic, digest, NTLM, etc.) sometimes avoid
the need to use sessions. With HTTP authentication, the client compo-
nent interacts with the authentication mechanism directly via the

Chapter 7 = Attacking Session Management 179

browser, using HTTP headers, and not via application-specific code
contained within any individual page. Once a user has entered his
credentials into a browser dialog, the browser effectively resubmits
these credentials (or reperforms any required handshake) with every
subsequent request to the same server. This is the equivalent to an
application that uses HTML forms-based authentication and places a
login form on every application page, requiring users to reauthenticate
themselves with every action they perform. Hence, when HTTP-based
authentication is used, it is possible for an application to re-identify the
user across multiple requests without using sessions. However, HTTP
authentication is rarely used on Internet-based applications of any com-
plexity, and the other very versatile benefits that fully fledged session
mechanisms offer mean that virtually all web applications do in fact
employ them.

m Sessionless state mechanisms — Some applications do not issue ses-
sion tokens in order to manage the state of a user’s interaction with the
application but rather transmit all data required to manage that state
via the client, usually in a cookie or a hidden form field. In effect, this
mechanism uses sessionless state in a similar way to the ASPNET
ViewState. In order for this type of mechanism to be secure, the data
transmitted via the client must be properly protected. This usually
involves constructing a binary blob containing all of the state informa-
tion, and encrypting or signing this using a recognized algorithm. Suffi-
cient context must be included within the data to prevent an attacker
from collecting a state object at one location within the application and
submitting it to another location to cause some undesirable behavior.
The application may also include an expiration time within the object’s
data, to perform the equivalent of session timeouts. Chapter 5 describes
in more detail secure mechanisms for transmitting data via the client.

B If HTTP authentication is being used, it is possible that no session man-
agement mechanism is implemented. Use the methods described previ-
ously to examine the role played by any token-like items of data.

B If the application uses a sessionless state mechanism, transmitting all
data required to maintain state via the client, this may sometimes be dif-
ficult to detect with certainty, but the following are strong indicators that
this kind of mechanism is being used:

®m Token-like data items issued to the client are fairly long (e.g., 100 or
more bytes).
(continued)

180 Chapter 7 = Attacking Session Management

HACK STEPS (continued)

® The application issues a new item in response to every request.

m The data in the item appears to be encrypted (and so has no dis-
cernible structure) or signed (and so contains meaningful structure
accompanied by a few bytes of meaningless binary data).

m The application may reject attempts to submit the same item with
more than one request.

B If the evidence suggests strongly that the application is not using session
tokens to manage state, then it is unlikely that any of the attacks
described within this chapter will achieve anything. Your time is likely to
be much better spent looking for other serious issues such as broken
access controls or code injection.

Weaknesses in Session Token Generation

Session management mechanisms are often vulnerable to attack because
tokens are generated in an unsafe manner that enables an attacker to identify
the values of tokens that have been issued to other users.

Meaningful Tokens

Some session tokens are created using a transformation of the user’s user-
name or email address, or other information associated with them. This infor-
mation may be encoded or obfuscated in some way, and may be combined
with other data.

For example, the following token may initially appear to be a long random
string:

757365723d6461663b6170703d61646d696e3b646174653d30312£31322£3036

However, on closer inspection, it contains only hexadecimal characters.
Guessing that the string may actually be a hex-encoding of a string of ASCII
characters, we can run it through a decoder to reveal:

user=daf;app=admin;date=10/09/07

Chapter 7 = Attacking Session Management

181

Attackers can exploit the meaning within this session token to attempt to
guess the current sessions of other application users. Using a list of enumer-
ated or common usernames, they can quickly generate large numbers of
potentially valid tokens and test these to confirm which are valid.

Tokens that contain meaningful data often exhibit some structure — that is,
they contain several components, often separated by a delimiter, which can be
extracted and analyzed separately to allow an attacker to understand their
function and means of generation. Components that may be encountered
within structured tokens include:

m The account username.

m The numeric identifier used by the application to distinguish between
accounts.

m The user’s first/last human name.

m The user’s email address.

m The user’s group or role within the application.
m A date/time stamp.

m An incrementing or predictable number.

m The client IP address.

Each different component within a structured token, or indeed the entire
token, may be encoded in different ways, either as a deliberate measure to
obfuscate their content, or simply to ensure safe transport of binary data via
HTTP. Encoding schemes that are commonly encountered include XOR,
Base64, and hexadecimal representation using ASCII characters (see Chapter 3).
It may be necessary to test various different decodings on each component of
a structured token to unpack it to its original form.

.m When an application handles a request containing a structured token,
it may not actually process every component with the token or all of the data
contained within each component. In the previous example, the application
may Base64-decode the token and then process only the “user” and “date”
components. In cases where a token contains a blob of binary data, much of
this data may be padding, and only a small part of it may actually be relevant
to the validation that the server performs on the token. Narrowing down the
subparts of a token that are actually required can often reduce considerably the
amount of apparent entropy and complexity that the token contains.

182 Chapter 7 = Attacking Session Management

B Obtain a single token from the application, and modify it in systematic
ways to determine whether the entire token is validated, or whether
some subcomponents of the token are ignored. Try changing the token’s
value one byte at a time (or even one bit at a time) and submitting the
modified token back to the application to determine whether it is still
accepted. If you find that certain portions of the token are not actually
required to be correct, you can exclude these from any further analysis,
potentially reducing the amount of work that you need to perform.

B Log in as several different users at different times and record the tokens
received from the server. If self-registration is available and you can
choose your username, log in with a series of similar usernames contain-
ing small variations between them, such as A, AA, AAA, AAAA, AAAB,
AAAC, AABA, and so on. If other user-specific data is submitted at the
login or stored in user profiles (such as an email address), perform a
similar exercise to vary that data systematically and record the tokens
received following login.

B Analyze the tokens for any correlations that appear to be related to the
username and other user-controllable data.

B Analyze the tokens for any detectable encoding or obfuscation. Where the
username contains a sequence of the same character, look for a corre-
sponding character sequence in the token, which may indicate the use of
XOR obfuscation. Look for sequences in the token containing only hexa-
decimal characters, which may indicate a hex-encoding of an ASCII string
or other information. Look for sequences ending in an equals sign and/or
only containing the other valid Base64 characters: a-z, A-Z, 0-9, +, and /.

B If any meaning can be reverse engineered from the sample of session
tokens, consider whether you have sufficient information to attempt to
guess the tokens recently issued to other application users. Find a page
of the application that is session-dependent (e.g., one that returns an
error message or a redirect elsewhere if accessed without a valid ses-
sion), and use a tool such as Burp Intruder to make large numbers of
requests to this page using guessed tokens. Monitor the results for any
cases where the page is loaded correctly, indicating a valid session token.

Predictable Tokens

Some session tokens do not contain any meaningful data associating them
with a particular user but are nevertheless guessable because they contain
sequences or patterns that allow an attacker to extrapolate from a sample of
tokens to find other valid tokens recently issued by the application. Even if the
extrapolation involves an amount of trial and error (for example, one valid

Chapter 7 = Attacking Session Management

183

guess per 1,000 attempts), this will still enable an automated attack to identify
large numbers of valid tokens in a relatively short period of time.

Vulnerabilities relating to predictable token generation may be much easier
to discover in commercial implementations of session management, such as
web servers or web application platforms, than they are in bespoke applica-
tions. When you are remotely targeting a bespoke session management mech-
anism, your sample of issued tokens may be restricted by the capacity of the
server, the activity of other users, your bandwidth, network latency, and so on.
In a laboratory environment, however, you can quickly create millions of sam-
ple tokens, all precisely sequenced and time-stamped, and can eliminate inter-
ference caused by other users.

In the simplest and most brazenly vulnerable cases, an application may use
a simple sequential number as the session token. In this case, you only need to
obtain a sample of two or three tokens before launching an attack that will cap-
ture 100% of currently valid sessions very quickly.

Figure 7-1 shows Burp Intruder being used to cycle the last two digits of a
sequential session token to find values where the session is still active and can
be hijacked. The length of the server’s response is here a reliable indicator that
a valid session has been found.

=

attack save wiew

request payload status | B
42141 200
10/08 200
48[47 200

5)04 200

28127 200

AB|6S 200

22[21 200

28(28 200

1/00 200

01 200

02 200

03 200

05 200

08 200

o7 200

rtimeo..| length

3237
3203
3202
3199
1498
31487
3189
3189
1308
1309
1309
1309
1308
1309
1309 —

-

[T

oo |~ | o [[e [ra

finished |

Figure 7-1: An attack to discover valid sessions where the session token is predictable

In other cases, an application’s tokens may contain more elaborate sequences
that take some effort to discover. The types of potential variations one might
encounter here are open ended, but the authors” experience in the field indicates
that predictable session tokens commonly arise from three different sources:

m Concealed sequences
m Time dependency

m Weak random number generation

We will look at each of these areas in turn.

184

Chapter 7 = Attacking Session Management

Concealed Sequences

It is common to encounter session tokens that cannot be trivially predicted
when analyzed in their raw form but that contain sequences that reveal them-
selves when the tokens are suitably decoded or unpacked.

Consider the following series of values, which form one component of a
structured session token:

1wjvJa
Ls3Ajg
XpKr+A
X1leXYg
9hyCzA
jeFuNg
JaZZoA

No immediate pattern is discernible; however, a cursory inspection indi-
cates that the tokens may contain Base64-encoded data — in addition to the
mixed-case alphabetical and numeric characters, there is a + character, which
is also valid in a Base64-encoded string. Running the tokens through a Base64
decoder reveals the following:

These strings appear to be gibberish and also contain nonprinting charac-
ters. This normally indicates that you are dealing with binary data rather than
ASCII text. Rendering the decoded data as hexadecimal numbers gives you:

9708D524
2ECDCO8E
C692ABF8
5E579762
F6lC82CC
8DE16E36
25A659A0

There is still no visible pattern. However, if you subtract each number from
the previous one, you arrive at the following:

FF97C4EB6A
97C4EB6A
FF97C4EB6A

Chapter 7 = Attacking Session Management

185

97C4EB6A
FF97C4EB6A
FF97C4EB6A

which immediately reveals the concealed pattern. The algorithm used to gen-
erate tokens adds 0x97C4EB6A to the previous value, truncates the result to a
32-bit number, and Base64-encodes this binary data to allow it to be trans-
ported using the text-based protocol HTTP. Using this knowledge, you can
easily write a script to produce the series of tokens that the server will next
produce, and the series that it produced prior to the captured sample.

Time Dependency

Some web servers and applications employ algorithms for generating session
tokens that use the time of generation as an input to the token’s value. If insuf-
ficient other entropy is incorporated into the algorithm, then you may be able
to predict other users” tokens. Although any given sequence of tokens on its
own may appear to be completely random, the same sequence coupled with
information about the time at which each token was generated may contain a
discernible pattern. In a busy application, with large numbers of sessions
being created per second, a scripted attack may succeed in identifying large
numbers of other users’” tokens.

When testing the web application of an online retailer, the authors encoun-
tered the following sequence of session tokens:

3124538-1172764258718
3124539-1172764259062
3124540-1172764259281
3124541-1172764259734
3124542-1172764260046
3124543-1172764260156
3124544-1172764260296
3124545-1172764260421
3124546-1172764260812
3124547-1172764260890

Each token is clearly composed of two separate numeric components. The
first number follows a simple incrementing sequence and is trivial to predict.
The second number is increasing by a varying amount each time. Calculating
the differences between its value in each successive token reveals the following;:

344
219
453
312
110

186 Chapter 7 = Attacking Session Management

140
125
391
78

The sequence does not appear to contain a reliably predictable pattern; how-
ever, it would clearly be possible to brute force the relevant number range in
an automated attack to discover valid values in the sequence. Before attempt-
ing this attack, however, we wait a few minutes and gather a further sequence
of tokens:

3124553-1172764800468
3124554-1172764800609
3124555-1172764801109
3124556-1172764801406
3124557-1172764801703
3124558-1172764802125
3124559-1172764802500
3124560-1172764802656
3124561-1172764803125
3124562-1172764803562

Comparing this second sequence of tokens with the first, two points are
immediately obvious:

m The first numeric sequence continues to progress incrementally; how-
ever, five values have been skipped since the end of our first sequence.
This is presumably because the missing values have been issued to
other users, who logged into the application in the window between
the two tests.

m The second numeric sequence continues to progress by similar intervals
as before; however, the first value we obtain is a massive 539,578
greater than the previous value.

This second observation immediately alerts us to the role played by time in
generating session tokens. Apparently, only five tokens have been issued
between the two token-grabbing exercises. However, a period of approxi-
mately 10 minutes has also elapsed. The most likely explanation is that the sec-
ond number is time-dependent and is probably a simple count of milliseconds.

Indeed, our hunch is correct, and in a subsequent phase of our testing
we perform a code review, which reveals the following token-generation
algorithm:

String sessId = Integer.toString(s_SessionIndex++) +
w_woy

System.currentTimeMillis () ;

Chapter 7 = Attacking Session Management

187

Given our analysis of how tokens are created, it is straightforward to con-
struct a scripted attack to harvest the session tokens that the application issues
to other users:

m We continue polling the server to obtain new session tokens in quick
succession.

m We monitor the increments in the first number. When this increases by
more than one, we know that a token has been issued to another user.

m When a token has been issued to another user, we know the upper and
lower bounds of the second number that was issued to them, because
we possess the tokens that were issued immediately before and after
theirs. Because we are obtaining new session tokens frequently, the
range between these bounds will typically consist of only a few hun-
dred values.

m Each time a token is issued to another user, we launch a brute-force
attack to iterate through each number in the range, appending this to
the missing incremental number that we know was issued to the other
user. We attempt to access a protected page using each token we con-
struct, until the attempt succeeds and we have compromised the user’s
session.

m Running this scripted attack continuously will enable us to capture the
session token of every other application user. When an administrative
user logs in, we will fully compromise the entire application.

Weak Random Number Generation

Very little that occurs inside a computer is random. Therefore, when random-
ness is required for some purpose, software uses various techniques to gener-
ate numbers in a pseudo-random manner. Some of the algorithms used
produce sequences that appear to be stochastic and manifest an even spread
across the range of possible values, but can nevertheless be extrapolated for-
wards or backwards with perfect accuracy by anyone who obtains a small
sample of values.

When a predictable pseudo-random number generator is used for produc-
ing session tokens, the resulting tokens are vulnerable to sequencing by an
attacker.

Jetty is a popular web server written in 100% Java, which provides a session
management mechanism for use by applications running on it. In 2006, Chris
Anley of NGSSoftware discovered that the mechanism was vulnerable to a

188 Chapter 7 = Attacking Session Management

session token prediction attack. The server used the Java API java.util
.Random to generate session tokens. This implements a “linear congruential
generator,” which generates the next number in the sequence as follows:

synchronized protected int next (int bits) {
seed = (seed * OxX5DEECE66DL + OxBL) & ((1L << 48) - 1);
return (int) (seed >>> (48 - bits));

}

This algorithm in effect takes the last number generated, multiplies it by one
constant, and adds another constant, to obtain the next number. The number is
truncated to 48 bits, and the algorithm shifts the result to return the specific
number of bits requested by the caller.

Knowing this algorithm and a single number generated by it, we can easily
derive the sequence of numbers that the algorithm will generate next, and also
(with a little number theory) derive the sequence that it generated previously.
This means that an attacker who obtains a single session token from the server
can obtain the tokens of all current and future sessions.

.m Sometimes when tokens are created based on the output of a pseudo-
random number generator, developers decide to construct each token by
concatenating together several sequential outputs from the generator. The
perceived rationale for this is that it creates a longer, and therefore “stronger”
token. However, this tactic is usually a mistake. If an attacker can obtain
several consecutive outputs from the generator, this may enable them to infer
some information about its internal state, and may in fact make it easier for
them to extrapolate the generator’'s sequence of outputs, either forward or
backward.

HACK STEPS

M First, determine when and how session tokens are issued by walking
through the application from the first application page through any login
functions. The most common behaviors are: (a) the application creates a
new session any time a request is received that does not submit a token,
and (b) the application creates a new session following a successful
login. In order to harvest large numbers of tokens in an automated way,
ideally identify a single request (typically either GET / or a login submis-
sion) that results in a new token being issued.

Chapter 7 = Attacking Session Management 189

HACK STEPS (continued)

B If a bespoke session management mechanism is in use, and you only
have remote access to the application, obtain a large sample of tokens
(at least a few hundred). Gather these tokens in as quick succession as
possible, to minimize the loss of tokens issued to other users and reduce
the influence of any time dependency. The following screenshot shows
Burp Intruder being used to make large numbers of requests and log the
returned cookies, which can then be exported for further analysis.

=1ol x|
attack save wiew
request | status length cookies
1/200 694 0/8=hlogger=0-e0kEbmhfidgQchWHMN-RraA; Domain... -
2|200 £940|S=hlogger=7_UrelwANh1 GUWEZCYIMSw: Domain
3200 6940/5=hlogger=HP SvC HZMIKTRGWIZIS d 3w, Domain=...
4{200 B940/5=hlogger=1TDWoly3gvF naTedUOqTwoA, Domai.... =
4200 6940/8=hlogger=RNZPna:YmCDR2bE4Qaag; Dom..
(200 6840/S=hlogger=iozrmps_rdwe0yicH2F QyaA; Domain=
Tl200 6940/5=hlogger=pDEa2MEN0EmM oS gesWie; Domain=...
8200 B6940/5=hlogger=2rhPelAN)_|_-WMhoWTZLgg, Domain=....
9200 694 0/8=hlogger=s|kUCEZwIndYTIPOIUN TS, Damain=....
10{200 B840/S=hlogger=He1Agoj-K1vFaBxlzCP1Q; Dormain=h
11200 6940/5=hlogyer=KoBjKEEvhEfafbF AZJokDyw; Domain=...
12)200 6940/5=hlogger=RMNyhkrgPMR gL BetZIHguUw, Domain...
13(200 G940/S=hlogger=P4n_dW¥28rSwhkCle! XdiGds; Domain..
14/200 694 0/8=hlogger=d2F0fhxHdh7 Z-CduySH_w; Domain=
15)200 6940/5=hlogger=\1Sovg61E3gIsGRY v, Domain=....
16)200 6940/5=hlogyer=yShr3adwm 2Z0InEZBAcY W, Domain=..
17(200 G494 0/5=hlogger=Fg7alowmDpQQEYEupaxrDQ, Domai... -
finished |

B If a commercial session management mechanism is in use and/or you
have local access to the application, you can obtain indefinitely large
sequences of session tokens in controlled conditions.

B Attempt to identify any patterns within your sample of cookies. There are
various tools (including the testing suite WebScarab) that will attempt to
perform some automated analysis on a sample of cookies. This kind of
tool is often a useful starting point to get a feel for the amount of varia-
tion contained within a sample of tokens. However, in the authors’ expe-
rience these tools suffer from two limitations. First, they are usually only
effective when the patterns within the sample are relatively obvious and
could be quickly identified through manual analysis; they are poor at
deciphering any encoding and structure within tokens. Second, they
often produce graphical output, which gives the visual impression of
some kind of pattern, even though further analysis establishes that the
pattern is a red herring.

(continued)

190 Chapter 7 = Attacking Session Management

HACK STEPS (continued)

B In most cases, there is no real substitute for a manual analysis of the
sample of tokens. There is no magic formula for this, but the following
steps should get you on your way:

= Apply the knowledge you have already gleaned regarding which com-
ponents and bytes of the token are actually being processed by the
server. Ignore anything that is not processed, even if it varies between
samples.

m If it is unclear what type of data is contained within the token, or any
individual component of it, try applying various decodings to see if
any more meaningful data emerges. It may be necessary to apply sev-
eral decodings in sequence.

® Try to identify any patterns in the sequences of values contained
within each decoded token or component. Calculate the differences
between successive values. Even if these appear to be chaotic, there
may be a fixed set of observed differences that narrows down the
scope of any brute-force attack considerably.

m Obtain a similar sample of cookies after waiting for a few minutes,
and repeat the same analysis. Try to detect whether any of the tokens
content is time-dependent.

’

H If a pattern is detected, reperform the token harvesting exercise from a
different IP address and (if relevant) a different username, to identify
whether the same pattern is detected, and whether tokens received in
the first exercise could be extrapolated to identify tokens received in the
second. Sometimes, the sequence of tokens received by a script running
on a single machine will manifest a pattern, but this will not allow
straightforward extrapolation to the tokens issued to other users
because information such as source IP is used as a source of entropy
(such as a seed to a random number generator).

H If you believe you have enough insight into the token generation algo-
rithm to mount an automated attack against other users’ sessions, it is
likely that the best means of achieving this is via a customized script,
which can generate tokens using the specific patterns you have observed,
and apply any necessary encoding. See Chapter 13 for some generic tech-
niques for applying automation to this type of problem.

B If source code is available, closely review the code responsible for gener-
ating session tokens to understand the mechanism used and determine
whether it is vulnerable to prediction.

Chapter 7 = Attacking Session Management

191

Full-Blown Tests for Randomness

Due to the importance of robust session token generation, performing an effec-
tive attack against a security-critical application such as an online bank may
require carrying out a full-blown methodology to test the randomness of its
tokens. If you do not have access to source code, this will be a black-box exercise.

B Determine the theoretical maximum number of unique tokens that are
available, based on the character set being used and number of bytes
within the token that are actually being validated (as described earlier).

B Compare each character transition from one token to the next to deter-
mine whether particular transitions are more common than others. If
particular transitions are preferred, there is a likelihood that the algo-
rithm is flawed in some way.

B Perform NIST FIPS-140-2 statistical tests, identifying any statistically
anomalous distribution of bits.

B Check for correlations between arbitrary bits; a truly random token will
exhibit no correlation between the state of one bit and the state of
another.

B These tests cannot be carried out effectively simply by visual inspection.
Of the publicly available tools, Stompy is most effective at carrying out
full-blown tests of randomness.

Weaknesses in Session Token Handling

No matter how effective an application is at ensuring that the session tokens it
generates do not contain any meaningful information and are not susceptible
to analysis or prediction, its session mechanism will be wide open to attack if
those tokens are not handled carefully after generation. For example, if tokens
are disclosed to an attacker via some means, then the attacker can hijack user
sessions even if predicting the tokens is impossible.

There are various ways in which an application’s unsafe handling of tokens
can make it vulnerable to attack.

192

Chapter 7 = Attacking Session Management

(L LR AANE “Our token is secure from disclosure to third parties

because we use SSL.”

Proper use of SSL certainly helps to protect session tokens from being
captured. But various mistakes can still result in tokens being transmitted in
clear text even when SSL is in place. And there are various direct attacks
against end users that can be used to obtain their token.

Disclosure of Tokens on the Network

This area of vulnerability arises when the session token is transmitted across
the network in unencrypted form, enabling a suitably positioned eavesdrop-
per to obtain the token and so masquerade as the legitimate user. Suitable posi-
tions for eavesdropping include the user’s local network, within the user’s IT
department, within the user’s ISP, on the Internet backbone, within the appli-
cation’s ISP, and within the IT department of the organization hosting the
application. In each case, this includes both authorized personnel of the rele-
vant organization and any external attackers who have compromised the
infrastructure concerned.

In the simplest case, where an application uses an unencrypted HTTP con-
nection for communications, an attacker can capture all data transmitted
between client and server, including login credentials, personal information,
payment details, and so on. In this situation, an attack against the user’s ses-
sion is often unnecessary because the attacker can already view privileged
information and can log in using captured credentials to perform other mali-
cious actions. However, there may still be instances where the user’s session is
the primary target. For example, if the captured credentials are not sufficient to
perform a second login (e.g., in a banking application, they may include a
number displayed on a changing physical token, or specific digits from the
user’s PIN), the attacker may need to hijack the eavesdropped session in order
to perform arbitrary actions. Or if there is close auditing of logins, and notifi-
cation to the user of each successful login, then an attacker may wish to avoid
performing his own login in order to be as stealthy as possible.

In other cases, an application may use HTTPS to protect key client-server
communications yet may still be vulnerable to interception of session tokens
on the network. There are various ways in which this weakness may occur,
many of which can arise specifically when HTTP cookies are used as the trans-
mission mechanism for session tokens:

m Some applications elect to use HTTPS to protect the user’s credentials
during login but then revert to HTTP for the remainder of the user’s

Chapter 7 = Attacking Session Management 193

session. Many web mail applications behave in this way. In this situa-
tion, an eavesdropper cannot intercept the user’s credentials but may
still capture the session token, as shown in Figure 7-2.

@ (untitled) - Ethereal =[S}
File Edit Wiew Go Capture Analyze Statistics Help
= =]
= EE*x®E Re»»FL2[EEB QAQ
| Eilter: |‘ - |§xpressinn... | gearl apply'l |
Mo. - |TiI‘I1E |Suurce |Dest\natiun |Prutucu| |Ir|FU ;I
i U N i) B LU R N M w P [Ny ATTF LET TILLHEY < OO ET U rTTd
24 10.1.1.10 TCP http » 226 Ack=7¢
2o 1. 10, 1.1.1C o) K (T
1. F2.14.221. > http =752 Acks=
27 1.998830 10.1.1.10 HTTP Continuation or non-HTTP traff
28 2.197702 F2.14.221.190 TCP 2267 » http [ACK] sSeq=792 acks=
29 2.B817468 Broadcast ARP who has 10.1.1.2507 GratuitoL
30 2.063331 72.14.221.1%0 TCP 2268 > http [s¥n] Seq=0 ack=0
31 2.099318 10.1.1.10 TCP http > 2268 [svM, ACK] Seq=0 p
27 2 NO0ITFN FA7A 27271 100 TrD 222w ktth FTAack]l San-1 acl—1 ol
4| | [
e Crarset= - -
0070 ache-con
0080 -cache..
00e0 5 d no-cache
WhEL T C]
ooho
Loco
oodo
0020 & cl ol 0
oofo [E] od g: chunked.
0100 ge ge . -Encodin

0110 67 3a 20 67 7a 69 70 0d Da 44 &1 74 85 3a 20 4d g: gz

e B S S T T P S P ey

Frame (1052 bytes) I De-chunked entity body (708 bytes) I Uncompressed entity body (2050 bytes) I
HTTP Set Cookie {htkp.set_cookie), 75 bytes IP: 57 Di 37 M 0 Drops: 0

Figure 7-2: Capturing a session token transmitted over HTTP

Some applications use HTTP for preauthenticated areas of the site,

such as the site’s front page, but switch to HTTPS from the login page
onwards. However, in many cases the user is issued a session token at
the first page visited, and this token is not modified when the user logs
in. The user’s session, which is originally unauthenticated, is upgraded
to an authenticated session after login. In this situation an eavesdropper
can intercept a user’s token before login, wait for the user’s communi-
cations to switch to HTTPS, indicating that the user is logging in, and
then attempt to access a protected page (such as My Account) using
that token.

Even if the application issues a fresh token following successful login,
and uses HTTPS from the login page onwards, the token for the user’s
authenticated session may still be disclosed if the user revisits a preau-
thentication page (such as Help or About), either by following links

194 Chapter 7 = Attacking Session Management

within the authenticated area, by using the Back button, or by typing
the URL directly.

m [n a variation on the previous case, the application may attempt to
switch to HTTPS when the user clicks the Login link; however, it may
still accept a login over HTTP if the user modifies the URL accordingly.
In this situation, a suitably positioned attacker can modify the pages
returned in the preauthenticated areas of the site so that the Login link
points to an HTTP page. Even if the application issues a fresh session
token after successful login, the attacker may still intercept this token if
he has successfully downgraded the user’s connection to HTTP.

m Some applications use HTTP for all static content within the applica-
tion, such as images, scripts, style sheets, and page templates. This
behavior is often indicated by a warning alert within the user’s
browser, as shown in Figure 7-3. As described previously, an attacker
can intercept the user’s session token when the user’s browser accesses
a resource over HTTP, and use this token to access protected, nonstatic
areas of the site over HTTPS.

Security Information x|

ri“; This page containe both secure and nonsecure
e

Do you want ta display the nonzecure items?

Ho | HMare Info |

Figure 7-3: Browsers present a warning alert
when a page accessed over HTTPS contains
items accessed over HTTP.

m Even if an application uses HTTPS for every single page, including
unauthenticated areas of the site and static content, there may still be
circumstances in which users’ tokens are transmitted over HTTP. If an
attacker can somehow induce a user to make a request over HTTP
(either to the HTTP service on the same server if one is running or to
http://server:443/ otherwise), then their token may be submitted.
Means by which the attacker may attempt this include sending the user
a URL in an email or instant message, placing auto-loading links into a
web site the attacker controls, or using clickable banner ads. (See Chap-
ter 12 for more details about techniques of this kind for delivering
attacks against other users.)

Chapter 7 = Attacking Session Management 195

B Walk through the application in the normal way from first access (the
“start” URL), through the login process, and then through all of the appli-
cation’s functionality. Keep a record of every URL visited, and note every
instance in which a new session token is received. Pay particular atten-
tion to login functions and transitions between HTTTP and HTTPS com-
munications. This can be achieved manually using a network sniffer such
as Wireshark or partially automated using the logging functions of your
intercepting proxy:

& burp suite v1.01 professional =100 x|

burp intruder repeater window help

prowy | spider | infruder | repeater | comms | alers

intercept | options [history |
target method URL type | S8l IF status | length

sy, o gger.om. B0 GET ! 66.102.15.100 302 461 NSC_crmphhifs-fru=0a1402010050 B
nnnewy blogger.com:80 GET Astart 6610215100 200 20,632 |ISESSIONID=ESA731C7CFFOBZFS300)
e blogger.cam:B0 GET |[fezs/bloggercss 35 6610215100 (200 [1,043 |NSC_cmphnfe-fyu=0a1402010050
v blogger.cam B0 GET _ fessiblogger_maincss s £6.10215100 200 |23,033 |NSC_cmphhis-fyu=0al402010050
nenewy blogger.com:80 GET fessilexible_buttons.ess £sS 6610215100 200 8,484 |NSC_cmphhfs-fyu=0a1402010050
wenir. gooale-anahdics.co., |GET i utm.gif?utrmin=1 &utmn=13...|gif 64233183103 1200 329
v blogger.cam 80 GET |fapplscripts/dom.commonjs is B6.10215100 (200 |6,386 |NSC_cmphhis-fu=0a1402010050 [=
e blogger.cam:B0 GET _ |[fappiscripts/detectjs is 6610215100 (200 (2,899 |NSC_crphnfs-hu=0a1402010050 [~
4] i | ’

B If HTTP cookies are being used as the transmission mechanism for ses-
sion tokens, verify whether the secure flag is set, preventing them from
ever being transmitted over unencrypted connections.

B Determine whether, in the normal use of the application, session tokens
are ever transmitted over an unencrypted connection. If so, they should
be regarded as vulnerable to interception.

B Where the start page uses HTTP, and the application switches to HTTPS
for the login and authenticated areas of the site, verify whether a new
token is issued following login, or whether a token transmitted during
the HTTP stage is still being used to track the user’s authenticated ses-
sion. Also verify whether the application will accept login over HTTP if
the login URL is modified accordingly.

W Even if the application uses HTTPS for every single page, verify whether
the server is also listening on port 80, running any service or content
whatsoever. If so, visit any HTTP URL directly from with an authenticated
session and verify whether the session token is transmitted.

B In cases where a token for an authenticated session is transmitted to the
server over HTTP, verify whether that token continues to be valid or is
immediately terminated by the server.

196

Chapter 7 = Attacking Session Management

Disclosure of Tokens in Logs

Aside from the clear-text transmission of session tokens in network communi-
cations, the most common place where tokens are simply disclosed to unau-
thorized view is in system logs of various kinds. Although it is a rarer
occurrence, the consequences of this kind of disclosure are usually more seri-
ous because those logs may be viewed by a far wider range of potential attack-
ers, and not just by someone who is suitably positioned to eavesdrop on the
network.

Many applications provide functionality for administrators and other sup-
port personnel to monitor and control aspects of the application’s runtime
state, including user sessions. For example, a helpdesk worker assisting a user
who is having problems may ask for their username, locate their current ses-
sion through a list or search function, and view relevant details about the ses-
sion. Or an administrator may consult a log of recent sessions in the course of
investigating a security breach. Often, this kind of monitoring and control
functionality discloses the actual session token associated with each session.
And often, the functionality is poorly protected, allowing unauthorized users
to access the list of current session tokens, and thereby hijack the sessions of all
application users.

The other main cause of session tokens appearing in system logs is where an
application uses the URL query string as a mechanism for transmitting tokens,
as opposed to using HTTP cookies or the body of posT requests. For example,
googling for inurl:jsessionid identifies thousands of applications that
transmit the Java platform session token (called jsessionid) within the URL:

http://www.webjunction.org/do/Navigation; jsessionid=
F27ED2A6AAEAC6DA409A3044E79B8B48?category=327

When applications transmit their session tokens in this way, it is likely that
their session tokens will appear in various system logs to which unauthorized
parties may have access, for example:

m Users’ browser logs.
m Web server logs.
m [ogs of corporate or ISP proxy servers.

m [ogs of any reverse proxies employed within the application’s hosting
environment.

m The Referer logs of any servers that application users visit by following
off-site links, as in Figure 7-4.

Chapter 7 = Attacking Session Management

197

Some of these vulnerabilities will arise even if HTTPS is used throughout

the application.

The final case just described presents an attacker with a highly effective
means of capturing session tokens in some applications. For example, if a web
mail application transmits session tokens within the URL, then an attacker can
send emails to users of the application containing a link to a web server that he
controls. If any user accesses the link (e.g., because they click on it, or because
their browser loads images contained within HTML-formatted email), then
the attacker will receive, in real time, the session token of the user. The attacker
can run a simple script on his server to hijack the session of every token
received and perform some malicious action, such as send spam email, harvest

personal information, or change passwords.

.m Current versions of Internet Explorer do not include a Referer header
when following off-site links contained in a page that was accessed over
HTTPS. In this situation, Firefox includes the Referer header provided that the
off-site link is also being accessed over HTTPS, even if it belongs to a different
domain. Hence, sensitive data placed into URLs is vulnerable to leakage in

Referer logs even where SSL is being used.

& burp suite v1.01 professional -1a] x|

burp intruder repeater window help

prozy | snider | intruder | repeater [comms | alerts |

fiﬂlercem ruptiuns rhislur\f |

request to hitp:ipagead2 googlesyndication.corm:g0

| forward H drop H intercept on || action | @ ted O param) hex

GET /pageadishow_ads js HTTRM .1

Actept =T

Referer: hitplivwm ingentaconnecl.coml;isessiu
Accept-Language: en-gh.en-us;g=04

UA-CPLU: %B6

Accept-Encoding: gzip, deflate

I-Modified-Since: Wed, 17 Jan 2007 02:33:02 GMT, length=7170
User-Agent Mozillafd.0 (compatible; MSIE 7.0, Windows MT 8.1, NET CLR 2.0.50727; FDM; InfoPath.1)
Host: pageadZ.googlesyndication.com

Froxy-Connection: Keep-Alive

Pragma: no-cache

-

T

L= | Omatches

Figure 7-4: When session tokens appear in URLs, these will be transmitted

in the Referer header when users follow an off-site link or their browser
loads an off-site resource.

198 Chapter 7 = Attacking Session Management

B Identify all of the functionality within the application and locate any log-
ging or monitoring functions where session tokens can be viewed. Verify
who is able to access this functionality—for example, administrators, any
authenticated user, or any anonymous user. See Chapter 4 for techniques
for discovering hidden content that is not directly linked from the main
application.

B Identify any instances within the application where session tokens are
transmitted within the URL. It may be that tokens are generally transmit-
ted in a more secure manner but that developers have used the URL in
specific cases to work around particular difficulties. For example, this
behavior is often observed where a web application interfaces to an
external system.

B If session tokens are being transmitted in URLs, attempt to find any
application functionality that enables you to inject arbitrary off-site links
into pages viewed by other users — for example, functionality implement-
ing a message board, site feedback, question-and-answer, and so on. If
so, submit links to a web server you control and wait to see whether any
users’ session tokens are received in your Referer logs.

B If any session tokens are captured, attempt to hijack user sessions by
using the application as normal but substituting a captured token for
your own. Some intercepting proxies can be configured with regex-based
content replacement rules to automatically modify items such as HTTP
cookies. If a large number of tokens are captured, and session hijacking
allows you to access sensitive data such as personal details, payment
information or user passwords, you can use the automated techniques
described in Chapter 13 to harvest all desired data belonging to other
application users.

Vulnerable Mapping of Tokens to Sessions

Various common vulnerabilities in session management mechanisms arise
because of weaknesses in the way the application maps the creation and pro-
cessing of session tokens to individual users’ sessions themselves.

The simplest weakness is to allow multiple valid tokens to be concurrently
assigned to the same user account. In virtually every application, there is no
legitimate reason why any user should have more than one session active at
any given time. Of course, it is fairly frequent for a user to abandon an active
session and start a new one — for example, because they have closed a
browser window or have moved to a different computer. But if a user appears
to be using two different sessions simultaneously, this usually indicates that a

Chapter 7 = Attacking Session Management

199

security compromise has occurred: either the user has disclosed their creden-
tials to another party or an attacker has obtained their credentials through
some other means. In both cases, permitting concurrent sessions is undesirable
because it allows users to persist in undesirable practices without inconve-
nience and because it allows an attacker to use captured credentials without
risk of detection.

A related but distinct weakness is for applications to use “static” tokens.
These look like session tokens and may initially appear to function like them,
but in fact they are no such thing. In these applications, each user is assigned a
token, and this same token is reissued to the user every time he logs in. The
application always accepts the token as valid regardless of whether the user
has recently logged in and been issued with it. Applications like this really
involve a misunderstanding of the whole concept of what a session is, and the
benefits that it provides for managing and controlling access to the applica-
tion. Sometimes, applications operate like this as a means of implementing
poorly designed “remember me” functionality, and the static token is accord-
ingly stored in a persistent cookie (see Chapter 6). Sometimes the tokens them-
selves are vulnerable to prediction attacks, making the vulnerability far more
serious because rather than compromising the sessions of currently logged-in
users, a successful attack will compromise, for all time, the accounts of all reg-
istered users.

Other kinds of strange application behavior are also occasionally observed
that demonstrate a fundamental defect in the relationship between tokens and
sessions. One example is where a meaningful token is constructed based upon
a username and a random component. For example, consider the token:

dXN1cjlkYWY7¢cjEIMTMwOTQxXxODEYMTMONTKkwMTI=

which Base64-decodes to:

user=daf;r1=13094181213459012

After extensive analysis of the r1 component, we may conclude that this
cannot be predicted based on a sample of values. However, if the application’s
session processing logic is awry, it may be that an attacker simply needs to
submit any valid value as r1 and any valid value as user, in order to access a
session under the security context of the specified user. This is essentially an
access control vulnerability, because decisions about access are being made on
the basis of user-supplied data outside of the session (see Chapter 8). It arises
because the application effectively uses session tokens to signify that the
requester has established some kind of valid session with the application; how-
ever, the user context in which that session is processed is not an integral prop-
erty of the session itself but is determined per-request through some other
means. In this case, that means can be directly controlled by the requester.

200 Chapter 7 = Attacking Session Management

H Log in to the application twice using the same user account, either from
different browser processes or from different computers. Determine
whether both sessions remain active concurrently. If so, the application
supports concurrent sessions, enabling an attacker who has compro-
mised another user’s credentials to make use of these without risk of
detection.

H Log in and log out several times using the same user account, either from
different browser processes or from different computers. Determine
whether a new session token is issued each time or whether the same
token is issued each time you log in. If the latter occurs, then the applica-
tion is not really employing proper sessions at all.

H If tokens appear to contain any structure and meaning, attempt to sepa-
rate out components that may identify the user from those that appear to
be inscrutable. Try to modify any user-related components of the token
so that they refer to other known users of the application, and verify
whether the resulting token (a) is accepted by the application, and (b)
enables you to masquerade as that user.

Vulnerable Session Termination

Proper termination of sessions is important for two reasons. First, keeping the
lifespan of a session as short as is necessary reduces the window of opportu-
nity within which an attacker may capture, guess, or misuse a valid session
token. Second, it provides users with a means of invalidating an existing ses-
sion when they no longer require it, thereby enabling them to reduce this win-
dow further and to take some responsibility for securing their session in a
shared computing environment. The main weaknesses in session termination
functions involve failures to meet these two key objectives.

Some applications do not enforce effective session expiration. Once created, a
session may remain valid for many days after the last request is received, before
it is eventually cleaned up by the server. If tokens are vulnerable to some kind of
sequencing flaw that is particularly difficult to exploit (for example, 100,000
guesses for each valid token identified), an attacker may still be able to capture
the tokens of every user who has accessed the application in the recent past.

Some applications do not provide effective logout functionality:

m n some cases, a logout function is simply not implemented. Users have
no means of causing the application to invalidate their session.

m |n some cases, the logout function does not actually cause the server to
invalidate the session. The server removes the token from the user’s
browser (for example, by issuing a Set-Cookie instruction to blank the

Chapter 7 = Attacking Session Management

201

token). However, if the user continues to submit the token, then it is still
accepted by the server.

m |n the worst cases, when a user clicks Logout, this fact is not communi-
cated to the server at all, and so the server performs no action whatso-
ever. Rather, a client-side script is executed that blanks the user’s
cookie, meaning that subsequent requests return the user to the login
page. An attacker who gains access to this cookie could use the session
as if the user had never logged out.

B Do not fall into the trap of examining actions that the application per-
forms on the client-side token (such as cookie invalidation via a new
Set-Cookie instruction, client-side script, or an expiration time
attribute). In terms of session termination, nothing much depends upon
what happens to the token within the client browser. Rather, investigate
whether session expiration is implemented on the server side:

® Log in to the application to obtain a valid session token.

® Wait for a period without using this token, and then submit a request
for a protected page (e.g., “my details”) using the token.

m If the page is displayed as normal, then the token is still active.

® Use trial and error to determine how long any session expiration time-
out is, or whether a token can still be used days after the last request
using it. Burp Intruder can be configured to increment the time inter-
val between successive requests, to automate this task.

B Determine whether a logout function exists and is prominently made
available to users. If not, users are more vulnerable because they have
no means of causing the application to invalidate their session.

B Where a logout function is provided, test its effectiveness. After logging
out, attempt to reuse the old token and determine whether it is still
valid. If so, users remain vulnerable to some session hijacking attacks
even after they have “logged out.”

Client Exposure to Token Hijacking

There are various ways in which an attacker can target other users of the appli-
cation in an attempt to capture or misuse the victim’s session token:

m An obvious payload for cross-site scripting attacks is to query the user’s
cookies to obtain their session token, which can then be transmitted to
an arbitrary server controlled by the attacker. All of the various permu-
tations of this attack are described in detail in Chapter 12.

202 Chapter 7 = Attacking Session Management

m Various other attacks against users can be used to hijack the user’s ses-
sion in different ways. These include session fixation vulnerabilities,
where an attacker feeds a known session token to a user, waits for them
to log in, and then hijacks their session; as well as cross-site request
forgery attacks, in which an attacker makes a crafted request to an
application from a web site that he controls, and exploits the fact that
the user’s browser automatically submits her current cookie with this
request. These attacks are also described in Chapter 12.

B Identify any cross-site scripting vulnerabilities within the application and
determine whether these can be exploited to capture the session tokens
of other users (see Chapter 12).

B If the application issues session tokens to unauthenticated users, obtain a
token and perform a login. If the application does not issue a fresh token
following a successful login, then it is vulnerable to session fixation.

B Even if the application does not issue session tokens to unauthenticated
users, obtain a token by logging in, and then return to the login page. If
the application is willing to return this page even though you are already
authenticated, submit another login as a different user using the same
token. If the application does not issue a fresh token after the second
login, then it is vulnerable to session fixation.

B Identify the format of session tokens used by the application. Modify
your token to an invented value that is validly formed, and attempt to
login. If the application allows you to create an authenticated session
using an invented token, then it is vulnerable to session fixation.

B If the application does not support login, but processes sensitive user
information (such as personal and payment details), and allows this to
be displayed after submission (e.g., on a “verify my order” page), then
carry out the previous three tests in relation to the pages displaying sen-
sitive data. If a token set during anonymous usage of the application can
later be used to retrieve sensitive user information, then the application
is vulnerable to session fixation.

B If the application uses HTTP cookies to transmit session tokens, then it
may well be vulnerable to cross-site request forgery (XSRF). First, log in to
the application. Then confirm that a request made to the application but
originating from a page of a different application results in submission of
the user’s token. (This submission will need to be made from a window of
the same browser process as was used to log in to the target application.)
Attempt to identify any sensitive application functions all of whose para-
meters can be determined in advance by an attacker, and exploit this to
carry out unauthorized actions within the security context of a target user.
See Chapter 12 for more details on how to execute XSRF attacks.

Chapter 7 = Attacking Session Management

203

Liberal Cookie Scope

The usual simple summary of how cookies work is that the server issues a
cookie using the HTTP response header set-cookie, and the browser then
resubmits this cookie in subsequent requests to the same server using the
cookie header. In fact, matters are rather more subtle than this.

The cookie mechanism allows a server to specify both the domain and the
URL path to which each cookie will be resubmitted. To do this, it uses the domain
and path attributes that may be included in the set-cookie instruction.

Cookie Domain Restrictions

When the application residing at foo.wahh-app.com sets a cookie, the browser
will by default resubmit the cookie in all subsequent requests to foo.wahh-
app . com, and also to any subdomains, such as admin. foo.wahh-app. com. It will
not submit the cookie to any other domains, including the parent domain wahh-
app . com and any other subdomains of the parent, such as bar.wahh-app. com.

A server can override this default behavior by including a domain attribute
in the set-cookie instruction. For example, suppose that the application at
foo.wahh-app.com returns the following HTTP header:

Set-cookie: sessionId=19284710; domain=wahh-app.com;

The browser will then resubmit this cookie to all subdomains of wahh-app . com,
including bar.wahh-app. com.

.m A server cannot specify just any domain using this attribute. First, the
domain specified must be either the same domain as the application is running
on or a domain that is its parent (either immediately or at some remove).
Second, the domain specified cannot be a top-level domain such as .com or
.co.uk, because this would enable a malicious server to set arbitrary cookies
on any other domain. If the server violates one of these rules, the browser will
simply ignore the set-cookie instruction.

If an application sets a cookie’s domain scope as unduly liberal, this may
expose the application to various security vulnerabilities.

For example, consider a blogging application that allows users to register,
log in, write blog posts, and read other people’s blogs. The main application is
located at the domain wahh-blogs.com, and when users log in to the applica-
tion they receive a session token in a cookie that is scoped to this domain. Each
user is able to create blogs that are accessed via a new subdomain which is pre-
fixed by their username, for example:

herman.wahh-blogs.com
solero.wahh-blogs.com

204

Chapter 7 = Attacking Session Management

Because cookies are automatically resubmitted to every subdomain within
their scope, when a user who is logged in browses the blogs of other users,
their session token will be submitted with their requests. If blog authors are
permitted to place arbitrary JavaScript within their own blogs (as is usually
the case in real-world blog applications), then a malicious blogger will be able
to steal the session tokens of other users in the same way as is done in a stored
cross-site scripting attack (see Chapter 12).

The problem arises because user-authored blogs are created as subdomains
of the main application that handles authentication and session management.
There is no facility within HTTP cookies for the application to prevent cookies
issued by the main domain from being resubmitted to its subdomains.

The solution is to use a different domain name for the main application (for
example, www.wahh-blogs.com), and scope the domain of its session token
cookies to this fully qualified name. The session cookie will not then be sub-
mitted when a logged-in user browses the blogs of other users.

A different version of this vulnerability arises when an application explicitly
sets the domain scope of its cookies to a parent domain. For example, suppose
that a security-critical application is located at the domain sensitiveapp
.wahh-organization.com. When it sets cookies, it explicitly liberalizes their
domain scope, as follows:

Set-cookie: sessionId=12df098ad809a5219; domain=wahh-organization.com

The consequence of this is that the sensitive application’s session token cook-
ies will be submitted when a user visits every subdomain used by wahh-orga-
nization.com, including:

www .wahh-organization.com
testapp.wahh-organization.com

Although these other applications may all belong to the same organization
as the sensitive application, it is undesirable for the sensitive application’s
cookies to be submitted to other applications, for several reasons:

m The personnel responsible for the other applications may have a differ-
ent level of trust than those responsible for the sensitive application.

m The other applications may contain functionality which enables third
parties to obtain the value of cookies submitted to the application, as in
the previous blogging example.

m The other applications may not have been subjected to the same secu-
rity standards or testing as the sensitive application (e.g., because they
are less important, do not handle sensitive data, or have been created
only for test purposes). Many kinds of vulnerability that may exist in
those applications (for example, cross-site scripting vulnerabilities) may

Chapter 7 = Attacking Session Management 205

be irrelevant to the security posture of those applications but could
enable an external attacker to leverage an insecure application in order
to capture session tokens created by the sensitive application.

Cookie Path Restrictions

When the application residing at /apps/secure/foo-app/index.jsp sets a
coo