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FOREWORD

It’s not easy being a writer on cryptology. Actually, it’s not easy being a writer. You

have to think about what subjects you want to cover. Then you have to decide in what

order you want to put them—not so simple, because the most logical progression isn’t

always the best for teaching. Then comes the worst part: You actually have to cover a

blank screen or sheet of paper with letters and figures that make sense.

Alan Konheim has sweated through it many times. He has written a number of tech-

nical articles, which demonstrates that he has mastered the technicalities of his subject.

And he has passed through the fire of book authorship once before, in his acclaimed Cryp-

tography: A Primer. In the years that followed, he has learned what worked in that book

and what didn’t, and has applied those lessons in the present work. The result is a fine

amalgam of scholarship and pedagogy.

But if the elements of writing—clarity and concision—have remained the same,

cryptology has not. For centuries, it was axiomatic that both en- and decipherer had to

have the same key, though used inversely. The invention of public-key cryptography abol-

ished that axiom. It has transformed and energized the practical applications of crypto-

graphy. Many of these remain grounded in the classical, or symmetric, systems of

cryptography. And the enormous expansion of communications has driven its child,

secret communications, into vast new fields. Once the exclusive domain of soldiers and dip-

lomats and spies, cryptology has become almost ubiquitous. People use it without knowing

that they are doing so. Every time a person uses an automatic tellermachine, his or her trans-

action is encrypted. So are online bank transactions. Whenever anyone sends his or her

credit card number securely to, say, E-bay or Amazon, he or she is using cryptography.

And the field has emerged from the shadows, The National Security Agency, once so

secret that it was referred to as “No Such Agency,” is now mentioned in movies and on the

evening news almost without any identification, just as the CIA and FBI are. The post-9/
11 flap over the Bush administration’s warrantless wiretapping has further brought crypto-

logy, the NSA, and privacy into the open. The International Association for Cryptologic

Research publishes its Journal of Cryptology four times a year. The aura of mysticism that

long enshrouded it has been dispelled by the cold logic ofmathematics that now dominates it.

Alan Konheim knows all about this because he worked for IBM when it was a leader

in the field of cryptology and because he has kept up with new developments, as his many

technical articles demonstrate. His experience in teaching tells him what questions

students are likely to ask and what problems in understanding they are likely to encounter.

His previous book has taught him how to explain complicated matters effectively.

The result is this excellent book, which joins the permanent qualities of its writing

to the immediacy of its coverage. Cryptologists—beginners and veterans alike—will

welcome it. As do I.

Long Island, NewYork DAVID KAHN

October 2006
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PREFACE

NATIONAL SECURITY AND COMPUTER SECURITY

On September 11, 2001, the word security moved into the foreground of our national con-

sciousness, where it continues to reside today. The presidential election in 2004 was

largely decided on the basis of which candidate was perceived to best manage

security for the American people. Americans are puzzled about the hatred expressed by

certain ideologies and foreign governments about our way of life and culture. The

missions of the National Security Agency/Central Security Service (CSS) include

both the protection of U.S. communications and the production of foreign intelligence.

Although cryptography plays a role in both of these areas, this book is not about either.

This book is about the role of cryptography in our day-to-day lives. Today, there is

no activity that does not depend on computers. When there is a power outage in

Santa Barbara, I often cannot buy Twinkies at the supermarket, to my dismay and that

of the merchant, but to the delight of my endocrinologist. The use of traveler’s checks

has declined because of the convenience and availability of ATM machines. Vast

amounts of data are maintained by banks and credit card companies. Stories of their

mismanaging customer data appear regularly in the news. Identity theft is well on its

way to becoming a flourishing industry. Credit card companies now have the nerve to

advertise identity theft insurance to protect the information that they are legally obliged

to guard, but fail to do so.

Cryptography has a role to play in many areas. Like seat belts, it will not completely

protect us. In the chapters that follow, I will develop the basic ideas about cryptography

and then illustrate some of the ways it interacts with and protects us.

WHY STUDY CRYPTOGRAPHY?

There is a symbiotic relationship between cryptography and the development of high-

performance computing systems. Modern-day computers were created at the behest of

twentieth-century cryptanalysts. As the complexity of cryptographic systems progressed

from mechanical to electronic systems, so did the need to develop more efficient

methods to cryptanalyze them.

Every cryptosystem, which has a finite number of keys, can usually be analyzed

by key trial, deciphering the ciphertext with all possible keys until some recognizable

text appears. In many “classical” cryptographic systems, the testing of keys could be

performed by hand. The stimulus for the development of computers was the need to be

able to test large sets of possible keys to decipher coded traffic. Modern cryptosystems

are such that the number of possible keys is generally so large as to make exhaustive

key trial infeasible. Even computers are limited, and some analysis must precede key

testing for the process to be successful.
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The marriage of computing and cryptography provides a marvelous real-life

application of mathematics, and develops the inference skills that are fundamental to

engineering and science. When a student first views the ciphertext

To-drijohrunurmanpmlgchd-ehapuotp,te-nmabsno-nitioippmbo-a-a

sTasm-h-op-ms-vye-m.ikndu-n-atscegnetoin-l-rs-v-e-u-ta-olati

s-t-sccw——eorrgdhgngP.r-stenvercenhnerhchoie-nun-sr-tois-rma

eaeeadadrssou-o-etat-iefeotifc-m-a——ergua-eiuo-oixeordalmyes

there may be confusion. Word fragments may be detected, but how can the text be recov-

ered? After students learn to critically examine the ciphertext, they are often capable of

deciphering it. Cryptography teaches students how clever they can be. Of course, instruc-

tors should caution their students as the television commercials for ED advise; to wit, if

their efforts in cryptanalyzing some ciphertext “last more than four hours, they should

seek tutorial assistance.”

Although computer security is certainly a hot topic today, its public discussion is often

accompanied by a great deal of hype. People are impressed by cryptosystems with large key

spaces and the press releases make liberal use of the term unbreakable. The Kryha machine,

a mechanical ciphering machine invented in 1924, had more than 4.57 � 1050 keys, but it

did not offer much secrecy protection. Invoking the lore of large numbers to “prove” the

strength of an encipherment scheme often fails to measure the real strength.

This book will provide the tools for understanding the central issues in data security.

It will provide an instructor with a wide range of topics to train students to evaluate

critically the factors that affect the effectiveness of secrecy, authentication, and digital

signature schema, sensitize a student to some of the factors that determine the strength

of an algorithm and its protocol implementations, and provide hands-on experience to

the student with cryptanalysis.

The book’s goal is to explain the nature of secrecy and the “practical” limitations of

cryptography in providing secrecy and its derivatives (authentication and digital

signatures).

MY PRIOR ART

Parts of Computer Security and Cryptography have served as the text for CMPSC 178

(Introduction to Cryptography) at UCSB. It is an upper-division elective in the under-

graduate program of the Computer Science Department of the University of California

(Santa Barbara) from 1983 to 2005. CMPSC 178 is ten-week four-unit course, meeting

75 minutes twice weekly. Class lectures are supplemented by a Discussion Section

conducted by a Teaching Assistant. CMPSC 178 is usually taken in the Junior or

Senior year by students from the Departments of Computer Science, Electrical and

Computer Engineering, and Mathematics. The prerequisites are CMPSC 10 (a Java

programming language course), and PSTAT 120A or 121A (an entry-level course in

probability and statistics).

Eight or nine homework assignments require students to write programs to carry out

the cryptanalysis of various cryptosystems and various exercises related to other crypto-

logic topics. Although in class I hand out a hard copy of the assignments containing the

ciphertext, the nature of ciphertext requires the students to copy the ciphertext files

from my Web page. The same procedure will be followed with Computer Security and

Cryptography; the ciphertext for the exercises may be downloaded from Wiley’s ftp-

site at ftp://ftp.wiley.com/public/sci_tech_med/computer_security.
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A replica of the cover page of my CMPSC 178 Reader appears above. One of my

colleagues claimed that my New York humor would not be understood by California

students. They would fail to grasp the cryptographic significance of the inverted cone.

Perhaps, but many apparently watched television late at night and understood.

I dispensed with both an in-class Midterm and Final Examination in 1997 as there is

no subject matter that can realistically be tested in class. In its place, I require a Term

Paper; the topic is selected by the student and approved by me. The Term Paper is a

short report (under 10 pages) on some cryptologic topic, based on related material

from at least two related papers. The Term Paper need not contain a single equation nor

deal only with theoretical issues. In fact, I encourage students to look for topics that are

historical in nature, relate to applications or social issues. The Term Paper must include

a summary of the Paper and the student’s evaluation of the Paper’s contributions. The

Term Paper is due at the last class session. I provide a list of reference material, but the

Web provides a more extensive source of topics and material.

Except for the introductory material, a solid mathematical background is needed,

including probability theory and statistics. Much of modern cryptography depends on

the fundamentals of number theory, but most engineering and computer science students

do not enter with such preparation. If this material was imposed as a prerequisite, the

potential audience would be reduced, so I develop the relevant mathematical topics

in the course.

The Course Syllabus, distributed in class at the first lecture, is perhaps an

exaggeration of the course’s scope.

1. Aperitifs – Overview of Cryptography 11. The Knapsack Cryptosystem

2. Columnar Transposition 12. The RSA Cryptosystem

3. Monoalphabetic Substitution 13. Primality and Factorization

4. Polyalphabetic Substitution 14. The Discrete Logarithm Problem

5. Statistical Tests 15. Elliptic Curve Cryptography

6. Rotor Encipherment 16. Key Exchange in a Network

7. The World War II Cipher Machines 17. Digital Signatures & Authentication

8. Stream Ciphers (LFSR, Cellphone) 18. Applications (ATM, Access Control, the Web)

9. The NIST Encryption Standards 19. Patents in Cryptography

10. The Paradigm of Public Key Cryptography
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Computer Security and Cryptography is an expanded version of the CMPSC 178 Reader,

modified to make it appropriate for a wider audience. The Instructor should choose the

topics that match his/her interests and those of the class.

ORGANIZATION OF THE BOOK

There are three types of chapters in this book:

1. Those that develop technical details;

2. Those that describe a cryptosystem and possibly indicate method(s) of analysis; and

3. Those that describe a cryptosystem, indicate method(s) of analysis, and provide

problems to test the students understanding; these are signalled with S.

Classical Cryptography

1. Aperitifs

2. Columnar Transposition S

3. Monoalphabetic Substitution

(a) Cribbing and Scoring a Monoalphabetic Substitution S

(b) Hill Substitution S

(c) The Hidden Markov Model

4. Polyalphabetic Substitution S

5. Statistical Tests S

World War II Cryptography

6. Emergence of the Cipher Machine

(a) The German Enigma Machine

(b) The Lorenz Schlusselzusatz

7. The Japanese Cipher Machines

(a) The Japanese RED Machine

(b) The Japanese PURPLE Machine

Modern Cryptography

8. Stream Ciphers S

9. The NIST Encryption Standards

(a) LUCIFER

(b) DES

(c) Rijndael (AES)

(d) Design of Block Ciphers

10. The Paradigm of Public Key Cryptography

11. The Knapsack Cryptosystem S

12. The RSA Cryptosystem
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13. Prime Numbers and Integer Factorization S

14. The Discrete Logarithm Problem

15. Elliptic Curve Cryptography

16. Key Exchange in a Network S

17. Digital Signatures and Authentication

18. Applications of Cryptography

(a) Unix Password

(b) ATM Cards

(c) Secure Access and Smart Cards

(d) Protecting the Web (E-Commerce)

19. Patents in Cryptography

Solutions to Problems
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CHA P T E R1
APERITIFS

“Yet it may be roundly asserted that human ingenuity cannot concoct a cipher that human

ingenuity cannot resolve”

— The Gold Bug (Edgar Allan Poe)

“It Ain’t Necessarily So”

— Song from Porgy and Bess (George and Ira Gershwin)1

“Skipper” the sailor said to his captain as he saluted,

“A special message just came in for you from the admiral. I have it right here.”

“Read it to me,” the captain ordered.

The sailor began reading nervously, “You are without a doubt the most idiotic,

lame-brained officer ever to command a ship in the United States Navy.”

“Have that communication decoded at once!,” The skipper responded

— Pastor Tim’s Clean Laugh List

1.1 THE LEXICON OF CRYPTOGRAPHY

Theword “cryptography” is derived from theGreekwords kryptos, meaning hidden, and gra-

phien, meaning to write. Historians believe Egyptian hieroglyphics, which began about 1900

B.C.E., to be an early instance of encipherment. The key that unlocked the hieroglyphic

secrets was the Rosetta Stone, discovered in 1799 in lower Egypt and now located in

the British Museum in London. François Champollion, using the Rosetta Stone, deciphered

the hieroglyphics in 1822. The books by David Kahn [1967, 1983] and Simon Singh

[1999] provide extensive accounts of cryptography and its influence on history.

Every scientific discipline develops its own lexicon, and cryptography is no

exception. We begin with a brief summary of the principal terms used in cryptography.

An alphabet A ¼ {a0, a1, . . . , am�1} is a finite set of letters; examples include

1. m ¼ 2r: (0,1)-sequences of fixed length r

Zr,2 ¼ {x ¼ (x0, x1, . . . , xr�1): xi ¼ 0, 1, 0 � i , r};

2. m ¼ 27: the ASCII character alphabet;

3. m ¼ 26: the alphabet consisting of upper-case Latin letters: {A, B, . . . , Z}

Text is formed by concatenating letters of A; an n-gram (a0, a1; . . . ; an�1) is the
concatenation of n letters. We do not require that the text be understandable nor that it

be grammatically correct relative to a natural language; thus

Good_Morning and vUI�_9Uiing8

are both examples of ASCII text.

Computer Security and Cryptography. By Alan G. Konheim
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Encipherment or encryption is a transformation process (Fig. 1.1), T enciphering the

plaintext x ¼ (x0, x1, . . . , xn�1) to the ciphertext y ¼ ( y0, y1, . . . , ym�1Þ, where

T: Good_Morning! Kssh_Qsvrmrk

is an example of encipherment introduced nearly 2000 years ago by Julius Caesar during

the Gallic Wars in order to communicate with his friend and lawyer Marcus Tullius

Cicero. It is not necessary that

1. The plaintext and ciphertext alphabets be identical; nor that

2. Encipherment leaves the number of letters unchanged.

The only requirement on T is the obvious one; it must be possible to reverse the process of

encipherment.

Decipherment, or decryption, is also a transformation, T21 (Fig. 1.2), which

recovers the plaintext x from the ciphertext y.

T
21: Kssh_Qsvrmrk! Good_Morning.

Additional properties are sometimes imposed on T, for example, that encipherment does

not change the number of letters.

The three principal applications of cryptography are secrecy, authentication, and

access control. Secrecy intends to deny information contained in text by disguising its

form, for example,

1. In order to prevent an eavesdropper from learning the content of the communication

when two users communicate over an open or insecure network; and

2. To hide information stored in a file system.

When two parties communicate over an open or insecure network, each needs to be

certain of the identity of the other. Webster’s dictionary defines authentication as “a

process by which each party to a communication verifies the identity of the other.”

The term IFF, for identification, friend or foe, was an authentication protocol

introduced during World War II to protect U.S. airspace from intrusion by enemy aircraft.

The identity of a plane entering U.S. airspace was authenticated using a challenge–

response pair; the correct response is determined by a cryptographic function of the

challenge.

Access to files and other facilities in an information processing system is still

another area in which cryptographic ideas have found application. In Chapter 18, we

Figure 1.1 The encipherment transformation.

Figure 1.2 The decipherment transformation.
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describe the authentication process when a customer engages in an ATM (automated teller

machine) transaction. Authentication requires the customer to have

1. Possession of a valid ATM card; and

2. Knowledge of the corresponding personal identification number (PIN).

A new class of security problems in the twentieth century arose from communication over

public networks. The ubiquitous nature of computer networks has given rise to

e-commerce, and in the process has enlarged the area in which cryptography is needed.

Transactions over theWeb have changed the scale and environment in which the problems

of secrecy and authentication exist. As discussed in Chapter 18, the principal security

issues are:

1. Privacy. Users may insist that their data transmitted on the Web be hidden from

any parties who monitor communications and the contents of their records in a

file system be hidden.

2. Authentication: User Identity. As users communicating data over a network are

not in physical proximity – for example, do not see or talk to one another – both

need to be confident of the identity of the other.

3. Authentication: Message Integrity. When users communicate over a network, each

wants to be certain that not other party has maliciously modified the transmitted

data. Although it is not possible to prevent transaction data from being altered a

scheme must be implemented that will be likely to detect changes.

A transaction between two users involves one or more exchanges of data. Each

transmission of transaction data is suffixed by a message authentication code (MAC) or

digital signature (SIG); the MAC/SIG authenticates both the (sender, receiver) pair and

the content of the communication (Fig. 1.3). The MAC is a sequence of 0’s and 1’s

functionally dependent on the transaction data and the identities of the corresponding

parties.

1. If privacy is required, the concatenated Transaction Data and MAC must be

enciphered.

2. The authenticity of participants in a transaction must be established.

3. To insure the integrity of the exchange of information, the MAC must depend on the

transaction data in such a way that

(a) MAC-1, a secret element is involved in the construction of the MAC;

(b) MAC-2, no user can expect to construct a valid MAC for the transaction data

without knowledge of the secret element;

(c) MAC-3, any change in the transaction data will likely change the MAC.

Web-based electronic transactions (Chapter 18) require a framework inwhich the purchaser

and seller can be confident of the integrity of their transactions.

We shall show that each of these different applications of cryptography involves the

same principles.

Figure 1.3 The message authentication MAC appended to transaction data.
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1.2 CRYPTOGRAPHIC SYSTEMS

When a pair of users encipher the data they exchange over a network, the cryptographic

transformation they use must be specific to the users. A cryptographic system is a family

T ¼ fTk: k [ K} of cryptographic transformations. A key k is an identifier specifying a

transformation Tk in the family T . The key space K is the totality of all key values. In

some way the sender and receiver agree on a particular k and encipher their data with

the enciphering transformation Tk.

Encipherment originally involved pen-and-pencil calculations. Mechanical devices

were introduced to speed up encipherment in the eighteenth century, and they in turn were

replaced by electromechanical devices a century later. Encipherment today is often

implemented in software (Fig. 1.4); Tk is an algorithm whose input consists of plaintext

x and key k and with ciphertext y as output.

1.3 CRYPTANALYSIS

Will encipherment provide secrecy? Cryptography is a contest between two adversaries:

. The designer of the system (algorithm, key space, protocol implementation), and

. The opponent, who attempts to circumvent the effect of encipherment.

Can an opponent recover all or part of the plaintext x from the ciphertext y ¼ Tk0(x) and

knowledge of the cryptographic system T but without the key k0. Cryptanalysis encompasses

all of the techniques to recover the plaintext and/or key from the ciphertext.

The ground rules of this contest were set forth in the nineteenth century by

Kerckhoffs1 in his book “La Cryptographie militare.” Kerckhoffs formulated six attributes

that a cryptographic system should enjoy in order for the designer to triumph in the

struggle.

K1. The System Should be, if not Theoretically Unbreakable, Unbreakable
in Practice.

The term unbreakable is colloquially used to mean that no technique exists to deter-

mine the key k or plaintext x from the ciphertext y ¼ Tk(x). It is possible to design

an unbreakable system, but it is impractical to use except in situations in which

Figure 1.4 The software encipherment/decipherment processes.

1Jean-Guiullaume-Hubert-Victor-Francois-Alexandre-Auguste-Kerckhoffs von Niuewenof, born in 1835 in Nuth

(Netherlands), was a professor of German in Paris. The Kerckhoffs must have had spectacular towels!
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only a modest amount of traffic is exchanged and an alternative secure path for

exchanging the key is available.

More relevant is the amount of computational effort – measured by time and

memory – needed to produce k and/or x. Claude Shannon’s paper [Shannon,

1949] developed a theory of secrecy systems and defined the work function,

a quantitative measure (computational time/memory) of the strength of

encipherment. The larger the work function, the more secrecy that results from

encipherment. The minimum work function required is application-dependent.

A patient’s medical records may require protection for years, military plans, a

shorter time.

Alas, the work function is not generally computable. It may be possible to

bound the work function from above and thereby to often show that secrecy is

not achieved. It is much more difficult to obtain a lower bound needed to con-

clude that no methods exist that will break the system with an effort less than

the lower bound.

K2. Compromise of the System Should not Inconvenience the Correspondents.

A cryptographic system T has two types of information:

(a) The public information, a description of the algorithms fTk : k [ Kg and the

key space K.

(b) The private information, the particular key k chosen by the correspondents.

If a cryptographic system T is commercially available, manuals need to exist to

describe the encipherment algorithmn. Whatever secrecy results from encipher-

ment must depend on keeping the key secret. By compromise, Kerckhoff meant

that knowledge of the public information should not adversely affect the

secrecy achieved.

K3. The Method for Choosing the Particular Member (Key) of the Cryptographic
System to be Used Should be Easy to Memorize and Change.

It is common for users to select names Alan G. Konheim, dates 11/26/37 or

phrases Now is the time . . . to serve as a key. In some applications, part of

the key will be recorded magnetically on a card and part will be memorized.

Databases now exist containing phrases and names, so computer searches

today make these choices risky. Although a key should ideally be selected

randomly, users always balance the tradeoff between the danger of someone

guessing their key and the perceived risk of forgetting the key.

K4. Ciphertext Should be Transmittable by Telegraph

Telegraphy was the dominant communication technology in the nineteenth century;

this requirement is interpreted today to mean that text can be coded into a

sequence as 0’s and 1’s suitable for transmission and storage. Excluded are the

methods of steganography, which hide the very existence of text using invisible

inks or by using a microdot.

K5. The Apparatus Should be Portable

The relatively bulky equipment of World War II has been replaced by micro-

processors, which fulfill Kerckhoffs’ requirement.

K6. Use of the System Should not Require a Long List of Rules or Mental Strain.

The ease, cost, and performance impact (speed) on encipherment continue to be

dominant issues today.
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In assessing the strength of encipherment, it must be assumed that the cryptographic

system T ¼ fTk : k [ Kg is known, but that the key k0 producing the ciphertext

Tk0 : x! is not. Three environments in which cryptanalysis may be attempted are:

1. Ciphertext Only. The ciphertext y ¼ Tk0(x) is known by the opponent; x and k0 are

unknown.

2. Corresponding Plain- and Ciphertext. The plaintext x and ciphertext y ¼ Tk0(x)

are both known by the opponent; k0 is unknown.

3. Chosen Plaintext and the Corresponding Plain- and Ciphertext. The plaintext x

and ciphertext y ¼ Tk0(x) are both known for some set of chosen plaintext fxig; k0
is unknown.

1.4 SIDE INFORMATION

Side information about ciphertext is any information relating to the content of the plain-

text. The following puzzle asks you to unravel each of the words, where the letters

have been rearranged.

DFOR KIBUC TECRELOHV DONSHU
KADCRAP GEDOD LADCLIAC NOCILLN

A solution to the puzzle is easy using the side information provided (Fig. 1.5), that the

words are names of automobiles! Has anyone seen a Hudson SUV lately?

1.5 THOMAS JEFFERSON AND THE M-94

The M-94, (Fig. 1.6) was adopted by the U.S. Army after World War I; the same device,

now designated as the CSP-488, was adopted by the Navy. This encryption device was

invented by Alberti in the fifteenth century; subsequently, Thomas Jefferson invented

his Wheel Cipher, using the same idea. A good idea is not readily abandoned and the

wheel cipher continued to be reinvented, in 1901 by the French Major Etienne Bazeries

Figure 1.5 Side information: Where’s the Toyota and Honda?

Figure 1.6 The Thomas Jefferson/M-94 Wheel Cipher (Courtesy, NSA).

6 CHAPTER 1 APERITIFS



and in 1914 by Colonel Parker Hitt, who was a member of the Army Signal Service and the

author of the Manual for the Solution of Military Ciphers (1915).

The M-94 had 25 wheels numbered 1, 2, . . . , 25; a different permutation of the

letters A,B, . . . , Z is written around the circumference of each wheel. To encipher,

the order of the wheels on the spindle is determined by sorting a repeated key word alpha-

betically. For example, the key CHINESEFOOD is repeated to obtain 25 characters, which

are numbered in sorted order. In the following array, the first row lists the wheel identifiers

(numbers), the last row specifies the wheel positions on the spindle:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
C H I N E S E F O O D C H I N E S E F O O D C H I
1 12 15 18 6 24 7 10 20 21 4 2 13 16 19 8 25 9 11 22 23 5 3 14 17

������
������

Wheel no. 1 is placed on the leftmost position of the spindle, wheel no. 12 next, wheel

no. 23 next and finally wheel no. 17 on the right. Having placed the 25 disks on the

common spindle in this order, the wheels are rotated so that the letters of the plaintext

message are aligned with the top bar and the ciphertext read out from some specified

adjacent row.

1.6 CRYPTOGRAPHY AND HISTORY

David Kahn’s recent biography [Kahn, 2004] about Herbert O. Yardley relates the begin-

ning of American cryptologic activities. Although Secretary of State Henry Stimson’s

famous statement “Gentlemen do not read other people’s mail” marked a temporary

end of official U.S. codebreaking activities in 1929, the intelligence needs of America,

however, led to the establishment of a nongovernmental cryptanalysis effort.

Cryptography has played a significant role in the history of the United States, often

providing our country with crucial information.

1. The Zimmerman telegram in January 1917, from the German Foreign Minister

Zimmerman to the German Minister von Eckhardt in Mexico, offered to return ter-

ritory to Mexico – perhaps Arizona and California – in exchange for Mexico’s

support against the United States. Even better than a California driver’s license!

Mexico declined!! British cryptanalysts deciphered the telegram, revealing the

perfidy of the Germans. The impact on the American public was immense,

causing the United States Congress to declare war on Germany in 1917.

2. The cryptanalysis of the German Enigma machine allowed the United States and

Great Britain to read enciphered messages; the ability to read known messages

led to victory in the Battle of the Atlantic against German U-boats.

3. The cryptanalysis of the Japanese PURPLE machine and its related “color”

machines allowed the United States to prevail in the Battles of the Carol Sea and

Midway. Deciphered Japanese messages gave the United States the route to be fol-

lowed by Admiral Yamamoto Isoruku – the architect of the Japanese attack on Pearl

Harbor – on a visit to his troops in the Pacific, leading to his death.

4. The cryptanalysis of the KGB one-time system, which provided the United States

with insights into the espionage activities of the Soviet Union, revealed the

Rosenbergs and Alger Hiss to be traitors.
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1.7 CRYPTOGRAPHY AND COMPUTERS

There has been a symbiotic relationship between cryptography and the development of

high-performance computing systems. As cryptographic systems increased in their sophis-

tication, the need to develop more efficient methods to cryptanalyze them became the

stimulus for the development of computers.

Chapter 6 describes two of the three cryptographic systems used by Germany during

World War II.

1. Military communications by radio were enciphered by the Enigma rotor system.

2. The Geheimfernschreiber2 or T52e manufactured by Siemens and Halske was a

binary device in which plaintext was first converted into the 5-bit Baudot code.

3. The Lorenz Schlusselzusatz3 or SZ40/SZ42 also performed encipherment on

plaintext converted into binary data.

The T52e and SZ40 devices were on-line devices connected to a teletypewriter. They were

both used to protect high-level communications.

The Polish Cipher Bureau started to develop methods to analyze Enigma-enciphered

traffic in 1932. The task was given to three recent university graduates – Marian Rejewski,

Jerzy Różycki, and Henryk Zygalski, who developed the bombe,4 a mechanical computer.

When Poland was invaded by Germany, the Polish cipher bureau fled to southern France

and then England. Their contributions were great, and although they shared their analysis

with the British, they were not permitted to work on the Ultra project – the name of the

Allied effort in cryptanalysis.

An excellent narrative of the breaking of the naval Enigma is given in David Kahn’s

book Seizing the Enigma [Kahn, 1991].

The United Kingdom’s cryptanalytic effort during World War II was located at the

General Communications Headquarters (GCHQ) in Bletchley Park, a suburb of London.

Alan Turing, regarded as the inventor of the stored program concept and the universal

automation or Turing machine [Turing, 1936] participated in the Bletchley Park cryp-

tanalysis effort. His achievements are described in the work of Hodges [1983] and Cave

Brown [1975]. Turing, together with a group of engineers including Tommy Flowers,

designed the machines to crytanalyze German ciphertext, first the primitive electromecha-

nical bombes and later their successors (the Colossi), the first programmable processors.

Different operational procedures were used with the Enigma machine during World

War II and when they were changed, the Polish bombe was no longer effective. Turing

developed a new bombe to search the ciphertext for isomorphs of plaintext believed to

occur in the message.

The development of the Colossus machine [Lavington, 1980; Randall, 1982] illus-

trates the interplay of computers and cryptography. The need for testing many possible

key settings to decipher ciphertext led to the invention of the computer. Heath Robinson,

named after a famous British cartoonist, was the name of the first machine; it had

teleprinter tape input and was used to attack the Schusselzusatz ciphertext. Professor

2Geheim is the German root for secret, schreiben, the verb to write, and fern indicates distance; that is, the Geheim

fernschreiber was used to communicate secretly between parties separated from one another.
3Schlussel for key and zusatz for attachment; that is, the Schlusselzusatz was an attachment to a teletypewriter.
4Bombe is the French word for bomb. There are two explanations for the term. Some authors claim the “ticking”

sound of the bomb’s mechanical components is the source of the name. Other sources report that the moment of

discovery of the bombe’s concept came to the inventors in a restaurant when a bombe – a pastry with a hemi-

spherical shape – was delivered to the patrons at an adjacent table.
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M. H. A. Newman and a team of engineers headed by Tom Flowers worked at the Post

Office Research Station for the Government Code and Cipher School at Dollis Hill

(London). It contained 15900 thermionic valves (electronic tubes); each character was

coded with the 5-bit Baudot teleprinter code, read by an optical character reader and

punched on a paper moving at a rate of 5000 characters per second. It began analyzing

ciphertext at Bletchley Park in December 1943. Its successor, Colossus Mark II (1944),

contained 2500 valves and allowed conditional branching but did not implement the

internal program store central to the concept of a computer.

1.8 THE NATIONAL SECURITY AGENCY

The development of the computer in the United States was fostered in part by the National

Security Agency (Fig. 1.7) [Bramford, 1982], which merged several separate cryptologic

organizations when it came into being on November 4, 1952. The National Security

Agency/Central Security Service (CSS) is responsible for the protection of U.S. communi-

cations and the production of foreign intelligence. The Director of NSA (DIRNSA) is a mili-

tary officer, currently Lieutenant General Keith B. Alexander, USA. The Deputy Dirrector of

NSA (D/DIRNSA) is normally someone from within the organization, and is currently,

Mr William B. Black Jr.

The NSA distinguishes between various types of communication intelligence

activities:

. COMSEC (Communications Security). The protection resulting from any

measures taken to deny unauthorized persons information derived from the national-

security-related telecommunications of the United States, or from any measure taken

to ensure the authenticity of such telecommunications. (National Intelligence

Reorganization and Reform Act of 1978.)

. COMINT (Communications Intelligence). The interception and processing of

foreign communications passed by radio, wire, or other electromagnetic means,

and the processing of foreign encrypted communications, however transmitted.

Interception comprises search, intercept, operator identification, signal analysis,

traffic analysis, cryptanalysis, decryption, study of plaintext, the fusion of these

processes, and the reporting of results. Excluded from this definition are the unen-

crypted written communications, press and propaganda broadcasts. (National

Security Council Intelligence Directive (NSCID) Number 6.)

. SIGINT (Signals Intelligence). Comprises communications intelligence

(COMINT), electronic intelligence (ELINT), foreign instrumentation signals

Figure 1.7 The NSA seal and a variant.
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intelligence (technical and intelligence information derived from the collection and

processing of foreign telemetry, beaconry, and associated signals), and information

derived from the collection and processing of nonimagery, infrared, and coherent

light signals. (National Intelligence Reorganization and Reform Act of 1978.)

Further information on NSA can be found at www.nsa.gov.

The role of NSA in computer development can be traced to the Electronic Numerical

Integrator and Calculator (ENIAC) built in 1943–44 at the University of Pennsylvania’s

Moore School of Electrical Engineering under the supervison of Drs J. W. Mauchly and

J. P. Eckert. ENIAC was built for the U.S. Army’s Aberdeen proving ground and was

intended to make artillery calculations. It contained 25,000 relays and 13,000 thermionic

valves and occupied an area of 20 � 30 ft. In spite of this size, it held only 20 numbers.

ENIAC incorporated the concept of a stored program due to John von Neumann, although

the idea is also implicit in Turing’s paper [Turing, 1936].

Once ENIAC was operational, its designers began to proselytize, to lecture about the

great potential of computers. Attending one of the lectures was Lieutenant Commander

James T. Prendergrass of the Naval Security Group (NSG), a part of the CSS that recog-

nized the potential speedup in cryptanalysis. This led to the support provided by the cryp-

tologic community in the advancement of the design of information processing

technology. Some of the benchmarks are as follows.

. Engineering Research Associates (ERA), formed at the end of World War II, partici-

pated with NSA in the development of leading-edge computer technology. Among

the machines developed was Atlas (1950), which had a memory of 16,384 words, a

parallel architecture, and incorporated drum storage.

. Abner was developed by the Army Security Agency in 1952 and used a key-punch,

paper tape, magnetic tape input/output, parallel printer, typewriter, and console.

. In response to the need for bigger and faster processors, Harvest (Project Lightning)

was started in June 1957. IBM developed two Stretch machines which incorporated

the “tractor,” a mechanical device capable of locating cartridges from a tape library.

. Seymour Cray, an alumnus of ERA, founded Cray Research. Cray designed and

produced Loadstone and the Cray-1 (1976).

A history of the role played by the cryptologic organizations on the development of

computers is contained in a paper by Snyder [Snyder, 1979].

1.9 THE GIANTS

William Friedman (Fig. 1.8), whowas born September 24, 1891, in Russia, emigrated to the

United States in 1892 when his parents settled in Pittsburgh. Friedman studied farming at

Figure 1.8 William Friedman (Courtesy of NSA).
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the Michigan Agricultural College, because this program was tuition-free. When Friedman

discovered that he was more interested in science, he enrolled in the genetics program at

Cornell, which was also free as a land-grant college. While in Graduate School, Friedman

met George Fabyan, who established the Riverbank Laboratories in Geneva, Illinois.

Fabyan, known as the “Colonel,” was interested in acoustics, chemistry, genetics,

and cryptography. Friedman began to work at Riverbank in 1915. Fabyan had been con-

vinced by Ms Elizabeth Wells Gallup, a librarian at the Riverbank Laboratories, that

there existed a cipher embedded in the first editions of the works of Shakespeare and

that it would prove Bacon wrote some of the works attributed to the bard of

Stratford-upon-Avon.

Friedman became head of the Department of Codes and Ciphers at Riverbank and

actively began the study of cryptography. Friedman developed the first true cryptographic

competence in the United States, developing methods for the analysis of polyalphabetic

systems (Chapter 4). They were published originally in a series of Riverbank Monographs

and our now reprinted by Aegean Park Press.

Actually, Friedman became interested in both cryptology and Miss Smith, an assist-

ant to Ms Gallup. Love and cryptography – an unbeatable combination. Friedman and

Miss Smith were married in 1917.

Although Henry L. Stimson ended the official United States codebreaking activities in

1929, there remained a need to monitor foreign communications. George Fabyan offered the

services of the Department of Codes and Ciphers to the U.S. Government with the start of

World War I. The Congress of the United States declared war against Germany on April 6,

1917. At that time, a group of 125 Hindus operating in the United States were working for

the independence of India; they were seeking to purchase arms on the West Coast. This

group was supported by Germany, which believed their activities would distract the British.

Friedman was presented with intercepted ciphertext messages. The encipherment

method used a book cipher; some plaintext letters were enciphered by a triple of

numbers a-b-c; a gave the page number, b the line, and c the position of the letter on

the line. Although Friedman did not know at the time, the book was Price Collier’s

“Germany and the Germans”; he guessed some words – Sucio, revolution – and

used the high-frequency letters in these words to guess others. Friedman submitted his

solution and testified at the trials of this group, at which they were convicted.

Friedman’s greatest genius was assembling the nucleus of what has become the

National Security Agency. In 1930, as a civilian employee in the Signals Intelligence

Service, Friedman hired three mathematicians: Frank B. Rowlett, Dr Abraham Sinkov,

and Dr Solomon Kullback.

Frank B. Rowlett (1908–1998) (Fig. 1.9), born in Virginia, was hired as a junior

cryptanalyst. He studied mathematics and chemistry. A lengthy period of training under

Friedman followed his appointment at the SIS. Rowlett worked in both the design and

cryptanalysis of cryptosystems. Together with Friedman, he designed the SIGABA

Figure 1.9 Frank B. Rowlett (Courtesy of NSA).
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(Chapter 6), the most secure U.S. cryptosystem used during World War II. Congress

awarded Rowlett $100,000 in 1964 for his work on the SIGABA.

Dr Abraham Sinkov (1907–1998) (Fig. 1.10), born in Philadelphia, was the son of

immigrants and was a mathematics teacher in New York City. He studied mathematics at

CCNY and received his Ph.D. (Mathematics) at George Washington University in 1933.

Sinkov took the Civil Service Examination in 1930 and obtained a job with Friedman.

After his retirement in 1962 from NSA, Sinkov moved to Arizona and began a second

career as a Professor of Mathematics at the Arizona State University.

Dr Solomon Kullback (1903–1994) (Fig. 1.11) attended high school in Brooklyn,

New York. He intended to teach at Boys High, but met his CCNY classmate Abraham

Sinkov, fromwhom he learned about jobs as a “junior mathematician” at $2000/year. Along
with Sinkov, he took the Civil Service Examination andwas hired byFriedman.Kullback and

Rowlett worked on the cryptanalysis of the Japanese RED messages, the predecessor of

the PURPLE system used at the start of World War II. After his retirement in 1962 from

NSA, he began a second career as a Professor at the George Washington University.

1.10 NO SEX, MONEY, CRIME OR . . . LOVE

Cryptanalysis refers to the methods for the analysis of cryptographic systems, and in par-

ticular, to recover the plaintext and/or key from ciphertext. Cryptanalysis makes use of

1. Knowledge of the structure of the cryptographic system T ,

2. Cribs – information believed to be contained in the plaintext, and

3. Characteristics of the underlying language of the plaintext.

The frequencies of occurrence of letters constitute an elementary characteristic of a natural

language. In English, the most frequent letters are E, T, A, O, N, R, I, S, and H.
Roughly 13% of the letters in a large sample of English text should be E’s.

Figure 1.10 Dr Abraham Sinkov (Courtesy of NSA).

Figure 1.11 Dr Solomon Kullback (Courtesy of NSA).
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In 1937, Ernest Vincent Wright published the novelGadsby [Wright, 1931] in which

the most frequent letter in English, E, did not appear. It could not have been a very big

seller – it could not mention sex, money, murder, greed, or tenure, but it is
remarkably coherent. Gadsby begins

Youth, throughout all history, had had a champion to stand up
for it; to show a doubting world that a child can think; and,
possibly, do it practically; you would constantly run across
folks today who claim that ’a child don’t know anything’.

Figure 1.12 compares the letter frequencies of A,B,. . .,Z (upper and lower case) in an

early version of this chapter with standard letter probabilities in English and those in

Wright’s Gadsby. The success of cryptanalysis cannot depend on the striking agreement

between the ciphertext statistics and the frequencies of the underlying language, as the

above graph illustrates. On the other hand, it is unreasonable to assume that plaintext

has been artificially created to mask the letter frequencies.

1.11 AN EXAMPLE OF THE INFERENCE PROCESS
IN CRYPTANALYSIS

Although statistical characteristics provide information to aid in cryptanalysis, more often

internal constraints in the cryptographic system provide a great deal of information. We

give an example in this section of the inference process.

A PUZZLE

Each of the nine symbols DN M �~;S’ † appearing in the array below stands for

a unique encoding of one of the digits 1 through 9. The rightmost column gives the sum

Figure 1.12 Letter frequencies in English and Gadsby.
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in each row; the bottom row gives the sum in each column. A question mark can stand for

any one- or two-digit number and not necessarily the same number in each instance. Find

the encoding of the digits 1 through 9!

Solution The row 2 and column 3 sums give the equations

(3�~)þ; ¼ SS (1:1)

(2�;)þ (2�/ ) ¼ †† (1:2)

As

(2 �;)þ (2 �N) is even,

~, ;, N, are distinct and each are �9, and

(3 � ~)þ; � 35, (2 �;)þ (2 � N) � 34,

it follows that †† ¼ 22 and SS ¼ 11 or 33.

The only integer (diophantine) solution of Equations (1.1) and (1.2) consistent with

the uniqueness of the symbols is † ¼ 2 and S ¼ 3 and

The column 4 sum provides the equation

�þ (2�~)þ’ ¼ †S
which requires

�þ’ ¼ 5)� , ’ [ {(1, 4), (2, 3), (3, 2), (1, 4)} (1:3)

As S ¼ 3, it follows that

�, ’ [ {(1, 4), (4, 1)}

are the only possible consistent values satisfying Equation (1.3). It follows therefore that

D, M [ f7,8g by the uniqueness constraints.

We now test an assumption on the value of M when we impose the constraints

on some of the remaining row and column sums and draw the consequences of the

assumption:

A1. M ¼ 7

A1(a) D ¼ 8;

A1(b) Row 4 sum: ?4,1þ 9þ 6þ 9 ¼ 27¼) ?4,1 ¼ 3;

A1(c) Column 1 sum: 8þ 9þ ?3,1þ ?4,1 ¼ 29¼) ?3,1 ¼ 9 from A1(b);

A1(d) Column 2 sum: 8þ 9þ ?3,2þ 9 ¼ 33¼) ?3,2 ¼ 7;

A1(e) Row 3 sum: ?3,1þ ?3,2þ 5þ’ ¼ 22¼)’ ¼ 1.

S † ~ ; 4

3 2 9 6 5
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A2. M ¼ 8

A2(a) D ¼ 7;

A2(b) Row 4 sum: ?4,1þ 24 ¼ 28¼) ?4,1 ¼ 4;

A2(c) Column 1 sum: 7þ 9þ ?3,1þ ?4,1 ¼ 29¼) ?3,1 ¼ 9 from A2(b);

A2(d) Column 2 sum: 7þ 9þ ?3,2þ 9 ¼ 33¼) ?3,2 ¼ 5;

A2(e) Row 3 sum: ?3,1þ ?3,2þ 5þ’ ¼ 22¼)’ ¼ 3, a contradiction!

The complete solution is

1.12 WARNING!

Several examples may illustrate this point.

1. The mechanical ciphering machine invented by Alexander von Kryha in 1924

received the Prize of the Prussian Ministry of the Interior at the 1926 Police Fair

and a Diploma from the famous postwar Chancellor of Germany, Konrad

Adenauer, at the International Press Exhibition in Cologne two year later. Von

Kryha was not only an inventor, but also an astute entrepreneur. To promote his

commercial venture Internationale Kryha Machinen Gesellschaft of Hamburg,

Kryha turned to the famous mathematician Georg Hamel for an endorsement.

Hamel calculated the size of the key space to be 4.57 � 1050 and concluded that

only immortals could cryptanalyze Kryha ciphertext. Not withstanding Hamel’s

estimate, a cryptanalysis of the Kryha machine by Friedman did not require as

much time and is described in the “2 Hours, 41 Minutes,” a chapter in Machine

Cryptography and Modern Cryptanalysis [Devoirs and Ruth, 1985].

2. A U.S. patent [Merkle and Hellman, 1980] accompanied the publication Deavours

and Kruh [1985] of the paper by Merkle and Hellman [1978] announcing the first

public key cryptosystem (Chapter 10). The inventors wrote in the description of

the preferred embodiment of the ’582 patent

But, the eavesdropper trapdoor knapsack problem can be made computationally

infeasible to solve, thereby preventing the eavesdropper from recovering the plain-

text message X.

In spite of this pronouncement, Adi Shamir electrified the attendees at ‘CRYPTO’

82 meetings5 with an analysis of the Merkle–Hellman cryptosystem [Shamir,

The Surgeon General has determined that large key spaces may not truly protect you data!

5‘CRYPTO’N is an annual workshop on Cryptography held each August since 1981 at UCSB.
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1984] (Chapter 11). A program running on an Apple during his lecture illustrated the

solution technique.

3. Martin Gardner’s article [Gardner, 1979] appeared a year before the publication of the

paper that defined the RSA cryptosystem [Rivest et al., 1998] (Chapter 12). Gardner’s

article contained the first ofmany factoring challenges; RSA-129 is a 129-digit integer,

which is the product of two primes. RSA-129 was factored in eight months (April

1991) and did not, as Gardner’s article suggests, “. . . take millions of years . . . ,” to
factor, claiming the prize of $100 for the first solution.

4. Finally, Certicom markets products using an elliptic curve cryptosystem (Chaper

15). It is stated in one of Certicom’s whitepapers that

A comparison of the three hard mathematical problems on which the well-known

public-key cryptosystems are based clearly highlights the fact that none of these

are provably intractable. Years of intensive study has resulted in a widely held

view that the ECDLP6 is significantly more difficult than either the IFP7 or the

DLP.8 The general conclusion of leading cryptographers is that the ECDLP in

fact requires the full exponential time to solve. Based on this research and their

own cryptographic expertise, industry leaders have accepted the Elliptic Curve

Cryptosystem as a mature technology and are now implementing it for widespread

deployment.

The point of these examples is not to ridicule the judgment of their makers, but to

emphasize that

The history of cryptography is littered with encipherment systems thought to offer

security, but which on careful reflection and study have failed to provide the advertised

protection. Only one cryptographic system offers absolute security and when it was

improperly used during World War II (Chapter 4), it failed to secret the transmitted

messages.

Claude Shannon’s paper [1948] on the mathematical theory of communication gave

birth to information theory. In the sequel [Shannon, 1949], he pointed out the common

features of two problems:

. Recovering data transmitted over a noisy channel, and

. Secreting of transmitted information.

Shannon’s model relating communication and secrecy is formulated within a statistical

model as follows:

1. The initial statistical information of plaintext is represented by the a priori prob-

ability of plaintext x notationally PrPLAINfxg.

2. When the ciphertext y of x is observed, the statistical information about the plaintext

changes to the a posteriori probability of plaintext x given that encipherment has

resulted in ciphertext y, notationally PrPLAIN/CIPHERfx/yg.

1. Weakness in a cryptosystem is demonstrated by providing a feasible cryptanalytic technique.

2. Proving the strength of a cryptosystem is generally more difficult to effect.

6ECDLP elliptic curve discrete logarithm problem.
7IFP, integer factorization problem.
8DLP, discrete logarithm problem in Zþp .
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Shannon defined an encipherment system as providing absolute secrecy if knowledge of

the ciphertext did not give any additional statistical information about the plaintext than

was known before the ciphertext was observed; namely,

PrPLAIN=CIPHER{x=y} ¼ PrPLAIN{x}

whenever PrPLAINfxg . 0 and PrCIPHERfyg . 0. Shannon further proved that absolute

secrecy for all n-grams requires that there be as many keys as there are plaintext

n-grams of positive probability. If the plaintext and ciphertext consist of all n-grams

formed from the alphabet f0, 1g, to guarantee the absolute secrecy of plaintext requires

one bit of key per plaintext bit. The one-time tape (or pad), a cryptographic system

discussed in Chapter 4, is based upon this result from Shannon.
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CHA P T E R2
COLUMNAR TRANSPOSITION

THI S CHA P T E R defines columnar transposition encipherment. Searching for

a fragment of text (cribbing) and using the statistical characteristics of the language to

recover the plaintext and key will be explained. Problems to test your skills follow the text.

2.1 SHANNON’S CLASSIFICATION OF SECRECY
TRANSFORMATIONS

Two building-blocks were identified in Claude Shannon’s [1949] formulation of the

design principles for secrecy systems:

. Substitution. Ciphertext results when the letters in the plaintext

x ¼ (x0, x1, . . . , xn21) are substituted by the letters in a ciphertext alphabet

(x0, x1, . . . , xn21)! ( y0, y1, . . . , yn21).

. Transposition. Ciphertext results when the positions of letters in the plaintext

x ¼ (x0, x1, . . . , xn21) are rearranged (x0, x1, . . . , xn�1)! (xp0
, xp1

, . . . ; xpn�1
)

according to a permutation p ¼ (p0, p1, . . . , pn21).

Shannon proposed that an effective encipherment system might be built by iterating the

two operations substitution (confusion) and transposition (diffusion).

Giovanni Battista della Porta (1535–1615) was born into a wealthy Naples family.

He made contributions to astrology, optics, meteorology, magic, and cryptography.

Porta’s four-volume work “Magia Naturalis” was first published in 1555 and later

expanded to twenty volumes. His place in cryptography is due to his book “De Furtivis

Literarum Notis,” published in 1563, which described digraphic substitution and transpo-

sition and is considered the first serious work in cryptography.

This chapter defines columnar transposition and illustrates two techniques for its

cryptanalysis.

2.2 THE RULES OF COLUMNAR TRANSPOSITION
ENCIPHERMENT

Columnar transposition (CT) uses a key consisting of

K1. A (columnar) width N, and

K2. A transposition t ¼ (t0, t1, . . . , tN21), a permutation of the integers

0, 1, . . . , N2 1.

Computer Security and Cryptography. By Alan G. Konheim
Copyright # 2007 John Wiley & Sons, Inc.
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The encipherment of the plaintext x ¼ (x0, x1, . . . , xn21) of length n ¼ (r2 1)Nþ l � N

(0 , l � N ) proceeds in two steps:

CT1. The plaintext x ¼ (x0, x1, . . . , xn21) is read by rows into an array X of width N.

X ¼

x0 x1 � � � x‘�1 x‘ � � � xN�1
xN xNþ1 � � � xNþ‘�1 xNþ‘ � � � x2N�1

..

. ..
. . .

. ..
. ..

. . .
. ..

.

xðr�2ÞN xðr�2ÞNþ1 � � � xðr�2ÞNþ‘�1 xðr�2ÞNþ‘ � � � xðr�1ÞN�1
xðr�1ÞN xðr�1ÞNþ1 � � � xðr�1ÞNþ‘�1

�����������

�����������
CT2. The ciphertext y results when X is read out by columns, the order in which the

columns are read out being specified by the transposition t.

The ciphertext is the concatenation of segments corresponding to the columns of X

y ¼ (xt0 , xt0þN , . . .|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
column t0

xt1 , xt1þN , . . .|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
column t1

, . . . , xtN�1 , xtN�1þN , . . .|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
column tN�1

)

We use the notation y ¼ TN,t (x) to denote that the plaintext x has been enciphered to the

ciphertext y by the columnar transposition TN,t with key (N,t).

2.2.1 The Shape of X

If n ¼ (r2 1)Nþ l with 0 , l � N, then X is a possibly ragged array, where X has1

1.

n
N

� �
full rows, each containing N letters if 0 , ‘ , N

n
N

� �
full rows, each containing N letters if ‘ ¼ N;

(
2. A final partial row of l letters, if 0 , l � N;

3. l long columns, each containing L ¼ n
N

� �
letters; and

4. c ¼ N2 l short columns, each containing S ¼ n
N

� �
letters.

We write L( j ) for the length of the jth column of X.

The inverse of the transposition t is t21 ; (t0
21, t1

21, . . . , tN21
21 ) defined by

i¼ tt�1
i
¼ t�1ti

for 0 � i , N, where

. ti identifies the ith columns read from X, and

. ti
21 identifies the column of X corresponding to the ith segment.

2.2.2 Invertibility of CT

The following argument shows columnar transposition TN,t is invertible:

1. The transposition width N and ciphertext length n together determine the number of

the long and short columns (l, c) and their respective lengths (L, S );

2. (l, c, L, S) and t ¼ (t0, t1, . . . , tN21) permit the parsing of segments of the cipher-

text y;

3. t21 ¼ (t0
21, t1

21, . . . , tN21
21 ) determines the column of X into which the segments of

y are located.

1The floor of x, denoted by bxc, is the largest integer not greater than x; and the ceiling of x, denoted by dxe is the
smallest integer not less than x.
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The program

ColTranInv

Input: y, N, t

Output: x

reverses the steps in the encipherment process and produces the plaintext x:

1. The length n of the ciphertext y and N determine the parameters (l, c, L, S );

2. (l, c, L, S) and t determine the segments of the ciphertext y;

3. (l, c, L, S ) and t21 determine which columns of X correspond to the segments of the

ciphertext y;

4. The plaintext x is obtained by reading out X by rows.

2.2.3 The Size of the Columnar Transposition Key Space

Stirling’s formula N! 	
ffiffiffiffiffiffi
2p
p

NNþ1
2e�N shows the key space grows faster than an exponen-

tial with N. Conclusion: Key trial is not feasible for N 	 32.

2.2.4 Convention on the Display of Plain- and Ciphertext

Plaintext and ciphertext in this chapter will be written using either the ASCII alphabet or

the alphabet U26 ¼ f A,B,. . ., Zg of 26 upper-case Latin letters. A letter will usually be

displayed by its Latin symbol, for example T (in the typewriter font). In some instances, a

letter might be referred by its ordinal position in the alphabet; for example, T as 84 (in the

ASCII alphabet) and 19 (in U26).

Example 2.1
The columnar transposition encipherment of Good morning. How are you
today? is produced by first reading the plaintext x of length n ¼ 32 into the array X

of N ¼ 6 columns by rows:

X ¼

G o o d m
o r n i n g
: H o w
a r e y o
u t o d a
y ?

������������

������������
:

X is a ragged array containing

.
32
6

� �
¼ 5 full rows of 6 letters each, and a final partial row of 2 letters;

. l ¼ 2 long columns each of length L ¼ 6 letters and c ¼ 4 short columns, each of

length S ¼ 5 letters.

The ciphertext results when the columns of X are read out in the order determined by the

transposition t ¼ (1, 4, 0, 3, 5, 2):

y ¼ (or r ? nwydGo:auydio o mg oaonHet):

The shape of the ragged array X and t ¼ (1, 4, 0, 3, 5, 2) infer that the column boundaries
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in the ciphertext (denoted by j) are

y ¼
ðor r ?j nwydj Go:auy jdio o jmg oajonHetÞ

L S L S S S

t ¼ (1, 4, 0, 3, 5, 2) t21 ¼ (2, 0, 5, 3, 1, 4)

The segment or r ? is the

t0 ¼ 1st column in X

Column 0 in X is the t0
21 ¼ 2nd

segment Go.auy
The segment nwyd is the

t1 ¼ 4th column in X

Column 1 in X is the t1
21 ¼ 0th

segment or r ?
The segment Go.auy is the

t2 ¼ 0th column in X

Column 2 in X is the t2
21 ¼ 5th

segment onHet
The segment dio o is the

t3 ¼ 3rd column in X

Column 3 in X is the t3
21 ¼ 3rd

segment dio o
The segment mg oa is the

t4 ¼ 5th column in X

Column 4 in X is the t4
21 ¼ 1st

segment nwyd
The segment onHet is the

t5 ¼ 2nd column in X

Column 5 in X is the t5
21 ¼ 4th

segment mg oa

The cryptanalysis of columnar transposition,

. Given: ciphertext y

. Find: plaintext x and key (N, t)

requires solving two problems; determining

P1. Possible columnar widths N, and

P2. possible transpositions t.

Two methods for the cryptanalysis of columnar transposition will be illustrated.

2.3 CRIBBING

The Oxford Dictionary of English Etymology gives to steal and to pilfer as definitions of

the Shakespearian verb to crib. The term cribbing in cryptography refers to the process of

inferring key and plaintext from ciphertext based on partial knowledge of the plaintext. A

crib is a word or phrase w ¼ (w0, w1, . . . , wM21) known (or assumed) to appear in the

plaintext. Partial knowledge of the plaintext is a reasonable assumption:

. Letters usually contain stereotyped beginnings and/or endings: Dear . . . ,
Sincerely yours, Att:, Senator. . .;

. Message transmitted over a network have special formats; and

. Files are often highly structured, records divided into fields containing data with

known characteristics.

When the crib w ¼ (w0, w1, . . . , wM21) occurs in the plaintext x, certain strings of letters

derived from w will also occur in the ciphertext y ¼ TN,t(x).

If N � M, then w determines N subcribs, which are all the maximal length strings

S ; {S0, S1, . . . , SN�1} formed by the letters in w, which are pairwise-separated by
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exactly N positions.

S0 ¼ ðw0, wN , . . . , wðs0�1ÞNÞ

S1 ¼ ðw1, w1þN , . . . , w1þðs1�1ÞNÞ

..

.

SN�1 ¼ ðwN�1, wN�1þN , . . . , wN�1þðsN�1�1ÞNÞ

where si will denote the length of Si.

The cryptanalysis of columnar transposition by cribbing is based on the following

result.

Proposition 2.1: If x! y ¼ TN,t (x), then

2.1a Pairs of letters (xt, xtþN) in the plaintext separated by N places are adjacent in the

ciphertext. In particular, the si letters in the ith subcrib Si are adjacent in the cipher-

text for 0 � i , N.

2.1b If tr ¼ j, trþ1 ¼ k, the distance in the ciphertext

. D(xjþiN, xkþiN) from the letter xjþiN in the ith row, jth column of X to the letter

xkþiN in the ith row, kth column of X is L( j );

. D(xjþiN, xkþ(i21)N) from the letter xjþiN in the ith row, jth column of X to the letter

xkþ(i21)N in the (i2 1)st row, kth column of X is L( j )2 1;

. D(xjþ(i21)N, xkþiN) from the letter xjþ(i21)N in the (i2 1)st row, jth column of to

the letter xkþiN in the ith row, kth column is L( j )þ 1.

The possible values of L( j ), L( j )+1 are fS2 1, S, Sþ 1, Sþ 2g.

Proof: As the letter xt is directly above xtþN in X, they are adjacent in the cipher-

text, proving Proposition 2.1a.

To prove the first assertion made in Proposition 2.1b, consider the entries in the jth

and k th columns in X as shown within brackets in Figure 2.1. There are

. L( j )2 i entries in the j th column of X in rows that are at or below the ith row entry

xjþiN and

. (iþ 1) entries in the k th column of X in rows that are at or above the ith row entry

xkþiN

When the k th column of X is read out by t immediately following the jth column of X, the

distance D(xjþiN, xkþiN) from xjþiN to xkþiN is L( j ) ¼ L( j )2 iþ (iþ 1)2 1.

The proofs of the remaining assertions in Proposition 2.1b are left to the

reader.

Figure 2.1 The ith and jth columns in X.
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Example 2.1 (continued)
The N ¼ 6 subcribs of Good morning are S ¼ {Go or on di n mg }.

Table 2.1 lists the subcribs and their positions sorted in the order of their occurrence

in the ciphertext and the differences between these positions. The entries imply

the relationships shown in Table 2.2, involving t ¼ (t0, t1, . . . , t5). If t0 ¼ k with

0 � k , 6, the values of ti for i = 0 are determined from Table 2.3.

Tables 2.4–2.9 examine the consequences of placing G in each of the six columns,

using the separations between the subscribs contained in Table 2.1. For each choice of

column, the resulting transposition t is given as well as a contradiction, if any, of a

subcrib separation listed in Table 2.1. For example, Table 2.5 lists D(or, n) ¼ S = 6,

which violates the data in Table 2.1.

From Tables 2.4–2.9 we conclude that

1. The G of the subcrib Go is located in column 0 of X and

2. t ¼ (1, 4, 0, 3, 5, 2).

Furthermore, only a single m appears in the ciphertext; if we assume that the crib

Good morning occurs in the plaintext, this implies that N ¼ 6.

The analysis given in Example 2.1 is easy to generalize. Assume the crib

w ¼ (w0, w1, . . . , wM21) appears in the plaintext x. Let P ¼ (P0, P1, . . . , PN21) denote

the positions in the ciphertext y ¼ TN,i (x) at which the subscribs of w ¼
(w0, w1, . . . , wM21) occur

(yPi
, yPiþ1

, . . . , yPiþsi�1) ¼ (wiN , w(iþ1)N , . . . ,w(iþsi�1)N)

and let n be the permutation of 0, 1, 2, . . . , N21 that sorts the positions in P:

Pn(0) , Pn(1) , � � � , Pn(N�1):

TABLE 2.2 The Columns Containing the Complete Set of
Width 6 Subcribs of Good Morning

The subcrib or is in column t0 of X

The subcrib n is in column t1 of X

The subcrib Go is in column t2 of X

The subcrib di is in column t3 of X

The subcrib mg is in column t4 of X

The subcrib on is in column t5 of X

TABLE 2.1 A Complete Set of Width 6 Subcribs of Good Morning

or n Go di mg on

0 6 11 17 22 27

6 5 6 5 5

TABLE 2.3 The Transpositions Determined by Table 2.2

t2 ¼ k t0 ¼ (kþ 1) (modulo 6) t5 ¼ (kþ 2) (modulo 6)

t3 ¼ (kþ 3) (modulo 6) t1 ¼ (kþ 4) (modulo 6) t4 ¼ (kþ 5) (modulo 6)
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The pair(S, P) forms a complete set of the subcribs of w if

Pn(r) � Pn(r�1) [ {S� 1, S, Sþ 1, Sþ 2} 0 , r , N;

The cryptanalysis of columnar transposition by cribbing tests a possible width N by

searching for a complete set of subcribs. If the width is correct and the crib in the plaintext,

the process will produce at least one complete set of subcribs and lead to a partial deter-

mination of a transposition. However,

1. The crib may occur several times in the plaintext;

2. More than one transposition may be consistent with a specific complete set of

subcribs;

3. A complete set of subcribs may appear in y without N being the correct width;

4. If the crib M � N length is only slightly larger than N, many of the subcribs may

consist of a single letter, making an identification of a complete set of subcribs

somewhat tedious.

On the other hand, if the length of the crib M � N is �2N, it is unlikely that all

subcribs will be detected with an incorrect width and cribbing is likely to be

successful.

TABLE 2.6

Column 2

t ¼ (3, 0, 2, 5, 1, 4)

0 1 2 3 4 5

G o o d

m o r n i

n g

L L S S S S

D(n, Go) ¼ L2 1=6

TABLE 2.5

Column 1

t ¼ (2, 5, 1, 4, 0, 3)

0 1 2 3 4 5

G o o d

m o r n i n

g

L L S S S S

D(or, n) ¼ S = 6

TABLE 2.7

Column 3

t ¼ (4, 1, 3, 0, 2, 5)

0 1 2 3 4 5

G o o

d m o r n

i n g

L L S S S S

D(di, mg) ¼ L = 5

TABLE 2.8

Column 4

t ¼ (5, 2, 4, 1, 3, 0)

0 1 2 3 4 5

G o

o d m o r

n i n g

L L S S S S

D(di, mg) ¼ L = 5

TABLE 2.9

Column 5

t ¼ (0, 3, 5, 2, 4, 1)

0 1 2 3 4 5

G

o o d m o

r n i n g

L L S S S S

D(n, Go) ¼ S = 5

TABLE 2.4

Column 0

t ¼ (1, 4, 0, 3, 5, 2)

0 1 2 3 4 5

G o o d m

o r n i n g

L L S S S S

No contradictions
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2.4 EXAMPLES OF CRIBBING

Example 2.2
The ciphertext is of length n ¼ 446:

cipherEx2.2

m c g trfttsaocehyhrsayohalolcintTm cgt s ilcdlCtf aunods ng
c ea e ts enuuc nnrcog e eam otsliy, ukrsima meuc aUotxgits
nmotr tad inw e wafscfuus ttihdea dri d.yptlo in 2rtsatmts
s tipmCvhc ecepnhors oldlwc iin iids,irornsraaeow acT tcg
cuemar blte nos ornoaBrstua p eosrsiro skdins eerfn ,nad.Cee
ae mp onle ,ueouov wf4 e teuiy.ceer Seiimfdi.l ige bbfl ehau
ndgaoecyi nypseuodii hhtddorn e nsmone locsehpser c enteiio
i pml aykaoehbd roasitbsds

We assume it is known that plainEx2.2 is from a 1982 UCSB Computer Science

Department brochure. It is therefore reasonable to assume computer science,
Computer science, or Computer Science as possible cribs.

2.4.1 Testing Possible Widths

Table 2.10 lists the subcribs of computer science for widths 5 � N � 9.

Table 2.11 contains the output of the program Search1, which lists all subcribs of

computer science that do not occur in y:

Search1

Input: Interval of widths N0 � N � N1, (w, y)

Output: All subcribs of w which do not occur in y

TABLE 2.10 The Subcribs of computer science for 5 � N � 9

N n
N

� �
Subcribs

5 89 ctce oei mre p n usc

6 74 cee orn m c pse uc ti

7 63 crc o e ms pc ui te en

8 55 c os mc pi ue tn ec re

9 49 cs oc mi pe un tc ee r

TABLE 2.11 Output of Search1 for computer science

width 5 � N � 9

N Subcribs not found

5 ctce oei mre p n usc

6

7 crc o e ms pc

8 mc pi tn re

9 mi pe
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Table 2.12 is the output of the program Search2, which lists the positions in y of all

subcribs of computer science for N ¼ 6:

Search2

Input: (N, w, y)

Output: Subcribs of w and their positions in y

Tables 2.11 and 2.12 shows that X has c ¼ 4 short columns, each of length S ¼
n
N

� �
¼ 446

6

� �
¼ 74 letters, and l¼2 long columns, each of length L ¼ Sþ 1 ¼ 75 letters.

Table 2.13 lists the positions and separations of the single complete set of subcribs

for the width N ¼ 6. The entries in Table 2.13 imply the relationships shown in Table 2.14

involving the components of t. If t4 ¼ k with 0 � k , 6, the values of ti for i = 4 are

determined from Table 2.14 as shown in Table 2.15.

TABLE 2.12 Output of Search2 for computer
science and N 5 6

cee 331

orn 222 256 386

m c 0 34

pse 372 406

uc 74 108

ti 148 182

TABLE 2.13 The Complete Set of Width 6 Subcribs of computer
science

m c uc ti orn cee pse

34 108 182 256 331 406

74 74 74 75 75

TABLE 2.14 The Columns Containing the Complete Set
of Width 6 Subcribs of computer science

The subcrib cee is in column t4 of X

The subcrib orn is in column t3 of X

The subcrib m c is in column t0 of X

The subcrib pse is in column t5 of X

The subcrib uc is in column t1 of X

The subcrib ti is in column t2 of X

TABLE 2.15 The Transpositions Determined by Table 2.14

t4 ¼ k t3 ¼ (kþ 1) (modulo 6) t0 ¼ (kþ 2) (modulo 6)

t5 ¼ (kþ 3) (modulo 6) t1 ¼ (kþ 4) (modulo 6) t0 ¼ (kþ 5) (modulo 6)
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2.4.2 Finding the Transposition

To find the column k containing the subcrib cee, we use the separations between the sub-
cribs contained in Table 2.13. Locating cee in X for each of the six values of k is carried
out in Tables 2.16 to 2.21; in each instance, the tables lists the implied transposition t.
The final row of each table gives any contradiction; for example, Table 2.17 lists

D(uc,ti) ¼ Sþ 1 = 74, which violates the observed distance in Table 2.13.

Tables 2.16 to 2.21 enable us to conclude that t ¼ (2, 4, 5, 1, 0, 3).

ColTranInv produces the plaintext:

plainEx2.2

Computer science has undergone a dramatic period of growth in
the last decade. Today, computer technology touches our lives
in many ways, from 4 hour banktellers to satellite
communications systems. The computer science program at UCSB
covers this exciting multi faceted discipline. Completion of
this program results in a broad body of skills and knowledge
which can be used in a wide range of areas of scientific study,
business, and industry.

TABLE 2.16

Column 0

t ¼ (2, 4, 5, 1, 0, 3)

0 1 2 3 4 5

c o m p u t

e r s c i

e n c e

L L S S S S

No contradictions

TABLE 2.18

Column 2

t ¼ (4, 0, 1, 3, 2, 5)

0 1 2 3 4 5

c o m p

u t e r s

c i e n c e

L L S S S S

D(m c,uc) ¼ Sþ 1 = 74

TABLE 2.17

Column 1

t ¼ (3, 5, 0, 2, 1, 4)

0 1 2 3 4 5

c o m p u

t e r s c

i e n c e

L L S S S S

D(uc,ti) ¼ Sþ 1 = 74

TABLE 2.21

Column 5

t ¼ (1, 3, 4, 0, 5, 2)

0 1 2 3 4 5

c

o m p u t e

r s c i e

n c e

L L S S S S

D(m c,uc) ¼ Sþ 1 = 74

TABLE 2.19

Column 3

t ¼ (5, 1, 2, 4, 3, 0)

0 1 2 3 4 5

c o m

p u t e r

s c i e n c

e

L L S S S S

D(m c,uc) ¼ Sþ 1 = 74

TABLE 2.20

Column 4

t ¼ (0, 2, 3, 5, 4, 1)

0 1 2 3 4 5

c o

m p u t e r

s c i e n

c e

L L S S S S

D(m c,uc) ¼ L = 74
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Example 2.3
The ciphertext is of length n ¼ 240:

cipherEx2.3

g eunatii0ea.Plusman ala A ,pn acgN m r mhnn0mn rys olgu enl
SP ode heogepepmet 0bgWi emrl shvgiIaIs nga.hvmetonMsCayayae
ic nhnglae cs: oolieoahggah6s g?rcthcgagh g oau dydensrsar c
8sle ia’ hin leBrlpao nti l ri oM luhmb ueetiieukCs eIjol

It is assumed that plainEx2.3 describes some aspect of the MC68000 assembly

language programming. It is therefore reasonable to search for the crib language that

might occur

. Within the plaintext followed by a blank space or comma,

. As the last word in a sentence, in which case the blank space should be replaced by

a period, or

. At the start of a sentence Language.

We will search for the crib language.

2.4.3 Testing a Possible Width

Table 2.22 lists the subscribs determined by language for widths 5 � N � 8. Only for

N ¼ 7 does Search1 find occurrences of all 7 subcribs of language. The output of

Search2 listing the subscribs and their positions in cipherEx2.3 is given in

Table 2.23. X has c ¼ 5 short columns, each of length S ¼ n
N

	 

¼ 240

7

	 

¼ 34 letters, and

l ¼ 2 long columns, each of length L ¼ Sþ 1 ¼ 35 letters.

TABLE 2.23 Locations of the N5 7 Subcribs of language

Block Positions

le 183 195

a 23

n 4 19 29 42 43 46 58 100 110 123 125 172 192 205

g 0 33 54 70 81 93 101 126 143 144 150 157 159 162

u 3 15 55 166 218 223 230

a 5 11 18 21 23 31 96 102 114 116 118 128 141 145 158 165 176 187 201

TABLE 2.22 The Subscribs of language for Widths 5 � N � 8

N n
N

	 

Subcribs

5 47 la ag ne g u

6 39 lg ae n g u a

7 24 le a n g u a g

8 39 l a n g u a g e

28 CHAPTER 2 COLUMNAR TRANSPOSITION



As there is only one occurrence of a in cipherEx2.3, the entries of Table 2.23

yield a complete set of subcribs displayed in Table 2.24. The entries in Table 2.24

imply the relationships in Table 2.25 involving t ¼ (t0, t1, . . . , t6). If t5 ¼ k with

0 � k, 7, the values of ti for i = 5 are partially determined from Table 2.25 (Table 2.26).

2.4.4 Finding the Transposition

To find the column k, containing the subcrib le, we use the observed separations between

the subscribs contained in Table 2.24. Locating le in each of the seven values of k is

carried out in Tables 2.27 to 2.33; in each instance, the table lists the implied transposition

t. The final row of each table gives any contradiction; for example, Table 2.27 lists

D(n,g) ¼ S = 35, which violates the observed distance in Table 2.24. The letter g is a

width N ¼ 7 subscrib of language twice in Example 2.3 and it is necessary to consider

both of the positions of g. Table 2.32 shows that D(g,a) ¼ 35, which gives

t ¼ (6, 0, 1, 3, 4, 5, 2).

TABLE 2.25 The Columns Containing the Complete Set
of Width 7 Subcribs of language

The subcrib le is in column t5 of X

The subcrib a is in column t0 of X

The subcrib n is in column t1 of X

The subcrib g is in column t2 or t4 of X

The subcrib u is in column t6 of X

The subcrib a is in column t3 of X

TABLE 2.26 The Transpositions Determined Using Table 2.24

t5 ¼ k t0 ¼ (kþ 1) (modulo 7)

t1 ¼ (kþ 2) (modulo 7) t6 ¼ (kþ 4) (modulo 7)

t3 ¼ (kþ 6) (modulo 7)
t2
t4

�
¼
ðk þ 3Þ ðmodulo 7)

ðk þ 5Þ ðmodulo 7Þ

�

TABLE 2.28

Column 1

t ¼ (2, 3, 4, 6, 0, 1, 5)

t ¼ (2, 3, 0, 6, 4, 1, 5)

0 1 2 3 4 5 6

l a n g u a

g e

L L S S S S S

D(a ,n) ¼ S = 35

TABLE 2.27

Column 0

t ¼ (1, 2, 3, 5, 6, 0, 4)

t ¼ (1, 2, 6, 5, 3, 0, 4)

0 1 2 3 4 5 6

l a n g u á g

e

L L S S S S S

D(n,g) ¼ S = 35

TABLE 2.29

Column 2

t ¼ (3, 4, 5, 0, 1, 2, 6)

t ¼ (3, 4, 1, 0, 5, 2, 6)

0 1 2 3 4 5 6

l a n g u

a g e

L L S S S S S

D(a ,n) ¼ S = 35

TABLE 2.24 A Complete Set of Width 7 Subscribs of language

a n g a g le u

23 58 93 128 162 195 230

35 35 35 34 33 35
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ColTranInv gives the plaintext

plainEx2.3

Nothing gives me more pleasure than programming the Macintosh
in MC68000 assembly language. Why? Primarily
because it’s much more challenging than using a high level
language like BASIC or Pascal, I suppose: and I do enjoy
and good challenge.

2.5 PLAINTEXT LANGUAGE MODELS

Natural languages have statistical characteristics that are generally reflected in the cipher-

text. We will show how these characteristics may be recognized and used to recover the

plaintext and key from columnar transposition ciphertext.

We assume a language model in which plaintext, with letters in a generic alphabet

Zm ¼ {0, 1, . . . , m2 1}, is generated by a statistical source (Fig. 2.2). The iid source is

TABLE 2.32

Column 5

t ¼ (6, 0, 1, 3, 4, 5, 2)

t ¼ (6, 0, 4, 3, 1, 5, 2)

0 1 2 3 4 5 6

l a

n g u a g e

L L S S S S S

D(g,a) ¼ S = 35

TABLE 2.30

Column 3

t ¼ (4, 5, 6, 1, 2, 3, 0)

t ¼ (4, 5, 2, 1, 6, 3, 0)

0 1 2 3 4 5 6

l a n g

u a g e

L L S S S S S

D(a,n) ¼ = 35

TABLE 2.33

Column 6

t ¼ (0, 1, 2, 4, 5, 6, 3)

t ¼ (0, 1, 5, 4, 2, 6, 3)

0 1 2 3 4 5 6

l

a n g u a g e

L L S S S S S

D(g,a) ¼ S = 35

TABLE 2.31

Column 4

t ¼ (5, 6, 0, 2, 3, 4, 1)

t ¼ (5, 6, 3, 2, 0, 4, 1)

0 1 2 3 4 5 6

l a n

g u a g e

L L S S S S S

D(a,n) ¼ S = 35

Figure 2.2 Generic statistical plaintext source.

30 CHAPTER 2 COLUMNAR TRANSPOSITION



the simplest example of a language model; it generates plaintext as a result of independent

and identically distributed trails of a chance experiment. The iid source generates the

plaintext n-gram X ¼ (X0, X1, . . . , Xn21) with probability

Pr{X ¼ (x0, x1, . . . , xn�1)} ¼
Yn�1
t¼0

pt(xt)

p(i) ¼ Pr{Xt ¼ i}, 0 � i , m, 0 � t , n:

For example, the probability of the ASCII plaintext Good morning is

p(G)p(o)p(o)p(d)p( )p(m)p(o)p(r)p(n)p(i)p(n)p(g),

where p is a probability distribution on the plaintext letters. As the iid source generates

letters independently, plaintexts that differ only by the arrangement of their letters are

assigned the same probability; that is, Pr{Good morning} ¼ Pr{Gd moogninr}.
Because columnar transposition enciphers plaintext by rearranging the positions of

letters, the iid source is not appropriate for analyzing columnar transposition ciphertext. It

is necessary to use a source that assigns probabilities depending on the order in which

letters occur.

2.5.1 The Homogeneous Markov Source

A Markov1 source that generates plaintext is determined by two parameters:

1. A probability distribution p (i) on 1-grams

Pr{Xt ¼ i} ¼ p(i) � 0, 0 � i , m (2:1)

1 ¼
Xm�1
i¼0

p(i)

2. A transition function, P( j/i) for pairs of 2-grams

Pr{Xt ¼ j=Xt�1 ¼ i} ¼ P( j=i) � 0, 0 � i, j , m (2:2)

1 ¼
Xm�1
j¼0

P( j=i), 0 � i , m:

An additional homogeneity condition is imposed requiring p(i) and P( j/i) to satisfy

p ( j) ¼
Xm�1
i¼0

p (i)P( j=i), 0 � i , m: (2:3)

The probability that the source generates the n-gram of plaintext (x0, x1, . . . , xn21) is

given by

Pr{(X0, X1, . . . , Xn�1) ¼ (x0, x1, . . . , xn�1)} ¼ p0(x0)
Yn�1
t¼1

P(xt=xt�1): (2:4)

Equation (2.4) implies the probability Pr{(Xs, Xsþ1, . . . , Xsþn 2 1) ¼ (x0, x1, . . . , xn21)} is

the same for each position s in the plaintext. In particular,

1For a good source of material on Markov chains, see Grimmett and Stirzaker, 1992.
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. The probability of observing {Xt ¼ i} in the plaintext is p(i) for each position t in the
plaintext, and

. The probability of observing {Xt ¼ i, Xtþ1 ¼ j} in the plaintext is p (i)P( j/i) for
each position t in the plaintext.

2.5.2 Letter Counts and Probabilities

The most immediately observable statistical characteristics of natural languages are the

frequency of occurrence of k-grams. The number of times the 1-gram i occurs in the plain-

text x of length n is the random variable

Nn(i) ¼
Xn�1
t¼0

x{Xt ¼ i} (2:5)

where x{. . .} in Equation (2.5) is the indicator function:

x{� � �} ¼
1 if {� � �} is true

0 otherwise
:

�
The expectation and frequency of occurrence of 1-grams are

E{Nn(i)} ¼
Xn�1
t¼0

Pr{Xt ¼ i} ¼ np (i) (2:6)

and

fn(i) ¼
E{Nn(i)}

n
¼ p (i): (2:7)

Similarly, the number of times the 2-gram (i, j ) occurs in adjacent letters in the plaintext X

is the random variable

Nn(i, j) ¼
Xn�2
t¼0

x{Xt¼i, Xtþ1¼j}
: (2:8)

The expectation and frequency of occurrence of 2-grams are

E{Nn(i, j)} ¼
Xn�2
t¼0

Pr{Xt ¼ i, Xtþ1 ¼ j} ¼ (n� 1)p (i)P( j=i) (2:9)

and

fn(i, j) ¼
E{Nn(i, j)}

n� 1
¼ p (i)P( j=i) (2:10)

Equations (2.5)–(2.10) relate the observable statistical characteristics of language to the

parameters of the Markov source. Conversely, if we start with the frequencies of 1- and

2-grams, the parameters of a Markov source may be determined so that plaintext generated

by the source exhibits these 1- and 2-gram frequencies.
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2.6 COUNTING k-GRAMS

The plan is simple – start with a large sample of plaintext and count

. The number of times, N(i), the 1-gram i occurs in the text, and

. The number of times, N(i, j ), the 2-gram (i, j ) occurs in the text,

and use the sample to construct the parameters of a Markov source. This process has been

used by several authors.

. Kullback’s early monograph [Kullback, 1938] on statistical methods in cryptanalysis

includes tables of k-gram counts derived from government plaintext telegrams.

. Appendix A in Seberry and Pierprzyck’s [1989] book includes frequency tables of

1-gram and 2-grams in several languages.

It is easy to derive Markov source parameters from a text downloaded from The

Project Gutenberg Free eBook Library on the Web site www.gutenberg.com. The text

of over 16,000 famous books, including William Shakespeare, H. G. Wells, and Jack

London is available for downloading. There are two methods to determine frequencies

from downloaded texts: Sliding window counts and jumping window counts.

2.6.1 Sliding Window Counts

Initialization: N(i) ¼ N(i, j ) ¼ N(i, j, k) ¼ 0 for 0 � i, j, k , m;

for t :¼ 0 to n2 1 do

N(xt) ¼ N(xt)þ 1;

for t :¼ 0 to n2 2 do

N(xt, xtþ1) ¼ N(xt, xtþ1)þ 1;

for t :¼ 0 to n23 do

N(xt, xtþ1, xtþ2) ¼ N(xt, xtþ1, xtþ2)þ 1;

The resulting sliding window counts satisfyX
‘

N(i, ‘)�
X
‘

N(‘, i)

�����
����� � 1, 0 � i , m (2:11)

X
‘

N(i, j, ‘)�
X
‘

N(‘, i, j)

�����
����� � 1, 0 � i, j , m: (2:12)

2.6.2 Jumping Window Counts

Initialization: N(i) ¼ N(i, j ) ¼ 0 for 0 � i, j, k , m;

for t :¼ 0 to n :¼ 1 do

N(xt) ¼ N(xt)þ 1;

for t :¼ 0 to n�2
2

	 

do

N(x2t, x2tþ1) ¼ N(x2t, x2tþ1)þ 1;

The resulting jumping window counts generally do not satisfy the conditions in

Equations (2.11) and (2.12).
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2.7 DERIVING THE PARAMETERS OF A MARKOV
MODEL FROM SLIDING WINDOW COUNTS

The Markov model parameters are defined from the sliding window counts of 2-grams

{N(i, j )} derived from a large sample x ¼ (x0, x1, . . . , xn21) of text as follows:

p̂1(i) ;
P

‘ N(i, ‘)

n� 1
, 0 � i , m (2:13)

p̂2(i) ¼

P
‘ N(‘, i)

n� 1
, 0 � i , m (2:14)

P( j=i) ;
N(i, j)P
‘ N(i, ‘)

, 0 � i, j , m: (2:15)

We assume the sample size n is large enough so thatp̂1(i) ¼ p̂(i) ¼ p (i) for 0� i, m and

that p satisfies

p ( j) ¼
Xm�1
i¼0

p (i)P( j=i), 0 � j , m: (2:16)

To prove Equation (2.16), we start with Equations (2.13) to (2.15), writing

Xm�1
i¼0

P( j=i)p̂1(i) ¼
Xm�1
i¼0

N(i, j)Pm�1
‘¼0 N(i, ‘)

�

Pm�1
‘¼0 N(i, ‘)

n� 1

( )
¼

1

n� 1

Xm�1
i¼0

N(i, j) ¼ p̂2(j)

This book provides three sets of Markov source parameters:

. Smarkov1 and Smarkov2: These Markov source parameters were derived from

a nonsliding window count of 67,320 2-grams in the alphabet {A, B,. . .,Z} appear-
ing in Abraham Sinkov’s book [Sinkov, 1968]. P( j/i) was derived using Equation

(2.15) from Sinkov’s 2-gram counts and written to Smarkov2; thereafter, p(i)

was calculated to satisfy Equation (2.3) and written to Smarkov1.

. Gmarkov1 and Gmarkov2: These Markov source parameters were derived from

a table containing a sliding window count of 10,000 2-grams in the alphabet

{A,B,. . .,Z} contained in Helen Fouché Gaines’s book [Gaines, 1939].

. Hmarkov1 and Hmarkov2: These Markov source parameters were derived from

a sliding window sample of 280,810 2-grams in the alphabet {A, B, . . ., Z}
contained in War And The Future: Italy France and Britain at War by H. G. Wells.

The files *markov1 and *markov2* ¼ S,G and H may be downloaded from the

following ftp address: ftp://ftp.wiley.com/public/sci_tech_med/computer_security.3

2.8 MARKOV SCORING

Given: columnar transposition ciphertext y;

Find: the transposition width N and transposition t.

3The file *markov1 contains a vector of length 26; the file *markov2 is a matrix of dimension 26 � 26.
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Our plan is to test N as a possible width by computing aMarko score for the adjacency of

columns in the ciphertext, assuming each of the N! transpositions of width N are equally

likely to have been used.

Testing a width N is formulated as a hypotheses testing problem; for each pair (i, j )

with i = j, decide which of the two hypotheses is the most likely to be true.

ADJ(i, j), tj ¼ 1þ ti, jth column is read from X immediately after the

ith column is read from X.

ADJ(i, j), tj = 1þ ti, jth column is not from X immediately after the

ith column is read from X.

When ADJ(i, j ) is true, the ith and jth columns must be columns (k, kþ 1) in X for some k

with 0 � k , N2 1. As the N! transpositions t have been chosen with equal probability,

the a priori4 probabilities of the hypotheses ADJ(i, j ) and ADJ(i, j) are

Pra priori{ADJ(i, j)} ¼
N � 1

N(N � 1)

and

Pra priori{ADJ(i, j)} ¼
N � 1

N

The ratio of these probabilities is the a priori odds of ADJ(i, j ) over ADJ(i, j)

ODDSa priori(i, j) ;
Pra priori{ADJ(i, j)}

Pra priori{ADJ(i, j)}
¼

1

N � 1
(2:17)

The term ODDS has the same interpretation as in gambling; namely the bet of $1 that

ADJ(i, j ) is true

. Pays $ODDSa priori(i, j ) when ADJ(i, j ) is the correct outcome, and

. Loses $1 if ADJ(i, j) is not the correct outcome of the array X.

These odds constitute a fair wager with 0 expected gain.

Next, we assume the plaintext X has been generated by a Markov source and

Y ¼ TN,t (X ). The parameters (p (i), P( j/i )) of the Markov source reflect characteristics

of the language; for example, in English

. P(u/q) � 1 – the letter q is invariably followed by the letter u;

. P(h/t) . P(r/t) – it is more likely that the letter t will be followed by the letter h
than by the letter r.

The a posteriori5 odds of the hypotheses ADJ(i, j ) and ADJ(i, j) is the ratio of these

hypotheses using information contained in a ciphertext sample y ¼ TN,t(x ).

As N is unknown, the exact parsing of the segments

y ¼ (y(0), y(1), . . . ,y(N�1))

is not possible except in one case.

4The term a priori refers to statistical inferences without knowledge of the ciphertext.
5The term a posteriori refers to inferences with knowledge of the ciphertext.
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Case 1
n ¼ LN, the length n of y is a multiple of the width N. As the column boundaries in the

ciphertext are determined, the a posterior odds are

ODDSa posteriori(i, j=y
(i), y (j)) ¼

Pra posteriori{ADJ(i, j)=y
(i), y(j)}

Pra posteriori{ADJ(i, j)=y(i), y(j)}

can be calculated. Using the formula

Pr {A=B} ¼
Pr{A> B}

Pr{B}
, if Pr{B} . 0

we obtain

ODDSa posteriori(i, j=y
(i), y(j)) ¼

Pra posteriori{y
(i), y(j)=ADJ(i, j)}

Pra posteriori{y(i), y(j)=ADJ(i, j)}

Pra priori{ADJ(i, j)}

Pra priori{ADJ(i, j)}

¼
1

N � 1

Pra posteriori{y
(i), y(j)=ADJ(i, j)}

Pra posteriori{y(i), y(j)=ADJ(i, j)}
: (2:18)

The plan is to accept the hypothesis ADJ(i, j ) if

ODDSa posteriori(i, j=y
(i), y(j)) ¼ max

‘=j
ODDSa posteriori(i, ‘=y

(i), y(‘)):

Example 2.4
(N ¼ 6, n ¼ 336, L ¼ 56)

The ciphertext y written in rows of 60 letters is

cipherEx2.4

dhuledhvyeoetiedmeinghuor ec e,he m r,s reh i.rmta a nio tb
na rc,med rilesb gtbeyClnei eflnetrhptselB aeshitnvyHnFy tU
se enacanlm,lereet hldin n idnhoars roetr eoadee a Ga nin n
tyet o iaa etao v pcfe delte o mfhefo nt rltcCrntittcc le
scnencdtghnrretreasfs l s rdaoe lfn,eUs elue ee rmmosb area a
eb eac esoiai ctenihp e hgttsait

As the length n ¼ 336 of the ciphertext is a multiple of the width N ¼ 6, y can be parsed

into six segments, each containing 56 characters

y(0) ¼ (dhuledhvyeoetiedmeinghuor ec e,he m r,s reh i.rmta a ni)
y(1)¼ (o tbna rC, med rilesb gtbeyClnei eflnetrhptselB aeshitnvy)
y(2) ¼ (HnFy tUse enacanlm,lereet hldin n idnhoars roetr eoade)
y(3) ¼ (e a Ga nin ntyet o iaa etao v pcfe delte o mfhefo nt r)
y(4) ¼ (ltcCrntittcc lescnencdtghnrretreasfs l s rdaoe lfn,eUs)
y(5) ¼ (elue ee rmmosb area a eb eac esoiai ctenihp e hgttsait)

It remains to determine the columns of X into which the segments {y(i)} are to be placed.

If ADJ(0, 1) is true, then Table 2.34 applies. The ciphertext y in Example 2.4 contains

N2 2 intervening letters between the letters in successive rows as shown in Table 2.34:

y(0), y(1) ¼ (do . . .|{z}
N�2

h . . .|{z}
N�2

ut . . .|{z}
N�2

iy):
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If the events in different rows of Table 2.34 were independent,

Pr{y(0), y(1)=ADJ(0, 1)} ¼ Pr{do . . .|{z}
N�2

h . . .|{z}
N�2

ut . . .|{z}
N�2

iy=ADJ(0, 1)}

¼ Pr{do} Pr{h } Pr{ut} � � � Pr{iy}

¼ p (d)P(o=d)p (h)P( =d)p (u)P(t=u) � � �p (i)P(y=i):

The events in Table 2.34 are not independent; for example, as the 2-grams do and h are

separated by four positions, we have

Pr{do . . .|{z}
N�2

h . . .|{z}
N�2

} = Pr{do} Pr{h}:

However, as the separations between these 2-grams in the plaintext increase, meaning as

N ", the dependency of the 2-grams in ( y(0), y(1)) lessens.

We will compute Pra posteriori{y
(i), y(j)/ADJ(i, j )} as if the adjacent 2-grams were

independent. If ADJ(0, 1) is true, the letters in the 2-grams of the segments y(0) and y(1)

contain intervening letters as follows:

d � � �o|fflfflffl{zfflfflffl}
M

� � �|{z}
N�(Mþ2)

h � � �|ffl{zffl}
M

� � �|{z}
N�(Mþ2)

u � � �t|fflfflffl{zfflfflffl}
M

� � �|{z}
N�(Mþ2)

i � � �y|fflfflffl{zfflfflffl}
M

As M and N2 (Mþ 2) both increase, the dependence lessens and

lim
M!1

N�M!1
Pra posteriori{d � � �o|fflffl{zfflffl}

M

� � �|{z}
N�(Mþ2)

h � � �|{z}
M

� � �|{z}
N�(Mþ2)

u � � �t|fflffl{zfflffl}
M

� � �|{z}
N�(Mþ2)

i � � �y|fflffl{zfflffl}
M

=ADJ(0, 1)}

¼p (d)p (o)�p (h)p ( )�p (u)p (t)��� ��p (i)p (y)

We ignore the dependence and use the formula

ODDSa posteriori(0, 1)=y
(0), y(1)

¼
1

5

p (d)P(o=d)�p (h)P( =h)�p (u)P(t=u)��� ��p (i)P(y=i)

p (d)p (o)�p (h)p ( )�p (u)p (t)��� ��p (i)p (y)

¼
1

5

P(o=d)�P( =h)�P(t=u)��� ��P(y=i)

p (o)�p ( )�p (t)��� ��p (y)
:

The computation of the odds score requires several additional modifications:

1. Multiplying a large number of probabilities or ratios of probabilities is likely to

cause underflow, leading to errors in the scoring. To avoid underflow, the Markov

TABLE 2.34 The Relationship of y(0), y(1) when ADJ(0,1) is True

0th 1st Columns

X ¼

. . . d o . . .

. . . h . . .

. . . u t . . .

. .
. ..

. ..
. . .

.

. . . i y . . .

�����������

�����������

d immediately precedes o in the plaintext; p(d) P(o/d)

h immediately precedes in the plaintext; p(h) P( /h)

u immediately precedes t in the plaintext; p(u) P(t/u)
..
.

i immediately precedes y in the plaintext; p (i)P(y/i)
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odds score will be replaced by the Markov log-odds score.

Log� ODDSa posteriori(0, 1)=( y
(0), y(1))

¼ log2 ODDSa posteriori(0, 1)=( y
(0), y(1))

¼ log2 P(o=d)þ log2 P(=h)þ log2 P(t=u)þ � � � þ log2 P(y=i)

� ½log2p (o)þ log2p ( )þ log2p (t)þ � � � þ log2p (y)þ log2 5
:

2. A computation of the Markov log-odds score in Example 2.4 requires the values of

p(i) and P( j/i) for letters in the ASCII alphabet. Instead of scoring ASCII text, we

will use the files Smarkov1 and Smarkov2, which contain Markov source

parameters for text written in the alphabet U26 ¼ {A, B,. . . ,Z}.

y ¼ (y0, y1, . . . , yn�1) y(i) ¼ (yiL, yiLþ1, . . . , y(iþ1)L�1),

then only the pairs ( yiLþk, yjLþk) in the kth row of X, which are both letters in

U26 ¼ {A,B,. . . ,Z}, and for which P( yjLþk/yiLþk) . 0 are counted in the

Markov log-odds score.

If ADJ(i, j ) is not true or there is a data entry error, then P( yjLþk/yiLþk) may equal

0.0; for example, if yiLþk ¼ q and yjLþk ¼ u. This will result in a log-odds score of

21.

An impossible pair is a pair of letters ( yiLþk, yjLþk) in U26 ¼ {A,B,. . .,Z} for

which P( yjLþk/yiLþk) ¼ 0.0.

As the number of pairs involved in scoring may varying with i and j, the Markov

log-odds score must be normalized by the number of terms L(i, j) included. We define

d(i, j)¼
1

L(i, j)
log-ODDSa posteriori(i, j)= (y

(i), y(j))

log-ODDSa posteriori(i, j)=(y
(i), y(j))¼

X
k

yiLþk , yjLþk[U26
P(yjLþk=yiLþk).0

½log2P(yjLþk=yiLþk)

� log2p(yiLþk)
� log2 5

Table 2.35 contains the Markov log-odds score d(i, j ) and the number of impossible

pairs IMP(i, j ) for 0 � i, j , 6 and i = j. The largest column in each row in Table 2.35 is

underlined. This permits the adjacency of columns to be inferred; for example, yð0Þ � yð5Þ,

where we write y(i) � y(j) – read column j stands to the right of column i when d(i, j ) . 0.

The Markov scores in Table 2.35 allow us to conclude that

y (0) � y (5) y (2) � y (3) y (3) � y (4) y (4) � y (0) y (5) � y (1)

TABLE 2.35 Markov Log-Odds Scores for Example 2.4

0 1 2 3 4 5

0 � 21.1539(2) 21.3812(0) 20.9549(2) 20.6275(0) 0.6101(0)

1 20.3844(2) � 21.5023(1) 21.3333(1) 21.5110(2) 20.4915(1)

2 21.2013(0) 20.7991(0) � 0.8334(0) 21.7384(1) 21.1583(1)

3 21.3124(0) 21.3680(2) 21.0595(0) � 0.9011(0) 21.2790(1)

4 0.9127(0) 21.0359(4) 22.0056(3) 20.5005(0) � 20.9906(1)

5 20.4844(0) 0.8314(0) 20.9219(0) 21.1889(1) 21.8481(1) �
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where � is a linear order and gives

y(2)� y(3)� y(4)� y(0)� y(5)� y(1):

Note that d(1, j ) , 0.0 for j = 1, which is consistent with y(1) being the rightmost column

in X. We conclude that t ¼ (2, 3, 4, 0, 5, 1).

We will now explain why the Markov scoringmight reveal the adjacency of columns

in the rectangular array X. The starting point is

Pra posteriori{Y
(i), Y (j)=ADJ(i, j)} ’

YL�1
k¼0

p (YkLþik)P(YkLþj=YkLþik) (2:19)

Pra posteriori{Y
(i), Y (j)=ADJ(i, j)} ’

YL�1
k¼0

p (YkLþik)p (YkLþj) (2:20)

where Y (i) and Y (j) are the random ith and jth segments of the random ciphertext Y. The

right-hand sides in Equations (2.19) and (2.20) are also random variables interpreted as

follows:

. p (YiLþk)P(YjLþk/YiLþk) is the probability of the Markov source generating letter

YiLþk (row k and column i) and letter YjLþk (row k and column j ) if ADJ(i, j ) is true.

. p (YiLþk)p (YjLþk) is the probability of the Markov source generating letter YiLþk
(row k and column i) and letter YjLþk (row k and column j ) if ADJ(i, j) is true.

The a posteriori log-odds scores are

log-ODDSa posteriori(i, j=Y
(i), Y (j))

’ log2
1

N � 1
�

Pra posteriori{Y
(i), Y ( j)=ADJ(i, j)}

Pra posteriori{Y
(i), Y ( j)=ADJ(i, j)}

� 

(2:21)

1

L
log-ODDSa posteriori(i, j=Y

(i), Y ( j))

’ (D(i, j=Y (i), Y ( j)))þ
1

L
log2

1

N � 1
(2:22)

where

D(i, j=Y (i), Y ( j)) ¼
1

L
log2

YL�1
k¼0

p (YiLþk )P(Y jLþk=YiLþk)

p (YiLþk)p (Y jLþk)

" #
(2:23)

D(i, j=Y (i), Y ( j)) ¼ DADJ(i, j=Y
(i), Y ( j))� DADJ(i, j=Y

(i), Y ( j)) (2:24)

DADJ(i, j=Y
(i), Y ( j)) ¼

1

L

XL�1
k¼0

log2p (YiLþk)P(Y jLþk=YiLþk) (2:25)

DADJ(i, j=Y
(i), Y ( j)) ¼

1

L

XL�1
k¼0

log2p (YiLþk)p (Y jLþk): (2:26)
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The operations 1
L

P
k appearing on the right-hand sides in Equations (2.25) and (2.26) rep-

resent averages over the rows (labeled by k) of the random entries in the ith and jth

columns; if there are N(i, j, r, s) rows for which YiLþk ¼ r and YjLþk ¼ s, then

1

L

XL�1
k¼0

log2p (YiLþk)P(Y jLþk=YiLþk) ¼
1

L

XL�1
k¼0

N(i, j, r, s) log2p (r)P(s=r)

and

1

L

XL�1
k¼0

log2p (YiLþk)p (Y jLþk) ¼
1

L

XL�1
k¼0

N(r, s) log2p (r)p (s):

When the amount of ciphertext is very large, that is, as L! 1, the average have limiting

values.

2.8.1 Law of Large Numbers for a Markov Source

If plaintext X ¼ (X0, X1, . . . , Xn21) is generated by the Markov source (p, P) and Nm(r, s)

is the number of pairs for which Xi ¼ r and Xiþm ¼ s and 0 � i , n2m, then

lim
n!1

1

n
Nm(r, s) ¼

p (r)P(s=r) if m ¼ 1

p (r)p (s) if m� 1:

�
Applying the law of large number to Equations (2.23) to (2.26), we have Proposition 2.2.

Proposition 2.2: If X is a rectangular array generated by the Markov source (p, P)
with N columns and L rows, then

lim
L!1DADJ(i, j=Y

(i), Y (i))¼

P
r,s

p (r)P(s=r) log2p (r)P(s=r), if ADJ(i, j) is trueP
r,s

p (r)p (s) log2p (r)P(s=r), if ADJ(i, j) is true

8><>: (2:27)

lim
L!1DADJ(i, j=Y

(i), Y (i))¼

P
r,s

p (r)P(s=r) log2p (r)p (s), if ADJ(i, j) is trueP
r,s

p (r)p (s) log2p (r)p (s), if ADJ(i, j) is true

8><>: (2:28)

d(i, j); limL!1
1

L
log-ODDSa posteriori (i, j=Y

(i), Y ( j))

¼ lim
L!1D(i, j=Y (i), Y ( j))

¼ lim
L!1½DADJ (i, j=Y

(i), Y ( j))�DADJ(i, j=Y
(i), Y ( j))


¼

P
r,s

p (r)P(s=r) log2
p (r)P(s=r)

p (r)p (s)
, if ADJ(i, j) is true

P
r,s

p (r)p (s) log2
p (r)P(s=r)

p (r)p (s)
, if ADJ(i, j) is true:

8>><>>: (2:29)

The Markov log-odds score for rectangular arrays X will be successful in discriminating

between ADJ(i, j ) and ADJði; jÞ provided that

log-ODDSa posteriori(i, j=Y
(i), Y ( j)).max

‘=j
log-ODDSa posteriori(i, ‘=Y

(i), Y (‘))

when ADJ(i, j ) is true. Is this condition always true?
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2.8.2 The Inequality of the Arithmetic and Geometric Means

If a0, a1, . . . , aN21 are positive real numbers and p0, p1, . . . , pN21 is a probability distri-

bution, the arithmetic and geometric means of {ai} are defined by

AM ¼
XN�1
i¼0

piai

and

GM ¼
YN�1
i¼0

a
pi
i :

The convexity of the logarithm function implies

log2

XN�1
i¼0

piai �
XN�1
i¼0

pi log2 ai,

with strict inequality above except if all of the {ai} are equal. We need a modified version

of this inequality; replacing the ai by qi/pi . 0 where q0, q1, . . . , qN21 is a probability

distribution yields

log2

XN�1
i¼0

qi

 !
¼ 0 �

XN�1
i¼0

pi( log2 qi � log2 pi) ¼
XN�1
i¼0

pi log2 qi �
XN�1
i¼0

pi log2 pi,

equivalent to the pair of inequalitiesXN�1
i¼0

qi log2
pi

qi
� 0 �

XN�1
i¼0

pi log2
pi

qi
, (2:30)

with strict inequality unless qi ; pi for all i. Replacing pi by p(s)P(r/s) and qi by p(s)p(r)

gives

0 ,
X
i

pi log2
pi

qi
¼
X
r;s

p (s)P(r=s) log2
p (r)P(r=s)

p (r) p (s)
(2:31)

and

0 .
X
i

qi log2
pi

qi
¼
X
r;s

p (s)p (r) log2
p (r)P(r=s)

p (r)p (s)
, (2:32)

which together give

X
r;s

p (r)P(s=r) log2
p (r)P(s=r)

p (r)p (s)
. 0 .

X
r;s

p (r)p (s) log2
p (r)P(s=r)

p (r)p (s)
: (2:33)

Equations (2.29) and (2.33) prove that Markov log-odds scoring will detect the correct adja-

cency of columns if plaintext X is generated by a Markov language model (p, P), provided
the column independence approximations used in computing scores are not too severe.

Case 2
The length n of the ciphertext y is not a multiple of the width N. When the width N is

unknown, the location of the column boundaries in the ciphertext is not certain.
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The N segments of length S ¼ bn
N
c,

y(t
�1
i ) ¼ ( yt�1

i
S; yt�1

i
Sþ1, . . . ; y(t�1

i
þ1)S�1) 0 � i , N,

do not correspond to the columns of X.

For example, if X contains ‘ ¼ 4 long and c ¼ 3 short columns, these segments are

located in the array X as shown in Figure 2.3. However, the shifted segment

y(i)(a) ¼ ( yiSþa; yiSþaþ1, . . . ; yiSþaþS�1)

corresponds to columns of X for some value of a. For example,

. If i ¼ a ¼ 0, then y(0)(0) consists of the first S entries in column t0;

. If i ¼ 1 and a is the number of long columns read out before column t1, then y(1)(a)

consists of the first S entries in column t1;

. If i ¼ 2 and a is the number of long columns read out before column t2, then y(2)(a)

consists of the first S entries in column t2;

and so forth.

In general, the shifted segment Y(i)(a) consists of the first S elements in columns ti,
with a equal to the number of long columns read out before column ti. As this number

certainly satisfies 0 � a � i, the correct generalization of Markov log-odds scoring in

Case 2 when X is not a rectangular array is

d(i; j) ¼ max
0�a�i
0�b� j

n o da;bði; jÞ (2:34)

Figure 2.3 Location of the segments.
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and

da;b(i; j) ¼
1

S

XS�1
k¼0

log2
p (YiSþaþkÞP(Y jSþbþk=YiSþaþk)

p (YiSþaþk)p (Y jSþbþk)

( )
: (2:35)

2.8.3 Markov Score for the Width N

1. Divide the ciphertext y into N segments each of length S, discarding the final n2 NS

elements.

2. Compute the score da,b(i, j ) using Equation (2.34) for the shifted columns y(i)(a) and

y( j )(b) for 0 � a � i and 0 � b � j.

3. Enter the value d(i, j ) in the N�N log-odds score matrix MN.

4. Accept the width N if every row of MN has a single positive entry.

By scoring shifts of the columns, there will be a column standing to the right of the right-

most column. Thus we will generally recover the transposition up to a cyclic shift. In

some cases, multiple cribs can be combined to reduce the ambiguity.

Example 2.5
The plaintext containing n ¼ 415 ASCII characters

plainEx2.5

Now held on the Faculty Club Green and at the University Center,
commencement today is celebrated in small ceremonies, enabling
each graduate to be greeted by the Chancellor and receive, in the
presence of families and friends, the scroll that represents
his or her diploma. Before them are the flags of the nation, state,
and the University, and those of the countries in which the
University offers foreign study.

is enciphered with the key N ¼ 6 and t ¼ (3, 5, 0, 1, 2, 4), producing the ciphertext

cipherEx2.5

o tbna rC, enacanlm,laa etao v reasfs l sh i.rmta a ,titdeh
n iee siue a Ga nincc lescnenhuor ec e,hsoiai ctenselB aesh
itaee,to rnhUsffnyNltcCrntittoetiedmeing a eb eac eeflnetrhp
t roetr eoan r hfci nifo .odhuledhvyemmosb area gtbeyClnei
n idnhoarso mfhefo ntdUsao oewtitersw elue ee rmed rilesber
eet hldinpcfe delte rdaoe lfn,e ninstushhvyrethnFy tUse nty
et o icdtgdhnrrete m r,s reihp e hgtts hvy etic ro gd

We use Equation (2.34) to test if N is the width of the transposition t. The scores

d(i, j ) (IMP(i, j )) are shown in Tables 2.36–2.41 for 3 � N � 8. Table 2.36–2.41 contains

the pairs ðdði; jÞ; IMPði; jÞÞ relating to the adjacencyADJði; jÞ; a score dði; jÞ and the number

of impossible letter-pairs IMPði; jÞ. Only the positive column entries are underlined.
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TABLE 2.36 Width N 5 3 Markov Log-Odds
Scores for cipherEx2.5

0 1 2

0 21.2851 (1) 21.0275 (1)

1 21.0571 (0) 21.4839 (6)

2 0.8745 (0) 21.0863 (4)

TABLE 2.37 Width N 5 4 Markov Log-Odds Scores for
cipherEx2.5

0 1 2 3

0 21.2026 (2) 21.1037 (3) 21.6329 (1)

1 20.8352 (3) 20.8062 (0) 21.5048 (3)

2 20.6623 (2) 21.0583 (1) 21.1667 (3)

3 20.8096 (3) 21.2088 (2) 20.9374 (2)

TABLE 2.38 Width N 5 5 Markov Log-Odds Scores for cipherEx2.5

0 1 2 3 4

0 21.0081 (4) 21.6056 (1) 21.4172 (0) 20.9862 (2)

1 20.9849 (1) 21.7663 (4) 21.3086 (1) 21.3149 (3)

2 21.6312 (1) 21.4934 (3) 21.1290 (3) 20.7650 (6)

3 20.9015 (0) 21.4668 (1) 21.0749 (3) 21.5777 (4)

4 21.3028 (1) 21.0411 (4) 21.1789 (3) 20.7001 (3)

TABLE 2.39 Width N 5 6 Markov Log-Odds Scores for cipherEx2.5

0 1 2 3 4 5

0 21.4340 (2) 21.2585 (1) 21.1987 (3) 20.6644 (0) 0.8938 (0)

1 21.3418 (1) 0.8481 (0) 21.0372 (2) 21.1640 (2) 21.0630 (2)

2 21.1481 (0) 20.2931 (0) 0.7608 (0) 21.0857 (2) 21.1952 (2)

3 20.4945 (1) 20.9857 (0) 20.6620 (0) 0.9068 (0) 21.9007 (4)

4 0.7201 (0) 20.8613 (3) 20.8470 (2) 20.5626 (3) 21.4478 (2)

5 20.7129 (0) 1.0327 (0) 21.3157 (1) 21.3205 (2) 21.0183 (1)

TABLE 2.40 Width N 5 7 Markov Log-Odds Scores for cipherEx2.5

0 1 2 3 4 5 6

0 20.8519 (2) 20.8748 (1) 21.3190 (3) 21.3968 (1) 21.8198 (2) 21.1749 (2)

1 20.7364 (2) 21.2065 (1) 20.8078 (2) 21.8525 (1) 21.1089 (1) 21.4340 (2)

2 20.1819 (1) 21.8132 (1) 21.5254 (2) 21.4451 (2) 20.8873 (3) 20.6865 (2)

3 20.8503 (1) 21.2977 (2) 21.1789 (2) 21.2110 (2) 21.2649 (3) 21.0188 (4)

4 20.9676 (1) 21.1094 (1) 21.2787 (1) 20.9357 (2) 21.0514 (2) 21.7685 (1)

5 21.5144 (2) 21.6768 (2) 20.6579 (1) 21.1194 (1) 20.6894 (2) 21.4079 (2)

6 20.8171 (1) 20.8435 (0) 21.1366 (1) 21.7113 (1) 21.5082 (1) 21.6148 (4)
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Only for N ¼ 6 does the Markov score table MN contains a single positive entry

(shown underlined in Table 2.39); we conclude

y(0) � y(5) y(1) � y(2) y(2) � y(3) y(3) � y(4) y(4) � y(0) y(5) � y(1):

If N ¼ 6, the shape of X is (‘, c) ¼ (1, 5) and (L, S ) ¼ (70, 69). Note that 5th column t5
read out of X stands to the right of the 0th column read out of X. For this reason, we

can only recover a cyclic rotation of the columns. For example,

y(1) � y(2) � y(3) � y(4) � y(0) � y(5):

We have thus reduced the search for the transposition t from 6! ¼ 720 possibilities to 6. If

n ¼ (1, 2, 3, 4, 0, 5) and t ¼ [s jn]21 for some j, where s j denotes cycle chift (to the left)

by j places, the solution can be completed by making a trial decipherment for each possible

value of j.

j ¼ 0 t21 ¼ (1, 2, 3, 4, 0, 5) t ¼ (4, 0, 1, 2, 3, 5)

elow h td onache F CultyGrlub aneen td atnihe Uitversnty Ce
coer, cemmen tment iodayles ceedbratsm in ceall niremoenes,
ngablih eacuagrado te trebe g betede y thceChan allorecnd r
, eivehein tse peofnce il famanies ied fr tnds, crhe stholl
epat rntreses s hieror hlo dipBema. tforearhem e e ths flag
heof tio nattan, sante, e d therUniv, sitythand ofose c the
riountn es ih whicUnthe siiverffty ofoers n reigy.studN

j ¼ 1 t21 ¼ (2, 3, 4, 0, 5, 1) t ¼ (3, 5, 0, 1, 2, 4)

Now held on the Faculty club Green and at the University Cen
ter commencement today is celebrated in small ceremonies, e
nabling each graduate to be greeted by the canellor and re
ceive, in the presence of families and friends, the scroll t
hat represents his or her diploma. Before them are the flags
of the nation, state, and the University, and those of the
countries in which the University offers foreign study.

TABLE 2.41 Width N 5 8 Markov Log-Odds Scores for cipherEx2.5

0 1 2 3 4 5 6 7

0 21.3041 (0) 21.3195 (1) 22.6561 (1) 20.9363 (2) 21.4213 (0) 21.5821 (0) 21.5221 (3)

1 20.5405 (0) 20.9840 (0) 21.1155 (1) 21.4481 (0) 21.2513 (1) 21.2048 (0) 20.9791 (4)

2 20.8643 (1) 21.1537 (0) 20.8796 (1) 20.8698 (0) 20.4094 (3) 22.2717 (3) 20.4542 (2)

3 0.0163 (0) 20.8773 (2) 21.0079 (1) 21.5451 (1) 20.5519 (0) 21.1092 (0) 21.1975 (1)

4 20.4309 (1) 21.6089 (2) 20.8642 (1) 21.0279 (1) 21.2195 (2) 21.3056 (3) 21.2268 (2)

5 20.2711 (0) 20.8734 (1) 21.3278 (0) 20.9063 (4) 21.0029 (1) 21.6800 (0) 21.9049 (3)

6 20.6335 (1) 22.1751 (0) 21.2371 (0) 20.5573 (0) 21.1806 (0) 21.1343 (1) 20.9806 (3)

7 20.5997 (2) 21.1611 (0) 21.2175 (1) 20.7124 (1) 21.0539 (3) 21.2646 (1) 21.0284 (2)

2.8 MARKOV SCORING 45



j ¼ 2 t21 ¼ (3, 4, 0, 5, 1, 2) t ¼ (2, 4, 5, 0, 1, 3)

.w heNo on lde Fathlty cuub GClen are at nde Unthersiiv Cent
yr, ctemencoment emday to celisrateebin sd ll cmaemoners, ei
eblinnaeachg radu ge toate gr bted ee thebyhanc Clor eld rea
nive, cen th iprese ce oenfamif es ali frindds, ene scthll tr
ot rehaesenpr histsr he odiplr a. Bomore efem ath therelags
ff th onatie, stone, aat thendnive Uity,rsnd t ase ohothe f
untrcos iniehich whe U tversniy ofitrs ffeeignortudy s

j ¼ 3 t21 ¼ (4, 0, 5, 1, 2, 3) t ¼ (1, 3, 4, 5, 0, 2)

s heN.won lo Fatdety chlb GCuun arleat ne UntdersiiheCentv,
ctyrencoemnt emeay tmdcelio ateesrn sdbil cm lmoneae, eir
slinnebachgaeadu r toage gr teed ebtthebe anc yhor eCl real
dve, cni th enreseipe oe camifnfs al efrini s, edd sctnel trh
l rehotsenpaehistr he sriplrod. Bo are emom atfetherh ags e
l th ffatieon sto ,, aanethent ive dnty,rUid t sne ohashe fo
tntrc u iniosich ehe U whersntv ofiiys fftrignoeeudy rt

j ¼ 4 t21 ¼ (0, 5, 1, 2, 3, 4) t ¼ (0, 2, 3, 4, 5, 1)

h lowonatd F chetyGCulb aṙlun neeatntd UiihersntveCecty,
coeren emmnt tmeayliodceees atsdbrn cm il nealmoeire, nnes
lihgabacu eadoagr tr te g ebeedebetthc y an eChoreall r, cnd
veh ei tseinreoe pe ifncamal fs iniefr ed s, ctnd strhel ehol
rnpatsestrehie s hlroripBo d. emareatfom erheths e agh fl
tieofatto n saan,, entethe d iv, rUntyt sid ohane fosherc t
ntniou ih esicU whe sntherfiiv offtys noerigy reudN.ste

j ¼ 5 t21 ¼ (5, 1, 2, 3, 4, 0) t ¼ (5, 1, 2, 3, 4, 0)

teN.s h lowonatd F chetyGCulb arlun neetntd UiihersntveC
ecty , coeren emmnt tmeayliodceees atsdbrn cm il nealmoeire,
nneslihgabacu eadoagr tr te ebeedebetthc y an eChoreall
r, cndveh ei tseinreoe pe ifncamal fs iniefr ed s, ctnd strhel
ehol rnpatsestrehie s hlroripBo d. emareatfom erheths e a
gh fl tieofatto n saan,, entehe d iv,rUntyt sid ohane fosh
erc tntniou ih esicU whe sntherfiiv offtys noerigy reud

Markov scoring will not always unambiguously identify the width N.

Example 2.6
cipherEx2.6 of length n ¼ 224 results from columnar transposition encipherment

using width N ¼ 7.
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cipherEx2.6

Dypssdynnforr1hs Frurm id eA, Arayaobai waa TexDosoereffnr
l F,TgtieicG rlohi AnVtccsrosnelit GhXocmneedtsdn 8nDdXheye
elaxed,Fphtuygirc9eaGctuovst,XcrswrmrewM,mGAfstehoaesVe
g tdruht 5.aF essft y(t)r,

Markov scoring values using Smarkov and Hmarkov are given in Tables 2.42 and 2.43

(positive scores underlined). These table values do not unequivocally determine

t ¼ (t0, t1, . . . , t6), but they are consistent. If the largest positive score is taken as

indicating the adjacency of columns, then t ¼ (5, 4, 0, 1, 6, 3, 2).

TABLE 2.42 Width N 5 7 [Smarkov] Markov Log-Odds Score for cipherEx2.6

0 1 2 3 4 5 6

0 � 20.0977 (1) 20.5234 (1) 21.4072 (2) 0.3636 (1) 21.2245 (0) 22.1198 (2)

1 0.7094 (0) � 21.6119 (0) 21.1783 (3) 20.6484 (1) 0.0847 (1) 21.8948 (1)

2 21.1928 (1) 20.9382 (1) � 0.6206 (2) 20.9955 (2) 20.5572 (3) 21.5110 (0)

3 21.3599 (2) 20.8432 (3) 20.8190 (2) � 20.7971 (1) 21.2975 (2) 0.7791 (0)

4 20.9198 (3) 21.0399 (1) 21.2500 (4) 21.4652 (4) � 21.3148 (1) 21.0624 (1)

5 21.5629 (0) 0.9089 (1) 20.2670 (4) 21.4970 (3) 20.9256 (2) � 21.4306 (1)

6 21.1216 (2) 20.4800 (2) 20.6478 (0) 20.9677 (1) 0.1259 (1) 0.6719 (1) �

TABLE 2.43 Width N 5 7 [Smarkov] Markov Log-Odds Score for cipherEx2.6

0 1 2 3 4 5 6

0 � 20.115 (0) 20.0195 (0) 20.7915 (1) 0.5311 (0) 20.4117 (0) 21.1670 (1)

1 0.8836 (0) � 21.1809 (0) 21.1255 (1) 20.4257 (0) 0.1215 (1) 21.4794 (0)

2 20.9222 (0) 20.7621 (1) � 0.5323 (2) 20.6637 (1) 20.7014 (0) 21.4794 (0)

3 20.7905 (1) 20.5821 (1) 20.4520 (1) � 20.5209 (0) 20.8530 (0) 0.8673 (0)

4 21.0911 (0) 21.0126 (0) 21.5644 (1) 21.6629 (1) � 21.3442 (0) 20.7628 (0)

5 21.2553 (0) 0.8330 (1) 20.8768 (1) 21.2522 (2) 20.7655 (1) � 20.8541 (0)

6 20.7516 (0) 20.1999 (1) 20.2714 (0) 20.6842 (0) 0.2060 (0) 0.4318 (0) �

2.9 THE ADFGVX TRANSPOSITION SYSTEM

The ADFGX cryptographic system was created by Fritz Nebel and used by Germany

during World War I on March 5, 1918. The names ADFGX and ADFGVX for the

successor system refer to the use of only five (and later six) letters A, D, F, G, X
(V) in the ciphertext alphabet, chosen because differences in the Morse International

symbols (Fig. 2.4) reduced the misidentification due to transmission noise. The

ADFGVX system is historically important, because it combined both letter substitution

and transposition, the latter also referred to as fractionation. Although Allied cryptana-

lysts did not develop a general method for the solution of ADFGVX ciphertext,

Georges Painvin of the French Military Cryptographic Bureau found solutions that

significantly affected the military outcome in 1918. In this section, we briefly outline

the rules of ADFGVX encipherment. A cryptanalysis is given in Konheim [1984],

which is reprinted in Rives Childs [2001].
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We describe the earlier ADFGV system, but the modifications to the ADFGVX

system will be obvious. First, the plaintext and ciphertext alphabets are different:

. Plaintext is written using only the 25 letters AP ¼ {A,B,. . .,I/J,K,L,. . .,Z},
with the letters I and J combined;

. The ciphertext alphabet is Z5 ¼ {0, 1, 2, 3, 4}.

The ADFGV key consists of

. A 5 � 5 matrix SUB, whose entries are a permutation of the letters of AP, and

. A width N and transposition t ¼ (t0, t1, . . . , tN21).

The rules for ADFGV encipherment are as follows:

R1. The letters of the plaintext n-gram x ¼ (x0, x1, . . . , xn21) are coded (and expanded)

into the intermediate ciphertext z ¼ (z0, z1, . . . , z2n21), 2n-gram of integers in Z5

with xi! (z2i, z2iþ1), 0 � i , n, where (z2i, z2iþ1) are the coordinates of xi in SUB.

R2. The expanded plaintext z is then enciphered by a columnar transposition with key

(N, t), as described in Section 2.2.

Example 2.7
The key consists of a width N ¼ 8, a transposition t ¼ (5, 0, 6, 3, 1, 4, 2, 7), and a

plaintext-to-ciphertext alphabet substitution

SUB ¼

C R Y P T
O G A H B
D E F I K
L M N Q S
U V W X Z

0BBBB@
1CCCCA:

The plaintext x ¼ THE ISSUE OF PERFORMANCE (with the blank spaces deleted) is

coded into

T$ (0, 4) H$ (1, 3) E$ (2, 1)

I$ (2, 3) S$ (3, 4) S$ (3, 4)

U$ (4, 0) E$ (2, 1) O$ (1, 0)

F$ (2, 2) P$ (0, 3) E$ (2, 1)

R$ (0, 1) F$ (2, 2) O$ (1, 0)

R$ (0, 1) M$ (3, 1) A$ (1, 2)

N$ (3, 2) C$ (0, 0) E$ (2, 1)

yielding the 42-gram of intermediate ciphertext

z ¼ (0; 4; 1; 3; 2; 1; 2; 3; 3; 4; 3; 4; 4; 0; 2; 1; 1; 0; 2;

2; 0; 3; 2; 1; 0; 1; 2; 2; 1; 0; 0; 1; 3; 1; 1; 2; 3; 2; 0; 0; 2; 1):

Figure 2.4 Morse Symbols for A,D,F,G,V,X.
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Finally, z is read into the array X containing 5 full rows of N ¼ 8 entries and a final partial

row of 2 entries:

X ¼

0 4 1 3 2 1 2 3

3 4 3 4 4 0 2 1

1 0 2 2 0 3 2 1

0 1 2 2 1 0 0 1

3 1 1 2 3 2 0 0

2 1

0BBBBBB@

1CCCCCCA:

The ciphertext y ¼ ( y0, y1, . . . , y41) are the columns of the Z concatenated in the order

determined by t :

y ¼ 1; 0; 3; 0; 2 j 0; 3; 1; 0; 3; 2 j 2; 2; 2; 0; 0; j 3; 4; 2; 2; 2 j

4; 4; 0; 1; 1; 1 j 2; 4; 0; 1; 3 j 1; 3; 2; 2; 1 j 3; 1; 1; 1; 0:

2.10 CODA

Although cribbing and Markov scoring often permit a successful attack on columnar trans-

position ciphertext, there are several possible modifications of the rules that may

strengthen the encipherment method.

M1. The rectangular shape of X might be replaced by a triangle:

The plaintext Good morning. How are you today?Would be read into X

by rows and read out according to a transposition t. There are details to be supplied
so that t does not depend on the length of the plaintext.

Figure 2.5 A grille.
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M2. The rectangular shape of X might be retained, but a grille as shown in Figure 2.5

would be used to construct X. The plaintext would read into X as before except

that certain (perhaps keydependent) positions in X would be skipped.

M3. The rectangular shape of the array might be retained, but encipherment would

involve two steps:

(a) The plaintext would be read into an array X1 of width N1 and read out according

to the transposition t ¼ (t0, t1, . . . , tN121
);

(b) The resulting intermediate ciphertext would be read into an array X2 of width N2

and read out according to the transposition t ¼ (t0, t2, . . . , tN221).

We will not pursue the analysis of any of these modifications, leaving them to the

interested reader.

2.11 COLUMNAR TRANSPOSITION PROBLEMS

Problems 2.1–2.6 provide examples to which cribbing should be applied. The subject matter

and a range of possible widths N is provided in each problem. A complete solution requires

1. Use of the subject matter to guess a set of possible cribs;

2. A program to search ciphertext for cribs;

3. Determination of the set of possiblewidthsN consistent with the occurrence of the crib;

4. Recovery of the transposition t ¼ (t0, t1, . . . , tN21); and

5. Decipherment of the ciphertext.

The ciphertext files cipherPr2.1–cipherPr2.12 may be downloaded from

the following ftp address: ftp://ftp.wiley.com/public/sci_tech_med/computer_security.

PROBLEMS

2.1 The 340 ASCII characters in cipherPr2.1 result from a columnar tranposition using

width N ¼ 6 or 7 of plaintext from a sales brochure of TCC Incorporated, which markets

equipment to secure network communications.

2.2 The 697 ASCII characters in cipherPr2.2 result from the columnar transposition

of plaintext. If a line of plaintext does not end with a blank space, I have inserted a

blank space at the end of the line. The subject matter is instructions I received two

years ago about making wine. My first attempt, incidentally, was a great success –

well, perhaps that is somewhat of an exaggeration. I am certain the vintners at

Chatau Lafite may sleep soundly. Assume that the width N of the transposition is

an integer in the range 3 � N � 8.
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2.3 The 1302 ASCII characters in cipherPr2.3 result from the columnar transposition of

plaintext. If a line of plaintext does not end with a blank space, I have inserted a blank

space at the end of the line. The plaintext is a description of the local community handed

out to participants in the annual CRYPTO conference at UCSB in August of each year.

Assume that the width N of the transposition is an integer in the range 4 � N � 8.

2.4 The 431 ASCII characters in cipherPr2.4 result from the columnar transposition of

plaintext. If a line of plaintext does not end with a blank space, I have inserted a blank
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space at the end of the line. The subject matter is the work of Diffie and Hellman. Assume that

the width N of the transposition is an integer in the range 5 � N � 8.

2.5 The 739 ASCII characters in cipherPr2.5 result from the columnar transposition of

plaintext. If a line of plaintext does not end with a blank space, I have inserted a blank

space at the end of the line. The subject matter is a recent morals charge filed locally in

2004 against a famous rock singer. Assume that the width N of the transposition is an

integer in the range 5 � N � 8.

2.6 The 240 ASCII characters in cipherPr2.6 result from the columnar transposition of

plaintext. If a line of plaintext does not end with a blank space, I have inserted a blank

space at the end of the line. The subject matter is a course that all computer science students

usually take in their first year. Assume that the width N of the transposition is an integer in the

range 5 � N � 7.
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Problems 2.7–2.12 provide examples of cryptanalysis of columnar transposition using

Markov scoring. A range of possible widths N is given in each problem. The solution requires

you to

1. Write a program to carry out Markov scoring;

2. Determine the set of possible widths N consistent with the Markov scores;

3. Recover the transposition t ¼ (t0, t1, . . . , tN21) up to a cyclic shift;

4. Decipher the plaintext.

The subject matter of the plaintext is unknown. I continue to replace the blank space (ASCII

X32) by an underscore (_) to make the ciphertext easier to read.

2.7 The 422 ASCII characters in cipherPr2.7 result from a columnar transposition. The width

N of the transposition is an integer in the range 4 � N � 8.

2.8 The 928 ASCII characters in cipherPr2.8 result from a columnar transposition. The width

N of the transposition is an integer in the range 4 � N � 8.

2.9 The 407 ASCII characters in cipherPr2.9 result from a columnar transposition. The width

N of the transposition is an integer in the range 4 � N � 8.
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2.10 The 715 ASCII characters in cipherPr2.10 result from a columnar transposition. The

width N of the transposition is an integer in the range 5 � N � 9.

2.11 The 314 ASCII characters in cipherPr2.11 result from a columnar transposition.

The width N of the transposition is an integer in the range 5 � N � 8.

2.12 The 574 ASCII characters in cipherPr2.12 result from a columnar transposition. The

width N of the transposition is an integer in the range 5 � N � 8.
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CHA P T E R3
MONOALPHABETIC SUBSTITUTION

THI S CHA P T E R studies monoalphabetic encipherment. How ciphertext

may be searched for a fragment of text (cribbing) and the results used to recover the

plaintext and key will be explained. Problems to test your skills follow the text.

3.1 MONOALPHABETIC SUBSTITUTION

A monoalphabetic substitution T : x ¼ (x0, x1, . . . , xn21)! y ¼ ( y0, y1, . . . , yn21) on

plaintext with letters in the alphabet Zm ; {0, 1, 2, . . . , m2 1} is a rule specifying the

substitute u(xi) for the letter xi. Here u ¼ (u(0), u(1), . . . , u(m2 1)) is a permutation on

the letters in the alphabet

u : xt ! yt ¼ u(xt); 0 � t , n:

We begin by examining substitutions encipherment for plaintext written with letters in the

alphabet of 26 Latin letters. Uppercase letters will be used to display plaintext and lower-

case letters for ciphertext. As before, letters will also be referred to by their ordinal pos-

itions in the alphabet Zm ¼ {0, 1, 2, . . . , m2 1} with m ¼ 26. Even though there are

26! 	 4 � 1026 different monoalphabetic substitutions on Z26, approximately a key

space of 80 bits, William Friedman [1944] estimated that the key would be determined

by �25 characters of monoalphabetic ciphertext.

A monoalphabetic substitution may be specified in a substitution table such as

Table 3.1. A key word provides a simple mnemonic to construct a substitution table.

For example, the letter repetitions in GOODWORD are first deleted, yielding GODWR. The
substitution u is specified by the sequence of letters that starts with GODWR and then is

followed by the remaining letters of the alphabet in the normal order, as shown in

Table 3.2. If long key words are allowed, any of the 26! permutations may be generated

in this manner.

Historically, monoalphabetic substitution has been simplified using various mechan-

ical devices. General Albert J. Myer, the first Chief Signal Officer of the Union Army’s

Signal Corps, invented a cipher disk in 1863 that was used during the American Civil

War. It consisted of two concentric disks (Fig. 3.1), with the plaintext letters inscribed

around the periphery of the inner disk. In addition to the letters A, B, . . . ,Z, the Myer

plaintext alphabet also included the letter combinations tion, ing, ours, and &,
which might frequently occur in words; the symbol “&” signalled the end of a word, equiv-
alent to a blank space to separate words.

Computer Security and Cryptography. By Alan G. Konheim
Copyright # 2007 John Wiley & Sons, Inc.
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Each plaintext letter was enciphered into a sequence composed of the symbols “1”

and “8”1 of length 1–4. These ciphertext “letters” are printed around the larger circum-

scribed ring. The disks are fastened together concentrically in such a manner that one

may revolve upon the other and they may be clamped in any position.

Beginning around 1940, The Adventures of Captain Midnight was sponsored by

Ovaltine and broadcast over the Mutual Network radio. How I anticipated decoding

the secret messages as a member of Captain Midnight’s Secret Squadron. Of course,

I required a Captain Midnight Decoding Badge (Fig. 3.2). Like the Myer disk, the

Captain Midnight decoding badge implemented a monoalphabetic substitution. It con-

sisted of an outer disk containing the ciphertext alphabet – numbers 1 to 26 and an

inner disk on which a permutation of the (plaintext) letters A to Z is recorded.

Figure 3.1 Myer civil war cipher disk (Courtesy of NSA).

TABLE 3.1 Substitution Table for Alphabet {A, B, . . . , Z}

A B C D E F G H I J K L M

# # # # # # # # # # # # #

q w e r t y u i o p l k j

N O P Q R S T U V W X Y Z

# # # # # # # # # # # # #

h g f d s a z x c v b n m

TABLE 3.2 Substitution Table Derived from GOODWORD

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

# # # # # # # # # # # # # # # # # # # # # # # # # #

g o d w r a b c e f h i j k l m n p q s t u v x y z

1Myer might have used of the symbols 1 and 8 since the Morse codes. – – – for 1 and – – – for 8 are dissimilar

tending to lessen transmission errors.
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3.2 CAESAR’S CIPHER

It is believed that Julius Caesar, in the period 58 BCE to 51 BCE, enciphered messages to his

lawyer Marcus Tullius Cicero and other Roman senators using a monoalphabetic substi-

tution. In the Caesar cipher, each plaintext letter was replaced by the letter standing

three places to-the-right in the alphabet. If we neglect that the original Roman or Latin

alphabet did not contain a J, U, or W, then, Julius’ query in the present day Roman alphabet

ANYONE KNOW WHERE I CAN GET DECENT PIZZA?
dqbrqh nqrz zkhuh l edq jhw ghfhqw slccd?

would be enciphered as above.

For the alphabet of uppercase Latin letters {A, B,. . ., Z} identified with the inte-

gers in Z26 ¼ {0, 1, . . . , 25} the Caesar shift substitution Ck is defined for each key

k [ Z26 by

Ck : x! y ¼ Ck(x) ¼ (xþ k) (modulo 26):

Variations of the Caesar substitution with larger key spaces have been invented; one

simple generalization, the affine Caesar substitution, is defined by the formula

Aj;k : x! y ¼ Aj;k(x) ¼ ( jxþ k) (modulo 26),

where the key is a pair of integers j, k. Aj,k is a one-to-one transformation on the alphabet

Z26 only when the multiplier j is not divisible by either 2 or 13. In this case, j has a multi-

plicative inverse modulo 26, meaning there exists an integer b ¼ j21 that satisfies bj ; 1

(modulo 26). These values of j are listed in Table 3.3. The key space of the affine

Caesar substitution contains 312 ¼ 12 � 26 keys and exhaustive key trial remains

computationally feasible.

Figure 3.2 Captain Midnight Decoding Badge. (Captain Midnight is a registered trademark of

Klutz and is used here with their permission. Replicas of the Captain Midnight decoding badge may

be ordered from www.klutz.com.)
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3.3 CRIBBING USING ISOMORPHS

Two r-grams u ¼ (u0, u1, . . . , ur21) and v ¼ (v0, v1, . . . , vr21) are isomorphs of one

another: u $ v if they satisfy ui ¼ uj if and only if vi ¼ v j for 0 � i, j , r. For

example, xyzanya and science are isomorphs of one another.

Cribbing can be used to analyze monoalphabetic ciphertext y by searching for

isomorphs of a plaintext crib in the ciphertext. If the plaintext r-gram (v0, v1, . . . , vr21)

has been enciphered to the ciphertext (u0, u1, . . . , ur21), the isomorph provides parts of

the substitution u. By piecing together several cribs and their isomorphs, most of the

ciphertext might be read.

Example 3.1
cipherEx3.1 was monoalphabetically enciphered according to the rules:

. All characters (in the plaintext) other than uppercase letters have been deleted;

. The 399 letters in cipherEx3.1, the ciphertext file is written in rows of 50 letters
in blocks of 5 separated by a blank space.

The subject of the plaintext is the early paper of Needham–Schroeder on authentication, to

be described in Chapter 17.

cipherEx3.1

qxzit hzoeq zoghq hrrou ozqka ouhqz xstav twazt saroe zoghq
snrty ohtaq xzith zoeqz oghqa qfsge taawn vioei tqeig yzvge
gjjxh oeqzo hufqs zotac tsoyo tazit orthz ozngy zitgz itsoj
fkoeo zohqx zithz oeqzo ghgyq jtaaq utjta aysgj zitat hrtsz
gzits tetoc tsoaa gjtoh ygsjq zoghq xziqf fthrt rzggs ohekx
rtrvo ziohz itjta aqutt hqwko huzit qxzit hzoeq zoghz gzqlt
fkqet qxzit hzoeq zoghf tszqo hazgz itort hzozn ghzit athrt
swxzh gzzit eghzt hzgyz itjta aqutj taawt ohuzs qhajo zztr

The program

IsoSearch1

Input: ciphertext, crib

Output: isomorphs of crib

searches ciphertext for all isomorphs of a plaintext crib. Possible cribs in cipherEx3.1
include AUTHENTICATE, SIGNATURE, AUTHENTICATION, MESSAGE, and

PROTOCOL. Table 3.4 lists the 19 isomorphs of the crib SIGNATURE in cipherEx3.1
recording the number of times an isomorph occurs. To be effective, cribbing must be

combined with some mechanism to prune away unlikely instances of the isomorph of

TABLE 3.3 Integers in Z26 That Have Multiplicative Inverses

j 1 3 5 7 9 11 15 17 19 21 23 25

j21 1 9 21 15 3 19 7 23 11 5 17 25
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the crib. For example, if kaouhqzxs is the encipherment of SIGNATURE,

the frequencies of s and h in the ciphertext are not comparable to the probabilities of

the letters E and A in English-language text. We will show how unlikely isomorphs can

be detected by comparing the frequencies to the probabilities in standard English

language text.

3.4 THE x2-TEST OF A HYPOTHESIS

Suppose a large number n of independent trials of a chance experiment E are performed. A

trial has r possible outcomes O0, O1, . . . , Or21 that occur with probabilities q(0),

q(1), . . . , q(r2 1). The number of times the outcome Oi occurs, Ni, is recorded.

How likely is it that the observed outcome-counts {Ni} are consistent with

the hypothesis : q(i) is the probability of occurrence of Oi (0 � i , r). In the context of

cribbing

. The experiment E is the generation of plaintext by an iid language model with

1-gram probabilities p followed by monoalphabetic substitution u;

. The r outcomes correspond to the occurrence of the letters of a ciphertext r-gram u;

. u ¼ (u0, u1, . . . , ur21) is a ciphertext isomorph of the plaintext crib

v ¼ (v0, v1, . . . , vr21); and

. The probabilities q(i) ¼ p(vi) are those that would be true if the ciphertext u was the
encipherment of the plaintext crib v – that is, if u : v! u.

If the hypothesis is true, then for each possible outcome Oi, the law of large numbers

asserts

lim
n!1

Ni

n
¼ q(i) (0 � i , r):

The x2-statistic is the quantity defined by

x2 ¼
Xr�1
i¼0

(Ni � nq(i))2

nq(i)
¼
Xr�1
i¼0

n

q(i)

Ni

n
� q(i)

� �2

The ith term in the sum above is the product of two factors. The first,

1 ¼ lim
n!1

n

q(i)
,

TABLE 3.4 Isomorphs of SIGNATURE in cipherEx3.1

Isomorph Isomorph Isomorph Isomorph Isomorph

1 kaouhqzxs 1 aouhqzxst 1 ouhqzxsta 1 uhqzxstav 1 ezoghqsnr

1 zoghqsnrt 1 oghqsnrty 1 ghqsnrtyo 1 yohtaqxzi 1 hufqszota

1 ufqszotac 1 gzitsojfk 1 tohygsjqz 1 gsohekxrt 1 qwkohuzit

1 wkohuzitq 1 kohuzitqx 1 eqzoghfts 1 awtohuzsq

S I G N A T U R E

# # # # # # # # #

k a o u h q z x s
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increases without bound with n, and the second has one of two limiting values:

lim
n!1

Ni

n
� q(i)

� �
¼

0, if the hypothesis is true

1, if the hypothesis is false:

�
The statistician Karl Pearson [1900] proved that the limiting distribution of x2n exists and is
independent of the distribution {q(i)}. Moreover, the outcome-counts {Ni} have r2 1

degrees of freedom.2

Proposition 3.1: If {q(i)} is the common distribution of {Ni : 0 � i , r}, then

lim
n!1 Pr{x2n � x} ¼

2�(r�1)

G
r � 1

2

� �ðx
0

y
r�3
2 e�

y
2 dy ¼

ðx
0

kr�1( y) dy

where G(k) is the gamma function, defined by

G(k) ¼

ð1
0

xk�1e�x dx

and G(k) ¼ (k2 1)! for integers k � 1.

Given a value of p � 100, there exists a value x( p, r2 1) such that x2n should exceed
x( p, r2 1) with probability 0.01p if the sample size is large enough

p

100
¼

ð1
x(p;r�1)

kr�1( y) dy

when the hypothesis is true. A large x2-value for p 	 99 – in excess of x(99, r2 1) –

therefore casts doubt on the validity of the hypothesis. Tables of the x2-limits can be

found in Abramowitz and Stegun [1972], which also contains the formula

x2( p, r) ’ r 1�
2

9r
þ x( p, r)

ffiffiffiffiffi
2

9r

r !
’ r �

2

3
þ

ffiffiffiffiffi
2r
p

x( p, r)þ
2

3
x( p, r)2 þ � � � :

3.5 PRUNING FROM THE TABLE OF ISOMORPHS

We identify the repeated trials of the experiment E with the generation of plaintext with

letters in the generic alphabet Zm by the iid language model with probabilities

p (i) ¼ Pr{X ¼ i} for 0 � i , m.

To test if the ciphertext r-gram v is an isomorph of the plaintext u, the ciphertext

letter counts {Nvi
} are compared to the plaintext letter probabilities using the x2-statistic:

x2 ¼

Xr�1
i¼0

(Nvi � np (ui))
2

np (ui)
, no repeated letter in crib

Xr�1
i¼0

vj=vj, i=j

n o (Nvi � np (ui))
2

np (ui)
, some repeated letters in crib

8>>>>>><>>>>>>:
Table 3.5 lists the count of 1-grams {Ni} and their frequencies f (i) ¼ Ni/n in the ciphertext
cipherEx3.1. Table 3.6 gives the probabilities {p (i)} of 1-grams derived from a large

2The components of the r-vector of counts N ¼ (N0, N1, . . . , Nr21) are not independent, because n ¼
Pr�1

i¼0 Ni.
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sample English language text. The plan is to now use the x2-test to associate the seven

high-frequency ciphertext letters in Table 3.5:

t 54 z 54 o 41 h 34 q 31 a 26 g 26

with seven of the nine plaintext letters of highest probability from Table 3.6:

E T A O N R I S H

A correspondence between t, z, o, h and some subset of E, T, A, O, N, R, I, S, H
permits most of the isomorphs to be discarded.

The results of IsoSearch1 are given in Tables 3.7 to 3.12. One starting point for

the pruning is to determine the plaintext-to-ciphertext letter correspondences by selecting

the cribs with the smallest x2-scores (Table 3.13). The plaintext-to-ciphertext letter corre-

spondences implied by the first four cribs are consistent; for example, isomorphs of

the first two cribs implies the correspondences in Table 3.14. All of these plaintext-

to-ciphertext letter correspondences are also consistent with the isomorphs of MESSAGE
and DIGITAL with the smallest x2-scores. This is not the case for either of the isomorphs

of PROTOCOL.

TABLE 3.5 Letter Counts and Frequencies in cipherEx3.1

i Ni fi i Ni fi i Ni fi

a 26 0.0652 j 12 0.0301 s 16 0.0401

b 0 0.0000 k 5 0.0125 t 54 0.1353

c 2 0.0050 l 1 0.0025 u 8 0.0201

d 0 0.0000 m 0 0.0000 v 4 0.0100

e 16 0.0401 n 4 0.0100 w 5 0.0125

f 7 0.0172 o 41 0.1028 x 10 0.0251

g 26 0.0652 p 0 0.0000 y 9 0.0226

h 34 0.0852 q 31 0.0777 z 54 0.1353

i 21 0.0526 r 13 0.0326

TABLE 3.6 1-Gram English-Language Plaintext
Probabilities

i p (i) i p (i) i p (i)

A 0.0856 J 0.0013 S 0.0607

B 0.0139 K 0.0042 T 0.1045

C 0.0279 L 0.0339 U 0.0249

D 0.0378 M 0.0249 V 0.0092

E 0.1304 N 0.0707 W 0.0149

F 0.0289 O 0.0797 X 0.0017

G 0.0199 P 0.0199 Y 0.0199

H 0.0528 Q 0.0012 Z 0.0008

I 0.0627 R 0.0677
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TABLE 3.8 Isomorphs of AUTHENTICATE in
cipherEx3.1

Crib ¼ AUTHENTICATE

None found

TABLE 3.7 Isomorphs of SIGNATURE in cipherEx3.1

Crib ¼ SIGNATURE

1 kaouhqzxs 392.74 1 aouhqzxst 23.13 1 ouhqzxsta 197.01

1 uhqzxstav 409.49 1 ezoghqsnr 222.41 1 zoghqsnrt 108.61

1 oghqsnrty 220.61 1 ghqsnrtyo 367.92 1 yohtaqxzi 189.95

1 hufqszota 169.42 1 ufqszotac 378.99 1 gzitsojfk 163.24

1 tohygsjqz 182.56 1 gsohekxrt 200.65 1 qwkohuzit 230.77

1 wkohuzitq 251.43 1 kohuzitqx 414.95 1 eqzoghfts 323.98

1 awtohuzsq 560.30

TABLE 3.9 Isomorphs of AUTHENTICATION in
cipherEx3.1

Crib ¼ AUTHENTICATION

TABLE 3.10 Isomorphs of MESSAGE in
cipherEx3.1

Crib ¼ MESSAGE

3 jtaaqut 3.10

TABLE 3.11 Isomorphs of DIGITAL in cipherEx3.1

Crib ¼ DIGITAL

1 rouozqk 17.72 1 hqaqfsg 138.14 1 soyotaz 130.15

2 hzozngy 211.85 1 eozohqx 253.68 1 oghgyqj 154.71

1 xrtrvoz 464.89 1 hzgzqlt 284.29 1 azgzito 182.32

TABLE 3.12 Isomorphs of PROTOCOL in cipherEx3.1

Crib ¼ PROTOCOL

1 fkoeozoh 232.62 1 zitsteto 357.85

TABLE 3.13 Isomorphs in cipherEx3.1 with Smallest x2-Scores

AUTHENTICATION ! qxzithzoeqzogh 23.66

SIGNATURE ! aouhqzxst 23.13

MESSAGE ! jtaaqut 3.10

DIGITAL ! rouozqk 17.72

PROTOCOL ! fkoeozoh 232.62
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Assuming the correctness of the isomorphs of all cribs other than PROTOCOL pro-

vides the partial substitution table of Table 3.15. A partial trial decipherment replacing the

identified ciphertext letters by the plaintext values identified (in uppercase) yields

AUTHENTICATIONANDDIGITALSIGNATURESvEwSTERSDICTIONA
RnDEyINESAUTHENTICATIONASAfROCESSwnvHICHEACHOyTvOC
OMMUNICATINGfARTIEScERIyIESTHEIDENTITnOyTHEOTHERIM
fLICITINAUTHENTICATIONOyAMESSAGEMESSyROMTHESENDERT
OTHERECEIcERISSOMEINyORMATIONAUTHAffENDEDTOORINCLU
DEDvITHINTHEMESSAGEENAwkINGTHEAUTHENTICATIONTOTAlE
fkACEAUTHENTICATIONfERTAINSTOTHEIDENTITnOyTHESENDE
RwUTNOTTHECONTENTOyTHEMESSAGEMESSwEINGTRANSMITTED

from which words and additional letter-pair correspondences can be recognized; for

example

. P! f from tROCESS, and

. Y! n from IDENTITn.

Example 3.2
The n ¼ 356 lowercase letters in cipherEx3.2 result from a monoalphabetic encipher-

ment of plaintext where the subject of the plaintext is standard lower-division computer

science courses. The first step in the analysis is to make 1 gram counts {Ni} and frequen-

cies { fi} in cipherEx3.2; these are listed in Table 3.16. Using IsoSearch1 for the

possible cribs including PROGRAMMING, PROGRAMS, and LANGUAGE gives the results

in Tables 3.17 to 3.19. If both PROGRAMMING or PROGRAMS appear in the plaintext, the

true ciphertext of LANGUAGE must be xqvflqft. These cribs determine the partial sub-

stitution tables, Table 3.20.

TABLE 3.14 Plaintext-to-Ciphertext Letter
Correspondences in cipherEx3.1 from Table 3.13

A E T N I U

# # # # # #

q t z h o h

TABLE 3.15 Partial Substitution Table for cipherEx3.1

A B C D E F G H I J K L M

# # # # # # # # # # # # #

q e r t u i o k j

N O P Q R S T U V W X Y Z

# # # # # # # # # # # # #

h g s a z x
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cipherEx3.2

otohb ktbdm qjeqx kbmhb psrtq extqh vbvcq kdtcq kseqx xubhs
tvktr svkhb rleks bvkbm hbfhq ccsvf qvrmq jeqxo tkqzt skgbh
fhqvk trkdq kmqje qxsjq jlmth sbhsv jkhle ksbvq xxqvf lqftk
dqkkd toquk bxtqh vmhbf hqccs vfsjk bohsk tmhbf hqcjq vrkdq
kmhbw xtcjb xpsvf jdblx rwtkq lfdks vkdtg shjkm hbfhq ccsvf
eblhj t

TABLE 3.16 Letter Counts and Frequencies in cipherEx3.2

i Ni fi i Ni fi i Ni fi

a 0 0.0000 j 12 0.0469 s 18 0.0703

b 22 0.0859 k 27 0.1055 t 19 0.0742

c 10 0.0391 l 7 0.0273 u 2 0.0078

d 9 0.0352 m 10 0.0391 v 17 0.0664

e 8 0.0312 n 0 0.0000 w 2 0.0078

f 12 0.0469 o 5 0.0195 x 0 0.0000

g 2 0.0078 p 2 0.0078 y 12 0.0469

h 23 0.0898 q 29 0.1133 z 1 0.0039

i 0 0.0000 r 7 0.0273

TABLE 3.17 Isomorphs of
PROGRAMMING in cipherEx3.2

Crib ¼ PROGRAMMING

3 mhbfhqccsvf 20.75

TABLE 3.18 Isomorphs of PROGRAMS
in cipherEx3.2

Crib ¼ PROGRAMS

1 mhbfhqcj 21.24

TABLE 3.19 Isomorphs of LANGUAGE in cipherEx3.2

Crib ¼ LANGUAGE

1 eksbvkbm 91.43 1 xqvflqft 19.25

TABLE 3.20 Partial Substitution Table for cipherEx3.2

A B C D E F G H I J K L M

# # # # # # # # # # # # #

q t f s x c

N O P Q R S T U V W X Y Z

# # # # # # # # # # # # #

v b m h j l
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A partial decipherment of cipherEx3.2 reveals words:

0 oEoROkEOdPASeALkOPROpIrEAeLEARNONMAkdEMAkIeALLuORI
1 ENkErINkROrUekIONkOPROGRAMMINGANrmASeALoEkAzEIkgOR
2 GRANkErkdAkPASeALISASUPERIORINSkRUekIONALLANGUAGEk
3 dAkkdEoAukOLEARNPROGRAMMINGISkOoRIkEPROGRAMSANrkdA
4 kPROwLEMSOLpINGSdOULrwEkAUGdkINkdEgIRSkPROGRAMMING
5 eOURSE

1. Lines 0, 2: C! e from PASeAL;

2. Line 5: C! e from eOURSE;

3. Line 3: T! k from kOLEARN

and so forth. The complete substitution table cannot be recovered because four letters do

not appear in the plaintext. Note also that the most frequent plaintext letters in decreasing

order of frequency of occurrence are

A (0.1133) T (0.1055) R (0.0898) O (0.0859) E (0.0742) I (0.0703) N (0.0664)

which deviates from the order ETAONRISH in Table 3.6.

3.6 PARTIAL MAXIMUM LIKELIHOOD ESTIMATION
OF A MONOALPHABETIC SUBSTITUTION

Can we find the substitution without a crib? We suppose ciphertext y ¼ ( y0, y1, . . . , yn21)

results from a monoalphabetic substitution of plaintext x ¼ (x0, x1, . . . , xn21), both written

with letters in the alphabet Zm ¼ {0, 1, . . . , m2 1} with an unknown substitution u.
We assume the substitution u has been chosen randomly independent of x and

according to the uniform distribution Pra priori{Q ¼ u} ¼ 1/m. The cryptanalysis problem

Given: y

Evaluate: the likelihood of the hypothesis H(t) that Q ¼ t

is solved by the maximum likelihood estimation (MLE). Computation of the MLE assumes

the plaintext has been generated by a Markov language model with parameters (p, P).
Knowledge of the ciphertext changes the likelihood of Q:

Pra priori{Q ¼ u}! Pra posteriori{Q ¼ u=Y ¼ y}:

Using Baye’s Law

Pr{A=B} ¼ Pr{B=A}
Pr{A}

Pr{B}
,

we have

Pra posteriori{Q ¼ u=Y ¼ y} ¼ Pra posteriori{Y ¼ y=Q ¼ u}
Pra posteriori{Q ¼ u}

Pra posteriori{Y ¼ y}

The MLE of the substitution is any û which satisfies

Pra posteriori{Q ¼ û=Y ¼ y} ¼ max
u

Pra posteriori{Q ¼ u=Y ¼ y}
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Assuming Pra posteriori{Q ¼ u} ¼
1

m!
and Pra posteriori{Y ¼ y} does not depend on u

max
u

Pra posteriori{Q ¼ u=Y ¼ y} ¼ max
u

Pra posteriori{Y ¼ y=Q ¼ u}:

3.6.1 1-Gram Scoring Using an Independent 1-Gram
Language Model

The simplest language model was described in Chapter 2; it postulated that plaintext

X ¼ (X0, X1, . . . , Xn21) resulted from n independent and identical trials with probabilities

p(t) ¼ Pr{Xi ¼ t}, 0 � i , n; 0 � t , m:

With this model

Score(t=y) ¼ Pra posteriori{Y ¼ y=H(t)} ¼ p (t�1( y0))p (t�1( y1)) � � �p (t�1( yn�1))

¼
Ym�1
t¼0

pNt (t�1(t)) (3:1)

where Nt is the number of times the letter t appears in the ciphertext y. Finding the

maximum value of Score(t/y) is equivalent to finding the maximum value of

L-Score(t=y) ;
1

n
log2 Score(t=y)/

Xm�1
t¼0

Nt

n
log2 p (t�1(t)):

The symbol / ( proportional to) indicates that both sides agree up to a term that is

independent of t.
The law of large numbers gives lim

n!1Nt=n ¼ p (u�1(t)) so that

lim
n!1L-Score(t=y)/

Xm�1
t¼0

p (u�1(t)) log2 p (t�1(t)): (3:2)

Applying the inequality of the arithmetic and geometric means

Xm�1
t¼0

p (u�1(t)) log2 p (t�1(t)) �
Xm�1
t¼0

p (u�1(t)) log2 p (u
�1(t)):

This shows that the substitution t, which maximizes the log-score in Equation (3.2),

is the Bayesian solution when the plaintext is generated by the independent 1-gram model

and a large enough sample of ciphertext is observed.

One important point: the computation of the Bayesian solution for an alphabet of

m ¼ 26 letters requires the maximization of L-Score(u/y) over a set of m! ¼
26! ¼ O(1040) values.
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3.6.2 1-Gram Scoring Using a Markov Language Model

A more sophisticated language model assumes that plaintext is generated by a Markov

language model with parameters (p, P). Using this model,

Pra posteriori{Y ¼ y=Q ¼ u}¼ p (u�1(y0))P(u
�1(y1)=u

�1(y0))

P(u�1(y2)=u
�1(y1)) � � �P(u

�1(yn�1)=u
�1(yn�2))

¼ p (u�1(y0))
Ym�1
i;j¼0

PNs;t (u�1(t)=u�1(s)),

where Ns,t is the number of adjacent ciphertext letter-pairs (s, t).

It is not feasible to evaluate Pra posteriori{Y ¼ y/Q ¼ u} for every u when m ¼ 26.

Instead, we will calculate an approximate partial MLE, by maximizing over substitutions

that are only partially specified. Qa,b consists of those u determined by a k-vector of plain-

text letters a ¼ (a0, a1, . . . , ak21) and a k-vector of corresponding ciphertext letters

b ¼ (b0, b1, . . . , bk21):

u [ Qa;b ) u(ai) ¼ bi, for 0 � i , k:

The conditional probability Pra posteriori{Y ¼ y/Qa,b} is defined by

Pra posteriori{Y ¼ y=Qa;b} ¼ p (u�1( y0))
Yk�1
i, j¼0

PNbi , bj (u�1(bj)=u
�1(bi))� P1 � P2 � P3,

where

P1 ¼
Yk�1
i¼0

Yk�1
t¼0
t�a, b

PNbi , t (u�1(t)=u�1(bi))

P2 ¼
Yk�1
j¼0

Yk�1
s¼0
s�a, b

PNs, bj (u�1(bj)=u
�1(s))

and

P3 ¼
Yk�1
s, t¼0
s, t�a, b

PNs, t (u�1(bj)=u
�1(s)):

u [ Qa,b does not provide the values of u21(t) for t � a, b so that the evaluation of

Pra posteriori{Y ¼ y/Qa,b} is not possible. Instead, we calculate an approximate partial

MLE log-score defined by

L-Score(Y ¼ y=Qa;b) ¼
1

n
log2 Score(Y ¼ y=Qa;b)

¼ p (u�1( y0))
Xk�1
i;j¼0

Nbi ,bj

n
log2 P(u

�1(bj)=u
�1(bi)):

By the law of large numbers

lim
n!1

Nbi, bj

n
¼ p (t�1(bi))P(t

�1(bj)=t
�1(bi))
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so that

lim
n!1L-Score(Y ¼ y=Qa;b) ¼ L1-Score(Y ¼ y=Qa;b)

¼
Xk�1
i;j¼0

p(t�1(bi))P(t
�1(bj)=t

�1(bi)) log2 P(aj=ai):

It is reasonable to look at the values of (a,b) for which
Pk�1
i, j¼0

p(t�1(bi))
P(t�1(bj)=t

�1(bi)) log2 P(aj=ai) is a maximum.

Example 3.3
The ASCII plaintext

plainEx3.3

The pre-major requirements for the B.A. and the B.S. degrees
in computer science are the same. Students intending to major
in computer science should declare a pre-major when applying
for admission to the university. Students who declare a
pre-major are responsible for satisfying degree requirements
in effect at the time of their declaration.When students have
completed the preparation courses, they must petition to
declare a change from pre-major to major status.

is enciphered according to the rules:

. All characters (in the plaintext) other than uppercase letters have been

deleted,

. The ciphertext is written in row of 50 characters producing the ciphertext

cipherEx3.3

rnbpybifczyybhkwybibvrdxzyrnbqffvgrnbqdgbaybbdwvtz
ipkrbydtwbvtbfybrnbdfibdrkgbvrdwvrbvgwvarzifczywvt
zipkrbydtwbvtbdnzkoggbtofybfpybifczysnbvfppoewvaxz
yfgiwddwzvrzrnbkvwubydwredrkgbvrdsnzgbtofybfpybifc
zyfybybdpzvdwqobxzydfrwdxewvagbaybbybhkwybibvrdwvb
xxbtrfrrnbrwibzxrnbwygbtofyfrwzvsnbvdrkgbvrdnfubtz
ipobrbgrnbpybpfyfrwzvtzkydbdrnbeikdrpbrwrwzvrzgbto
fybftnfvabxyzipybifczyrzifczydrfrk

Table 3.21 gives the letter counts {Ni} and frequencies { fi} of the letters in the

cipherEx3.3 ciphertext. It is reasonable to suppose that the high-frequency ciphertext

letters identified in Table 3.21,

b (60) r (37) y (34) f (28) z (26) v (25) d (25) w (28)
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are likely to correspond to some of the plaintext letters of high probability:

E T A O N R I S H

TABLE 3.21 Letter Counts and Frequencies in cipherEx3.3

i Ni fi i Ni fi i Ni fi

a 6 0.0156 b 60 0.1563 c 6 0.0156

d 25 0.0651 e 4 0.0104 f 28 0.0729

g 14 0.0365 h 2 0.0052 i 16 0.0417

j 0 0.0000 k 12 0.0313 l 0 0.0000

m 0 0.0000 n 15 0.0391 o 8 0.0208

p 13 0.0339 q 3 0.0078 r 37 0.0964

s 3 0.0078 t 14 0.0365 u 2 0.0052

v 25 0.0651 w 23 0.0599 x 8 0.0208

y 34 0.0885 z 26 0.0677

TABLE 3.22 k 5 3

a, b L1-Score(Y ¼ y/Qa,b)

bE rN yR 20.2524

bE rT yR 20.2636

bR rA yE 20.2822

bR rO yE 20.2868

bN rE yI 20.2900

bN rO yI 20.2928

bR rT yE 20.2964

bE rI yR 20.2999

bR rE yO 20.3021

bE rR yT 20.3043

TABLE 3.23 k 5 4

a, b L1-Score(Y ¼ y/Qa,b)

bE rN yR fA 20.4625

bE rT yR fA 20.4762

bN rE yI fT 20.4768

bN rO yI fT 20.4823

bE rN yR fO 20.4825

bR rA yE fN 20.5008

bN rA yI fT 20.5043

bR rA yE fT 20.5049

bR rO yE fN 20.5050

bE rN yR fI 20.5061

TABLE 3.24 k 5 5

a, b L1-Score(Y ¼ y/Qa,b)

bE rN yR fA zO 20.6048

bE rT yR fA zO 20.6122

bN rE yI fT zR 20.6168

bE rN yR fO zA 20.6234

bR rA yE fN zT 20.6278

bN rO yI fT zR 20.6293

bR rO yE fT zN 20.6324

bR rA yE fT zN 20.6325

bE rT yN fA zI 20.6359

bE rN yR fA zT 20.6395

TABLE 3.25 k 5 6

a, b L1-Score(Y ¼ y/Qa,b)

bE rT yR fA zO vN 20.8009

bE rS yR fA zO vN 20.8156

bE rT yS fA zI vN 20.8286

bE rT yR fA zO vS 20.8297

bE rT yN fA zI vS 20.8307

bE rT yR fA zI vN 20.8377

bN rE yI fS zR vT 20.8410

bE rS yR fA zI vN 20.8463

bE rT yR fA zI vS 20.8464

bR rI yE fS zN vT 20.8464
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The 10 largest scores for partial assumptions with k ¼ 3(1)6 are given in Tables 3.22

to 3.25. If the (lowercase) ciphertext letters in cipherEx3.3 are replaced by their

(uppercase) plaintext correspondents according to Qa,b,

b ! E r ! T y ! R f ! A z ! O v ! N

the following partially deciphered plaintext is obtained:

Partial-plainEx3.3 : Step 1

TnEpREiAcORREhkwREiENTdxORTnEqAANgTnEqdgEaREEdwNtO
ipkTERdtwENtEARETnEdAiEdTkgENTdwNTENgwNaTOiAcORwNt
OipkTERdtwENtEdnOkoggEtoAREApREiAcORsnENAppoewNaxO
RAgiwddwONTOTnEkNwuERdwTedTkgENTdsnOgEtoAREApREiAc
ORAREREdpONdwqoExORdATwdxewNagEaREEREhkwREiENTdwNE
xxEtTATTnETwiEOxTnEwRgEtoARATwONsnENdTkgENTdnAuEtO
ipoETEgTnEpREpARATwONtOkRdEdTnEeikdTpETwTwONTOgEto
AREAtnANaExROipREiAcORTOiAcORdTATk

The ciphertext letters corresponding to plaintext letters I, S, and H need to be identified;

they are likely to be among d, w, i, n. Next, each of the 24 permutations of the three letters

{d, w, i, n} is replaced by (I, S, H), and the resulting partial plaintext is searched for

recognizable word fragments. The process requires some experimentation and we will

not continue beyond this point.

3.7 THE HIDDEN MARKOV MODEL (HMM)

A class of stochastic processes now referred to as Hidden Markov models (HMM) are

described in the two important papers published by Petrie [1969] and Baum et al.

[1969]. The application of HMM to automatic speech recognition (ASR) was

quickly recognized, and is detailed in the survey papers by Levinson et al. [1983],

Rabiner and Juang [1986] and Poritz [1988]. We outline the main ideas and show

how HMM may be applied to cryptanalyze a monoalphabetic substitution.

A hidden Markov model (HMM) is a two-stage random process; both the input

X ¼ (X0, X1, . . . ,Xn) and output states Y ¼ (Y0, Y1, . . . ,Yn) consists of integers in

Zm ¼ {0, 1, . . . ,m2 1}. The HMM is constructed from

1. A Markov chain with parameters (p, P) generating (hidden) states X

p(i) � 0 (0 � i , m) 1 ¼
Xm�1
i¼0

p(i) (3:3)

P( j=i) � 0 (0 � i; j , m) 1 ¼
Xm�1
j¼0

P( j=i) (0 � i , m) (3:4)

2. An output probability distribution q( j/i) ¼ Pr{Yt ¼ j/Xt ¼ i} for each hidden

state i

q( j=i) � 0 (0 � i , m) 1 ¼
Xm�1
j¼0

q( j=i) (0 � i , m) (3:5)
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The evolution of the HMM may be described as follows:

1. The initial hidden state X0 ¼ x0 is chosen with probability p (x0);

The initial output state Y0 ¼ x0 occurs with probability q( y0/x0).

2. For t ¼ 1, 2, . . .

(a) the hidden state Xt ¼ xt occurs with probability

Pr{Xt ¼ xt/Xt21 ¼ xt21} ¼ P(xt/xt21);

(b) the output state Yt ¼ yt results with probability Pr{Yt ¼ yt/Xt ¼ xt} ¼ q( yt/xt).

The output states Ymay be observed, the hidden states X are not (Fig. 3.3). Throughout this

section,

1. The observation interval consisting of the time points t with 0 � t � n and

2. The output state vector y ¼ ( y0, y1, . . . , yn) are fixed.

The probability of observing the output state y is expressed as a summation over all

paths x through the hidden states:

PrfY ¼ yg ¼
X
x

PrfY ¼ y;X ¼ xg ¼
X
x

PrfY ¼ y=X ¼ xgPrfX ¼ xg

¼
X

x¼(x0;x1;...;xn)

p (x0)P(x1=x0)P(x2=x1) � � �P(xn=xn�1) q( y0=x0)q( y1=x1) � � � q( ys=xs)

¼
X
x

p (x0)

 Yn
s¼1

P(xs=xs�1)

! Yn
s¼0

q( ys=xs)

!
(3:6)

The two expressions appearing in the summation on the right-hand side of Equation (3.6)

correspond to

. The probability p (x0)
Qn

s¼1 P(xs=xs�1) of the path x ¼ (x0, x1, . . . , xn) through the

hidden states and

. The conditional probability
Qn

s¼0 q( ys=xs) of output y ¼ ( y0, y1, . . . , yn) given the

path x ¼ (x0, x1, . . . , xn) through the hidden states.

Figure 3.3 Observing the hidden states.
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The summation in Equation (3.6) defining Pr{Y ¼ y} is over mnþ1 states and requires

O(2mnþ1) multiplications. A direct calculation is not feasible for m ¼ 26 and even mod-

erate values of, say n 	 15. However, there is an alternative practical way to carry out the

evaluation of Pr{Y ¼ y}, to which we now turn.

3.7.1 The Forward–Backward Recursion (FB)

Our starting point is the basic Markov property: For any fixed time t with 0 � t � n, the

paths x through the hidden states may be partitioned into disjoint sets of paths according to

state xt visited at time t. Accordingly, Equation (3.6) can be rewritten as

Pr{Y ¼ yg ¼
Xm�1
i¼0

Pr{Y ¼ y, Xt ¼ i}

Pr{Y ¼ y,Xt ¼ i} ¼ at(i)� bt(i) (3:7)

at(i) ¼
X

(x0;x1;...;xt)
xt¼i

p (x0)
Yt
s¼1

P(xs=xs�1)

 ! Yt
s¼0

q( ys=xs)

 !
ð3:8Þ

bt(i) ¼
X

(xt;xtþ1;...;xn)
xt¼i

Yn
s¼tþ1

P(xs=xs�1)

 ! Yn
s¼tþ1

q( ys=xs)

 !
: (3:9)

Recursions for at(i) and bt(i) are obtained by noting that

1. The path (x0, x1, . . . , xt) satisfying xt ¼ i is composed of

(a) the path (x0, x1, . . . , xt21) satisfying xt21 ¼ k for some k e Zm

(b) followed by the state transition xt21! xt ¼ i.

2. The path (xt, xtþ1, . . . , xn) satisfying xt ¼ i

(a) begins with the state transition xt! xtþ1! k for some k e Zm

(b) followed by the path (xtþ1, xtþ2, . . . , xn).

Combining these terms leads to Proposition 3.2.

Proposition 3.2: The functions at(i) and bt(i) satisfy the forward–backward

recursions

at(i) ¼
p(i)q( y0=i) if t ¼ 0Pm�1

k¼0 at�1(k)P(i=k)q( yt=i) if 1 � t � n

�
(3:10)

bt(i) ¼
1 if t ¼ nPm�1

k¼0 P(k=i)q( yt=k)btþ1(k) if 0 � t , n:

�
(3:11)

Only O(2m2n) rather than O(2mnþ1) multiplications/additions are required in the

forward–backward recursion of {at(i)} and {bt(i)}.

When an HMM is used to cryptanalyze a monoalphabetic substitution

. The observed states y form the ciphertext,

. The hidden states x form the plaintext, and

. q is the unknown monoalphabetic substitution.

Cryptanalysis the maximum likelihood estimate (MLE) of q (and x) given y.

And now a further complication – only the output observations y are truly known

when the HMM is applied in cryptanalysis. The generation of plaintext by a Markov
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chain is only an approximation, and even if this approximation is accepted, the parameters

(p, P, q) defining the HMM are unknown. Cryptanalysis using a HMM is the MLE of the

parameters (p, P, q) constrained by Equations (3.3)–(3.5):

MLE Problem

Find: (p,P, q) to maximize Pr{Y ¼ y}

Subject to: the constraints described by Equations (3.3)–(3.5)

Finding the MLE of (p, P, q) is the central problem addressed in the work of Baum et al.

[1969] and in Baum’s subsequent paper Baum, [1972]. Dempster et al. [1977] refer to

Baum’s algorithm as the expectation method (EM).

The method of Lagrange multipliers (see Kaplan, 2003, for example) is used to for-

mulate the conditions for the MLE of the parameters (p, P, q); accordingly, (p, P, q) is a
critical point in the MLE of the HMM parameters provided:

0 ¼
@

@p (i)
Pr{Y ¼ y}� l1

Xm�1
k¼0

p (k)� 1

 !( )
, 0 � i , m

0 ¼
@

@P( j=i)
Pr{Y ¼ y}� l2

Xm�1
k¼0

P(k=i)� 1

 !( )
, 0 � i, j , m

0 ¼
@

@q( j=i)
Pr{Y ¼ y}� l3

Xm�1
k¼0

q(k=i)� 1

 !( )
, 0 � i, j , m,

where l1, l2, and l3 are the Lagrange multipliers corresponding to the constraints in

Equations (3.3)–(3.5).

3.7.2 Critical Point Conditions for p

For every fixed value of t with 0 �t � n, we may write

Pr{Y ¼ y} ¼
Xm�1
j¼0

Pr{Y ¼ y,Xt ¼ j} ¼
Xm�1
j¼0

at( j)bt( j):

The critical point condition
@

@p ðiÞ
Pr{Y ¼ y}� l1 ¼ 0 for p(i) implies

0 ¼ q( y0=i)b0(i)� l1:

Multipling by p (i) gives

0 ¼ p (i)q( y0=i)b0(i)� l1p (i) ¼ a0(i)b0(i)� l1p (i):

The value of l1 is obtained by summing over i

0 ¼
Xm�1
k¼0

a0(k)b0(k)� l1
Xm�1
k¼0

p (k):

Noting that 1 ¼
Pm�1

k¼0 p (k) determines the value p̂ (i) as

p̂ (i) ¼ g0(i) ;
a0(i)b0(i)Pm�1

k¼0 a0(k)b0(k)
: (3:12)
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3.7.3 Critical Point Conditions for P( j/i)

For every fixed value of t with 0 � t , n, we may write

Pr{Y ¼ y} ¼
Xm�1
k;l

Pr{Y ¼ y,Xt ¼ k,Xtþ1 ¼ ‘}:

Since

Pr{Y ¼ y,Xt ¼ k,Xtþ1 ¼ ‘} ¼ at(k)q( ytþ1=‘)P(‘=k)btþ1(‘),

we have

Pr{Y ¼ y} ¼
1

n� 1

Xn�1
t¼0

Xm�1
k, ‘

at(k)q( ytþ1=‘)P(‘=k)btþ1(‘):

The critical point condition @
@P( j=i) Pr{Y ¼ y}� l2 ¼ 0 for P( j/i) implies

0 ¼
Xn�1
t¼0

at(i)q( ytþ1=j)btþ1( j)� l2:

Multipling by P( j/i) gives

0 ¼
Xn�1
t¼0

at(i)P( j=i)q( ytþ1=j)btþ1( j)� l2P( j=i):

Summing over j gives

at(i)bt(i) ¼
Xm�1
j¼0

at(i)q( ytþ1=j)P( j=i)btþ1( j)

1 ¼
Xm�1
j¼0

P( j=i)

and determines the value P̂( j/i) as

P̂( j=i) ¼

Pn�1
t¼0 at(i)q( ytþ1=j)P( j=i)bt( j)Pn�1

t¼0 at(i)bt(i)
: (3:13)

3.7.4 Critical Point Conditions for q( j/i)

For every fixed value of t with 0 � t , n, we may write

Pr{Y ¼ y} ¼
Xm�1
k;l

Pr{Y ¼ y,Xt ¼ k,Xtþ1 ¼ ‘}

Since

Pr{Y ¼ y,Xt ¼ k,Xtþ1 ¼ ‘} ¼ at(k)q( yt=‘)P(‘=k)btþ1(‘)
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we have

Pr{Y ¼ y} ¼
1

n� 1

Xn�1
t¼0

Xm�1
k, ‘

at(k)q( yt=‘)P(‘=k)btþ1(‘):

The critical point condition @
@q ( j=i) Pr{Y ¼ y}� l3 ¼ 0 for P( j/i) implies

0 ¼
Xm�1
‘¼0

Xn�1
t¼0
yt¼j

at(i)P(‘=i)btþ1(‘)� l3:

Multipling by q( j/i) gives

0 ¼
Xm�1
‘¼0

Xn�1
t¼0
yt¼j

at(i)q( j=i)P(‘=i)btþ1(‘)� l3q( j=i)

Summing over j gives

at(i)bt(i) ¼
Xm�1
j, ‘¼0

at(i)q( j=i)P(‘=i)btþ1(‘)

1 ¼
Xm�1
j¼0

q( j=i)

and determines the value q̂( j/i) as

q̂( j=i) ¼

Pn�1
t¼0
yt¼j

at(i)bt(i)

Pn
t¼0

at(i)bt(i)

ð3:14Þ

The re-estimates p̂ (i), P̂( j/i), and q̂ permit additional interpretations, which we

summarize.

Proposition 3.3: The quantities {at(i)} and {bt(i)} determine the following per-

formance measures of the HMM:

3.3(a) The joint probability of observing the output sequence Y ¼ y and hidden state

Xt ¼ i is

Pr{Y ¼ y,Xt ¼ i} ¼ at(i)bt(i):

3.3(b) The probability of observing the output sequence Y ¼ y is

Pr{Y ¼ y} ¼
Xm�1
i¼0

at(i)bt(i):

for every t with 0 �t � n.

3.3(c) The conditional probability of the hidden state Xt ¼ i, given the output state

Y ¼ y, is

gt(i) ¼
at(i)bt(i)Pm�1

k¼0 at(k)bt(k)
:
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3.3(d) The sojourn time (the time the hidden process X spends in the hidden state i) D(i)

in state i is

D(i) ¼
Xn
t¼0

x{Xt ¼ i},

where x{ � � � } denotes the indicator function of the event { � � � } ¼�
1; if the event { � � � } is true

0; otherwise

.

The conditional expectation E{D(i)/Y ¼ y} of D(i), given the output Y ¼ y, is

E{D(i)=Y ¼ y} ¼
Xn
t¼0

Pr{Xt ¼ i} ¼

Pn
t¼0 gt(i)Pm�1
j¼0 gt( j)

:

3.3(e) The number N(i, j ) of instances t over the observation interval 0 � t � n at which

the state satisfies Xt ¼ i, Yt ¼ j is

N(i, j) ¼
Xn
t¼0

x{Xt ¼ i,Yt ¼ j}:

The conditional expectation E{N(i, j)/Y ¼ y} of N(i, j ), given the output sequence

Y ¼ y, is

E{N( j=i)=Y ¼ y} ¼
Xn
t¼0

Pr{Xt ¼ i,Yt ¼ j} ¼

Pn
t¼0
yt¼j

at(i)bt(i)

Pm�1
k¼0 at(k)bt(k)

:

3.3(f ) The number T(i, j ) of hidden state transitions i! j over the observation interval

0 � t � n is

T(i, j) ¼
Xn�1
t¼0

x{Xt ¼ i;Xtþ1 ¼ j}:

The conditional expectation E{T(i, j )} of the number of hidden state transitions

i! j over the observation interval 0 � t � n, given the output sequence Y ¼ y, is

E{T(i, j)} ¼
Xn�1
t¼0

Pr{Xt ¼ i,Xtþ1 ¼ j} ¼

Pn�1
t¼0 at(i)P( j=i)q( ytþ1=j)btþ1(j)Pn�1

k¼0 at(k)bt(k)
:

The critical conditions determining (p̂, P̂, q̂) can be expressed as:

1. P̂( j/i) in Equation (3.13) is the ratio

expected number of times the hidden state satisfies Xt ¼ j,Xtþ1 ¼ j

expected number of times the hidden state satisfies Xt ¼ j
:

2. q̂( j/i) in Equation (3.14) is the ratio

expected number of times the state is Xt ¼ i,Yt ¼ j

expected sojourn time DðiÞ in hidden state i
:
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The re-estimation of the parameters z ¼ (p, P, q) is a transformation

S : z ; (p,P, q)! ẑ ¼ (p̂ , P̂, q̂),

usually referred to as hill climbing.

Multidimensional optimization problems

1. May have more that one critical point, and

2. The critical point may be a local maximum rather than a global maximum.

The uniqueness of critical points for the HMM and the issue of whether Pr{Y ¼ y} is a

global or local maximum was considered in the Baum papers. The answers rely on the

auxiliary Q-function, introduced by Kullback and Leibler [1951]:

Q(z, ẑ ) ;
X
x

Prz{Y ¼ y, X ¼ x} log2 Prẑ {Y ¼ y,X ¼ x}:

The subscript z (respectively ẑ ) indicates the parameter used in the computation of

Prz(Prẑ ). It is proved in Baum et al. [1969] that either

1. The initial set of parameters z may be a critical point of Pr{Y ¼ y}; that is, z is a

fixed point of S, or

2. If z = ẑ , then the re-estimated parameters ẑ is a more likely set; that is,

Prẑ{Y ¼ y} . Prz{Y ¼ y}.

Moreover

3. Q(z, ẑ ) . Q(z, z) implies Prẑ{Y ¼ y}. Prz {Y ¼ y};

4. z is a critical points of Prz{Y ¼ y} if and only if z is a critical point of Q(z, ẑ ) (for
fixed ẑ ); and

5. For HMM with only a finite number of states, there is only a single critical point z�

and it is a global maximum for Prz�{Y ¼ y}. (Note, HMM can be formulated for

discrete-valued processes with countably many states (m ¼ 1) and for continuous-

valued processes.)

In summary, we formulate Proposition 3.4.

Proposition 3.4: The parameters z ¼ (p, P, q) of the HMM are either

3.4(a) A fixed point of the transformation Smeaning p ¼ p, P̂ ¼ P, and q̂ ¼ q, in which

case (p, P, q) is the unique MLE; or

3.4(b) zr(p̂, P, q̂) ¼ S(p, P, q) provides a more likely value for Prj{Y ¼ y} than does

z ¼ (p, P, q).

Proposition 3.4 implies that the iterates of (p, P, q) under S converge to the unique

maximizing set of parameters for the HMM.

Example 3.4
We take m ¼ 4, n ¼ 12 and parameters

p ¼ ð0:25, 0:25, 0:25, 0:25Þ
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P ¼

0:2 0:2 0:5 0:1

0:333 0:333 0:167 0:167

0:2 0:4 0:1 0:3

0:5 0:0 0:25 0:25

0BBB@
1CCCA

q(=0) ¼ (0:3, 0:4, 0:2, 0:1) q(=1) ¼ (0:6, 0:0, 0:3, 0:1)

q(=2) ¼ (0:1, 0:1, 0:3, 0:5) q(=3) ¼ (0:4, 0:4, 0:1, 0:1)

Randomly determined hidden and output states for this HMM are

y ¼ (0, 3, 3, 0, 0, 0, 2, 0, 0, 3, 3, 3, 0)

and

x ¼ (3, 0, 1, 1, 1, 3, 0, 1, 1, 2, 3, 2, 1)

Table 3.26 gives the values of {gt(i)} for 0 � i , 4 and 0 � t , 12. Table 3.27 gives the

conditional probability Pr{Xt ¼ i/Y ¼ y} for the same set of (i, t) values; the column on

the left lists the value i� that maximizes this conditional probability. From this we see

that we have not done very well!

Re-estimation
We now re-estimate the parameters (p,P, q); while re-estimation improves Pr{Y ¼ y}, it

may not make jq( j/i)2 q̂( j/i)j, for example, smaller. S is iterated so that

(p,P, q)! S(p,P, q)! S2(p,P, q)! � � � ! Sr(p,P, q)

until the change jSr21(p, P, q)2 Sr(p, P, q)j is small enough.

TABLE 3.26 gt(i) in Example 3.4

t i! 0 1 2 3

0 0.0000000095541601 0.0000000130685831 0.0000000018213404 0.0000000107410370

1 0.0000000111697621 0.0000000035108919 0.0000000168688425 0.0000000036356241

2 0.0000000037006617 0.0000000067052652 0.0000000217051795 0.0000000030740142

3 0.0000000063912541 0.0000000200082725 0.0000000023421415 0.0000000064434525

4 0.0000000087571231 0.0000000164899292 0.0000000033588684 0.0000000065792000

5 0.0000000123782871 0.0000000141369296 0.0000000027571407 0.0000000059127633

6 0.0000000073749149 0.0000000109587690 0.0000000150999353 0.0000000017515015

7 0.0000000057736313 0.0000000192355902 0.0000000028191940 0.0000000073567052

8 0.0000000135749122 0.0000000121488982 0.0000000018871707 0.0000000075741396

9 0.0000000079690340 0.0000000038602417 0.0000000196837204 0.0000000036721247

10 0.0000000091030246 0.0000000063064266 0.0000000140270220 0.0000000057486475

11 0.0000000038592748 0.0000000061253754 0.0000000217029100 0.0000000034975604

12 0.0000000073893222 0.0000000170197500 0.0000000018024995 0.0000000089735489
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Example 3.5
We takem ¼ 4, T ¼ 48, the same parameters (p, P) as in Example 3.4, the output function

and intial estimates of the output function

q(=0) ¼ (1:0, 0:0, 0:0, 0:0)

q(=1) ¼ (0:0, 0:0, 1:0, 0:0)

q(=2) ¼ (0:0, 1:0, 0:0, 0:0)

q(=3) ¼ (0:0, 0:0, 0:0, 1:0)

and initial estimates of the output function

q0(=0) ¼ (0:24, 0:25, 0:25, 0:25)

q0(=1) ¼ (0:25, 0:25, 0:25, 0:25)

q0(=2) ¼ (0:24, 0:25, 0:25, 0:25)

q0(=3) ¼ (0:25, 0:25, 0:25, 0:25):

The sample of the output process y ¼ ( y0, y1, . . . , y99) is used.

y

2 0 2 3 0 1 2 2 2 2 3 1 3 0 3 0 1 2 3 0

0 1 3 0 2 2 0 1 2 2 0 1 1 3 0 1 3 0 2 1

3 0 1 3 0 1 2 2 0 1 2 2 3 3 0 1 0 0 1 0

1 3 0 2 1 3 3 0 1 3 0 1 3 0 1 3 0 0 0 2

0 1 1 3 0 3 1 3 0 1 2 3 0 1 0 2 0 1 3 0

Tables 3.28-3.33 tabulate the initial estimate for q0( j/i) and the re-estimates Sr(q0( j/i))
for r ¼ 10(10)50 steps. Although S50(q( j/i)) = q( j/i), it is obvious that the iteration

has converged to a permutation matrix.

TABLE 3.27 Pr{Xt 5 i/Y 5 y} in Example 3.4

i
�

t i! 0 1 2 3

3 0 0.27153978 0.37142375 0.05176451 0.3052714

0 1 0.31745698 0.09978343 0.47943114 0.10332845

1 2 0.10517689 0.19057105 0.61688518 0.08736688

1 3 0.18164650 0.56865721 0.06656625 0.18313004

1 4 0.24888711 0.46866201 0.09546275 0.18698813

3 5 0.35180459 0.40178716 0.07836098 0.16804723

3 6 0.20960323 0.31146032 0.42915684 0.04977961

0 7 0.16409298 0.54669672 0.08012461 0.20908569

1 8 0.38581400 0.34528511 0.05363548 0.21526541

1 9 0.22648875 0.10971233 0.55943308 0.10436584

2 10 0.25871802 0.17923561 0.39866346 0.16338291

3 11 0.10968485 0.17408994 0.61682068 0.09940453

2 12 0.21001270 0.48372010 0.05122903 0.25503817
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TABLE 3.29 S10(q0( j/i))

i # j! 0 1 2 3

0 0.344325 0.238802 0.184007 0.232867

1 0.305011 0.247853 0.197892 0.249245

2 0.306866 0.271477 0.196751 0.224905

3 0.304246 0.228364 0.220339 0.247051

TABLE 3.30 S20(q0( j/i))

i # j! 0 1 2 3

0 0.854681 0.028576 0.074578 0.042165

1 0.085849 0.116799 0.381652 0.415700

2 0.058269 0.767760 0.151528 0.022444

3 0.119112 0.021399 0.239053 0.620436

TABLE 3.31 S30(q0( j/i))

i # j! 0 1 2 3

0 0.999094 0.000008 0.000825 0.000073

1 0.002513 0.004023 0.831230 0.162233

2 0.001549 0.964339 0.034102 0.000010

3 0.009724 0.000047 0.008359 0.981871

TABLE 3.32 S40(q0( j/i))

i # j! 0 1 2 3

0 0.999998 0.000000 0.000001 0.000000

1 0.000096 0.000073 0.895849 0.103982

2 0.000181 0.992775 0.007044 0.000000

3 0.000514 0.000000 0.000028 0.999459

TABLE 3.28 q0( j/i)

i # j! 0 1 2 3

0 0.25 0.25 0.25 0.25

1 0.25 0.25 0.25 0.25

2 0.25 0.25 0.25 0.25

3 0.25 0.25 0.25 0.25
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Scaling
Example 3.4 illustrates a computational difficulty in the application of HHM; for

example, the probabilities {gt(i)} become very small as t increases and underflow may

occur. This may be compensated by parameter-scaling, replacing the recursion in

Equation (3.7) by

~at(i, ) ¼
c0p (i)q( j=i)( y0), if t ¼ 0

ct
Pm�1

k¼0 ~at�1(k)P(i=k)q( yt=i), if 1 � t � n

(

and

ct ¼
1Pm�1

i¼0

Pm�1
k¼0 ~at�1(k)P(i=k)q( yt=i)

:

The numbers {ct} are scaling factors and the scaled-a functions satisfy

~at(i) ¼ Ctat(i)

Ct ¼ c0c1 � � � ct

and

1 ¼
Xm�1
i¼0

~at(i)

Similarly, the b- and g-recursions are

~bt(i) ¼

1; if t ¼ nPm�1
k¼0

ctþ1 ~btþ1(k)P(k=i)q( ytþ1=k), if 0 � t � n

8<:
~gt(i) ¼ Ctctþ1ctþ2 � � � cngt(i) ¼ Cngn(i)

and the re-estimation formula for the output probabilities ~qð j=iÞ becomes

~̂q( j=i) ¼

Pn
t¼0
yt¼j

~gt(i)

Pm�1
k¼0

~gn(k)

¼

Pn
t¼0
yt¼j

gt(i)

Pm�1
k¼0

gn(k)

TABLE 3.33 S50(q0( j/i))

i # j! 0 1 2 3

0 1.000000 0.000000 0.000000 0.000000

1 0.000004 0.000001 0.906980 0.093015

2 0.000029 0.998303 0.001667 0.000000

3 0.000023 0.000000 0.000000 0.999977
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The scaled re-estimation formulas for ~Pð j=iÞ and ~pðiÞ are

~̂P( j=i) ¼
Pn�1

t¼0 ~at(i) ~P( j=i)q( ytþ1=j)ctþ1 ~btþ1( j)Pn�1
t¼0 ~at(i) ~bn(i)

and

~̂p(i) ¼ ~̂g0(i)

We have just barely touched on this subject; for more information, see the books by Cappe

et al. [2005], MacDonald and MacDonald [1997], and Elliott [1997].

3.8 HILL ENCIPHERMENT OF ASCII N-GRAMS

Monoalphabetic encipherment of N-grams of ASCII plaintext with N . 1 is attractive for

two reasons:

1. The probability distribution of N-grams with N 	 4 is much flatter than for 1-grams,

making it harder to recognize letter fragments; and

2. There is a very large number 128N of N-grams with N � 4.

Lester Hill [1929] described a simple and elegant way to encipher N-grams of ASCII

plaintext. Each character will be identified by its ordinal position in the ASCII character

alphabet, integers in Z128. We suppose the length n of plaintext x ¼ (x0, x1, . . . , xn-1) is a
multiple of N; various modifications are possible when n = kN and will be mentioned

later. x is divided into N-grams whose components are integers in Z128:

x ¼ (x(0), x(1); . . . ; x(k�1))

x(0) ¼ (x0, x1, . . . , xN�1)

x(1) ¼ (xN , xNþ1, . . . , x2N�1)

..

.

x(i) ¼ (xiN , xiNþ1, . . . , x(iþ1)N�1)

..

.

x(k�1) ¼ (x(k�1)N , x(k�1)Nþ1, . . . , xkN�1):

The Hill encipherment of ASCII plaintext x denoted by

y ¼ Ax
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is defined by

A : x(i)! y(i) ¼ A(x(i)) (modulo m), 0 � i � k ð3:15Þ

ylNþi ¼
XN�1
j¼0

ai, jxlNþj

 !
(modulo m), 0 � i , N, 0 � l , k (3:16)

where

y ¼ ( y(0), y(1), . . . ; y(N�1))

y(0) ¼ ( y0, y1, . . . , yn�1)

y(1) ¼ ( yN , yNþ1, . . . , y2N�1)

..

.

y(i) ¼ ( yiN , yiNþ1, . . . , y(iþ1)N�1)

..

.

y(k�1) ¼ ( y(k�1)N , y(k�1)Nþ1, . . . , yNk�1)

and A ¼ (ai,j) is an N � N matrix with entries in Z128 and which is invertible.

Proposition 3.5 in Section 3.8.3 shows that about 30% of the 128N
2

N-by-Nmatrices

are invertible.

Hill encipherment is the matrix multiplication by A of the plaintext (column) vectors

{x(i)}; decipherment of Hill ciphertext is the matrix multiplication by A21 of the ciphertext

(column) vectors { y(i)}. We can write

Y ¼ AX and X ¼ A�1Y , ð3:17Þ

where X and Y are the N � k matrices formed from the (column) vectors {x(i)} and { y(i)}

X ¼
�
x(0Þ x(1Þ � � � x(k�1Þ

�
¼

x0 xN � � � x(k�1)N

x1 xNþ1 � � � x(k�1)Nþ1

..

. ..
. . .

. ..
.

xN�1 x2N�1 � � � xkN�1

0BBBB@
1CCCCA (3:18)

Y ¼
�
y(0) y(1) � � � y(k�1)

�
¼

y0 yN � � � y(k�1)N

y1 yNþ1 � � � y(k�1)Nþ1

..

. ..
. . .

. ..
.

yN�1 y2N�1 � � � ykN�1

0BBBB@
1CCCCA: (3:19)

3.8.1 Finding the Hill Matrix with Known
Plain- and Ciphertext

Section 3.9 contains a short exposition of how Gaussian elimination might be used to

determine T (respectively T21) by elementary row and column transformations when a

set of M � N plaintext (or ciphertext) N-vectors {x(i)} (respectively { y(i)} are related

by Equations (3.15) and (3.16). Gaussian elimination applied to the ciphertext matrix Y
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of column vectors involves the postmultiplication of Y and X by a sequenceO1O2 � � �OM of

matrices as follows:

1. X ¼ A�1Y

Y ! YMr(v)

X! XMr(v)

XMr(v)! A�1YMr(v)

(a) Multiplying the elements in the rth column of Y by v;

(b) Multiplying the elements in the rth column of X by v.

2.
X ¼ A�1Y

Y ! YCr, s(v)

X! XCr, s(v)

XCr, s(v)! A�1YCr, s(v)

(a) Adding v times the sth column of Y to the rth column of Y;

(b) Adding v times the sth column of X to the rth column of X.

3. X ¼ A�1Y

Y ! YEr, s(v)

X! XEr, s(v)

XEr, s(v)! A�1YEr, s(v)

(a) Interchanging the rth and sth columns of Y;

(b) Interchanging the rth and sth columns of X.

Gaussian elimination when applied to the matrix Y of ciphertext (column) vectors

related by Equations (3.15)–(3.19), produces A21.

X ¼ A�1Y

Y ! YO1O2 � � �OM

X! XO1O2 � � �OM

XO1O2 � � �OM ! A�1YO1O2 � � �OM

I ¼ YO1O2 � � �OM

implies

A�1 ¼ XO1O2 � � �OM

Example 3.6
The 18 ASCII characters of the plaintext plainEx3.6: This book addresses
an area where few organized references current exist. is enci-

phered using a 4 � 4 Hill substitution. The plaintext X and ciphertext Y are displayed

as 18-column vectors each consisting of 4 integers in Z128:
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3.8.2 Steps in Gaussian Elimination of Ciphertext

Step #1

Step #2

Y ¼ Y0! Y0 E0,4 ¼ Y1; interchange the 0th and 4th columns of Y0.

Y1! Y1M0(3
21) ¼ Y2; multiply the 0th column of Y1 by 43 ¼ 321.

Y2 ¼

1 84 102 94 36 14 52 64 22 30 19 73 86 56 27 56 33 126

70 89 53 127 77 18 116 25 102 43 21 55 61 29 101 96 84 7

46 86 61 114 120 65 3 65 63 121 62 59 95 7 58 1 66 81

60 23 100 91 51 121 52 82 69 50 77 52 89 23 79 13 41 93

��������
��������

X ¼ X0! X0E0,4 ¼ X1; interchange the 0th and 4th columns of X0.

X1! X1M0(3
21) ¼ X2; multiply the 0th column X1 by 43 ¼ 321.

X2¼

81 32 107 100 84 97 114 119 101 119 103 122 114 114 101 117 110 32

119 98 32 114 104 110 101 104 32 32 97 101 101 101 115 114 116 101

81 111 97 101 105 32 97 101 102 111 110 100 102 110 32 114 108 120

96 111 100 115 115 97 32 114 101 114 105 32 101 99 99 101 121 105

��������
��������

Y2! Y2
Q17

j¼1 Cj;0ð�yj;0Þ ¼ Y3; for j = 0, add 2yj,0 times the 0th column of Y2 to

the jth column of Y2.

Y3 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 97 81 75 117 62 60 25 98 119 99 65 57 77 3 16 78 19

46 62 105 14 0 61 43 65 75 21 84 29 107 119 96 113 84 45

60 103 124 83 67 49 4 82 29 42 89 24 49 119 123 109 109 85

��������
��������

X2! X2

Q17
j¼1 Cj, 0ð�yj;0Þ ¼ X3; for j = 0, add2yj,0 times the 0th column of X2 to

the jth column of X2.

X3¼

81 12 37 38 112 115 126 55 111 121 100 97 60 58 90 61 125 66

119 86 54 64 44 108 57 40 102 46 12 118 107 93 102 106 29 83

81 91 27 39 5 50 109 37 112 113 107 75 48 54 21 58 123 26

96 111 36 51 115 33 32 114 37 50 73 64 37 99 67 101 25 41

��������
��������

X¼

84 32 107 100 115 97 114 119 101 119 103 122 114 114 101 117 110 32

104 98 32 114 101 110 101 104 32 32 97 101 101 101 115 114 116 101

105 111 97 101 115 32 97 101 102 111 110 100 102 110 32 114 108 120

115 111 100 115 32 97 32 114 101 114 105 32 101 99 99 101 121 105

���������

���������
Y ¼

36 84 102 94 3 14 52 64 22 30 19 73 86 56 27 56 33 126

77 89 53 127 82 18 116 25 102 43 21 55 61 29 101 96 84 7

120 86 61 114 10 65 3 65 63 121 62 59 95 7 58 1 66 81

51 23 100 91 52 121 52 82 69 50 77 52 89 23 79 13 41 93

���������

���������
Y ¼AX; X¼A�1Y
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Step #3

Step #4

Step #5

Y4! Y4
Q17
j¼0
j=1

Cj;1ð�yj;1Þ ¼ Y5; for j = 1, add 2yj,1 times the 1st column of Y4 to

the jth column of Y4.

Y5 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

58 125 11 36 106 57 35 115 15 3 26 31 93 17 102 17 112 83

82 71 5 6 80 127 96 99 111 41 100 17 98 28 38 125 75 16

��������
��������

X4! X4

Q17
j¼0
j=1

Cj;1ð�yj;1Þ ¼ X5; for j = 1, add 2yj,1 times the 1st column of X4 to

the jth column of X4.

X5¼

9 12 89 34 116 11 46 11 87 101 64 85 16 30 54 125 85 94

115 22 64 78 30 24 17 2 122 116 10 96 5 63 36 10 105 49

47 59 112 94 14 104 25 98 90 4 26 80 13 119 100 10 1 57

70 79 37 14 88 127 28 59 103 121 60 49 14 32 86 117 7 76

��������
��������

Y5! Y5M2(11
21) ¼ Y6; multiply the 2nd column of Y5 by 35 ¼ 1121.

Y6 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

58 126 1 36 106 57 35 115 15 3 26 31 93 17 102 17 112 83

82 71 47 6 80 127 96 99 111 41 100 17 98 28 38 125 75 16

��������
��������

X5! X5M2(11
21) ¼ X6; multiply the 2nd column of X5 by 35 ¼ 1121.

X6 ¼

9 12 43 34 116 11 46 11 87 101 64 85 16 30 54 125 85 94

115 22 64 78 30 24 17 2 122 116 10 96 5 63 36 10 105 49

47 59 80 94 14 104 25 98 90 4 26 80 13 119 100 10 1 57

70 79 15 14 88 127 28 59 103 121 60 49 14 32 86 117 7 76

��������
��������

Y3! Y3M1(97
21) ¼ Y4; multiply the 1st column of Y3 by 33 ¼ 9721.

Y4 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 1 81 75 117 62 60 25 98 119 99 65 57 77 3 16 78 19

46 126 105 14 0 61 43 65 75 21 84 29 107 119 96 113 84 45

60 71 124 83 67 49 4 82 29 42 89 24 49 119 123 109 109 85

��������
��������

X3! X3M1(97
21) ¼ X4; multiply the 1st column of X3 by 33 ¼ 9721.

X4 ¼

81 12 37 38 112 115 126 55 11 121 100 97 60 58 90 61 125 66

119 22 54 64 44 108 57 40 102 46 12 118 107 93 102 106 29 83

81 59 27 39 5 50 109 37 112 113 107 75 48 54 21 58 123 26

96 79 36 51 115 33 32 114 37 50 73 64 37 99 67 101 25 41

��������
��������
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Step #6

Step #7

Step #8

Y9! Y9
Q17
j¼0
j=3

Cj;3ð�yj;3Þ ¼ Y10Y; for j = 3, add 2yj,3 times the 2rd column of Y9 to

the jth column of Y9.

Y10 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

��������
��������

Y7! Y7E3,6 ¼ Y8; interchange the 3rd and 6th columns of Y7.

Y8! Y8M3(115
21) ¼ Y9; multiply the 3rd column of Y8 by 59 ¼ 11521.

Y9 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

44 37 47 1 90 8 106 70 46 28 30 96 79 125 108 94 59 83

��������
��������

X7! X7E3,6 ¼ X8; interchange the 3rd and 6th columns of X7.

X8! X8M3(115
21) ¼ X9; multiply the 3rd column of X8 by 59 ¼ 11521.

X9¼

75 98 43 63 38 120 22 58 82 100 98 32 113 67 20 34 5 109

115 22 64 43 30 88 78 66 58 52 10 32 69 127 36 74 105 113

15 91 80 115 110 24 30 114 42 20 122 32 125 39 4 58 1 73

96 109 15 117 34 40 114 126 6 76 54 96 27 33 92 118 119 111

��������
��������

Y6! Y6
Q17
j¼0
j=2

Cj;2ð�yj;2Þ ¼ Y7; for j = 2, add 2yj,2 times the 2nd column of Y6 to

the jth column of Y6.

Y6 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

44 37 47 106 90 8 115 70 46 28 30 96 79 125 108 94 59 83

��������
��������

X6! X6

Q17
j¼0
j=2

Cj;2ð�yj;2Þ ¼ X7; for j = 2, add 2yj,2 times the 2nd column of X6 to

the jth column of X6.

X7¼

75 98 43 22 38 120 77 58 82 100 98 32 113 67 20 34 5 109

115 22 64 78 30 88 81 66 58 52 10 32 69 127 36 74 105 113

15 91 80 30 110 24 41 114 42 20 122 32 125 39 4 58 1 73

96 109 15 114 34 40 15 126 6 76 54 96 27 33 92 118 119 111

��������
��������
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X9! X9

Q17
j¼0
j=3

Cj;3ð �yj;3Þ ¼ Y10Y ; for j = 3, add 2yj,3 times the 3rd column of X9 to

the jth column of X9.

X10 ¼

119 71 26 63 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 95 91 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0

75 60 51 115 0 0 0 0 0 0 0 0 0 0 0 0 0 0

68 4 20 117 0 0 0 0 0 0 0 0 0 0 0 0 0 0

��������
��������

Gaussian elimination has determined that

A�1 ¼

119 71 26 63

15 95 91 4

75 60 51 115

68 4 20 117

0BB@
1CCA:

Gaussian elimination on the plaintext involves the postmultiplication of X and Y by a

sequence O1 O2 � � � OM of matrices as follows:

1.
AX ¼ Y

X! XMr(v)

Y ! YMr(v)

AXMr(v)! YMr(v)

(a) Multiplying the elements in the r th column of X by v;

(b) Multiplying the elements in the r th column of Y by v.

2.
AX ¼ Y

X! XCr;s(v)

Y ! YCr;s(v)

AXCr;s(v)! YCr;s(v)

(a) Adding v times the sth column of X to the rth column of X;

(b) Adding v times the sth column of Y to the rth column of Y.

3.

AX ¼ Y

X! XEr;s(v)

Y ! YEr;s(v)

AXEr;s(v)! YEr;s(v)

(a) Interchanging the r th and sth column of X;

(b) Interchanging the r th and sth column of X.
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Gaussian elimination when applied to the matrix X of plaintext (column) vectors related by

Equations (3.15)–(3.19) produces A:

Y ¼ AX

X! XO1O2 � � �OM

Y ! YO1O2 � � �OM

YO1O2 � � �OM ! TXO1O2 � � �OM

I ¼ XO1O2 � � �OM

implies

A ¼ YO1O2 � � �OM

Step #1

X ¼ X0! X0E0,2 ¼ X1; interchange the 0th and 2nd columns of X0.

X1! X1 M0(67
21) ¼ X2; multiply the 0th column of X1 by 67 ¼ 10721

X2¼

1 32 84 100 115 97 114 119 101 119 103 122 114 114 101 117 110 32

96 98 104 114 101 110 101 104 32 32 97 101 101 101 115 114 116 101

99 111 105 101 115 32 97 101 102 111 110 100 102 110 32 114 108 120

44 111 115 115 32 97 32 114 101 114 105 32 101 99 99 101 121 105

��������
��������

Y ¼ Y0! Y0E0,2 ¼ Y1; interchange the 0th and 2nd columns of Y0.

Y1! Y1 M0(67
21) ¼ Y2; multiply the 0th columns of Y1 by 67 ¼ 10721

Y2 ¼

50 84 36 94 3 14 52 64 22 30 19 73 86 56 27 56 33 126

95 89 77 127 82 18 116 25 102 43 21 55 61 29 101 96 84 7

119 86 120 114 10 65 3 65 63 121 62 59 95 7 58 1 66 81

44 23 51 91 52 121 52 82 69 50 77 52 89 23 79 13 41 93

��������
��������

Step #2

X2! X2

Q17
j¼1 Cj;0ð2xj;0Þ ¼ X3; For j = 0, add2xj,0 times the 0th column of X2 to

the jth column of X2.

X3¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 98 104 114 69 14 37 72 64 0 65 37 37 37 19 18 52 101

99 15 109 57 122 29 75 96 87 106 25 54 80 88 17 51 98 24

44 111 3 67 92 53 8 126 9 126 53 40 77 75 7 73 17 105

��������
��������

Y2! Y2
Q17

j¼1 Cj;0ð2xj;0Þ ¼ Y3; For j = 0, add 2xj,0 times the 0th column of Y2 to

the jth column of Y2.

y3¼

50 20 60 86 13 28 112 2 92 96 117 117 18 116 97 94 37 62

95 121 33 99 37 19 38 112 107 2 92 113 111 79 106 117 2 39

119 118 108 118 21 42 5 112 76 40 93 5 97 9 71 30 32 113

44 23 67 43 112 77 28 94 105 62 25 60 65 127 115 113 65 93

��������
��������
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Step #3

X3! X3 E0,4 ¼ X5; interchange the 0th and 4th columns of X4.

X4! X4 M0 (69
211) ¼ X5; multiply the 0th column of X4 by 13 ¼ 6921.

X5 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

96 1 104 114 98 14 37 72 64 0 65 37 37 37 19 18 52 101

99 50 109 57 15 29 75 96 87 106 25 54 80 88 17 51 98 24

44 44 3 67 111 53 8 126 9 126 53 40 77 75 7 73 17 105

��������
��������

Y3! Y3 E0,4 ¼ Y5; interchange the 0th and 4th columns of Y4.

Y4! Y4 M0 (69
211) ¼ Y5; multiply the 0th column of Y4 by 13 ¼ 6921.

X5¼

50 41 60 86 20 28 112 2 92 96 117 117 18 116 97 94 37 62

95 97 33 99 121 19 38 112 107 2 92 113 111 79 106 117 2 39

119 17 108 118 118 42 5 112 76 40 93 5 97 9 71 30 32 113

44 48 67 43 23 77 28 94 105 62 25 60 65 127 115 113 65 93

��������
��������

Step #4

X5! X5

Q17
j¼0
j=1

Cj, 1ð�xj, 1Þ ¼ X6; for j = 1, add 2xj,1 times the 1st column of X5 to

the jth column of X5.

X6 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 50 29 117 107 97 17 80 87 106 103 124 22 30 91 47 58 94

44 44 35 43 23 77 44 30 9 126 9 76 113 111 67 49 33 13

��������
��������

Y5! Y5
Q

j¼0
j=1

Cj, 1ð�xj, 1Þ ¼ Y6; for j = 1, add 2xj,1 times the 1st column of Y5 to

the jth column of Y5.

Y6 ¼

82 41 20 20 98 94 3 122 28 96 12 8 37 7 86 124 81 17

127 97 57 49 87 69 33 40 43 2 59 108 106 74 55 35 78 98

23 17 4 100 116 60 16 40 12 40 12 16 108 20 4 108 44 60

44 48 67 75 55 45 44 94 105 62 105 76 81 15 99 17 1 109

��������
��������

Step #5

X6! X6 M2 (29
21) ¼ X7; multiply the 2nd column of X6 by 53 ¼ 2921.

X7 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 50 1 117 107 97 17 80 87 106 103 124 22 30 91 47 58 94

44 44 63 43 23 77 44 30 9 126 9 76 113 111 67 49 33 13

��������
��������

Y6! Y6 M2 (29
21) ¼ Y7; multiply the 2nd column of Y6 by 53 ¼ 2921.

Y7 ¼

82 41 20 20 98 94 3 122 28 96 12 8 37 7 86 124 81 17

127 97 77 49 87 69 33 40 43 2 59 108 106 74 55 35 78 98

23 17 84 100 116 60 16 40 12 40 12 16 108 20 4 108 44 60

44 48 95 75 55 45 44 94 105 62 105 76 81 15 99 17 1 109

��������
��������
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Step #6

X6! X6

Q17
j¼0
j=2

Cj, 2ð�xj, 2Þ ¼ X7; for j = 2, add 2xj,2 times the 2nd column of X6 to

the jth column of X6.

X7 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 94 63 96 66 110 125 110 32 104 48 72 7 13 94 32 91 107

��������
��������

Y6! Y6
Q17
j¼0
j=2

Cj, 2ð�xj, 2Þ ¼ Y7; for j = 2, add 2xj,2 times the 2nd column of Y6 to

the jth column of Y6.

Y7 ¼

102 33 36 32 86 58 31 58 96 120 16 24 13 79 10 96 41 89

120 87 77 0 40 24 4 24 0 32 64 32 76 68 88 0 92 28

27 41 84 0 88 104 124 104 0 96 64 96 52 60 40 0 36 100

47 34 95 96 2 46 93 46 32 104 48 72 39 109 30 32 123 11

��������
��������

Step #7

X7! X7 E3,6 ¼ X8; interchange the 3rd and 6th columns of X7.

X8! X8 M3 (125
21) ¼ X9; multiply the 3rd column of X8 by 85 ¼ 12521.

X8 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 94 63 1 66 110 96 110 32 104 48 72 7 13 94 32 91 107

��������
��������

Y7! Y7E3,6 ¼ Y8; interchange the 3rd and 6th columns of Y7.

Y8! Y8M3 (125
21) ¼ Y9; multiply the 3rd column of Y8 by 85 ¼ 12521.

Y9 ¼

102 33 36 75 86 58 32 58 96 120 16 24 13 79 10 96 41 89

120 87 77 84 40 24 0 24 0 32 64 32 76 68 88 0 92 28

27 41 84 44 88 104 0 104 0 96 64 96 52 60 40 0 36 100

47 34 95 97 2 46 96 46 32 104 48 72 39 109 30 32 123 11

��������
��������

Step #8

X9! X9

Q17
j¼0
j=3

Cj, 3ð�xj, 3Þ ¼ X10; for j = 3, add 2xj,3 times the 3rd column of X9 to

the jth column of X9.

X10 ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

��������
��������

Y9! Y9
Q17
j¼0
j=3

Cj, 3ð�xj, 3Þ ¼ Y10; for j = 3, add 2xj,3 times the 3rd column of Y9 to

the jth column of Y9.

Y10 ¼

1 23 47 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 127 33 84 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 0 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 0 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0

��������
��������
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Gaussian elimination has determined that

A ¼

1 23 47 75

12 127 33 84

7 1 0 44

0 4 0 97

0BB@
1CCA:

3.8.3 The Number of Invertible N 3 N Matrices

An N � N matrix A whose elements are in Z128 has an inverse if and only if det(A)

(modulo 128) is an odd integer.

Proposition 3.5: The size HN of the set HN of N � N matrices with elements in

Z128, which are invertible, is

HN ¼ 128N
2
YN
k¼1

1�
1

2k

� �
	 0:288788� 128N

2

as N ! 1:

Proof If A is invertible, at least one element in the 0th row of a matrix A must be

odd. HN may be partitioned into the subsets of matrices according to the first column k in

the 0th row containing an odd element a0,k. This gives the recursion

HN ¼
XN�1
k¼0

64k|{z}
a0, j
even

0�j,k

� 64|{z}
a0, k
odd

� 128N�k�1|fflfflfflfflffl{zfflfflfflfflffl}
a0, j

k,j,N

� 128N�1|fflfflffl{zfflfflffl}
a0, j
i.1

�HN�1

¼ 1282N�1 � 1�
1

2Nþ1

� �
� HN�1

¼ 128N
2

�
YN
k¼1

1�
1

2k

� �
, N ¼ 1, 2, . . . ; H0 ¼ 1:

3.8.4 Hill Encipherment for Plaintext Whose Length is not
Divisible by N

When the length n of plaintext x is not divisible by the row width N of the Hill matrix,

the plaintext might be padded with a string to make its length a multiple of N before

encipherment. One standard padding method adjoins a string of ASCII characters each

equal to 0 ¼ ð 0, 0, . . . , 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
7

Þ terminated by the number of 0’s. Padding plaintext like this

potentially reveals too much information in the ciphertext. Other padding schemes are

mentioned in Chapter 9 (The Data Encryption Standards DES) and in Konheim [1981].

3.8.5 Cribbing Hill Ciphertext

We now suppose that the Hill matrix remains unknown, but instead of knowledge of the

complete plaintext, a crib in the ciphertext is known.

cipherEx3.4 is the Hill encipherment of 3-grams, presented here as a 3 � 229

array of integers in Z128.
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cipherEx3.4

118 109 71

102 105 86

48 56 125

8 95 107

52 0 6

88 54 5

59 21 90
. .
.

118 105 1

79 30 47

The plaintext is from a conference paper [Kemmerer, 1986]; as the title suggests,

computer security is a possible crib. Gaussian elimination must be modified to

find any occurrence of the crib in the plaintext and the enciphering matrix.

Modification #1 Assuming the crib does not occur as either the first or last word

in a sentence, the crib is computer security suffixed with a blank space.

Table 3.34 lists the N ¼ 3 possible offsets of c in the position j (modulo N ) in

the plaintext of the c of computer security.? indicates an unidentified ASCII

character. Gaussian elimination requires that the plaintext crib contain three linearly

independent vectors. Thus

1. If Off ¼ 0

Crib0 ¼

c p e s u t
o u r e r y
m t c i

������
������

should contain three linearly independent 3-vectors.

2. If Off ¼ 1

Crib1 ¼

m f c i
p e s u t
u r e r y

������
������

should contain three linearly independent 3-vectors.

TABLE 3.34 Offsets of c in cipherEx3.4

Off ¼ 0 Off ¼ 1 Off ¼ 2

c o m ? c o ? ? c

p u t m p u o m p

e r t e r u t e

s e c s e r s

u r i c u r e c u

t y i t y r i t

? ? ? ? ? y ?
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3. If Off ¼ 2

Crib2 ¼

o u r e r
m t c i
p e s u t

������
������

should contain three linearly independent 3-vectors.

3.8.6 Gaussian Elimination Program

For each offset k ¼ 0, 1, 2 and each position i ¼ 0, 1, . . . apply Gaussian elimination to

find the inverse A�1 of the enciphering matrix using the pair of matrices

. The plaintext 3 � M matrix Cribk and

. The ciphertext 3 � M ciphertext matrix 3 � M cipher text matrix Gi

Gi ¼

y3i y3iþ3 � � � y3iþ3M�3
y3iþ1 y3iþ4 � � � y3iþ3M�2
y3iþ2 y3iþ5 � � � y3iþ3M�1

������
������,

where M ¼ 6 for Off ¼ 0 and M ¼ 5 for Off ¼ 1, 2.

There are three possible outcomes:

1. Gaussian elimination determines that Gi does not contain three linearly independent

vectors.

2. Gaussian elimination determines that Gi contains three linearly independent vectors

and finds a matrix B21 satisfying B21Gi ¼ Cribk.

As the success of Gaussian elimination depends only on Gi having three linearly

independent column vectors, it may occur that B21 = A21. This outcome can be

detected by deciphering a segment of the ciphertext. If B = A, then decipherment

will not always result in ordinals corresponding to printable ASCII characters; for

example, the letters, numerals, and punctuation.

3. Gaussian elimination determines that Gi contains three linearly independent vectors

and finds a matrix B21 satisfying B21Gi ¼ Cribk and B21 ¼ A21.

The 18-gram crib computer security is detected at positions #45 and #219, and

leads to the deciphering matrix

A�1 ¼

64 45 125

99 58 80

3 88 121

0@ 1A

3.9 GAUSSIAN ELIMINATION

Let A ¼ (ai,j) be an n � nmatrix and x ¼ (x1, x2, . . . , xn), y ¼ ðy1; y2; . . . ; ynÞ be n-vectors,
all with real number entries satisfying

y ¼ Ax: (3:20)

If detðAÞ= 0, then for every y, the linear system of Equations (3.20) has a unique solution x,

x ¼ A�1y:

Gaussian elimination is a process inwhich transformations are applied to an invertiblematrix

A to produce the identity matrix I and thereby obtain the solution for x in Equation (3.20).
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3.9.1 Elementary Row and Column Matrix Transformations

1. Rr,s(v) (r = s) is the n � n matrix equal to the identity matrix, except that the

element in position (r, s) of Rr,s(v) is v. For example when n ¼ 4

R2;0(v) ¼

1 0 0 0

0 1 0 0

v 0 1 0

0 0 0 1

0BB@
1CCA:

If

A ¼

a0;0 a0;1 a0;2 a0;3
a1;0 a1;1 a1;2 a1;3
a2;0 a2;1 a2;2 a2;3
a3;0 a3;1 a3;2 a3;3

0BB@
1CCA

then

R2;0(v)A ¼

1 0 0 0

0 1 0 0

v 0 1 0

0 0 0 1

0BBB@
1CCCA

a0;0 a0;1 a0;2 a0;3

a1;0 a1;1 a1;2 a1;3

a2;0 a2;1 a2;2 a2;3

a3;0 a3;1 a3;2 a3;3

0BBB@
1CCCA

¼

a0;0 a0;1 a0;2 a0;3

a1;0 a1;1 a1;2 a1;3

a2;0 þ va0;0 a2;1 þ va0;1 a2;2 þ va0;2 a2;3 þ va0;3

a3;0 a3;1 a3;2 a3;3

0BBB@
1CCCA

Premultiplication of A by Rr, s(v) replaces the rth row of A by the sum of

. v times the sth row of A and

. The rth row of A.

The inverse of Rr, s(v) is Rr, s(2v).

2. Cr,s(v) (r = s) is the n � n matrix, which is equal to the identity matrix except that

the element in position (r, s) of Cr,s(v) is v. For example, when n ¼ 4

C2;0(v) ¼

1 0 v 0

0 1 0 0

0 0 1 0

0 0 0 1

0BB@
1CCA:

If

A ¼

a0;0 a0;1 a0;2 a0;3
a1;0 a1;1 a1;2 a1;3
a2;0 a2;1 a2;2 a2;3
a3;0 a3;1 a3;2 a3;3

0BB@
1CCA
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then

AC2, 0(v) ¼

a0;0 a0;1 a0;2 a0;3

a1;0 a1;1 a1;2 a1;3

a2;0 a2;1 a2;2 a2;3

a3;0 a3;1 a3;2 a3;3

0BBB@
1CCCA

1 0 v 0

0 1 0 0

0 0 1 0

0 0 0 1

0BBB@
1CCCA

¼

a0;0 a0;1 a0;2 þ va0;0 a0;3

a1;0 a1;1 a1;2 þ va1;0 a1;3

a2;0 a2;1 a2;2 þ va2;0 a2;3

a3;0 a3;1 a3;2 þ va3;0 a3;3

0BBB@
1CCCA

Postmultiplication of A by Cr,s(v) replaces the rth column of A by the sum of

. v times the sth column of A and

. The rth column of A.

The inverse of Cr,s(v) is Cr,s(2v).

3. Mr(v) is the n � n matrix, which is equal to the identity matrix except that the

element in position (r, s) of Mr(v) is v. For example, when n ¼ 4

M4(v) ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 v

0BB@
1CCA:

If

A ¼

a0;0 a0;1 a0;2 a0;3
a1;0 a1;1 a1;2 a1;3
a2;0 a2;1 a2;2 a2;3
a3;0 a3;1 a3;2 a3;3

0BB@
1CCA

then

M4(v)A ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 v

0BBB@
1CCCA

a0;0 a0;1 a0;2 a0;3

a1;0 a1;1 a1;2 a1;3

a2;0 a2;1 a2;2 a2;3

a3;0 a3;1 a3;2 a3;3

0BBB@
1CCCA

¼

a0;0 a0;1 a0;2 a0;3

a1;0 a1;1 a1;2 a1;3

a2;0 a2;1 a2;2 a2;3

va3;0 va3;1 va3;2 va3;3

0BBB@
1CCCA
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and

M4(v)A¼

a0;0 a0;1 a0;2 a0;3

a1;0 a1;1 a1;2 a1;3

a2;0 a2;1 a2;2 a2;3

a3;0 a3;1 a3;2 a3;3

0BBB@
1CCCA

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 v

0BBB@
1CCCA

¼

a0;0 a0;1 a0;2 va0;3

a1;0 a1;1 a1;2 va1;3

a2;0 a2;1 a2;2 va2;3

a3;0 a3;1 a3;2 va3;3

0BBB@
1CCCA

In general

† Premultiplication of A by Mr(v) multiplies the elements in the rth row of A by v;

† Postmultiplication ofA byMr(v)multiplies the elements in the rth column ofA by v.

The inverse of Mr(v) is Mr(v
21) provided v = 0.

4. Er,s (r = s) is the n � n matrix, which is equal to the identity matrix except that

† The elements in positions (r, s) and (s, r) are set to 1;

† The elements in positions (r, r) and (s, s) are set to 0.

For example, when n ¼ 4

E0;3 ¼

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

0BB@
1CCA:

If

A ¼

a0;0 a0;1 a0;2 va0;3
a1;0 a1;1 a1;2 va1;3
a2;0 a2;1 a2;2 va2;3
a3;0 a3;1 a3;2 va3;3

0BB@
1CCA

then

E0;3A ¼

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

0BBB@
1CCCA

a0;0 a0;1 a0;2 a0;3

a1;0 a1;1 a1;2 a1;3

a2;0 a2;1 a2;2 a2;3

a3;0 a3;1 a3;2 a3;3

0BBB@
1CCCA

¼

a3;0 a3;1 a3;2 a3;3

a1;0 a1;1 a1;2 a1;3

a2;0 a2;1 a2;2 a2;3

a0;0 a0;1 a0;2 a0;3

0BBB@
1CCCA
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and

AE0;3 ¼

a0;0 a0;1 a0;2 a0;3

a1;0 a1;1 a1;2 a1;3

a2;0 a2;1 a2;2 a2;3

a3;0 a3;1 a3;2 a3;3

0BBB@
1CCCA

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

0BBB@
1CCCA

¼

a0;3 a0;1 a0;2 a0;0

a1;3 a1;1 a1;2 a1;0

a2;3 a2;1 a2;2 a2;0

a3;3 a3;1 a3;2 a3;0

0BBB@
1CCCA

In general

† Premultiplication of A by Er,s interchanges the rth and sth rows of A;

† Postmultiplication of A by Er,s interchanges the rth and sth columns of A. The

inverse of Er,s is Es,r.

3.9.2 Gaussian Elimination

If the matrix A is invertible, then

Rr;s(v)Ax ¼ Rr;s(v)y ¼ ( y1; y2; . . . ; yr�1, ( yr þ vys), yrþ1, . . . , yn)

Mr(v)Ax ¼ Mr(v)y ¼ ( y1, y2, . . . , yr�1, vyr, yrþ1, . . . , yn)

Er, sAx ¼ Er, sy ¼
( y1, y2, . . . , yr�1, ys, yrþ1, . . . ; ys�1, yr, ysþ1, . . . , yn), if s , r

( y1, y2, . . . , ys�1, yr, ysþ1, . . . ; yr�1, ys, yrþ1, . . . , yn), if r , s

�
A solution to the problem,

. Given: The n � n invertible matrix A and the n-vector y

. Calculate: x such that Ax ¼ y,

may be carried out by Gaussian elimination as follows. The matrix A and the vector y are

both premultiplied by the same sequence of elementary row transformations

A! O1 O2 � � �Om A

y! O1O2 � � �Om y

Oi [ Rr, s(v),Mr(u),Er, s

� �
, for 1 � i � m,

such that

I ¼ O1O2 � � �Om A

where I is the n � n indentity matrix. It follows that

x ¼ O1O2 � � �Omy

and

A�1 ¼ O1O2 � � �Om
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Example 3.7

A ¼

1 2 0

0 3 1

�3 0 1

0@ 1A
Step #1

A1 ¼ R2;0ð3ÞA ¼

1 2 0

0 3 1

0 6 1

0@ 1A
Step #2

A2 ¼ M2

1

3

� �
A1

1 2 0

0 1 1
3

0 6 1

0@ 1A
Step #3

A3 ¼ R0;1ð�2ÞA2 ¼

1 0 � 2
3

0 1 1
3

0 6 1

0B@
1CA

Step #4

A4 ¼ R2;1ð�6ÞA3 ¼

1 0 � 2
3

0 1 1
3

0 0 �1

0B@
1CA

Step #5

A5 ¼ M3ð�1ÞA4 ¼

1 0 � 2
3

0 1 1
3

0 0 1

0B@
1CA

Step #6

A6 ¼ R1, 2 �
1

3

� �
A5 ¼

1 0 � 2
3

0 1 0

0 0 1

0B@
1CA

Step #7

A7 ¼ R0, 2

2

3

� �
A6 ¼

1 0 0

0 1 0

0 0 1

0@ 1A

(0, 0; . . . ; 0)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
ncopies

; 0 ¼
XM�1
i¼0

liz
( i), flig [ R ð3:21Þ
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is a dependency relation for a set of M vectors {z(i) : 0 � i , M} with real components.

This set of vectors is

. Linearly independent (over the reals) if the only vector l¼ (l0, l1, . . . , lM21) with

real entries for which Equation (3.21) holds is l¼ 0 equal to the zero vector; that is,

l0 ¼ l1 ¼ � � � ¼ lM21 ¼ 0, and

. It is linearly dependent (over the reals) if there is a l = 0 for which Equation (3.21)

holds.

Proposition 3.6: If A is an n � n matrix,

1. A has an inverse and Gaussian elimination successfully determines A21 if and only if

the n row vectors of A are linearly independent;

2. If the n row vectors of A are linearly independent, A does not have an inverse and the

Gaussian elimination process will result in the n � n matrix of all zeros.

Proof : The proof is by induction, the case n ¼ 1 being clear. Assume Gaussian

elimination can be applied for matrices of dimension m � m with m , n.

1. If A is invertible, there must be some element aj,0 in the jth column that differs from

0. The column operations A! Ej,0 M0(a
21
j,0 ) A allows us to assume that a0,0 ¼ 1.

2. Premultiplying the matrix A ¼ (ai,j) obtained after Step 1

A! R1;0 a�11, 0

� �
R2, 0 a�12, 0

� �
� � �Rn�2, 0 a�1n�2, 0

� �
Rn�1, 0 a�1n�1, 0

� �
A

will replace the elements (a1,0, a2,0, . . . , an21) by 0.

After Steps 1 and 2, A ¼
1 . . .

..

.
A0

 !
where A0 is of dimension (n 2 1) � (n 2 1). As A is

invertible, it follows that A0 is invertible and the induction hypothesis implies that

Gaussian elimination will result in the identity matrix.

3.9.3 Gaussian Elimination of an Overdetermined System

We now suppose that an n � n invertible linear transformation A relates M � n pairs of

n-vectors {x(i), y(i) : 0 � i , M} by

y(i) ¼ Ax(i), 0 � i , M (3:22)

x(i) ¼ A�1y(i), 0 � i , M: (3:23)

The M Equations (3.22) and (3.23) are combined as

Y ¼ AX (3:24)

X ¼ A�1Y , (3:25)

where

. Y is the n � M array composed of the column vectors { y(i)}, and

. X is the n � M array composed of the column vectors {x(i)}.

We assume that the {x(i), y(i) : 0� i, M} are known, but A and A21 are not. We will show

how Gaussian elimination will be able to determine A and A�1 provided there are an

adequate number of equations.
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3.9.4 Gaussian Elimination on the Range Matrix Y

We attempt to change Y into an upper triangular matrix by postmultiplication by a

sequence of elementary column transformations:

Y ! YO1O2 . . .OS, Oi [ Cr, s(v),Mr(u),Er, s

� �
such that

1 0 � � � 0

0 1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1

0BBB@
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

n�n
Identity matrix

0 0 � � � 0

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

1CCCA
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

n�M�n
Zero matrix

¼ YO1O2 . . .OS:

The equation A21Y ¼ X therefore implies

A�1

1 0 � � � 0

0 1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1

0BBB@
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

n�n
Identity matrix

0 0 � � � 0

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

1CCCA
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

n�M�n
Zero matrix

¼ XO1O2 . . .OS

which implies

A�1On,M�n ¼ XO1O2 . . .OS

where On,M2n is an n�M � n matrix with all entries equal to 0. This last equation

determines A21.

3.9.5 Gaussian Elimination on the Domain Matrix X

We attempt to change X into an upper triangular matrix by postmultiplication by a

sequence of elementary column transformations:

X �! X Q1 Q2 . . .QT , Oi [ fCr, s(v),Mr(u),Er, sg

such that

1 0 � � � 0

0 1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1

0BBB@
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

n�n
Identity matrix

0 0 � � � 0

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

1CCCA
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

n�M�n
Zero matrix

¼ X Q1 Q2 . . .QT :

The equation AY ¼ X therefore implies

A

1 0 � � � 0

0 1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1

0BBB@
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

n�n
Identity matrix

0 0 � � � 0

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

1CCCA
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

n�M�n
Zero matrix

¼ Y Q1 Q2 � � �QT
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which implies

AOn,M�n ¼ Y Q1 Q2 . . .QT

where On,M2n is an n � M 2 n matrix with all entries equal to 0. This last equation

determines A.

Can elementary column transformations O1O2 . . . OS and Q1 Q2 . . . QT be found to

replace Y and X by upper triangular matrices?

Proposition 3.7: If the n � n A has an inverse, Gaussian elimination will succeed

and findA21 if and only if them columns ofX and Y contain n linearly independent n-vectors.

3.9.6 Gaussian Elimination Over the Integers Modulo m

The set Zm, a ring, an algebraic system in which the operations of addition, subtraction,

and multiplication of the elements of Zm are defined as

x+ y ; (x+ y) (modulo m)

x� y ¼ xy ; (x� y) (modulo m):

The equation

y ¼ ax(modulo m)

can be solved when a has an inverse modulo m; that is, when an integer a21 [ Zm exists

such that

aa�1 ¼ 1 ðmodulo mÞ:

a has an inverse if and only if a and m have no factors in common. For example, if m ¼ 15

and a ¼ 8, then

8� 2 ¼ 16 ¼ 15þ 1 ¼ 1 (modulo 15):

All odd integers less than 128 have inverses when m ¼ 128. Table 3.34 lists the inverses of

the odd integers in the ring Z128. If m is a prime number, all positive integers less than m

have inverses and Zm is a field.

If the linear system of Equations (3.20) relating real vectors x, y and an n � n real

matrix A is replaced by

y ¼ Ax (modulo m), (3:26)

TABLE 3.34 Inverses of Odd Integers in the Ring Z128

x x21 x x21 x x21 x x21 x x21 x x21 x x21 x x21

1 1 3 43 5 77 7 55 9 57 11 35 13 69 15 111

17 113 19 27 21 61 23 39 25 41 27 19 29 53 31 95

33 97 35 11 37 45 39 23 41 25 43 3 45 37 47 79

49 81 51 123 53 29 55 7 57 9 59 115 61 21 63 63

65 65 67 107 69 13 71 119 73 121 75 99 77 5 79 47

81 49 83 91 85 125 87 103 89 105 91 83 93 117 95 31

97 33 99 75 101 109 103 87 105 89 107 67 109 101 111 15

113 17 115 59 117 93 119 71 121 73 123 51 125 85 127 127
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the matrix and vectors have components in Zm ¼ {0, 1, . . . , m2 1}. If the matrix A has an

inverse A21 in Zm

A�1A ¼ AA�1 ¼

1 0 � � � 0

0 1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1

0BBB@
1CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�n Identity matrix

;

then for each y, the linear system of Equations (3.24) and (3.25) has a unique solution x

x ¼ A�1y (modulo m):

A set of M vectors {z(i): 0 � i , M} with values in Zm is

. Linearly independent over Zm if the only vector l ¼ (l0, l1, . . . , lM21) with values

in Zm for which

0 ¼
XM�1
i¼0

liz
(i) (3:27)

is the zero vector l0 ¼ l1 ¼ � � � ¼ lM21 ¼ 0, and

. Linearly dependent overZm of there exists a vector l ¼ (l0, l1, . . ., lM21) = 0 with

values in Zm for which Equation (3.27) holds.

Proposition 3.8: An n � n matrix A has as inverse matrix A21 (modulo m) if and

only if the rows of A are linearly independent over Zm.

Proposition 3.9: If the n � n A has an inverse modulo m, Gaussian elimination

will succeed if and only if the m columns of X and Y contain n linearly independent

vectors modulo m.

3.10 MONOALPHABETIC SUBSTITUTION PROBLEMS

The ciphertext files cipherPr3.1-cipherPr3.6 and the table of one-gram

probabilities (Table 3.6) may be downloaded from the following ftp address: ftp://ftp.
wiley.com/public/sci_tech_med/computer_security.

3.1 cipherPr3.1 results from a Caesar substitution on plaintext written using the alphabet

AB � � � Z. Find the key.

cipherPr3.1

znkyzgzksktzzngzznkqtgvygiqvxuhrksoyngxjotgtgyykxz
outghuazznkmktkxgrqtgvygiqvxuhrksgcuxyzigykgyykxzo
utznkyurazoutluxikxzgotirgyykyulqtgvygiqvxuhrksyoy
waozkyzxgomnzlucgxjluxkdgsvrkolznkqtgvygiqbkizux

3.2 The term autokey refers to the use of the plaintext to modify the key. cipherPr3.2 has

been enciphered by an autokey Caesar system with key k as follows:

1. The first letter of plaintext x0 of the plaintext x ¼ (x0, x1, . . . , xn21) is

enciphered by the Caesar substitution x0! y0 ¼ (x0þ k) (modulo 26);
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2. The plaintext letter xi with 1 � i , n is enciphered by a Caesar substitution

xi! yi ¼ (xiþ xi21) (modulo 26).

Develop a non exhaustive method for the cryptanalysis for the autokey Caesar crypto-

system and test the method using the ciphertext cipherPr3.2 containing 293 lowercase

letters.

cipherPr3.2

ldttnrxpkfbcgtavrzwimcsvqvsrvgwlivrgejgvrbfalxrpgsfzvgaltgfq
gwkgtgfmvtywxnjialwwmvpnfxhplrxkwuclpgqabjnxverxpkfbckmwjhsl
alergpnrxpkfbdaljwvrpjjaanldhwfrxpkfbknqwalqgfebxjlgdgwhdttn
rxpkfbckwxnjdfggfddgwhezralfszbbazwdglhtknkgxalxkrnfucnqdtxp
ptwvbrwqqlxqpdtkrnnnqdtmtmabtuhalvjsizctvrvvwwvmvtbwb

3.3 The ciphertext cipherPr3.3 containing 538 characters results from a monoalphabetic

substitution according to the following rules:

† All characters (in the plaintext) other than upper-case letters have been deleted;

† The ciphertext is written in rows of 50 characters in groups of 5 separated by a blank

space.

The subject matter is from an article in the Santa Barbara News Press dealing with a meeting

between the presidents of the United States and the Soviet Union in Iceland in 1986. Use

x2-scoring and find the substitution.

cipherPr3.3

pyxbcsxzuyxmgmzbmebwxbwlriszluwmkxbmcsuwxblkcxubqi
czoxsqruuwxepylqmqiescsczximuxsscbqxicxamgyxxvxzub
myxgrmymzuxxswmkczgpmcsuwxymzblvuluwxwlbumgxumoxyu
wxmsvczcbuymuclzcbuymkxiczgulctximzsmbmpmevxzuulgx
uglyqmtwxkulsldwmuwxbmcsmuuwxgxzxkmbrvvcuwxdlrissl
uwxyxglyqmtwxkmgyxxsultlvxulmbrvvcuczuwxrzcuxsbumu
xbzldwxcbmuumtwczgmtlzscuclzdxmyxbtymvqiczgulvxxuw
xvrbuqxgrmymzuxxsmpyxxzgczxxyxsbrvvcuuwmudciiecxis
myvbtlzuylimgyxxvxzubwxtmzqxtlvalyumqixdcuwbxzclym
svczcbuymuclzlaactcmibbmeblixvzieuwmumylrgxogqvmew
mkxmyyxbuxssmzcilaaulxvqmyymbbglyqmtwx

3.4 The ciphertext cipherPr3.4 containing 948 characters results from a monoalphabetic

substitution according to the following rules:

† All characters (in the plaintext) other than upper-case letters have been deleted;

† The ciphertext is written in rows of 50 characters in groups of 5 separated by a blank

space.

The subject matter is from the Department of Computer Science’s submission to the

Computer Science Accreditation Board (CSAB). (Note, CSAB is a participating member in

Accreditation Board for Engineering and Technology (ABET). CSAB develops accreditation
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criteria for and accredits programs in computer science, information systems and

software engineering.) It describes some aspect of our college. Find the monoalphabetic

substitution.

cipherPr3.4

vtfjzpcepjurwvzfcivthgvtpwdfjuzvbfcvpwpvwtpitksurp
vodfdpeuvfdguesrvourrhgmthbuzfuevplfpczfwfuzetvfue
tpciucdjzhgfwwphcurwfzlpefvtfdfjuzvbfcvtuwuchjfcuc
dehcifcpurmhzqpciuvbhwjtfzfehbapcfdmpvtuwjpzpvhgtu
zdmhzqvtfzfpwvtferfuzscdfzwvucdpciubhcivtfguesrvov
tuvtpitksurpvozfwfuzetpcucouzfuhgehbjsvfzwepfcefmp
rrafwsjjhzvfducdfcehszuifdaovtfehrrfifhgfcipcffzpc
ivtfzfpwuihhdzfjzfwfcvuvphcubhcivtfzfisruzguesrvoh
gbhwvhgvtfehzfuzfuwpcehbjsvfzwepfcefiujwuzfgprrfda
ovfbjhzuzoguesrvobucohgmthbtulfwfzlfdgsrrvpbfghzhc
fhzvmhofuzwvtfdfjuzvbfcvfcxhowuihhdmhzqpcizfruvphc
wtpjmpvtvtfdfjuzvbfcvhgfrfevzpeurucdehbjsvfzfcipcf
fzpciucdhvtfzwsjjhzvpcidfjuzvbfcvwpcjuzvpesruzuwpc
irfehhzdpcuvfdbuwvfzwjzhizubpcehbjsvfzwepfcefucdfc
ipcffzpcipwudbpcpwvfzfdxhpcvroaovtffrfevzpeurucdeh
bjsvfzfcipcffzpciucdehbjsvfzwepfcefdfjuzvbfcvwehsz
wfwhggfzpciwfczhrrbfcvrpbpvwucderuwwwetfdsrfwuzffw
vuarpwtfdvtzhsitxhpcvehcwsrvuvphcehszwfwuzfezhwwrp
wvfducdguesrvouzfheeuwphcurrofnetucifdghzuehszwf

Problems 3.5 and 3.6 provide examples to test your skill at cribbing a Hill encipherment. In

each problem

1. The dimension N of the Hill matrix and

2. The subject of the plaintext

are specified.

3.5 The Hill ciphertext cipherPr3.5 consisting of 4 � 133 ASCII characters is displayedas an

array containing 26 rows of 20 integers and a final row of 12 integers. The plaintext deals with

a theft at a banking ATM.

cipherPr3.5

52 113 95 60 26 3 125 122 87 115 57 67 121 77 46 4 56 124 7 114

125 113 101 38 70 49 110 88 99 120 53 73 22 70 123 35 100 81 11 105

80 84 47 106 4 17 61 35 91 13 38 9 29 84 57 53 6 75 25 83

100 54 122 114 61 114 46 118 76 91 61 45 119 29 33 75 10 83 90 24

107 104 123 29 22 66 84 5 98 61 97 127 34 65 67 64 2 94 85 123

32 116 24 0 119 8 24 52 9 38 86 115 97 74 12 127 46 111 112 8

99 71 79 36 67 83 48 28 39 111 25 23 16 108 47 28 92 1 103 95

59 125 37 18 68 127 50 72 67 23 100 107 18 7 45 21 16 17 11 41

116 112 64 76 53 68 99 75 63 36 88 48 104 97 31 105 9 60 19 30

52 6 46 113 22 23 14 123 52 113 15 73 32 56 97 18 13 85 28 82

65 61 49 7 75 4 12 75 105 92 101 80 46 76 68 56 104 127 53 27

84 2 106 31 73 31 96 27 90 70 28 119 117 83 3 72 78 50 127 82

115 70 48 123 85 61 78 44 84 109 36 8 43 7 36 58 109 38 24 113

7 23 74 64 113 81 18 122 57 14 20 48 62 35 124 33 112 37 82 94

27 39 105 27 14 6 28 55 1 71 37 100 42 12 81 77 19 12 84 56
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cipherPr3.5

64 60 24 79 37 105 38 123 104 100 73 126 93 98 111 87 94 106 113 34

64 61 58 12 0 16 108 89 61 72 49 62 121 40 123 112 97 55 74 96

104 12 56 67 74 119 109 79 4 35 125 26 22 66 84 5 26 93 86 42

88 81 120 79 117 83 3 72 51 11 16 2 22 6 28 55 16 121 8 125

110 55 124 84 43 66 96 39 101 33 32 117 45 56 32 95 101 33 32 117

43 7 36 58 88 71 42 47 75 32 64 108 1 46 107 12 5 124 120 118

13 101 119 26 108 126 97 61 70 84 24 96 76 89 49 119 117 59 18 92

26 93 86 42 82 59 97 116 89 33 110 120 83 16 100 78 46 95 13 15

16 119 102 85 46 99 32 108 39 111 25 23 39 111 25 23 115 97 108 90

98 49 10 124 107 15 21 80 48 72 107 61 104 57 69 102 115 47 73 11

71 1 125 19 15 113 59 90 3 83 61 74 21 102 112 43 71 11 35 69

82 70 28 119 80 15 44 61 12 110 89 64

3.6 The Hill ciphertext cipherPr3.6 consisting of 336 ASCII characters is displayed as an

array containing 16 rows of 20 integers and a final row of 16 integers. The width N of the

Hill enciphering matrix is unknown but it may be assumed that 3 � N � 5. The subject of the

text is an important United States document.

cipherPr3.6

81 28 88 98 116 17 113 98 27 76 5 32 27 120 39 67 83 71 73 39

120 127 72 13 111 28 36 125 105 18 56 76 107 1 74 40 88 54 83 14

97 18 111 17 80 17 95 126 80 89 38 46 76 53 51 8 70 21 31 81

101 105 22 101 63 10 74 95 75 70 68 69 7 105 75 109 69 119 105 88

93 59 93 56 70 25 94 5 96 35 58 109 11 89 74 16 61 69 88 58

112 3 123 52 30 83 4 18 6 122 44 105 59 48 72 21 72 11 69 58

98 85 48 50 59 89 2 54 17 79 18 89 11 89 74 16 61 69 88 58

92 51 123 120 31 10 93 67 51 42 101 112 29 8 66 124 83 108 19 50

51 79 6 92 55 20 33 64 106 70 85 91 37 116 41 123 22 30 106 104

118 111 49 73 107 57 25 64 117 95 93 12 43 125 88 4 18 66 111 40

108 63 111 69 60 54 56 77 45 26 95 80 56 71 6 125 66 84 14 25

5 42 75 92 85 113 14 104 77 84 47 112 18 1 68 93 126 125 107 82

59 48 72 21 84 15 47 82 68 113 45 21 115 49 115 88 45 57 68 92

70 35 101 69 94 114 113 91 22 77 88 38 18 83 18 101 8 33 0 6

13 2 44 2 117 81 14 104 2 99 18 37 37 8 33 126 28 47 80 17

66 38 103 44 115 41 88 117 2 64 36 62 51 93 93 56 102 29 56 120

3 115 60 94 10 75 4 46 90 126 73 12 122 101 4 44
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CHA P T E R4
POLYALPHABETIC SUBSTITUTION

THI S CHA P T E R describes the cryptanalysis of polyalphabetic

encipherment. The use of coincidence to determine the period and correlation to

identify the key to cryptanalyze Vernam–Vigenère ciphertext will be explained.

The one-time pad and the greater triumph of cryptanalysis against the Soviet KGB

will be discussed. Problems to test your skills follows the text.

4.1 RUNNING KEYS

A monoalphabetic substitution on plaintext1

(x0, x1, . . . , xn�1)! ( y0, y1, . . . , yn�1)

uses a single rule u to encipher each letter

yi ¼ u(xi):

A polyalphabetic substitution uses more than one rule

yi ¼ ui(xi), 0 � i , n

to encipher the plaintext letters.

A running key

k ¼ (k0, k1, . . . , kn�1), ki [ Z26 (0 � i , n)

is a simple polyalphabetic generalization of Caesar encipherment Ck of plaintext, which

polyalphabetically enciphers the plaintext x ¼ (x0, x1, . . . , xn21) according to the rule

x! y ¼ ( y0, y1, . . . , yn�1), yi ¼ Cki (xi), 0 � i , n:

A book cipher derives the running key from the text in some (secret) book; the key is

composed of the letters starting on some specified page, line, and word in the book. Ken

Follet’s novel The Key To Rebecca relates the adventures of Cicero, a World War II

German spy who uses a book cipher based on Rebecca of Sunnybrook Farm to encipher

messages.

1ASCII plaintext in this chapter will be enciphered after

. First replacing all lower-case letters by their corresponding upper-case letters, and

. Deleting all other ASCII characters.

Computer Security and Cryptography. By Alan G. Konheim
Copyright # 2007 John Wiley & Sons, Inc.
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An alternative method to obtain a running key is to extend a key word

k ¼ (k0, k1, . . . , kr21) of length r by periodicity

k ¼ (k0, k1, . . . , kn�1), ki ¼ k(i(modulo r)), r � i , n:

4.2 BLAISE DE VIGENÈRE

Blaise de Vigenère was born in 1523 in Saint-Pourçain, France. While serving as a

diplomat in Rome, he came into contact with Giovanni Battista della Porta in 1549 and

learned from Porta’s Traicté des Chiffres (1585) describing various encryption systems.

Vigenère’s book A Treatise on Secret Writing was published when Vigenère returned to

Paris. It contains the basic 20 � 26 Vigenère tableaux.

Plaintext

Key A B C . . . Y Z

0 a b c . . . y z

1 b c d . . . z a

2 c d e . . . a b

..

. ..
. ..

. . .
. ..

. ..
.

25 z a b . . . x y

The Vigenère encipherment of plaintext x (identified by its column position) with the key k

(identified by its row number) is the table entry in the kth row and column position x; for

example, plaintext x ¼ B is enciphered with the key K ¼ 2 to ciphertext y ¼ d.
Vigenère polyalphabetic encipherment extends a sequence of r letters

(k0, k1, . . . , kr21) periodically to generate the running key, k ¼ (k0, k1, . . . , kn21, . . .)
with ki ¼ k(i(modulo r)) for 0 � i , 1. For example, the key of length 12

C R Y P T O G R A P H Y

2 17 24 15 19 14 6 17 0 15 8 24

enciphers plaintext of length 20 using the repeated key

C R Y P T O G R A P H Y C R Y P T O G R

2 17 24 15 19 14 6 17 0 15 8 24 2 17 24 15 19 14 6 17

Vigenère’s original scheme subtracted rather than added the key from the plaintext

x! y ¼ ( y0, y1, . . . , yn�1), yi ¼ (xi � ki) (modulo m):

It was rediscovered nearly one hundred years later by Admiral Sir Francis Beaufort, whose

name is associated with the wind velocity scale.

4.3 GILBERT S. VERNAM

Gilbert S. Vernam was an engineer for The American Telephone and Telegraph

Company. He was asked in 1917 to develop a teletypewriter to perform on-line
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encipherment/decipherment. Alphanumeric plaintext was first coded into 0’s and 1’s

using the Baudot code2, in which each character in a small alphabet is represented by

a 5-bit sequence, as shown in Table 4.1. The key in Vernam’s implementation of a redis-

covered Vigenère polyalphabetic system was written on a paper tape as a sequence of

five 0’s and 1’s and the Baudot-coded plaintext was XOR-ed with the key (Fig. 4.1).

Vernam glued the ends of the paper tape into a loop, yielding additive encipherment

with a periodic running key. Realizing that the strength of the encipherment would

increase with the key length, Vernam combined several tapes with periods frig

(Fig. 4.2). If the periods are properly chosen, a key formed from a total of
P

i ri indepen-

dently chosen key values could generate a key with period as large as R ¼
Q

i ri.

Unfortunately, this way of making a large period R is not equivalent to a tape of

length R [Tuckerman, 1970].

TABLE 4.1 Baudot Coding Table

Baudot code

A 00011 B 11001 C 01110 D 01001

E 00001 F 01101 G 11010 H 10100

I 00110 J 01011 K 01111 L 10010

M 11100 N 01100 O 11000 P 10110

Q 10111 R 01010 S 00101 T 10000

U 00111 V 11110 W 11011 X 11101

Y 10101 Z 10001 LF 00010 CR 01000

" 11111 # 11011 SP 00100 00000

0 10110 1 10111 2 10011 3 00001

4 01010 5 10000 6 10101 7 00111

8 00110 9 11000 ? 11001 $ 01001

Bell 01011 ! 01101 ; 01110 & 11010

# 10100 ( 01111 ) 10010 . 11100

, 01100 / 11101 , 00101 ; 11110

CR, carriage return; SP, word space; LF, line feed; BELL, bell.

Figure 4.1 Vernam’s Teletypewriter Polyalphabetic Encipherment System (Courtesy of NSA).

2To increase the number of letters that can be coded with five 0’s and 1’s, typewriter keyboard was shifted up "

to change from letters to numbers and shifted down # to change from numbers to letters.
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4.4 THE ONE-TIME PAD

Major Joseph O. Mauborgne began his study of cryptanalysis at the U.S. Army’s Signal

School, located at Fort Leavenworth (Kansas), later becaming Chief Signal Officer and

the director of the Signal Corp’s Engineering and Research Division.

When Vernam’s cryptographic invention was reported by AT&T to the U.S. Army,

Major Mauborgne recognized its importance. He also understood that the reuse of a long

tape might make Vernam-ciphertext vulnerable to cryptanalysis. U.S. Patent 1,310,719,

filed by Vernam and Mauborgne, described their one-time tape generalization of the

AT&T additive polyalphabetic encipherment system.

A one-time tape system uses the key additively as Vernam proposed, but each key

value enters in the encipherment of only one plaintext character. A one-time system can be

defined for plaintext written in any alphabet, but as alphanumeric ASCII text is always

coded into sequences of 0’s and 1’s prior to transmission or storage, we may assume

the plaintext and ciphertext alphabet letters are 0’s and 1’s.

Let (x0, x1, x2, . . . , xn21) be any sequence of 0’s and 1’s with no assumption of any

kind made about the statistical distribution of value of the sequence. A Bernoulli process3

is a random process consisting of a sequence of independent and identically distributed

(0,1)-valued random variables, which may be imagined to arise from repeatedly and inde-

pendently tossing a fair-coin:

(K0, K1, . . . , Kn�1) Pr {Ki ¼ 0} ¼ Pr {Ki ¼ 1} ¼ 1=2:

The one-time encipherment of plaintext x0, x1, x2, . . . , xn21 by a Bernoulli process K0, K1,

K2, . . . , Kn21 is additive; namely, the bit-by-bit modulo 2 addition (or XOR)

x0 x1 x2 . . . xn21

þ K0 K1 K2 . . . Kn21

Y0 Y1 Y2 . . . Yn21

Proposition 4.1: If the key stream K0, K1, K2, . . . , Kn21 is a Bernoulli process,

then the ciphertext Y0, Y1, Y2, . . . , Yn21 is also a Bernoulli process.

Proof : The key observation is that Yi and xi together determine Ki, so that

1=2 ¼
Pr {Yi ¼ 1} ¼ Pr {Ki ¼ 1þ xi}

Pr {Yi ¼ 0} ¼ Pr {Ki ¼ xi}:

�

Figure 4.2 Vernam’s multitape polyalphabetic teletypewriter system (Courtesy of NSA).

3A Bernoulli process is often described as white noise.
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Moreover, for i = j

1=4 ¼

Pr {Yi ¼ 1, Yj ¼ 1} ¼ Pr {Ki ¼ 1þ xi, Kj ¼ 1þ xj}

Pr {Yi ¼ 1, Yj ¼ 0} ¼ Pr {Ki ¼ 1þ xi, Kj ¼ xj}

Pr {Yi ¼ 0, Yj ¼ 1} ¼ Pr {Ki ¼ xi, Kj ¼ 1þ xj}

Pr {Yi ¼ 0, Yj ¼ 0} ¼ Pr {Ki ¼ xi, Kj ¼ xj}:

8>><>>:
The 2-output bits (Yi, Yj) are therefore independent with the same distribution as (Ki, Kj).

The same argument can be extended (by mathematical induction) to show the components

of the vector variables (Yi1, Yi2, . . . , Yim) and are independent with the same distribution as

(Ki1
, Ki2

, . . . , Kim
).

All possible n-bit plaintexts are equally likely to have produced ciphertext resulting

from a one-time encipherment.

This chapter examines the cryptanalysis of Vernam–Vigenère polyalphabetically

enciphered plaintext using an additive key k ¼ (k0, k1, . . . , kr21) of unknown period.

The two steps to determine the key and plaintext are:

1. Determining the period r of the key;

2. Recovering the values of the key.

4.5 FINDING THE KEY OF VERNAM–VIGENÈRE
CIPHERTEXT WITH KNOWN PERIOD BY
CORRELATION

cipherEx4.1

xeedt nerye rthti lpxtl xpbae itrxe eucoy wqrup wmdbd odfrx
oiqhz jxeei dcpht hawlz ikeht cleaa znnsr qaoih mxeca bayxb
rerzq trtqg devbn alcsy qiztw cypep uzvqr nppyi xxswh dygea
eecsh rcucr fekke ilxij ezidj mkazr tepoe bdcxw blqre vmzif
nmmpi smcot evsxx awllt qalrh xidat rioee tczeq iacdc wqeyh
sezbb qtyqe aebdd wmylq qjgsj pgipv wfnuc oywqr krzqt rtqgd
gsktd dwqez hucpx sllep yhgee yxnep mlmce wgfez itwxp uetns
qmuft cwxla zpwcw bejep vmjez ilphx tmszg xlrev prioa ftnvs
psetn xmlnj glcwm ioifv ippen nlsio sxdxw piyjw exbmq ceepm
rarpw wbsyp yriaa zsfrq xnzto wtxcq titpl rmits rtoga oleod
xnmit lsexm pitif wzyxq hqpdw mptmc niscc abayx bredy xlbfd
xgspl uehth izoye fxios tpgif bezec skoay bphxl pxpjk ejeeh
fglxs npnok xmydy eract tdw

Example 4.1
cipherEx4.1 of length 623 letters is the encipherment of ASCII plaintext by a Vigenère

substitution with period 7. The plaintext x and ciphertext y are each divided into 7 plain- and

ciphertext files consisting of the letters separated by 7 places:

y
i
¼ ( yi, yiþ7, yiþ14, . . . ) xi ¼ (xi, xiþ7, xiþ14, . . . ), 0 � i , 7:
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The ith subfiles xi and yi are each of length ni; each letter in yi results from the Caesar

encipherment with same key ki of the letter in xi:

yiþ7j ¼ (xiþ7j þ ki) ðmodulo 26Þ, j ¼ 0, 1, 2, . . . , ni � 1: (4:1)

The first step in the process of finding the key k ¼ (k0, k1, . . . , k6) is to make the letter counts

in each subfile yi of the ciphertext y shown in Table 4.2. We assume the plaintext is

generated by the language model X ¼ (X0, X1, . . . , Xn21) consisting of independent and

identically distributed random variables with distribution

p ( jÞ ¼ Pr {Xi ¼ j}, 0 � i , n; 0 � j , 26, p ¼ (p ð0Þ, p (1Þ, . . . ,p (25ÞÞ (4:2)

Let

. Nj(x) be the number of times the jth letter occurs in the plaintext sample x of length n,

. Nj( y) be the number of times the jth letter occurs in the ciphertext y, and

. Nj( yi) be the number of times the jth letter occurs in the ith ciphertext subfile yi
of length ni.

TABLE 4.2 Letter Counts in Each Subfile of cipherEx4.1

y0
(n0 ¼ 89)

y1
(n1 ¼ 89)

y2
(n2 ¼ 89)

y3
(n3 ¼ 89)

y4
(n4 ¼ 89)

y5
(n5 ¼ 89)

y6
(n6 ¼ 89)

a 0 a 4 a 9 a 6 a 3 a 3 a 0

b 0 b 12 b 1 b 2 b 3 b 0 b 0

c 0 c 1 c 5 c 0 c 9 c 8 c 4

d 1 d 0 d 2 d 4 d 7 d 9 d 0

e 8 e 6 e 17 e 14 e 4 e 3 e 8

f 1 f 2 f 1 f 4 f 0 f 5 f 1

g 3 g 0 g 0 g 2 g 3 g 2 g 4

h 4 h 0 h 3 h 1 h 5 h 2 h 3

i 10 i 2 i 8 i 1 i 9 i 1 i 4

j 0 j 4 j 0 j 2 j 1 j 2 j 2

k 2 k 4 k 1 k 1 k 0 k 0 k 1

l 3 l 10 l 4 l 0 l 1 l 6 l 3

m 6 m 4 m 2 m 5 m 0 m 3 m 3

n 0 n 0 n 5 n 1 n 4 n 9 n 0

o 0 o 7 o 3 o 3 o 0 o 5 o 1

p 7 p 6 p 4 p 2 p 9 p 6 p 3

q 3 q 7 q 0 q 10 q 1 q 0 q 4

r 4 r 4 r 7 r 1 r 5 r 1 r 7

s 6 s 0 s 8 s 1 s 2 s 1 s 7

t 4 t 3 t 6 t 2 t 14 t 6 t 3

u 0 u 0 u 3 u 5 u 1 u 0 u 0

v 1 v 1 v 0 v 0 v 1 v 0 v 6

w 9 w 0 w 0 w 1 w 2 w 5 w 9

x 14 x 7 x 0 x 4 x 5 x 0 x 8

y 2 y 2 y 0 y 7 y 0 y 6 y 6

z 1 z 3 z 0 z 10 z 0 z 6 z 2
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The sample letter frequencies are defined by

fj(x) ;
Nj(x)

n
, 0 � j , 26, f (x) ¼ ( f0(x), f1(x), . . . , f25(x)) (4:3)

fj( y i
) ;

Nj(y i
)

ni
, 0 � j , 26, f ( y

i
) ¼ ( f0( y i

), f1( y i
), . . . , f25( y i

)) (4:4)

Assuming the sample of text is sufficiently large, we use the law of large numbers and con-

clude that

lim
n!1 fi( y i

) ¼bfj( y i
) ¼ p( jþ ki), 0 � j , 26, 0 � i , 7: ð4:5Þ

Define the left-circular-shift by k places of the vector p by

skp ¼ (p (k),p (k þ 1), . . . ,p (25), p (0), p (1), . . . ,p (k � 1))

Equation (4.5) states that the limiting vector of ciphertext letter frequenciesbf j( yi) in the

ith ciphertext subfile yi is the left-circular-shift ski
p of p where ki is the unknown key.

As the limiting vector of ciphertext letter frequenciesbfj( yi) is observed, the recovery
of the unknown key ki requires us to find the left-shift of p that most closely matches the

measured vector of ciphertext letter frequencies. The nearness can be measured in terms of

the Euclidean distance between the vectorsbf j( yi) and the unknown left-circular-shift of p.
The square of the Euclidean distance between the vectors sk p andbf j( yi) ¼ ski

p is

D2(skp, bfi ( yi)) ¼ kskp, skplþ 2kbfi( yi), bfi( y i
)l� 2kskp, bfi(y i

)l

¼ 2 p
�� ��2�2rk(bfi( y i

)) (4:6)

where

. ka, bl denotes the inner-product of vectors a and b,

. kpk2 ¼ kskp, skpl ¼ kbf j( yi),bf j( yi)l is the square of the length of the vector p, and

. rk(bf j ( yi)) ¼ kskpbf j( yi)l is the kth correlation skp andbf j( yi).
TABLE 4.3 1-Gram English Letter Probabilities

j p( j ) j p ( j )

A 0.0856 B 0.0139

C 0.0279 D 0.0378

E 0.1304 F 0.0289

G 0.0199 H 0.0528

I 0.0627 J 0.0013

K 0.0042 L 0.0339

M 0.0249 N 0.0707

O 0.0797 P 0.0199

Q 0.0012 R 0.0677

S 0.0607 T 0.1045

U 0.0249 V 0.0092

W 0.0149 X 0.0017

Y 0.0199 Z 0.0008
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Equation (4.6) shows that the distance between the measured letter frequencies ski
p and

the shift skp is minimized when rk(bf j( yi)) is a maximum.

Table 4.3 provides one set of 1-gram English-language probabilities. The values ofP25
t¼0 p (t þ j)p (t) are listed in Table 4.4 and plotted in Figure 4.3. Schwarz’s inequality

for vectors a and b states

(a, b) � a
�� ��2 b

�� ��2, a ¼ (a(0), a(1), . . . , a(25)) b ¼ (b(0), b(1), . . . , b(25))

with equality if and only if a ¼ Cb for some constant C.

TABLE 4.4 1-Gram Correlations

j

P25
t¼0

p (t þ j)p (t)
j

P25
t¼0

p (t þ j)p(t)

0 0.068733 1 0.039990

2 0.032744 3 0.032501

4 0.042720 5 0.033457

6 0.035164 7 0.037647

8 0.031363 9 0.034721

10 0.037051 11 0.045412

12 0.039829 13 0.046070

14 0.039829 15 0.045412

16 0.037051 17 0.034721

18 0.031363 19 0.037647

20 0.035164 21 0.033457

22 0.042720 23 0.032501

24 0.032744 25 0.039990

Figure 4.3 Graphical presentation of Table 4.4 1-gram correlations.
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Proposition 4.2: When the plaintext letter probabilities are as in Table 4.3,

rk( f̂j ( yi)) is maximized when k ¼ ki. Table 4.5 lists the values of k with the largest

correlation values rk( f̂j ( yi)) for the ciphertext cipherEx4.1, from which we can

recognize example as the key.

4.6 COINCIDENCE

A coincidence occurs at the ith position in two samples of plaintext

x(1) ¼ (x(1)0 ; x(1)1 ; . . . ) x(2) ¼ (x(2)0 ; x(2)1 ; . . . )

if xi
(1) ¼ xi

(2). If the length n of the samples are the same, the kappa-value k[x(1), x(2)] is the
total number of coincidences

k½x(1); x(2)
 ¼
Xn�1
i¼0

x{x(1)
i
¼x(2)

i
}:

The normalized kappa-value k�[x(1), x(2)] is the average number of coincidences per letter

k�½ x(1); x(2)
 ¼
1

n

Xn�1
i¼0

x{x(1)
i
¼x(2)

i
}:

How many coincidences can one expect in typical plaintext? If the plaintext is generated

by the language model consisting of independent and identically distributed random vari-

ables with distribution as specified in Equation (4.2), then a coincidence occurs at the ith

position of two samples X (1) and X (2) plaintext with probability

Pr{X(1)
i ¼ X(2)

i } ¼
X25
j¼0

Pr{X(1)
i ¼ X(2)

i ¼ j} ¼
X25
j¼0

p 2( j) ; s2:

The expected number of coincidences is

E{k½X(1);X(2)
} ¼ ns2

where s2 	 0.06875 using the English 1-gram probabilities in Table 4.3. The values of s2
in some languages are given in Table 4.6. We can use the coincidence rate to detect if two

TABLE 4.5 Largest Correlation Values in cipherEx4.1

y0 y1 y2 y3 y4 y5 y6

e 0.069 b 0.040 a 0.072 h 0.034 c 0.045 g 0.035 d 0.042

f 0.042 e 0.039 e 0.052 i 0.040 d 0.034 h 0.041 e 0.059

i 0.043 h 0.042 l 0.049 l 0.049 l 0.056 k 0.039

p 0.053 i 0.048 m 0.062 p 0.071 p 0.043 r 0.044

j 0.040 q 0.049 v 0.035 u 0.044

k 0.043 r 0.037 v 0.046

q 0.036 y 0.045

t 0.046

w 0.041
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samples of ciphertext result from the same or different monoalphabetic substitutions as

follows:

1. If the same monoalphabetic substitution u enciphers two randomly chosen samples

of plaintext

u : X (1)! Y (1) u : X (2) ! Y (2)

the probability of the coincidence in the ciphertext Pr{Y (1) ¼ Y (2)} is s2 as

Y (1) ¼ Y (2) if and only if X (1) ¼ X (2). If two samples of ciphertext Y (1) and Y (3) of

the same length n result from the same monoalphabetic substitution, then

E{k ½ Y (1); Y (2)
} ¼ ns2:

2. If two different randomly chosen substitutions u1 and u2 encipher two randomly

chosen samples of plaintext

u1 : X
(1)! Y (1) u2 : X

(2)! Y (2)

then Pr{p1( j) ¼ p2( j)} ¼
1
26

so that

Pr{Y (1) ¼ Y (2)} ¼
X25
j¼0

Pr{p1( j) ¼ p2( j)} ¼
1

26
:

If two ciphertext vectors Y (1) and Y (2) of the same length n result from different

randomly chosen monoalphabetic substitutions, then

E{k ½ Y (1); Y (2)
} ¼
n

26
:

This suggests that we might test if two samples of monoalphabetically enciphered cipher-

text have resulted from the same or different monoalphabetic substitutions by comparing

the normalized k-value to s2.

Modifying this argument slightly, we can detect the period r of a Vernam–Vigenére

polyalphabetic encipherment. Suppose the ciphertext Y results from a Vernam–Vigenére

polyalphabetic encipherment of period r. Comparing pairs of letters in the two ciphertext

vectors

Y0 Y1 . . . Yn2k21

Yk Ykþ1 Yn21

TABLE 4.6 Rates of Coincidence in Various Languages

Language s2

English 0.0688

French 0.0778

German 0.0762

Italian 0.0738

Spanish 0.0775

Russian 0.0529
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. All result from the same monoalphabetic substitution if 0 ¼ (k modulo r), and

. not all result from the same monoalphabetic substitution if 0 = (k modulo r).

The expected number of coincidences when comparing (Y0, Y1, . . . , Yn2k21) and

(Yk, Ykþ1, . . . , Yn21) should be approximately

. ¼ ns2 if 0 ¼ (k modulo r), and

. , ns2 if 0 = (k modulo r).

Example 4.2
plainEx4.2 consists of the first 1600 upper- and lower-case letters from the Declara-

tion of Independence

When in the course of human events, . . . our sacred Honor.

The plaintext was divided into four blocks of 400 characters and the k- and

normalized k-values between the ith and (iþ 1)st blocks (Bi and Biþ1) are listed in

Table 4.7. The final row gives the total number of coincidences and the average normal-

ized k-value.

4.6.1 Estimating the Period Using Friedman’s
Incidence of Coincidence

The use of coincidence in cryptanalysis was first described in one of several monographs

[Friedman, 1920] on cryptanalysis by William Friedman. Assume the plaintext x ¼
(x0, x1, . . . , xn21) is enciphered by a Vernam–Vigenère polyalphabetic substitution

with key k ¼ (k0, k1, . . . , kr21) of period r producing ciphertext y ¼ ( y0, y1, . . . , yn21).

For each s . 0, the normalized number of coincidences in y and the left-shift by s positions

of y is computed according to the formula

k�s ½ y
 ;
1

n� s

Xn�s�1
i¼0

x{yiþs¼yi}:

. If s is a multiple of the period r, then yiþs and yi result from the samemonoalphabetic

substitution.

. If s is not a multiple r, they are the result of generally different monoalphabetic

substitutions.

By testing various shifts, we can identify the period.

TABLE 4.7 Normalized k-Values in plainEx4.2

i k[i, iþ 1] k�[i, iþ 1]

0 31 0.0775

1 28 0.0700

2 20 0.0500

3 22 0.0550

101 0.0631
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Example 4.1 (continued)
Table 4.8 and Figure 4.4 give the normalized k-values for the ciphertext cipherEx4.1.
Although the locations of the local maxima of k�s [ y] are somewhat noisy, it is clear from

the local maxima at s ¼ 7, 14, and 21 that r ¼ 7.

4.7 VENONA

During World War II [Wright, 1987; Haynes and Klehr, 1999], the Soviet Union commu-

nicated with its legitimate and covert representatives in the United States by

. Diplomatic pouch delivered by a courier,

. Commercial cables, and

. Short-wave radio.

TABLE 4.8 Table of Normalized k-Values for cipherEx4.1

s ks*[ y] s ks*[ y]

1 0.0433 2 0.0530

3 0.0321 4 0.0417

5 0.0449 6 0.0482

7 0.0530 8 0.0498

9 0.0353 10 0.0498

11 0.0321 12 0.0321

13 0.0401 14 0.0498

15 0.0369 16 0.0514

17 0.0385 18 0.0353

19 0.0498 20 0.0610

21 0.0658 22 0.0417

Figure 4.4 Graph of

normalized k-values for
cipherEx4.1.
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Diplomatic pouches provided security, but communication was slow; it was illegal to

encipher messages for transmission by telegraphic cable companies. The Soviet Union

was forced to rely on encrypting short-wave radio as a means of secreting their messages.

The Soviet Union operated five communication’s channels:

1. GRU – Soviet Army General Staff Intelligence Directorate,

2. Naval GRU – Soviet Naval Intelligence,

3. Diplomatic – Embassy and Consular business,

4. Trade traffic – lend lease, The Amtorg Trading Corporation Stands for American

Trading Organization (AMTORG), Soviet Government Purchasing Commission, and

5. KGB – Soviet espionage; headquarters in Moscow, residencies abroad.

Unlike Japan and Germany, which opted for electromechanical devices, the Soviet Union

decided to use the one-time pad, which would provide absolute secrecy if correctly used.

The USSR employed two-part superencipherment (Table 4.9); the first phase used a

codebook, a dictionary listing 4-letter groups codes for some set of common (plaintext)

phrases. The codebook might have been particular to a specific channel, and was distri-

buted to users on both sides of the channel. The entries spell and endspell were

used to allow the inclusion of foreign language (English) text in a message.

A codebook is used as a monoalphabetic encipherment and offers relatively little

protection; if the codebook falls into the hands of the enemy, as it did on two instances,

the system is compromised. To provide secrecy, the Soviet Union combined the codebook

with an additive one-time pad; shown in Figure 4.5 is a one-time pad captured by the

British Intelligence Service MI5. A one-time pad [Kahn, 1983] was found in the posses-

sion of Colonel Rudolf Ivanovich Abel, a Soviet spy arrested in 1957. Abel’s one-time

pad, printed in red and black, was small enough to be hidden in a block of wood. Each

page of a Soviet KGB one-time pad contained 60 five-digit groups of randomly generated

digits. The open literature does not tell how the Soviet Union carried out the random

number generation.

The steps in the encipherment process were the following:

1. The sender would write the message:

konheim delivered report about rockets

2. Certain names, places, and organizations would be replaced with covernames:

Teacher delivered report about grades

TABLE 4.9 Phrase and Codeword Examples

Phrase Codeword

..

. ..
.

Contact 7652
..
. ..

.

endspell 1653
..
. ..

.

pay 6781
..
. ..

.

spell 5411
..
. ..

.
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3. A code clerk would replace each word with a 4-digit codebook entry:

7394 2157 1139 3872 2216

4. The codebook entries would be regrouped in blocks of 5 digits:

73942 15711 39387 22216

5. Six unused 5-digit groups from the one-time pad would be used:

16471 56328 29731 35682 23798 46659

(a) The first 5-digit group identifies the encipherment process for the receiver, as

messages might be received out of order;

(b) The last 5-digit one-time pad group was an end-of-message marker used by the

receiver to check on the number of groups received.

Figure 4.5 One-Time pad (Courtesy of NSA).

Figure 4.6 One-Time Pad Containing 60 Five-Digit Groups of Digits.
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6. The 5-digit groups would be added digit by digit modulo 10 with no carry:

73942 15711 39387 22216
þ 16471 56328 29731 35682 23798 46659

16471 25660 34442 64969 45854 46659

7. An additional 5-digit group was appended to the message; the first three digits was a

message number, the last two, the date:

16471 25660 34442 64969 45854 46659 21210

8. The digits were converted into letters

IETWI UREEO ZTTTU ETPEP TRART TEERP UIOIO

using the table

The encipherment process described above would have provided absolute secrecy even if

a copy of the codebook had been discovered.

Hitler broke his alliance with the Soviet Union in June 1941, resulting in a large

increase in traffic. Without the means of increasing their production of one-time pads

to accommodate the communication needs, the Soviet Union decided to reuse one-time

pads. Duplicate copies of each page were assembled into different one-time pads. They

might have reasoned that the enemy would need to discover which pages were dupli-

cated and this was thought to be beyond the resources of the Soviet’s adversaries.

It is not clear who discovered the reuse of the one-time pad; perhaps it was an Allied

spy in the Soviet Intelligence apparatus. Once reuse is suspected, it is possible to use

coincidences to test messages to determine if two segments arose from the same

segment of a one-time pad.

Pairs of intercepted messages would provide segments from two one-time pad

entries, which could be pieced together to recover the pages in one-time pads.

4.7.1 Detecting Pad Reuse

A predecessor of NSA, the Army Signal Intelligence Service, was located at Arlington

House in northern Virginia; it began to monitor Soviet communications in 1945. Early

in 1947, Meredith Gardner of the U.S. Armed Forces Security Agency used the charred

remains of a Soviet Codebook found in Finland to decipher a Soviet communication.

The cryptographic resources of the American (NSA) and British (GCHQ) Intelligence ser-

vices were mobilized to study this penetration. The operation was first called BRIDE, then

DRUG, and then VENONA.

Even after finding the additive key, there remains the task of reconstructing

the codebook. It appears that Soviets had the habit of enciphering plaintext that

had already been published; for example, part of the Congressional Record.

0 1 2 3 4 5 6 7 8 9

O I U Z T R E W A P
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Additionally, there were several defectors who brought, as their dowry, samples of

text. Not all messages could be deciphered; in the VENONA intercept of

Figure 4.7, the notation [66 unrecovered groups] appears, meaning that only part

of the text was deciphered.

Figure 4.7 Venona Intercept (Courtesy of NSA).
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Ultimately, the Soviets learned of the penetration of their cryptosystem (possibly

from Kim Philby), and stopped reusing one-time pads. However, the damage could not

be undone; the stale messages still provided information. The information obtained was

of great value; it was learned [Wright, 1987, p. 231] that the USSR had fourteen agents

operating within the OSS (the predecessor of the CIA) and five agents with access to

the White House.

Alger Hiss was a senior employee of the U.S. State Department. Before becoming

president, Richard Nixon has accused Hiss of being a communist agent, based in part

on testimony by Whittaker Chambers, himself a confessed Soviet agent. Decipherment

of KGB messages identified Hiss (covername ALES).

Some deciphered KGB message dealt with the building of the atomic bomb

(covername ENORMOZ). Julius Rosenberg (covername LIBERAL) and his wife Ethel

Rosenberg, who were arrested, tried for espionage, found guilty, and executed were

identified by deciphered KGB traffic.

In 1994, the National Security Agency released details of VENONA. They may be

accessed on NSA’s Web page at http://www.nsa.gov. A partially deciphered

KGB message (from the NSA Web site) is shown in Figure 4.7, which concerns a

payment to LIBERAL.

4.8 POLYALPHABETIC SUBSTITUTION PROBLEMS

Problems 4.1–4.5 provide examples to test your skill at the cryptanalysis of Vigenère

enciphered plaintext.

1. The plaintext is written using the full ASCII alphabet:

(a) All ASCII characters other than upper- and lower-case letters were then deleted

from the plaintext, and

(b) every upper-case letter was replaced by its corresponding lower-case letter.

2. Vigenère substitution was applied to the resulting modified plaintext file.

3. The ciphertext is written in rows of 50 lower-case alphabetic ASCII characters.

4. Bounds on the period r are given.

A solution requires you to identify the period r, key k ¼ (k0, k1, . . . , kr21), and derive the

plaintext. This requires a student

1. To compute the k-value and infer the most likely period r;

2. To compute the correlation values and infer the most likely key;

3. To recover the plaintext.

The ciphertext files cipherPr4.1-cipherPr4.6 may be downloaded from the

following ftp address: ftp://ftp.wiley.com/public/sci_tech_med/computer_security.

PROBLEMS

4.1 cipherPr4.1 containing 692 lower-case ASCII characters results from a Vigenère

encipherment of plaintext. The period r satisfies 6 � r � 12; the subject of the

plaintext is unknown.
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cipherPr4.1

vlphpwtbvwqtdpuwahwwecnhgfsemlexvbvxjedagvdemgxlcn
ywtlvweziosjmtiwphzoctnmnlipcattsezrvzjerxspuvfhqj
saphavnxyeahxszoivlpdihbqethacdacpsnjzclpfrpgwdndt
ahrkglexvbjerlldpsolitiolgjvvxggefglgvqkplcivhuift
llckcfmosopazhuijcapgaskxvvlyhwcexrvzedjcyyuiderww
cxqhpwxcsemvhlepzsfwksydpyszeperpslggedptdwlrocvlp
hpwgrwumzyeycgseswhhwhuigbnspuurshhlepbgvrihlepnfn
qumdewlthrextzcvtglgalaiyoawcgetdudesvsnzadhcxteyd
pjhvspwpnjywgckwacdcwqiffjewlccxksyladocxteydevfgp
ccpchlqhvkxjagvhbgqpheazofjcvldxjoaxgpwhisgvwpilca
fhuiuexppzbrxuglatzgrgwvpddjyrxnejpgzgyavpdndugvwv
wzqpooahullvtwfbxqgzwsbfvriastrogrgwvtenwoeeoiepgz
oeigbnspuurhkrnwjkwakeicexmwpevidpcjwclgvxpcaoykqv
tewthltgqlnpsubvkxsxifdrogcdpmjvnriizqshhn

4.2 cipherPr4.2 containing 247 lower-case ASCII characters results from

a Vigenère encipherment of plaintext. The period r satisfies 5 � r � 9;

the subject of the plaintext is unknown.

cipherPr4.2

vvraljoghhdrjyflotpqrworfwtvwbftexrkgrvumzipacgpgg
tytggrhkximvatchyafovmjsualkitrqtpgfgovxtsigelnkhp
waxttnclkbnfrfnjxthruaeinhiwpseuyxxnccexenvagwfknv
cufqggsvlngpjsalavngvjbbdhxsklachfzkbgigffalkypmri
eknznqyrfbvntnupkhuafglqogrpglkjgkhceetewgvjoesvky
tbuhvul

4.3 cipherPr4.3 containing 818 lower-case ASCII characters results from

a Vigenère encipherment of plaintext. The period r satisfies 4 � r � 8;

the subject of the plaintext is unknown.

cipherPr4.3

pverzmvwhatjkawmfxrzozlelvcmacgfvmlmymmlmzkawepwrt
xebeobebrzwlkttheboakforlfdqnrtelplltilhxkikpbknoc
ziinexubhlmgisntcqslllxecbfziylkzunmzwnlecinrnroee
arbtsxniyehcmacggzorkrumtgxqsehnziexgzorkruslgubhl
mgzomevuszemqnrlywuwwsmtlnxpttgkpeqbiatakforlfdqnr
vfcrdxfcrmhfsidtzueotkatfwvvtdpywawmywurafbhpknqsp
lfjecteluakzohelvmmehcicvteqnenzbigxwmewyfzczfgctp
kjkipgtmwpmigtztebinbgitptelaylnmrbnvattheaadpvtll
lkweiiciiyyrktdbeifcbvvdwrimfcxjpiyzdinyxiuodmfnaw
enmvpmiqeomfuavxfpplltilllvtfexrkhtgxjozdraoaifaeo
mfirpyvzeyvvuaynrttstkattvbatzovzydfrtlhhilshxmmae
mvupexuipcxjmnetkqoymyitdwvbatevleyhlohqhixezicmse
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cipherPr4.3

nugiyzfvtsxzzohgpmtwntqdcxrlamevinoxerojtstepgfcgs
yfzmzkvbrlwzbizgrtsenumnelkwrptujeqhimlpvkcrpffatz
yfpplltildbevogtkqoylradpltzimxujewhnirpffbigtkmdm
rkpidzfilhxvupstjqzpzvvectcxrzucmmdhcdiyzkmcsgzyup
ldwseufwkduvoiyteleywkpetkuqsnnjaizgfnpchstexlftvt
gxeieajbeapzaecxwqnpfvvtshnmvpkdinjhkpecfvbhzwjbhl
mxwooiiwbwxdaowovzslguxrzziimxxiatldvnocziinexupag
xemvpksmeyyfzmlezheobebhpldcdpgkamtguaaywemeomfjea
kvaeymvleiicqctmcg

4.4 cipherPr4.4 containing 327 lower-case ASCII characters results from

a Vigenère encipherment of plaintext. The period r satisfies 5 � r � 9;

the subject of the plaintext is unknown.

cipherPr4.4

jcyqqbzmhhusjgzxavqyjwkokgfepsjkysbvkjznlrnclfzfhh
qpucnxlrosiafxjodvesicavqmjhvbzhmxagvbcwoiohyofdds
rwuopbbenhzmbzmvpvvsyhmvetwcjvqhqzvchfqgkbkbvzxizp
pdosrizsiksqaqiiesjofmkbtytauwowfxavqmnwedyofwpoko
zsdzeqvcimflafvcwsoxejvcaofilisvpqgxezzdfqaqiwjcpc
zwebveycbiaotruofmkbrvnchinbdouhyeebkkpbeeiceywcxc
kbtytagreqrdpczwafmsjseadwtrhfqtncmskspfuhyojcgrpf
pcwcexpscowvaraoenasxicfrzo

4.5 cipherPr4.5 containing 736 lower-case ASCII characters results from a

Vigenère encipherment of plaintext. The period r satisfies 6 � r � 12; the

subject of the plaintext is unknown.

cipherPr4.5

icasa nijki wsqiy lskab rhxas fwgrf dsuxa uvsfl uxsxy xckwn
crlzk zovzk iusjs hrjuc ugsdi wklxw unbco uaclg aqvhy iyjdo
jsvoh qsfek obyzv genci uhurc lkzzh xmxgk ghsor cxwuu aaxtc
gsloc bvysw lwsgh kkwse hahsu ywmwf isduu avseg hifyv ggnkf
gwncw wpiwh ltaqm dzwtd iyxwv jwgfo jpafk qcpvf ilaub cizbm
khxcu uggvw kazhv ohetj uoreu xcgxy yworm efvqb czryh ywcvw
fnwef tkigh jcrso orsug hkwgl ofhgm sxkiw sqzcj auyhi gevyk
atsgv ghhaf jigwx sxzay pfrib yjwcw zokrt dsobg rsysx lnsar
xymeh ufhdt njwsz ifhyi jlzkq cpvox wjyqw htwih juufd sijug
afghy iqwia sgwoi rkegm brzvi sfyks ukxlw jktcu gxhal ocbdr
crxgx aowoi rgjic iqyyp afmdz hgmiv judpb zbivw vofws yrlgl
qcpvo xwjyq whtwi afkbu ltyij atucu zbikl arsqz uhnay wbjuz
jaukw bhtam fwkfw qmgsk lwisv zcsfk iobek urkok fsghs xzwyh
oilir svxcd ltvek ayozw niyyz ycahc cpdtk fsikl vwvzc hkkze
umrhm pkgfw jhsgw woeda lwsgz iefkc sfwny q
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4.6 cipherPr4.6 containing 500 lower-case ASCII characters results from a Vigenère

encipherment of plaintext. The period r satisfies 6 � r � 12; the subject of the

plaintext is unknown.

cipherPr4.6

tstpq bfvea oryaa birpr vagjb nhtwn iqyos pzelv hnfzj cirks
ftxim qhogl vdyjt netrg zlkti ppemp xxbnx ihdir prvag jxrtl
qohdn sjqco oahnu hennq hcpyg elkro vcwef cpius wuwey iotgk
syntj xtolq tnuoi tufes bdevi fwior veafl tfcgo hceid ewsyi
xcutr guawr fdwih dfoep wolxe lpnet ckzsb qiduq taspe snexn
jdyga bltzz ysnfv kuzel ukzub rilch xbbdm cqebc isenx ixsus
isyax tbtps zlkyp fmfik mhfzx hyoaa oocoo oxioe viarx dcjxh
ymhst tfiff mypqa rcqbn hmpih abnhw cfupm pszkr ujlao opeuo
giore birmt ipmnn bknbw wtlrv tvcio zqaen lgihq hsilr dnexm
bmmnn llhqw ysuih nhele qxrbz lplgb tntrm vyxls fxfls itnhf
egyxm rztxm uvmal pewbf eeuzj ufiru ooirm qtnee lefxg gvlke
vrmti pveqx kdtlv eqlkt ieley cyose
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CHA P T E R5
STATISTICAL TESTS

THI S CHA P T E R describes various statistical tests which are often used to

assess the strength and weaknesses of an encipherment system. Included are

the tests suggested by the National Institute of Standards used in validating the

new Advanced Encryption Standard. Diagnosis, the problem of inferring the method

of cryptographic encipherment, is formulated and illustrated.

5.1 WEAKNESSES IN A CRYPTOSYSTEM

Cryptographic systems might be cryptanalyzed by

. Exhaustive key trial, or

. Exploitation of systemic weakness, often in conjunction with a selective nonexhaustive

key trial.

The recent cracking of DES involved exhaustive key trial, but the Enigma machine was

cryptanalyzed by exploiting a weakness in the design and defective operational protocol

used in encipherment.

The only perfectly secure encipherment uses a one-time system and this only when

used properly. The practical limitation of one-time encipherment led to design of crypto-

graphic systems that use a short key k0, k1, . . . , kn21 to generate a larger operational key. It

is an act of faith that as the basic key length n increases, the security of the derived cipher-

text also improves. The design of cryptographic systems has therefore focused on ways of

generating long keys that appear to be random.

The methods discussed thus far in these notes have dealt with uncovering some sys-

temic weakness. Here we examine some of the statistical methods that might be used to

detect hidden relationships between the key, plaintext, and ciphertext. One such statistical

measure, the x2-test has already been described in Chapter 3.

5.2 THE KOLMOGOROV–SMIRNOV TEST

Figure 5.1 plots the sample distribution functionbFnðxÞ for n ¼ 100 and n ¼ 1000 samples

of data derived from a uniform distribution function F(x). The Kolmogorov–Smirnov

Test is a goodness-of-fit test; is a sample of n data values X0, X1, . . . , Xn21, derived

from independent and identical random trials consistent with a specified distribution

function F(x) ¼ Pr{Xj � x}? The law of large numbers implies that the sample
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distribution function

bFn(x) ;
1

n

Xn�1
j¼0

x{Xj � x}

converges as the sample size n increases

bFn(x)! F(x), n! 1
with probability 1.

The Kolmogorov–Smirnov statistics

Kþn ;
ffiffiffi
n
p

max
�1,x,1 (bFn(x)� F(x)) K�n ;

ffiffiffi
n
p

max
�1,x,1 (F(x)�bFn(x)) (5:1)

Kn ¼
ffiffiffi
n
p

max
�1,x,1 j

bFn(x)� F(x)j ¼ max{Kþn , K
�
n } (5:2)

measures the vertical deviation of F(x) from the sample distribution functionbFnðxÞ, where

. Kþn measures the deviation when bFnðxÞ . FðxÞ and

. K2
n the deviation when FðxÞ . bFnðxÞ.

The Kolmogorov–Smirnov test verifying the condition

Pr{Kn � kn( p)} ¼ 0:01p ð5:3Þ

was first proposed in Kolmogorov [1933], but a more accessible reference is Darling’s

paper [1957].

A table of the p%-significance level values kn( p) defined by Equation (5.3) for

. p ¼ 99, 95, 75, 50, 25, 5, 1, and

. n ¼ 1(1)12, 15, 20, 30 and n . 30

is contained in Knuth [1971].

Using the monotonicity of F (and bFn), the next algorithm gives a feasible way of

evaluating Kn.

Figure 5.1 Sample Distribution Function bFnðxÞ (a) n ¼ 100; (b) n ¼ 1000.
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5.2.1 Kn-Evaluation Algorithm

1. Sort the observations X1 � X2 � . . . � Xn;

2. Compute Kþn ¼ max0� j,n

�
jþ1
n
� FðXÞj

�
and K�n ¼ max0� j,n

�
FðXjÞ �

j
n

�
:

Bradley [1968] described one version of the Kolmogorov–Smirnov test used as a test of

hypotheses to distinguish between

. H0 (Null Hypothesis) – F(x) is the distribution of the iid sample X0, X1, . . . , Xn21.

. H1 (Alternate Hypothesis) – F(x) is not the distribution of the iid sample

X0, X1, . . . , Xn21.

A significance level p% is chosen and Kn is computed. H0 is accepted if and only

if Kn � kn ( p).
Knuth proposed dividing Bn measurement X0, X1, . . . , XB21 into B blocks, each

containing n data values, calculating Ki for the ith block and applying the

Kolmogorov–Smirnov test to the sample distribution function of the B random variables

fKi : 0 � b , Bg.

5.3 NIST’S PROPOSED STATISTICAL TESTS

The National Institution of Standards (NIST) proposed a number of statistical

tests [NIST, 1994] when they solicited a successor to the Data Encryption Standard

in 1996.

If a cryptographic algorithm generates a random number generator, the algorithm’s

output of 20,000 consecutive output bits y0, y1, . . . , y19999 must pass the following four

statistical tests.

. The Monobit Test – Count the number N1 of ones in the 20,000 output bits. The test

is passed if 9654 , N1 , 10,346.

. The Poker Test – Divide the 20,000 bitstream into four blocks of 5000 bits each.

Count the number fi of (column) vectors (x0, j, x1, j, x2, j, x3, j) for which

i ¼ 8x0, jþ 4x1, jþ 2x2, jþ x3, j and evaluate the x2-value

x 2 ¼
16

5000

X15
i¼0

f 2i

 !
� 5000:

The test is passed if 1.03 , x 2 ,57.4.
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. The Runs Test – A run is a maximal length sequence of either bits with value one

or zero: �
� � � 1 00 � � � 0|fflfflffl{zfflfflffl}

j 0s

zfflfflffl}|fflfflffl{all 00s

, 1 � � �

�
Run of 00s

�
� � � 0 11 � � � 1|fflfflffl{zfflfflffl}

j 1s

zfflfflffl}|fflfflffl{all 10s

, 0 � � �

�
Run of 10s

The test is passed if the number of runs Rl[i] of i(i ¼ 0, 1) lies in the intervals listed

in Table 5.1.

. The Long Run Test – A long run is defined to be a run of ones or zeros of length

34 or more. The test is passed if there are no long runs.

5.4 DIAGNOSIS

Up to now, we have analyzed ciphertext assuming the method of encipherment was

known. Diagnosis is a process used to discover the nature of the encipherment system.

The toy diagnostic procedure to be described next assumes that each of the six ciphertext

files that follow cipherEx1.A, cipherEx1.B, . . . , cipherEx1.F has been

produced using one of the following encipherment systems:

T Columnar transposition

V Vigenère substitution

M 1-gram monoalphabetic substitution

O Some other cryptosystem.

The process of identifying which cryptographic system has produced given ciphertext is

referred to as diagnosis. It will be carried out by making a sequence of tests whose

objective is to accept or reject one of the hypotheses T, M, V, or O.

Test #i Compute . . .

If . . . then encipherment system is . . .

If . . . then encipherment system is not . . .

Continue with Test #iþ 1

The diagnosis process corresponds to a tree (Fig. 5.2). You start at the ROOT and make a

Test, which may (1) identify a unique method of encipherment or (2) eliminate one

TABLE 5.1 Intervals for the Runs Test

Length of Run Interval

1 2267–2733

2 1079–1421

3 502–748

4 223–402

5 90–223

6þ 90–223
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or more of the possible cryptographic systemsM, V, T, or O, and continue by performing

additional tests.

Diagnosis requires

1. A sequence of tests to carry out diagnosis;

2. Application of the tests to classify the method of encipherment for each of the six

ciphertext files that follows.

cipherEx1.A

snrtiiregmlrtorcceleatssrirclerismprhcthiiiitteomgfihgadniia
setapneegareratateirtsegtopevirsetecthdvfsaglrantcoddewutrst
mirskaacleeorlsmsiuuraosraccirseoeentdlemsnseooartottxnesaho
itnohthufudamgeerhoirehedeltdkeocnoayhaeeriaursnmhnhoeienaye
pmosssmaotoutsnpmntilesnialndmepeematgtornsaacsaiewnssgtsrrt
ntoopncinsletrsthpdstannintaarsstnhtofmspmau

cipherEx1.B

wpvmulxmfjrxunfvotqkvixtocrxkhqiehrkhlzgvbrvyeuvrv
titghllwgkvbyvqnjpfyvmkmymumrzpshvrugyvxummsnnwqfr
kgiitxcllvrrahwpvvvxfpesnhjqtenwhdvpqipmexvahqjwwx
ladsumdklxgpkmexjxwmtlphowxcklbwlrimkmgitllakipmsc
iwwbwwwtthgctxuplbymoiuwmifvraktgkiwiqcgfmtlckdkki
tbvbzgumkmegqgvbrrvebtveflwwlrvklmuypvhzkekgimrxwk
hawvqfwpvmpbwqrpehqkvtvbrvfjclbakiotukymvxfblvcegm
jmigwwzxuwdqccqihzrxkhqiwxgklvjxceoikmqglvklgxdzcc
redvempzsprwghiieiyvrugyvxuapwvxpxisfnfbklgfdvljcv
wciitfxakyundtccotnmkaqmbxvwqyszvhkvwqfr

Figure 5.2 Diagnosis Process.
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cipherEx1.C

rblfogzbkgcwuqfydkibkrfolsfjmyxvlhdwfeyuiwhguybqsrhhbolkagix
xkritjwdhrqcwrkdaepcdyfrekdxwwuovrarqxihbrintjrrryhdfcwsmkic
nnidgoxdhniwlbytelcqbmoxpwmsdszeglaeffqpyltbmkrwookdqjodlwbk
uakoapeeobehtvoocnkrrpvllliqbgyijzyzqkrgsgmrsdcbielyvzagpety
wbgpeijuicgvwczqtbchzfwvozhdibshmmnhtjdufabtsszflhhvjdrqembk
phelvhfyjdkxrirmjmlcnvwgtsfvisgpfrgojrwistjzzxubpwlhwetjncbj
wdlmpxlhtzjnmaxmmkeemxlegzldxwcoslyehxjnchjscwquemqejlinzzcx
zwojiqgvcnicdwrdrmibdoxyrvajhcixgwuzohtrwgqsaxqnozsjzzrlnhun
ekpooaqxihlavycciphbobqhwbpdmcnkwcfyjrgekclyfvoljslxohfemkiz
fyjfvlxuiyfgrfiqiltkqqhkcpiklavcxpzaduwpisutl

cipherEx1.D

epibqacvqfqvbpmvizzwemabamvamqbqaibqumapizqvowxmzibqvoagabmu
smzvmtixzwoziubpibkwvbzwtabpmzmawczkmawnikwuxcbmzivlittwkibm
abqumiuwvoqbacamzaqbtmbacamzazcvbpmqzxzwoziuaqbkwvbzwtabpmxm
zqxpmzitlmdqkmalqakabmzuqvitaxzqvbmzaivlbpmtqsmkwvvmkbmlbwbp
muikpqvmivlqbxzwdqlmainqtmagabmubpibuiviomabpmtwvobmzuabwzio
mwnqvnwzuibqwvackpiaxzwoziualibiivllwkcumvbaqbqaibqumapizqvo
agabmu

cipherEx1.E

wneeeiiasngtlsouaemulrerotpeimraietiteshgosomuoaosstonaaeser
hrremnaetistotlrlsesrentcdilmnergonpsdninreshpgkpttecoacmisu
nrioeaetlehodanvieaheafosmneuhwstrryroaoespdtastehgcsiddrpsl
nohidetalmersrddttirsisonmamnhrcroigrsupsrprcsattcemaoftmttr
niaaamhinsimnttercsoftlsosesianhhvsiinkchnpsyaentfacgtcaxatt
egielaotuaeltnetrrmteeicnndeteerastsgoithrau

cipherEx1.F

opkjvvjobetrmjowlseitvazxuievbavrswvxvpvgroqurfeey
bniyimztysswpnbkqjsiftueqwfabnifirkxrmpekdwtwuiizb
nigiiheuvxprjlsinrjdvlseqrgtexuirhwargswnmxzvgvmmw
yvvvhmtxftcvkkhbrkcmycfxvhekwuecgmreosivbkqbvvjvcs
eocjijgueivkziemqvbosamenmixvsejvktbmeonuyexyzakgb
ruogvibjgmmjmpxzjvowpsexmxrrhndbnxuitcwogrfvoekiae
ixpoxrgkpzgpqijdoteyxvmvgxvzvnjgwrhfipgvqarmmgrqwf
abceeikzknrbpfbqkwglroeopyfvvdgmyesgmorglvymbiysgh
mtxciidwjssxyzxrearvyaewgidcmxiglvxzoxrvzjvujficzk
zmbrznenegavxirppsjoxkvssihitgrxivlkssjkcmggpyivke
sswlxpvvrhzxbosavvnbyxbetjvymqiivjrirbkzvzsaslmkgt
nfzgqzcbjdvxvmakkcmviejfmugrpitcixepxvmmowgmtnwlxu
ijtazizgfhxurrrknqtxbxyzwbieecgaewgidgmbiytvmnuvze
exmilnvrxbkvvwkdkywhgyozgrfproqurcvfxmjyeijvzkflrf
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cipherEx1.F

hmgrfwkmiokuxwjzceehfmekpyijoihpvwyzlurpikcmgvplzo
mixhvrglkgvwzjvylnzvwmkrzeuzithglvngyxrquzaokaeeyq
styidzvzegmfiazeexvybnifgfkmujciiawxqnrtzxxiqmtoqu
rnruzdgphekdwtfrgfhmyqbvvnxkgvjzx

Test #1: Count the number of occurrences {Ni[F ]} in each ciphertext file F of

each letter i and compute the frequency of occurrence fi½F 
 ; Ni½F 


t

� �
in F and the cor-

relation coefficient

@ ½F 
 ;
X25
i¼0

fi½F 
p(i)

where {p(i)} are 1-gram probabilities.

Accept Hypothesis T if @ [F ] � 0.80 � 0.0688 ¼ 0.05504. Reject Hypothesis T if

@ [F ] , 0.80 � 0.0688 ¼ 0.05504.

Results of Test #1:

File @ [F ]

cipherEx1.A 0.0692

cipherEx1.B 0.0338

cipherEx1.C 0.0383

cipherEx1.D 0.0318

cipherEx1.E 0.0692

cipherEx1.F 0.0379

Conclusion from Test #1: cipherEx1.A and cipherEx1.E result from

columnar transposition, which does not alter the one-gram frequencies.

Having rejected T . . .

Test #2: Count the number of occurrences {Ni[F ]} in each ciphertext file F of

length N[F ] and compute

s2½F 
 ¼
X25
i¼0

Ni½F 


N½F 


� �2

:

Accept Hypothesis M if s2[F ] � 0.80 � 0.0688 ¼ 0.05505. Reject Hypothesis M
if s2[F ] , 0.80 � 0.0688 ¼ 0.05505.

Results of Test #2

File s2[F ]

cipherEx1.B 0.0470

cipherEx1.C 0.0403

cipherEx1.D 0.0742

cipherEx1.F 0.0459
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Conclusion from Test #2: cipherEx1.D results from a monoalphabetic

sub-stitution.

Having rejected T and M . . .

Test #3: Use the k-test to determine that the encipherment is Vigenère.

Results of Test #3:

Conclusion from Test #3: cipherEx1.B and cipherEx1.F result from a

Vigenère substitution of periods 6 and 7.

Having rejected T, M, and V, accept O.

Conclusion from Diagnosis: cipherEx1.B results from some other form of

encipherment.

5.5 STATISTICAL TESTS PROBLEMS

Problems 5.1–5.2 provide examples to test your skill at the diagnosis of cryptographic

encipherment.

The ciphertext files cipherPr5.1A-cipherPr5.2F may be downloaded from

the following ftp address: ftp://ftp.wiley.com/public/sci_tech_med/computer_security.

PROBLEMS

5.1 cipherPr5.1A and cipher5.1B result from either columnar transposition,

monoalphabetic substitution, or polyalphabetic (Vigenère) substitution with period

5 � r � 10.

Develop a diagnostic procedure to distinguish between these three encipherment systems and

determine which system was used for the example ciphertext.

cipherEx1.B

n ¼ 490

s k[s] s k[s]

1 0.0470 2 0.0430

3 0.0390 4 0.0432

5 0.0598 6 0.0475

7 0.0352 8 0.0498

9 0.0374 10 0.0271

11 0.0334 12 0.0607

13 0.0440 14 0.0441

15 0.0337 16 0.0612

17 0.0444 18 0.0699

19 0.0488 20 0.0574

21 0.0512 22 0.0385

23 0.0428 24 0.0472

25 0.0387 26 0.0302

27 0.0346 28 0.0411

29 0.0412 30 0.0717

cipherEx1.C

n ¼ 585

s k[s] s k[s]

1 0.0411 2 0.0189

3 0.0275 4 0.0568

5 0.0379 6 0.0432

7 0.0346 8 0.0468

9 0.0382 10 0.0313

11 0.0401 12 0.0471

13 0.0227 14 0.0508

15 0.0509 16 0.0633

17 0.0352 18 0.0459

19 0.0442 20 0.0425

21 0.0248 22 0.0249

23 0.0463 24 0.0357

25 0.0357 26 0.0698

27 0.0448 28 0.0395

29 0.0306 30 0.0595

cipherEx1.F

n ¼ 883

s k[s] s k[s]

1 0.0431 2 0.0352

3 0.0386 4 0.0421

5 0.0456 6 0.0319

7 0.0537 8 0.0343

9 0.0526 10 0.0355

11 0.0378 12 0.0344

13 0.0391 14 0.0806

15 0.0426 16 0.0415

17 0.0312 18 0.0393

19 0.0498 20 0.0406

21 0.0650 22 0.0430

23 0.0442 24 0.0384

25 0.0431 26 0.0408

27 0.0386 28 0.0807

29 0.0304 30 0.0516
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cipherEx5.1A

fphki tmpjq nhptv artqi weire vqzbk xmepw afzlt pzlgl owxgx
iugaa nwain attpe khlrh gvqdh klrpc vkkrg xrove ubkvs dbwbq
zvvsd bwbqz vtvvz qedwx mmeqn ggahw jfdoc zldgi kmuse axvlr
erzal xvmes dizsv mekqo mzbvy mempk uioki gatbe moxgk dkkub
bumcx uizls tcjxk xeprm icmpl mquem eqtme muoek uqveg vmide
jihme xieyc lqxrl wznnm ngfhq ggvmd algme pwafz bvsdb wbqzv
vseft wxudv lzzgb awole epepq ulvec bnizb vvmvz vqebv nwvoq
ubcwx vjfqi ziorw vqzxq zlfie fctpi wthfo vwdaj xrvdc bqkuh
wjegk fqrgb imaab qfmyi quxeg fasca iqebv lmdgn ifmpx rkmnx
dwfxw jquum vqxhr zfczu dgrvp uxmkh xbgxq zmblh rnawt ppdkh
ckdmb wvlms xgeub khykf jmmav bwkmp kqwiv sdbwb qzvhr ktgnd
qyhpf guaul hvsdb wbqzv aemqd mqvsk sxdcu ymgms gxcgs ipxwj
gepma etgbs cuywq truoj meaph vvaoq zwxlp pyktu bdkcr brtuk
dmmfz upmdh tpfzi puawh vpoqu bcwbr xtcas zrpri mrqpt byvfy
kbewu bkzzu jqnrk ikakb exuxw vzvxa almmf zcaav hhjkt geazo
wwcmt oqawb rugub dqhl

cipherEx5.1B

aptnu inflv hoium aoyre uobtf atris tirsh nsyed oslen cticr
leaoe ccauc slten udxid bbosc pnviu vreyu cnsmy rchnr tgpoi
ftnie ordst nelts zttde anttp ruumt cdaei lsill envya mscru
mcmtd assos yrlcn rtyrh taasn nspoh eluse utodt eodgc kasim
yaagy irimg ostoo rguee etnao sohey tmcrw efasp nttco cyahr
somep euiye risma nstnx nasts xcsgm eomnn eauls teaos rsmhn
mlsbm hestl nltpa rfobo sioel iirfl siice wovnc oseon ddksi
snnpe tpsie iebel pnrtt hlele uuaee trasn ipoim rsanc rodsi
htcrf uosea pesmc ruipo asmhn ysste sshst reepa erdie heaac
rtnie nsack eaeli spart tedbm itunc ohpis poema orsop slsep
edaao wrowt sfeeo crero maado olpie iogwl tnero atdst hboeh
terhw ndthe uetsu ahunm nrecl ileas vaios spoao clctm tsidt
eoise ostls empln apeti othle ebgta hgnmn iatvh cnodi irppn
flesc waidl uorar cwpos rlons rgasi rtbyo lense obtnc ronai
nteea ptdge ertyi uncad eetly ihanm oispa pmasa oeola isoou
sarre ietnw ane

5.2 The Six ciphertext files cipherPr5.2A, cipherPr5.2B, . . . , cipher5.2F
result from one of the encipherment methods

T Columnar transposition

V Vigenère substitution

M 1-gram monoalphabetic substitution

O Some other cryptosystem.
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Develop a diagnostic procedure to distinguish between these six encipherment systems and deter-

mine which system was used for the example ciphertext.

cipherEx5.2A

tundn rmeeo rceof sacrm stohb aessy gedtp rsnro tuaie tnsce

stqre haesi tncoo uccte evode twede iftuh stdrn rmcer iurde

pnmse rfoar anpey tiyza iethm eheos oecer tztsa ptcme ucret

xstep ydntu oslfe dtcho ieppc erueh setsp peyri hertf teitl

iarfc ernae pdrrn osigp ncets peyot edstn nnnfn grnru rivtt

mstir fstse nrdrt nspey roits dneor incia ratpc uscrn bliuc

cbeha ttshs asird owaor ieeha lrihs ceoit steyc riuce rnlye

msotw unrrl orisf eoarc oucao oamdm cenvy iabao orinc dhfei

lutcn atekh tuccr haaee midio ttedm rooar ipeys gdihe tdtbu

hcouc timnh ieims tttck eroui niant aiatu aevar uaory tisiu

mntms tgsrn yooaa hsunh iecpt incor isaon eudaa ltsie mstar

kftua s

cipherEx5.2B

aftta lsmma fekdf pntfi masqh mdrbx mbplx nsmqa gwhui ottzr

amqgh wbrnz bwlqb tjlre masbb wiifn rwemt bwbrq huabc vcffa

eeziy ezqhv qxtqc fekxs eypee iayyq zrwqh mbnrx ijnmi antra

gluyi xnecf eyczv rcodu ntbwb ssoiz agagk snfoo iarrf imysz

afmnp tagjs oduvn domfg iktxg yeybw aemun tvcyq zrejo dmfoi

pwfxf cmbrd mpfre qcauz ogtmx rlwzi ftamh esgaz pbrlm wfxee

dmfue bcsem raoea flcvr dmazr taibv xfsec cphas qxlfa zvnlb

oagba nipkz iazsk pdwtr tuanc yeyiq eicpy mzhae rvxzk uiktt

mhnlc gcizt uvtul mfcpx yeita bvggx eenip kziaz skpdw trtuw

gwrrd mctbb wbypl kzraw ahuir sqzff btsfm kaplv tbwbg syemb

vnzbv ryped igtam unqba zwghx zqyep sangh kmogw fsfpr rxaiy

xlfmc fekwt nwqaf qftbk oyhxt mjnsx jsvrd antrt hqbsi osqvf

imqjr hxtmn eofvc awbne qgiom wajlr yigih vfrxr rzmqb rbvrh

xtmjn sxnce mksfi acxqt tvlme svilb vrskl knbrx quaio wazxi

gowae madbv cntoe hbpmz gmxvh brbca cydwm rhgbg dwzsd qgfei

adgsr huhui xvqzn gxaoy eoyan ghxls ceoty mattv rglba hmeaz

mgnpx rkwsa etbbr codmv ggmff mkttm qeiif gqbnf buekm oqiom

mgoet ayvrd irbue kmwfw lmgku chudh xbroz vmxev llxvq vgiam

oehxb acgim ahnxf sfqps lpcjx eafic pkwlv qxtqt logmd rvzez

bbftt zpsjp gbrrv zwzif spmge vbsqw bvqvc ekksa xlffp rdxbs

pxbdo zvmxa oeioe bwetx lcail ufwst aqfgc qhdmr ckqav rxlez

rphzh rhfso wavbk hrhxn pwaeh chbjq wqvgy mecgl lueia dxvrf

ymizr niewb rvbae wamha hbjqh qarck qarwx rqvbt kmdbv qepqf

taihn wrcom fsycz nxqao sbfmm beise mtfvn tbrvx butvt bmggl

xtoia bxmlc plifm qbrwh uiopa brnmq oyeqt mkxek awaea dubvo

gbvre avqzf eicpy mzifg qilkc hvxgq aaepk zvikt eiadf iyrwp

hmzrh htrrv puzpn pigoa sqhqz eetac amptt igmtv mbjqh qkeif
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cipherEx5.2B

mgnvb jgagp kibxw xnpbu eimcc pbwtw qemmq gxeey lbnhb humkk

fpryt zsfio iacfe gwitl qodmc okbhb xeebw yivmh uvbaf kyala

wsmza fqbnu zcjwf nslrs vzwoi pttmz empcq scsqi ecaqb txera

cthfi waekd empog loecj eywey ywfei pipcr ignce qxtuw atamp

estsq zvsna inpiy zwglh wyvrd faznn rbvvr dizxn rmqqh pxrnc

giliz rvqta xbslq pycrs qnhlb vtbvj afqbn mpsov lweme mtgtv

rafut rsvwb gefnu vtsxv gvxfv qqafh zanxf ozwec hvhnm kizov

nywfz eqiav ghtbv rpmsf wncvm gfsqh qzfeg awgms euvso kuogm

lnfpr mhahh wbfgt qemmf eiktf worhe gvrdi ebuen asbjz ozbeo

eahue qrqag rbkhh wbreb bogtm ngzee avnzq bssom mbvog qbglb

idwjn wihnw maomr nvqdu ioizo qamio ywldq brrlj fbapi zoyet

sotif sfprt kibfq fseqb n

cipherEx5.2C

kbfeb knjyp fkepk yeqey qpdkn fvatq oanbn kjyln kraoo pdypf

oyhhk zatpk yrrao opdat ypypd alquh fruyr icyjj kecyj afoye

awyjl hakbp dfopx lakbp dnayp yefeb anaer apdna ypawf opofb

yqoan ryeta tqrao aeofp fsafe bknjy pfkeb nkjek eoaeo fpfsa

typyp dfofo qoqyh hxpda naoqh pkbrk nnahy pfecf ebknj ypfke

yukqp cnkql okbfe tfsft qyhop kkupy fefeb knjyp fkeyu kqpye

fetfs ftqyh pdafe banae rarke pnkho lnaoa epatf epdae awpoa

rpfke ynaqo atpkr kqepa npdfo pxlak bpdna yppyj lanfe cnaba

nopkp dalnk raook bjyif ecqey qpdkn fvatr dyeca opkpd asyhq

akbfe bknjy pfkeo pknat fepda rkjlq panye awyjl hakbp yjlan

fecfo yopqt aeprd yecfe cdfoc nytaf epdac nytab fhapy jlanf

ecfoy skfta tuxyh hkzfe cqoan opkjk tfbxk ehxpd afnkz ebfha

ornxl pkcny ldfrr dario qjjfe cryeu aqoat bknta parpf ecpyj

lanfe cpdfo japdk tqoao rnxlp kcnyl dfrpa rdefm qaooq rdyor

fldan uhkri rdyfe fecpk caean ypayr dario qjbkn ayrdb fhayr

rftae pyhty pytao pnqrp fkeyh pdkqc dkbpa efeek raepr yeuas

anxrk ophxy rrfta epyht aopnq rpfke jyxua ryqoa tuxuk pddyn

tzyna yetok bpzyn abyfh qnaob knfeo pyera byqhp xokbp zynar

kqhty hhkzy lnkcn yjpkz nfpau axket fpoty pyoly rayet ksanz

nfpay ekpda nqoan otypy yrrao orkep nkhpa rdefm qaory euaqo

atpkh fjfpk sanzn fpfec pkpda qoano kzety pyoly rauqp pdana

foekl nkpar pfkey cyfeo pdynt zynab yfhqn aooqr dyoyd aytrn

yodrn xlpkc nyldf rrdar ioqjj fecry eyhok uaqoa tbknt aparp

fecyr rftae pyhty pytao pnqrp fkebk ntayh feczf pdukp dpyjl

anfec yetyr rftae pyhta opnqr pfkef pfoea raooy nxpkd ysayu

yriql narks anxlh yeunk zofec hayiy cayet feban aeray napdn

aypop kpdao arnar xkbty pyyet pyjla nfecy etyrr ftaep yhtao

pnqrp fkeyn apdna ypopk pdafe pacnf pxkbt ypypd aoapd naypr

hyoof bfryp fkeoz anabf nopfe pnktq ratux taeef ecybf eyhpd

naypr hyoof bfryp fkefe pnktq ratux taeef ecjyo mqany tfecb
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cipherEx5.2C

fpofe eafpd anpda oarna rxekn fepac nfpxr ypack nxjyo mqany

tfecn abano pkpda lnkra oozda nayef epnqt ancyf eoyrr aoopk

pdaox opajq etany ekpda nqoan oyrrk qepol kkbfe cyetl yoozk

ntcqa oofec ynajy omqan ytfec pdnay polnk parpf kejar dyefo

jopdf ooarp fkefe pnktq raoln kparp fkeja rdyef ojoqo atpka

edyer arkjl qpan

cipherEx5.2D

vevur bmywh xmeva aqilm sikev egtew trhgk ouixd lnmoa nmhhn

mictm irnfe catnl sfsav vevsv onmko oagdi gyeue gcevh nwrhl

igtdg imiog mhhmx thhws rfien xmrdt bontg aoyli slmou azeag

wtlmb ngvaa qnxla gtlbs bsagw frrfa loxrl fbcam boqtx chgbq

xelar xbnwr hduvx ddumh egmif amiog fefht nilfs dumhe gmifa

miogf efhtn ilfss rbmak blbaw drxls whxma ljuhr tdigz tkrxa

tmaei ikstf xckag isfbs whxse vnrha mtegm irnde ymaiv kxywa

xnkim bytns hrtta mxrpi galzn auagt exlaw rnstx wpdta tomae

vylte fmhls piley olltt txfpw sttsi hoiig gtaxu qsnsp xvtln

zusxk hrwxv ekbtl sbmph ktdnm thtmu veksm tdedh tbimh fdlpa

ylaiw tbngm aevev urxtt wegti hgkhy mobxz iqawi aehgx epita

mhhsr stxfo qepay hyeqs nrigz tkili syhrw hxsyl mepth onerd

lsila rmhhl hgigi rrmit aymeu taekx rivdx prxls hdlim ieeju

bdeeb nhswe txkpd slwok wgxel sigzo qelho nedfh hosxt lrnzp

allwr rwate xavtx igamc kakac mxrvt aatbl nrthb vbhuv agdsa

huodg otnle halil rzuhs labex pdslw okwso ideal ioxsx sfbks

wntme tfigd eentf errtl ozbnq afeig tdgim iogtp dslwo kwsko

nldgh teepr immeq dhwnh kiiim isbms konld ghtee primm egiga

nhuvl onspe tchfn rtaxr pokeu lxrvs aouew bhtka igxdw ovhag

zewhx irits vwhrd lttdp iroik idtxi nmxry aesmh ltrfm helxg

xiwel bgevc tnbxx niokc ewuyw hxsyl mepfh riglt dnvet axpds

lwokw puozr afvaq rxqub keoog gptls zokds tgdfa gchxv kwhxp

allwr rwchh leqaz aiglt dlbst hyoev bouli avspo rwltk eeogb

gpuoz rafva qaeso bgfrr fthxn shrmh ambtl smimx mofth ngxia

vspor wlpds lwokw fllxs smhrh dbnta xsbsm emfty eevom ikopi

ledeb khagy omaeu fblem aeuey orxbt lsgot zhogp kacmb chths

thkes alswh kdvig thxvl hakin lmedd tonxp abfnn cmboq ixafn

gcwih nwahs higve klels vomin tdtbo ntelb igfet lielx towxt

hrfin xbsxs xdthx nfiih eklav sporw laqdm hekxs xlmis lmoue

winma esals whkdi ieewa xndul erlia vspor wbssr xsegm egaml

ozbnw ifeim bshnv ipaxr hdtnd vhmsa kedmh tkelt okxdy aeueu

ruvig gogxw dyyun vmirn ltoxg clpae ritsv whrdl mhhlh gigyi

oevan uxmdd xpuue ifavc ellcr nmroe tsvuf inzmh dtuyu lbnja

nthxg tlctt ihgmh caanb lmvag dghhd salsw hkdsr tctbv ewhxs

ylmep ctngn trdnm eemaa wuler ltrhw aotax yflti mmhbh taenx

qtvtx pilmo
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cipherEx5.2F

bmzag lvvdo nbfsw xcmrm fwgvd domfs wpzay iowkv vkzac itmaq

iigmf rnbni gmdtg msmax klzvk fglzk cmxtr zvpnx kkvjz gvbow

aflxr qzpzs iiymz ivpwm iirtl xying ybrqz wxwjm qmeec qmpbv

uimtg vtyrk zbnqf mdtgm smaxr xdwtu hwkfz anwjr kswmi wawzw

omtbj mklop kwemx miirz rulmm msmax jmoan whpuf zmbqq iexop

gbqid siazz nxzrb bnigg fhzqy kbrjm nbkvg azxca kkhvz xtzky

hmiih mtbfm jeyql nvglp oxxwp ijwop kxest inaoa zeuio zgkge

spzje drvzj tqtog lvhza ooaek iqmxg fxvto pknvv jxnbk xbjkl

zdkzv jzgvb owati sxmya vwksd vlweq rpggb memwc opgbg lvjjz

siyqf hztvz btvvg gxmsp vgoaz prwvg pzobl vvupq xmzie xnbnq

fmjxc muvyc zrawx unpjx zxovg lvtmw imfwj mikkb uiwsm ugtzs

uigqy igeym bprmi icsai hagvr goquv nrugj vzivr jrjct vrgvw

nixgq ikedt yqgmj yncgt ycrwd uvtrx rwfbu zrzzi rbnms siqvt

swqic adbnb uigim auvfa ysbmt meeki ybnme ihydz kurrk wvvjl

rxvvh qtmjl vxcmx buids ymrxe sgimt ezrjc ixbyb uitvd boknp

iilco zrqvr oatmk xzxda tmpij wvzeb btisq mzpnx klzpo ouijx

gmbmy wgixq lqpek mjvyi eitsi aoagi exrqz pglvj jzsiy qfhzt

hwglr woizm zetld vkict isvkn iahrr vtmmo vrmxi vxesr gcixm

csjwd jrmnj kimbn mumxl zaztr zvpaw xunpj tzkon vgrxd wtpnw

sizvy pbaex jjkkb rjmnb kvgaz xcbnm ssiqv tswqi cmoqy vrgvw

nixgg sjlje zpnxk lzvkf gpfaz zrmii cwkmi qsmte oquvv jfrzm

dqfxj mnkuv fmjxz vzevx yxcmr miice wwbmv xklda vzbgv wnkuv

gmeyz alzbq ciqmr bbpvz ztavg mcxcm rwjij xgmbm ywgix qlqpe

kmjvo aflfa ibujr gfrnq ybrrk adbnb uiciq mrios midbl qaecp

tqzqf rvgza yieck snpue glrxo pkqzt cihmt bnxzs iqykb rjmnb

kvgaz xcbnm ysnin brmii cwkmi qsmte oquvg lveyd kvgsw xcmym

pyimo gqmer vpvag ureew jnkvp egwpt gbvrx egtym pyimo gxmyi

meibg acitx nwlbu ijcnb kuzeb iawxu npmim qlqpe kmjvl mnwzf

gmzpn xzwwg jmiic skqto xiirz tgzpl zxzkz ceijx cizuv rzqdh

kbuir qjctb nrugj uvtrb zxtwl abjka vzkqa zfpqm jqawv gpzob

lhvgd aowaw rrymt nbvti hmtbg lvgci tkrwf jncik rwjjp trgii

imago vtxye obnmf cjxzu smrxj moaym pyimo gxmdy zvzuk vgwrv

zoxmn xccdv izrej iybnq fmjfz kgcfi frggz provv imrkb hvqpa

zjrzv vdnom qioeh xrmfs wajzq qaxym nixmn eiixw tkyyj mjvyb

umjtv xkzue jeobk ucxvh owmqi irfmq knvrk vjlak gmfro wzprx

ftdku npsdt pbkzf itymq zgglv vzixm zeecb wulei wimmt krwfr

opkbb tzgdv viexz gptgz cvfzd lkits fhncx drcfj opkie ir
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CHA P T E R6
THE EMERGENCE OF CIPHER

MACHINES

THE ROTOR, a new mechanical implementation of polyalphabetic

encipherment, was introduced at the start of the twentieth century. We examine

encipherment by mechanical cipher machines and an important characteristic used in

their cryptanalysis. Edward Hebern’s Electric Coding Machine, patented in 1924, directly

stimulated American cryptographic design. A description of the Enigma machine and a

description and cryptanalysis of the Lorentz Schlusselzusatz concludes the chapter.

6.1 THE ROTOR

The building block of a new class of enciphering machines was invented early in the

twentieth century. Figure 6.1 shows a rotor or wire code-wheel, an electromechanical

implementation of polyalphabetic substitution. The rotor is a disk of diameter �4 in. and

thickness �0.4 in., made from rubber or bakelite (an early plastic), and is free to rotate

about an axis perpendicular to its faces. Brass contacts arranged clockwise are evenly

spaced around the circumference on each of the input and output faces, one for each letter

of the signaling alphabet A, B, . . . , Z. Internal to the rotor body are electrical connections,

26 pairs of wires joining a contact on the rotor input face to a contact on the rotor output face.

Stationary input and output contact plates sandwich the rotor to provide for input

and output. Each such plate contains contacts for the alphabet letters arranged so as to

make electrical contact with those on the rotor’s respective input and output faces. A

signal applied to a contact on the input contact plate traverses a path composed of

. The opposing contact on the rotor input face,

. The wire within the body of the rotor,

. Connecting to a contact on the rotor output face, and finally

. Connecting to the opposing contact on the output contact plate.

A moveable ring containing the numbers 1, 2, . . . , 26 in Figure 6.1 (rather than A,
B, . . . , Z) allows the rotor’s rotational position to be aligned. In some benchmark position

of the moveable ring, the rotor implements a monoalphabetic substitution u : t! u(t).
Rotating the rotor counterclockwise relative to the fixed input and output contact

plates i positions equal to i 3608
26

, changes the rotor substitution

u : t! u(t) (6:1)

Computer Security and Cryptography. By Alan G. Konheim
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to

C�iuCi : t!u(t þ i)� i, 0 � i, t , 26 (6:2)

where the arithmetic is modulo 26 and Ci is the Caesar substitution

Ci : t! t þ i (modulo 26):

Note that in Equation (6.2) and elsewhere, we denote the composition of mappings

(C2i(u(Ci))) by C2iuCi without using internal nested parentheses.

The ring may also be rotated clockwise relative to the rotor body R positions,

changing the relating Equation (6.2) to

C�iuCiCR : t!u(t þ iþ R)� i, 0 � i, t, R , 26: (6:3)

Figure 6.2 shows the effect of rotation on the rotor’s substitution. The rotor is

. In the benchmark position in which input/output contact plates are both aligned with
their corresponding contacts on the rotor input/output faces, and

. Arranged so that the internal wiring (!) of the rotor is such that u(A) ¼ P and

u(B) ¼ L.

A signal applied to the letter A contact on the input plate contact

1. Will energize the letter A contact on the input rotor face,

2. Will be transmitted on the wire through the rotor body, energizing the letter P
contact on the output rotor face,

3. Will energize the letter P contact on the output contact plate,

so that A! u(A) ¼ P, as shown in Figure 6.2(a).

Figure 6.1 The Rotor (Courtesy of NSA).
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If the rotor is rotated one position counterclockwise, a signal applied to the letter A
contact on the input plate contact

1. Will energize the letter ¼ Aþ 1 ¼ B contact on the rotor input face contact,

2. Will be transmitted on the wire through the rotor body, energizing the letter

u(B) ¼ L contact on the rotor output face contact,

3. Will energize the letter L2 1 ¼ K contact on the output plate contact,

so that the letter A will now be enciphered to K ¼ (C21uC1)(A) ¼ C21(L) as shown in

Figure 6.2(b).

6.2 ROTOR SYSTEMS

A rotor system incorporates more than one rotor sharing the same axis of rotation. The

rotor system shown in Figure 6.3 produces the polyalphabetic substitution, which is a

composition of the r substitutions u0, u1, . . . , ur21 (Fig. 6.4).

t! (ur�1ur�2 . . . u1u0)(t)

Figure 6.2 The effect of rotation on the rotor’s substitution.

Figure 6.3 A straight-through rotor system.
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If each of the r rotors are rotated counterclockwise k0, k1, . . . , kr21 positions (relative to

their benchmarks), the substitution

t! (ur�1ur�2 � � � u1u0) (t) (6:4)

is replaced by

t! (C�kr�1ur�1Ckr�1C�kr�2ur�2Ckr�2 � � �Ck0u0Ck0 ) (t): (6:5)

It is intended that the position of at least one rotor changes after the encipherment of each

plaintext letter in a rotor system. The position of the jth rotor for the encipherment of the

ith plaintext letter is determined by a rotational displacement function kj(i) so that

xi! yi ¼ (C�kr�1(i)ur�1Ckr�1(i)C�kr�2ðiÞur�2Ckr�2(i) � � �C�k0ðiÞu0Ck0ðiÞ) (xi): (6:6)

The simplest rotational displacement functions {kj(i)} are kjðiÞ ¼ b
i

m j c (modulo m),

with m ¼ 26. This is analogous to an automobile’s odometer with m ¼ 10. In Equation

(6.6), the fast moving rotor is on the right, the slowest moving rotor is on the left.

A rotor system implements polyalphabetic substitutions. Although Vernam-

Vigenère encipherment used only 26 different ciphertext alphabets, a rotor system with

r rotors potentially might result in as many as 26r ciphertext alphabets.

6.3 ROTOR PATENTS

The discovery of the rotor led to the implementation of several electromechanical crypto-

graphic systems, which were patented (Table 6.1). Hebern’s rotor machine (Fig. 6.5) used

a typewriter (2) to input plaintext consisting of the letters A, B, . . . , Z. Ouput was signaled
by lamps (37) located just above the keys (4). The rotors, five in Figure 6.5 (75a–e), have

window (7), which allow their positions to be viewed.

Edward Hebern, born in 1869, spent his adult life trying to use cryptography to better

himself financially. He was not discouraged at all when a solution to his magazine adver-

tisement of an unbreakable cipher in 1921 was provided by a naval cryptanalyst. Hebern

was at the right place at the right time as the U.S. Navy was seeking a quality crypto-

graphic system. Hebern set off for Washington D.C. to seek his fortune selling his Electric

Code Machine. Anticipating success from his Washington outing, the Hebern Electric

Figure 6.4 An encipherment path in a straight-through rotor system.
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Code Company was established in Oakland, California. He advertised his cipher machine

using the ode:

Marvelous invention comes out of the West

Triumph of patience, long years without rest

Solved problem of ages, deeper than thought

A code of perfection, a wonder is wrought.

As part of the review process, Hebern submitted ten examples of ciphertext to the Navy for

analysis. While they were cryptanalyzed by William Friedman, Hebern was not told about

the results nor were the weaknesses in his design explained to him. Even though Hebern’s

TABLE 6.1 Patented Electromechanical Cryptographic Systems

Patent no. Year Country Patenter Description

52,279 1919 Sweden Arvid G. Damm

1,484,477 1924 United States Apparatus for enc/deciphering

code expressions

1,502,889 1924 United States Production of Ciphers

1,540,107 1925 United States Apparatus for the production of

cipher documents

10,700 1919 Holland Hugo A. Koch Geheimsschrijtmachine

1,533,252 1925 United States Printing telegraph system

1,657,411 1928 United States Arthur Scherbius Ciphering machine

1,510,441 1924 United States Edward H. Hebern Electric code machine

1,861,857 1932 United States Cryptographic machine

Figure 6.5 Edward Hebern’s Electric Code Machine (U.S. Patent no: 1,673,072).
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concepts were later used by the U.S. Government, they never gave Hebern the order he

expected. Only 12 machines were purchased, the Hebern Electric Code Company went

bankrupt and Hebern was found guilty of violating California’s Corporate Securities Act.

6.4 A CHARACTERISTIC PROPERTY OF CONJUGACY

The substitutionC2iuCi is a conjugate of u, a term from group theory. Conjugacy enjoys an

interesting and important property illustrated in the substitution table (Table 6.2) in which

. The leftmost entry in the ith row gives the rotational displacement i, and

. The next 26 columns in the ith row list the ciphertext letters (C2iuCi)(t) correspond-

ing to the plaintext letter t with 0 � t , 26.

We begin with the following observation: u(t) ¼ s if and only if u(t2 iþ i)2 i ¼ s2 i,

from which it follows that

TABLE 6.2 Table of Rotor Conjugates

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 f Q t g x a n w c j o i v z p h y b d r k u s l e m

1 p s f w z m v b i n h u y o g x a c q j t r k d l e

2 r e v y l u a h m g t x n f w z b p i s q j c k d o

3 d u x k t z g l f s w m e v y a o h r p i b j c n q

4 t w j s y f k e r v l d u x z n g q o h a i b m p c

5 v i r x e j d q u k c t w y m f p n g z h a l o b s

6 h q w d i c p t j b s v x l e o m f y g z k n a r u

7 p v c h b o s i a r u w k d n l e x f y j m z q t g

8 u b g a n r h z q t v j c m k d w e x i l y p s f o

9 a f z m q g y p s u i b l j c v d w h k x o r e n t

10 e y l p f x o r t h a k i b u c v g i w n q d m s z

11 x k o e w n q s g z j h a t b u f i v m p c l r y d

12 j n d v m p r f y i g z s a t e h u l o b k q x c w

13 m c u l o q e x h f y r z s d g t k n a j p w b v i

14 b t k n p d w g e x q y r c f s j m z i o v a u h l

15 s j m o c v f d w p x q b e r i l y h n u z t g k a

16 i l n b u e c v o w p a d q h k x g m t y s f j z r

17 k m a t d b u n v o z c p g j w f l s x r e i y q h

18 l z s c a t m u n y b o f i v e k r w q d h x p g j

19 y r b z s l t m x a n e h u d j q v p c g w o f i k

20 q a y r k s l w z m d g t c i p u o b f v n e h j x

21 z x q j r k v y l c f s b h o t n a e u m d g i w p

22 w p i q j u x k b e r a g n s m z d t l c f h v o y

23 o h p i t w j a d q z f m r l y c s k b e g u n x v

24 g o h s v i z c p y e l q k x b r j a d f t m w u n

25 n g r u h y b o x d k p j w a q i z c e s l v t m f
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. If E(4) is enciphered to x (23) with the rotor in position i ¼ 0

u(4þ 0)� 0 ¼ 23;

. Then D(3) ¼ C21E is enciphered to C21x ¼ w(22) when the rotor is in

position i ¼ 1

u(3þ 1)� 1 ¼ u(4)� 1 ¼ 23� 1 ¼ 22:

The property (C2iuCi)(t) ¼ s if and only if (C2(i þ 1)uCiþ1)(t2 1) ¼ s21 shows that

the letters in Table 6.2 traverse the alphabet in the standard order a, b, . . . , z on upward

diagonals; the letters on the diagonal starting in row 2, column A are underlined.

6.5 ANALYSIS OF A 1-ROTOR SYSTEM:
CIPHERTEXT ONLY

Example 6.1
The ciphertext that follows contains eight rows, each containing 78 letters and a final ninth

row of 26 letters. We begin the cryptanalysis by writing the ciphertext in Table 6.3 in

TABLE 6.3 cipherEx6.1 in Rows of 26 Characters

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

r b l f o g z b k g c w u q f y d k i b k r f o l s

f j m y x v l h d w f e y u i w h g u y b q s r h h

b o l k a g i x x k r i t j w d h r q c w r k d a e

p c d y f r e k d x w w u o v r a r q x i h b r i n

t j r r r y h d f c w s m k i c n n i d g o x d h n

i w l b y t e l c q b m o x p w m s d s z e g l a e

f f q p y l t b m k r w o o k d q j o d l w b k u a

k o a p e e o b e h t v o o c n k r r p v l l l i q

b g y i j z y z q k r g s g m r s d c b i e l y v z

a g p e t y w b g p e i j u i c g v w c z q t b c h

z f w v o z h d i b s h m m n h t j d u f a b t s s

z f l h h v j d r q e m b k p h e l v h f y j d k x

r i r m j m l c n v w g t s f v i s g p f r g o j r

w i s t j z z x u b p w l h w e t j n c b j w d l m

p x l h t z j n m a x m m k e e m x l e g z l d x w

c o s l y e h x j n c h j s c w q u e m q e j l i n

z z c x z w o j i q g v c n i c d w r d r m i b d o

x y r v a j h c i x g w u z o h t r w g q s a x q n

o z s j z z r l n h u n e k p o o a q x i h l a v y

c c i p h b o b q h w b p d m c n k w c f y j r g e

k c l y f v o l j s l x o h f e m k i z f y j f v l

x u i y f g r f i q i l t k q q h k c p i k l a v c

x p z a d u w p i s u t l x p y u x u s f r d m m a

b h x d z x x b u j j g a q f y d k o e j u k t g j

p t f p z j y b e o t o m k p l y v r s t r n b a q

156 CHAPTER 6 THE EMERGENCE OF CIPHER MACHINES



columns of 26 letters. Denote by N(i) the length of the ith column and Nt(i) the number of

times the letter t appears in the ith column.

If t is the correct plaintext value for ciphertext s in the 0th column, then t – i will be

the correct plaintext value for ciphertext s – i in the ith column for every i with

0 � i , 26. It follows from the law of large number that the frequency (Ns– i(i))/(N(i))
should approximately be equal to the probability p (t – i) for every i with 0 � i , 26

where p is the 1-gram probability distribution.

cipherEx6.1

rblfogzbkgcwuqfydkibkrfolsfjmyxvlhdwfeyuiwhguybqsrhhbolkagixxkritjwdhrqcwrkdae

pcdyfrekdxwwuovrarqxihbrintjrrryhdfcwsmkicnnidgoxdhniwlbytelcqbmoxpwmsdszeglae

ffqpyltbmkrwookdq jodlwbkuakoapeeobehtvoocnkrrpvllliqbgyijzyzqkrgsgmrsdcbielyvz

agpetywbgpeijuicgvwczqtbchzfwvozhdibshmmnhtjdufabtsszflhhvjdrqembkphelvhfyjdkx

rirmjmlcnvwgtsfvisgpfrgojrwistjzzxubpwlhwetjncbjwdlmpxlhtzjnmaxmmkeemxlegzldxw

coslyehxjnchjscwquemqejlinzzcxzwojiqgvcnicdwrdrmibdoxyrvajhcixgwuzohtrwgqsaxqn

ozsjzzrlnhunekpooaqxihlavycciphbobqhwbpdmcnkwcfyjrgekclyfvoljslxohfemkizfyjfvl

xuiyfgrfiqiltkqqhkcpiklavcxpzaduwpisutlxpyuxusfrdmmabhxdzxxbujjgaqfydkoejuktgj

ptfpzjybeotomkplyvrstrnbaq

TABLE 6.4 x-Values for Rotor producing cipherEx6.1

E! s x[E,s] T! s x[T,s] A! s x[A,s] 0! s x[0,s] N! s x[N,s] S! s x[S,s]

E! a 0.0436 T! a 0.0377 A! a 0.0366 0! a 0.0343 N! a 0.0343 S! a 0.0489

E! b 0.0446 T! b 0.0366 A! b 0.0342 0! b 0.0357 N! b 0.0470 S! b 0.0451

E! c 0.0370 T! c 0.0471 A! c 0.0325 0! c 0.0388 N! c 0.0381 S! c 0.0330

E! d 0.0370 T! d 0.0391 A! d 0.0204 0! d 0.0442 N! d 0.0308 S! d 0.0605

E! e 0.0407 T! e 0.0402 A! e 0.0386 0! e 0.0414 N! e 0.0431 S! e 0.0418

E! f 0.0491 T! f 0.0427 A! f 0.0706 0! f 0.0423 N! f 0.0497 S! f 0.0301

E! g 0.0458 T! g 0.0389 A! g 0.0438 0! g 0.0479 N! g 0.0403 S! g 0.0541

E! h 0.0452 T! h 0.0380 A! h 0.0446 0! h 0.0422 N! h 0.0353 S! h 0.0326

E! i 0.0347 T! i 0.0288 A! i 0.0471 0! i 0.0324 N! i 0.0235 S! i 0.0306

E! j 0.0267 T! j 0.0359 A! j 0.0329 0! j 0.0282 N! j 0.0410 S! j 0.0370

E! k 0.0288 T! k 0.0399 A! k 0.0370 0! k 0.0335 N! k 0.0412 S! k 0.0325

E! l 0.0322 T! l 0.0451 A! l 0.0315 0! l 0.0314 N! l 0.0313 S! l 0.0290

E! m 0.0316 T! m 0.0312 A! m 0.0374 0! m 0.0457 N! m 0.0356 S! m 0.0362

E! n 0.0408 T! n 0.0476 A! n 0.0368 0! n 0.0381 N! n 0.0390 S! n 0.0452

E! o 0.0374 T! o 0.0302 A! o 0.0304 0! o 0.0326 N! o 0.0270 S! o 0.0271

E! p 0.0361 T! p 0.0314 A! p 0.0349 0! p 0.0633 N! p 0.0409 S! p 0.0400

E! q 0.0354 T! q 0.0374 A! q 0.0467 0! q 0.0492 N! q 0.0498 S! q 0.0464

E! r 0.0414 T! r 0.0686 A! r 0.0312 0! r 0.0310 N! r 0.0330 S! r 0.0368

E! s 0.0257 T! s 0.0265 A! s 0.0427 0! s 0.0293 N! s 0.0321 S! s 0.0336

E! t 0.0442 T! T 0.0432 A! t 0.0406 0! t 0.0501 N! t 0.0551 S! t 0.0451

E! u 0.0404 T! u 0.0344 A! u 0.0380 0! u 0.0310 N! u 0.0326 S! u 0.0310

E! v 0.0385 T! v 0.0387 A! v 0.0411 0! v 0.0379 N! v 0.0350 S! v 0.0369

E! w 0.0265 T! w 0.0335 A! w 0.0276 0! w 0.0288 N! w 0.0334 S! w 0.0425

E! x 0.0663 T! x 0.0470 A! x 0.0452 0! x 0.0324 N! x 0.0365 S! x 0.0352

E! y 0.0385 T! y 0.0320 A! y 0.0383 0! y 0.0394 N! y 0.0289 S! y 0.0398

E! z 0.0319 T! z 0.0312 A! z 0.0423 0! z 0.0388 N! z 0.0655 S! z 0.0291
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To test if u(t) ¼ s, the x-value is calculated:

x½t; s
 ¼
X25
t¼0

p (t � i)
Ns�i(i)

N(i)
:

If s ¼ u(t), it follows from the law of large numbers, that x[t, s] should be approximately

equal to

s2 ¼
X25
t¼0

p2(t) 	 0:06875:

The results of the scoring is shown in Table 6.4 with the s-value maximizing x[t, s] under-
lined. A similar calculation must be made to recover the values s that maximize x[t, s] for
the remaining plaintext letters.

6.6 THE DISPLACEMENT SEQUENCE
OF A PERMUTATION

Are some rotor wirings better than others? As the intent of rotor encipherment is to encipher

plaintext using a large number of different 1-gram substitutions and to change the plaintext

letters as much as possible, this might be used as a design paradigm. For example, if a rotor

u is wired according to a Caesar substitution Ck, the rotor’s substitution is the same in each

position, which might explain the weakness of Ck as a rotor.

Edward Hebern suggested that rotors should be wired so as to produce the

largest number of different substitutions. Can the rotor’s substitutions be different in

each position? The displacement sequence of an m-letter substitution u is the vector

du ¼ (du (0), du (1), . . . , du (m2 1)) defined by

du(i) ¼ u(i)� i, 0 � i , m:

What displacement sequences are possible?

Proposition 6.1:

6.1a dCk
¼ ðk, k; . . . ; kÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

m copies

:

6.1b If u ¼ u1u2, then duðiÞ ¼ du1ðu2ðiÞÞ þ du1 ðiÞ for 0 � i , m.

6.1c du�1 ¼ m� d.

6.1d dC�ku Ck
¼ s kdu where s

k is the left-cyclic shift of du by k places.

skdu ¼ ðduðkÞ, duðk þ 1Þ, . . . ; duðm� 1Þ, duð0Þ, duð1Þ, . . . , duðk � 1ÞÞ

Proof : 6.1a is obvious; for 6.1b, write

du(i) ¼ d((u1u2)(i))� i ¼ du1 (u2(i))� u2(i)þ (u2(i)� i)

¼ du1 (u2(i))þ du1 (i), 0 � i , m

Using 6.1a and 6.1b

du�1u
(i) ¼ du(i)þ du�1 (i) ¼ dC0

¼ 0
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which implies 6.1c. To prove 6.1d, use 6.1b

u1 ¼ u, u2 ¼ Ck ) du(Ck)(i) ¼ du(iþ k)þ k

u1 ¼ u, u1 ¼ C�l ) dC�k(u)(i) ¼ du(i)� k

Proposition 6.2: If m is even, then du is not a permutation of 0, 1, . . . , m2 1.

Proof : If d is a permutation of 0, 1, . . . , m2 1

Xm�1
i¼0

du(i) ¼
Xm�1
i¼0

i ¼
1

2
m(m� 1) = 0 (modulo m)

if m is even. Tables 6.5 and 6.6 list the displacement sequences for the permutations of

0, 1, . . . , m – 1 for m ¼ 3, 4. Table 6.6 shows that du can be close to a permutation for

TABLE 6.5 Displacement Values for m53 Rotors

u du u du u du

(0, 1, 2) (0, 0, 0) (0, 2, 1) (0, 1, 2) (1, 0, 2) (1, 2, 0)

(1, 2, 0) (1, 1, 1) (2, 0, 1) (2, 2, 2) (2, 1, 0) (2, 0, 1)

TABLE 6.6 Displacement Values for m54 Rotors

u du u du u du

(0, 1, 2, 3) (0, 0, 0, 0) (0, 1, 3, 2) (0, 0, 1, 3) (0, 2, 1, 3) (0, 1, 3, 0)

(0, 2, 3, 1) (0, 1, 1, 2) (0, 3, 1, 2) (0, 2, 3, 3) (0, 3, 2, 1) (0, 1, 0, 2)

(1, 0, 2, 3) (1, 3, 0, 0) (1, 0, 3, 2) (1, 3, 1, 3) (1, 2, 0, 3) (1, 1, 2, 0)

(1, 2, 3, 0) (1, 1, 1, 1) (1, 3, 0, 2) (1, 2, 2, 3) (1, 3, 2, 0) (1, 2, 0, 1)

(2, 0, 1, 3) (2, 3, 3, 0) (2, 0, 3, 1) (2, 3, 1, 2) (2, 1, 0, 3) (2, 0, 2, 0)

(2, 1, 3, 0) (2, 0, 1, 1) (2, 3, 0, 1) (2, 2, 2, 2) (2, 3, 1, 0) (2, 2, 3, 1)

(3, 0, 1, 2) (3, 3, 3, 3) (3, 0, 2, 1) (3, 3, 0, 2) (3, 1, 0, 2) (3, 0, 2, 3)

(3, 1, 2, 0) (3, 0, 0, 1) (3, 2, 0, 1) (3, 1, 2, 2) (3, 2, 1, 0) (3, 1, 3, 1)

TABLE 6.7 Number of Interval Wired Rotors

m Nm m Nm m Nm

1 1 2 2 3 3

4 16 5 15 6 144

7 133 8 2,048 9 2,025

10 46,400 11 37,851 12 1,262,592

13 36,161,915 14 44,493,568 15 2,000,420,864
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m ¼ 4 in that du excludes only one value in 0, 1, . . . , m – 1 and hence assumes one values

twice; for example, du ¼ (0, 1, 3, 0).

A rotor is wired according to the interval method if its displacement function du
excludes at most one value of 0, 1, . . . , m – 1. Table 6.7 lists the number Nm of interval

method wired rotors for m contact rotors with 1 � m � 15.

6.7 ARTHUR SCHERBIUS

On January 24, 1928, the United States Patent Office issued U.S. Patent 1,657411 to Arthur

Scherbius for his invention, a Ciphering Machine (Fig. 6.6). Scherbius’s patent was

assigned to Chiffriermaschin Aktiengesellschaft of Berlin. (Note, chiffrier is the

German verb to encipher, Aktiengesellschaft is German for joint stock company, which

has a meaning similar to Inc. in the United States and Ltd. in England.) The components

of the Enigma machine, shown in Figure 6.7, include (1) input device (keyboard), (5)

input/output contact plate, (6–9) four rotors, (11) stator (stationary rotor), and (12)

output device (lamps). Scherbius called his cipher machine, the Enigma machine.

Figure 6.6 The Enigma machine (Courtesy of NSA).
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Webster’s New Collegiate Dictionary defines enigma as “An obscure saying; a riddle.

Anything inexplicable; puzzling.” Scherbius’s use of enigma may have been derived

from Sir Edward Elgar’s 1898 musical composition Enigma Variations. Elgar wrote

that the basic theme in G minor was a variation on another piece of music not revealed:

“The Enigma I shall not explain – it’s ‘dark saying’ must be left unguessed”.

6.7.1 Scherbius’s Reflecting Rotor

The Enigma machine uses rotors, but in a different way to Hebern’s straight-through rotor

system, in which the plaintext entered at the rotor on one side and the ciphertext exited on

Figure 6.7 U.S. Patent 1,657,411: The Enigma machine.
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the other. In Scherbius’s Enigma machine these were two modifications to Hebern’s

concept:

. An output stator (reflecting rotor) pR was included after the last rotor, and

. The signal entering the stator was reflected back from the stator through the rotors to

the output contact plate as depicted in Figure 6.8

TheWehrmacht (Army model) used three rotors and the Kreigsmarine (Navy model) four

rotors.

The military model also differed from the commercial version by the addition of a

plugboard to modify the connections between the standard Enigma keyboard (shown in

Fig. 6.9) and output lamps to the input/output contact plate. In the first models, keyboard

letters A to Z were connected to the same letters on the input/output contact plate so that

. When key A is pressed, a connection is made to the contact of the same name;

. When the signal is returned to the output plate at contact S, the lamp with the same

label glows.

The plugboard modified the keyboard–input/output plate connections. Double-ended

plugs (steckers) were used to connect pairs of letters; for example, keyboard A to R
input contact plate and output contact plate R to A keyboard.

The number of ways to connect n plugs with an alphabet of 26 letters is given by the

formula

Pn, 26 ¼
1

n!

Yn�1
j¼0

2(13� j)

2

� �
:

The Enigma used 11 plugs, maximizing Pn,26 and giving �2.1 � 1014 possible connec-

tions from the keyboard to the input/output plate.

Figure 6.9 The Enigma keyboard.

Figure 6.8 Organization of the Enigma rotors.
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The signal path through an Enigma machine is depicted in Figure 6.10. Depressing

the key A on the keyboard closes a circuit, which includes the battery; the signal travels

. Through the plugboard to the input contact plate;

. Through the three rotors R0, R1, and R2;

. Through the stator;

. Back through the three rotors R2, R1, and R0;

. Through the output contact plate; and

. Through the plugboard causing the lamp Z to glow and finally to ground.

6.8 ENIGMA KEY DISTRIBUTION PROTOCOL

Any system for distributing keys that allow the same daily keys K1, K2, . . . to be used by

many military units is appealing, as it permits all entities to monitor all communications.

Figure 6.10 The Enigma signal path.
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However, it has a serious cryptographic weakness, which is independent of the

strength of the encipherment algorithm. If the ciphertext transmitted on the different

links is monitored and arranged in rows

Link [1, 2] : u0 u1 u2 � � � un�1 � � �

Link [1, 2] : v0 v1 v2 � � � vn�1 � � �

Link [4, 2] : w0 w1 w2 � � � wn�1 � � �

Link [51, 31] : y0 y1 y2 � � � yn�1 � � �

Link [7, 2] : z0 z1 z2 � � � zn�1 � � �

the ciphertext in each columns results from a monoalphabetic substitution and may be

analyzed independently of the others. Shannon reasoned that 3–100 messages should

be enough to recover the plaintext.

The German military understood the possibility of this vertical attack and developed

an elaborate key management scheme to hopefully avoid any weakness. Each Enigma cipher

machine came with a selection of rotors. In 1934, five rotors were distributed; the number

was increased to eight in 1938 but the old rotors continuing to be used. The Enigma was a

field encipherment system and the Germans had to assume the Allies would eventually

capture a device. Security could not depend on keeping secret the rotor wirings as stated

in Kerckhoff’s Second Postulate

Compromise of the system should not inconvenience the correspondents.

In fact, the Polish Resistance captured an Enigma early in the war and a German

submarine was forced to the surface, providing examples of rotors.

The entire strength of the Enigma depended on the secret keys. These included

1. (Walzenlage) The choice of the rotors and their order – 60 ¼ 5 � 4 � 3

(336 ¼ 8 � 7 � 6 after 1939).

2. (Ringstellung) The settings of the three alphabetic rings – 263 ¼ 17,576.

3. (Steckerverbindung) The plugboard connections – P11,26 	 2.1 � 1014.

4. Rotor starting positions – 263 ¼ 17,576.

6.8.1 The Message Indicator and Indicator Setting and
Discriminant

An Enigma message began with a prefix, which included

. The callsigns of the stations communicating – first the callsign of the sender fol-

lowed by those of the receiver(s);

. The time the message originated;

. An indication of whether there is a single or multipart message, and which part in the

latter case;

. A three-letter discriminant used to distinguish between different networks (groups).

. A three-letter message indicator setting.

. The length of the text ¼ ciphertextþ (a 6-letter) message indicator.

The message indicator setting was part of the key. It instructed a receiving station to first set

the rotors to the message indicator setting and decipher the first six letters of the text, the
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message indicator. The decipherment would reveal the message key, a plaintext of the form

MK0, MK1, MK2, MK0, MK1, MK2:

The three-letter message key (MK0,MK1,MK2) was repealed to detect transmission errors. If

the two halves agreed, the receiving station would then reset the rotors to (MK0,MK1,MK2)

and decipher the remainder of the text. Figure 6.11 contains a fictitious Enigma message.

6.8.2 The Enigma Encipherment Equation

Let kr(i) denote the rotational displacement of the r th rotor pr for the encipherment of the

ith letter. The encipherment equation is

yi ¼ pi(xi) ¼ (IP�1C�k0(i)p
�1
0 Ck0(i)C�k1(i)p

�1
1 Ck1(i)C�k2(i)p

�1
2 Ck2(i) � pR

� C�k2(i)p2Ck2(i)C�k1(i)p1Ck1(i)C�k0(i)p0Ck0(i)IP)(xi) (6:7)

where the rotational displacements are

k0(i) ¼ (iþ I0 � R0) (modulo 26)

k1(i) ¼ I1 � R1 þ
iþ I0 � R0

26

� �� �
(modulo 26)

k2(i) ¼ I2 � R2 þ

I1 � R1 þ
iþ I0 � R0

26

� �
26

666664
777775

0BB@
1CCA (modulo 26)

with ring settings (R0, R1, R2) and the initial rotor positions (I0, I1, I2).

Equation (6.7) is not exactly correct. The mechanical motion of the rotors, which is

controlled by gears, is slightly irregular due to the following.

1. When the ratchet wheel on the right (or fast) rotor reaches some point (once every 26

letters), a pawl drives the middle (or medium) rotor one step forward.

2. When the ratchet wheel on the middle rotor reaches some point (once every 626

letters), a pawl drives the left (or slow) rotor one step forward. Themechanical arrange-

ment causes themiddle rotor is to step one additional stepwhen the left rotor is stepped.

Figure 6.11 Enigma message.
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This irregularity reduces the period of the Enigma from 263 ¼ 17,576 to

26 � 25 � 26 ¼ 16,900.

In order that the paths taken by the current from the (input) contact plate through the

rotors to the stator, and from the stator back through the rotors to the (output) contact plate

be disjoint, the stator pR must be an involution that is pR(pR(t)) ¼ t for every t with

0 � t , 26. As the stator is an involution, it follows that the encipherment in mapping

Equation (6.7) is also an involution.

6.9 CRYPTANALYSIS OF THE ENIGMA

Cryptanalysis of the Enigma machines first began in Poland at the Polish Cipher Bureau

in 1932. When the United Kingdom declared war on Germany after its invasion of

Poland on September 1, 1939, a group, including Alan Turing, was assembled to

attempt cryptanalysis of the German Enigma traffic at Bletchley Park, a town about 100

kilometers from London, where the Government Code and Cypher School had just been

relocated.

The first attacks on Enigma traffic came from a group of Polish mathematicians

including Marian Rejewski [Rejewski, 1981] and his colleagues Jerzy Rozycki and

Henryzk Zygalski. They examined a commercial Enigma machine and studied the

properties of the Enigma encipherment equation.

Bombe is French for bomb; the same word describes a class of pastries normally

hemispherical in shape. The actress Jacqueline Bisset creates an ice cream bombe in

the movie Who Is Killing The Great Chefs of Europe. A picture of a christmas bombe

may be found in the cookbook Chocolat: Extraordinary Chocolate Desserts by Alice

Medrich.

The bombe was also a programmable processor constructed by Rejewski and his col-

leagues. Its function was to use the structure imposed by cribs to test and eliminate certain

plugboard and rotor setting combinations.

Why the name bombe? Members of the Polish Cipher Bureau proposed the architec-

ture for a “computer” to aid in the decipherment of the Enigma ciphertext. It is reported

that their inspiration came in a restaurant at the moment a bombe was being served,

ample proof that great discoveries may be achieved after a fine meal!

There is a less artistic explanation for the name; the bombe had rotating gears and

these made a ticking sound as the bombe searched for the settings.

When Poland was overrun, Rejewski and his colleagues were moved to southern

France. They had to flee France for England when the Vichy government came to

power. Their cryptanalytic techniques were revealed to the British, who most ungraciously

did not reciprocate. Rejewski and his colleagues were also not allowed to join the effort at

Bletchley Park.

Gordon Welchman was a scholar in mathematics at Trinity University from 1925 to

1928 [Welchman, 1982]. Welchman reported to Bletchley Park when the United Kingdom

declared war on Germany. He was assigned the task of studying callsigns and discrimi-

nants. He became intrigued, however, with the indicator message setting. Welchman

observed that messages would often contain the same letter in positions 0 and 3 or 1

and 4 or 2 and 5, referred to as a female. Table 6.8 lists some females seen in messages

transmitted with the same discriminant on some day.

How frequently will females occur? Suppose X [ {A, B, C, . . . , Z} is chosen

according to the uniform distribution and p and h are randomly selected involutions. A

female occurs if p(X ) ¼ h(X ). The probability of a female is 13
25
	 1

2
. There are a little
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over a million (60 � 263) possible choices of rotors and ring settings. Each female will

reduce the possibilities by about 1
2
so that if Enigma traffic with a fixed discriminant

yields 12 females, it will reduce the key space from �106 to about 250.

The encipherment equation (6.7) shows that a ( j, jþ 3)-female with 0 � j , 3

requires yj ¼ yjþ3 for some xj ¼ xjþ3. Equation (6.7) shows that the occurrence of the

female yj ¼ yjþ3

yj ¼ (IP�1TjIP)(xj) (6:8)

Tj ¼ (C�k0( j)p
�1
0 Ck0( j)C�k1( j)p

�1
1 Ck1( j)C�k2( j)p

�1
2 Ck2( j)pRC�k2( j)p2

� Ck2( j)C�k1( j)p1Ck1( j)C�k0( j)p0Ck0( j)) (6:9)

y jþ3 ¼ (IP�1T jþ3IP)(x jþ3) (6:10)

Tj ¼ (C�k0( jþ3)p
�1
0 Ck0( jþ3)C�k1( jþ3)p

�1
1 Ck1( jþ3)C�k2( jþ3)p

�1
2 Ck2( jþ3)pR

� C�k2( jþ3)p2Ck2( jþ3)C�k1( jþ3)p1Ck1( jþ3)C�k0( jþ3)p0Ck0( jþ3)) (6:11)

implies

Tj ¼ T jþ3,

which is independent of the plugboard connection.

On May 10, 1940, the Germans changed the key protocol and did not encipher the

message key twice.

6.10 CRIBBING ENIGMA CIPHERTEXT

Example 6.2
Suppose that Enigma ciphertext begins with the suspected following plaintext:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C Q N Z P V L I L P E U I K T E D C G L O V W V G T U F L N Z
" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "

T O T H E P R E S I D E N T O F T H E U N I T E D S T A T E S

This crib is examined for the presence of loops; E N I E is a loop consisting of E N (at

position 29), N I (at position 12), and I E (at position 7). Three loops in the crib above

are written as shown in Figure 6.12.

Welchman and Turing suggested testing plugboard connections and rotor positions

by connecting double-ended Enigma’s with the rotors set to the positions ( j0, j1, j2)

(Fig. 6.13). The symbol for a double-ended Enigma is presented in Figure 6.14. To test

TABLE 6.8 Intercepted Females with the Same Discriminant on . . . (Date)

Indicator y0 y1 y2 y3 y4 y5

KIE S P E S M T

LTS V B Y Q G Y

EGP O H A O C M

RYM X W N P W V

XXY Z D F J D A

6.10 CRIBBING ENIGMA CIPHERTEXT 167



the three loops, several double-ended Enigmas were interconnected. The three bombes

shown in Figure 6.15 are set to test the plugboard connections E! A, P! A, and
N! A. The figure shows the logical equivalents of parts of the bombe corresponding

to the three loops rather than the actual bombe structure. The bombe cycles through the

263 initial rotor offsets ( j0þ 7, j1þ 9, j2þ 4) to test the EPI loop. The bombe puts a

voltage across the input port E; the current moves through the three double-ended

rotors, returning to the Test Register. If

. ( j0þ 7, j1þ 9, j2þ 4) is the correct initial rotor offset, and

. The plugboard connection EA is correct,

the current will return to the Test Register at A. If not, the current will return to some other

letter, say V. By correctly sequencing the device, the signals will run through some cycle.

There are two possibilities:

1. We have guessed the correct plugboard connection ? to E and the current will return

to ?, or

Figure 6.12 Loops in corresponding plainEx6.2 and cipherEx6.2.

Figure 6.13 Double-ended Enigma.

Figure 6.14 Symbol for double-ended enigma with positions ( j0, j1, j2).
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Figure 6.15 (a) Double-ended Enigma for testing the EPI-loop in Figure 6.12; (b) Double-ended

Enigma for testing the VIP-loop in Figure 6.12; (c) Double-ended Enigma for testing the NOT-loop
in Figure 6.12.

6.10 CRIBBING ENIGMA CIPHERTEXT 169



2. We have not guessed the correct plugboard connection to E and the current will fill up

most of the Test Register and it will not return to the true plugboard connection of E.

Case 1 is called a drop. A letter is a potential drop if the letter is not filled in Case 2. The

drops were individually tested.

6.11 THE LORENZ SCHLÜSSELZUSATZ

The Lorenz Schlüsselzusatz (Fig. 6.16) is an additive encipherment cryptosystem; a key

stream determined by more than 501 key bits is XORed to 5-bit Baudot-coded plaintext.

The SZ40 was used to encipher German High Command communications. SZ40 cipher-

text traffic was referred to as fish [Tutte, 1998]. Both the cryptographic device and the

special processor used to carry out the cryptanalysis of the SZ40 were referred to as

tunny; this first generation processor was designed by the BritishGeneral Communications

Headquarters (GCHQ) located in Bletchley Park outside London, where the SZ40 cryp-

tanalysis activities took place. The SZ40 saga is described in the book by Hinsley and

Stripp [2001].

The SZ40 and a succeeding model (SZ42) were manufactured by Lorenz; they were

generalizations of the Vernam–Vigenère stream cipher system. The SZ40 encipherment

equation is

y ¼ xþ k (modulo 2)

y ¼ ( y(0), y(1), . . . ) y( j) ¼ ( y1( j), y2( j), y3( j), y4( j), y5( j)), j ¼ 0, 1, . . .

x ¼ (x(0), x(1), . . . ) x( j) ¼ (x1( j), x2( j), x3( j), x4( j), x5( j)), j ¼ 0, 1, . . .

k ¼ (k(0), k(1), . . . ) k( j) ¼ (k1( j), k2( j), k3( j), k4( j), k5( j)), j ¼ 0, 1, . . .

Figure 6.16 The Lorenz Schlüsselzusatz (Courtesy of NSA).
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where

. The plaintext {x( j )} is alphanumeric text encoded into 5-bit strings;

. The key {k( j )} is a sequence of 5-bit strings; and

. The ciphertext {y ( j )} is the XOR of the plaintext and key.

The German Cipher Bureau understood the limitations of Vernam–Vigenère encipher-

ment. Even with multiple tapes, an analysis is possible. The SZ40 used a two-stage

XOR but the encipherment process was made more complicated by introducing key-

dependent irregular motion in the second stage.

6.12 THE SZ40 PIN WHEELS

A pin-wheel is a mechanical implementation of a tape; it generates a periodic sequence of

0’s and 1’s. A pin-wheel contains a number L of pins equally spaced around its circum-

ference. The pin-wheel operates, so that

. When a pin is active (present), the pin-wheel XORs a 1 to its input;

. When a pin is inactive (absent), the pin-wheel XORs a 0 to its input.

The pin-wheel depicted in Figure 6.17 shows four pin positions without pins. In an

actual SZ40, all pin positions had pins, but some were made inactive by folding them

down.

The SZ40 had 12 pin-wheels (Fig. 6.18):

. 5 x pin-wheels, x1, x2, . . . , x5; the length of the xi pin-wheel is Ti.

xi Pin-Wheel

i 1 2 3 4 5

Ti 41 31 29 26 23

Figure 6.17 An SZ40 pin-wheel.

6.12 THE SZ40 PIN WHEELS 171



. 5 c pin-wheels, c1, c2, . . . , c5; the length of the ci pin-wheel is Si.

ci Pin-Wheel

i 1 2 3 4 5

Si 43 47 51 53 59

. 2 motor pin-wheels: a m pin-wheel of length 37, and a p pin-wheel of length 61.

Figure 6.18 The SZ40 pin-wheels.
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We assume that each pin-wheel has an initial position marked by 0.

The key stream k(0), k(1), . . . was generated according to the following rules:

KS0. The set of active pins on a pin-wheel was part of the key variable and was changed

at regular times;

KS1. The x and c pin-wheels moved synchronously;

KS2. The x pin-wheels moved one position for each letter;

KS3. The c pin-wheels were driven by the combined m and p pin-wheels:

(a) The p pin-wheel moves one position for each letter;

(b) The m pin-wheel moves one position whenever the p pin-wheel has an active

pin in the current position;

(c) The c pin-wheels move whenever the m pin-wheel has an active pin in the

current position.

In Figure 6.18,

. The 5-bit plaintext strings enter on the left;

. The values on the xj pin-wheels (1 � j � 5) are XORed to the plaintext, producing

intermediate ciphertext;

. The values on the cj pin-wheels (1 � j � 5) are XORed to the intermediate

ciphertext, producing the 5-bit ciphertext strings;

. The x j pin-wheels (1 � j � 5) all shift one pin-position;

. The cj pin-wheels (1 � j � 5) all shift one pin-position, provided the m pin-wheel

pin in the current position is a 1;

. The m pin-wheel shifts one pin position provided the p pin-wheel pin in the current

position is a 1;

. The p pin-wheel shifts one pin position.

To define the encipherment process, some additional notation is needed; the position of a

pin-wheel for the encipherment of the jth letter is denoted as folIows:

. pi[ j ] the position of the ith x pin-wheel;

. qi[ j ] for the position of the ith c pin-wheel, qi[ j ] ; (q[ j ] þ ji(0)) (modulo Si);

. u[ j ] for the position of the m pin-wheel;

. v[ j ] for the position of the p pin-wheel.

6.12.1 The SZ40 Key

The SZ40 key had two components:

. The 501 bits determining the pins of the 12 pin-wheels;

. The initial positions of the 5x, the 5c, and the 2 motor pin-wheels m and p.

The first key component was originally changed each month; the second component was

supposed to be changed with each message. Initially, an SZ40 message began with an indi-

cator transmitted in the clear, consisting of 12 alphabetic characters, for example

HQIBPEXEZMUG. A character translated into a 12-tuple of integers in f0,1, . . . , 25g
specifying the initial settings of the 12 pin-wheels so that not all initial settings were poss-

ible. Subsequently, the indicator was replaced by an entry in a codebook that translated

into initial wheel settings.
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6.12.2 The Steps in an SZ40 Encipherment

1. The jth letter x( j ) is encoded using the Baudot code:

x( j)! x( j) ; (x1( j), x2( j), x3( j), x4( j), x5( j)):

2. The current output x( j ) ; (x1( j ), x2( j ), x3( j ), x4( j ), x5( j )) of the x
wheels is XORed bit by bit to x( j ), producing intermediate ciphertext

x̃( j ) ; (x̃1( j ), x̃2( j ), x̃3( j ), x̃4( j ), x̃5( j )):

x( j)! ~x( j) ¼ x( j)þ x( j):

3. The current output c( j ) ; (c1( j ), c2( j ), c3( j ), c4( j ), c5( j )) of the c wheels is

XORed bit by bit to x̃( j ), producing ciphertext y( j ) ; ( y1( j ), y2( j ), y3( j ), y4( j ),

y5( j )):

~xð jÞ ! yð jÞ ¼ ~xð jÞ þ cð jÞ:

4. Some of the pin-wheel rotate:

(a) All x pin-wheels rotate 1 position counterclockwise

pi½ j
 ¼ ( pi½ jþ 1
 (modulo Ti):

(b) All c pin-wheels rotate 1 position counterclockwise provided the current output

m(q[ j ]) of the m pin-wheel is 1

qi½ jþ 1
 ¼ (qi½ j
 þ m(u½ j
) (modulo Si):

(c) The m pin-wheel rotates counterclockwise by 1 position provided the current

output of the p pin-wheel is 1.

u½ jþ 1
 ¼ (u½ j
 þ p(v½ j
) (modulo 37)

(d) The p pin-wheel rotates counterclockwise by 1 position so that v[ jþ1] ¼
(v[ j ]þ l) (modulo 61);

These rules lead to the recurrences

½ position of p� wheel
 v½ j
 ¼ j (modulo 61)

½ position of m� wheel
 u½ j
 ¼ ½u½ j� 1þ p (v½ j� 1
)
 (modulo 37)


½ position of x� wheel
 pi½ j
 ¼ j (modulo Ti)

qi½ j
 ¼ ½qi½ j� 1þ m(u½ j� 1
)
 (modulo Si)
:

The encipherment equation is

y ¼ xþ k Yi( j) ¼ Xi( j)þ Ki( j) (6:12)

ki( j) ¼ xi( pi½ j
)þ ci (qi½ j
) (6:13)

Example 6.3
The plaintext NOW is enciphered to

x-Wheel c-Wheel

xi Baudot Pins Output Pins Output yi

N 01100 10101 11001 01101 10100 H
O 11000 11111 00111 00100 00011 A
W 11011 10111 01100 11000 10100 H
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Example 6.4
The plaintext MERRY CHRISTMAS is enciphered as follows:

x-Wheel c-Wheel

xi Baudot Pins Output Pins Output yi

M 11100 10101 01001 00110 01111 K
E 00001 01010 01011 01001 00010 LF

R 01010 00110 01100 11000 10100 H
R 01010 11100 10110 01011 11101 X
Y 10101 00101 10000 00101 10101 Y

00100 01101 01001 10001 11000 O
C 01110 10100 11010 11001 00011 A
H 10100 00110 10010 11001 01011 J
R 01010 11111 10101 01100 11001 B
I 00110 10010 10100 11000 01100 N
S 00101 11111 11010 11111 00101 S
T 10000 11111 01111 11111 10000 T
M 11100 11101 00001 11111 11110 V
A 00011 11101 11110 01110 10000 T
S 00101 11111 11010 01110 10100 H

6.13 SZ40 CRYPTANALYSIS PROBLEMS

There are several possible versions of the cryptanalysis problem, of which the following is

the most challenging:

Problem # 1

Given: Ciphertext y

Determine: The pin-wheels (active pins and initial positions) and plaintext x:

The SZ40 keys consists of

. The set of active pins of the 12 wheels (501 bits);

. The starting positions of the 12 wheels (’56 bits).

Some keys may be changed daily (or with each message), others less frequently. Thus, if

the active pins are fixed for a month and each day the starting positions are changed, the

cryptanalysis is simpler:

Problem #2

Given: Ciphertext y and the active pins on the x;c;m; and p wheels

Determine: The initial positions of the pin-wheels and the plaintext x:

If one plaintext message can be determined by statistical methods or cribbing, the

key k(0), k(1), . . . might be determined. Statistical and algebraic methods can be used
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to recover (part of ) the pin-wheel settings (active pins and initial positions). This would

permit the decipherment of all messages used with the same pin-wheel settings. A discus-

sion of one such attack is given in Carter [1997].

The attack at Bletchley Park by GCHQ used the Colossus, a digital processor

designed by Alan Turing to carry out the cryptanalysis.

6.14 CRIBBING SZ40 CIPHERTEXT

Much of the cryptanalysis of SZ40 ciphertext described next is included in a Master’s

Thesis at U.C. Santa Barbara by Nitesh Saxena.

Depth (in ciphertext) occurs when two or more SZ40 ciphertexts y i (i ¼ 1, 2, . . .)
were intercepted in a period

. During which the pin-wheels are unchanged and

. Both messages are identified with the same indicator.

The computation of the differences with depth Dy1,2 ; y1þ y2¼ Dx1,2 ; x1þ x2 elimin-

ates the key. The differenced plaintext might be searched for probable words (cribs); for

example,

. German cipher-clerks often prefaced their messages with SPRUCHNUMMER
(¼ message number), and

. Messages might contains references to various organizations such as LUFTWAFFE,
WEHRMACHT, OBERKOMMANDO, or GESTAPO.

For example, if the crib SPRUCHNUMMER might be slid across the differenced ciphertext;

with the letter S in position j, the XOR of the crib and the difference plaintext produces

putative plaintext:

x1: � � � S P R � � � M E R � � �

x2: � � � x2( j) x2( jþ 1) x2( jþ 2) � � � x2( jþ 8) x2( jþ 9) x2( jþ 10) � � �

Dx1,2: � � � Sþ x( j ) Pþ x( jþ 1) Rþ x( jþ2) � � � Mþ x( jþ 8) Eþ x( jþ 9) Rþ x( jþ 10) � � �

The fragment of putative plaintext x2( j ), x2( jþ 1), x2( jþ 2), . . . , x2( jþ 8), x2( jþ 9),

x2( jþ 10) is tested; if it is (grammatically) readable text, a hit has been obtained,

which might reveal additional plaintext. With good luck, both plaintexts x1 and x2 may

be read and the common key k used to encipher them recovered.

Early in the GCHQ SZ40 cryptanalysis, an interception of the near-repeat of a

message of 4000 characters enciphered with the same indicator (and hence identical pin-

wheel settings) was received, providing the entire key stream. When cribbing is success-

ful, a segment of the (common) key stream (k(0), k(1), . . . , k(N2 l)) is recovered.

6.14.1 Finding the Active Pins Given the Key Stream

We start with Equations (6.12) and (6.13) and ask if a sequence of key values

fk( j) : 0 � j , Ng

determines

fx ( j) : 0 � j , Ng and fc ( j) : 0 � j , Ng:
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As there are B ¼P
i (Tiþ Si) pin values for the x- and c-wheels, we must require at least

N . B/5’100 5-bit key characters, certainly a lower bound because the c-wheel does not
always move.

Problem # 3

Given: fkð jÞ : 0 � j , Ng

Find: fx ð jÞ : 0 � j , Ng and fc ð jÞ : 0 � j , Ng

does not have a unique solution, because complementing the x and c pin-wheel values

leaves the key unchanged.

Tutte [1998, pp. 5–6] suggests that Alan Turing had a method to solve Problem 3 up

to the complementation indeterminacy.

6.14.2 A Statistical Model of Pin Motion

We define the SZ40 parameters

. q, the averaged density of active pins on c-wheels, and

. n, the average probability that a c-wheel rotates.

The values of q and n are unknown and must be guessed and later refined as a result of the

cryptanalysis.

The parameters q and n can be used to define a statistical model of the c1 pin-wheel.

(The use of a random process to model a deterministic function in a cryptosystem has been

successfully used; the hiddenMarkov model being an example.) Let d(i,j ) be the probability
that c1( j, jþ l) ; (c1( j), c1( j )) ¼ (a, b) with (a, b)[ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Assuming that the motion of the wheels at all positions is approximately independent

and identically distributed leads to the formulas

dð0; 0Þ ¼ 1� q� nqð1� qÞ ¼ nð1� qÞ2þ ð1� nÞð1� qÞ ¼ Prfðciðqi½ j
;qi½ jþ 1
ÞÞ ¼ ð0;0Þg

dð1; 1Þ ¼ q� nqð1� qÞ ¼ nq2þ ð1� nÞq¼ Prfðciðqi½ j
;qi½ jþ 1
ÞÞ ¼ ð1;1Þg

dð0; 1Þ ¼ nqð1� qÞ ¼ Prfðciðqi½ j
;qi½ jþ 1
ÞÞ ¼ ð0;1Þg

dð1; 0Þ ¼ nqð1� qÞ ¼ Prfðciðqi½ j
;qi½ jþ 1
ÞÞ ¼ ð1;0Þg

D¼
dð0;0Þ dð0;1Þ

dð1;0Þ dð1;1Þ

� �
:

We claim that D is diagonal dominant, that is di,i . di,j with i = j. First, note that

dð0;0Þ , dð0;1Þ ) 1 . nq (6:14)

and

dð1;1Þ , dð0;1Þ ) 1 . nð1� qÞ (6:15)

so that both Expressions (6.14) and (6.15) cannot hold. In fact, either

1. 1 . nq and 1 � n(12 q), or

2. 1 � nq and 1 . n(12 q),

6.14 CRIBBING SZ40 CIPHERTEXT 177



and a contradiction is obtained. A statistical model of pin motion implies that in a large

sample of R positions, there will be �Rq(a,b) positions j, in which c1( j, jþ 1) ¼ (a, b).

Example 6.5
We use the pin-wheels, for which Tables 6.9 to 6.20 give the fraction q of active pins. The

(unknown) c pin-densities vary from 0.814 to 0.872. A program using the Example 6.5

TABLE 6.9

x1-Wheel; q ¼ 0.878

1 0 0 1 0 0 1 0

1 1 1 1 1 1 1 l

1 1 1 1 1 1 1 l

1 1 1 1 1 1 1 l

1 1 1 1 1 1 1 l

1

TABLE 6.10

x2-Wheel; q ¼ 0.806

0 1 0 1 0 1 0 0

1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

TABLE 6.11

x3-Wheel; q ¼ 0.931

1 0 1 1 1 1 1 1

1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1

TABLE 6.12

x4-Wheel; q ¼ 0.769

0 1 1 0 0 0 0 1

1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 1

1 1

TABLE 6.13

x5-Wheel; q ¼ 0.739

1 0 0 0 1 1 0 0

1 0 1 1 1 1 1 1

1 1 1 1 1 1 1

TABLE 6.14

c1-Wheel; q ¼ 0.814

0 0 1 0 0 1 1 1

0 1 1 0 1 0 1 0

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1

TABLE 6.15

c2-Wheel; q ¼ 0.872

0 1 1 1 0 0 1 1

1 1 1 1 1 1 0 1

1 0 1 0 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

TABLE 6.16

c3-Wheel; q ¼ 0.863

1 0 0 0 1 0 0 0

1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1
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parameters shows that m(q[ j ]) ¼ 1 is satisfied �80% of the time. We take q ¼ 0.83 and

n ¼ 0.8; this gives

(q (i;j)) ¼
0:072 0:128
0:128 0:672

� �
:

We use the statistical model of the motion of the SZ40 wheels to develop a variant of

Turing’s scheme.

6.14.3 Finding the c Active Pins:

xi( j, jþ 1)-Testing: Given: Key fK( j ) : 0 � j , Ng, then

. for each wheel i

. for each of the positions j, jþ Ti, jþ 2Ti, . . . , jþ (ki2 1)Ti where ki depends on

the length of the known key stream

. for each of the four pairs (a, b)[ {(0, 0), (0, 1) (1, 0), (1, 1)}

1. Count the number of times, denoted by KCounti[a, b] that the pair of keys

Ki( j, jþ 1) ; (Ki( j ), K( jþ 1)) is equal to (a, b).

2. Find that unique value of xi( j, jþ 1) ; (xi( j ), x( jþ 1)) ¼ (c, d ) that maximizes

KCounti[aþ c, bþ d]. The maximum should be approximately equal to the kiq(1,1).

TABLE 6.17

c4-Wheel; q ¼ 0.830

1 0 0 1 0 0 0 0

0 0 1 1 1 1 1 1

1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 I 1 1

TABLE 6.18

c5-Wheel; q ¼ 0.864

0 1 0 1 1 1 1 1

0 0 1 0 1 1 0 1

1 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1

TABLE 6.20

p-Wheel; q ¼ 0.803

1 1 1 0 1 1 1 0

1 1 0 1 1 1 0 0

1 1 1 1 1 1 1 0

0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 0 1 1 1

1 1 0 1 1 1 1 1

0 1 1 1 1

TABLE 6.19

m-Wheel; q ¼ 0.811

1 1 1 1 1 1 1 1

0 1 0 1 1 1 0 1

0 1 0 1 1 1 1 0

1 1 1 1 1 1 1 0

1 1 1 1 1
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The result printed in Tables 6.21 to 6.30 for j ¼ 0(1)9 were derived using N ¼ 500

five-bit key values. Each pair of consecutive rows contains the entries

. The known value of KCount (i, j )[a, b] and

. The unknown count cCount (i, j )[a, b] of the number of times ci( j, jþ 1) ¼ (a, b) for

each of the four possible pairs [a, b] ¼ [0, 0], [0, 1], [1, 0], and [1, 1].

Step 1: Inference of x1 ( j,jþ 1) The hypothesis x1( j, jþ 1) ¼ (A, B) can be tested

as follows:

1. As ci( j, jþ 1) ¼ ci( jþ kTi, jþ kTiþ 1) for k ¼ 0, 1, . . . , ki2 1, the correct values

of (A,B) should yield Kcounti[c, d ] ’ q(1,1) ki where c ¼ (xi( j )þ a) (modulo 2) and

d ¼ (xi( j )þ b) (modulo 2). Note that [1, 1] is the most frequently occurring pair. If

j ¼ 4, then

(a) K4(2)[1, 0] is the maximum of K4(2)[a, b], and

(b) x1( j, jþ 1) ¼ (0, 1) is the unique value for which (1, 1) ¼ (1, 0)þ x1( j, jþ 1).

TABLE 6.21 Testing xi( j, j1 1) in Position 0

(i, j ) [a,b] [a,b] [a,b] [a,b]

KCount(1,0) [0,0] 1 [0,1] 11 [1,0] 1 [1,1] 0

cCount(1,0) [0,0] 1 [0,1] 0 [1,0] 1 [1,1] 11

KCount(2,0) [0,0] 4 [0,1] 1 [1,0] 12 [1,1] 0

cCount(2,0) [0,0] 1 [0,1] 4 [1,0] 0 [1,1] 12

KCount(3,0) [0,0] 1 [0,1] 15 [1,0] 2 [1,1] 0

cCount(3,0) [0,0] 2 [0,1] 0 [1,0] 1 [1,1] 15

KCount(4,0) [0,0] 1 [0,1] 3 [1,0] 14 [1,1] 2

cCount(4,0) [0,0] 3 [0,1] 1 [1,0] 2 [1,1] 14

KCount(5,0) [0,0] 1 [0,1] 14 [1,0] 4 [1,1] 3

cCount(5,0) [0,0] 4 [0,1] 3 [1,0] 1 [1,1] 14

TABLE 6.22 Testing xi( j, j1 1) in Position 1

(i, j ) [a,b] [a,b] [a,b] [a,b]

KCount(1,1) [0,0] 0 [0,1] 2 [1,0] 1 [1,1] 10

cCount(1,1) [0,0] 0 [0,1] 2 [1,0] 1 [1,1] 10

KCount(2,1) [0,0] 2 [0,1] 14 [1,0] 1 [1,1] 0

cCount(2,1) [0,0] 1 [0,1] 0 [1,0] 2 [1,1] 14

KCount(3,1) [0,0] 2 [0,1] 1 [1,0] 14 [1,1] 1

cCount(3,1) [0,0] 1 [0,1] 2 [1,0] 1 [1,1] 14

KCount(4,1) [0,0] 14 [0,1] 1 [1,0] 0 [1,1] 5

cCount(4,1) [0,0] 5 [0,1] 0 [1,0] 1 [1,1] 14

KCount(5,1) [0,0] 3 [0,1] 2 [1,0] 2 [1,1] 15

cCount(5,1) [0,0] 3 [0,1] 2 [1,0] 2 [1,1] 15
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TABLE 6.24 Testing xi( j, j1 1) in Position 3

(i, j ) [a,b] [a,b] [a,b] [a,b]

KCount(1,3) [0,0] 1 [0,1] 8 [1,0] 1 [1,1] 3

cCount(1,3) [0,0] 1 [0,1] 3 [1,0] 1 [1,1] 8

KCount(2,3) [0,0] 3 [0,1] 13 [1,0] 0 [1,1] 1

cCount(2,3) [0,0] 0 [0,1] 1 [1,0] 3 [1,1] 13

KCount(3,3) [0,0] 13 [0,1] 2 [1,0] 1 [1,1] 2

cCount(3,3) [0,0] 2 [0,1] 1 [1,0] 2 [1,1] 13

KCount(4,3) [0,0] 4 [0,1] 0 [1,0] 1 [1,1] 15

cCount(4,3) [0,0] 4 [0,1] 0 [1,0] 1 [1,1] 15

KCount(5,3) [0,0] 1 [0,1] 3 [1,0] 17 [1,1] 1

cCount(5,3) [0,0] 3 [0,1] 1 [1,0] 1 [1,1] 17

TABLE 6.23 Testing xi( j, j1 1) in Position 2

(i, j ) [a,b] [a,b] [a,b] [a,b]

KCount(1,2) [0,0] 0 [0,1] 1 [1,0] 9 [1,1] 3

cCount(1,2) [0,0] 1 [0,1] 0 [1,0] 3 [1,1] 9

KCount(2,2) [0,0] 3 [0,1] 0 [1,0] 13 [1,1] 1

cCount(2,2) [0,0] 0 [0,1] 3 [1,0] 1 [1,1] 13

KCount(3,2) [0,0] 15 [0,1] 1 [1,0] 0 [1,1] 2

cCount(3,2) [0,0] 2 [0,1] 0 [1,0] 1 [1,1] 15

KCount(4,2) [0,0] 0 [0,1] 14 [1,0] 4 [1,1] 2

cCount(4,2) [0,0] 4 [0,1] 2 [1,0] 0 [1,1] 14

KCount(5,2) [0,0] 2 [0,1] 3 [1,0] 2 [1,1] 15

cCount(5,2) [0,0] 2 [0,1] 3 [1,0] 2 [1,1] 15

TABLE 6.25 Testing xi( j, j1 1) in Position 4

(i, j ) [a,b] [a,b] [a,b] [a,b]

KCount(1,4) [0,0] 0 [0,1] 2 [1,0] 1 [1,1] 10

cCount(1,4) [0,0] 0 [0,1] 2 [1,0] 1 [1,1] 10

KCount(2,4) [0,0] 0 [0,1] 2 [1,0] 13 [1,1] 1

cCount(2,4) [0,0] 2 [0,1] 0 [1,0] 1 [1,1] 13

KCount(3,4) [0,0] 13 [0,1] 1 [1,0] 2 [1,1] 2

cCount(3,4) [0,0] 2 [0,1] 2 [1,0] 1 [1,1] 13

KCount(4,4) [0,0] 4 [0,1] 1 [1,0] 0 [1,1] 15

cCount(4,4) [0,0] 4 [0,1] 1 [1,0] 0 [1,1] 15

KCount(5,4) [0,0] 17 [0,1] 1 [1,0] 4 [1,1] 0

cCount(5,4) [0,0] 0 [0,1] 4 [1,0] 1 [1,1] 17
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TABLE 6.27 Testing xi( j, j1 1) in Position 6

(i, j ) [a,b] [a,b] [a,b] [a,b]

KCount(1,6) [0,0] 0 [0,1] 8 [1,0] 1 [1,1] 4

cCount(1,6) [0,0] 1 [0,1] 4 [1,0] 0 [1,1] 8

KCount(2,6) [0,0] 2 [0,1] 0 [1,0] 0 [1,1] 14

cCount(2,6) [0,0] 2 [0,1] 0 [1,0] 0 [1,1] 14

KCount(3,6) [0,0] 14 [0,1] 1 [1,0] 0 [1,1] 3

cCount(3,6) [0,0] 3 [0,1] 0 [1,0] 2 [1,1] 13

KCount(4,6) [0,0] 2 [0,1] 2 [1,0] 15 [1,1] 0

cCount(4,6) [0,0] 2 [0,1] 2 [1,0] 0 [1,1] 15

KCount(5,6) [0,0] 0 [0,1] 1 [1,0] 2 [1,1] 19

cCount(5,6) [0,0] 0 [0,1] 1 [1,0] 2 [1,1] 19

TABLE 6.26 Testing xi( j, j1 1) in Position 5

(i, j ) [a,b] [a,b] [a,b] [a,b]

KCount(1,5) [0,0] 0 [0,1] 1 [1,0] 8 [1,1] 4

cCount(1,5) [0,0] 1 [0,1] 0 [1,0] 4 [1,1] 8

KCount(2,5) [0,0] 1 [0,1] 12 [1,0] 1 [1,1] 2

cCount(2,5) [0,0] 1 [0,1] 2 [1,0] 1 [1,1] 12

KCount(3,5) [0,0] 14 [0,1] 1 [1,0] 1 [1,1] 2

cCount(3,5) [0,0] 2 [0,1] 1 [1,0] 1 [1,1] 14

KCount(4,5) [0,0] 4 [0,1] 0 [1,0] 1 [1,1] 15

cCount(4,5) [0,0] 4 [0,1] 0 [1,0] 1 [1,1] 15

KCount(5,5) [0,0] 1 [0,1] 20 [1,0] 0 [1,1] 1

cCount(5,5) [0,0] 0 [0,1] 1 [1,0] 1 [1,1] 20

TABLE 6.28 Testing xi( j, j1 1) in Position 7

(i, j ) [a,b] [a,b] [a,b] [a,b]

KCount(1,7) [0,0] 1 [0,1] 0 [1,0] 9 [1,1] 3

cCount(1,7) [0,0] 0 [0,1] 1 [1,0] 4 [1,1] 8

KCount(2,7) [0,0] 1 [0,1] 1 [1,0] 12 [1,1] 2

cCount(2,7) [0,0] 1 [0,1] 1 [1,0] 2 [1,1] 12

KCount(3,7) [0,0] 13 [0,1] 0 [1,0] 3 [1,1] 1

cCount(3,7) [0,0] 1 [0,1] 3 [1,0] 0 [1,1] 13

KCount(4,7) [0,0] 15 [0,1] 2 [1,0] 1 [1,1] 1

cCount(4,7) [0,0] 1 [0,1] 1 [1,0] 2 [1,1] 15

KCount(5,7) [0,0] 1 [0,1] 1 [1,0] 17 [1,1] 3

cCount(5,7) [0,0] 1 [0,1] 1 [1,0] 3 [1,1] 17
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2. The parameters q and n imply that c Counti( j, jþ 1)[1, 1]¼ max
ðr;sÞ

c Count1
( j, jþ 1)[r, s].

3. If KCounti( j, jþ 1)[a,b] ¼ max
ðr;sÞ

KCount1( j, jþ 1)[r, s], then (A,B)þ (a,b) ¼
(1, 1).

The inference process just described recovers the value of xi( j, jþ 1).

How do we reconcile the uniqueness of xi( j, jþ 1) with the asserted nonuniqueness

of the solution to Problem no. 3? With the parameters q ’ 0.8 and n ’ 0.8 in Example 6.4,

we have d(1,1) ¼ maxðr;sÞ dðr;sÞ. When the x and c pin-wheel values are complemented,

q! q̃ ’ 0.2 and n! ñ ’ 0.8, so that d̃(0,0) ¼ maxðr;sÞ ~dðr;sÞ. Note that d(1,1) ¼ d̃(0,0).
The correct value of (A, B) will be defined by (A,B)þ (a,b) ¼ (0, 0).

Step 2: Inference of c1(q1[ j ]) It remains to find the values of c1( j ); these are par-

tially obscured by the action of the motor wheels. First, we infer the values of c1(q1[ j ]).

Columns 1 to 5 in Tables 6.31 to 6.34 list for j ¼ 0(1)199

1. The unknown move indicator (MI) with values (M/N) specifying whether or not the
c pin-wheels moved; equal to M if m[q[ j ]] ¼ 1 and to N if m[q[ j ]] ¼ 0;

TABLE 6.30 Testing xi( j, j1 1) in Position 9

(i, j ) [a,b] [a,b] [a,b] [a,b]

KCount(1,9) [0,0] 9 [0,1] 0 [1,0] 2 [1,1] 1

cCount(1,9) [0,0] 1 [0,1] 2 [1,0] 0 [1,1] 9

KCount(2,9) [0,0] 3 [0,1] 1 [1,0] 12 [1,1] 0

cCount(2,9) [0,0] 1 [0,1] 3 [1,0] 0 [1,1] 12

KCount(3,9) [0,0] 1 [0,1] 1 [1,0] 14 [1,1] 1

cCount(3,9) [0,0] 1 [0,1] 1 [1,0] 1 [1,1] 14

KCount(4,9) [0,0] 16 [0,1] 0 [1,0] 3 [1,1] 0

cCount(4,9) [0,0] 0 [0,1] 3 [1,0] 0 [1,1] 16

KCount(5,9) [0,0] 5 [0,1] 0 [1,0] 16 [1,1] 1

cCount(5,8) [0,0] 0 [0,1] 5 [1,0] 1 [1,1] 16

TABLE 6.29 Testing xi( j, j1 1) in Position 8

(i, j ) [a,b] [a,b] [a,b] [a,b]

KCount(1,8) [0,0] 8 [0,1] 1 [1,0] 1 [1,1] 2

cCount(1,8) [0,0] 2 [0,1] 1 [1,0] 1 [1,1] 8

KCount(2,8) [0,0] 3 [0,1] 10 [1,0] 1 [1,1] 2

cCount(2,8) [0,0] 1 [0,1] 2 [1,0] 3 [1,1] 10

KCount(3,8) [0,0] 2 [0,1] 14 [1,0] 0 [1,1] 1

cCount(3,8) [0,0] 0 [0,1] 1 [1,0] 2 [1,1] 14

KCount(4,8) [0,0] 16 [0,1] 0 [1,0] 0 [1,1] 3

cCount(4,8) [0,0] 3 [0,1] 0 [1,0] 0 [1,1] 16

KCount(5,8) [0,0] 2 [0,1] 16 [1,0] 3 [1,1] 1

cCount(5,8) [0,0] 3 [0,1] 1 [1,0] 2 [1,1] 16
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TABLE 6.31

j MI( j) x c K M?

0 M(0) 10101 00110 10011 M

1 M(1) 01010 01001 00011 M

2 M(2) 00110 11000 11110 M

3 M(3) 11100 01011 10111 M

4 M(4) 00101 00101 00000 M

5 M(5) 01101 10001 11100 M

6 M(6) 10100 11001 01101 M?

7 M(7) 00110 11001 11111 M

8 M(8) 11111 01100 10011 M

9 M(9) 10010 11000 01010 M

10 N(10) 11111 11111 00000 M?

11 N(10) 11111 11111 00000 M?

12 M(10) 11101 11111 00010 M

13 N(11) 11101 01110 10011 M?

14 M(11) 11111 01110 10001 M

15 M(12) 11111 11111 00000 M

16 M(13) 11111 01111 10000 M

17 M(14) 11111 10110 01001 M

18 M(15) 11111 01111 10000 M

19 N(16) 11111 11111 00000 M?

20 M(16) 11111 11111 00000 M

21 N(17) 11111 10100 01011 M?

22 M(17) 11111 10100 01011 M

23 N(18) 11111 11110 00001 M?

24 N(18) 11110 11110 00000 M?

25 N(18) 11110 11110 00000 M?

26 N(18) 11100 11110 00010 M?

27 M(18) 11111 11110 00001 M

28 M(19) 11111 10111 01000 M

29 M(20) 11100 11111 00011 M?

30 M(21) 11000 11111 00111 M?

31 N(22) 10001 11111 01110 M?

32 M(22) 11100 11111 00011 M?

33 M(23) 10111 11111 01000 M?

34 M(24) 11111 11111 00000 M?

35 M(25) 10111 11111 01000 M?

36 M(26) 11111 11111 00000 M?

37 M(27) 10111 11111 01000 M?

38 M(28) 10001 11111 01110 M?

39 N(29) 11101 11111 00010 M?

40 N(29) 10111 11111 01000 M?

41 M(29) 11111 11111 00000 M?

42 M(30) 01111 11111 10000 M?

43 M(31) 01111 11111 10000 M?

44 M(32) 11111 11111 00000 M?

45 M(33) 01111 11111 10000 M?

46 M(34) 01111 11111 10000 M?

47 M(35) 11110 11111 00001 M?

48 M(36) 01110 11111 10001 M?

49 M(37) 11110 11111 00001 M?

TABLE 6.32

j MI( j) x c K M?

50 M(38) 11111 11111 00000 M?

51 M(39) 11111 11111 00000 M?

52 M(40) 11100 11111 00011 M?

53 M(41) 11110 11111 00001 M?

54 M(42) 11111 11111 00000 M

55 M(0) 11100 01111 10011 M?

56 N(1) 11101 01111 10010 M?

57 N(1) 11101 01111 10010 M?

58 M(1) 11101 01111 10010 M

59 N(2) 11011 11111 00100 M?

60 M(2) 11011 11111 00100 M

61 M(3) 11111 01111 10000 M

62 M(4) 10111 00111 10000 M

63 N(5) 11111 11111 00000 M?

64 M(5) 10101 11111 01010 M

65 M(6) 11101 10111 01010 M

66 N(7) 10111 11111 01000 M?

67 M(7) 11011 11111 00100 M

68 N(8) 10111 00111 10000 M?

69 N(8) 10111 00111 10000 M?

70 M(8) 11110 00111 11001 M

71 M(9) 10110 10011 00101 M

72 M(10) 11110 11011 00101 M

73 M(11) 11111 01001 10110 M

74 M(12) 11111 11101 00010 M

75 N(13) 11110 01011 10101 M?

76 N(13) 11110 01011 10101 M?

77 N(13) 11111 01011 10100 M?

78 M(13) 11100 01011 10111 M

79 M(14) 11111 11001 00110 M

80 M(15) 11101 01001 10100 M

81 M(16) 11101 11100 00001 M

82 M(17) 11101 11001 00100 M

83 M(18) 01101 10100 11001 M

84 M(19) 01101 11101 10000 M

85 M(20) 11111 11111 00000 M

86 M(21) 01111 10111 11000 M

87 N(22) 01111 11111 10000 M

88 N(23) 11011 10111 01100 M?

89 M(23) 01011 10111 11100 M

90 M(24) 11101 11110 00011 M?

91 M(25) 11101 11110 00011 M

92 M(26) 11111 11111 00000 M

93 M(27) 10110 11100 01010 M

94 M(28) 11110 11111 00001 M?

95 M(29) 10110 11111 01001 M

96 M(30) 11011 11110 00101 M

97 M(31) 10111 11111 01000 M?

98 M(32) 11110 11111 00001 M

99 M(33) 10110 11110 01000 M?
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TABLE 6.34

j MI( j) x c K M?

150 M(33) 11111 11111 00000 M

151 N(34) 11111 11110 00001 M?

152 M(34) 11111 11110 00001 M

153 N(35) 11111 11111 00000 M?

154 M(35) 11011 11111 00100 M?

155 M(36) 10111 11111 01000 M

156 N(37) 11101 11101 00000 M

157 N(38) 10111 11111 01000 M?

158 M(38) 11111 11111 00000 M?

159 N(39) 10101 11111 01010 M?

160 M(39) 11101 11111 00010 M

161 N(40) 10101 11110 01011 M?

162 N(40) 10100 11110 01010 M?

163 M(40) 11110 11110 00000 M?

164 M(41) 10110 11110 01000 M

165 M(42) 01111 11111 10000 M

166 M(0) 01111 01110 00001 M

167 M(1) 11110 01111 10001 M

168 N(2) 01100 11111 10011 M?

169 M(2) 01101 11111 10010 M

170 M(3) 11110 01110 10000 M

171 M(4) 01111 01111 00000 M

172 M(5) 11111 11111 00000 M

173 M(6) 11111 11110 00001 M?

174 M(7) 11111 11110 00001 M

175 M(8) 11011 01111 10100 M

176 M(9) 11111 11111 00000 M?

177 N(10) 11111 11111 00000 M?

178 M(10) 11111 11111 00000 M

179 M(11) 11111 01111 10000 M

180 M(12) 11111 10111 01000 M

181 M(13) 11111 01111 10000 M

182 M(14) 11101 11111 00010 M

183 M(15) 11011 01111 10100 M

184 M(16) 11111 10111 01000 M?

185 M(17) 11100 10111 01011 M

186 M(18) 10100 11111 01011 M?

187 M(19) 11100 11111 00011 M?

188 M(20) 10101 11111 01010 M?

189 M(21) 11111 11111 00000 M?

190 M(22) 10110 11111 01001 M?

191 M(23) 11110 11111 00001 M?

192 M(24) 10111 11111 01000 M

193 M(25) 10110 11011 01101 M

194 M(26) 11101 10011 01110 M

195 N(27) 10101 11011 01110 M?

196 M(27) 11111 11011 00100 M

197 N(28) 11111 11111 00000 M?

198 N(28) 11111 11111 00000 M?

199 N(28) 11111 11111 00000 M?

TABLE 6.33

j MI( j) x c K M?

100 M(34) 10111 11110 01001 M

101 M(35) 11110 11111 00001 M?

102 M(36) 10111 11111 01000 M?

103 N(37) 11111 11111 00000 M?

104 M(37) 11101 11111 00010 M?

105 N(38) 11111 11111 00000 M?

106 N(38) 11111 11111 00000 M?

107 M(38) 11101 11111 00010 M?

108 M(39) 11101 11111 00010 M?

109 M(40) 11101 11111 00010 M?

110 N(41) 11101 11111 00010 M?

111 M(41) 11111 11111 00000 M?

112 M(42) 11111 11111 00000 M

113 N(0) 11111 01111 10000 M?

114 M(0) 11111 01111 10000 M?

115 N(1) 11111 01111 10000 M?

116 M(1) 11100 01111 10011 M

117 M(2) 11000 11111 00111 M

118 M(3) 11110 01111 10001 M?

119 M(4) 11111 01111 10000 M

120 M(5) 11111 11111 00000 M?

121 N(6) 11110 11111 00001 M?

122 M(6) 11110 11111 00001 M?

123 M(7) 11111 11111 00000 M

124 M(8) 00110 00111 00001 M

125 M(9) 01011 11111 10100 M?

126 M(10) 10111 11111 01000 M

127 M(11) 01111 01111 00000 M

128 M(12) 00111 10111 10000 M

129 M(13) 11111 00111 11000 M

130 M(14) 00101 11111 11010 M

131 N(15) 10111 01111 11000 M?

132 M(15) 11111 01111 10000 M

133 M(16) 10101 11111 01010 M

134 M(17) 11101 11011 00110 M?

135 M(18) 11101 11011 00110 M?

136 M(19) 11101 11011 00110 M

137 M(20) 11111 11111 00000 M

138 M(21) 11111 11001 00110 M

139 M(22) 11110 10001 01111 M

140 M(23) 11110 11011 00101 M

141 M(24) 11110 11101 00011 M

142 M(25) 11101 10001 01100 M

143 M(26) 11101 11101 00000 M

144 M(27) 11110 10101 01011 M

145 M(28) 11110 11101 00011 M?

146 M(29) 11011 11101 00110 M

147 M(30) 11110 11111 00001 M?

148 M(31) 11111 11111 00000 M

149 M(32) 11111 11110 00001 M
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2. The unknown true position of the c1 pin-wheel;

3. The inferred x( j, jþ 1) and c(qi[ j ], qi[ jþ 1]);

4. The 5-bit known key obtained from cribbing;

5. An inference of the unknown move indicator (M/M?) equals to M if for at least one

index i, we have ci(qi[ j ]) = ci(qi[ jþ 1]), and equal to M? if for all indices i, we

have ci(qi[ j ]) ¼ ci(qi[ jþ 1]).

TABLE 6.35 M Blocks

j Pj Lj Bj

1 0 7 0 0 1 0 0 1 1

2 7 4 1 0 1 1

3 12 2 1 0

4 14 6 0 1 0 1 0 1

5 20 2 1 1

6 22 2 1 1

7 27 3 1 1 1

8 54 2 1 0

9 58 2 0 1

10 60 4 1 0 0 1

11 67 2 1 0

12 70 6 0 1 1 0 1 0

13 78 11 0 1 0 1 1 1 1 1 1 1 1

14 89 2 1 1

15 91 4 1 1 1 1

16 95 3 1 1 1

17 98 2 1 1

18 100 2 1 1

19 112 2 1 0

20 116 3 0 1 0

21 119 2 0 1

22 123 3 1 0 1

23 126 6 1 0 1 0 1 0

24 132 3 0 1 1

25 136 10 1 1 1 1 1 1 1 1 1 1

26 146 2 1 1

27 148 4 1 1 1 1

28 152 2 1 1

29 155 3 1 1 1

30 160 2 1 1

31 164 5 1 1 0 0 1

32 169 5 1 0 0 1 1

33 174 3 1 0 1

34 178 7 1 0 1 0 1 0 1

35 185 2 1 1

36 192 4 1 1 1 1

37 196 2 1 1

TABLE 6.36 M Blocks

j Pj Lj Bj

38 200 4 1 1 1 1

39 204 2 1 1

40 206 3 1 1 1

41 214 2 1 1

42 218 2 1 0

43 220 5 0 1 0 0 1

44 225 5 1 1 1 0 1

45 230 8 1 0 1 0 1 0 1 1

46 238 3 1 1 1

47 242 2 1 1

48 245 2 1 1

49 255 3 1 1 1

50 258 4 1 1 1 1

51 262 3 1 1 1

52 266 7 1 1 1 1 0 0 1

53 273 2 1 0

54 275 2 0 1

55 277 4 1 1 0 1

56 281 7 1 0 1 0 1 0 1

57 292 3 1 1 1

58 296 2 1 1

59 298 2 1 1

60 300 2 1 1

61 302 2 1 1

62 306 2 1 1

63 308 8 1 1 1 1 1 1 1 1

64 317 5 1 1 1 1 1

65 322 5 1 0 0 1 0

66 327 9 0 1 1 1 0 1 1 0 1

67 336 2 1 0

68 338 4 0 1 0 1

69 342 2 1 1

70 351 2 1 1

71 353 2 1 1

72 356 2 1 1

73 358 2 1 1

74 367 13 1 1 1 1 1 1 1 0 0 1 0 0 1
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Step 3: Inference of the c( j ) Pin Values Whenever the inferred move indicator is

M, a value of ci(qi[ j ]) is determined. The jth M block Bj

. Starts when the inferred move indicator is equal to M, and

. Ends when the inferred indicator is equal to M?

Tables 6.35 and 6.36 list the c1(q1[ j ]) values in the jth block Bj, the starting position Pj,

and the length Lj. To carry out the inference of the c1(q1[ j ]) pin-wheel values, the results

in Tables 6.35 and 6.36 are placed in a different tabular format. In Tables 6.37 to 6.43,

1. The first row lists the blocks B0, B1, . . . separated by a ?;

2. The starting position Pj of the jth block Bj is in the second row;

3. The length Lj of the jth block Bj is in the third row;

4. The bound M( j, jþ1) ; Pjþ1þ Ljþ12 (Pjþ Lj2 1) is in row 4.

Note that m(j, jþ1) ; q[pjþ1þ Ljþ1]2 q[ pjþ Ljþ 1] � M(j, jþ1).

For example

m(0,1) ¼ �1 0010011|fflfflfflfflffl{zfflfflfflfflffl}
B0

1011
zffl}|ffl{B1

m(0,1) ¼ 0 0010011|fflfflfflfflffl{zfflfflfflfflffl}
B0

1011
zffl}|ffl{B1

m(1,2) ¼ �1 1011|ffl{zffl}
B2

10
z}|{B2

m(1,2) ¼ 0 1011|ffl{zffl}
B1

10
z}|{B2

m(1,2) ¼ 1 1011?|fflffl{zfflffl}
B1

10
z}|{B2

? [ {0, 1}:

TABLE 6.37

0 0 1 0 0 1 1 ? 1 0 1 1 ? 1 0 ? 0 1 0 l 0 1 ? 1 1 ? 1 1

0 7 12 14 20 22

7 4 2 6 2 2

0 1 0 0 0

TABLE 6.38

? 1 1 1 ? 1 0 ? 0 1 ? 1 0 0 1 ? 1 0 ? 0 1 1 0 1 0 ?

27 54 58 60 67 70

3 2 2 4 2 6

3 24 2 0 3 1 2

TABLE 6.39

0 1 0 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 ? 1 1 1 ? 1 1 ?

78 89 91 95 98

11 2 4 3 2

0 0 0 0 0
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6.14.4 M-Block Concatenation: Finding c ( j )

The problem is to concatenate the M-blocks and by doing so to identify the unknown?

c1(q1[ j ]) values. A brute-force program tests all possible values of the unknown bits?

in an attempt to find the best match between pairs of blocks. This matching program

yields the following results:

0–54: 00 100111011010101111111111111111111111
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

11111|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
54–115: 1 0010011101101010111111111111111111111111111|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} 001
115–150: 10011101101010111111111111111111111111

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
From these results, the values of c1( j ) can be determined.

TABLE 6.43

1 0 1 0 1 0 1 ? 1 1 ? 1 1 1 1 ?

178 185 192

7 2 4

0 5

TABLE 6.40

1 1 ? 1 0 ? 0 1 0 ? 0 1 ? 1 0 1 ? 1 0 1 0 1 0 ?

100 112 116 119 123 126

2 2 3 2 3 6

10 2 0 2 0 0

TABLE 6.41

0 1 0 ? 1 1 1 1 1 1 1 1 1 1 ? 1 1 ? 1 1 1 1 ? 1 1 ?

132 136 146 148 152

3 10 2 4 2

1 0 0 0 0

TABLE 6.42

1 1 1 1 ? 1 1 ? 1 1 0 0 1 ? 1 0 0 1 1 ? 1 0 1 ?

155 160 164 169 174

4 2 5 5 3

1 2 0 0 1
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Step 4: Inference of p( j ) If the c1 pin-wheel is determined, the values in the move

indicator column in Tables 6.31–6.34 are determined. Note that

m(U½ j
) ¼ 1 ) MI( j) ¼ M

m(U½ j
) ¼ 0 ) MI( j) ¼ N

U½ j
 ¼ U½ j� 1
 þ p (V½ j
) (modulo 37):

Thus

MI( j) ¼ M and MI( jþ 1) ¼ N ) p(V½ j
) ¼ 1

MI( j) ¼ N and MI( jþ 1) ¼ M ) p(V½ j
) ¼ 1:

The values of j for which 1 ¼ p ( j (modulo 41)), inferred by this algorithm for j ¼ 0(1)65,

are listed in Table 6.44. Continuing this process, a sufficient number of steps will reveal all

valves 0 � j , 61 for which p ( j ) ¼ 1; the remaining values of p ( j ) are 0. If a mistake is

made and Equtions (6.12) and (6.13) lead to the conclusion p ( j ) ¼ 0, which is incorrect,

this will lead to a later inconsistency.

Step 5: Inference of m( j ) We again start with the idea leading to Equations (6.12)

and (6.13); with complete (?) knowledge of p (V[ j ]), inferences of the values of m(q[ j ])

TABLE 6.44

j MI( j ) MI( jþ l) j(mod 41) p( j(mod 61))

9 M N 9 1

11 N M 11 1

12 M N 12 1

13 N M 13 1

18 M N 18 1

19 N M 19 1

20 M N 20 1

21 N M 21 1

22 M N 22 1

26 N M 26 1

30 M N 30 1

31 N M 31 1

38 M N 38 1

40 N M 40 1

54 M N 54 1

57 M N 57 1

58 M N 58 1

59 M N 59 1

60 N M 60 1

62 M N 1 1

63 M N 2 1

65 M N 4 1
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and q[ j ] may be made:

m(u½ j
) ¼ 1 ) MI( j) ¼ M

m(u½ j
) ¼ 0 ) MI( j) ¼ N

u½ j
 ¼ (u½ j� 1
 þ p (v½ j
) (modulo 37):

This leads to the m[ j ]-inference rules in which q[ jþ 1] ¼ (q[ j ]þ S[ j ]) (modulo 37)

(Table 6.45), which completes the analysis.
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TABLE 6.45

MI( j ) MI( jþ l) p(V[( j ]) m(Q[j]) m(Q[ jþ 1]) S( j )

M N 1 1 0 1

M N 0 Impossible

M M 1 1 1 1

M M 0 1 1 0

N M 1 0 1 1

N M 0 Impossible

N N 1 0 0 1

N N 0 0 0 0
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CHA P T E R7
THE JAPANESE CIPHER MACHINES

THE J A P AN E S E introduced a family of cipher machines implementing

polyalphabetic substitution early in the twentieth century. Assigned color codes by the

Army Signal Intelligence Service, the first machine in this family, RED, used a half-rotor

in place of the Hebern rotor. RED was soon followed by PURPLE, which derived

ciphertext using stepping switches. This chapter describes these cipher machines and

outlines their cryptanalysis.

7.1 JAPANESE SIGNALING CONVENTIONS

Although the spoken Japanese and Chinese languages differ, they share a common written

language. Written Japanese, which originated in the ninth century, was derived from

Chinese and uses ideographs. The written language was simplified by introducing the

kana phonetic system, containing 48 basic syllables. Of the two kana versions developed,

hirigana and katagana, the latter was favored for telegraphic communications due to the

ease of reproducing its kana symbols.

In order to write Japanese using the Roman alphabet A,B,. . .,Z, each kana symbol is

assigned a Roman letter counterpart Romaji. The Hepburn Romaji system used by Japan

during World War II still remains in use today. The Hepburn-frequencies {f(t)} of the letters

A,B, . . .,Z derived from a sample of Romanized Japanese is given in Table 7.1. The

sample’s index of coincidence s2 	
P25

t¼0 f 2(t) ¼ 0:0819 is much larger than the value

s2 	 0.06875 for English. The letters L, Q, and X do not occur in the Romanized Japanese text.

A new cipher machine was introduced by the Japanese Foreign Office in 1930. Desig-

nated RED by the United States, Angooki Taipu A would soon be followed by other colors

of the rainbow – PURPLE, CORAL, and JADE. The diagnosis and cryptanalysis of RED

by the Army Signal Intelligence Service started in 1935 and was completed in one year.

RED was replaced in 1940 by Angooki Taipu B, designated PURPLE; its cryptana-

lysis was completed just before the bombing of Pearl Harbor. Intelligence gleaned from

PURPLE traffic gave the United States a decisive edge in World War II.

7.2 HALF-ROTORS

The RED machine used a half-rotor invented by Swedish cryptographer Arvid G. Damm.

Figure 7.1 depicts a half-rotor cipher machine system with keyboard input and lamp

output. Twenty-six wires connect pairs of contacts; one on the the rotor’s left lateral

face (LLF) to one on the rotor’s right lateral face (RLF). Although a stationary output
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contact plate (OCP) is still used to connect the rotor to the output, the input contact plate is

replaced by slip rings situated along a shaft attached to the rotor body. Each letter on the

(input) keyboard is connected to one of the half-rotor 26 slip rings. The slip rings rotate or

slip as the rotor and shaft turn. This mechanical linkage means that each letter is always

opposite the corresponding LLF letter in every rotor position.

Figure 7.2 shows the encipherment of the same plaintext letter Y by the half-rotor

system in two consecutive positions assuming that (1) the rotor’s internal wiring connects

LLF contact Y to RLF contact D and (2) the RLF contact D is opposite the OCP contact J in

the initial position. In the initial rotor position, depressing Y on the keyboard causes a

circuit to be completed composed of

1. A path from the keyboard Y to the slip ring Y contact;

2. A path from the slip ring Y contact to the LLF Y contact;

3. A rotor wire from the LLF Y contact to the RLF D contact;

Figure 7.1 A half-rotor cryptomachine schematic.

TABLE 7.1 Japanese Hebern 1-Gram Frequencies

t f (t) t f (t) t f (t)

A 0.0900 J 0.0125 S 0.0000

B 0.0175 K 0.0850 T 0.0475

C 0.0075 L 0.0000 U 0.0800

D 0.0175 M 0.0000 V 0.0000

E 0.0575 N 0.0225 W 0.0575

F 0.0075 O 0.0750 X 0.0000

G 0.0175 P 0.1575 Y 0.0900

H 0.0525 Q 0.0000 Z 0.0000

I 0.1300 R 0.0075
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4. A path from the RLF D contact to the OCP J contact; and finally

5. The path from the OCP J contact to lamp J.

These connections cause the half-rotor system to encipher plaintext Y to ciphertext J.
In the shifted rotor position, depressing the letterY on the keyboard now results in a com-

pleted circuit composed of the steps 1–3 above but counterclockwise rotation by one position

means that the RLF D contact is opposite the OCP I contact so that the circuit includes

4. A path from the RLF D contact to the OCP I contact; and finally

5. The path from the OCP I contact to lamp I.

These connections cause the half-rotor system to encipher plaintext Y to ciphertext I.
If u is the internal wiring substitution in (benchmark) position i ¼ 0, the half-rotor

substitution in position i is given by the formula y ¼ (C2iu) (x). Table 7.2 gives the sub-

stitutions for the half-rotor system in each position. It exhibits the characteristic property

of a half-rotor substitution; namely, the letters in each column trace out the standard alpha-

bet in reverse order z,y,. . . ,b,a.

7.3 COMPONENTS OF THE RED MACHINE

The components of the RED machine include

1. A 60-contact half-rotor wired so that it enciphers vowels to vowels and consonants

to consonants.

Figure 7.2 Encipherment path with keyboard Y depressed.
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2. A plugboard connecting typewriter (input) to the rotor slip rings, where the type-

writer keys for

(a) vowels A,E,I,O,U, and Y are connected to the six vowel slip rings, and

(b) consonants B,C,D,F, . . . , X,Z are connected to the 20 consonant slip rings.

3. A 47-position breakwheel, depicted in Figure 7.3, containing as many as 47 pins

p0, p1, . . . , p46, where the ith pin is either active pi ¼ 1, if present, or inactive

pi ¼ 0, if missing.

The breakwheel (rotated) counterclockwise or stepped from the current active pin to the

next active pin causes the counterclockwise rotation of the RED’s half-rotor. Irregular

stepping of the RED results from the removal of some pins, at least four and at most

six. Only the 11 pins p4, p5, p10, p11, p16, p19, p29, p30, p33, p38, p39 are removable. The

rotor normally steps one position after the encipherment of a letter, but the breakwheel

causes it to step kþ 1 position if k consecutive pins are removed.

7.3.1 The Breakwheel and its Stepping Sequence

The rotor’s position P(i) for the encipherment of plaintext letter xi is an integer P(i) with

0 � P(i) , 47; it depends on the initial position P(0) of the rotor and the locations of the

active pins.

TABLE 7.2 Half-Rotor Substitution Table for u

i A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 u q t g i v n w o j f c k z a h x b d r p y s l e m

1 t p s f h u m v n i e b j y z g w a c q o x r k d l

2 s o r e g t l u m h d a i x y f v z b p n w q j c k

3 r n q d f s k t l g c z h w x e u y a o m v p i b j

4 q m p c e r j s k f b y g v w d t x z n l u o h a i

5 p l o b d q i r j e a x f u v c s w y m k t n g z h

6 o k n a c p h q i d z w e t u b r v x l j s m f y g

7 n j m z b o g p h c y v d s t a q u w k i r l e x f

8 m i l y a n f o g b x u c r s z p t v j h q k d w e

9 l h k x z m e n f a w t b q r y o s u i g p j c v d

10 k g j w y l d m e z v s a p q x n r t h f o i b u c

11 j f i v x k c l d y u r z o p w m q s g e n h a t b

12 i e h u w j b k c x t q y n o v l p r f d m g z s a

13 h d g t v i a j b w s p x m n u k o q e c l f y r z

14 g c f s u h z i a v r o w l m t j n p d b k e x q y

15 f b e r t g y h z u q n v k 1 s i m o c a j d w p x

16 e a d q s f x g y t p m u j k r h l n b z i c v o w

17 d z c p r e w f x s o l t i j q g k m a y h b u n v

18 c y b o q d v e w r n k s h i p f j l z x g a t m u

19 b x a n p c u d v q m j r g h o e i k y w f z s l t

20 a w z m o b t c u p l i q f g n d h j x v e y r k s

21 z v y l n a s b t o k h p e f m c g i w u d x q j r

22 y u x k m z r a s n j g o d e l b f h v t c w p i q

23 x t w j l y q z r m i f n c d k a e g u s b v o h p

24 w s v i k x p y q l h e m b c j z d f t r a u n g o

25 v r u h j w o x p k g d l a b i y c e s q z t m f n
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The positions P(i) of the breakwheel and rotor changes just after the encipherment

of the (i2 1)st plaintext letter according to the following schedule:

1. If the pin at position P(i2 1)þ 1 is active, then d(i) ¼ 0 and P(i) ¼ P(i2 1)þ

1þ d(i);

2. If the pins at positions P(i2 1)þ 1, P(i2 2), . . . , P(i2 1)þ kþ 1 are inactive and

the pin at position P(i2 1)þ kþ 2 is active for k � 0, then d(i) ¼ k and

P(i) ¼ P(i2 1)þ 1þ d(k).

The sequence of rotor positions {P(i)} is determined by the formulas

P(i) ¼ P(i� 1)þ iþ d(i), 0 � i , 1 (7:1)

D(i) ¼
0, if i ¼ 0

D(i� 1)þ d(i), if 1 � i , 1
�

(7:2)

P(i) ¼ P(0)þ iþ D(i), 0 � i , 1: (7:3)

If N pins have been made inactive, then D(43) ¼ N, t ¼ 472 N and

D(i) ¼ N
i

t

� �
þ Dt(i), 0 � i , 1 (7:4)

Dt(i) ¼ D(i (modulo t)), 0 � i , 1 (7:5)

Dt(iþ t) ¼ Dt(i), 0 � i , 1: (7:6)

The function Dt (i) is periodic with period t.
{d(i)} is the sequence of stepping shifts and {D(i)} is the stepping sequence. P(i) is

sum of two terms

P(i) ¼ Q(i)þ Dt(i), 0 � i , 1 (7:7)

Q(i) ¼ P(0)þ iþ N
i

t

� �
, 0 � i , 1 (7:8)

Q(iþ t) ¼ Q(i)þ 47, 0 � i , 1 (7:9)

P(iþ t) ¼ P(i)þ 47, 0 � i , 1 (7:10)

where Q(i) depends only on the total number of inactive pins, but not their locations.

Figure 7.3 The breakwheel with pins

p4, p5, p16, p33 missing.
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Example 7.1
P(0) ¼ 0 and pins p4, p5, p16, and p33 are removed. The breakwheel stepping shifts {d(i)},
stepping sequences {D(i)}, and the rotor positions {P(i)} are given in Table 7.3.

Example 7.2
P(0) ¼ 11 and pins p4, p5, p16, and p33 are removed. The breakwheel stepping shifts

{d(i)}, stepping sequences {D(i)}, and rotor positions {P(i)} are given in Table 7.4.

Note that

. P(iþ t) ¼ P(i)þ 47 with t ¼ 43 ¼ 472 4 in both Examples 7.1 and 7.2; and

. The first inactive pin to the right of the initial position is pin p16 in Example 7.2, as

P(0) ¼ 11.

TABLE 7.3 Stepping Sequence and Rotor Positions for Example 7.1

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d(i) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

D(i) 0 0 0 0 2 2 2 2 2 2 2 2 2 2 3

P(i) 0 1 2 3 6 7 8 9 10 11 12 13 14 15 17

i 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

d(i) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D(i) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

P(i) 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

i 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

d(i) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D(i) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

P(i) 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

i 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

d(i) 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0

D(i) 4 4 6 6 6 6 6 6 6 6 6 6 7 7 7

P(i) 49 50 53 54 55 56 57 58 59 60 61 62 64 65 66

TABLE 7.4 Stepping Sequence and Rotor Positions in Example 7.2

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

d(i) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

D(i) 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P(i) 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30

i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

d(i) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D(i) 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

P(i) 31 32 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

i 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

d(i) 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

D(i) 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5

P(i) 53 54 55 56 57 58 59 60 61 62 64 65 66 67 68 69 70 71 72
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7.3.2 RED Encipherment Rules

The RED system initially defined the vowel set as VOW ¼ {A,E,I,O,U,Y}. This

vowel-to-vowel and consonant-to-consonant paradigm could have been achieved with two

half-rotors; a six-slip-ring half-rotor for the vowels and a 20-slip-ring half-rotor for the con-

sonants. The designers of RED chose instead to use a single 60-position rotor, where

60 ¼ lcm{16, 20} is the least common multiple of 6 and 20. When undertaking the cryptana-

lysis of RED, the U.S. Signals Intelligence Service built a replica of the RED machine using

two half-rotors, one to encipher vowels and a second for consonants.

The RED encipherment of vowels to vowels and consonants to consonants may be

described using the two Vigenère-like substitution tableaux shown next as Tables 7.5 and

7.6. These tables show that if RED enciphers T! k in position P ¼ 6

T! k ¼ C�6(u(T)) ¼ C�6(r)

TABLE 7.5 RED Vowel Substitution uV

A E I O U Y

0 u i o a y e

1 o e i y u a

2 i a e u o y

3 e y a o i u

4 a u y i e o

5 y o u e a i

TABLE 7.6 RED Consonant Substitution uC

i B C D F G H J K L M N P Q R S T V W X Z

0 q t g v n w j f c k z h x b d r p s l m

1 p s f t m v h d b j x g w z c q n r k l

2 n r d s l t g c z h w f v x b p m q j k

3 m q c r k s f b x g v d t w z n l p h j

4 l p b q j r d z w f t c s v x m k n g h

5 k n z p h q c x v d s b r t w l j m f g

6 j m x n g p b w t c r z q s v k h l d f

7 h l w m f n z v s b q x p r t j g k c d

8 g k v l d m x t r z p w n q s h f j b c

9 f j t k c l w s q x n v m p r g d h z b

10 d h s j b k v r p w m t l n q f c g x z

11 c g r h z j t q n v l s k m p d b f w x

12 b f q g x h s p m t k r j l n c z d v w

13 z d p f w g r n l s j q h k m b x c t v

14 x c n d v f q m k r h p g j l z w b s t

15 w b m c t d p l j q g n f h k x v z r s

16 v z l b s c n k h p f m d g j w t x q r

17 t x k z r b m j g n d l c f h v s w P q

18 s w j x q z l h f m c k b d g t r v n p

19 r v h w p x k g d l b j z c f s q t m n
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then RED enciphers U! u

U! u ¼ C�7(uV(U)) ¼ C�7(y)

in position Pþ 1 ¼ 7 ¼ 1 (modulo 6). The equations defining the RED substitution

require some additional notation; define VOW ¼ {A,E,I,O,U,Y} and

CON ¼ {B,C,D,F, . . . , W,X,Z}.
The ordinal functions ordVOW(x) with x [ VOW and ordCON(x) with x [ CON are

defined as

. ordVOW(x) being the position of x in the vowel alphabet VOW;

. ordCON(x) being the position of x in the consonant alphabet CON.

The inverses of ord functions are

. chrVOW( j ), the jth character in VOW with 0 � j , 6;

. chrCON( j ), the jth character in CON with 0 � j , 20.

For example,

. If ordVOW(I) ¼ 2, then chrVOW(2) ¼ I;

. If ordCON(C) ¼ 2, then chrCON(2) ¼ C.

The rules for RED encipherment/decipherment with the breakwheel in position

P(i) are

. VOW:

If the ith plaintext letter xi is a vowel, it is enciphered to yi [ VOW

xi ! zi ; (ordVOW(uV(xi)(� Dt(i)) (modulo 6)

zi ! yi ¼ chrVOW((zi � Q(i)) (modulo 6)): (7:11)

If the ith ciphertext letter yi is a vowel, it is deciphered to xi [ VOW

yi ! zi ¼ (ordVOW( yi)þ Q(i)) (modulo 6)

zi ! xi ¼ chrVOW((zi þ Dt(i)) (modulo 6)): (7:12)

. CON:

If the ith plaintext letter xi is a consonant, it is enciphered to yi [ CON

xi! zi ; (ordCON(uC(xi))� Dt(i)) (modulo 20)

zi! yi ¼ chrCON((zi � Q(i)) (modulo 20)): (7:13)

If the ith ciphertext letter yi is a consonant, it is deciphered to xi [ CON

yi! zi ¼ (ordCON( yi)þ Q(i)) (modulo 20)

zi! xi ¼ chrCON((zi þ Dt(i)) (modulo 20)): (7:14)

The shifted ciphertext is the vector z of ordinals.
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7.3.3 Estimating the Number of Pins Removed

The coincidence ziþt ¼ zi in the shifted ciphertext implies first that ziþt and zi are both

either vowels or consonants. As Dt(i) is periodic with period t, Equations (7.12) and

(7.14) show ziþt ¼ zi implies there is also a coincidence of plaintext values xiþt ¼ xi.

How likely is the coincidence xiþt ¼ xi? If the generation of plaintext is modeled by

the random process {Xi} of independent and identically distributed random variables with

1-gram probability distribution {p(t)}, then 1-gram X-coincidence (or Z-coincidence)

occurs with probability equal to the index of coincidence s2; for English-language text

Pr{Xi ¼ Xiþt} ¼ s2 	 0:0685:

This suggests that the k-value for English-language plaintext of length n should be

k(N) ¼
1

n� t

Xn�t�1
i¼0

x{zi¼ziþt}, t ¼ 47� N: ð7:15Þ

Evaluating k(N) might be used to test if the number of inactive pins is N. We should expect

k(N) 	 0.0685whenN is equal to the number of inactive pins, and a smaller value, otherwise.

Example 7.3
P(0) ¼ 0 and no pins are removed. Using the substitutions in Tables 7.5 and 7.6

the plaintext

The issue of performance evaluation and prediction has concerned users

throughout the history of computer evolution. In fact, as in any other

technological development, the issue is most acute when the technology is

young; the persistent pursuit of products with improved cost-performance

characteristics then constantly leads to untried uncertain features. From

the initial conception of a system architectural design to its daily

operation after installation. In the early planning phase of a new computer

system product, the manufacturer

is enciphered to

cipherEx7.3

rvaax wyeuk tolfu hpycv aymyw uijye mokpp hikev ruavr evlan hylji mohuc

dqtwi agnui fdhef ajvac yosqa dziho nezok awiub yxsop laton iloez dafto

tvwow egike prixa jilme zqpsi ivteo optol xuxos urtet lpohe hjkek ysuyf

eyovj lpewy npomz yfvku bceum ynxqe sufbl zovza kgxyk yxlar fsukd ygnab

tersa tulhy nunbe bjvze zsivx liqhq enaen kwyob rzoeb irlip feyjd eivec

icswi dknaa mucii jzecv agpua sumar epcyr ygxza rorno tasve qaxjz yevgh

uizui birig yekod xufob dqaxw okain olcgu ouffu hbuvt arfwl ipued ofyvv

ajfim ostyr fotqj olaws rvugu somaj fulyj qyhti dauxw ucyte ffibe nahiw

hzacy nkiun fjife hjvta hyyzm ynoqo honbz didis eziyq ezxri hecua gjech

rvaxu jisso jpemz ypwac fbiyb wumhl ipaep nhiwe ruavx
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(Note, to encipher, (1) all plaintext characters other than letters are deleted and (2)

the RED substitutions uV and uC are applied to the plaintext translated to upper-case

letters. RED ciphertext is displayed using lower-case letters.) Table 7.7 lists the normal-

ized kappa values k(N) for N ¼ 0(1)8; the entries are consistent with no pins being

removed.

Example 7.4
P(0) ¼ 0 and pins p4, p5, p16, and p33 are removed. The same substitutions uV, uC and

plaintext as in Example 7.3 produce the ciphertext shown next.

Table 7.8 lists the normalized kappa values k(N ) for N ¼ 0(1)8; the entries are

consistent with N ¼ 4 pins being removed.

7.4 CRIBBING RED CIPHERTEXT

We will describe the cryptanalysis of RED ciphertext using English-language text. The

vowel/consonant pattern of a (plaintext) crib u ¼ (u0, u1, . . . , uM21) is

x (u)¼ (x (u0), x (u1), . . . ,x (uM�1))
x (uj)¼ V, if uj [ VOW

x (uj)¼ C, if uj [ CON,

�
0� j,M: (7:16)

cipherEx7.4

rvaav toyih rejce dlixr oijis eyfiu hyfkk cufoq maiqm oqdag zydbi foxos

thlne ywfoe vtxyt uxlur oejgu spawe bomyw ikuan akfub weguz owuil papfo

fghoh eqite zcigu qasty hxwzy ycbua avbar fefax awzoz qtymo mnpop evuyh

eyoxl nqaxu pqinb ugwlo cdyim onxqy sifbl zevzi hdveh evjin bpygz ackew

qinpe pugcy jujve vdqte tnanq dajzj ygouf bniar jqaur yjcuf toexs oulor

urjmu qwbaa zupii tlanh yrboy foxyd azmoc oqjku cecxe fuddo xigqh eodmn

yogyo hoxom aiquj dukog jvadc opais onfji eihhi kcewv osgxm yqeuf agevv

ijfum yster fytqg ojatq psudo pijyf bohuf mudqe xuisr iwopy zzavy juzup

zrite gcoyf vzovi xzmle xaapc ydogo wodqp sisij ymaod ymlfa suneo rtuns

dhoke tuddy szowk ezhim pluyj futps iwaav tneda xoycf

TABLE 7.7 Normalized k-Values in Example 7.3

N k(N) N k(N) N k(N )

0 0.07063 3 0.06654 6 0.05515

1 0.05792 4 0.04428 7 0.05422

2 0.04444 5 0.05893 8 0.04029

TABLE 7.8 Normalized k -Values for Example 7.4

N k(N ) N k(N ) N k(N)

0 0.02230 3 0.05545 6 0.03676

1 0.03340 4 0.06273 7 0.05321

2 0.04815 5 0.04788 8 0.05495
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A necessary condition that the RED ciphertext fragment y[i,iþM ) ; ( yi, . . . , yiþM21) be

the encipherment of the (plaintext) crib u ¼ (u0, u1, . . . , uM21) is

uj [ VOW, yiþj [ VOW, if uj is a vowel

uj [ CON, yiþj [ CON, if uj is a consonant,

�
0 � j , M: (7:17)

To crib RED ciphertext for the plaintext u ¼ (u0, u1, . . . , uM21), the RED ciphertext is

searched for fragments y[i,iþM ) that have the same the vowel/consonant pattern as that

of u.

Of course, Equation (7.17) is only a necessary condition that u! y[i,iþM ) and some

fragments fail to correspond to plaintext crib. Additional constraints need to be imposed

before concluding that y[i,iþM ) is the encipherment of the crib u.

7.4.1 Cribbing RED Cipherment: No Inactive Breakwheel Pins

If all pins on the breakwheel are active, then t ¼ 47 and P(i) ¼ P(0)þ i. As P(0) is

unknown, the recovery of uV and uC by cryptanalysis assuming P(0) ¼ 0 will then be

related to Tables 7.5 and 7.6 by a shift in rows.

If y[i,iþM ) ¼ ( yi, yiþ1, . . . , yiþM21) is the RED encipherment of the crib

u ¼ (u0, u1, . . . , uM21), then Equations (7.11) to (7.14) are replaced by Equations (7.18)

to (7.21).

. VOW:

If the (iþ j )th plaintext letter xiþj is a vowel, it is enciphered to yiþj [ VOW

xiþj! ziþj ; ordVOW(uV(xiþj))

ziþj! yiþj ¼ chrVOW((ziþj � (iþ j)) (modulo 6)), 0 � j , M: (7:18)

If the (iþ j )th ciphertext letter yiþj is a vowel, it is deciphered to xiþj [ VOW

yiþj! ziþj ¼ (ordVOW( yiþj)þ (iþ j)) (modulo 6)

zi! xi ¼ chrVOW(ziþj), 0 � j , M: (7:19)

. CON:

If the (iþ j )th plaintext letter xiþj is a consonant, it is enciphered to yiþj [ CON

xiþj! ziþj ; ordCON(uC(xiþj))

ziþj! yiþj ¼ chrCON((ziþj � (iþ j)) (modulo 20)), 0 � j , M: (7:20)

If the (iþ j )th ciphertext letter yiþj is a consonant, it is deciphered to xiþj [ CON

yiþj! ziþj ¼ (ordCON( yiþj)þ (iþ j)) (modulo 20)

ziþj! xiþj ¼ chrCON(ziþj); 0 � j , M: (7:21)

If y[i,iþM ) ¼ ( yi, yiþ1, . . . , yiþM21) is the RED ciphertext of the crib

u ¼ (u0, u1, . . . , uM21), then Equations (7.19) and (7.21) determine the substitutions

uj ¼
uV(ziþj), if ziþj is a vowel

uC(ziþj), if ziþj is a consonent,

�
for 0 � j , M:

Example 7.5
As the plaintext of cipherEx7.3 describes aspects of performance evaluation, possible

cribs include
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1. PLANNINGPHASE

2. PERFORMANCE

3. EVALUATION

4. COMPUTERSYSTEM.

d(i) ¼ D(i) ¼ 0 and P(i) ¼ Q(i) ¼ i, because cipherEx7.3 resulted from RED enci-

pherment with all pins active.

We began by searching cipherEx7.3 for fragments y(i,iþ13) with the vowel/
consonant pattern CCVCCVCCCCVCV of the longest crib PLANNINGPHASE ¼
u ¼ (u0, u1, . . . , u12); one instance of this vowel/consonant pattern occurs at position

i ¼ 400. The search results are displayed in Table 7.9, which contains

Row 0: the vowel/consonant pattern;

Row 1: the crib (u0, u1, . . . , u12);

Row 2: the ciphertext ( y400, y401, . . . , y412);

Rows 3–6: for indices j corresponding to the vowels

. the ordinals of the ciphertext ordVOW( y400þj) (modulo 6),

. the breakwheel positions (400þ j ) (modulo 6),

. the shifted ciphertext z400þj, and

. the recovered letter-substitutions x400þj ¼ uV(z400þj).

Rows 7–10: for indices j corresponding to the consonants

. the ordinals of the ciphertext ordVOW( y400þj) (modulo 20),

. the breakwheel positions (400þ j ) (modulo 20),

. the shifted ciphertext z400þj, and

. the recovered letter substitutions x400þj ¼ uC(z400þj).

If we make the assumption PLANNINGPHASE! hbuvtarfwlipu, then several

entries in row 0 of Tables 7.5 and 7.6 are determined. These are shown in Tables 7.10

and 7.11. Next, we search cipherEx7.3 for fragments y(i,iþ10) with the vowel/conso-
nant pattern CVCCVCCVCCV of the crib PERFORMANCE ¼ u ¼ (u0, u1, . . . , u10). The

TABLE 7.9 Possible Ciphertext Fragment of the Crib PLANNINGPHASE in
cipherEx7.3

0. C C V C C V C C C C V C V

1. P L A N N I N G P H A S E

2. h b u v t a r f w l i p u

3. 4 0 2 4

4. 0 3 2 4

5. 4 3 5 2

6. u o u i

7. 5 0 16 15 13 3 17 8 11

8. 0 1 3 4 6 7 8 9 11

9. 5 1 19 19 19 10 5 17 2

10. h c z z z n h w d
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search finds six occurrences of this vowel/consonant pattern, which are listed in

Table 7.12. In each row we find

. The position in the ciphertext where this pattern occurs, and

. Assuming the fragment corresponds to the crib, the resulting recovered letter

substitutions

uj ¼
uV(ziþj), if uj is a vowel

uC(ziþj), if uj is a consonant:

�
It is not true that all of the entries found in the search correspond to the crib. An entry in

Table 7.12 will be rejected if it leads to a contradiction with values in Tables 7.10 and 7.11.

For example,

1. PERFORMANCE! wudtazgtibzi implies uC(P) ¼ w, inconsistent with
Table 7.11 entry uC(P) ¼ h.

2. PERFORMANCE! vabkuztitwu implies uC(P) ¼ v, inconsistent with
Table 7.11 entry uC(P) ¼ h.

3. PERFORMANCE! picdavdedrt implies uC(P) ¼ p, inconsistent with
Table 7.11 entry uC(P) ¼ h.

4. PERFORMANCE! davdedriksa implies uC(P) ¼ d, inconsistent with
Table 7.11 entry uC(P) ¼ h.

Only PERFORMANCE! hibvabkuzti, appearing at both positions 10 and 231, leads

to letter substitutions that are consistent with the current partial reconstruction of the

TABLE 7.10 Partial Reconstruction of Row 0
of uV from the Cribs PLANNINGPHASE

A E I o U Y

# # # # # #

u i o

TABLE 7.11 Partial Reconstruction of Row 0 of uC from the Crib PLANNINGPHASE

B C D F G H J K L M N P Q R S T V W X Z

# # # # # # # # # # # # # # # # # # # #

n w c z h d

TABLE 7.12 Possible Ciphertext Fragments of the Crib
PERFORMANCE in cipherEx7.3

C V C C V C C V C C V

P E R F O R M A N C E

10 h i b v a b k u z t i

44 w u d t a z t i b z i

231 h i b v a b k u z t i

234 v a b k u z t i t w u

545 p i c d s v d e d r i

548 d a v d e d r i j s a
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substitution uV and uC. Accepting the cribs for PERFORMANCE at positions 10 and 231

allows us to further reconstruct the rotors, as shown in Tables 7.13 and 7.14.

Finally, we search cipherEx7.3 for fragments y(i,iþ9) with the vowel/consonant
pattern VCVCVVCVVC of the crib EVALUATION ¼ u ¼ (u0, u1, . . . , u9). The search finds
one occurrence of this vowel/consonant pattern, which is listed in Table 7.15 with

the same format as used in Table 7.12. All of the letter substitutions in Table 7.15 are

consistent with the entries in Tables 7.13 and 7.14. The crib of EVALUATION
augments the partial reconstruction of the rotors shown in Tables 7.16 and 7.17. The

search for additional words or a partial decipherment can be used to complete the

cryptanalysis.

7.4.2 Cribbing RED Ciphertext with Inactive Pins

We begin by computing the k(N )-scores and identifying the most likely number N of inac-

tive pins.

A stepping equation is an equation of the form

s ¼ Cdt(k)(t), 0 � k , t,

TABLE 7.14 Partial Reconstruction of Row 0 of uC from the
Cribs PERFORMANCE and PLANNINGPHASE

B C D F G H J K L M N P Q R S T V W X Z

# # # # # # # # # # # # # # # # # # # #

t v n w c k z h b d

TABLE 7.13 Partial Reconstruction of
Row 0 of uV from the Cribs
PERFORMANCE and PLANNINGPHASE

A E I o U Y

# # # # # #

u i o a

TABLE 7.15 Possible Cribs of EVALUATION in
cipherEx7.3

V C V C V V C V V C

E V A L U A T I O N

21 i p u c y u r o a z

TABLE 7.16 Partial Reconstruction of
Row 0 uC from Cribs PERFORMANCE,
PLANNINGPHASE, and EVALUATION

A E I o U Y

# # # # # #

u i o a
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where t is a letter in the crib and s a letter in the ciphertext fragment that has the same

vowel/consonant pattern as the crib.

If a search of the ciphertext has found a fragment y(i,iþM ) with the same vowel/con-
sonant pattern as a (plaintext) crib u ¼ (u0, u1, . . . , uM21), Equations (7.19) and (7.21)

provide several stepping equations.

Example 7.6
As the ciphertext cipherEx7.4 has been enciphered with N ¼ 4 inactive pins, the

sequence {Dt(i)} is periodic with period 43. As in the previous example, we search for

vowel/consonant patterns that are consistent with the cribs PLANNINGPHASE,
PERFORMANCE, EVALUATION, and COMPUTERSYSTEM.

We begin by searching cipherEx7.3 for fragments y(i,iþ13) with the vowel/
consonant pattern CCVCCVCCCCVCV of the longest crib PLANNINGPHASE ¼ u ¼
(u0, u1, . . . , u12), one instance of this vowel/consonant pattern occurs at position

i ¼ 400. The search results are displayed in Table 7.18. The entries are in Table 7.18

are organized as follows:

Row 0: the vowel/consonant pattern;

Row 1: the crib (u0, u1, . . . , u12);

Row 2: the ciphertext ( y400, y401, . . . , y412);

Rows 3–7: for indices j corresponding to the vowels

. the ordinals of the ciphertext ordVOW( y400þj ) (modulo 6),

. the breakwheel positions (400þ j ) (modulo 6),

. the shifted ciphertext z400þj,

TABLE 7.18 Potential Cribs of PLANNINGPHASE in cipherEx7.4

0. C C V C C V C C C C V C V

1. P L A N N I N G P H A S E

2. k c e w v o s g x m y q e

3. 1 3 5 1

4. 0 3 2 4

5. 1 0 1 5

6. e a e y

7. 15 18 23 25

8. 7 0 17 16 14 4 18 9 12

9. 16 17 19 0 2 3 4 5 7

10. 3 17 5 16 16 7 2 14 19

11. f x v v v k d s z

12. 13 14 16 17 19 20 21 22 24

TABLE 7.17 Partial Reconstruction of Row 0 of uB from the
Cribs PERFORMANCE, PLANNINGPHASE, and EVALUATION

B C D F G H J K L M N P Q R S T V W X Z

# # # # # # # # # # # # # # # # # # # #

t v n w c k z h b d r p
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. the character chrVOW(z400þj),

. (iþ j )(modulo 43).

Rows 8–12: for indices j corresponding to the consonants,

. the ordinals of the ciphertext ordVOW(y400þj (modulo 20)),

. the breakwheel positions Q(400þ j ) (modulo 20),

. the shifted ciphertext z400þj,

. the character chrCON(z400þj),

. (iþ j ) (modulo 43).

The stepping equations derived from Table 7.18 are listed in Table 7.19.

Analysis
As f follows d in the consonant set, the stepping equations in Table 7.19

uC(P) ¼ Cd43(13)(f) uC(P) ¼ Cd43(21)(d) (7:22)

require

d43(21) ¼ 1þ d43(13):

The stepping equations in Table 7.19

uV(A) ¼ Cd43(15)(e) uV(A) ¼ Cd43(23)(e) (7:23)

require

d43(15) ¼ d43(23): (7:24)

We claim d43(25) ¼ d43(23); for proof, use the stepping equations in Table 7.19:

uV(I) ¼ Cd43(18)(a) (7:25)

uV(E) ¼ Cd43(25)(y): (7:26)

As d43(25) � d43(23)þ 2, there are two possibilities; if d43(25) ¼ 1þ d43(23), Equation
(7.26) gives

uV(E) ¼ Cd43 (25)(y) ¼ Cd43(23)(a), (7:27)

which is inconsistent with Equation (7.23). If d43(25) ¼ 2þ d43(23), Equation (7.26) gives

uV(E) ¼ Cd43(25)(y) ¼ Cd43(23)(e), ð7:28Þ

which is also inconsistent with Equation (7.23). Thus, d43(18) ¼ d43(25).

TABLE 7.19 The Stepping Equations Derived from Table 7.18

uC(P) ¼ Cd43(13)(f) uC(L) ¼ Cd43(14)(x) uV(A) ¼ Cd43(15)(e)

uC(N) ¼ Cd43(16)(v) uC(N) ¼ Cd43(17)(v) uV(I) ¼ Cd43(18)(a)

uC(N) ¼ Cd43(19)(v) uC(G) ¼ Cd43(20)(k) uC(P) ¼ Cd43(21)(d)

uC(H) ¼ Cd43(22)(s) uV(A) ¼ Cd43(23)(e) uC(S) ¼ Cd43(24)(z)

uV(E) ¼ Cd43(25)(y)
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The stepping equations

uC(L) ¼ Cd43(14)(x) (7:29)

uC(N) ¼ Cd43(16)(v) ¼ Cd43(17)(v) ¼ Cd43(19)(v) (7:30)

require d43(14) ¼ 1þ d43(13). We conclude that

d43(13) ¼ i, d43(14) ¼ d43(15) ¼ � � � ¼ d43(25) ¼ iþ 1 (4:31)

for some i with 0 � i � 3. The solutions consistent with Equations (7.22) to (7.31) are

given in Table 7.20.

Searching the ciphertext for the cribs PERFORMANCE, EVALUATION, and

COMPUTERSYSTEM yields the results given in Tables 7.21 to 7.23, which list

Row 0: the vowel/consonant pattern,

Row 1: the crib u ¼ (u0, u1, . . . , uM21),

in row-pairs (2j, 2jþ 1)

Row 2j: the position i in the ciphertext at which the ciphertext fragment y(i,iþM )

occurs together with the characters of the shifted ciphertext z(i,iþM ).

Row 2jþ 1: the values of (iþ j ) (modulo 43).

The entry in Table 7.21 corresponding to the fragment at position 10 is the stepping

equation Cd43(10)
(P) ¼ f.

TABLE 7.21 Potential Cribs of PERFORMANCE in cipherEx7.4

C V C C V C C V C C V

P E R F O R M A N C E

10 f a x s o w g e v q y

10 11 12 13 14 15 16 17 18 19 20

44 w u d r u w r a x w a

1 2 3 4 5 6 7 8 9 10 11

231 d y w r o w g e v q y

16 17 18 19 20 21 22 23 24 25 26

234 r o w g e v q y q s e

19 20 21 22 23 24 25 26 27 28 29

545 l u w x i q x o x m u

29 30 31 32 33 34 35 36 37 38 39

548 x i q x o x m u f n i

32 33 34 35 36 37 38 39 40 41 42

TABLE 7.20 Letter Substitutions Implied by Table 7.19

i uC(P) uC(L) uV(A) uC(N) uV(I) uC(G) uC(H) uC(S) uV(E)

0 f z i w e l s b a

1 g b o x i m t c e

2 h c u z o n w d i

3 j d y b u p v f o
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Analysis
We assume that PLANNINGPHASE occurs in cipherEx7.4 and that the entries in one

of the rows in Table 7.20 are correct. To identify which entries in Table 7.21 are truly the

cribs of PERFORMANCE, we look for contradictions in Tables 7.20.

1. If PERFORMANCE! wudruwraxwa at position 44 ¼ 1 (modulo 43), then the

implied stepping equation uV(E) ¼ Cd43(2)
(u) is inconsistent with the entries in

Table 7.20.

2. If PERFORMANCE! rowgevqyqse at position 234 (modulo 43) ¼ 19, then the

implied stepping equation uC(P) ¼ Cd43(19)
(r) is inconsistent with the entries in

Table 7.20.

3. If PERFORMANCE! luwxiqxoxmu at position 545 (modulo 43) ¼ 29, then the

implied stepping equation uC(P) ¼ Cd43(29)(l) is inconsistent with the entries in

Table 7.20.

4. If PERFORMANCE! xiqxoxmufni at position 548 (modulo 43) ¼ 32, then the

implied stepping equation uC(P) ¼ Cd43(32)
(x) is inconsistent with the entries in

Table 7.20.

5. If PERFORMANCE! dywrowgevqy at position 231 (modulo 43) ¼ 16, then the

implied stepping equation uC(R) ¼ Cd43(18)(w) ¼ z is inconsistent with the i ¼ 0

entries in Table 7.20.

6. If PERFORMANCE! dywrowgevqy at position 231 (modulo 43) ¼ 16, then the

implied stepping equation uC(R) ¼ Cd43(18)(w) ¼ b is inconsistent with the i ¼ 1

entries in Table 7.20.

7. If PERFORMANCE! dywxowgevqy at position 231 (modulo 43) ¼ 16, then the

implied stepping equation uC(P) ¼ Cd43(1d )
(w) ¼ j is inconsistent with the i ¼ 3

entries in Table 7.20.

As i ¼ 2,

PERFORMANCE!
faxsowgevqy
dywrowgevqy

�

TABLE 7.22 Potential Cribs of EVALUATION in cipherEx7.4

V C V C V V C V V C

E V A L U A T I O N

21 y l e x i e n a o t

21 22 23 24 25 26 27 28 29 30

TABLE 7.23 Potential Cribs of COMPUTER SYSTEM in cipherEx7.4

C V C C V C V C C V C C V C

C O M P U T E R S Y S T E M

419 p i f c e m u v x o x r i k

32 33 34 35 36 37 38 39 40 41 42 0 1 2

447 r e q n i w y w g i z n i x

17 18 19 20 21 22 23 24 25 26 27 28 29 30
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provides additional letter substitutions and stepping sequence values

d43(i) ¼
2, if 10 � i � 13

3, if 14 � i � 26:

�
(7:32)

The crib ylexienaot of EVALUATION provides three additional stepping equations

uC(V) ¼ Cd43(22)(l) (7:33)

uV(U) ¼ Cd43(25)(i) (7:34)

uC(T) ¼ Cd43(27)(n) (7:35)

and the stepping sequence value

D43(i) ¼
3, if 27 � i � 29

4, if i � 30:

�
(7:36)

The partial reconstruction of the two rotors yields the six vowel substitutes and 13 of the

20 consonant substitutes.

7.5 GENERALIZED VOWELS AND CONSONANTS

Changes in RED were made after it was put into service; the letters were divided into two

sets VOW with six elements and CON with 20 elements. A plugboard connected the

VOW keyboard letters to the slip-ring vowels A, E, I, O, U, and Y, and the OCP vowels

A, E, I, O, U, and Y were connected to the lamps in VOW. The same process was

carried out with respect to the letters in CON.

The plugboard connections are part of the key and must be recovered. Fortunately,

the process is quite simple; Table 7.24 lists the frequencies of occurrence of the

(ciphertext) letters in cipherEx7.4. Note that the frequencies of the vowels A, E, I,
O, U, and Y are in excess of 0.0615, and those of consonants are bounded above by

0.0427. Thus, simple frequency counts negate the effect of using generalized vowels/
consonants.

TABLE 7.24 1-Gram Letter Counts and Frequencies in cipherEx7.4

t N(t) f (t) t N(t) f (t) t N(t) f (t)

a 37 0.0632 j 21 0.0359 s 17 0.0291

b 12 0.0205 k 10 0.0171 t 19 0.0325

c 16 0.0274 l 12 0.0205 u 40 0.0684

d 22 0.0376 m 17 0.0291 v 18 0.0308

e 36 0.0615 n 17 0.0291 w 15 0.0256

f 25 0.0427 o 50 0.0855 x 19 0.0325

g 17 0.0291 P 19 0.0325 y 37 0.0632

h 17 0.0291 q 22 0.0376 z 20 0.0342

i 36 0.0615 r 14 0.0239
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7.6 “CLIMB MOUNT ITAKA” – WAR!

The following was included in a cable sent November 19, 1941, from the Japanese Foreign

Ministry to all Japanese foreign diplomatic posts:

� � �Consequently, we will include in the middle and at
the end of our Japanese language news programs beamed
to all points one or another or all of the following
code phrases:

1. HIGASHI NO KAZE AME (East Wind Rain) meaning relations with America are

not according to expectations.

2. KITANOKAZE KUMORI (North Wind Cloudy) meaning relations with Soviet

Union are not according to expectations.

3. NISHO NO KAZE HARE (West Wind Clear) meaning relations with England are

not according to expectations.

When you hear any or all of these phrases repeated twice in
the newscasts, destroy your codes and confidential papers.

A new Japanese machine ciphermachine (Fig. 7.4) went into service in March 1939

[Rowlett and Kahn, 1998], designated by the Japanese as 97-shiki O-bun In-ji-ki (Alpha-

betical Typewriter ’97), the number 97 signaling the year 2597 of its creation in the Japa-

nese calendar [Kahn, 1967]. It was also referred to as Angooki taipu B (Cryptographic

system, type B) and PURPLE by the United States intelligence community.

PURPLE replaced the Type Number ’91 [Farago, 1967], also referred to as Angooki

taipu A (Cryptographic system, type A) and RED. Alphabetical Typewriter ’97 was

Figure 7.4 Japanese PURPLE machine (Courtesy of NSA).
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developed by naval Captain Risaburo Ito, who had also helped design the Red code

machine. Ito was familiar with Yardley’s success in cryptanalyzing the Japanese codes

during the 1921 Admiralty Conference.

7.7 COMPONENTS OF THE PURPLE MACHINE

PURPLE had a typewriter input, lamp output, a plugboard, and an internal switch imple-

menting polyalphabetic substitutions. The rotor in the RED system was replaced by

25-position stepping switches or steppers, which were used as components in the automatic

dial telephone system in the United States in the 1930s. A stepper allows any input line to

be connected to any output line. The top and side views of a PURPLE stepper are depicted

in Figure 7.5. The wiper or (blade) moves horizontally; passing between a pair of com-

pressed contacts creates an electrical path from the input to output lines.

7.7.1 Encipherment of Letters in VOW

PURPLE continued the paradigm used in RED to encipher vowels to vowels and

consonants to consonants. The wipers on all levels pointed in each level to the same

output position and moved in unison, rotating (or stepping) one position for each letter

enciphered. The PURPLE vowel-stepper implemented 25 (different) permutations of

the vowels VOW ¼ {A, E, I, O, U, Y} (Fig. 7.6).

To allow encipherment of generalized vowels as in RED, a plugboard connected

. The VOW keyboard letters to the six input contacts on the six levels, and

. From each of the 25 letter outputs on each level to the VOW output lamps.

The PURPLE vowel-stepper implemented a periodic polyphabetic substitution with

period 25. The vowel x is enciphered to the vowel y as a result of Three transformations

x! yð1Þ ! yð2Þ ! ð3Þ ¼ y ¼ PURVðxÞ: (7:37)

Transformation #1

x! yð1Þ ¼ PLVðxÞ

Figure 7.5 Side and top view of stepping switch.
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where PLV(x) is the letter on the vowel-stepper to which vowel x is connected by the

vowel-plugboard.

Transformation #2

yð1Þ ! yð2Þ ¼ VSVPððiþi0ðVÞÞ ðmodulo 25ÞÞð yð1ÞÞ

where VSVPððiþi0ðVÞÞ ðmodulo 25ÞÞ is the vowel-stepper substitution in position VP((iþ i0(V ))

(modulo 25)) with i0(V ) being the initial position of the vowel-stepper.

Transformation #3

yð2Þ ! yð3Þ ¼ PL�1V ð yð2ÞÞ ¼ y ¼ PURVðxÞ

where y is the output lamp letter to which output vowel y(1) is connected by the inverse

vowel-plugboard PLV
21. The period of x! y ¼ PURV is 25.

7.7.2 Encipherment of Letters in CON

The PURPLE encipherment of consonants used three banks, each consisting of four (six-

level) 25-position consonant-steppers (C-steppers), connected in tandem. Only 20 of the

24 contacts in each bank were used; the remaining contacts were used to control the

motion of the wipers. A permutation network P(i, iþ 1) connected the outputs of

the Bank i C-stepper to the inputs of the Bank iþ 1 consonant-stepper for i ¼ 0, 1, 2

and from Bank 3 to the output consonant-plugboard. Each bank interconnection

P(i, iþ 1) used 20 � 25 wires. In each bank, the wipers pointed in each level to the

same position and moved in usison, as with the V-stepper.

The motion of the wipers, however, was different in each bank – either fast (F),

medium (M), or slow (S). Only one of the three C-stepper wipers moved (rotated) with

the encipherment of a letter. The position of the Bank k C-stepper for the encipherment

of the plaintext letter in the ith position is denoted by CposM(k),iþIC0(k)
where M(k)

Figure 7.6 The PURPLE vowel-stepper.
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denotes the motion type of Bank k

MðkÞ ¼

F, if Bank k wiper’s motion is fast

M, if Bank k wiper’s motion is medium

S, if Bank k wiper’s motion is slow

8><>: (7:38)

where IC0(k) is the initial position of the Bank k wiper.

Linkages were constructed so that the movement of the three banks could be set to

any of the six combinations:

ðF, M, SÞ ;
F M S

0 1 2

� �
ðF, S, MÞ ;

F S M

0 1 2

� �
ðM, S, FÞ ;

M S F

0 1 2

� �

ðM, F, SÞ ;
M F S

0 1 2

� �
ðS, M, FÞ ;

S M F

0 1 2

� �
ðS, F, MÞ ;

S F M

0 1 2

� �

Figure 7.7 shows a PURPLE switch, and Figure 7.8 depicts the consonant banks

with the input/output contacts on each bank labeled c0, c1, . . . , c19.
The motion of the C-steppers is arranged according to the following recursions:

. The V-wiper of the V-stepper is stepped once for the encipherment of any letter:

VP(i) ¼ VP(i� 1) (modulo 25): (7:39)

Figure 7.7 PURPLE switch (courtesy of NSA).
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. TheM-wiper of amedium C-stepper bank (M) is stepped once each time the V-wiper

of the V-stepper moved from position 24 to position 0:

CPM(i) ¼
(CPM(i� 1)þ 1 (modulo 25), if VP(i� 1) ¼ 24

CPM(i� 1), otherwise:

(
(7:40)

Figure 7.8 Consonant banks with consonant-plugboard connections from

CON ¼ {B,C,D,. . .,W,X,Z}
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. The S-wiper of a slow C-stepper bank (S) is stepped once just before the M-wiper of

the medium C-stepper bank is moved from position 24 to 0:

CPS(i)¼

(CPS(i� 1)þ 1) (modulo 25), if VP(i� 1)¼ 23

and CPM(i� 1)¼ 24

CPS(i� 1), otherwise:

8<: (7:41)

. The F-wiper of the fast C-stepper bank (F) is stepped once for each letter unless the

S-wiper or M-wiper of either the slow or medium C-stepper bank is moved, in which

case the F-wiper did not move:

CPF(i)¼

(CPF(i), if VP(i� 1)¼ 24 or VP(i� 1)¼ 23

and CPM(i� 1)¼ 24

(CPF(i� 1)þ 1) (modulo 25), otherwise:

8<:
(7:42)

The encipherment of the consonant x to the consonant y is a result of seven transformations

x! y(1)! y(2)! y(3)! y(4)! y(5)! y(6)! y(7) ¼ y ¼ PURC(x): (7:43)

Transformation #1

x! y(1) ¼ PLC(x),

where PLC(x) is the letter on the C-stepper to which consonant x is connected by the

consonant-plugboard.

Transformation #2

y(1)! y(2) ¼ CS(0)
CP(0)((iþi0(C(0))) (modulo 25))

( y(1)),

where CS(0) is the Bank 0 C-stepper substitition whose position is CP(0) ((iþ i0(C
(0)))

(modulo 25)) with i0(C
(0)) being the initial position of the Bank 0 C-stepper.

Transformation #3

y(2)! y(3) ¼
Y

(0, 1)( y(2)),

where
Q

(0, 1) is the permutation network between Banks 0 and 1.

Transformation #4

y(3)! y(4) ¼ CS(1)
CP(1)((iþi0(C(1))) (modulo 25))

( y(3)),

where CS(1) is the Bank 1 C-stepper substitition whose position is CP(1) ((iþ i0(C
(1)))

(modulo 25)) with i0(C
(1)) being the initial position of the Bank 1 C-stepper.

Transformation #5

y(4)! y(5) ¼
Y

(1, 2)( y(4)),

where
Q

(1, 2) is the permutation network between Banks 1 and 2.
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Transformation #6

y(5)! y(6) ¼ CS(2)
CP(2)((iþi0(C(2))) (modulo 25))

( y(5)),

where CS(2) is the Bank 2 C-stepper substitition whose position is CP(2) ((iþ i0(C
(2)))

(modulo 25)) with i0(C
(2)) being the initial position of the Bank 1 C-stepper.

Transformation #7

y(6)! y(7) ¼ PLC
�1( y(6)) ¼ y ¼ PURC(x);

where y is the output lamp letter whose output vowel y(6) is connected by the inverse

consonant-plugboard PLC
21.

7.7.3 The Period of x! y 5 PURC(x)

To calculate the period of the consonant encipherment, define the positional state of the F-,

M-, S-, and V-steppers for the encipherment of the ith plaintext letter xi by

v(i) ¼

CPF(i)

CPM(i)

CPS(i)

VP(i)

0BB@
1CCA

Proposition 7.1: v(i) is periodic with period tC ¼ 253.

Proof : We give the proof only for the case i0(V ) ¼ i0(C
(0)) ¼ i0(C

(1)) ¼
i0(C

(2)) ¼ 0. Equation (7.39) shows that

VP(i) ¼ VP(iþ 25), i ¼ 0, 1, . . . : (7:44)

Equation (7.40) shows that

CPM(i) ¼
i

25

� �
(modulo 25), i ¼ 0, 1, . . . , (7:45)

which implies

CPM(i) ¼ CPM(iþ 252), i ¼ 0, 1, . . . : (7:46)

In order that the position i satisfy

VP(i� 1) ¼ 24 VP(i) ¼ 0

CPM(i� 1) ¼ 24 CPM(i) ¼ 0

� �
,

it is required that

i� 1 ¼ 24þ 25k, 24 ¼
i� 1

25

� �
! i� 1 ¼ 624þ 252j, j ¼ 0, 1, . . . : (7:47)

In order that the position i satisfies

VP(i� 2) ¼ 22 VP(i� 1) ¼ 23

CPM(i� 2) ¼ 24 CPM(i� 1) ¼ 24

� �
,
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it is required that

i� 1 ¼ 23þ 25k, 24 ¼
i� 1

25

� �
! i� 1 ¼ 623þ 252j, j ¼ 0, 1, . . . : (7:48)

Using Equation (7.41) we conclude

CPS(i) ¼
iþ 1

252

� �
(modulo 25), i ¼ 0, 1, . . . : (7:49)

Equation (7.42) shows that CPF( j2 1) increases by 1 modulo 25 except for those

positions j for which

(VP( j� 1) ¼ 24) or
VP( j� 1) ¼ 23

CPM( j� 1) ¼ 24

� �
: (7:50)

As the conditions in Equation (7.50) are mutually exclusive, the number of solutions of

Equation (7.50) with j � i is i
25

� �
þ iþ1

252

� �
, which gives

CPF(i) ¼ i�
i

25

� �
þ

iþ 1

252

� �� �
(modulo 25): (7:51)

Equations (7.44), (7.45), (7.49), and (7.51) show that the vowel- and consonant-stepper

positions are periodic with period 253.

7.8 THE PURPLE KEYS

There are seven elements comprising the PURPLE key:

PK1. The plugboard connections – #PK1 ¼
26

6

� �
� 6!� 20!;

PK2. The VOW-stepper implementing 25 permutations of the six-letter input/output
pairs2 #PK2 ¼ (6!)25;

PK3. The initial position i0 VOW of the vowel stepper – #PK3 ¼ 25;

PK4. The 25 permutations in each of the four consonant-stepper banks –

#PK4 ¼ (20!25)3;

PK5. The initial positions (i0(C
(0)), i0(C

(1)), i0(C
(2)) of the consonant steppers –

#PK5 ¼ 253;

PK6. The interconnection permutations
Q

0,1 and
Q

1,2 betwecn Banks i and iþ 1 for

i ¼ 0, 1 – #PK6 ¼ 20!2; and

PK7. The motions of the consonant steppers2 #PK7 ¼ 6.

Of course, not all of these #PK ; #PK1 � #PK2 � #PK3 � #PK4 � #PK5 � #PK6 �

#PK7 keys are independent; for example, the composition of a consonant-stepper CS

and the interconnection permutation
Q

to the next bank is equivalent to just another

consonant-stepper. Even so, the PURPLE had a substantial key space.

The Ko codebook listed basic operating instructions for PURPLE; the Otsu code-

book listed plugboard settings, which were prescribed in advance and used throughout

the Japanese network. Some papers on PURPLE suggest initial wheel settings might

have been chosen randomly by the sender and included (in plaintext) in the message indi-

cator. Later, the Otsu codebook listed a set of values whose labels were included in the

message indicator.
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Why did PURPLE succumb to cryptanalysis with such a large key space? Although

the rotors of the Enigmamachine were permanently wired, three of them could be selected

from some set and their order varied. In the PURPLE system, the stepper wiring and the

bank-to-bank interconnections were fixed; only the plugboard connections, the initial pos-

itions, and the motion of the steppers could be changed. If cryptanalysis recovered the

fixed hidden components of the key, the secrecy of future messages would rest only on

the three components of the key that could be set. Still, #PK1 � #PK5 � #PK7 is too

large for systematic key trial. The success in cryptanalyzing PURPLE is largely due to

the brilliance of the analysts, as related in the work of Rowlett and Kahn [1998]. Accord-

ing to Deavours and Kruh [1985], the PURPLE team included Frank Rowlett, Robert

Ferner, Albert Small, Sam Snyder, Genevive Grotjan, and Mary Jo Denning. The discov-

ery of internal relations in the consonant encipherment (described in Section 7.10) and

how they could be applied to unravel the mystery is part of the answer. Finally,

PURPLE, like the German cipher machines, appeared on the scene just as computers

were being developed. Rowlett and Kahn [1998, p. 147], while mentioning the availability

of the IBM accounting machines, concluded it was faster to build a PURPLE replica and

make tests with it.

Example 7.7
PURPLE Parameters are given as in the following tables, including Table 7.25, where

KB ¼ keyboard, VS ¼ vowel stepper, and CS ¼ consonant stepper.

Notation : The V- and C-Stepper tables shown above are examples of ciphertext

alphabets, with the position of the stepper in the left column. The entry in row 3 of the

Bank 1 C-Stepper ciphertext alphabet means that J! w when the position of the Bank

1 C-stepper is 3.

If the C-plugboards axe taken into account, then

R! D ¼ PLV(R)! e ¼ VSVP(0)(D)

VOW

A C D E R U

CON

B F G H I J K L M N O P Q S T V W X Y Z

PLV

KB A C D E R U

l l l l l l

VS E R A C D U

PLC

KB B F G H I J K L M N O P Q S T V W X Y Z

l l l l l l l l l l l l l l l l l l l l

Bank 0 CS J K L M Z N O P Q S T V W X Y H G I B F
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and

G! L ¼ PLC(G)! z ¼ CS(0)
CP(0)(0)

(L)! q ¼ CS(1)
CP(1)(0)

(z)! z ¼ CS(2)
CP(2)(0)

(q)

! f ¼ PL�1C (z):

7.9 CRIBBING PURPLE: FINDING THE V-STEPPER

We will illustrate a possible way to crib PURPLE ciphertext. We use English-language

plaintext, the 1-gram English probabilities included in Chapter 3, and the PURPLE

parameters in Example 7.7.

Even if a message indicator containing identifiers of the initial stepper settings was

included in the clear in a message, the decipherment of intercepted PURPLE ciphertext

depends on a large number of parameters which must be recovered.

VS: 25 � 6 entries in the vowel-stepper ciphertext alphabet;

CS: 3 � 25 � 20 entries in the consonant-stepper ciphertext alphabet;

PL: the plugboard connections.

In our analysis the initial settings are all 0; this is of no consequence in recovering the

V-stepper. We indicate in Section 7.9.2 how the analysis of the C-steppers is effected

TABLE 7.25 A PURPLE Parameter Set

V-Stepper

ACDERU

Bank 0 C-Stepper

BFGHIJKLMNOPQSTVWXYZ

Bank 1 C-Stepper

BFGHIJKLMNOPQSTVWXYZ

Bank 2 C-Stepper

BFGHIJKLMNOPQSTVWXYZ

0. arudec 0. bsvpqjwzylokimtngxhf 0. fzgmbwskfiotivjnpxylq 0. jqftxhnigoskzpwvyblm

1. decuax 1. gnqhfxisbkyovljmwtpz 1. hwynlvfxgmjpikztosqb 1. yqmsltviwzpbfjkhxngo

2. aurdce 2. mlqbvijgwnpzkfhxoyts 2. jopshyizblnwmgfkxvqt 2. qozpghjinxmytlsfkvwb

3. ucedar 3. wiofqhympxlzsgvbnkjt 3. gtpfbwzxiovjyhsmqkln 3. qsfotgvhmnwybxjlzpik

4. arceud 4. tqznvoybjmfhwlxigskp 4. vkmtjihlgnsfoxbpwqyz 4. klxvbjtzspofgmiynhvq

5. ducear 5. qktxgwsnoymipfvzlibjl 5. kxtymbwphvglnzjosfqi 5. yknzphlvtxiwobjfmgqs

6. cedura 6. qfkthlvpgijbzxowysnm 6. nwovpfjtkszymxigqlhb 6. vmgfykwjbisnthlpzqox

7. rauced 7. xjmypbntzkiswfhlgvoq 7. xzglhotnkbfiwvymsjqp 7. loimkxgyvfpztjnwsqbh

8. uraced 8. iomtykvxnjbspflhzwqg 8. bvwsjgitkoxlphnzqfmy 8. ivnphzlsojwkbmtgyxq

9. rcdaeu 9. jfslgbhtomkpwyznxiqv 9. nmyifptzkgsbovqwlixh 9. ygpzwbxfnkovlhmtsiqj

10. dcerua 10. wpnxztvglfkohmjsiybq 10. iplszvbmhwnxjytfkqog 10. hvygsjwifbkpxztoqnml

11. eraudc 11. vhyzsjbtinkwxgolmqpf 11. oglmtsynphqvkxibzjwf 11. jfomxwnblhpizygvsqkt

12. adcuer 12. bogmlxfywihvtpsjzkqn 12. nshxvfopbgjwiztqmlyk 12. pzvsoimfjnxlyhqvgbkt

13. urdace 13. vsinompjglzybtfxriqwk 13. kbjlpwyznhisoqxftgvm 13. tkxigjhwbomsfvqpznly

14. uceadr 14. ifpkxhbzwomsngvtyqlj 14. sgfzkxmiyvljbqwntohp 14. wbtfksylnvgxhpzjoqmi

15. creaud 15. yswlkvfjhxmpotbqignz 15. oinjhbkgwmfspxqylztv 15. tjpkzyflwbnsgqivhxom

16. daucer 16. xgknybplsizwvfqthmoj 16. xlpoknvzhgmqjfbywits 16. zsowmbthxkviqyjflgnp

17. ceudra 17. fmpohvwzkxigjynqltbs 17. tvyfzjlbsxkowqinmghp 17. flgntjiomkshpqzwbxvy

18. rucaed 18. jzlimosfkbhgqyvpwxnt 18. mtwgnhyfivqkploisxzb 18. hsiyxwpbtzvglfkmonqj

19. duarce 19. gytibnxvlwpmkjoqzfsh 19. vtmjxispgnqbyzhwkfol 19. nivpzhjtysqxkgmolfwb

20. rcdeau 20. wtjfpyghsznqklbmxovi 20. hpobitfwlzmqvgxknsjy 20. mgoxlfntvbwqyhpikzjs

21. acdrue 21. nlotxzbvyfgwqjihkspm 21. zynvxtsohjqflmbpwkgi 21. vhbwmogslpjtqxzfinky

22. erudca 22. hmwjtosnliqxpygfbkzv 22. kgbtywqpnoxvszkhimflj 22. nxjkypzimhoqgvtbwlsf

23. dcuear 23. ykxgftipmhvboqzlnjsw 23. wmxkhpsvlftqzgjyionb 23. zlvkibwfnsyxqjmtohgp

24. aurdce 24. lvnpbkiysjzgtwxqmfoh 24. ojnzkmqitbhxlwfsgvyp 24. igjhklqpyvfnztsmbwxo
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and what changes must be made. We will sketch the ideas to find the V-stepper first and

then illustrate them with an example. The plan of attack is a follows:

1. Make letter-counts and, as indicated in Section 7.5, determine the likely division of

letters into vowels and consonants.

2. Construct crib tables whose entries are (u, v, i), consisting of

(a) a crib u,

(b) a corresponding ciphertext fragment v with the same vowel/consonant pattern
as u,

(c) the V-stepper position i at which u! v occurs, and

(d) a score for entry.

3. Resolve contradictions of potential ciphertext fragments of cribs by a

pruning algorithm and recover as much of the vowel-stepped ciphertext alphabet

as possible.

Step 1: Determining the vowel/consonant subdivision and the vowel-stepper.

If {p(t)} are the 1-gram plaintext frequencies, define

pVOW ;
X

t[VOW

p (t)

and

pCON ;
X

t[CON

p (t): (7:52)

If the sets VOW and CON are randomly selected

pVOW ¼
X
t

25

5

� �
26

6

� � ¼ 6

26
’ 0:2308

and

pCON ’ 0:7692: (7:53)

The standard set of vowels – VOW ¼ {A, E, I, O, U, Y} [Seberry and Pieprzyk, 1989] –

gives the values pVOW ’ 0.5225 and pCON ¼ 0.4775.

Step 2: Construct crib tables whose entries (u, v, i) consist of

1. A crib u,

2. A corresponding ciphertext fragment v with the same vowel/consonant pattern as u,

3. The V-stepper position i at which u! v occurs, and

4. A score for entry.

Many PURPLE messages were intercepted and the combined traffic permitted

sharper conclusions to be made. We will use three examples of ciphertext all derived

with the parameters in Table 7.25 to recover the V-stepper.
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cipherEx7.8

wmukv mddjw vcesf afrxe eetaz eufjq yuluk acdwr ybsim avegs aachc rdvcr

ywhrz rqlwa xzzeh wtple swxap imcze adhzi unmzt zgvru muomj cjvhp vduxu

dogln jnnda tedye wzfxe oxkqu sovcu phwnm huarm esnct wqawu dptln wwljq

ivrkz nnrle aottt ezbga umavx tvfda reazo jtfqp kmubh crell bwddx fdpdw

udclc rcehu upqtl dgzoe orlxg pefvy jjcad jojct yrfcc dfaca gefzb ecpcc

cslaz shhci syyjd jaixe ezklh lbjrk bzicn cdapw ydcta rclru bpymp bipzc

cklst gdudy ghzak nacjk kmekt clgpx szilu ecuyb zwrib kbhvp cwrfj doave

sitcv ceokx wajsr kacef iiakc gaiae iccee ndfpu neufl ziriu niyof jajxt

frdux upoif bfayq rnslg gapkp qozde uuyhz zdvdw urcjv rstwk dumvg kkuzu

wwaju meizf xhlhy uwnyr vhjdu mybpf ezcam nbida qybxh scecq ldzud innuk

ohruy uuvjx kvvro dkkkl germv engqx oauxh ucecq rzuuv epgbp nueed fjvwe

lvzye nyahm ahgeb rmvaa majpr ekzxi afhoc cukac rdnee ijekj vfyxx cazsh

flxeg vhwjo tdugg ejrek hrlyt elsmc crndk woyks ulmee anacq tvkps cdjyh

damcg kcrxd aafsq eubcc rhdev qgbem wcekd mhius ocsed yqgre rzede cvdnk

kjpdd eycdb zlwss mafvv ctlzg mkadk aqsag wavls qaccx etvzw cysqu roiry

viqep xuibe rhlgg ckzud epiee ulyee kzmii lcncr ffxbt ztoas vaerb fcmtm

xceyj awrke eguad cxhog kaeaa ddueg spnre xfued wdbqg irdzq gwndr kszjr

errlj cabzc tkjxh ddadx dvxqm itwws rmjsw nqqcg edhfa leqau dlrur azuac

fwbna gvxxx cwkfh ewejp xzfel vwiny vzbcz fdudq bnhbb cznej uqscr nnefd

faaax arrdf celqz ichxu usord hwxdg spnnc fduur eawer eiwnb sdryk zkuao

hgyiw axedc fdncz gdlhc tlgqi crkiu utycd arhzg calrd ahaee pyyfy gfese

gcris dradx cvveg szven rabpt fuouf ygbun eobat mtjhg arqcc xnrlr sqabh

keuzv uqrqu uwucc przts weveu pctcr pvvqm ucwle pkgre vpaal zyekl ryjyw

lamco mriis udmbv auqmo cicza loieq pinwh djilq oeiju uumxs jnoyx enhvp

rsxtd wcqrg gumre uxncv dnaix ykyft jvlcl dhcik wedlb ejyoe aecgq lbhas

txzsm uslcr cstjx mnwfu puzoz pwuwo wutjn ayofm ffven jqndn crayb gbfds

uckgn aqcku cayom vuguh lhunek ehuhd jdquy fjdnh gaavd urqgs xaulu xlaod

eosee tlmst satcr pketd taaqa bbxei uadvu vacik eiren nflru nakeq bekee

noupd zrrcz diddk tkqaz dgced tctqv hacri kvmwu ceyhj tukuj bybcz elods

vzwni akchc rfyey eqmzy lpock dneac ludjr mmbqv zwrxk ecjdy vurtu gfmco

rllki dnzhd ahlvh ydzeu cwepu dxuas qrwes ucpgz bnguc dodap rdhfc macwe

aglrh dkcug zgcqc czurb vwevb aarte ulgyf nscru pbtqf eaudb abxyk vdovx

weooc wpcrn kbqmi xmpqb vetor elqae aanjc ridjs ekqjd xzmup erwqc quvdc

vrdul ukvsp dxeuz aldag fqmke bcdnw eifzz xfewu awmwz cmcrh guufo toxcu

ckaxn bocqs coshe hgtpr xezow rmnmu cebbt iuguj opycl epydz vfnde ttxqy

bax

cipherEx7.9

wmvld fcrse osdcp uuvqu qsjee lxzcp urjag ezacd grait kycec yyqte acbve

cawfi yjxzu wcktu ukbju oayae rclre chfui euous auprz rcfth dlrre wgowu

erbsq ninbk ebqdd xonus ucvnq peavb yycec taass xtyhl csrvv drdnu vukuh

fzhap epnze sehmd vrykc rfebr ezdeq rzmgj uohwx sctry panrl bauwa fqkre

gdwmn oecvr kpnrg hhnev tkged ftmya nyfcg nmxho kayaf vgurg lkheu vazuu

kaqvq hvuir cacdq chmrr pcbrn qbald gmkud suape wmujr ezneu xewsm usrhz

cnrqh fzcav qabec qdwek daagj tepca czkiz eeukq bateu hrkad ockzt tdaeb

hzlav yamrt xcgtr zjxcg iiaeo dnczj fvvdd pfabn tnocw abndm aueuu dgged

qbgfx iekvp scgcu rwuad euweh eaqer cwzjq mcmzb xugcd cqkef sitwy qbnhf

xyclt tuqlh eiuas dsdba erjsl rhaeu lxzfu ceiwi awcjd hyrqd tvcqr azrni
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cipherEx7.9

uceir eazeq rugfn atbsi tdzgk fufzy mpayn ymajb hsfbu frldz ogayc epgpo

elzda ultou dpduu suizc gugka pgueg zuprl ckkne xqwdk cedna cnaav rkxsb

ecuaw fabaa ubdje piurg jujhc ygqtj futud wmade scgdi hdmdb tunov erumt

muchj moruk fgudr ucbeg julup zgtkg barvp uhape tesyk ieuya eunbi fyibo

fduuo ulued hlirt uuqkr zpezd yddqr erjur dcrgc dgrdv ezwrd ecriu reevc

dawrb gbevt mkmre wateu ktyya rfypo ahjbe cgdse ajrvc ygzia darac eafry

acdyj aeefk zmoqi bxuoz mcvde xcnom hsfyc hodas cuhyp hdccq embda cuama

brcrh wuqsx xrdib fxwau csldg jlkdr vskfk ulilq jtmti uydeg exqas maaic

ryfve eqdcs gabug dxcxm fcfuc enuec duvcw adfdd atksy bhzaa rdeve vkcue

fphyd ekruu rqfcd jozem jsgeb peynb jvctr oaahd urndd reule edmwe geqdo

cirvd btjav crjye mdldv aqvuo tesrz ugucd rjhzi uxqja beuqe paldc abcaj

whcwe adsbv xecut otrkv ozruw pbuiw ycwjl ecwic lquuq tkfca spgav cujan

eoeer pruqx npder pbgba drddp eeamk bzclp cejoy cbpfd wmawl dicra xqteh

yyddv xcdct dubku vtbxe gjjcq urfam ehacy ajyur exruy jaozp papca wdqed

peyce kqvcm ceujy vidcr znfba drddt ettcd tabsf ouuud ouoae afffe feqduv

dazac unypj enfwd mpwlt digja bacxu pagae cbdcs xwsuu rxfxr uaruv kqngo

edruc traeu mviec onrpf nooay acbax adzai urkeo tejrf ruxje iboka mjrif

vfkme jeufr brdfa qeepe yyunc sdrdv fhceb umvgi ecpdv qvrhg ht

cipherEx7.10

ytcdg sirhf uuplf komfn eevbu akboc mvdne xiuie wczov eapru unlgl rskcx

fmcre wyvsm xhrtq yaceu ulncr iebzt cemvu zwezc uaelo wywoe axecp mtaku

zbrfu wjlog taveg ooymk beyeb eyabz ecyea lsuum mulbe buwiu ckcso wpbnz

vmich lvczd gdjmt dwmwa wkerx uekcd pkqnh roxip phhck fdscj amend hcqcv

cuxtf gpbhs zommk ttxrt qezuh aksds kmyfw esdee zbetc wwkwy dloud iltxu

ghasc xafte rvgcn dnaes atskk icerb pmide catdk dvaju socxu bwrfc ytbcd

ykbow cowwk bhdjb vsgre lhyyd uolzc vduiy evzee vvfqp fxvdv cgofv wbcnm

ecynx zudrt aifpe ciumd ajpaa fcuib cadrt rgten cdxkr rwree zdcay dgqvs

eoefx gnail clric chnnu uafps zaduj aqvdu sozud etydl davsc zahge uvqie

uhxma tgeaq omzba wxtpl ckrzl becuv keoqu uujou buuea hcebx tvcqo zcevg

lckyu aokfq xnxse leuur etzzu dupuz ggnfe riyvh czkci ttacr ndzre acvcr

wxnsr gfsom esncc aamed hdjev rdree xxaei gesnw dytmg tmuzd lwjxh vpaah

fvcyu dojjc hejan cirsl xdlyt elszb feeeh uegrk cjdre udjnu rukav fvqzk

udxcc gfuev wzdlb dcbmb zokbv yawod uqxqa thgxm kcbjc pacru nceza hvvcy

iyzrc zcirs icjug klvnr muzzo qeika itxec rdujc duvte emgcv vduis eltgt

pqvcc trlge arugg zdcdh kecsk rqeiq hrbzw ejxew cqkdd etcac tbsbc duvte

e fi h m qtwwg errdu sctpc dunnx izocm qofuq rcthi fihrd rlank rervv dpvpz

pcqyh xwnzs utedj trcsd aatwv ukkdr pwybs fstci znkfq odevt aazoc rxsru

zljrv edjda occnur phpaf dvubc vtinx vfbsa zdude enjpo bpfvy juzvl eaund

unvzi iwwyp ibzeu lsvrm bruzq yfzsy xepms cdmvq cbdda cnycq tzjsb uukws

vagzs vajij ycgwo bboah ijuqu vqmja qfnad frslm rnatg eparj rpdzj eytrn

hohqc upnzx eitmy rovoc wypfe akclu rdplc qykxt rnpzm nhqqe ugfpc txcdx

qxohp zvuzz xaajo sezca uevgj hwcxn ctqev uagpj zttdb hhcso aswsq vmhoc

zddre hogci swusz verdf iapib lqxot prrnx damzx uwkdr kzjhk zxhke jzine

amaeu iucdr stedr eerdg blsxe iurzv gzwti fooaf daznd xamxe xdzfc oevaf

leave edlpe rulxh rasrt cehtc crdkt hdufd frris wzahb mbcji wdryf ueqvz

yculn wkbnt xnkes onrpc jseiw ddaci nyxpo eljah sqvee gauch fbvwd ufwgu

rgrxk inric ethwp nyeln pyxdb qjiei uyleu vxugl nqhje qvjud seuyw hgqfm

hjdxt geugx cxvdt eychz zgckw uctcc
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Tables 7.26 to 7.28 contains the letter frequencies in cipherEx7.8–10.
Table 7.28 contains the letter frequencies in cipherEx7.10, derived with the para-

meters in Table 7.25. The VOW/CON partition has the values pVOW ¼ 0.3767 and

pCON ¼ 0.6233. The 1-gram frequencies in Tables 7.26 to 7.28 are consistent with

cipherEx7.8–10 using the the same VOW/CON subdivision. We plan to combine

cipherEx7.8–10 to recover the V-stepper ciphertext alphabets, as was done apparently

in the analysis of PURPLE [Deavours and Kruh, 1985, p. 236]. This combination of the

ciphertexts is possible if the same vowel-plugboard and initial V-stepper position are

used in the three examples.

We begin by searching the ciphertext for fragments that have the same

vowel/consonant pattern as the cribs. The subjects of the plaintext of

cipherEx7.8–10 are

plainEx7.8: performance analysis;

plainEx7.9: 1980 description of the graduate and undergraduate programs in the

UCSB Computer Science Department;

plainEx7.10: computer communication.

TABLE 7.26 Letter Frequencies in cipherEx7.8

t f (t) t f (t) t f (t)

a 0.0557 j 0.0333 s 0.0343

b 0.0238 k 0.0371 t 0.0319

c 0.0628 l 0.0324 u 0.0661

d 0.0671 m 0.0304 v 0.0319

e 0.0742 n 0.0276 w 0.0285

f 0.0281 o 0.0304 x 0.0285

g 0.0319 p 0.0271 y 0.0304

h 0.0333 q 0.0295 z 0.0352

i 0.0309 r 0.0576

pVOW ¼ 0.3835 and pCON ¼ 0.6165

TABLE 7.27 Letter Frequencies in cipherEx7.9

t f (t) t f (t) t f (t)

a 0.0618 j 0.0234 s 0.0209

b 0.0299 k 0.0239 t 0.0264

c 0.0598 l 0.0160 u 0.0673

d 0.0573 m 0.0214 v 0.0259

e 0.0703 n 0.0199 w 0.0204

f 0.0284 o 0.0214 x 0.0179

g 0.0269 p 0.0234 y 0.0264

h 0.0219 q 0.0254 z 0.0229

I 0.0209 r 0.0528

pVOW ¼ 0.3693 and pCON ¼ 0.6107
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Likely cribs are

We will modify the x 2-test described in Chapter 3 to determine if a ciphertext fragment is

likely to correspond to the vowel/consonant pattern of a crib.

If we assume that plaintext is generated by a source process {Xi} of independent and

identically distributed random variable with probabilities {p (t)}, then

p�(t) ¼
p (t)

p (A)þ p (C)þ p (D)þ p (E)þ p (R)þ p (U)
, t [ VOW (7:54)

is the normalized probability of the vowel t. Table 7.29 lists the normalized vowel prob-

abilities corresponding to the standard 1-gram probabilities in English.

Let u ¼ (u0, u1, . . . , uM21) be a crib and y(i,iþM ) ¼ ( yi, yiþ1,. . ., yiþM21) a ciphertext

fragment with the same vowel/consonant pattern as u. LetN( yiþj, kj) be the total number of

plaintext vowel yiþj [ VOW occurring in y(i,iþM ) with kj ¼ (iþ j ) (modulo 25); if

N(kj) ¼
X

yiþj[VOW

N( yiþj; kj), kj ¼ (iþ j) (modulo 25);

TABLE 7.28 Letter Frequencies in cipherEx7.10

t f (t) t f (t) t f(t)

a 0.0515 j 0.0251 s 0.0339

b 0.0298 k 0.0298 t 0.0392

c 0.0743 l 0.0263 u 0.0637

d 0.0585 m 0.0257 v 0.0444

e 0.0784 n 0.0316 w 0.0310

f 0.0281 o 0.0292 x 0.0345

g 0.0281 p 0.0263 y 0.0269

h 0.0316 q 0.0263 z 0.0433

i 0.0322 r 0.0503

pVOW ¼ 0.3767 and pCON ¼ 0.6233

plainEx7.8

1. PERFORMANCE 2. PREDICTION 3. EVALUATION 4. WOKLOAD
5. PROGRAMMING 6. PROCESSOR 7. OPERATINGSYSTEM 8. PERFORMANCEEVALUATION

plainEx7.9

1. COMPUTERSCIENCE 2. COMPUTERENGINEERING 3. DEPARTMENT
4. GRADUATE 5. ELECTRICALENGINEERING

plainEx7.10

1. COMPUTER 2. COMMUNICATION

3. INFORMATION 4. COMMUNICATIONSYSTEMS
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then the law of large numbers asserts

p�(yiþj) 	
N( yiþj, kj)

N(kj)
, yiþj [ VOW, kj ¼ ( iþ j) (modulo 25):

This suggests using the x 2-score

x 2(y(i, iþM)) ¼
X

yiþj[VOW

(N( yiþj, kj)� p �(xiþj)N(kj))
2

p �(xiþj)N(kj)
, yiþj [ VOW,

kj ¼ ( iþ j) (modulo 25), (7:55)

to decide how likely it is that the ciphertext fragment y(i,iþM ) is the PURPLE encipherment

of the crib u. It is understood in Equation (7.55) that if a vowel t occursmore than once in the

crib, the corresponding N( yiþj, kj)-terms are combined.

For example, an entry appears in Table 7.30 for the ciphertext fragment

vcesfafrxee at position 10 in cipherEx7.8 that has the same vowel/consonant
pattern as the crib PERFORMANCE. This fragment contains

. Two E’s at positions 11 ¼ 10þ 1 and 20 ¼ 10þ 10, and

. Two R’s at positions 12 ¼ 10þ 2 and 15 ¼ 10þ 5,

and the Equation (7.55) score of the ciphertext fragment vcesfafrxee occurring at

position 10 is given by

x2(vcesfafrxee)¼

 �
N(y11,k1)þN(y20,k10)

�
�p�(E)(N(k1)þN(k10)

�!2

p�(E)
�
N(k1)þN(k10)

� ½E


þ

��
(N(y12,k2))þN(y15,k5)

�
�p�(R)

�
N(k2)þN(k3)

��2
p�(R)(N(k2)þN(k3))

½R


þ

��
N(y17,k7)�p

�(A)N(k7)
��2

p�(A)N(k7)
þ

��
N(y19,k9)�p

�(C)N(k9
��2

p�(C)N(k9)
: ½A,C


Tables 7.30 to 7.37 contain the results of a search for ciphertext fragments that have

the same vowel/consonant patterns as the cribs in cipherEx7.8. The top row of

Table 7.30 contains

. The ciphertext fragment vcesfafrxee,

. The position of the ciphertext fragment,

TABLE 7.29 Normalized VOW Probabilities

t p (t) p�(t)

A 0.0856 0.2287

C 0.0279 0.0745

D 0.0378 0.1010

E 0.1304 0.3484

R 0.0667 0.1809

U 0.0249 0.0665
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. Triples (11, E, c) (12, R, e) � � � (20, E, e) for each VOW-letter in the plaintext, con-

sisting of

– the position of the vowel,

– the plaintext vowel at the that position, and

– The ciphertext vowel at that position,

. The x2-score of the ciphertext fragment, and

. The information unknown to us as to whether the entry is correct (
p
) or not.

Tables 7.38 to 7.42 contain the results of a search for ciphertext fragments that have

the same vowel/consonant patterns as the cribs in cipherEx7.9.
Tables 7.43 to 7.46 contain the results of a search for ciphertext fragments that have

the same vowel/consonant patterns as the cribs in cipherEx7.10.

TABLE 7.30 Ciphertext Fragments in cipherEx7.8 for the Crib PERFORMANCE

vcesfafrxee 10 11 E c 12 R e 15 R a 17 A r 19 C e 20 E e 27.0828
p

wddxfdpdwud 231 7 E d 8 R d 11 R d 13 A d 15 C u 16 E d 40.1840
p

xceyjawrkee 960 11 E c 12 R e 15 R a 17 A r 19 C e 20 E e 27.0828
p

gedhfaleqau 1059 10 E e 11 R d 14 R a 16 A e 18 C a 19 E u 7.4899
p

hddzpdpdoud 1131 7 E d 8 R d 11 R d 13 A d 15 C u 16 E d 40.1840
p

jeriscyuxdc 1319 20 E e 21 R r 24 R c 1 A u 3 C d 4 E c 4.5806
p

oddxqdbdnud 1631 7 E d 8 R d 11 R d 13 A d 15 C u 16 E d 40.1840
p

muasbrnewuc 1676 2 E u 3 R a 6 R r 8 A e 10 C u 11 E c 22.0248
p

kacshemejae 1825 1 E a 2 R c 5 R e 7 A e 9 C a 10 E e 8.9805
p

icryjekdsaa 1857 8 E c 9 R r 12 R e 14 A d 16 C a 17 E a 20.4440
p

iurbxuxroee 1968 19 E u 20 R r 23 R u 0 A r 2 C e 3 E e 11.9077
p

TABLE 7.31 Ciphertext Fragments in cipherEx7.8 for the Crib PREDICTION

kacdwrybsi 34 10 R a 11 E c 12 D d 14 C r 5.6051
p

frduxupoif 480 6 R r 7 E d 8 D u 10 C u 21.3161
p

mccrndkwoy 748 24 R c 0 E c 1 D r 3 C d 8.8003
p

qaccxetvzw 880 6 R a 7 E c 8 D c 10 C e 21.3161
p

fuedwdbqgi 996 22 R u 23 E e 24 D d 1 C d 8.2689
p

hrduvuhqpx 1330 6 R r 7 E d 8 D u 10 C u 21.3161
p

meuuvdbznf 1700 1 R e 2 E u 3 D u 5 C d 8.5911
p

peacfaonty 1979 5 R e 6 E a 7 D C 9 C a 51.1305
p

yrueodlmlv 2036 12 R r 13 E u 14 D e 16 C d 14.8865

TABLE 7.32 Ciphertext Fragments in cipherEx7.8 for the Crib EVALUATION

etazeufjqy 21 21 E e 23 A a 0 U e 1 A u 7.4816
p

uyaodalnzw 1343 18 E u 20 A a 22 U d 23 A a 9.2809
p

rydjcrbzvz 1687 12 E r 14 A d 16 U c 17 A r 7.0681
p

emejaeskww 1830 5 E e 7 A e 9 U a 10 A e 12.7854

afcxarslgy 1992 17 E a 19 A c 21 u a 22 A r 24.7920
p

cfrpucvibg 2014 14 E c 16 A r 18 u u 19 A c 69.7911
p
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7.9.1 Does the Ciphertext Uniquely Determine
the V-Stepper and Plugboard?

The combined action of the vowel-plugboard and V-stepper in position i is given by the

equation

fVSi(x) ¼ y ¼ PL�1V (VSVP(i)(PLV(x))), x [ VOW, i ¼ 0, 1, . . . : (7:56)

The combined vowel-plugboard/V-stepper for the parameters in Example 7.7 and

Table 7.25 is shown in Table 7.47. Does Equation (7.56) uniquely determine PLV for a

given VS? If vowel-plugboards PLV1
and PLV2

exist satisfying Equation (7.56) for

given VS, then

fVS1, i(x) ¼ fVS2, i(x), x [ VOW, i ¼ 0, 1, . . . (7:57)fVS1, i(x) ¼ PL�1V1
(VSVP(i)(PLV1

(x))), x [ VOW, i ¼ 0, 1, . . . (7:58)fVS2, i(x) ¼ PL�1V2
(VSVP(i)(PLV2

(x))), x [ VOW, i ¼ 0, 1, . . . , (7:59)

TABLE 7.34 Ciphertext Fragments in cipherEx7.8 for the Crib PROGRAMMING

jaixeezklhl 315 16 R a 19 R e 20 A e 2.4987

tukserjnqft 1922 23 R u 1 R e 2 A r 8.8106
p

TABLE 7.33 Ciphertext Fragments in cipherEx7.8 Corresponding to the Crib PROCESSOR

ldzudinnu 590 16 R d 18 C u 10 E d 23 R u 7.9992

ocsedyqgr 820 21 R c 23 C e 24 E d 3 R r 7.4952

wuvaehkxa 1556 7 R u 9 C a 10 E e 14 R a 5.2006
p

kdsaamffe 1863 14 R d 16 C a 17 E a 21 R e 11.3083

TABLE 7.35 Ciphertext Fragments in cipherEx7.8 for the Crib WORKLOAD

wmukvmdd 0 2 R u 6 A d 7 D d 43.7902

kqusovcu 142 19 R u 23 A c 24 D u 4.6232

ttezbgau 193 20 R e 24 A a 0 D u 6.7812

nyrvhjdu 557 9 R r 13 A d 14 D u 18.8191
p

nnukohru 596 23 R u 2 A r 3 D u 10.2210
p

xiafhocc 688 15 R a 19 A c 20 D c 8.6394
p

ytelsmcc 743 20 R e 24 A c 0 D c 6.7812

zwcysqur 888 15 R c 19 A u 20 D r 8.6394

qydhvjer 1314 16 R d 20 A e 21 D r 3.5226

mtclftec 1356 8 R c 12 A e 13 D c 19.1043

vvumhlrc 1383 10 R u 14 A r 15 D c 4.3270

myewbmca 1482 9 R e 13 A c 14 D a 18.8191

qgakhbcc 1594 21 R a 0 A c 1 D c 2.2286

wtupjner 1802 4 R u 8 A e 9 D r 9.5336

shcqmtur 2062 14 R c 18 A u 19 D r 3.5246
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TABLE 7.37 Ciphertext Fragments in cipherEx7.8 for the Crib PERFORMANCEEVALUATION

vcesfafrxeeetazeufjqy (10)

11 E c 12 R e 15 R a 17 A r 19 C e

20 E e 21 E e 23 A a 0 U e 1 A u 34.5645
p

muasbrnewucrydj crbzvz (1676)

2 E u 3 R a 6 R r 8 A e 10 C u

11 E c 12 E r 14 A d 16 U c 17 A r 29.0929
p

TABLE 7.36 Ciphertext Fragments in cipherEx7.8 for the Crib OPERATINGSYSTEM

fwecrpqhxzxhkej 1421 23 E e 24 R c 0 A r 9 E e 4.3457
p

kvdddqglqhbqzub 1505 7 E d 8 R d 9 A d 18 E u 9.7915

TABLE 7.38 Ciphertext Fragments in cipherEx7.9 for the Crib
COMPUTERSCIENCE

elxzcpurjagezac (24)

24 C e 3 U c 5 E u 6 R r

8 C a 10 E e 12 C a 13 E c 23.3246
p

cnvqabecqdwekda (367)

17 C c 21 U a 23 E e 24 R c

1 C d 3 E e 5 C d 6 E a 13.8825
p

uqlheiuasdsdbae (546)

21 C u 0 U e 2 E u 3 R a

5 C d 7 E d 9 C a 10 E e 23.9789
p

uxqjabeuqepaldc (1240)

15 C u 19 U a 21 E e 22 R u

24 C e 1 E a 3 C d 4 E c 78.6649
p

aspgavcujaneoee (1309)

9 C a 13 U a 15 E c 16 R u

18 C a 20 E e 22 C e 23 E e 30.0182
p

egjjcqurfamehac (1399)

24 C e 3 U c 5 E u 6 R r

8 C a 10 E e 12 C a 13 E c 23.3246
p

digjabacxupagae (1520)

20 C d 24 U a 1 E a 2 R c

4 C u 6 E a 8 C a 9 E e 60.7500
p

228 CHAPTER 7 THE JAPANESE CIPHER MACHINES



which implies

VSVP(i)(x) ¼ PL�1V�
(VSVP(i)(PLV� (x))), x [ VOW, i ¼ 0, 1, . . . , (7:60)

where PLV� , ¼ PLV2
PLV1

21. Equation (7.59) may be rewritten as

PLV�(VSVP(i)(x)) ¼ VSVP(i)(PLV�(x)), x [ VOW, i ¼ 0, 1, . . . , (7:61)

which implies that

VSVP(i)(x) ¼ x) (PLV�(x)) ¼ x, x [ VOW, i ¼ 0, 1, . . . , (7:62)

From Table 7.25

PLV� (A)
VSVP(0)
�����! PLV�(A) PLV� (C)

VSVP(3)
�����! PLV�(C) PLV�(D)

VSVP(6)
�����! PLV�(D)

PLV� (E)
VSVP(4)
�����! PLV�(E) PLV� (R)

VSVP(6)
�����! PLV�(R) PLV�(U)

VSVP(9)
�����! PLV� (U),

which shows that PLV*
is the identity connection for the PURPLE parameters in Example

7.7 and Table 7.25. More generally

TABLE 7.39 Ciphertext Fragments in cipherEx7.9 for the Crib
COMPUTERENGINEERING

cfthdlrrewgowuerbsq (107)

6 C c 10 U d 12 E r 13 R r

14 E e 19 E u 20 E e 21 R r 17.6025
p

agjtepcaczkizeeukqb (382)

7 C a 11 U e 13 E c 14 R a

15 E c 20 E e 21 E e 22 R u 23.9663
p

rjslrhaeulxzfuceiwi (561)

11 C r 15 U r 17 E a 18 R e

19 E u 24 E u 0 E c 1 R e 58.3495
p

ajwhcweadsbvxecutot (1258)

8 C a 12 U c 14 E e 15 R a

16 E d 21 E e 22 E c 23 R u 23.9022
p

ekqvcmceujyvidcrznf (1444)

19 C e 23 U c 0 E c 1 R e

2 E u 7 E d 8 E c 9 R r 38.2905

TABLE 7.40 Ciphertext Fragments in cipherEx7.9 for the Crib DEPARTMENT

dcpuuvquqs 12 12 D d 13 E c 15 A u 16 R u 19 E u 15.1413

dctdubkuvt 1387 12 D d 13 E c 15 A d 16 R u 19 E u 15.1413
p

rexruyjaoz 1419 19 D r 20 E e 22 A r 23 R u 1 E a 6.6907
p
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Proposition 7.2: If every vowel x [ VOW is a fixed point of VSVP(i)(x) for some

position i, then

VSVP(i)(x) ¼ PL�1V�
(VSVP(i)(PLV� (x))), x [ VOW, i ¼ 0, 1, . . . , ) PLV�(x) ¼ x,

x [ VOW

7.9.2 Does the Ciphertext Uniquely Determine the Initial
Setting of the V-Stepper?

If i0(V ) ¼ j andfVS1, i(x) ¼ fVS2, i(x), x [ VOW, i ¼ 0, 1, . . . (7:63)fVS1, i(x) ¼ PL�1V (VSVP(i)(PLV(x))), x [ VOW, i ¼ 0, 1, . . . (7:64)fVS2, i(x) ¼ PL�1V (VSVP(iþj)(PLV(x))), x [ VOW, i ¼ 0, 1, . . . , (7:65)

then

VSVP(i)(x) ¼ VSVP(iþj)(x), x [ VOW, i ¼ 0, 1, . . . (7:66)

and by induction

VSVP(i)(x) ¼ VSVP(iþkj)(x), x [ VOW, i ¼ 0, 1, . . . , k ¼ 1, 2, . . . : (7:67)

TABLE 7.41 Ciphertext Fragments in cipherEx7.9 for the Crib GRADUATE

ircacdqc 308 9 R r 19 A c 11 D a 12 U c 13 A d 15 E c 17.6702
p

wuadeuwe 496 22 R u 23 A a 24 D d 9 U e 1 A u 3 E e 8.6661
p

gudrucbe 791 17 R u 18 A d 19 D r 29 U u 21 A c 23 E e 8.2767
p

jurdcrgc 872 23 R u 24 A r 9 D d 1 U c 2 A r 4 E c 33.3329
p

wrdecriu 887 13 R r 14 A d 15 D e 16 U c 17 A r 19 E u 13.4968
p

bdacuama 1012 13 R d 14 A a 15 D c 16 U a 17 A a 19 E a 13.4968

nuecduvc 1106 7 R u 8 A e 9 D c 19 U d 11 A u 13 E c 13.7687
p

zaardeve 1127 3 R a 4 A a 5 D r 6 U d 7 A e 9 E e 10.2515
p

nddreule 1182 8 R d 9 A d 19 D r 11 U e 12 A u 14 E e 9.3103
p

badrddpe 1338 14 R a 15 A d 16 D r 17 U d 18 A d 29 E e 27.7128
p

badrddte 1463 14 R a 15 A d 16 D r 17 U d 18 A d 29 E e 27.7128
p

oedructr 1559 19 R e 11 A d 12 D r 13 U u 14 A c 16 E r 10.5894

TABLE 7.42 Ciphertext Fragments in cipherEx7.9 for the Crib ELECTRICAL

uieuousaup 93 18 E u 20 E e 21 C u 23 R u 0 C a 1 A u 23.4340
p

usauprzrcf 98 23 E u 0 E a 1 C u 3 R r 5 C r 6 A c 5.2248

ateuhrkado 401 1 E a 3 E e 4 C u 6 R r 8 C a 9 A d 33.2915
p

apcawdqedp 1431 6 E a 8 E c 9 C a 11 R d 13 C e 14 A d 33.5265
p

dqedpeycek 1436 11 E d 13 E e 14 c d 16 R e 18 C c 19 A e 11.0298

ayacbaxadz 1583 8 E a 10 E a 11 C c 13 R a 15 C a 16 A d 39.4222

axadzaiurk 1588 13 E a 15 E a 16 C d 18 R a 20 C u 21 A r 21.4107

ejeufrbrdf 1624 24 E e 1 E e 2 C u 4 R r 6 C r 7 A d 13.3951

rbrdfaqeep 1629 4 E r 6 E r 7 C d 9 R a 11 C e 12 A e 39.5229
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If j is relatively prime to 25, the rows of the combined vowel-plugboard/V-stepper are
generated by a single row. This is not the case for the combined vowel-plugboard/
V-stepper in Example 7.7 and Table 7.25.

Table 7.48 lists the number of vowels in each V-stepper position for

cipherEx7.8–10. A careful examination of the columns in which the maximum

counts appear suggests that the vowel-plugboards and V-stepper initial positions are the

same.

Step 3 : Resolve contradictions of potential ciphertext fragments of cribs by a

pruning algorithm and recover as much of the vowel-stepper ciphertext alphabet as

possible.

From a collective crib table C using the entries in Table 7.30–7.37, 7.38–7.42, and

7.43–7.46, and from the set T of all triples (i, s, t) from C with s, t [ VOW and

0 � i , 25. For example, the first row in Table 7.30 includes the six triples

11 E c 12 R e 15 R a 17 A r 19 C e 20 E e

TABLE 7.44 Ciphertext Fragments in cipherEx7.10 for the Crib COMPUTER

uolzcvdu 385 10 C u 14 U c 16 E d 17 R u 17.8559

ahfvcyud 718 18 C a 22 U c 24 E u 0 R d 8.4388

uzljrved 1079 4 C u 8 U r 10 E e 11 R d 59.2350
p

TABLE 7.43 Ciphertext Fragments in cipherEx7.10 for the Crib COMMUNICATION

dgsirhfuuplfk 3 3 C d 7 U r 10 C u 11 A u 33.3797
p

uhxmatgeaqomz 540 15 C u 19 U a 22 C e 23 A a 73.7981
p

evglckyuaokfq 597 22 C e 1 U c 4 C u 5 A a 93.7950
p

evwzdlbdcbmbz 788 13 C e 17 U d 20 C d 21 A c 58.0507
p

atwvukkdrpwyb 1041 16 C a 20 U u 23 C d 24 A r 5.0862
p

ulsvrmbruzqyf 1154 4 C u 8 U r 11 C r 12 A u 60.9707
p

ugfpctxcdxqxo 1310 10 C u 14 U c 17 C c 18 A d 27.9789
p

amzxuwkdrkzjh 1416 16 C a 20 U u 23 C d 24 A r 5.0862
p

TABLE 7.45 Ciphertext Fragments in cipherEx7.10 for the Crib INFORMATION

logtavegooy 127 6 R a 8 A e 5.3985

pfxvdvcgofv 404 8 R d 10 A c 1.0107
p

gqvseoefxgn 476 5 R e 7 A e 2.2519

mgtmuzdlwjx 703 7 R u 9 A d 3.5908
p

klvnrmuzzoq 855 9 R r 11 A u 2.9362
p

TABLE 7.46 Ciphertext Fragments in cipherEx7.10 for the Crib COMMUNICATIONSYSTEMS

atwvukkdrpwybsfstciz 1041 16 C a 20 U u 23 C d 24 A r 8 E c 8.7730
p

ulsvrmbruzqyfzsyxepm 1154 4 C u 8 U r 11 C r 12 A u 21 E e 61.0924

ugfpctxcdxqxohpzvuzz 1310 10 C u 14 U c 17 C c 18 A d 2 E u 28.1070
p
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Next, count the number N(i, s, t) of entries in T with s, t [ VOW and 0 � i , 25,

and

N(i) ¼
X

s, t[VOW

N(i, s, t):

If no errors occurred in the cribbing tables, the matrix of frequencies Fi ¼ ( f (i, s, t))

f (i, s, t) ¼
N(i, s, t)

N(i)

would be a 6�6 permutation matrix of 0’s and 1’s and if f (i, s, t) ¼ 1, then

t ¼ PL�1V (VSVP(i)(PLV(s))):

We prune entries from C and thereafter from T in order to maximize

V ¼
1

25

X24
i¼0

X
t[VOW

N2(i, s, t)

N2(i)
: (7:68)

TABLE 7.47 Combined Plugboard/
Vowel-Stepper for Table 7.25 Parameters

A C D E R U

0 r a d c u e

1 u d r a e c

2 r e d u c a

3 r d u e a c

4 a u d c e r

5 a d r u e c

6 c e a r d u

7 e a c d u r

8 e a u c d r

9 d a c e r u

10 c u r e a d

11 u r a c d e

12 u a d r e c

13 d e u c r a

14 d r u e a c

15 d u e c a r

16 e a r d u c

17 r c e a u d

18 d a c u e r

19 c e r u d a

20 a d c e r u

21 c u d e r a

22 r e a c u d

23 d r e u c a

24 r e d u c a
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cipherEx7.8

i N(a) N(c) N(d) N(e) N(r) N(u)

0 4 11 2 2 11 5

1 11 3 3 6 3 3

2 1 4 5 4 6 8

3 7 2 6 9 5 3

4 4 9 3 9 0 9

5 2 0 7 4 3 9

6 11 1 5 3 8 9

7 1 2 15 8 1 5

8 3 10 9 4 2 5

9 5 2 1 16 10 2

10 2 8 4 9 5 8

11 1 13 7 3 2 3

12 5 2 3 9 9 6

13 0 8 9 5 2 2

14 4 3 9 8 5 2

15 8 10 6 1 2 4

16 6 1 14 5 4 1

17 14 5 2 1 8 5

18 2 2 7 3 2 13

19 2 9 3 6 6 13

20 5 1 6 18 6 4

21 5 6 1 7 4 5

22 2 9 3 4 10 4

23 11 4 4 9 2 7

24 1 7 7 3 5 11

cipherEx7.9

i N(a) N(c) N(d) N(e) N(r) N(u)

0 1 5 5 3 3 3

1 14 3 1 7 2 9

2 4 4 0 2 6 8

3 5 3 3 8 8 6

4 3 9 8 1 3 3

5 4 2 3 8 4 10

6 10 5 2 2 6 6

7 5 4 9 2 4 5

8 10 6 6 6 1 3

9 7 1 7 11 6 0

10 2 9 2 11 5 0

11 3 8 2 4 2 4

12 5 3 6 2 6 5

13 4 10 5 4 7 4

14 6 1 8 13 0 1

15 9 7 3 2 2 7

16 2 5 10 4 4 6

17 8 3 4 1 5 4

18 2 2 8 7 2 6

19 3 4 3 4 6 13

20 4 1 6 13 3 3

21 2 7 2 9 7 5

22 2 8 3 3 4 6

23 5 4 5 9 4 9

24 4 6 4 5 6 9

cipherEx7.10

i N(a) N(c) N(d) N(e) N(r) N(u)

0 2 4 6 2 6 5

1 10 5 5 1 1 3

2 0 4 5 7 4 3

3 2 2 2 9 9 2

4 3 14 2 5 1 7

5 4 1 4 5 3 9

6 10 3 5 5 2 5

7 2 0 5 6 2 6

8 2 10 5 4 6 2

9 3 3 9 15 3 0

10 4 8 1 5 5 5

11 3 4 4 5 6 4

12 2 4 1 3 6 8

13 0 10 4 3 2 1

14 4 3 5 11 2 2

15 4 8 5 0 5 6

16 3 2 10 6 0 3

17 8 6 1 1 3 5

18 3 1 7 5 2 7

19 3 4 4 2 2 7

20 3 3 2 17 3 3

21 2 8 1 9 1 2

22 3 10 1 3 5 3

23 7 3 6 4 3 0

24 1 7 0 1 4 11

TABLE 7.48 Vowel Counts in cipherEx7.8–10
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7.9.3 Hill Climbing Algorithm

1. Choose e . 0; set T0 ¼ T and C0 ¼ C.
2. Step k ¼ 0, 1, 2, . . .

(a) Test every entry in Tk by computing VþrVwith the entry removed from Tk and
all corresponding triples from Ck;

(b) Remove that entry from Tk and all corresponding triples from Ck that maximize

VþrV;

(c) Terminate when V . 12 e.

Table 7.49 shows the changes rV in the hill climbing algorithm; the format of the

entries are

Column 0: step number;

Columns 1–2: the crib removed and the unknown indication of whether the crib

entry was valid (1) or invalid (0);

Column 3: the change V! VþrV.

TABLE 7.49 Trace of Hill Climbing

k Crib V! VþrV

1 ejeufrbrdf 0 0.710185! 0.725374

2 usauprzrcf 0 0.725374! 0.739352

3 axadzaiurk 0 0.739352! 0.752729

4 oedructr 0 0.752729! 0.764782

5 rbrdfaqeep 0 0.764782! 0.775823

6 ayacbaxadz 0 0.775823! 0.786081

7 dqedpeycek 0 0.786081! 0.795142

8 bdacuama 0 0.795142! 0.804019

9 vvumhlrc 0 0.804019! 0.812537

10 ocsedyqgr 0 0.812537! 0.820767

11 kqusovcu 0 0.820767! 0.828915

12 zwcysqur 0 0.828915! 0.836600

13 qgakhbcc 0 0.836600! 0.844100

14 yrueodlmlv 0 0.844100! 0.850829

15 myewbmca 0 0.850829! 0.857866

16 qaccxetvzw 0 0.857866! 0.864309

17 uyaodalnzw 1 0.864309! 0.870606

18 ldzudinnu 0 0.870606! 0.874905

19 kdsaamffe 0 0.874905! 0.879009

20 shcqmtur 0 0.879009! 0.882713

21 gedhfaleqau 1 0.882713! 0.886046

22 peacfaonty 1 0.886046! 0.889379

23 nuecduvc 1 0.889379! 0.892713

24 dcpuuvquqs 0 0.892713! 0.894779

25 ttezbgau 0 0.894779! 0.896720

26 ytelsmcc 0 0.896720! 0.905520

27 logtavegooy 0 0.905520! 0.906978
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VSVP(0)

A C D E R U

a 0 1 0 0 0 0

c 0 0 0 3 0 0

d 0 0 1 0 1 0

e 0 0 0 0 0 4

r 2 0 0 0 0 0

u 0 0 0 0 0 0

VSVP(2)

A C D E R U

a 0 0 0 0 0 0

c 0 0 0 0 2 0

d 0 0 0 0 0 0

e 0 1 0 0 0 0

r 3 0 0 0 0 0

u 0 0 0 6 1 0

VSVP(1)

A C D E R U

a 0 0 0 5 0 0

c 0 0 0 0 0 2

d 0 2 0 0 0 0

e 0 0 0 0 4 0

r 0 0 1 0 0 0

u 5 0 0 0 0 0

VSVP(3)

A C D E R U

a 0 0 0 0 4 0

c 0 0 0 0 0 2

d 0 4 0 0 0 0

e 0 0 0 4 0 0

r 0 0 0 0 0 0

u 0 0 2 0 0 0

VSVP(4)

A C D E R U

a 1 0 0 0 0 0

c 0 0 0 3 0 0

d 0 0 0 0 0 0

e 0 0 0 0 0 0

r 0 0 0 0 0 0

u 0 6 0 0 1 0

VSVP(5)

A C D E R U

a 1 0 0 0 0 0

c 0 0 0 0 0 0

d 0 3 0 0 0 0

e 0 0 0 1 2 0

r 0 0 1 0 0 0

u 0 0 0 2 0 0

VSVP(6)

A C D E R U

a 0 0 0 3 0 0

c 0 1 0 0 0 0

d 1 0 0 0 0 1

e 0 0 0 0 0 0

r 0 0 0 0 7 0

u 0 0 0 0 0 0

VSVP(7)

A C D E R U

a 0 1 0 0 0 0

c 0 0 0 0 0 0

d 0 0 1 8 0 0

e 4 0 0 0 0 0

r 0 0 0 0 0 1

u 0 0 0 0 2 0

VSVP(8)

A C D E R U

a 0 5 0 0 0 0

c 0 0 0 4 1 0

d 0 0 0 0 6 0

e 3 0 0 0 0 0

r 0 0 0 0 0 3

u 0 0 2 0 0 0

VSVP(9)

A C D E R U

a 0 5 0 0 0 1

c 0 0 0 0 0 0

d 4 0 0 0 0 0

e 0 0 0 3 0 0

r 0 0 1 0 5 0

u 0 0 0 0 0 0

VSVP(10)

A C D E R U

a 0 0 0 0 1 0

c 2 0 0 0 0 0

d 0 0 0 0 0 l

e 1 0 0 6 0 0

r 0 0 1 0 0 0

u 0 8 0 0 0 0

TABLE 7.50 V-Stepper Counts After Pruning

(Continued)
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VSVP(12)

A C D E R U

a 0 2 0 0 0 0

c 0 0 0 0 0 2

d 0 0 2 0 0 0

e 1 0 0 0 4 0

r 0 0 0 3 0 0

u 3 0 0 0 0 0

VSVP(13)

A C D E R U

a 0 0 0 0 0 1

c 0 0 1 4 0 0

d 5 0 0 0 0 0

e 0 2 0 0 0 0

r 0 0 0 0 2 0

u 0 0 0 0 0 0

VSVP(11)

A C D E R U

a 0 0 1 0 0 0

c 0 0 0 6 0 0

d 0 0 0 0 5 0

e 0 0 0 0 0 2

r 0 3 0 0 0 0

u 2 0 0 0 0 0

VSVP(14)

A C D E R U

a 0 0 0 0 4 0

c 0 0 0 1 0 3

d 5 0 0 0 0 0

e 0 0 0 3 0 0

r 0 1 0 0 0 0

u 0 0 1 0 0 0

VSVP(15)

A C D E R U

a 0 0 0 0 5 0

c 0 0 0 3 0 0

d 3 0 0 0 0 0

e 0 0 1 0 0 0

r 0 0 0 0 0 1

u 0 5 0 0 0 0

VSVP(16)

A C D E R U

a 0 4 0 0 1 0

c 0 0 0 0 0 3

d 0 0 0 5 1 0

e 0 0 0 0 0 0

r 1 0 2 0 0 0

u 0 0 0 0 2 0

VSVP(17)

A C D E R U

a 0 0 0 3 0 0

c 0 3 0 0 0 0

d 0 0 0 0 0 3

e 0 0 0 0 0 0

r 6 0 0 0 0 0

u 0 0 0 0 2 0

VSVP(18)

A C D E R U

a 0 2 0 0 0 0

c 0 0 0 0 0 0

d 5 0 0 0 0 0

e 0 0 0 0 1 0

r 0 0 0 0 0 0

u 0 0 0 2 0 1

VSVP(19)

A C D E R U

a 0 0 0 0 0 2

c 3 0 0 0 0 0

d 0 0 0 0 0 0

e 0 4 0 0 1 0

r 0 0 2 0 0 0

u 0 0 0 5 0 0

VSVP(20)

A C D E R U

a 0 0 0 0 0 0

c 0 0 1 0 0 0

d 0 2 0 0 0 0

e 2 0 0 11 0 0

r 0 0 0 0 1 0

u 0 0 0 0 0 4

VSVP(21)

A C D E R U

a 0 0 0 0 0 2

c 2 0 0 0 0 0

d 0 0 0 0 0 0

e 0 0 0 6 0 0

r 0 0 1 0 2 0

u 0 2 0 0 0 0

TABLE 7.50 Continued

(Continued)
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The V-stepper in each position can be recovered from the residual set of triples T after

pruning. The first step is to enter the data for all triples in each V-stepper position. The

entries in Table 7.50 pertain to the combined V-stepper; for example, entry 3 in row c,
column E of the first subtable means that there were three surviving triples (E,c,0). By
reference to Table 7.47, we see that this is the correct value. Not all rows in the

V-stepper recovered; Table 7.51 lists our results.

VSVP(22)

A C D E R U

a 0 0 0 0 0 0

c 0 0 0 1 0 1

d 0 0 0 0 0 0

e 0 3 0 0 0 0

r 2 0 0 0 0 0

u 0 0 0 0 4 0

VSVP(23)

A C D E R U

a 4 0 0 0 0 0

c 0 0 0 0 0 1

d 0 3 0 0 0 0

e 0 0 0 5 0 0

r 0 0 0 0 0 0

u 0 0 0 0 7 0

VSVP(24)

A C D E R U

a 0 0 0 0 0 1

c 0 0 0 0 4 0

d 0 0 2 0 0 0

e 0 3 0 0 0 0

r 4 0 0 0 0 0

u 0 0 0 2 0 0

TABLE 7.51 Partial Recovery of V-Stepper

i A C D E R U

0 a r u d e c

1 d e c u a r

2 * u r d c *

3 u c e d a r

4 * r * e u *

5 d u c e a r

6 * e d * r a

7 r a u c e d

8 u r a c e d

9 r c d a e c

10 d c e r u a

11 e r a u d c

12 a d c u e r

13 u r d a c e

14 u c e a d r

15 c r e a u d

16 d a u d e r

17 c e u d r a

18 d u c a e u

19 d u c r c a

20 r c d e a u

21 a c d r u e

22 c r u d c a

23 d c u e a r

24 a u r d c e

TABLE 7.50 Continued
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7.10 CRIBBING PURPLE: FINDING THE C-STEPPERS

Recovery of the C-steppers is considerably more complicated, because the consonant sub-

stitution has the very large period of 253. Rowlett [1998, p. 151] describes the excitement

when Genevieve Feinstein (née Grotjan) discovered the characteristic property of the

C-stepper alphabets that was crucial in the success of Magic, the United States codename

for intelligence derived from the cryptanalysis of PURPLE.

Table 7.52 lists the positions of the three banks of C-steppers for 0 � i , 78.

7.10.1 First Characteristic Property of C-Steppers

If

. The speed of the C-stepper banks is (S, M, F).

. The permutations
Q

(i, iþ 1) (i ¼ 0, 1) are factored into the C-stepper substitutions,

and

. The initial positions of the V-stepper and all C-steppers are 0, then

the ciphertext alphabets in positions [0, 23] and [26, 49] are related as follows:

x!
PL�1V

�
CS(2)

CP(2)(i)

�
CS(1)

CP(1)(i)

�
CS(0)

CP(0)(I)
(PLV(x))

���
PL�1V

�
CS(2)

CP(2)(iþ26)

�
CS(1)

CP(1)(iþ26)

�
CS(0)

CP(0)(iþ26)
(PLV(x))

���
:

8<: (7:69)

Table 7.52 shows

CS
( j)

CP( j)(i)

CS
( j)

CP( j)(iþ26)

8<: ¼
CS

( j)

CP( j)(0)

CS
( j)

CP( j)(26)

8<: , 0 � i � 23, j ¼ 0, 1 (7:70)

CS(2)
CP(2)(i)

¼ CS(2)
CP(2)(iþ26)

, 0 � i � 23: (7:71)

If x2, x2 [ CON and

CS(1)
CP(1)(0)

�
CS(0)

CP(0)(0)

�
PLV(x1)

��
¼ CS(1)

CP(1)(26)

�
CS(0)

CP(0)(26)

�
PLV(x2)

��
implies

PLV
�1

 
CS(2)

CP(2)(i)

�
CS(1)

CP(1)(i)

�
CS(0)

CP(0)(i)

�
PLV(x1)

��!

¼ PLV
�1
�
CS(2)

CP(2)(iþ26)

�
CS(1)

CP(1)(iþ26)

�
CS(0)

CP(0)(iþ26)
(PLV(x2))

���
(7:72)

for 0 � i � 23. That is, when

. the consonant x1 is enciphered in position 0 to the same letter as the consonant x2 is

enciphered in position 26, then

. x1 is enciphered to the same letter in position i to the same letter as the consonant x2
is enciphered in position iþ 26.

For example,

. B in position 0 and 0 in position 26 are both enciphered to t;

. B in position 1 and 0 in position 27 are both enciphered to s;
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0

2
1

2
2

2
2

2
3

2
4

M
:

1
1

1
1

1
1

1
1

1
1

1
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

3
3

3

S
:

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

V
:

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

0
1

2



TABLE 7.53 (S, M, F) PURPLE Encipherment of CON for 0 � i < 52

B F G H I J K L M N O P Q S T V W X Y Z

0 t y i x h j q l b o k n z g w s f p m v

1 s j z x k p f b t n i l h w q g y v m o

2 f p o x y b n g m 1 s h i q j w t z k v

3 i l y v f p b s m k j q z x h o t g n w

4 j v w i m o x h f q l k s p n y z t g b

5 h w k p n g b y t i s x j m o l q z f v

6 i m o b s q g v p z x n w k y t j l h f

7 n m o t v w j b g h z 1 x y p f i q k s

8 t s y n z g o h x l b q j m k v f w p i

9 n x g z b s h v t i f k l m j q p o w y

10 m j s x g q o i v w y f t h z n l k p b

11 n m i y o j w t b h v 1 k f g s x p z q

12 w y t z o h m v l n j s p f b k g q i x

13 i j z q t v m p o x k h s g y w n l f b

14 k m v g x t i l q z p w o h j f s b y n

15 v s w g h z x m o f y j l k q i n p b t

16 g w m v l o b t i q f p k j s h x z n y

17 y s l k t x i m z j f n w p h o v q g b

18 k j g y b l f z v t i p x m o s w h n q

19 g z f o y b h w j l n m p q t i s k x v

20 f i t o n j l v h s y q k b p g m x w z

21 x j m n t w i s p q l b y f g h o z v k

22 q g w x z i o p j f v k b n h t m y s l

23 k v m z l q h b i f n t p w j x s o g y

24 y q i l k m n o x v p z b s t f j h w g

25 s x g w i o l n j m y v q p f t h k b z

26 g b v m i l x q f j t o y k s w p h z n

27 w t o m z b x f y p s n j i g q v k h l

28 q m v k o g x n t b f l p s w j z y i h

29 x m w n y s v b t p i k l j o h g f z q

30 p f b g w h i x z o j q v l y n t m s k

31 m t v f k y p b q g h i w s l o z n j x

32 k p f h o v b g j q i z m x t y l s w n

33 y g s k o b t j i w n h m z f p q v x l

34 m x i p y h n o f g t l s b v k w z j q

35 m t y w g v z h p s n i x f q j o b l k

36 h v b p s i x o l q m w j y n z k g t f

37 f b q z i t y w x j n h m v s g p o k l

38 f l x i t v z m g h w n y j k b q o p s

39 g o b f z p q m n v i x j k w y l t s h

40 h q n y v l g i s t k z m p f j b x o w

41 k o t b w m g x n z v f s y i q p h l j

42 j i y n m t v b x o g q w f h s z l k p

43 p z b g l m k i v x y j s f o h q t w n

44 m v q n g z y f w l k t j i s o h b x p

45 q j v x f w o h s b g l z n i t k y p m

46 b h z w t v o l m j f s i y g p x n k q

47 f p k v m s n i o w x q j l h g z t y b

48 n j l s w p x o m i q f g v t h y z b k

49 w i y g m b z h s q k f v n x j o l p t

50 i k p v y t x m b l j w h z n g o s f q

51 x y b q g z f i o k t s n l p w h j v m
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In other words, pairs of columns in rows [0,23] and [26,49] shown with a vertical

rule on-the-right are isomorphs.

Table 7.53 illustrates that

. Column B in rows 0-23 is identical to column 0 in rows 26-49.

. Column F in rows 0-23 is identical to column Q in rows 26-49.

. .
.

. Column Z in rows 0-23 is identical to column G in rows 26-49.

The First Characteristic Property of the C-Stepper allows the consonant alphabets

(Table 7.53) to be filled in by partial data when their motion is (S,M,F).

When cribbing identifies the V-stepper as in Section 7.8, entries in the C-stepper

ciphertext alphabets (Table 7.53) are also determined. The characteristic property of the

C-steppers expressed in Equations (7.69) to (7.72) fills in additional entries.

7.10.2 Second Characteristic Property of C-Steppers

If

. The speed of the C-stepper banks is (F,M,S),

. The permutations
Q

(i, iþ 1) (i ¼ 0, 1) are factored into the C-stepper substi-

tutions, and

. The initial positions of the V-stepper and all C-steppers are 0, then Equations (7.70)

and (7.71) are replaced by

CS
( j)

CP( j)(i)

CS
( j)

CP( j)(iþ26)

8<: ¼
CS

( j)

CP( j)0

CS
( j)

CP( j)(26)

(
, 0 � i � 23, j ¼ 1, 2 (7:73)

CS(0)
CP(0)(i)

¼ CS(0)
CP(0)(iþ26)

, 0 � i � 23 (7:74)

If x [ CON, then

CS(1)
CP(1)(i)

�
CS(0)

CP(0)(i)

�
PLV(x)

��
¼ CS(1)

CP(1)( j)

�
CS(0)

CP(0)( j)

�
PLV(x)

��
if and only if

CS(1)
CP(1)(iþ26)

�
CS(0)

CP(0)(iþ26)

�
PLV(x)

��
¼ CS(1)

CP(1)( jþ26)

�
CS(0)

CP(0)( jþ26)

�
PLV(x)

��
(7:75)

for 0 � i � 23. That is, when

. the consonant x is enciphered to the same (or different resp.) letter in positions i and

j, then

. the consonant x is enciphered to the same (or different resp.) letter in positions iþ 26

and jþ 26 for 0 � i � j � 23.

For example

. B in rows [0,23] is enciphered to tgbwqyjmlm . . . qnxiqk

. B in rows [26,49] is enciphered to plxkvnyomo . . . vwibvh
which are isomorphs of one another.
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TABLE 7.54 (S, M, F) PURPLE Encipherment of CON for 0 � i < 52

B F G H I J K L M N O P Q S T V W X Y Z

0 t y i x h j q l b o k n z g w s f p m v

1 g b v m i l x q f j t o y k s w p h z n

2 b t z y v n s i l h w g q x k m p f o j

3 w x o s k g j i v z f m n l t h q p y b

4 q x m t s o h w y j g b z v l n i f k p

5 y v n q j x o b s h f i w m t g k z p l

6 j f s z o b t m i g q y x v n k l w p h

7 m n k i p l b v y h w j z f q x o s g t

8 l f g n z t m v s h j w i y p k o x b q

9 m w k q f o l s y x i n g b p j v z t h

10 k f z j p h l q w o t v b x m g n i y s

11 t m k b h n l y g z q j o p s i x v f w

12 g h x y n b w f k s v t i l p o z j m q

13 o s t z l j i x m k h g w p y n b q f v

14 w m i y t q o v n z f k x p j l s g b h

15 f h t w i g o s q k m p b z n j y l x v

16 m s j v t b i y f h p k w o q n l x g z

17 f y i l v g b z t x n p j k m q s w h o

18 q v h l k m w z p x f s y g n b j o t i

19 n g f j w y s o l t q p i h v b k m z x

20 x z w v b i n p l j m o g q f h t s y k

21 i m f x o h z y p t b w l v s k q g n j

22 q v n j f b p g s x z h m l i t y k w o

23 k b s o y w f m q p i j n t v z g h x l

24 l b x v w t i z k y g p o h q s n m j f

25 m x i j k p b g h n l s z t v f w o y q

26 p n b i t y v m x z h w g l k f q s o j

27 l x j o b m i v q y p z n h f k s t g w

28 x p g n j w f b m t k l v i h o s q z y

29 k i z f h l y b j g q o w m p t v s n x

30 v i o p f z t k n y l x g j m w b q h s

31 n j w v y i z x f t q b k o p l h g s m

32 y p f g z x p o b l v n i j w h m k s t

33 o w h b s m x j n t k y g q v i z f l p

34 m q l w g p o j f t y k b n s h z i x v

35 o k h v q z m f n i b w l x s y j g p t

36 h q g y s t m v k z p j x i o l w b n f

37 p o h x t w m n l g v y z s f b i j q k

38 l t i n w x k q h f j p b m s z g y o v

39 z f p g m y b i o h t l k s n w x v q j

40 k o b n p v z j w g q h i s y m f l x t

41 q t p k b l z f v h o s x g w y n m i j

42 o f y j p x b n q t s h k z v w m i l g

43 q n b m j l x g p i w s y h o v f k t z

44 v j t m h o k g s i q f n l w x y z p b

45 w l q y k n f z m p v s b t j x h o g i

46 i g k j x b w s m y o z l v q t p f n h

47 b o q i z t g n s p x k m j f h v l w y

48 v j w y q x s l f i g t o m b p n h k z

49 h x f z n k q o v s b y w p j g l t i m

50 m o t b y l j v k w q h x g z f p n i s

51 s o i z l g q f m y p w b n k t x v h j
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. C in rows [0,23] is enciphered to ybtxxvfn . . . vgzmvb

. C in rows [26,49] is enciphered to nxpiijqw . . . jlqojx
which are isomorphs of one another.

In other words, corresponding pairs of columns in rows [0,23] and [26,49] shown with a

vertical rule on-the-right are isomorphs of one another.

Table 7.54 illustrates that

. Column B in rows 0-23 is an isomorph of column B in rows 26-49.

. Column C in rows 0-23 is an isomorph of column C in rows 26-49.

. .
.

. Column Z in rows 0-23 is an isomorph of column Z in rows 26-49.

The Second Characteristic Property of the C-Stepper allows the consonant alphabets

(Table 7.54) to be filled in by partial data when their motion is (F,M,S).

When cribbing identifies the V-stepper as in Section 7.8, entries in the C-stepper

ciphertext alphabets (Table 7.54) are also determined. The second characteristic property

of the C-steppers expressed in Equations (7.73) to (7.75) fills in additional entries.

Deavours and Kruh (1985) write that Rowlett discovered the pattern used by the

Japanese to select the daily keys thus making the process more efficient. Even so, the

cryptanalysis of PURPLE represented a monumental achievement.
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CHA P T E R8
STREAM CIPHERS

THE I N V EN T ION of the transistor in the 1940s led to the development of

solid-state devices capable of generating (0, 1)-sequences with very large periods enjoying

many properties of randomly generated sequences. The resulting key stream would then

be combined character by character with plaintext. This chapter describes the properties

of linear feedback shift registers and their output sequences and illustrates the cribbing

of ciphertext resulting from the stream encipherment of ASCII character plaintext. Various

nonlinear extensions and their application to cell phone encipherment are discussed.

8.1 STREAM CIPHERS

Stream encipherment combines the plaintext x0, x1, . . . , xn21 letter-by-letter with a key

stream of 0’s and 1’s. For ASCII plaintext, each letter xi might first be coded into its

7-bit ASCII ordinal value xi

x0, x1, . . . , xn�1 �! x0, x1, x2, . . . , xn�1

and then enciphered by the exclusive-OR (XOR) with the key stream.

Several methods of generating the key stream are described in this chapter. Good

references for this material include Beker and Piper [1982] and Lidl and Niederrieter

[1997]. The original research on linear recurring (periodic) sequences is contained in

Selmer [1966] and Zierler [1959].

8.2 FEEDBACK SHIFT REGISTERS

A finite state machine (FSM) [Mealy, 1955] consists of finite sets of (internal) states {s},

input and output alphabets {a} and {b}, an output function T determining the output

T : (s, a)! b,

and a state function S determining the successor state.

S : (s, a)! s� ¼ S(s, a):

Given an initial internal state s0, and sequence of input states a0, a1, . . . , the functions T
and S determine the output sequence b0, b1, . . . , according to the recursion

bi ¼ T(si, ai) siþ1 ¼ S(si, ai), i ¼ 0, 1, . . . :

Computer Security and Cryptography. By Alan G. Konheim
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Figure 8.1 depicts a feedback shift register (FSR) with feedback function f, an FSM

with null input consisting of N stages (each capable of storing one bit), a feedback register,

and a single output port, where

. The content of Stage i at time t is si(t) ¼ 0 or 1,

. The output s0(t) is the content of Stage 0 at time t,

. The state of the FSR at time t is the N-vector s(t) ¼ (s0(t), s1(t), . . . , sN21(t)) [ ZN,2

(where ZN,2 is the set of 2
N vectors of length N with components 0 or 1), and

. The feedback value at time t is f (s0(t), s1(t), . . . , sN21(t)).

The states of the FSR change only when a clocking signal is applied and then as follows:

. The content si(t) of Stage iþ 1 at time t is shifted to the left, meaning it becomes the

new content of Stage i at time tþ 1; si(tþ 1) ¼ siþ1(t) for 0 � i ,N2 1, and

. The value f (s0(t), s1(t), . . . , sN21(t)) in the feedback register at time t becomes the

new content of Stage N2 1 at time tþ 1; sN21(tþ 1) ¼ f (s0(t), s1(t), . . . , sN21(t)).

Figure 8.2 depicts a linear feedback shift register (LFSR), the special case of a feed-

back shift register with linear feedback function f

f (s0(t), s1(t), . . . , sN�1(t)) ¼
XN�1
n¼0

cN�nsn(t),

where

. c0, c1, . . . , cN are the feedback coefficients or taps [c0 ¼ 1],

. The output of the AND-gate A[ j] is the (current) content of Stage j if cN2j ¼ 1, and

0, otherwise, and

. The feedback bit entering Stage N2 1 when a clock pulse is applied is the

exclusive-OR (XOR) of the current outputs of the N AND-gates.

Figure 8.2 Linear feedback shift register.

Figure 8.1 Feedback shift register.
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The state of the LFSR at times t and tþ 1 are related by

s(t) ¼ (s0(t), s1(t), . . . , sN�1(t))

s(t þ 1) ¼ (s0(t þ 1), s1(t þ 1), . . . , sN�1(t þ 1)):
(8:1)

As si(tþ 1) ¼ siþ1(t) for 0 � i , N2 1

s(t þ 1) ¼ (s1(t), s2(t), . . . , sN�2(t), sN�1(t)), sN�1(t þ 1)) (8:2)

where

sN�1(t þ 1) ¼
XN�1
n¼0

cN�nsn(t), (8:3)

the addition in Equation (8.3) being modulo 2. As s0(tþ k) ¼ sk(t) for 0 � k , N,

Equations (8.2) and (8.3) give

s0(t þ N) ¼
XN�1
n¼0

cN�n s0(t þ n), 0 � t , 1: (8:4)

Equation (8.4) is a forward recursion, because the future output s0(tþ N) is determined by

the most recent N outputs (s0(t), s0(tþ l), . . . , s0(tþ N2 1)). When cN ¼ 1, Equation

(8.4) may be rearranged such that

s0(t) ¼
XN
n¼1

cN�ns0(t þ n): (8:5)

Equation (8.5) is a backward recursion, because the N outputs (s0(tþ 1),

s0(tþ 2), . . . , s0(tþ N )) from time tþ 1 on determine the past output s0(t).

Remark: We may always assume that cN ¼ 1, for if cN ¼ cN21 ¼ � � � ¼
cN2(k21) ¼ 0, cN2k ¼ 1, the LFSR essentially contains N2 k active stages and the

output sequence

s0(0), s0(1), . . . , s0(k � 1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
prefix

s0(k), s0(k þ 1), . . .

consists of the k-bit prefix determined by the contents of the leftmost k-stages concatenated

with the output of a (N2 k)-stage LFSR.

Proposition 8.1: An N-stage LFSR with feedback coefficients (c0, c1, . . . , cN)
enjoys the following properties:

8.1a If s(t) ¼ s(t), then s(tþ 1) ¼ s(tþ 1) and s(t2 1) ¼ s(t2 1);

8.1b If s(t) ¼ (0)N ; (0, 0, . . . , 0), the output remains null for t . t ;

8.1c The sequence of states s(0), s(1), . . . , s(P2 1) are distinct and periodic with period P;

s(0) ¼ s(P), with P satisfying 1 � P � 2N2 1.

Proof of (8.1a): If s(t) ¼ s(t),

. The forward recursion gives s(tþ 1) ¼ s(tþ 1) and

. The backward recursion gives s(t2 1) ¼ s(t2 1).

Proof of (8.1b): This follows immediately from (8.1a).
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Proof of (8.1c): If s(0) ¼ (0)N, then P ¼ 1; otherwise, the transformation of states

s(t)! s(tþ 1) is invertible and as s(t) = (0)N, there are only 2N2 1 possible states, and

there exists a largest value P such that s(0), s(1), . . . , s(P2 1) are distinct. (8.1a) proves

that s(0) ¼ s(P ) and P � 2N2 1. B

Example 8.1
The output s0(t) of the LFSR with N ¼ 3 and f (s0(t), s0(tþ 1), s0(tþ 2)) ¼
s0(t)þ s0(tþ 2) is listed in Table 8.1. The LFSR output is periodic with period 7 for

every initial state other than s(0) ¼ (0)3.

8.3 THE ALGEBRA OF POLYNOMIALS OVER ZZ2

P½z
 will denote the set of polynomials in the variable z whose coefficients { pi} are in

Z2 ¼ {0, 1}:

p(z) ¼ p0 þ p1zþ p2z
2 þ � � � þ pnz

n:

Arithmetic operations on polynomials are the usual, except that the addition and multipli-

cation of coefficients is performed modulo 2. We write deg( p) for the degree of p [ P[z]
The subset of P[z] consisting of polynomials with deg( p) � n will be denoted by Pn[z].

We next summarize several basic properties of P[z].

8.3.1 Properties of PP½z


1. f [ P½z
 has a factorization, if f (z) ¼ g(z)h(z) with g, h [ P½z
: If f (z) ¼ g(z)h(z),

then g(z) and h(z) are factors of f (z)

(a) f (z) ¼ g(z)h(z) is a non-trivial factorization of f ðzÞ if both g(z) = 1 and = f (z)

(b) f (z) ¼ g(z)h(z) is a trivial factorization of f(z) otherwise.

2. f (z) is reducible if f (z) has a nontrivial factorization f (z) ¼ g(z)h(z).

3. f (z) is irreducible if every factorization of f (z) ¼ g(z)h(z) is trivial; f (z) ¼ g(z)h(z)

implies either g(z) ¼ f (z) or h(z) ¼ f (z).

4. Division algorithm for polynomials: If f(z), gðzÞ [ P½z
, there exist polynomials q(z)

and r(z) such that f(z) ¼ q(z)g(z)þ r(z) with 0 � deg(r), deg(g); q(z) is the quotient

and r(z) is the remainder of the division of f(z) by g(z).

TABLE 8.1 The States of the
Example 8.1 LFSR

t s(t) s0(t)

0 1 0 0 1

1 0 0 1 0

2 0 1 1 0

3 1 1 1 1

4 1 1 0 1

5 1 0 1 1

6 0 1 0 0

7 1 0 0 1

0 0 0 0 0

1 0 0 0 0
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Remarks

1. (a) If p(1) ¼ 0, (zþ 1) is a factor of p(z); p(0) ¼ 0 , z is a factor of p(z).

(b) If p(1) ¼ 0, the division algorithm gives p(z) ¼ (zþ 1)q(z)þ r(z), where the

remainder r(z) is a polynomial of degree 0, that is, a constant (0 or 1), As

p(1) ¼ 0, it follows that r(z) ¼ 0.

2. The factorization p(z) ¼ 1þ zn ¼ (1þ z)(1þ zþ z2þ � � � þ zn21) shows that

p(z) ¼ 1þ zn is reducible for every n . 1.

3. The polynomial p(z) ¼ 1þ zþ z3 is irreducible. If p(z) is reducible, it must have a

factor of degree 1. As p(0) ¼ p(1) ¼ 1 and neither z or z þ 1 are factors of p(z), so

we conclude that p(z) is irreducible.

8.3.2 Modular Arithmetic for Polynomials

If f ðzÞ [ P[z] and pðzÞ [ Pn½z
 with p(0) ¼ 1, then by the division algorithm

f (z) ¼ q(z)p(z)þ r(z), deg(r) , deg( p):

Analagous to integer modular arithmetic, we write

f (z) ; r(z) (modulo p(z)):

Again by analogy with modular integer arithmetic, r(z) is referred to as the residue of f (z)

modulo p(z).

Remark: If p(0) ¼ 1, the residue of zi (modulo p(z)) cannot be the zero polynomial

for i � 1; otherwise, zi ¼ q(z)(1þ p1z þ p2z
2
þ � � � ), which requires q(z) ¼ zi þ � � � ,

leading to i ¼ deg(q) þ deg( p) . i, a contradiction.

Example 8.2
Table 8.2 expresses zi ¼ qi(z)p(z) þri(z) using the division algorithm and the residues

zi(modulo p(z)) with p(z) ¼ 1þ zþ z3 and 0 � i � 7. Table 8.2 illustrates two important

properties of polynomial modular arithmetic:

. If p(z) is of degree r, the residue zk (modulo p(z)) is a polynomial of degree � r2 1

for every value of k, and

. If p(1) ¼ 0, then p(z) divides 1þ zm for some integer m.

The following three statements are easily seen to be equivalent:

p(z) divides 1þ zm 0 ¼ (1þ zm) (modulo p(z)) 1 ¼ zm (modulo p(z))

TABLE 8.2 The Residues z i (modulo p(z)), p(z) 5 11 z1 z2

1 ¼ 1 (modulo p(z))

z ¼ z (modulo p(z))

z2 ¼ z2 (modulo p(z))

z3 ¼ p(z)þ (1þ z) () 1þ z ¼ z3 (modulo p(z))

z4 ¼ zp(z)þ (zþ z2) () zþ z2 ¼ z4 (modulo p(z))

z5 ¼ (1þ z2)p(z)þ (1þ zþ z2) () 1þ zþ z2 ¼ z5 (modulo p(z))

z6 ¼ (1þ zþ z3)p(z)þ (1þ z2) () 1þ z2 ¼ z6 (modulo p(z))

z7 ¼ (1þ zþ z2þ z4)p(z)þ 1 () 1 ¼ z7 (modulo p(z))
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From Table 8.2

p(z) ¼ 1þ zþ z3 divides (1þ z7) 0 ¼ (1þ z7) (modulo p(z)) 1 ¼ z7(modulo p(z))

Proposition 8.2: If p(z) is of degree N and p(0) ¼ 1, then

8.2a The residue zi (modulo p(z)) is a polynomial of degree at most N2 1,

8.2b There exists an integer m, the exponent of p(z), such that p(z) divides lþ zm,

8.2c The sequence of residues z0 (modulo p(z)), z1 (modulo p(z)), z2 (modulo p(z)),. . . is
periodic with period m, and

8.2d The exponent m of p(z) satisfies 1 � m � 2N2 1.

Proof of (8.2a): This follows directly from the division algorithm.

Proof of (8.2b–d): If p(0) ¼ 1, then since zi (modulo p(z))=0, it follows that

there are only 2N21 different values for the residues zi (modulo p(z)). The sequence of

residues

z0 (modulo p(z)), z1 (modulo p(z)), z2 (modulo p(z)), . . .

must therefore contain a repetition.

Suppose the first repetition occurs for the pair (i, j ) with 0 � i , j � 2N2 1,

zi (modulo p(z)) ¼ z j (modulo p(z))

TABLE 8.3 Irreducible and Primitive Polynomials of Degree n 5 2(1)9

Degree 2

7�

Degree 3

13�

Degree 4

23� 37

Degree 5

45� 75� 67�

Degree 6

103� 127 147� 111 155�

Degree 7

211� 217� 235� 367� 277� 325�

203� 313� 345�

Degree 8

435� 567 763 551� 675 747�

453� 727 545� 613 545� 613

543� 433 477 537� 703� 471

Degree 9

1021� 1131� 1461� 1231 1423� 1055�

1167� 1541� 1333� 1605� 1027� 1751�

1743� 1617� 1553� 1401 1157� 1715�

1563� 1713� 1175� 1725� 1225� 1275�

1773� 1511 1425� 1267�
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so that

0 ¼ ðzi þ z jÞ ðmodulo pðzÞÞ:

If

(zi þ z j) ¼ q(z)p(z),

then zi divides q(z) as p(0) ¼ 1 and therefore

0 ¼ (1þ z j�i) (modulo p(z)):

This shows i ¼ 0 and m ¼ j and completes the proof. B

Table 8.3 [Marsh, 1957] lists irreducible polynomials of degree n for n ¼ 2(1)9.

(Note, the table-maker’s notation n ¼ 2(1)9 indicates that n ranges from 2 to 9 steps

of 1.) The entries in Table 8.3 are in octal; for example; 217
� ¼ 010 001 111 corresponds

to the polynomial p(z) ¼ 1þ zþ z2þ z3þ z7. An asterisk (�) signals the entry is a

primitive polynomial. The reciprocal of the polynomial

p(z) ¼ p0 þ p1zþ � � � þ pN�1z
N�1 þ pNz

N

is the polynomial with the coefficients written in the reverse order,

p�(z) ; zNp
1

z

� �
¼ pN þ pN�1z

N�1 þ � � � þ p1zþ p0z
N :

p(z) is irreducible (resp. primitive) if and only if the same property holds for p�(z) and

Table 8.3 lists only one of the pair p(z), p�(z).

Table 8.4 gives the number N(n ) of irreducible and the number N�(n) of primitive

polynomials of degree n for n ¼ 1(1)12.

TABLE 8.4 The Number of Irreducible and
Primitive Polynomials of Degree n 5 1(1)12

n N(n) N�(n)

1 2 1

2 1 1

3 2 2

4 3 2

5 6 6

6 9 6

7 18 18

8 30 16

9 56 48

10 99 60

11 186 176

12 335 144
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8.4 THE CHARACTERISTIC POLYNOMIAL OF
A LINEAR FEEDBACK SHIFT REGISTER

The characteristic polynomial of the N-stage LFSR with recursion

s0(t þ N) ¼
XN�1
n¼0

cN�ns0(t þ n), 0 � t , 1,

and feedback coefficients {ci} is

p(z) ¼ cN þ cN�1zþ � � � þ c1z
N�1 þ c0z

N :

We will always assume c0 ¼ cN ¼ 1.

Example 8.3
The LFSR with characteristic polynomial p(z) ¼ 1þ zþ z2þ z3 is shown in Figure 8.3.

As p(z) does not divide 1þ zk for k ¼ 1, 2, 3 and (1þ z)p(z) ¼ 1þ z4, the exponent of

p(z) is 4. Table 8.5 gives the output and states of this LFSR for three different initial

states. Table 8.5 illustrates that the period of the sequence s0(0), s0(1), s0(2), . . .
depends on the initial state s(0):

. s(0) ¼ (0, 0, 1) produces a sequence of period 3,

. s(0) ¼ (1, 0, 1) produces a sequence of period 2, and

. s(0) ¼ (1, 1, 1) produces a sequence of period 1.

Proposition 8.3: [Beker and Piper, 1982, pp. 192–193] If

p(z) ¼ cNþ cN21zþ � � � þ c1z
N2l
þ c0z

N is the characteristic polynomial of the LFSR, then

8.3a The period of the output sequence s0(0), s0(1), s0(2), . . . is a divisor of the exponent
of p(z), and

8.3b If the initial state s(0)=(0)N, the period of the output sequence s0(0), s0(1),

s0(2), . . . is 2
N2 1 if and only if p(z) is primitive.

Example 8.4
The LFSR with characteristic polynomial p(z) ¼ 1þ zþ z3 is shown in Figure 8.4. The

exponent of p(z) was shown to be 7 in Example 8.2. Table 8.6 gives the output states of

Figure 8.3 The LFSR with characteristic polynomial p(z) ¼ 1þ z þ z2 þ z3.
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the LFSR with characteristic polynomial p(z). All initial states other than s(0) ¼ (0)3
produces a sequence of period 7.

Example 8.5
The reciprocal of polynomial of p(z) ¼ 1 þ z3 þ z4 is p�(z) ¼ 1þ zþ z4. The LFSRs that

have p(z) and p�(z) as characteristic polynomials are shown in Figures 8.5 and 8.6.

Table 8.7 lists the states of the LFSR having these characteristic polynomials. The

two sequences of output states are reversals of one another.

s0(t) ¼ 1111 0101 1001 000

s�0(t) ¼ 0001 0011 0101 111

Figure 8.4 The LFSR with characteristic polynomial p(z) ¼ 1þ zþ z3.

TABLE 8.6 The States and Output of the LFSR
with Characteristic Polynomial p(z) 51 1 z 1 z3

t s0(t) s(t)

0 1 1 0 0

1 0 0 0 1

2 0 0 1 0

3 1 1 0 1

4 0 0 1 1

5 1 1 1 1

6 1 1 1 0

7 1 1 0 0

TABLE 8.5 The States and Output of the LFSR with Characteristic Polynomial p(z) 5 11 z1 z2 1 z3

s(0)

0 0 1 1 0 1 1 1 1

t s0(t) s(t) s0(t) s(t) s0(t) s(t)

0 1 1 0 0 1 1 0 1 1 1 1 1

1 0 0 1 1 0 0 1 0 1 1 1 1

2 0 0 1 1 1 1 0 1 1 1 1 1

3 1 1 1 0 0 0 1 0 1 1 1 1

4 1 1 0 0 1 1 0 1 1 1 1 1
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Figure 8.6 The LFSR with characteristic polynomial p�(z) ¼ 1 þ zþ z4.

Figure 8.5 The LFSR with characteristic polynomial p(z) ¼ 1 þ z3þ z4.

TABLE 8.7 States of the LFSR with p(z) 5 11 z1 z4 and p�(z) 5 11 z31 z4

p(z) ¼ 1þ zþ z4 p�(z) ¼ 1þ z3þ z4

t s(t) t s�(t)

0 1 1 1 1 0 0 0 0 1

1 1 1 1 0 1 0 0 1 1

2 1 1 0 1 2 0 1 1 1

3 1 0 1 0 3 1 1 1 1

4 0 1 0 1 4 1 1 1 0

5 1 0 1 1 5 1 1 0 1

6 0 1 1 0 6 1 0 1 0

7 1 1 0 0 7 0 1 0 1

8 1 0 0 1 8 1 0 1 1

9 0 0 1 0 9 0 1 1 0

10 0 1 0 0 10 1 1 0 0

11 1 0 0 0 11 1 0 0 1

12 0 0 0 1 12 0 0 1 0

13 0 0 1 1 13 0 1 0 0

14 0 1 1 1 14 1 0 0 0

15 1 1 1 1 15 0 0 0 1
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8.5 PROPERTIES OF MAXIMAL LENGTH LFSR
SEQUENCES

Proposition 8.4: If the characteristic polynomial p(z) ¼ cNþ cN21zþ � � � þ

c1z
N21
þ c0z

N of an N-stage LFSR is primitive and the initial state is not null

s(0) = (0)N, then

8.4a The sequence of states s(0), s(1), . . . are distinct and periodic with period 2N2 1,

8.4b Every N-tuple v ¼ (v0, v1, . . . , v N21) = (0)N is a state s(t) of the LFSR for some t

with 0 � t , 2N2 1,

8.4c The sum of two states s(t1) and s(t2) of the LFSR with 0 � t1 , t2 , 2N2 1 is

another state of the LFSR, and

8.4d If 0 , t , 2N2 1, the sequence of sums of states

s(t)þ s(t þ t); s(t þ 1)þ s(t þ 1þ t); . . . ; s(t þ 2N � 1)þ s(t þ 2N � 1þ t)

is a translate of the state sequence s(0), s(1), . . . , that is s(tþ s) ¼ s(t)þ s(tþ t)
for some s.

Proof of (8.4a): Suppose on the contrary that 0 � t1 , t2 , 2N21 and LFSR

states at these times are the same. If s(t1) ¼ s(t2), then by Proposition 8.1b

s(0) ¼ s(t22 t1), which contradicts the periodicity of the sequence of states s(t).

Proof of (8.4b): If the 2N-states s(0), s(1), . . . ,s(2N2 1) are distinct and

s(t) = (0)N, then every N-tuple v ¼ (v0, v1, . . . , vN21) [ ZN,2 other than (0)N must be a

state of the LFSR.

Proof of (8.4c): If

s(t1) ¼ (s0(t1); s0(t1 þ 1); . . . ; s0(t1 þ N � 1))

s(t2) ¼ (s0(t2); s0(t2 þ 1); . . . ; s0(t2 þ N � 1))

with 0 � t1 , t2 , 2N2 1, then

s(t1) = s(t2) ) (t1)þ s(t2) = (0)N;

which implies s(t1) þ s(t2) is a state of the LFSR by Proposition 8.4b.

Proof of (8.4d): This is a direct consequence of the forward recursion

and 8.4c. B

We described Bernoulli trials in Chapter 4 as a random process consisting of a

sequence of independent and identically distributed (0, 1)-valued random variables K0,

K1, . . . . Bernoulli trials are a mathematical model of the repeated and independent

trials of tossing a fair coin.

PrfKi ¼ 0g ¼ PrfKi ¼ 1g ¼
1

2
(8:6)

EfKig ¼
1

2
(8:7)

More generally, for every k-tuple (u0, u1, . . . , uk21) of 0’s and 1’s with 1 � k � N

PrfKi ¼ u0;Kiþ1 ¼ u1; . . . ;Kiþk�1 ¼ uk�1g ¼
1

2k
; i¼ 0;1; . . . ; 1� k � N: (8:8)
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Finally, the autocorrelation function of a Bernoulli process in the difference between the

probabilities of an agreement and disagreement in the ith and (iþ t)th outcomes of the

toss of the coin:

r(t)¼ PrfKi ¼ Kiþtg � PrfKi = Kþtg ¼ 0; 0, t, 2N � 1: (8:9)

Chapter 4 described the one-time encipherment system, in which the outcomes of

Bernoulli trials were exclusive-ORed (XOR) to a sequence of (0, 1)-valued plaintext.

The resulting ciphertext statistically resembles the Bernoulli trials and therefore encryp-

tion completely hides the plaintext. The need to generate the output of Bernoulli limits

the one-time system. Can the output of a LFSR s0(0), s0(1), s0(2), . . . serve as the outcomes

of Bernoulli trials?

The renowned mathematician John von Neumann once wrote

Anyone, who considers arithmetical methods of producing random digits is, of course, in a state

of sin.

D. H. Lehmer, a pioneer in random number generation methodology, wrote in 1951

A random sequence is a vague notion embodying the idea of a sequence in which each term

is unpredictable to the uninitiated and whose digits pass a certain number of tests, traditional

with statisticians and depending on the uses to which the sequence is to be put.

How closely does the output of an LFSR whose characteristic polynomial is p(z) ¼
cNþ cN21zþ � � � þ c1z

N21
þ c0z

N with initial state s(0) = (0)N resemble a “random”

sequence?

A run of 0’s (resp. of l’s) of length k occurs in the LFSR output sequence s0(0),

s0(1), s0(2), . . . starting at time t if

(s0(t � 1), s0(t), s0(t þ 1), . . . , s0(t þ k � 1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0�run

), s0(t þ k) ¼ 1(0)k 1

(s0(t � 1), s0(t), s0(t þ 1), . . . , s0(t þ k � 1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1�run

), s0(t þ k) ¼ 0(1)k 0

Proposition 8.5: If the polynomial p(z) ¼ cNþ cN21zþ � � � þ c1z
N21
þ c0z

N of

an N-stage LFSR is primitive and the initial state satisfies s(0) = (0)N, the following prop-

erties hold in every period of 2N21 output states

. . . s0(t), s0(t þ 1), s0(t þ 2), . . . , s0(t þ 2N � 1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cycle

. . .

8.5a It contains 2N2l 1’s and 2N2121 0’s;

8.5b It has one run of 1’s of length N and no runs of 0’s of length N;

8.5c It has one run of 0’s of length N2 1;

8.5d It does not have a run of 1’s of length N2 1;

8.5e It contains 2N2r 22 runs of 1’s of length r and 2N2r22 runs of 0’s of length r for every

r, 1 � r , N2 1.

Proof of (8.5): [Beker and Piper, 1982, p. 196] For each k-tuple

u ¼ (u0, u1, . . . ,uk21) of 0’s and 1’s, with 1 � k � N, Proposition 8.5b implies

. There are 2N2k states s(t) with 0 � t , 2N21 such that

(s0(t), s0(t þ 1), . . . , s0(t þ (k � 1))) ¼ u ¼ (u0, u1, . . . , uk�1)

if 1 � k � N and u = (0)k, and
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. There are 2N2k2 1 states s(t) with 0 � t , 2N2 1 such that

(s0(t), s0(t þ 1), . . . , s0(t þ (k � 1))) ¼ u ¼ (u0, u1, . . . , uk�1)

if 1 � k , N and u ¼ (0)k.

In terms of the indicator function x{� � �}X2N�2
t¼0

x{(s0(t), s0(tþ1), ... , s0(tþ(k�1)))¼u} ¼
2N�k, if 1 � k � N and u = (0)k
2N�k � 1, if 1 � k � N and ub = (0)k

�
The probability that k bits of an LFSR state satisfy (s0(t), s0(tþ 1), . . . ,
s0(tþ (k2 1))) ¼ u is the fraction of times t that this condition holds. Thus

Pr{(s0(t), s0(t þ 1), . . . , s0(t þ (k � 1))) ¼ u}

¼
1

2N � 1

X2N�2
t¼0

x{(s0(t), s0(tþ1), ... , s0(tþ(k�1)))¼u}

¼

2N�k

2N � 1
, if u = (0)k and 1 � k � N

2N�k � 1

2N � 1
, if u ¼ (0)k and 1 � k , N

	
1

2k
, as N ! 1

8>><>>: ,

properties that are analogous to those in Equations (8.6) to (8.8).

The autocorrelation function of the output states of the LFSR is the average number

of agreements minus disagreements between s0(t) and s0(tþ t) computed over a cycle:

rs(t) ¼
1

2N � 1

X2N�2
t¼0

x{s0(t)¼s0(tþt)} � x{s0(t)=s0(tþt)}

� �
:

To make the computation of rs(t), we need a connection between modulo 2 integer and

ordinary integer arithmetic. If u, v are 0 or 1, then

(2u� 1)(2v� 1) ¼
1, if u ¼ v

�1, if u = v

�
so that

x{s0(t)¼s0(tþt)} � x{s0(t)=s0(tþt)} ¼ (2s0(t)� 1)(2s0(t þ t)� 1),

leading to the formula

rs(t)¼
1

2N � 1

X2N�2
t¼0

(2s0(t)� 1)(2s0(tþ t)� 1)

¼
4

2N � 1

X2N�2
t¼0

s0(t)s0(tþ t)�
2

2N � 1

X2N�2
t¼0

s0(t)|fflfflfflfflffl{zfflfflfflfflffl}
Term#1

�
2

2N � 1

X2N�2
t¼0

s0(tþ t)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Term#2

þ
1

2N � 1

X2N�2
t¼0

1:

Terms #1 and #2 are equal by Proposition 8.5b, so that

rs(t)¼
4

2N � 1

X2N�2
t¼0

s0(t)s0(tþ t)�
4

2N � 1

X2N�2
t¼0

s0(t)þ
1

2N � 1

X2N�2
t¼0

1:
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If t ¼ 0, then

X2N�2
t¼0

s0(t)s0(tþ t)¼
X2N�2
t¼0

s20(t)¼
X2N�2
t¼0

s0(t);

so that the first two summands above cancel, giving rs(0) ¼ 1.

If t = 0, then s(t)þ s(tþ t)=(0)N; Proposition 8.5d shows a value of s exists such

that

s(t þ s) ¼ s(t)þ s(t þ t), t ¼ 0, 1, . . . ,

which gives

s0(t þ s) ¼ s0(t)þ s0(t þ t), t ¼ 0, 1, . . . :

Next, if u, v ¼ 0, 1, then (uþ v) (modulo 2) is equal to the real number uþ v2 2uv, so that

2s0(t)s0(t þ t) ¼ s0(t)þ s0(t þ t)� s0(t þ s) [real]:

Replacing the term s0(t)s0(tþ t) and summing over t gives

X2N�2
t¼0

s0(t þ s) ¼
X2N�2
t¼0

s0(t)þ s0(t þ t)� 2s0(t)s0(t þ t) [real]:

But

2N � 1

2
¼
X2N�2
t¼0

s0(t þ s) ¼
X2N�2
t¼0

s0(t) ¼
X2N�2
t¼0

s0(t þ t),

so we conclude

2N

4
¼
X2N�2
r¼0

s0(t)s0(t þ t),

proving Proposition 8.6.

Proposition 8.6: The autocorrelation function of the sequence s0(t), s0(tþ 1), . . . ,
s0(tþ 2N2 2) of an N-stage LFSR generated by the primitive polynomial p(z) ¼ cNþ

cN21zþ � � � þ c1z
N21
þ c0z

N whose initial state is not (0)N is the real number

rs(t) ¼
1, if t ¼ 0

�
1

2N � 1
, if t = 0:

(

Propositions 8.4 to 8.6 indicate that the output of an LFSR exhibits some characteristics of

a Bernoulli process; the output of an LFSR is an example of a pseudorandom sequence.

Menezes et al. [1996] define the next bit test on a binary sequence x0, x1, . . . , xl21 as

an algorithm for which

Given: x0, x1, . . . , xl21

Determine: xl
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They define a pseudorandom number generator (PRG) as a deterministic algorithm, which

starts with the seed, a sample of random binary values X0, X1, . . . , Xk21 and outputs for

which it can be proved that no polynomial-time algorithm exists to solve the next bit test.

8.6 LINEAR EQUIVALENCE

The output of an LFSR s0(0), s0(1), . . . may be generated by more than one characteristic

polynomial and initial state.

Example 8.6
The LFSRs with characteristic polynomials and initial states

p1(z) ¼ 1þ zþ z3 þ z4, s(0) ¼ (1, 1, 0, 1)

p2(z) ¼ (1þ zþ z3)(1þ zþ z3 þ z4), s(0) ¼ (1, 1, 0, 1, 1, 0, 1)

both generate the sequence s ¼ (1, 1, 0, 1, 1, 0, . . .). Note that an LFSR to generate a given

n-sequence of 0’s and 1’s s ¼ (s (0), s (1), . . . , s(n2 1)) always exists as s could be used

as the initial state of the n-stage LFSR with any coefficient vector.

More relevant are the questions

Q1. What is the minimum number of stages needed by an LFSR to generate s?

Q2. What is the minimal polynomial of s, the characteristic polynomial of the minimal-

length LFSR that generates s?

The linear equivalence L(s) of the n-sequence s ¼ (s(0), s(1), . . . , s(n2 1)) is the

length of the shortest LFSR that generates s.
The principal properties of linear equivalence are summarized in the next

proposition.

Proposition 8.7: [Beker and Piper, 1982, p. 200; Menezes et al., 1996, p. 198]1 the

n-sequence s ¼ (s(0), s(1), . . . , s(n2 1))

8.7a If s is of length n; then1
0 � LðsÞ � n

LðsÞ ¼ 0, if and only if s ¼ ð0Þn
LðsÞ ¼ n, if and only if s ¼ ð0Þn�1,

1

8<:
(Note, in analogy with the convention for a summation or product with an empty

index set, a 0-stage LFSR always outputs 0.)

8.7b The linear equivalence of s and n, possibly of different lengths, satisfies

L(sþ n) � L(s)þ L(n).

8.7c If L(s) ¼ N, the characteristic polynomial p(z) of the LFSR that generates s has

degree N. If s is also generated by the LFSR with characteristic polynomial q(z),

then p(z) divides q(z).

The Berlekamp–Massey algorithm [Massey, 1969] solves the problem

Given: s ¼ (s0, s1, . . . , sN21)

Find: the minimal-length LFSR that generates s

1The linear equivalence L(s) satisfies Menezes et al. use the term linear complexity instead of linear equivalence.
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8.7 COMBINING MULTIPLE LINEAR FEEDBACK
SHIFT REGISTERS

Figure 8.7 shows how linear feedback shift registers can be combined by XORing

their outputs. The XOR of periodic sequence with periods {Pi} is periodic with period

equal to the least common multiple P ¼ lcm{Pi} of the individual periods. (Note, the

least common multiple of integers {ni} is the smallest integer n divisible by each of

the {ni}.)

When the characteristic polynomials are primitive, and their exponents 2Ni 2 1

(0 � i , k) which are relatively prime in pairs

1 ¼ gcd{2Ni � 1; 2Nj � 1}; 0 � i , j , k

the period of the combined generator is
Qk�1

i¼0 ð2
Ni � 1). (Note, the greatest common

divisor gcd{n1, n2} is the largest integer n that divides both the n1 and n2; if

1 ¼ gcd{n1, n2}, the integers are relatively prime.) Just as Vernam additively combined

tapes of relatively prime lengths to produce a tape with a much longer period, the same

result is achieved by additively combining LFSRs of suitable total lengths
Pk
i¼1

Ni to

produce a LFSR with a much larger period.

Figure 8.7 The XOR of k linear feedback shift registers.
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8.8 MATRIX REPRESENTATION OF THE LFSR

In addition to the Berlekamp–Massey algorithm, there is another approach that will be

useful to calculate the minimal polynomial p(z) ¼ cNþ cN21zþ � � � þ c1z
N2n
þ c0z

N of

an LFSR output sequence s0(0), s0(1), . . . when the length N of the LFSR is known.

The forward recursion s0(t þ N) ¼
PN�1

n¼0 cN�ns0(t þ n) provides a relationship between

consecutive N-blocks of LFSR output values:

s(t þ N) ¼ S(t, t þ N � 1)c

s(t þ N) ¼

s0(t þ N)

s0(t þ N þ 1)

..

.

s0(t þ 2N � 1)

0BBBB@
1CCCCA, c ¼

cN

cN�1

..

.

c1

0BBBB@
1CCCCA

S(t, t þ N � 1) ¼

s0(t) s0(t þ 1) � � � s0(t þ N � 1)

s0(t þ 1) s0(t þ 2) � � � s0(t þ N)

..

. ..
. . .

. ..
.

s0(t þ N � 1) s0(t þ N) � � � s0(t þ 2N � 2)

0BBBB@
1CCCCA

Proposition 8.8: If the LFSR has linear equivalence N, then

8.8a The row of the N � N matrix S(t, tþ N2 1) are linearly independent, and

8.8b The 2N consecutive outputs s0(t), s0(tþ 1), . . . , s0(tþ 2N2 1) determine the

characteristic polynomial of the LFSR.

Proof of (8.8a): If on the contrary, the rows of S are linearly dependent, there

exists a vector d = (0)N such that

(0)N ¼
XN�1
n¼0

dns(t þ n):

This implies

(0)N ¼
XN�1
n¼0

dns(t þ n):

Assuming without loss of generality that dN21 ¼ 1, we have

sN�1(t þ N � 1) ¼
XN�2
n¼0

dns(t þ n),

which contradicts the assumed linear equivalence.

Proof of (8.8b): Gaussian elimination and its application in cribbing Hill cipher-

text was described in Chapter 3. Applying Gaussian elimination to matrix Equations

(8.5) involves applying a sequence of operations of two types:

. Rj,k: Premultiplication of S(t, tþ N2 1) and s(tþ N ) by a matrix Rj,k. The

exclusive-OR (XOR) row j to row k of the N � N matrix S(t, tþ N2 1)

s(t þ N) ¼ S(t, t þ N � 1)c

s(t þ N)! Rj,k s(t þ N)

S(t, t þ N � 1)! Rj,k S(t, t þ N � 1)

Rj, ks(t þ N) ¼ Rj,k S(t, t þ N � 1)c:
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. Ej,k: Postmultiplication of S(t, tþ N2 1) and premultiplication of s(tþ N ) by a

matrix Ej,k. Interchanging rows j and row k of the N � N matrix S(t, tþ N2 1)

s(t þ N) ¼ S(t, t þ N � 1)c

d! Ej,k d

S(t, t þ N � 1)! S(t, t þ N � 1)Ej,k

s(t þ N) ¼ S(t, t þ N � 1)c,

where the last equations use Ej,k ¼ Ej,k
21.

The intent of a sequence of these operations is to transform S(t, tþ N2 1) into a

matrix with 1’s only on or above the diagonal. The coefficients of the LFSR’s characteristic

polynomial are determined when this is achieved. B

8.9 CRIBBING OF STREAM ENCIPHERED ASCII
PLAINTEXT

The stream encipherment of ASCII character plaintext is performed in three steps:

Step 1: Each letter of the character plaintext x0, x1, . . . , xn21 is replaced by its

ordinal value of xi in the ASCII character set, which is coded into 7 bits; for example

xi ¼ A! ord(A) ¼ 65! xi ¼ (1, 0, 0, 0, 0, 0, 1)

xi ¼ a! ord(a) ¼ 97! xi ¼ (1, 1, 0, 0, 0, 0, 1):

The ASCII character plaintext x0, x1, . . . , xn21 of n characters is transformed into a

sequence of n 7-bit vectors, the (0, 1)-plaintext

T : x0, x1, . . . , xn�1! x0, x1, . . . , xn�1:

Step 2: The LFSR with initial state s(0) ¼ (s0(0), s0(1) , . . . , s0(N2 1)) generates

the key stream, a sequence of 7n-bits (s0(0), s0(l), . . . , s0(7n2 1)), which are grouped into

n 7-bit blocks:

s0 ¼ (s0(0), s0(1), . . . , s0(6))

s1 ¼ (s0(7), s0(8), . . . , s0(13))

..

.

sn�1 ¼ (s0(7(n� 1)), s0(7(n� 1)þ 1), . . . , s0(7n� 1))

Step 3: The ciphertext y ¼ ( y0, y1, . . . , yn21) consists of n 7-bit vectors where yi is

the XOR of the ith plaintext block xi and the block of key si

y
i
¼ xi þ si, 0 � i , n:

The key of an LFSR encipherment system has three components:

1. The number of stages N of the LFSR,

2. The characteristic polynomial p(z) ¼ cNþ cN21zþ � � � þ c1z
N21
þ c0z

N, and

3. The initial state s(0) ¼ (s0(0), s0(1), . . . , s0(N2 1)).
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We formulate the cribbing of ASCII character plaintext as:

Given: A plaintext crib of M characters, the ciphertext y and integers N, i;

Test: If y was generated by an LFSR of width N and if the crib starts as the tth

character in the plaintext.

If

. N is the correctwidth of theLFSR that has enciphered the plaintext crib of lengthM, and

. The crib starts as the tth character in the plaintext, then

x(t); x(t þ 1); . . . ; x(t þM � 1)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
crib

! xt; xtþ1; . . . ; xtþM�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
(0;1)� plaintext of crib

(x t; x tþ1; . . . ; x tþM�1)

þ (s t; s tþ1; . . . ; s tþM�1)

¼ (y
t
; y

tþ1
; . . . ; y

tþM�1
)

Or equivalently

(y
t
; y

tþ1
; . . . ; y

tþM�1
)

þ (x t; x tþ1; . . . ; x tþM�1)

¼ (s t; s tþ1; . . . ; s tþM�1):

If 7M � 2N, the leftmost 2N bits of the output (st, stþ1, . . . , stþM211)

s0(7t) s0(7t þ 1) � � � s0(7t þ N � 1)

s0(7t þ N) s0(7t þ N þ 1) � � � s0(7t þ 2N � 1)

. .
. . .

. . .
. . .

.

s0(7t þ N) s0(7t þ N þ 1) � � � s0(7t þ 2N � 1)

. .
.

satisfy

s(7t þ N) ¼ S(7t; 7t þ N � 1)c

where

s(7t þ N) ¼

sx0(7t þ N)

s0(7t þ N þ 1)

..

.

s0(7t þ 2N þ 1)

0BBBB@
1CCCCA

S(7t; 7t þ N � 1) ¼

s0(7t) s0(7t þ 1) � � � s0(7t þ N � 1)

s0(7t þ 1) s0(7t þ 2) � � � s0(7t þ N)

..

. ..
. . .

. ..
.

s0(7t þ N � 1) s0(7t þ N) � � � s0(7t þ 2N � 2)

0BBBB@
1CCCCA

c ¼ (cN ; cN�1; . . . ; c1)
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Proposition 8.8 asserts that the matrix S(7t, 7tþ N2 1) has an inverse and Gaussian

elimination determines the taps (c1, c2, . . . , cN21, cN).

Cribbing stream enciphered ASCII plaintext tests a value of N and a position t in the

plaintext with two possible outcomes:

1. If N is correct and the crib starts as the tth character in the plaintext, then

(a) The matrix S(t, tþ N2 1) is invertible determining taps (c1, c2, . . . , cN21, cN)

and

(b) Backward and forward recursion will determine the entire key stream and

plaintext.

2. If N is incorrect or if the crib does not start as the tth character in the plaintext, then

(a) The matrix S(t, tþ N2 1) may fail to be invertible, or

(b) Thematrix (t, tþ N2 1)may be invertible determining taps (c1, c2, . . . , cN21, cN),

but backward and forward recursion will determine a large percentage of non-

printable plaintext ASCII characters.

The cribbing strategy is to test if S(7t, 7tþ N2 1) has an inverse for some interval of

N, t-values

Test [widths] for N :¼ N1 to N2;

Test [positions] for t :¼ t1 to t2;

If S(7t, 7tþ N2 1) has an inverse

If YES, compute c and use the forward or backward recursions to compute a

segment of the key stream and plaintext

s(7(t þ N � k)); s(7(t þ N � k þ 1)); . . . ; s(7(t þ N � 1))|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
backward segment

s(7(t þ N þ 1)); . . . ; s(7(t þ N þ 2)); . . . ; s(7(t þ N þ k))|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
forward segment

and plaintext

x(7(t þ N � k)); x(7(t þ N � k þ 1)); . . . ; x(7(t þ N � 1))|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
backward segment

x(7(t þ N þ 1)); . . . ; x(7(t þ N þ 2)); . . . ; x(7(t þ N þ k))|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
forward segment

for some k, and test if these 7-bit plaintext vectors above correspond to printable

ASCII characters;

for example, upper/lower-case letters, numerals, punctuation, blank space.

Example 8.7
The LFSR with (primitive) characteristic polynomial p(z) ¼ 1þ z4þ z5þ z6þ z8

enciphers
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plainEx8.7

The pre-major requirements for the B.A. and the B.S. degrees
in computer science are the same. Students intending to
major in computer science should declare a pre-major when
applying for admission to the university.

to the ciphertext of 214 7-grams.

cipherEx8.7

0 1 1 0 0 0 1

0 0 1 0 1 0 1

0 0 1 0 1 1 0

0 0 1 1 0 1 1

0 1 1 1 0 1 0
..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 1 1 0 0 0 1

0 0 0 0 1 1 1

We use the crib pre-major testing the widths 5 � N � 12 and positions 0 � t � 4:

N ¼ 5, t ¼ 0

Plaintext Ciphertext Key

p 1110000 0110001 1000001

r 1110010 0010101 1100111

e 1100101 0010110 1110011

– 0101101 0011011 0110110

m 1101101 0111010 1010111

a 1100001 0111000 1011001

j 1101010 1110111 0011101

o 1101111 1000101 0101010

r 1110010 0001010 1111000

S(0, 4) ¼

s0(0) s0(1) s0(2) s0(3) s0(4)

s0(1) s0(2) s0(3) s0(4) s0(5)

s0(2) s0(3) s0(4) s0(5) s0(6)

s0(3) s0(4) s0(5) s0(6) s0(7)

s0(4) s0(5) s0(6) s0(7) s0(8)

0BBBBBB@

1CCCCCCA
s0(5)

s0(6)

s0(7)

s0(8)

s0(9)

0BBBBBB@

1CCCCCCA ¼ S(0, 4)

c5

c4

c3

c2

c1

0BBBBBB@

1CCCCCCA
0

1

1

1

0

0BBBBBB@

1CCCCCCA ¼
1 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0BBBBBB@

1CCCCCCA
c5

c4

c3

c2

c1

0BBBBBB@

1CCCCCCA

264 CHAPTER 8 STREAM CIPHERS



Gaussian Elimination: ,5 linearly independent vectors!

N ¼ 5, t ¼ 1

Plaintext Ciphertext Key

p 1110000 0010101 1100101

r 1110010 0010110 1100100

e 1100101 0011011 1111110

– 0101101 0111010 0010111

m 1101101 0111000 1010101

a 1100001 1110111 0010110

j 1101010 1000101 0101111

o 1101111 0001010 1100101

r 1110010 1111111 0001101

Input : S(7, 11) to Gaussian elimination.

S(7, 11) ¼

s0(7) s0(8) s0(9) s0(10) s0(11)

s0(8) s0(9) s0(10) s0(11) s0(12)

s0(9) s0(10) s0(11) s0(12) s0(13)

s0(10) s0(11) s0(12) s0(13) s0(14)

s0(11) s0(12) s0(13) s0(14) s0(15)

0BBBBBB@

1CCCCCCA
s0(13)

s0(13)

s0(14)

s0(15)

s0(16)

0BBBBBB@

1CCCCCCA ¼ S(7, 11)

c5

c4

c3

c2

c1

0BBBBBB@

1CCCCCCA
0

1

1

1

0

0BBBBBB@

1CCCCCCA ¼
1 1 0 0 1

1 0 0 1 0

0 0 1 0 1

0 1 0 1 1

1 0 1 1 1

0BBBBBB@

1CCCCCCA
c5

c4

c3

c2

c1

0BBBBBB@

1CCCCCCA

Gaussian Elimination:

0

1

1

1

0

0BBBB@
1CCCCA

1 1 0 0 1

1 0 0 1 0

0 0 1 0 1

0 1 0 1 1

1 0 1 1 1

0BBBB@
1CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S0(1, 5)

c5
c4
c3
c2
c1

0BBBB@
1CCCCA

XOR row 0 with rows 1 and 4 of S0(7, 11)

0

1

1

1

0

0BBBB@
1CCCCA ¼

1 1 0 0 1

0 1 0 1 1

0 0 1 0 1

0 1 0 1 1

0 1 1 1 0

0BBBB@
1CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S1(7, 11)

c5
c4
c3
c2
c1

0BBBB@
1CCCCA
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XOR row 1 with rows 3 and 4 of S1(7, 11)

0

1

1

1

0

0BBBB@
1CCCCA ¼

1 1 0 0 1

0 1 0 1 1

0 0 1 0 1

0 0 0 0 0

0 0 1 0 1

0BBBB@
1CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S2(7, 11)

c5
c4
c3
c2
c1

0BBBB@
1CCCCA

,5 linearly independent vectors.

N ¼ 5, t ¼ 2

Plaintext Ciphertext Key

p 1110000 0010110 1100110

r 1110010 0011011 1101001

e 1100101 0111010 1011111

– 0101101 0111000 0010101

m 1101101 1110111 0011010

a 1100001 1000101 0100100

j 1101010 0001010 1100000

o 1101111 1111111 0010000

r 1110010 1110001 0000011

S(14, 18) ¼

s0(14) s0(15) s0(16) s0(17) s0(18)

s0(15) s0(16) s0(17) s0(18) s0(19)

s0(16) s0(17) s0(18) s0(19) s0(20)

s0(17) s0(18) s0(19) s0(20) s0(21)

s0(18) s0(19) s0(20) s0(21) s0(22)

0BBBBBB@

1CCCCCCA
s0(19)

s0(20)

s0(21)

s0(22)

s0(23)

0BBBBBB@

1CCCCCCA ¼ S(14, 18)

c5

c4

c3

c2

c1

0BBBBBB@

1CCCCCCA
0

1

1

1

0

0BBBBBB@

1CCCCCCA ¼
1 1 0 0 1

1 0 0 1 1

0 0 1 1 0

0 1 1 0 1

1 1 0 1 1

0BBBBBB@

1CCCCCCA
c5

c4

c3

c2

c1

0BBBBBB@

1CCCCCCA

Gaussian Elimination:

1

0

1

1

0

0BBBB@
1CCCCA ¼

1 1 0 0 1

1 0 0 1 1

0 0 1 1 0

0 1 1 0 1

1 1 0 1 1

0BBBB@
1CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S0(14, 18)

c5
c4
c3
c2
c1

0BBBB@
1CCCCA
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XOR row 0 to rows 1, 4 of S0(14, 18)

1

1

1

1

1

0BBBB@
1CCCCA ¼

1 1 0 0 1

0 1 0 1 0

0 0 1 1 0

0 1 1 0 1

0 0 0 1 0

0BBBB@
1CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S1(14, 18)

c5
c4
c3
c2
c1

0BBBB@
1CCCCA

XOR row 1 to row 3 of S1(14, 18)

1

1

1

0

1

0BBBB@
1CCCCA ¼

1 1 0 0 1

0 1 0 1 0

0 0 1 1 0

0 0 0 0 1

0 0 0 1 0

0BBBB@
1CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S2(14, 18)

c5
c4
c3
c2
c1

0BBBB@
1CCCCA

XOR row 2 to row 3 of S2(14, 18)

1

1

1

1

1

0BBBB@
1CCCCA ¼

1 1 0 0 1

0 1 0 1 0

0 0 1 1 0

0 0 0 0 1

0 0 0 1 0

0BBBB@
1CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S3(14, 18)

c5
c4
c3
c2
c1

0BBBB@
1CCCCA

Interchange rows 3 and 4 of S3(14, 18)

1

1

1

1

1

0BBBB@
1CCCCA

1 1 0 0 1

0 1 0 1 0

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1

0BBBB@
1CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S4(14, 18)

c5
c4
c3
c1
c2

0BBBB@
1CCCCA

c2 ¼ 1, c1 ¼ 1, c3þ c1 ¼ 1, c4þ c1 ¼ 1, c5þ c4þ c2 ¼ 1.

Decipherment Test: Six nonprintable characters among the first nine deciphered

characters:

N ¼ 8, t ¼ 4

Plaintext Ciphertext Key

p 1110000 0111010 1001010

r 1110010 0111000 1001010

e 1100101 1110111 0010010

– 0101101 1000101 1101000

m 1101101 0001010 1100111

a 1100001 1111111 0011110

j 1101010 1110001 0011011

o 1101111 1101011 0000100

r 1110010 1011100 0101110
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Input: S(4, 5) to Gaussian elimination:

S(28, 35) ¼

s0(28) s0(29) s0(30) s0(31) s0(32) s0(33) s0(34) s0(35)

s0(29) s0(30) s0(31) s0(32) s0(33) s0(34) s0(35) s0(36)

s0(30) s0(31) s0(32) s0(33) s0(34) s0(35) s0(36) s0(37)

s0(31) s0(32) s0(33) s0(34) s0(35) s0(36) s0(37) s0(38)

s0(32) s0(33) s0(34) s0(35) s0(36) s0(37) s0(38) s0(39)

s0(33) s0(34) s0(35) s0(36) s0(37) s0(38) s0(39) s0(40)

s0(34) s0(35) s0(36) s0(37) s0(38) s0(39) s0(40) s0(41)

s0(35) s0(36) s0(37) s0(38) s0(39) s0(40) s0(41) s0(42)

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
s0(36)

s0(37)

s0(38)

s0(39)

s0(40)

s0(41)

s0(42)

s0(43)

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
¼ S(28, 35)

c8

c7

c6

c5

c4

c3

c2

c1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

0

0

1

0

1

0

0

0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
¼

1 0 0 1 0 1 0 1

0 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0

1 0 1 0 1 0 0 1

0 1 0 1 0 0 1 0

1 0 1 0 0 1 0 1

0 1 0 0 1 0 1 0

1 0 0 1 0 1 0 0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

c8

c7

c6

c5

c4

c3

c2

c1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

Gaussian Elimination:

0

0

1

0

1

0

0

0

0BBBBBBBBBB@

1CCCCCCCCCCA
¼

1 0 0 1 0 1 0 1

0 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0

1 0 1 0 1 0 0 1

0 1 0 1 0 0 1 0

1 0 1 0 0 1 0 1

0 1 0 0 1 0 1 0

1 0 0 1 0 1 0 0

0BBBBBBBBBB@

1CCCCCCCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S0(28, 35)

c8
c7
c6
c5
c4
c3
c2
c1

0BBBBBBBBBB@

1CCCCCCCCCCA

XOR row 0 to rows 3, 5, and 7 of S0(28, 35)

0

0

1

0

1

0

0

0

0BBBBBBBBBB@

1CCCCCCCCCCA
¼

1 0 0 1 0 1 0 1

0 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0

0 0 1 1 1 1 0 0

0 1 0 1 0 0 1 0

0 0 1 1 0 0 0 0

0 1 0 0 1 0 1 0

0 0 0 0 0 0 0 1

0BBBBBBBBBB@

1CCCCCCCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S1(28, 35)

c8
c7
c6
c5
c4
c3
c2
c1

0BBBBBBBBBB@

1CCCCCCCCCCA
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XOR row 2 to rows 4 and 6 of S1(28, 35)

0

0

1

0

1

0

0

0

0BBBBBBBBBB@

1CCCCCCCCCCA
¼

1 0 0 1 0 1 0 1

0 1 0 1 0 1 0 0

0 0 1 0 1 0 1 0

0 0 1 1 1 1 0 0

0 1 0 1 0 0 1 0

0 0 1 1 0 0 0 0

0 1 0 0 1 0 1 0

0 0 0 0 0 0 0 1

0BBBBBBBBBB@

1CCCCCCCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S2(28, 35)

c8
c6
c7
c5
c4
c3
c2
c1

0BBBBBBBBBB@

1CCCCCCCCCCA

Interchange rows 1 and 2 of S2(28, 35)

0

1

0

0

1

0

0

0

0BBBBBBBBBB@

1CCCCCCCCCCA
¼

1 0 0 1 0 1 0 1

0 1 0 1 0 1 0 0

0 0 1 0 1 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 0 1 1 0

0 0 1 1 0 0 0 0

0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 1

0BBBBBBBBBB@

1CCCCCCCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S3(28, 35)

c8
c6
c7
c5
c4
c3
c2
c1

0BBBBBBBBBB@

1CCCCCCCCCCA

XOR row 2 to rows 3 and 5 of S3(28, 35)

0

1

0

0

0

0

1

0

0BBBBBBBBBB@

1CCCCCCCCCCA
¼

1 0 0 1 0 1 0 1

0 1 0 1 0 1 0 0

0 0 1 0 1 0 1 0

0 0 0 1 0 1 1 0

0 0 0 0 0 1 1 0

0 0 0 1 1 0 1 0

0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 1

0BBBBBBBBBB@

1CCCCCCCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S4(28, 35)

c8
c6
c7
c5
c4
c3
c2
c1

0BBBBBBBBBB@

1CCCCCCCCCCA

XOR row 3 to rows 5 and 6 of S4(28, 35)

0

1

0

0

0

0

1

0

0BBBBBBBBBB@

1CCCCCCCCCCA
¼

1 0 0 1 0 1 0 1

0 1 0 1 0 1 0 0

0 0 1 0 1 0 1 0

0 0 0 1 0 1 1 0

0 0 0 0 0 1 1 0

0 0 0 0 1 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0BBBBBBBBBB@

1CCCCCCCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S5(28, 35)

c8
c6
c7
c5
c4
c3
c2
c1

0BBBBBBBBBB@

1CCCCCCCCCCA
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XOR row 5 to rows 6 of S5(28, 35)

0

1

0

0

0

0

1

0

0BBBBBBBBBB@

1CCCCCCCCCCA
¼

1 0 0 1 0 1 0 1

0 1 0 1 0 1 0 0

0 0 1 0 1 0 1 0

0 0 0 1 0 1 1 0

0 0 0 0 0 1 1 0

0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0BBBBBBBBBB@

1CCCCCCCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S6(28, 35)

c8
c6
c7
c5
c4
c3
c2
c1

0BBBBBBBBBB@

1CCCCCCCCCCA

Interchange rows 5 and 6 of S6(28, 35)

0

1

0

0

0

0

1

0

0BBBBBBBBBB@

1CCCCCCCCCCA
¼

1 0 0 1 0 1 0 1

0 1 0 1 0 1 0 0

0 0 1 0 1 0 1 0

0 0 0 1 0 1 1 0

0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0BBBBBBBBBB@

1CCCCCCCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S7(28, 35)

c8
c6
c7
c5
c3
c4
c2
c1

0BBBBBBBBBB@

1CCCCCCCCCCA

XOR row 5 to row 6 of S5(28, 35)

0

1

0

0

0

0

1

0

0BBBBBBBBBB@

1CCCCCCCCCCA
¼

1 0 0 1 0 1 0 1

0 1 0 1 0 1 0 0

0 0 1 0 1 0 1 0

0 0 0 1 0 1 1 0

0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0BBBBBBBBBB@

1CCCCCCCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S8ð28; 35Þ

c8
c6
c7
c5
c3
c4
c2
c1

0BBBBBBBBBB@

1CCCCCCCCCCA

0 ¼ c8 þ c5 þ c4 þ c1
1 ¼ c6 þ c5 þ c4
0 ¼ c7 þ c3 þ c2
0 ¼ c5 þ c4 þ c2
0 ¼ c3 þ c4
0 ¼ c4 þ c2
1 ¼ c2
0 ¼ c1

with solution c8 ¼ 1, c7 ¼ c6 ¼ c5 ¼ 0, c4 ¼ c3 ¼ c2 ¼ 1 c1 ¼ 0, c0 ¼ 1. Equation (8.4)

determines the key stream for all positions and the 8-stage LFSR shown Figure 8.8:

s0(t þ 8) ¼ c8s0(t)þ c7s0(t þ 1)þ c6s0(t þ 2)þ c5s0(t þ 3)þ c4s0(t þ 4)þ c3s0(t þ 5)

þ c2s0(t þ 6)þ c1s0(t þ 7):

As c8 ¼ 1, the backward recursion determines the states before time t as shown in

Figure 8.9. Why has this form of stream encipherment failed to provide secrecy?

The culprit is linearity!

In order that stream encipherment truly hides the plaintext, the generation of the key

stream must involve some form of nonlinearity.
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8.10 NONLINEAR FEEDBACK SHIFT REGISTERS

There are mm mappings F of Zm ; {0, 1, 2 . . . , m� 1} into itself. The orbit of F for an

element z [ Zm is the sequence of images of z under F

orbit(z) : z! F(1)(z)! F(2)(z)! � � �

where

F(j)(z) ¼
z; if j ¼ 0

F(F( j�1)(z)), if 1 � j , 1:

�
There are mm different mappings from Zm to Zm; of these, m! mappings are permutations

(one-to-one/invertible). The orbit of z under a permutation F is a cycle; z belongs to an

N-cycle if

z0! z1! z2! � � � ! zN�1! z0

where

zj ¼

z; if j ¼ 0

F(z j�1), if 1 � j � N � 1

z, if j ¼ N:

8<:

Figure 8.9 Backward recursion in Example 8.7 cribbing.

Figure 8.8 The LFSR determined in Example 8.7 cribbing.
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The orbits of mappings that are not one-to-one are composed of cycles with tails.

Figure 8.10 depicts the two types of orbits.

An N-stage LFSR with feedback function f is nonsingular if every state s(t) ¼ (s0(t),

s0(tþ 1), . . . , sNþt21) has a unique successor

F : (s0(t), s0(t þ 1), . . . , s0(N þ t � 1))! (s0(t þ 1), s0(t þ 2), . . . , s0(N þ t))

and predecessor

F : (s0(t � 1), s0(t), . . . , s0(N þ t � 2))! (s0(t), s0(t þ 1), . . . , s0(N þ t)):

This means that the orbits of the state transformation F consist only of cycles. Conversely,

if the orbits of states contain only cycles, the F is invertible.

Remark: If the taps c ¼ (c0, c1, . . . , cN) of an N-stage LFSR satisfy cN ¼ c0 ¼ 1,

then its state transformation F is invertible. One of the cycles is

F : (0)N ! (0)N :

. If the characteristic function p(z) of the LFSR is primitive, there is one additional

cycle containing 2N21 states, and

. If the characteristic function p(z) of the LFSR is not primitive, every cycle has length

that is a divisor of the exponent of p(z).

These results generalize for the FSR with feedback function f.

Proposition 8.9: [Golomb, 1982] The state function of an N-stage FSR F(s0(t),

s0(tþ 1), . . . , s0(tþ N2 1)) with feedback function f(s0(t), s0(tþ 1), . . . , s0(tþ N2 1))

is nonsingular if and only if there exists a function g(s0(t), s0(tþ 1), . . . , s0(tþ N2 1))

such that

f (s0(t), s0(t þ 1), . . . , s0(t þ N � 1)) ¼ g(s0(t þ 1), s0(t þ 2), . . . , s0(t þ N � 1))þ s0(t):

ð8:10Þ

Proof: If F is nonsingular and sN ¼ 0 and

f (0, s0(t þ 1), . . . , s0(t þ N � 1)) ¼ f (1, s0(t þ 1), . . . , s0(t þ N � 1))

the successor states of (0, s0(tþ 1), . . . , s0(tþ N2 1)) and (1, s0(tþ 1), . . . ,
s0(tþ N2 1)) are the same.

Therefore

f (0, s0(t þ 1), . . . , s0(t þ N � 1)) ¼ 1þ f (1, s0(t þ 1), . . . , s0(t þ N � 1)),

Figure 8.10 The orbits of a transformation under iteration.
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which is equivalent to

f (s0(t), s0(t þ 1), . . . , s0(t þ N � 1)) ¼ s0(t)þ g(s0(t þ 1), s0(t þ 2), . . . , s0(t þ N � 1))

with

g(s0(t þ 1), s0(t þ 2), . . . , s0(t þ N � 1)) ¼ f (0; s0(t þ 1), s0(t þ 2), . . . , s0(t þ N � 1)):

Conversely, suppose Equation (8.10) holds but not every orbit of F is a cycle. Thus,

there is some state (s0(t), . . . , s0(tþ N2 2), s0(tþ N2 1)) that has two predecessors

(0, s0(t), . . . , s0(t þ N � 2))

(1, s0(t), . . . , s0(t þ N � 2))

�
! (s0(t), . . . , s0(t þ N � 2), s0(t þ N � 1))

which is a contradiction. B

8.11 NONLINEAR KEY STREAM GENERATION

We illustrate two ways for nonlinear key stream generation, using a read-only memory

ROM to implement a nonlinear mapping. A k-bit ROM is a table with k-bit input

x ¼ (x0, x1, . . . , xk21) and output y ¼ ( y0, y1, . . . ,yk21)

Figure 8.11 uses the outputs of k-LFSRs as the input of a k-bit ROM from which

either a single or k-bit output can be read:

Figure 8.11 XORing to a ROM.
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. A min-term for n Boolean variable s0, s1, . . . , sn21 is a product in which either si or

its complement s0i occurs;

. An mth order product a product of m distinct Boolean variables;

. The algebraic normal form for a Boolean function f (s0, s1, . . . , sn21) is the

(modulo 2) sum of different mth products; and

. The nonlinear order of f is the maximum order of the terms appearing in its algebraic

normal form.

Example 8.8

1. s0s
0
1s
0
2s3s4 is a min-term in the Boolean variables s0, s1, . . . , sn21,

2. The Boolean function f (s0, s1, . . . , sn21) ¼ s1þ s2þ sn21 and has nonlinear order 1,

3. The Boolean function f (s0, s1, . . . , sn21) ¼ s1þ s1s2þ s0s1s3 has nonlinear order 3.

Proposition 8.10: [Menezes et al., 1996, p. 205] If the lengths N0, N1, . . . , Nk21

of the k LFSRs are pairwise distinct and .2, the nonlinear order of the output is

ROM(N0, N1, . . . , Nk2!1) evaluated as a function over the integers.

Nonlinearity can also be introduce by using the states s ¼ (s0(t), s1(t), . . . ,
s0(tþ N2 1)) of an N-stage LPSR to address the ROM.

Proposition 8.11: [Key, 1976] If the ROM’s function f is nonlinear of order m,

then

8.11a The nonlinear order of the key stream is bounded by Lm ¼
Pm
i¼1

N

i

� �
;

8.11b For a fixed maximum-length LFSR of length L, a prime, the fraction of

Boolean functions f that produce the maximum nonlinear order Lm is

	 exp�Lm=ðL2LÞ . e21/L.

Figure 8.12 Input to a ROM from the LFSR stages.
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8.12 IRREGULAR CLOCKING

Nonlinearity may also be introduced by irregular clocking, XORing several LFSRs but

shifting the LFSRs in a state- and key-dependent manner. One such scheme is described

by Günther [1987]. The Global System for Mobile Communication (GSM) Users Associ-

ation is a consortium providing mobile communication services. GSM has established an

elaborate key exchange and encryption protocol to provide both secrecy (privacy) and

authentication. Each mobile (telephone) contains a SIM (Subscriber Identity Module)

card, and a processor with memory containing

. The caller’s telephone number, International Mobile Subscribers Identification

Number (MISDN) of up to 15 (BCD) coded decimal digits

– MCC, Mobile Country Code;

– MNC, Mobile Network Code;

– MSIN, Mobile Subscriber Number.

. Implementation of two algorithms – A38 and A5.

. A user-unique 128-bit secret key KU.

It is assumed that the SIM may not be probed to reveal KU and that cloning is very difficult.

When a user wants to make a call, the mobile requests service from the network

providing its MISDN. The authentication process consists of several steps (Fig. 8.13).

8.12.1 Authentication

A1. The GSM Mobile Services Switching Center (MSC) generates and transmits to the

mobile a 128-bit random number RAND.

A2. The mobile’s SIM uses RAND and KU with the A38 one-way function to derive a

32-bit response SRES ¼ A38{KU, RAND}[0. . .3], which is returned to MSC.

(Note, the GSM standard allows GSM networks to implement different choices for

A38. One reference claims all networks use COMP128, which is described at the

Web site www.iol.ie/char126kooltek/ae8.txt. A38 uses arithmetic operations and

the input values KU; a table of 990 bytes is accessed to construct SRES and KS.)

A3. The MSC looks up the mobile’s MISDN and repeats the computation in Step A2,

comparing the result of its computation with the SRES returned by the mobile. If

there is agreement, the call is completed.

A4. Both the MSC and the mobile’s SIM use RAND and KU with the same A38 one-way

function to derive a 64-bit session key KS ¼ A8{KU, RAND}[4..11] (Fig. 8.14). KS

is used to initialize three LFSRs, which move irregularly.

Figure 8.13 GSM authentication process: challenge and response.
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8.12.2 Secrecy

S1. Voice data are sampled and formatted in 114-bit TDMA-frames. (Time division

multiple access (TDMA) allocates a transmission channel by dividing into time

slots and allocating them to users.) The GSM frames are stream-enciphered using

the output of the A5, nonlinear feedback shift-register algorithm.

S2. A GSM conversation is transmitted in TDMA frames one every 4.6 ms; a 114-bit

frame from the mobile and a 114-bit frame to the mobile. Frame #n is identified

by an accompanying frame counter Fn. The A5/1 registers are loaded with the

64-bit XOR of the session key KS and frame counter. There are additional initializa-

tion steps about which we do not elaborate.

8.12.3 A5/1 and A5/2

GSM originally did not release the details of their encipherment algorithms, which were

reverse-engineered. There are four A5 algorithms:

. The true vanilla A5/0 with no provided encryption,

. The original A5/1 used by 	130 � 106 GSM customers in the United States and

Europe, but not exportable to the Middle East,

. A5/2 used by 	100 � 106 GSM customers in other markets, and

. A5/3 algorithm, whose details can be found at gsmworld.com/using/algorithms/
index.shtml.

The A5/1 and A5/2 algorithms generate a key stream as the output of three irregularly

clocked linear feedback shift registers; A5/2 uses a 17-stage LFSR to control

clocking. Table 8.8 lists the characteristic polynomials, which are the same in A5/1
and A5/2 and the A5/2 LFSR clocking register characteristic polynomial depicted in

Figure 8.15.

Figure 8.14 Delivery of the session key to the mobile.

TABLE 8.8 Characteristic Polynomials of A5/1,2

LFSR0(z) ¼ 1þ zþ z2þ z5þ x19

LFSR1(z) ¼ 1þ zþ z22

LFSR2(z) ¼ 1þ zþ z2þ z15þ z23

LFSR4(z) ¼ 1þ z5þ z17 [A5/2 Clocking/Register]
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The middle bit of each of the registers is the clock control bit determining if the

registers shift to the next state according to Table 8.9:

. Compute the majority of the three clocking bits shown in Figure 8.15;

. If the clocked bit of a register agrees with the majority bit, then this register is shifed.

If the bits in the middle cells of LFSRi (i ¼ 0, 1, 2) are equally distributed and indepen-

dent, the registers are clocked (shifted) with probability 3/4.

Figure 8.15 A5/1.

TABLE 8.9 Clocking of A5/1 Registers

Clock control bit Next clock state?

LFSR0 LFSR1 LFSR2 LFSR0 LFSR1 LFSR2

0 0 0 ON ON ON

0 0 1 ON ON OFF

0 1 0 ON OFF ON

0 1 1 OFF ON ON

1 0 0 OFF ON ON

1 0 1 ON OFF ON

1 1 0 ON ON OFF

1 1 1 ON ON ON
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Even before an officially sanctioned description of the internal structure ofA5was pub-

lished,Golić [1997] published an analysis.AsA5uses a 64-bit key,Golić’s analysis is of com-

plexity 240,much less than key trial. It is also consistentwith earlierwork byAnderson [1995].

The paper byBiryukor et al. [2000] is based on the reverse-engineering of theA5/2 alogrithm.

The paper by Barkan et al. [2003] contains an analysis of the A5/2 algorithm.

Apparently, there was a great deal of controversy surrounding the design of

the A5 algorithm; it is not clear who the good guys were. Maybe, there were no good

guys.

8.13 RC4

Designed in 1987 by Ronald Rivest of RSA Data Security, RC4 is a member of the

suite of encipherment algorithms available in the Secure Socket Layer (Chapter 18).

It provides security for wireless communications in Wired Equivalent Privacy

(WEP), a protocol for wireless local area networks as defined in the IEEE 802.11b

Standard.

RC4 generates a pseudorandom key stream consisting of a sequence of (8-bit) bytes.

RC4 was a trade secret until 1994 and its name is still regarded as proprietary. RC4 has two

components:

KSA – a key scheduling algorithm, which loads a key register with a permutation on

integers 0 to 255; the key length varies from 40 to 128 bits;

PRGA – a pseudorandom number generator producing one 8-bit byte of key on

each call of the generator.

8.13.1 The RC4 Algorithm

Key Scheduling Algorithm (KSA)

1. Input

L bytes of key

k(1) ¼ (k(0), . . . , k(L2 1)) with ki [ Z256 ¼ {0, 1, . . . , 255}.

2. Initialization

for i :¼ 0 to 255 do

S[i] U i;

3. Generation

j :¼ 0

for i U 0 to 255 do

j :¼ ( jþ S[i]þ k(i(modulo L))) (modulo 256);

swap (S[ j ], S[ j ]);
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Example 8.9
If k ¼ (4, 11, 18, 25, 32, . . .), the first six steps in KSA are given in Table 8.10. The con-

tents of cells in the key register change; for example, the contents of S[4] undergo three

changes during the KSA program execution.

S½0
 ¼ 0

S½4
 ¼ 4

� �
���!
i¼0 S½0
 ¼ 4

S½4
 ¼ 0

� �
���!
i¼4 S½96
 ¼ 0

S½4
 ¼ 96

� �
���!
i¼186 S½186
 ¼ 96

S½4
 ¼ 186

� �
:

Table 8.11 lists the complete values in the key register.

Pseudorandom Number Generator (PRGA)

1. Input

N : Number of bytes of key stream to be generated

S : Key Register.

2. Generation

j :¼ 0

TABLE 8.10 Key Register Cell Swapping in RC4

Entering Exiting

j i ki S[ j ] S[i] j i S[ j ] S[i]

0 0 4 4 0 4 0 0 4

4 1 11 4 1 16 1 16 1

16 2 18 16 2 36 2 36 2

36 3 25 36 3 64 3 64 3

64 4 32 64 4 100 4 100 4

100 5 39 100 5 144 5 144 5

TABLE 8.11 Key Register in Example 8.9

Key register

4 16 36 64 186 140 255 86 144 12 55 43 13 160 128 155

246 34 145 46 235 18 31 191 92 101 81 190 142 50 241 115

30 29 28 118 230 127 217 102 75 170 175 60 72 20 24 90

106 137 17 198 93 5 80 121 95 53 221 176 76 200 71 67

251 19 212 62 107 14 180 232 77 120 204 132 225 248 11 44

78 193 85 214 122 27 215 206 135 82 103 161 245 111 179 153

231 119 15 48 218 210 205 216 22 104 59 116 167 162 49 117

211 239 131 23 73 63 89 74 236 254 172 136 189 244 97 228

150 109 182 26 123 171 253 147 38 201 188 99 100 168 134 196

129 125 138 152 70 39 45 207 57 159 242 151 54 41 112 61

87 158 3 84 208 98 177 124 199 213 37 126 10 9 6 183

149 69 194 184 65 40 157 202 234 166 96 197 169 203 2 237

58 185 146 238 229 163 42 249 83 21 130 141 56 165 88 8

243 35 105 178 148 174 219 252 247 143 250 223 222 33 227 79

68 173 220 156 91 240 47 164 139 94 108 209 195 110 181 154

7 192 114 226 51 133 113 66 52 25 233 187 0 1 224 32
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for i :¼ 0 to N21 do

i :¼ (iþ 1) (modulo 256);

swap (S[i], S[ j ]);

Output S[(S[i]þ S[ j ]) (modulo 256)];

Example 8.9 (continued)
The first 64 bytes generated by PRGA are given in Table 8.12. Encryption of wireless

communications is a much greater security problem than transmission over other

media; electromagnetic radiation allows a third party to possibly monitor communications

without detection. The design of a wireless protocol involves an important tradeoff; either

users have a secret key as in GSM, or the keys are managed by the service provider. The

IEEE 802.11b protocol opted for the second approach. Until recently, export controls

limited the key length of cryptographic devices to 56 bits.

IEEE 802.11b employs various “enhancements” to RC4, including

. A 24-bit initialization vector (IV) and

. A 24-bit integrity check value (ICV).

The only secret is the 4-bit key.

Figure 8.16 shows the format of the IEEE 802.11b data packet. The steps of the

encipherment process depicted in Figure 8.17 are as follows:

TABLE 8.12 Key Register in Example 8.9

Key generation

255 109 201 105 195 98 192 165 188 46 141 179 53 118 235 225

13 64 228 20 129 59 48 242 72 5 113 20 237 242 165 251

135 199 89 141 113 157 203 46 227 110 1 160 196 246 234 220

82 169 11 65 134 26 106 207 237 178 167 87 56 19 217 16

Figure 8.16 IEEE 802.11b enciphered protocol data unit (PDU).

Figure 8.17 IEEE 802.11b encipherment.
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1. The key K concatenated on the left by IV is input to RC4, which generates a key

stream s;

2. The integrity check value ICV is the 32-bit checksum of the plaintext x computed

(using an LFSR) with characteristic function CRC-32

CRC-32 ¼ 1þ zþ z2 þ z4 þþz5 þ z7 þþz8 þ z10 þ z11 þ z12 þ z16 þ z22 þ z23

þ z26 þ z32;

3. The plaintext x is concatenated on the right by the ICV and then XO Red with the key

stream to produce the ciphertext y ¼ xþ s; and

4. The transmitted packet consisting of the ciphertext is concatenated on the left by IV.

Various researchers have studied RC4; in 2004, Fluhrer and McGrew [2000] announced a

weakness in KSA; refinements were given in the subsequent paper Fluhrer et al., 2001

8.14 STREAM ENCIPHERMENT PROBLEMS

I have always included one cribbing problem each time I have taught. Until Spring 2005,

the plaintext was the Class_List in the format

Class_List

0. Bostrom, Eric
1. Isaac, Joshua
2. Piasecki, David
3. Bautista, Maria

..

.

57. Chang, Yao-Yin
58. Julian, Vincenzo
59. Riggs, David

with some permutation of the alphabetical order of the names. A N-stage LFSR

(7 � N � 9), a primitive characteristic generating polynomial p(z), and an initial state

have been used to stream encipher the concatenated variable length records in Class_List.

In Spring 2005, I enciphered one of the 10 amendments forming the Bill of Rights and

challenged the students to identify which one.
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CHA P T E R9
BLOCK-CIPHERS: LUCIFER, DES,

AND AES

THE I BM Corporation decided to offer data security functionality using

encryption for its customers in 1966. Horst Feistel (Fig. 9.1), who had previously worked

in the cryptographic area, had developed a block cipher that was implemented in the

IBM product for the Lloyd’s bank. LUCIFER and its successor DES, had a profound

effect on cryptography; it led to public-key cryptography, the active involvement of

the university community, and changes in NSA. We review this development, the

controversy surrounding DES, the replacement of DES by Rijndael, and the design of

block ciphers.

9.1 LUCIFER

Horst Feistel’s paper [Feistel, 1973] described the role cryptography might play in provid-

ing privacy in computer systems. The importance of this paper cannot be underestimated;

first, it suggested a template for the design of cryptographic algorithms and second, it chal-

lenged the Government’s undisputed role as master in the area of cryptology. It initiated a

new era in cryptography that would lead to public-key cryptography. It was also of benefit

to NSA, forcing it to re-examine its relationship with universities and business

organizations.

Feistel’s paper described LUCIFER, a product block-cipher enciphering plaintext

data in blocks of M bits:

x ¼ (x0, x1, . . . , xn�1)!

x0 x1 � � � xM�1
xM xMþ1 � � � x2M�1

..

. ..
. . .

. ..
.

x(n�1)M x(n�1)Mþ1 � � � xnM�1

0BBB@
1CCCA:

Feistel used the APL programming language to experiment with and test LUCIFER.
The program was stored in an APL-workspace, the analogue of a PC/MAC-folder

and a UNIX-directory. The APL implementation, available at this time, imposed a limit

on the number of letters in a workspace name. Feistel’s original choice of

DEMONSTRATION for the workspace name had to be shortened to DEMON; ultimately,

someone suggested the sexier name LUCIFER.
A description of one version of LUCIFER may be found in Sorkin’s paper [1984].

Outerbridge [1986] referred to LUCIFER as a Feistel-like block product cipher.

Computer Security and Cryptography. By Alan G. Konheim
Copyright # 2007 John Wiley & Sons, Inc.
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In 1966, Lloyd’s Banking contracted with IBM to design a remote-terminal-oriented

banking system. The role of encipherment in ATM (Automated Teller Machine) trans-

actions will be described in greater detail in Chapter 18, but it was clear that some sort

of cryptographic capability would be needed. An algorithm proposed by another IBM div-

ision was rejected when it was recognized to be a variant of the Hill encipherment system

(see Chapter 3). A group in the Mathematical Sciences Department at the IBM Yorktown

Research Center including Roy Adler, Don Coppersmith, Horst Feistel, Edna Grossman,

Alan Hoffman, Bryant Tuckerman, and myself had started in the 1960s to investigate enci-

pherment. Feistel’s LUCIFER was in the right place at the right time. Although IBM

Research traditionally did not participate in product development, a good working relation-

ship was established with a development group at the IBM division in Kingston, NewYork.

There are several versions of LUCIFER; for example Sorkin [1984] describes

LUCIFER as it appears in a paper by Lynn Smith [1977]. I will describe the only commer-

cial implementation of LUCIFER, contained in the IBM 2984 Cash Issuing Terminal.

Plaintext data of length M ¼ 32 bits was enciphered following the paradigm pro-

posed by Feistel, in which the plaintext x was viewed as consisting of equal length left

(L) and right (R) blocks

x ¼ (x0, x1, . . . , xM�1) ¼ (L, R):

LUCIFER enciphered plaintext x in 16 rounds, each round using a key-dependent

transformation:

1. The two message halves (L, R) were transformed to T : (L, R) ! (F(R) þ L, R),

where F(R) is a 16-bit to 16-bit mapping applied to the message right block R

composed of

L1. Modulo 16 addition of 16 bits of key to the block R,

L2. Transformation then of the 16 bits by a nonlinear substitution S-box,

L3. Transformation then of the 16 bits by a P-box,

L4. Finally the addition of the result F(R) to the 32-bit left block L.

2. The two halvesF(R)þ L andRwere interchangedq : (F(R)þ L,R)! (R,F(R)þ L).

Figure 9.1 Horst Feistel (Courtesy of IBM).
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T and q are involutions

T
�1
¼ T

(L, R) ��!
T

(F(R)þ L, R) ��!
T

(F(R)þ F(R)þ L, R) ¼ (L, R)

q�1 ¼ q

(L, R) ��!
q

(L, R) ��!
q

(R, L)

where the round transformation R ¼ qT is invertible for every possible function F and

R�1 ¼ T q:

F is a nonlinear transformation on 32-bit data strings in the IBM 2984 Cash Issuing

Terminal.

The parameters of the 2984 implementation of LUCIFER [IBM, 1971] are:

2984-1: The block length M ¼ 32 bits;

2984-2: Key length 64 bits; and

2984-3: 16 rounds in an encipherment.

A total of 36 bits are used on each round; each key bit is used 9 ¼
16� 36

64
times:

K1. 16 bits in Step L1;

K2. 4 bits in Step L2; and

K3. 16 bits in Step L3.

The 2984 LUCIFER-schedule specifies the 36 bits used in each round as follows:

KS0. The 64-bit LUCIFER-key is loaded into a key register and cyclically left-shifted

28 bit-positions;

KS1. The leftmost 36 bits used in a round are labeled as 4-bit nibbles a, b, c, . . ., i,

KS2. The 4 bits in nibble a are used in the S-box transformation;

KS3. The 16 bits in nibbles b, d, f, and h are used in key-dependent L1 addition with

carry;

KS4. The 16 bits in nibbles c, e, g, and i are used in the P-box transformation;

KS5. The key register is cyclically left-shifted 28 positions after each round.

The nibbles used in each round are shown in Table 9.1.

There are two different S-box mappings S0 and S1:

S0 If ai ¼ 0, then S-box S0 transforms the input 4-bit data d;

S1 If ai ¼ 1, then S-box S1 transforms the input 4-bit data d.

The nibble a ¼ (a0, a1, a2, a3) determines which of the 24 ¼ 16 possible S-box combi-

nations is used to transform the 16 bits of data r in Step L2 as specified by the next equation

and Table 9.2.

d ¼ (d0, d1, d2, d3)! (Sa0 (d), Sa1 (d), Sa2 (d), Sa3 (d))
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The 2984 LUCIFER P-box is a key-dependent mapping of 32 bits to 32 bits;The 2984

LUCIFER P-box is a key-dependent mapping of 32 bits to 32 bits; Table 9.3 specifies

how the nibbles c, e, g, and i are used in the P-box transformation where 0 denotes

the complement operation:

(T 0, T 1, T 2, T 3) ��!
P

(P 0, P 1, P 2, P 3)

Ti ¼ (Ti,0, Ti,1, Ti,2, Ti,3) P i ¼ (Pi,0, Pi,1, Pi,2, Pi,3), 0 � i , 4

The input and output vectors to the P-box vectors,

T ¼ (T0,0, T0,1, T0,2, T0,3, . . . , T3,0, T3,1, T3,2, T3,3)

P ¼ (P0,0, P0,1, P0,2, P0,3, . . . , P3,0, P3,1, P3,2, P3,3)

TABLE 9.2 IBM 2984 S-Box Output

d 0 1 2 3 4 5 6 7 8 9 A B C D E F

S0(d) 3 0 8 5 1 2 4 F D 9 C E 6 B A 7

S1(d) 8 D 1 6 c 4 F B 3 2 5 4 9 0 7 A

TABLE 9.1 IBM 2984 Key Register Schedule

Round r Nibbles Used in Round r

a b c d e f g h i

1 7 8 9 10 11 12 13 14 15

2 14 15 0 1 2 3 4 5 6

3 5 6 7 8 9 10 11 12 13

4 12 13 14 15 0 1 2 3 4

5 3 4 5 6 7 8 9 10 11

6 10 11 12 13 14 15 0 1 2

7 1 2 3 4 5 6 7 8 9

8 8 9 10 11 12 13 14 15 0

9 15 0 1 2 3 4 5 6 7

10 6 7 8 9 10 11 12 13 14

11 13 14 15 0 1 2 3 4 5

12 4 5 6 7 8 9 10 11 12

13 11 12 13 14 15 0 1 2 3

14 2 3 4 5 6 7 8 9 10

15 9 10 11 12 13 14 15 0 1

15 0 1 2 3 4 5 6 7 8

TABLE 9.3 IBM 2984 P-Box Transformation

P0,0 ¼ T0,0i
0
0þ T1,0g0 P0,1 ¼ T3,1c

0
1þ T2,1e1 P0,2 ¼ T2,2e

0
2T3,2c2 P0,3 ¼ T1,3g

0
3þ T0,3i3

P1,0 ¼ T1,0g
0
0þ T2,0e0 P1,1 ¼ T0,1i

0
1þ T3,1c1 P1,2 ¼ T3,2c

0
2þ T0,2i2 P1,3 ¼ T2,3e

0
3þ T1,3g3

P2,0 ¼ T2,0e
0
0þ T3,0c0 P2,1 ¼ T1,1g

0
1þ T0,1i1 P2,2 ¼ T0,2i

0
2þ T1,2g2 P2,3 ¼ T3,3c

0
3þ T2,3e3

P3,0 ¼ T3,0c
0
0þ T0,0i0 P3,1 ¼ T2,1e

0
1þ T1,1g1 P3,2 ¼ T1,2g

0
2þ T2,2e2 P3,3 ¼ T0,3i

0
3þ T3,3c3
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are related by

P ¼

i00 0 0 0

0 0 0 0

0 0 0 0

0 0 0 i3

g0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 g03

0 0 0 0

0 e1 0 0

0 0 e02 0

0 0 0 0

0 0 0 0

0 c01 0 0

0 0 c2 0

0 0 0 0

0 0 0 0

0 i01 0 0

0 0 i2 0

0 0 0 0

g00 0 0 0

0 0 0 0

0 0 0 0

0 0 0 g3

e0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 e03

0 0 0 0

0 c1 0 0

0 0 c02 0

0 0 0 0

0 0 0 0

0 i1 0 0

0 0 i02 0

0 0 0 0

0 0 0 0

0 g01 0 0

0 0 g2 0

0 0 0 0

e00 0 0 0

0 0 0 0

0 0 0 0

0 0 0 e3

c0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 c03

i0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 i03

0 0 0 0

0 g1 0 0

0 0 g02 0

0 0 0 0

0 0 0 0

0 e01 0 0

0 0 e2 0

0 0 0 0

c00 0 0 0

0 0 0 0

0 0 0 0

0 0 0 c3

0BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

T

The IBM 2984 P-box is an invertible key-dependent linear transformation but not a

permutation. Figure 9.2 is a block diagram of T : (L, R)! (Lþ F(R), R).

Figure 9.2 IBM 2984

round transformation T.
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9.2 DES

DES (Fig. 9.3) is a block cipher where

. plaintext x ¼ (x0, x1, . . . , x63) [ Z64,2;

. ciphertext y ¼ ( y0, y1, . . . , y63) [ Z64,2;

. key k ¼ (k0, k1, . . . , k55) [ Z56,2.

DES : x! y ¼ DESk{x}

DES is the product (composition) of mappings

DES ¼ IP�1 � T 16 � u� T 15 � � � � � u� T 2 � u� T 1 � IP

T i : (xr, xR)! (xL þ Fi(xR), xR)

with inverse

DES�1 ¼ IP�1 � T 1 � u� T 2 � � � � � u� T 15 � u� T 16 � IP:

. IP is the initial permutation (or wire-crossing, plugboard);

. pTi
Fi are the mappings performed on the left-xL and right-xR halves of the input on

the ith round;

. u is the interchange involution

u : (x0, x1, . . . , x31, x32, x33, . . . , x63)! (x32, x33, . . . , x63, x0, x1, . . . , x31)

The operations involved in the mapping T are portrayed in Figure 9.4.

Figure 9.3 DES.
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9.3 THE DES S-BOXES, P-BOX, AND INITIAL
PERMUTATION (IP)

Tables 9.4 to 9.11 specify the seven DES S-boxes, each with a 6-bit input

(x0, x1, x2, x3, x4, x5, x6) and a 4-bit output ( y0, y1, y2, y3); each table contains 4 rows

and 15 columns, where

. Bits (x0, x6) identify a row in the table, and

. bits (x1, x2, x3, x4) identify a column in the table.

Figure 9.4 The DES transformation T.
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TABLE 9.4 DES S-Box S[0]

S[0]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2. 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S½0
 : (x0, x1, x2, x3, x4|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
column

, x5)! (y0, y1, y2, y3)

(1, 1, 0, 0, 1, 1) : row 3, column 9, S½0
(1, 1, 0, 0, 1, 1) ¼ 11 ¼ (1, 0, 1, 1)

TABLE 9.5 DES S-Box S[1]

S[1]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S[1] : (x0, x1, x2, x3, x4, x5)! ( y0, y1, y2, y3)

(1, 1, 0, 0, 0, 0) : row 2, column 8, S½1
(1, 1, 0, 0, 0, 0) ¼ 5 ¼ (0, 1, 0, 1)

TABLE 9.6 DES S-Box S[2]

S[2]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S[2] : (x0, x1, x2, x3, x4, x5)! ( y0, y1, y2, y3)

(0, 0, 1, 1, 1, 1) : row 1, column 7, S½2
(0, 0, 1, 1, 1, 1) ¼ 10 ¼ (1, 0, 1, 0)

TABLE 9.7 DES S-Box S[3]

S[3]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S[3] : (x0, x1, x2, x3, x4, x5)! ( y0, y1, y2, y3)

(0, 0, 1, 1, 0, 0) : row 0, column 6, S½3
(0, 0, 1, 1, 0, 0) ¼ 9 ¼ (1, 0, 0, 1)
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My description of DES differs slightly from that given in [FIPS, 1988] in two respects:

. I use 0-index origin labeling; for example, a 64-bit plaintext block is (x0, x1, . . . , x63)
instead of (x1, x2, . . . , x64).

TABLE 9.8 DES S-Box S[4]

S[4]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S[4] : (x0, x1, x2, x3, x4, x5) ! ( y0, y1, y2, y3)

(1, 0, 1, 0, 1, 1) : row 3, column 5, S½4
(1, 0, 1, 0, 1, 1) ¼ 14 ¼ (1, 1, 1, 0)

TABLE 9.9 DES S-Box S[5]

S[5]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S[5] : (x0, x1, x2, x3, x4, x5) ! ( y0, y1, y2, y3)

(1, 0, 1, 0, 0, 0) : row 2, column 4, S½5
(1, 0, 1, 0, 0, 0) ¼ 2 ¼ (0, 0, 1, 0)

TABLE 9.10 DES S-Box S[6]

S[6]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S[6] : (x0, x1, x2, x3, x4, x5) ! ( y0, y1, y2, y3)

(0, 0, 0, 1, 1, 1) : row 1, column 3, S½6
(0, 0, 0, 1, 1, 1) ¼ 7 ¼ (0, 1, 1, 1)

TABLE 9.11 DES S-Box S[7]

S[7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

S[7] : (x0, x1, x2, x3, x4, x5) ! ( y0, y1, y2, y3)

(1, 0, 0, 1, 0, 0) : row 2, column 2, S½7
(1, 0, 0, 1, 0, 0) ¼ 4 ¼ (0, 1, 0, 0)
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. FIPS 46 speaks of a 64-bit key, although only the first 7 bits in each byte play a role

in the encipherment process.

The P-box (Table 9.12) is a permutation of the 32-bit permutation (x0, x1, . . . , x31)!
(x15, x6, . . . , x3, x24) DES plaintext x is first permuted by the initial permutation IP

(Table 9.13) before the 16 round operations start:

IP : (x0, x1, . . . , x63)! (x57, x49, . . . , x14, x6)

9.4 DES KEY SCHEDULE

Three arrays PC-1, PC-2, and KS specify the 48 key bits that are used on each round

(Tables 9.14–9.16). The DES key schedule starts with the 56-bit user key k ¼ (k0,

k1, . . . , k55) and derives 16 internal keys k i ¼ (ki,0, ki,1, . . . , ki,47) with 0 � i , 16, as

shown in Figure 9.5. The 48-bit internal key ki used on the ith round is derived as follows:

. KS-1: The user key k is inserted in two 28-bit registers [C, D] according to (PC-1).

. KS-2: [C0, D0] is the initial state of the registers [C, D].

. KS-3: At the start of the ith round, the combined register-pair [Ci21, Di21] is left-

circular shifted by KS[i] positions, producing [Ci, Di]. For example,

. KS-4: ki is derived from the 28 bits of the concatenation of [Ci, Di] according to

(PC-2).

Each bit of the user key is used about 13.7 times in a DES-encipherment. The key schedule

is designed to use the key bits of k in as uniform a manner as possible.

TABLE 9.13 DES IP

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

56 48 40 32 24 16 8 0

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

TABLE 9.12 DES P-Box

15 6 19 20 28 11 27 16 0 14 22 25 4 17 30 9

1 7 23 13 31 26 2 8 18 12 29 5 21 10 3 24
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It is intended that the key be randomly chosen. If k has special characteristics, the

derived internal keys may fail to sufficiently disguise the plaintext. Of the 256 possible

keys, there are a few with this property.

9.4.1 Weak Keys

It was observed quite early in 1973 that certain user keys will produce internal keys with

special regularity.

Example 9.1
The contents of the registers Ci and Di contain a constant value so that DES is the 16th

power of a transformation. For such a key k

y ¼ DES{k; x}  ! x ¼ DES�1k {y}

There are four weak keys corresponding to the register contents C, D [ {(0)28, (1)28},

where (0)28 ; (0, 0, . . . , 0)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
28 bits

and (1)28 ; (1, 1, . . . , 1)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
28 bits

.

Table 9.17 lists the weak keys written in hexadecimal notation, appending an odd

parity check bit on the right. (Note, NIST (formerly NBS) often describes the DES key

as a 64-bit key by appending a parity check bit on the right of each 7-bit block. Needless

to say, this bit plays no role in the encipherment process.)

TABLE 9.14 PC-1

pc-1

49 42 35 28 21 14 7

0 50 43 36 29 22 15

8 1 51 44 37 30 23

16 9 2 52 45 38 31

55 48 41 34 27 20 13

6 54 47 40 33 26 19

12 5 53 46 39 32 25

18 11 4 24 17 10 3

TABLE 9.15 PC-2

pc-2

13 16 10 23 0 4

2 27 14 5 20 9

22 18 11 3 25 7

15 6 26 19 12 1

40 51 30 36 46 54

29 39 50 44 32 47

43 48 38 55 33 52

45 41 49 35 28 31

TABLE 9.16 DES Key Shifts

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

KS[i] 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
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Example 9.2
A semi-weak key results when the contents of the registers Ci and Di result in at most two

internal keys. As the vector of key shifts in KS ¼ (1, 1, (2)6, 1, (2)6, 1), the only possible

register values for C and D are in the set {(0,1)14, (1,0)14, (0)28, (1)28}.

Table 9.18 lists the six pairs of semi-weak keys in hex (with an odd parity check digit

appended on the right).

9.5 SAMPLE DES ENCIPHERMENT

A trace of DES is shown next in Table 9.19 including

. The initialization, including the user key k, the contents of the registers [C0, D0], the

plaintext x, the result of the initial permutation IP[x], and the left and right data

registers (L[0], R[0]);

Figure 9.5 DES key schedule.

TABLE 9.17 Weak DES Keys

01 01 01 01 01 01 01 01 C ¼ (0)28 D ¼ (2)28

1F 1F 1F 1F 1F 1F 1F 1F C ¼ (0)28 D ¼ (1)28

E0 E0 E0 E0 E0 E0 E0 E0 C ¼ (1)28 D ¼ (0)28

FE FE FE FE FE FE FE FE C ¼ (1)28 D ¼ (1)28
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. The transformations on rounds 1, 2, and 16 displaying

– The entering contents of the left- and right-half-data registers (L[i2 1], R[i2 1]),

– The entering contents of the registers [Ci21, Di21],

– The updated contents of the registers [Ci, Di],

– The key KEY[i] used on Round i,

– The expanded right data block E[R[i2 1]],

– The XOR of KEY[i] and E[R[i]],

– The output of the S-boxes with input KEY[i]þ E[R[i]],

– The output of the P-box,

– The entering left-half data register L[i2 1],

– The XOR of the P-box output and the contents of L[i2 1],

– The concatenation on the right of the P-BOX outputþ L[i2 1] with R[i2 1],

– The updated (L[i], R[i]), and

. The output.

9.6 CHAINING

The DES only specifies the encipherment a block of 64 bits. DES can be extended to

encipher plaintext of arbitrary length in two ways.

The Standard Extension of DES divides the plaintext x ¼ (x0, x1, . . . , xN21) [ ZN,2

into 8-byte blocks
x(0) ¼ (x0, x1, . . . , x63)

x(1) ¼ x64, x65, . . . , x127

..

.

x(n�1) ¼ (x64(n�1), x64(n�1)þ1, . . . , x64(n�1))

and enciphers each block separately

DES : x(i)! y(i) ¼ DESk{x
(i)}:

TABLE 9.18 Semi-Weak DES Keys

01 FE 01 FE 01 FE 01 FE C ¼ (0, 1)14 D ¼ (0, 1)14

FE 01 FE 01 FE 01 FE 01 C ¼ (1, 0)14 D ¼ (1, 0)14

1F E0 1F E0 1F E0 1F E0 C ¼ (0, 1)14 D ¼ (1, 0)14

E0 1F E0 1F E0 1F E0 1F C ¼ (1, 0)14 D ¼ (0, 1)14

01 E0 01 E0 01 E0 01 E0 C ¼ (0, 1)14 D ¼ (0)28

E0 01 E0 01 E0 01 E0 01 C ¼ (1, 0)14 D ¼ (0)28

1F FE 1F FE 1F FE 1F FE C ¼ (0, 1)14 D ¼ (1)28

FE 1F FE 1F FE 1F FE 1F C ¼ (1, 0)14 D ¼ (1)28

01 1F 01 1F 01 1F 01 1F C ¼ (0)28 D ¼ (0, 1)14

1F 01 1F 01 1F 01 1F 01 C ¼ (0)28 D ¼ (1, 0)14

E0 FE E0 FE E0 FE E0 FE C ¼ (1)28 D ¼ (0, 1)14

FE E0 FE E0 FE E0 FE E0 C ¼ (1)28 D ¼ (1, 0)14
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TABLE 9.19 Trace of DES

Initialization

k 0001 0011 0011 0100 0101 0011 0111 1001 1001 1011 1011 1100 1101 1111 1111 0001

[C0, D0] 1111000011001100101010101111
�

0101010101100010011110001111

x 01010101 01010101 01010101 01010101 01010101 01010101 01010101 01010101

IP[x] 11111111 11111111 11111111 11111111 00000000 00000000 00000000 00000000

(L[0], R[0]) 11111111 11111111 11111111 11111111
�

00000000 00000000 00000000 00000000

Round 1

(L[0], R[0]) 11111111 11111111 11111111 11111111
�

00000000 00000000 00000000 00000000

[C0, D0] 1111000011001100101010101111
�

0101010101100010011110001111

[C1, D1] 1110000110011001010101011111
�

1010101011000100111100011110

KEY[1] 000110 110000 001011 101111 011111 000111 000001 110010

E[R[0]] 000000 000000 000000 000000 000000 000000 000000 000000

E[R[0]]þKEY[1] 000110 110000 001011 101111 011111 000111 000001 110010

S-BOX 0001 0101 0100 1000 0110 0010 1101 0110

P-BOX 0000 0010 0011 0111 0100 0000 1111 0011

L[0] 1111 1111 1111 1111 1111 1111 1111 1111

P-BOXþ L[0] 1111 1101 1100 1000 1011 1111 0000 1100

(P-BOXþ L[0], R[0]) 11111101 11001000 10111111 00001100
�

00000000 00000000 00000000 00000000

(L[1], R[1]) 00000000 00000000 00000000 00000000
�

11111101 11001000 10111111 00001100

Round 2

(L[1], R[1]) 00000000 00000000 00000000 00000000
�

11111101 11001000 10111111 0001100

[C1, D1] 1110000110011001010101011111
�

1010101011000100111100011110

[C2, D2] 1100001100110010101010111111
�

0101010110001001111000111101

KEY[2] 011110 011010 111011 011001 110110 101100 100111 100101

E[R[1]] 011111 111011 111001 010001 010111 111110 100001 011001

E[R[1]]þKEY[2] 000001 100001 000010 001000 100001 010010 000110 111100

S-BOX 0000 1101 0000 0000 1011 1101 1110 0101

P-BOX 0011 0001 0001 1000 0110 1100 1011 1001

L[1] 0000 0000 0000 0000 0000 0000 0000 0000

P-BOXþ L[1] 0011 0001 0001 1000 0110 1100 1011 1001

(P-BOXþ L[1], R[1]) 00110001 00011000 01101100 10111001
�

11111101 11001000 10111111 00001100

(L[2], R[2]) 11111101 11001000 10111111 00001100
�

00110001 00011000 01101100 10111001

Round 16

(L[15], R[15]) 00110101 10010111 11000000 00101100
�

11001110 10010001 00110001 01100100

[C15, D15] 111100001100110010101010111
�

1010101010110001001111000111

[C16, D16] 1111000011001100101010101111
�

0101010101100010011110001111

KEY[16] 110010 110011 110110 001011 000011 100001 011111 100101

E[R[15]] 011001 011101 010010 100010 100110 100010 101100 001001

E[R[15]]þKEY[16] 101011 101110 100100 101001 100101 000011 110011 101100

S-BOX 1001 0001 0100 1010 1100 1111 0101 1110

P-BOX 0001 1011 1111 0111 0110 0000 0110 1010

L[15] 0011 0101 1001 0111 1100 0000 0010 1100

P-BOXþ L[15] 0010 1110 0110 0000 1010 0000 0100 0110

(P-BOXþ L[15],

R[15])

00101110 01100000 10100000 01000110
�

11001110 10010001 00110001 01100100

(L[16], R[16]) 00101110 01100000 10100000 01000110
�

11001110 10010001 00110001 01100100

Output

y 00101000 11000001 11000011 11000000 00101000 01011110 10010011 10100100
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There remains the question of how to handle the encipherment of plaintext whose length is

not a multiple of 8n bytes. More importantly, there are instances in which the encipher-

ment as defined above reveals structure in the plaintext. For example, when we encipher

a file containing a picture, the outline of the picture might be detectable in the ciphertext.

Also, stereotyped preambles of plaintext messages, like Dear Mr./Ms. or To : may

be visible in the ciphertext. In order to hide the repetitive nature of plaintext and stereo-

typed preambles, chaining was introduced.

The record chained encipherment of plaintext x ¼ (x(0), x(1), . . . , x(n21), x(n)) of

length 8nþ k bytes with 0 � k , 8 by DES is defined as follows:

1. A nonsecret and randomly chosen 8-byte y(21) initial chaining value (ICV) prefixes

the ciphertext.

2. The XOR of the ith block of plaintext x(i), 0 � i , n, with the (i2 1)st block of

ciphertext y(i21), enciphered by DES, becomes the ith block of ciphertext:

Block Chained DES : x(i) ! y(i) ¼ DESkfx
(i) þ y(i�1)g; 0 � i , n:

3. If the length 8nþ k of the plaintext is a multiple of 8 bytes (k ¼ 0), the encipherment

is complete; otherwise, the final block x(n) of k-bytes is enciphered by first

re-enciphering the (n2 1)st block of ciphertext

z(n�1) ¼ DESkfy
(n�1)g

and thereafter XORing the leftmost k bytes of the result with x(n21)

y(n) ¼ x(n) þ Leftk½z
(n�1)


where

Leftk½w0;w1; . . . ;w63
 ¼ (w0;w1; . . . ;w8k�1)

On pages 275–277 of Konheim [1981] it is verified that record chaining is reversible and

examples of chaining are given.

9.7 IS DES A RANDOM MAPPING?

In Section 10 of Chapter 8 the mappings of the set Zm ¼ {0, 1, . . . , m21} were described.

Proposition 9.1: If F is a randomly chosen one-to-one mapping of Zm and Z is a

randomly chosen element of Zm, then

9.1a The probability that Z belongs to an n-cycle in
1

m
and

9.1b The average length of the cycle containing Z is (mþ 1)/2.

Proof : First an explanation of what is meant by “random”; there are m! permu-

tations of the elements of Zm. By the phrase “choose a mapping F randomly”, we mean

that the permutation F is selected with probability 1/m!. Similarly, by the phrase

“choose Z [ Zm randomly”, we mean that a particular Z [ Zm is selected with probability

1/m.
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Let L denote the length of the cycle of F containing Z. As Z is to be any of m values,

there are (m2 1)! permutations of the remaining m2 1 elements so that

. The probability that F(Z ) ¼ Z (meaning Z belongs to a 1-cycle) is

Pr{L ¼ 1} ¼ (m2 1)!/m! ¼ 1/m.

. The probability that the nth iterate of F satisfies Fn(Z)
= Z; if n ¼ 1

¼ Z if n ¼ 2

�
is

PrfL ¼ 2g ¼
(m� 1)(m� 2)!

m!
¼

1

m
:

This argument can be extended yielding PrfL ¼ rg ¼
1

m
:

Next, we consider the analog of Proposition 9.1 when F is not necessarily a

one-to-one mapping of the elements of Zm.

As observed in Chapter 8, the orbits of mappings that are not one-to-one are com-

posed of cycles with tails (Fig. 9.6). As the orbit of z must contain some repetition, we

have F(n)(z) ¼ F( j )(z) with 0 � j , n, where n is the first such repetition.

Proposition 9.2: If F is a randomly chosen mapping of Zm and Z is a randomly

chosen element of Zm, then

9.2a The probability that the first repeated element in the orbit Z! F(Z )!

F(2)(Z )! � � � occurs at position L ¼ n, F(n)(Z ) ¼F( j )(Z ) for 0 � j , n is

PrfL ¼ ng ¼
n

m

Yn�1
i¼0

1�
i

m

� �

PrfL . ng ¼
Yn�1
i¼0

1�
i

m

� �
9.2b The expected value of L is asymptotically

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5pm
p

as m! 1.

Proof : If L ¼ n then Z, F(1)(Z ), . . . , F(n21)(Z ) are all distinct elements of Zm:

. There are m(m2 1) (m2 2) � � � (m2 (n2 1)) possible choices for these elements;

. As F(n)(z) [ {Z, F(1)(Z ), . . . , F(n21)(Z )}, it must be one of n values;

. Each of the values of F(Z ) with Z � {Z, F(1)(Z ), . . . , F(n21)(Z )} may be chosen in

m ways;

Figure 9.6 An orbit with a tail.
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which gives

PrfL ¼ ng ¼
1

mm
½m� (m� 1)� � � � � (m� (n� 1))� n� mm�n
;

proving Proposition 9.2a. The expectation of L is

EfLg ¼
Xm�1
n¼1

PrfL . ng ¼
Xm�1
n¼1

Ym�1
n¼0

1�
i

m

� �
:

If
i

m
is small, so that the approximation 1� i

m
	 e�

i
m:Yn�1

i¼1

1�
i

m

� �
	 c

n2

2m:

This suggests that as m! 1

EfLg 	
Xm�1
n¼1

e�
n2

2m 	
ffiffiffiffi
m
p X

s[f
ffiffiffi
m
p

;
ffiffiffiffiffi
2m
p

...g

m�
1
2e

s2

2 :

The last summation approximates the Riemann integral
Ð1
0
e�

x2

2 dx, which gives

Proposition 9.2b. To prove that the approximation of the product by the exponential is

valid, the summation for E{L} is divided into two parts S1 and S2; the terms with

n � B are included in S1 and tail terms with n , B in S2.

The approximation is valid for the terms in S1; the second sum S2 converges to 0.

9.8 DES IN THE OUTPUT-FEEDBACK MODE (OFB)

DES may be used to generate a key stream to be XORed to plaintext. DES is the output

feedback mode (OFB) (Fig. 9.7) and starts with

1. A nonsecret initial seed z(0)¼ (z0
(0), z1

(0), . . . , z63
(0)) [ Z64,2;

2. A key k ¼ (k0, k1, . . . , k55) [ Z56,2; and

3. A feedback parameter m with 1 � m � 64.

The key stream fz(i): 1 � i , 1g is defined by

z(i) ¼ Right64�m(z
(i�1));LeftmDESkfz

(i�1)g

where Rightm and Leftm take the rightmost and leftmost m bits of w:

Rightm(w0;w1; . . . ; w63) ¼ (w64�m;w65�m; . . . ;w63) [ Zm;2

Leftm(w0;w1; . . . ; w63) ¼ (w0;w1; . . . ;wm�1) [ Zm;2

is XORed to plaintext to create the ciphertext.

When m ¼ 64, the output-feedback mode mapping depicted in Fig. 9.7 is a one-to-

one mapping of Z64,2 onto itself. The average cycle length is 263.
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When m , 64, the OFB mapping is not one to one and its cycle length is O(232), an

observation first made by Davies and Parkin [1982]. This means that in a large ciphertext

file with m ¼ 1, we are likely to see the same key bit used to encipher different bits of the

plaintext. And why should any value of m , 64 be used?

9.9 CRYPTANALYSIS OF DES

The exportation of American technology is regulated by the Bureau of Export Adminis-

tration: Office of Strategic Trade and Foreign Policy, an agency within the U.S. Depart-

ment of Commerce. A list of products covered by 15 CFR chapter VII, subchapter C

may be found on the Web page www.bxa.gov; included are commercial encryption

devices.

The LUCIFER cryptographic facility was incorporated into the IBM Liberty

Banking System and a patent application protecting the technology was filed by IBM.

United States Patent Office rules require a patent to be first filed in the United States

and reviewed by the Patent Office before foreign patent coverage can be sought. In

cases where the publication of an application or the granting of a patent would be detri-

mental to national security, the Commissioner of Patents may issue a secrecy order to

stop the patent process. This

1. Requires that the invention be kept secret,

2. Withholds the publication of the application or the grant of the patent for such period

as the national interest requires,

3. Forbids the dissemination of material related to the patent by all parties, and

4. Restricts filing of foreign patent applications.

The owner of an application that has been placed under a secrecy order has a right to

appeal the order to the Secretary of Commerce, 35 U.S.C. 181. If no secrecy order is

issued in the six months after the submission of a U.S. patent application, patent appli-

cations may be filed outside the United States.

Figure 9.7 Output feedback mode.
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IBM’s patent application did not result, in a secrecy order, probably because it dealt

with a “banking system” and did not describe the encryption process in the terms NSA is

familiar with. IBM filed in France six months later and was granted a patent.

Up to this point, NSA had been the undisputed center of cryptographic competence

in the United States. As the cat was out of the bag, so to speak, NSA decided that it would

have to “influence” the direction of commercial cryptography rather than forbid it. The

IBM Corporation developed a follow-on to LUCIFER in response to encouragement

from NSA, and submitted the “improved” algorithm to NBS for certification as a national

standard.

During the design of DES, certain desirable properties of S-boxes were formulated.

With the exception of three criteria fisted below, they have never been made public at the

request of NSA.

C1. No S-box is either a linear or affine1 function.

C2. S-box constraints

C2a. Changing one bit in the input of an S-box resulting in at least two output bits

changing;

C2b. If two inputs to an S-box differ in the middle two bits, their outputs must be

different by at least two bits [Coppersmith, 1993];

C2c. If two inputs to an S-box differ in their first two bits and agree on their last two,

their two outputs must differ;

C2d. For any nonzero 6-bit difference between S-box inputs, no more than 32 pairs

of inputs exhibiting that difference may result in the same output difference.

A twiddle of a vector x is a vector xþ y that differs from x in at least one component.

If the length of the XOR is small, say jROM[x]þ ROM[xþ y]j , 2, a twiddle could

conceivably propagate in many rounds so that jT(x)þ T(xþ y)j might also be small.

If many different twiddles are present, they might lead to a determination of several

key bits. During design of DES, twiddles were not excluded until it was discovered

that they could be used as indicated above.

Searching the block cipher parameters for good differential changes – the new

term for twiddles – and using them for cryptanalysis is the basic idea of Bilham’s

and Shamir’s differential cryptanalysis [Bilham and Shamir, 1993], the closely

related linear cryptanalysis of Matsui [1994], which searches for good linear

approximations to the ROMs, and the recent paper by Bilham [1995].

1An S-box F(x) is linear in x ¼ (x0, x1, x2, x3, x4, x5) if

F(x) ¼

y0
y1
y2
y3

0BB@
1CCA ¼

c0,0 c0,1 c0,2 c0,3 c0,4 c0,5
c1,0 c1,1 c1,2 c1,3 c1,4 c1,5
c2,0 c2,1 c2,2 c2,3 c2,4 c2,5
c3,0 c3,1 c3,2 c3,3 c3,4 c3,5

0BB@
1CCA

x0
x1
x2
x3
x4
x5

0BBBBBB@

1CCCCCCA
F is affine if

F(x) ¼

y0
y1
y2
y3

0BB@
1CCA ¼

b0
b1
b2
b3

0BB@
1CCAþ

c0,0 c0,1 c0,2 c0,3 c0,4 c0,5
c1,0 c1,1 c1,2 c1,3 c1,4 c1,5
c2,0 c2,1 c2,2 c2,3 c2,4 c2,5
c3,0 c3,1 c3,2 c3,3 c3,4 c3,5

0BB@
1CCA

x0
x1
x2
x3
x4
x5

0BBBBBB@

1CCCCCCA
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C3. The S-boxes were chosen to minimize the differences between the number of 1’s and

0’s when any single bit is held constant.

This is essentially the criterion discovered by Matsui and the basis for the measure of

nonlinearity.

As IBM did not reveal the design principles, there was the suspicion that Big-Blue and

NSA had conspired to put a trap into the system. DES has been analyzed over the past

25 years and no systemic weakness has been found [Schneier, 1996]. Biham and

Shamir [1992, 1993] wrote

The replacement of the order of the eight DES S-boxes (without changing their values) also

makes DBS much weaker: DES with 16 rounds of a particular order is breakable in about

238 steps. DES with random S-boxes is shown very easy to break. Even a minimal change of

one entry of one of the DES S-boxes can make DES easier to break.

Of course, Bilham and Shamir may be wrong and, in retrospect, the key length of 56 bits

seems to be inappropriate.

DES and the controversy stimulated a significant amount of research in the academic

community on cryptography. It has produced an extensive literature dealing with the

design of S-boxes, in particular with regarding the nonlinearity of an S-box [Nyberg,

1992; Seberry and Zheng, 1993; Charnes and Piepzryk, 1993; Detombe and Tavares,

1993; Seberry et al., 1994, 1995; O’Connor, 1995a, b].

9.10 DIFFERENTIAL CRYPTANALYSIS

Suppose two plaintexts are enciphered by S-box S[0] with the same key.

y
1
¼ S½0
(x1 þ k), y

2
¼ S½0
(x2 þ k):

We conclude that

y
1
þ y

2
¼ S½0
(x1 þ k)þ S½0
(x2 þ k)

and write this last relationship as

S½0
 :Dx! Dy

where

(Input XOR) Dx ; x1 þ x2 ¼ (x1 þ k)þ (x2 þ k)

(Output XOR) Dy ; y
1
þ y

2

How much of the 6-bit key is revealed by corresponding pairs of plain- and cipher-

text (xi, yi) (i ¼ 1, 2) enciphered by S-box S[0] with the same unknown key? That is, how

many solutions are there to

y
1
¼ S½0
(x1 þ k), y

2
¼ S½0
(x2 þ k)

given

Dx ; x1 þ x2, Dy ; y
1
þ y

2
:

Define

D(Dx, Dy) ; {(z1, z2) :Dx ¼ z1 þ z2, Dy ¼ S½0
(z1)þ S½0
(z2)}:
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A pair (z1, z2) in D(Dx, Dy) determines a possible unknown key by setting

k ¼ x1 þ z1

If the size ofD(Dx, Dy) is much smaller than 64 ¼ 26, then the differentials (Dx, Dy) reveal
a great deal of the key. Of course, the encipherment process described above uses only one

S-box and it will be necessary to extend this to the full DES encipherment process. This is

the principle of differential cryptanalysis, a known corresponding plain/ciphertext attack
whose objective is to attempt to identify the unknown key from corresponding plain/
ciphertext differentials (Dx, Dy) enciphered with the same key.

Tables 9.20 and 9.21 list the size of the set jD(Dx, Dy)j for all pairs of Input/Output
XOR (Dx, Dy). A row is labeled by the 6-bit Input XOR D(x) (as two hex digits), a column

TABLE 9.20 jD(Dx, Dy)j for S-Box S[0]

Input XOR Output XOR of S[0]

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

01 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4

02 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2

03 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0

04 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2

05 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6

06 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12

07 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4

08 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4

09 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12

0A 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10

0B 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12

0C 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2

0D 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2

0E 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8

0F 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8

10 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 6

11 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 0

12 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0

13 2 4 4 6 2 0 4 6 2 0 6 8 4 6 4 0

14 0 8 8 0 10 0 4 2 8 2 2 4 4 8 4 0

15 0 4 6 4 2 2 4 10 6 2 0 10 0 4 6 4

16 0 8 10 8 0 2 2 6 10 2 0 2 0 6 2 6

17 4 4 6 0 10 6 0 2 4 4 4 6 6 6 2 0

18 0 6 6 0 8 4 2 2 2 4 6 8 6 6 2 2

19 2 6 2 4 0 8 4 6 10 4 0 4 2 8 4 0

1A 0 6 4 0 4 6 6 6 6 2 2 0 4 4 6 8

1B 4 4 2 4 10 6 6 4 6 2 2 4 2 2 4 2

1C 0 10 10 6 6 0 0 12 6 4 0 0 2 4 4 0

1D 4 2 4 0 8 0 0 2 10 0 2 6 6 6 14 0

1E 0 2 6 0 14 2 0 0 6 4 10 8 2 2 6 2

1F 2 4 10 6 2 2 2 8 6 8 0 0 0 4 6 4
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by the Output XOR D(y) (as two hex digits) for the S-box S[0]; for example, the entry in

row 1A ¼ (01 1010) and column C ¼ (1100) is 4.

Note that

. The sum of the entries in a row is 64, the average is 4;

. The distribution of values in a row is not uniform; and

. If Dx = 0; then if (z1, z2) is in D(Dx, Dy), then so is the pair (z2, z1).

Example 9.3
Table 9.22 is derived from the row 34 data in Table 9.21 and the S-box description of S[0]

in Table 9.4; it lists the input pairs (z1, z2) (as two hex digits) that satisfy

Dx ¼ z1 þ z2 ¼ (1, 1, 0, 1, 0, 0) ¼ 34 (Input XOR)

TABLE 9.21 jD(Dx, D y )j for S-Box S[0]

Input XOR Output XOR of S[0]

0 1 2 3 4 5 6 7 8 9 A B C D E F

20 0 0 0 10 0 12 8 2 0 6 4 4 4 2 0 12

21 0 4 2 4 4 8 10 0 4 4 10 0 4 0 2 8

22 10 4 6 2 2 8 2 2 2 2 6 0 4 0 4 10

23 0 4 4 8 0 2 6 0 6 6 2 10 2 4 0 10

24 10 0 0 2 2 2 2 0 14 14 2 0 2 6 2 4

25 6 4 4 12 4 4 4 10 2 2 2 0 4 2 2 2

26 0 0 4 10 10 10 2 4 0 4 6 4 4 4 2 0

27 0 4 2 0 2 4 2 0 4 8 0 4 8 8 4 4

28 12 2 2 8 2 6 12 0 0 2 6 0 4 0 6 2

29 4 2 2 10 0 2 4 0 0 14 10 2 4 6 0 4

2A 4 2 4 6 0 2 8 2 2 14 2 6 2 6 2 2

2B 12 2 2 2 4 6 6 2 0 2 6 2 6 0 8 4

2C 4 2 2 4 0 2 10 4 2 2 4 8 8 4 2 6

2D 6 2 6 2 8 4 4 4 2 4 6 0 8 2 0 6

2E 6 6 2 2 0 2 4 6 4 0 6 2 12 2 6 4

2F 2 2 2 2 2 6 8 8 2 4 4 6 8 2 4 2

30 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4

31 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8

32 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0

33 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4

34 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6

35 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0

36 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0

37 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4

38 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10

39 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0

3A 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0

3B 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2

3C 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0

3D 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4

3E 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4

3F 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2
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for all S-box S[0] Output XORs Dy = (0, 0, 0, 0) (as two hex digits) and is constructed as

follows:

. For each pair of input values to S-box S[0], (z0, z1, z2, z3, z4, z5) and (z
0
0, z
0
1, z
0
2, z
0
3, z
0
4,

z05) for which z1þ z2 ¼ (1, 1, 0, 1, 0, 0) ¼ (z0þ z00, z1þ z01, z2þ z02, z3þ z03, z4þ z04,

z5þ z05), compute

. y1 ¼ S[0](z0, z1, z2, z3, z4, z5) and y2 ¼ S[0] (z00, z
0
1, z
0
2, z
0
3, z
0
4, z
0
5).

There is an entry (in hex)

z0, z1, z2, z3, z4, z5

z00, z
0
1, z
0
2, z
0
3, z
0
4, z
0
5

� �

in Table 9.13C provided Dy ¼ y1þ y2. For example,

. Table 9.21 shows that there are 8 pairs (z1þ z2) if Dy ¼ (0, 0, 0, 1) ¼ 1;

. The entry
03
37

� �
in Table 9.22 corresponds to

z1 ¼ (0, 0, 0, 0, 1, 1), z2 ¼ (1, 1, 0, 1, 1, 1) with sum (1, 1, 0, 1, 0, 0);

. Table 9.4 shows the (row 1, column 1) S-box S[0] entry for z1 ¼ (0, 0, 0, 0, 1, 1) is

15 ¼ (1, 1, 1, 1);

. Table 9.4 shows the (row 3, column 11) S-box S[0] entry for z2 ¼ (1, 1, 0, 1, 1, 1) is

14 ¼ (1, 1, 1, 0);

. The sum of these two S-box S[0]-entries is 1 ¼ (1, 1, 1, 1)þ (1, 1, 1, 0).

leading to the entry
03
37

� �
in the row corresponding to Dy ¼ 1.

TABLE 9.22 Input Pairs (z1, z2) Satisfying z11 z2 5 (1, 1, 0, 1, 0, 0)

Dy z1þ z2 ¼ (1, 1, 0, 1, 0, 0)

1 03 0F 1E 1F 2A 2B 37 3B

37 3B 2A 2B 1E 1F 03 0F

2 04 05 0E 11 12 14 1A 1B 20 25 26 2E 2F 30 31 3A

30 31 3A 25 26 20 2E 2F 14 11 12 1A 1B 04 05 0E

3 01 02 15 21 35 36

35 36 25 15 11 10

4 13 27

27 13

7 00 08 0D 17 18 1D 23 29 2C 34 39 3C

34 3C 39 23 2C 29 17 1D 18 00 0D 08

8 09 0C 19 2D 38 3D

3D 38 2D 19 0C 09

D 06 10 16 1C 22 24 28 32

32 24 22 28 16 12 1C 06

F 07 0A 0B 33 3E 3F

33 3E 3F 07 0A 0B
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Example 9.3 (continued)
Suppose we have

. x1 ¼ (1, 1, 1, 1, 1, 1), x2 ¼ (0, 0, 1, 0, 1, 0), Dx ¼ (1, 1, 0, 1, 0, 0) and

. y1 ¼ S[0](x1þ k) ¼ (0, 1, 1, 0), y2 ¼ S[0](x2þ k) ¼ (0, 0, 1, 0).

There is essentially one entry in Table 9.22 and it shows that

. z1 ¼ (0, 1, 0, 0, 1, 1) ¼ 13, z2 ¼ (1, 0, 0, 1, 1, 1) ¼ 27 satisfies z1þ z2 ¼ (1, 1, 0, 1,

0, 0) ¼ 34 and

. There are only two possible keys k ¼ (1, 0, 1, 1, 0, 0) ¼ 2C and k ¼ (0, 1, 1, 0, 0,

0) ¼ 18.

The inference of the key in Example 9.3 can be generalized to a one-round characteristic of

DES as shown in Figure 9.8 where

L(y
i
) ¼ R(xi) R(y

i
) ¼ L(xi)þ F½R(xi)
, i ¼ 1, 2

Dx ¼ x1 þ x2 Dy ¼ y
1
þ y

2

L(Dx) ¼ L(x1)þ L(x2) R(Dx) ¼ R(x1)þ R(x2)

L(Dy) ¼ L(y
1
)þ L(y

2
) R(Dy) ¼ R(y

1
)þ R(y

2
):

The inputs to the one-round DES characteristic are

. The XOR Dx of plaintext x1 and x2 and

. The XOR Dy of the ciphertext y1 ¼ DESk{x1} and y2 ¼ DESk{x2}.

The probability of the one-round DES characteristic is the conditional probability

Pr {x1; x2; y1; y2=Dx;Dy}

computed assuming a uniform distribution on plaintext and key.

Note that the difference R(Dy) depends on

. The key,

. The plaintext (R(x1), R(x2)) and

. The plaintext difference L(Dx).

Figure 9.8 One-round DES generic characteristic.
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Differential cryptanalysis infers the key by computing the probability of a specified pair of

XORs (Dx, Dy) assuming the undetermined variables are chosen independently with the

distribution.

Example 9.4
A one-round DES characteristic of probability 1 is shown in Figure 9.9. Table 9.20 shows

that if the input XOR is c, then the output XOR is E for 14 of the 64 possible keys.

Example 9.5
A one-round DES characteristic of probability 14/64 is shown in Figure 9.10. By combin-

ing the one-round characteristics in Examples 9.4 and 9.5, we obtain Example 9.6.

Example 9.6
A two-round DES characteristic of probability 14/64 is shown in Figure 9.11.

Example 9.7
A three-round DES characteristic of probability (14/64)2 is shown in Figure 9.12. This is

as far as we will go in the exposition. The complete details are to be found in Bilham and

Shamir [1993]. Differential cryptanalysis would offer a significant improvement over

exhaustive key search for DES if there were fewer than 16 rounds. With 16 rounds, a

time complexity of 237 uses 236 plain/ciphertext pairs pruned from larger pool of 247

pairs. Nevertheless, differential cryptanalysis is the first and only attack on DES with com-

plexity less than 255.

Figure 9.9 A one-round DES characteristic of probability 1.

Figure 9.10 A one-round DES characteristic of probability 14/64.
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Differential cryptanalysis has been successfully applied against other cryptosystems

[Bilham and Shamir, 1991, 1992].

9.11 THE EFS DES-CRACKER

IBM’s submitted DES in response to the National Bureau of Standards request in the

Federal Register of August 27, 1974, for a national data encryption standard. After

the publication in DES in March 1975, two workshops on DES were organized,

the second to review the cryptanalysis effort on DES. There were three contentious

areas:

1. Did DES contain any hidden trap doors whose knowledge might permit the

decipherment of DES ciphertext without the key?

2. What design principles were used in DES?

3. Why was the key length chosen to be 56 bits?

Very few answers were forthcoming. IBM does business throughout the world and feels

itself required to abide by the wishes of the U.S. Government. In any event

256 ¼ 72,057,594,037,927,936 seemed like to large a number of key trial and the cost

of building a machine required to perform key trial seemed to make the possibility

remote.

A practical architecture for a DES-cracker with custom chips was proposed in 1993

by Michael Wiener of Bell Northern Research [Wiener, 1993]. The Electronic Frontier

Foundation (EFF) founded in 1990 is a nonprofit public-interest group of “passionate

people lawyers, technologists, volunteers, and visionaries working to protect your

digital rights.” The EFF seeks to educate individuals, organizations, companies, and gov-

ernments about the issues that arise when computer and communications technologies

change. The EFF sponsored the design and assembling of a DES-cracker [EFF, 1998].

Figure 9.11 A two-round DES characteristic of probability 14/64.
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9.11.1 The Architecture

The basic component of the DES-cracker is the search unit, which has hardware including

two 64-bit ciphertext registers and a 56-bit key register. The DES-cracker contains

1. 24 search units contained within a custom chip;

2. 64 customer chips mounted on a board;

3. 64 boards in each chassis; and

4. two chassis.

9.11.2 Key Search Algorithm

The ciphertext registers contain two 64-bit ciphertext blocks

y
1
¼ DESk(�) {x1} y

2
¼ DESk(�) {x2},

whose plaintexts x1, x2 and key k(�) are unknown.

Figure 9.12 A three-round DES characteristic of probability (14/64)2.
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The DES-cracker tests a key k by deciphering y1 and y2 with it and deciding if the

resulting plaintext is determining if each of the 8 bytes is contained in the table INTER

of interesting (bytes). If it is only known that the plaintext consists only of alphanumeric

text, the INTER consists of the EBCIDIC (8-bit ASCII) coding of the following 69

characters:

1. The alphabetic characters a b � � � z A B � � � Z

2. The digits 0 1 � � � 9

3. Blank space and nine punctuation symbols . , ? ; : ( ) ] [.

9.11.3 Testing a Key

A key k is tested in two steps as follows.

S1. The first 64-bit ciphertext block y1 is deciphered DESk
21{ y1} and checked to see if all

of its 8 bytes are interesting:

(a) If the plaintext block is not interesting, a new key is tested;

(b) If the plaintext block is interesting, then S2.

S2. The second 64-bit ciphertext block y2 is deciphered DESk
21{ y2} and checked to see if

all of its 8 bytes are interesting:

(a) If the plaintext block is not interesting, a new key is tested.

The probability that a random 8-bit (0,1)-block of ciphertext will yield an interesting

byte upon decipherment is

69

256
	

1

4
:

The probability that a random 64-bit ciphertexts will yield 8 interesting bytes upon

decipherment is approximately

1

48
¼

1

216
:

The probability that two random 64-bit ciphertexts will yield 16 interesting bytes upon

decipherment is approximately

1

416
¼

1

232
:

If we assume that only one of the 256 keys will give the true plaintext; the number of keys

that will pass both steps S1 and S2 is about 240. These keys will require further testing

using additional ciphertext.

A search unit performs one decipherment in 16 clock cycles. Since the clock runs at

40 MHz (40 million cycles/second) a search unit can test 2.5 million keys/second. A
board therefore tests 4.8 billion keys/second and the DES-cracker tests 92,160,000,000

keys/second. On the average only half of the 256 ¼ 72,057,594,037,927,936 keys need

to be tested before a match is discovered.

The cost to build of the DES-cracker was $220,000. Its proud parents announced on

July 17, 1998, that it had found a DES key in 3 days.
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9.12 WHAT NOW?

If the key length were 264 it would have taken the DES-cracker 768 days; if the key

length were 2 � 56, the DES-cracker would have to work a very long time to find the

key. This points out the power of exponentiation and the advantage enjoyed by the

designer of a cryptosystem over the cryptanalyst. Adding one bit to the key doubles

the time for exhaustive search. If the designers of DES had been careless and there

was some intrinsic weakness, or a trap-door, such a statement would not necessarily

be true.

Walter Tuchman of IBM’s Kingston Facility was a designer and implementor of

DES. He also proposed triple DES [FIPS PUB 46-3, 1999] defined by2

DES3 : x! y ¼ DESk1{DES
�1
k2
{DESk3{x}}}:

If k1 ¼ k2, DES3 reduces to ordinary DES.

The U.S. Munitions List is part of the secondary regulations (the International

Traffic in Arms Regulations or ITAR) that defines which defence articles and services

are subject to licensing. Cryptographic products are included in the products (Category

XIII – Auxiliary Military Equipment) regulated by ITAR.

Current export rules do not permit the export of DES3 to certain countries. An article

in the Wall Street Journal (September 17, 1998) entitled “Encryption Export Rules

Relaxed” claims that the current 56-bit limitation will be relaxed, asserting

U.S. vendors also won more freedom to export network-encryption products used primarily

by Internet-service provides and communication carriers.

In “Draft Encryption Export Regulations” (dated November 23, 1999) changes in the rules

were proposed. Included are:

1. Encryption commodities, software and technology for U.S. subsidiaries. You may

export and re-export any encryption item of any key length under ECCNs 5A002,

5D002, and 5E002 to foreign subsidiaries of U.S. firms (as defined in part 772).3

This includes source code and technology for internal company proprietary use,

including the development of new products. U.S. firms may also transfer encryption

technology (5E002) to a foreign national in the United States (except foreign nationals

from Cuba, Iran, Iraq, Libya, North Korea, Sudan, and Syria) for internal company

proprietary use, including the development of new products. All items developed

with U.S. encryption commodities, software, and technology are subject to the EAR.

2. Encryption commodities and software. You may export and re-export any encryp-

tion commodities and software including components of any key length under

ECCNs 5A002 and 5D002 to individuals, commercial firms, and other nongovern-

ment endusers.

Export controls were transferred from the Department of Commerce to the State

Department and a new policy was announced on December 9, 2004. It provides for a

review for cryptographic products with key length larger than 64 bits. Details can be

found at www.bis.doc.gov/encryption/default.htm.

2FIPS PUB 46-3, October 25, 1999, specifies what I refer to as DES3. It is also described in ANSI X9.52-1998,

“Triple Data Encryption Algorithm Modes of Operation”.
3ECCN is the the Export Control Classification Number.
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9.13 THE FUTURE ADVANCED DATA ENCRYPTION
STANDARD

DES was first approved as FIPS Standard 46-1 in 1977. It has been (reluctantly) reaffirmed

as a standard several times, most recently in 1993, and then only until December 1998. At

that time, the affirmation included the statement

At the next review (1998), the algorithm specified in this standard will be over twenty years

old. NIST will consider alternatives which offer a higher level of security. One of these

alternatives, may be proposed as a replacement standard at the 1998 review.

The National Institute of Standards (NIST) solicited proposals in the Federal Register

(January 1, 1997) for an Advanced Encryption Standard (AES). The rules included

R1. AES shall be publicly defined.

R2. AES shall be a symmetric block cipher.

R3. AES shall be designed so that its key length may be increased as needed.

R4. AES shall be implementable in both hardware and software.

R5. AES shall either be

(a) freely available, or

(b) available under terms consistent with the ANSI Patent Policy.

R6. Algorithms which meet the above requirements will be judged based on the following

factors:

(a) security (resistance to cryptanalysis),

(b) computational efficiency,

(c) memory requirements,

(d) hardware and software suitability,

(e) simplicity,

(f ) flexibility, and

(g) licensing requirements.

A subsequent announcement in the Federal Register (September 12, 1997) specified

the (key, block) sizes to be supported by the AES; (128, 128) (192, 128) (256, 128).

The statistical tests to be applied to evaluate the strength of the AES standard are

described in Chapter 5 and specified in [FIPS, 1994, FIPS 140-1]. The selection process

has involved two rounds; 15 submissions were made in Round 1. Of these, five survived

in Round 2.

9.14 AND THE WINNER IS!

Rijndael was announced as the winning algorithm in October 2000 [Daemen and Rijmen,

1999] and is specified in [FIPS, 2001, FIPS-197]. Susan Landau [2004] wrote

Daemen and Rijmen sought simiplicity – simplicity of specification and simplicity of analysis.

Not every cryptographer sees simplicity as an important goal – two AES finalists,

MARS and Twofish, have far more complex designs. Some observers felt that this

complexity was part of the reason the two algorithms were not chosen as the Advanced

Encryption Standard, as their round functions were simply too difficult to analyze fully.
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Too difficult to analyze! Indeed!

Rijndael is a block cipher supporting a variety of plaintext block sizes and

cipher key lengths. The cipher key k is an array of dimension 4 � Nk (a total of Nk

4-byte words)

k ¼

k0;0 k0;1 . . . k0;Nk�1
k1;0 k1;1 . . . k1;Nk�1
k2;0 k2;1 . . . k2;Nk�1
k3;0 k3;1 . . . k3;Nk�1

0BB@
1CCA:

Each {ki,j} is regarded as both

. An 8-bit byte, that is, an element in the set Z2,8, and

. An integer in the set Z256.

Rijndael supports the Nk values of 4, 6, and 8 words (128, 192, and 256 bits).

The cipher key k is read into and from the array by columns from left to right

k ¼ (k0;1; k1;0; k2;0; k3;0; . . . ; k0;Nk�1; k1;Nk�1; k2;Nk�1; k3;Nk�1):

Plaintext x is an array of dimension 4 � Nb (a total of Nb words)

x ¼

x0;0 x0;1 . . . x0;Nb�1
x1;0 x1;1 . . . x1;Nb�1
x2;0 x2;1 . . . x2;Nb�1
x3;0 x3;1 . . . x3;Nb�1

0BB@
1CCA:

Each {xi,j} is regarded as both

. An 8-bit byte, that is, an element in the set Z2,8, and

. An integer in the set Z256.

Rijndael supports the Nb values of 4, 6, and 8 words (128, 192, and 256 bits).

The plaintext x is read into and from the array by columns from left to right

x ¼ (x0;1; x1;0; x2;0; x3;0; . . . ; x0;Nb�1; x1;Nb�1; x2;Nb�1; x3;Nb�1)

A Rijndael state v ¼ (vi,j,) is an array

v ¼

v0;0 v0;1 . . . v0;Nb�1

v1;0 v1;1 . . . v1;Nb�1

v2;0 v2;1 . . . v2;Nb�1

v3;0 v3;1 . . . v3;Nb�1

0BB@
1CCA

of dimension 4 � Nb whose entries are integers in Z256.

Like DES, the Rijndael encipherment process is the composition of transformations

on the state, also referred to as rounds by Rijndael:

RIJ(x) ¼ y ¼ (TNr � TNr�1 � . . . � T1 � T0)(x):

where the * (asterisk) denotes composition of mappings.
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The number of rounds Nr depends on the values of Nb and Nk as shown in Table 9.23. The

domain and range of a round Ti is a state vwith data type array [0..3,0..Nb] ofZ256.

The initial round T0 is an exclusive XOR of 4Nb bytes of round key (R-key) to the

state (plaintext). As in DES, subsequent rounds modify the state v as a result of several

transformations, referred to by Rijndael as layers:

L1. Linear Mixing Layer – the transformations ShiftRow and MixColumn;

L2. Nonlinear Layer – the transformation ByteSub;

L3. Key Addition Layer – the transformation AddRoundKey.

In order to simplify the decipherment process, DES employed a Fiestel structure, each

round only modifying part of the data.

As pTi
and u are involutions in the Feistel structure, the inverse of the transformation

u � pTi
on 64-bit blocks is pTi

� u. The Feistel structure was introduced to simplify com-

putation of the inverse transformation.

Rijndael does not follow this paradigm; each round modifies all of the bits in the

data. The inverse to Rijndael is the composition

RIJ�1(y) ¼ x ¼ (T�10 � T
�1
1 � � � � � T

1
Nr�1 � T

�1
Nr )(y)

of the necessarily invertible round transformations {Ti}.

9.15 THE RIJNDAEL OPERATIONS

Rijndael uses a second interpretation for the components in a byte x ¼ (x0, x1, . . . , x6, x7) [
Z2,8, namely, as the coefficients of a polynomial of degree 7

x(z) ; x0z
7 þ x1z

6 þ � � � þ x6zþ x0 $ x ¼ (x0, x1, . . . , x6; x7):

The addition of bytes xþ y is according to the usual rules for the addition of polynomials,

Rijndael refers to addition as EXOR rather than XOR.

Associating a byte with a polynomial provides a way to define the multiplication; if

x(z) ; x0z
7 þ x1z

6 þ � � � þ x6zþ x7 $ x ¼ (x0, x1, . . . , x6, x7)

y(z) ; y0z
7 þ y1z

6 þ � � � þ y6zþ y7 $ y ¼ (y0, y1, . . . , y6, y7)

then

z(z) ; z0z
7 þ z1z

6 þ � � � þ z6zþ z7 $ z ¼ (z0, z1, . . . , z6, z7) ; x � y,

TABLE 9.23 Number of Rijndael Rounds Nr

Nb ¼ 4 Nb ¼ 6 Nb ¼ 8

Nk ¼ 4 10 12 14

Nk ¼ 6 12 12 14

Nk ¼ 8 14 14 14
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where

z(z) ¼ x(z ) y(z )(modulo m(z ))

and

m(z ) ¼ 1þ zþ z 3 þ z 4 þ z 8

where m(z) is a primitive (see Table 8.3) but not irreducible polynomial.

For fixed x ¼ (x1, x1, . . . , x6, x7) [ Z2,8, the transformation

z(z ) ¼ x(z ) y(z )(modulo m(z )) (9:1)

with

y ¼ (y0, y1, . . . ,y6, y7) = (0)8

is a transformation on Z2562 {0}.

Proposition 9.3: The transformation in Equation (9.1) is invertible; given

w ¼ (w0, w1, . . . ,w6, w7) = (0)8, there exists a unique y ¼ ( y0, y1, . . . , y6, y7) = (0)8
such that

w(z ) ¼ x(z ) y(z ) (modulo m(z )):

Proof: If y1(z) and y2(z) satisfy

x(z ) ¼ y1(z ) (modulo m(z )) ¼ x(z ) y2(z ) (modulo m(z ))

then

0 ¼ x(z ) ¼ (y1(z )þ y2(z )) (modulo m(z ))

which contradicts the irreducibility of m(z ) unless y1(z ) ¼ y2(z).
It follows that y(z)! x(z) y(z) (modulo m(z)) is a 1-to-1 mapping on Z2562 {0}

for each fixed x.

Proposition 9.3 implies that for each x = (0)8, theremust be a uniquebyte x21 such that

x � x�1 ¼ (1, (0)7)

or equivalently, for each polynomial x(z) = 0, there exists a polynomial x21(z) such that

x(z )x�1(z ) ¼ 1 (modulo m(z )):

The computation of the (multiplicative) inverse of x uses the extended Euclidean algor-

ithm, which we will now describe.
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Using the notation in Chapter 8,

. The polynomial r(z) in P[z] is a divisor of polynomials p(z) and p(z) in P[z] if r(z) is
a factor of both polynomials;

. r(z) is the greatest common divisor of p(z) and q(z) if it is a divisor and has the

maximum degree of all common divisors.

gcd{p(z), q(z)} denotes the greatest common divisor of p(z) and q(z).

Proposition 9.4 (Extended Euclidean Algorithm for Polynomials with
Coefficients in Z2):
9.4a If p(z) and q(z) are polynomials in P[z], the sequence of remainders {rj(z) : j � 2}

r0(z ) ¼ p(z )

r1(z ) ¼ q(z )

r0(z ) ¼ c1(z )r1(z )þ r2(z ); 0 � deg(r2) , deg(r1)

r1(z ) ¼ c2(z )r2(z )þ r3(z ); 0 � deg(r3) , deg(r2)

..

. ..
. ..

.

rs�2(z ) ¼ cs�1(z )rs�1(z )þ rs(z ); 0 � deg(rs) , deg(rs�1)

rs�1(z ) ¼ cs(z )rs(z )þ rsþ1(z ); 0 � deg(rsþ1) , deg(rs)

is ultimately identically 0.

9.4b If s is the first index for which rsþ1(z) ¼ 0, then rs(z) ¼ gcd{ p(z), q(z)}.

9.4c If deg( p) . deg(q), the time to compute gcd{p(z), q(z)} is O ((log2
deg( p))3).

Example 9.8

p(z ) ¼ 1þ z 4 þ z 5 þ z 6 þ z 8 þ z 9 þ z 10

q(z ) ¼ 1þ z 2 þ z 3 þ z 5 þ z 6 þ z 9

r0(z ) ¼ p(z )

r1(z ) ¼ q(z )

r0(z ) ¼ (1þ z)r1(z )þ r2(z ) r2(z ) ¼ zþ z2 þ z6 þ z7 þ z8

r1(z ) ¼ (zþ 1)r2(z )þ r3(z ) r3(z ) ¼ 1þ zþ z2 þ z5

r2(z ) ¼ (z3 þ z2 þ zþ 1)r3(z )þ r4(z ) r4(z ) ¼ 1þ zþ z3

r3(z ) ¼ (z2 þ 1)r4(z )þ r5(z ) r5(z ) ¼ 0

gcd{p(z ), q(z )} ¼ 1þ zþ z3

The Operations ByteSub and InvByteSub are defined first for bytes x as

follows:
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BS1(x) ¼ z ;
0, if x ¼ (0)8

x�1, if x = (0)8

�
BS2(z) ¼ Azþ B

A ¼

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
B ¼ (1, 1, 0, 0, 1, 1, 0)

BS(x) ¼ BS2(BS1(x))

Remarks:

1. BS1
21 ¼ BS1.

2. A simple computation shows that the transpose At of A is equal to A21 so that

BS2
21 ¼ BS2.

The operation ByteSub is defined for a state

v ¼

v0, 0 v0, 1 � � � v0, Nb�1

v1, 0 v1, 1 � � � v1, Nb�1

v2, 0 v2, 1 � � � v2, Nb�1

v3, 0 v3, 1 � � � v3, Nb�1

0BB@
1CCA

by

BS(v) ¼

BS(v0, 0) BS(v0, 1) � � � BS(v0, Nb�1)

BS(v1, 0) BS(v1, 1) � � � BS(v1, Nb�1)

BS(v2, 0) BS(v2, 1) � � � BS(v2, Nb�1)

BS(v3, 0) BS(v3, 1) � � � BS(v3, Nb�1)

0BB@
1CCA:

ByteSub plays the role of the S-box in DES and is the only nonlinear element in

Rijndael.

The Operations ShiftRow and InvShiftRow are cyclic left and right shifts of

the rows of a state v. SR cyclically left-shifts row i of v by Ci bytes as listed in Table 9.24.

For example, when Nb ¼ 4

SR : v ¼

v0, 0 v0, 1 v0, 2 v0, 3

v1, 0 v1, 1 v1, 2 v1, 3

v2, 0 v2, 1 v2, 2 v2, 3

v3, 0 v3, 1 v3, 2 v3, 3

0BB@
1CCA!

v0, 0 v0, 1 v0, 2 v0, 3

v1, 1 v1, 2 v1, 3 v1, 0

v2, 2 v2, 3 v2, 0 v2, 1

v3, 3 v3, 0 v3, 1 v3, 2

0BB@
1CCA:

The inverse InvShiftRow is a cyclic right shift of the row i of a state v by Ci

bytes.
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The Operations MixColumn and InvMixColumn are defined in terms of multi-

plication of polynomials whose coefficients are bytes. We write x ¼ kabl to show that the

byte x is composed of the two hexadecimal digits a and b. Table 9.25 shows a coding

between x and kabl. To compute the product

c(z ) ¼ a(z )� b(z ) (modulo (1þ z 4)) (9:2)

c(z ) ¼ c3z
3 þ c2z

2 þ c1zþ c0

with

a(z ) ¼ a3z
3 þ a2z

2 þ a1zþ a0

b(z ) ¼ b3z
3 þ b2z

2 þ b1zþ b0

the sum of the products of the coefficient of zi in a(z) and the coefficient of zj in b(z) with
iþ j ¼ k (modulo 4) for fixed k with k ¼ 0, 1, 2, 3 is computed. This may be written as

c0

c1

c2

c3

0BBB@
1CCCA ¼

a0 a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

0BBB@
1CCCA

b0

b1

b2

b3

0BBB@
1CCCA (9:3)

c0 ¼ (a0 � b0)þ (a3 � b1)þ (a2 � b2)þ (a1 � b3)

c1 ¼ (a1 � b0)þ (a0 � b1)þ (a3 � b2)þ (a2 � b2)

c2 ¼ (a2 � b0)þ (a1 � b1)þ (a0 � b2)þ (a3 � b3)

c3 ¼ (a3 � b0)þ (a2 � b1)þ (a1 � b2)þ (a0 � b3) (9:4)

Example 9.9
We compute c(z) ¼ a(z)� b(z) (modulo (1þ z4)) with

a(z ) ¼ k02lþ k01lzþ k01lz2 þ k03lz3

b(z ) ¼ k0Elþ k09lzþ k0Dlz2 þ k0Blz3

TABLE 9.25 Byte-to-Hex Coding Table

Bits Hex Bits Hex Bits Hex Bits Hex

0000 0 0100 4 1000 8 1100 C

0001 1 0101 5 1001 9 1101 D

0010 2 0110 6 1010 A 1110 E

0011 3 0111 7 1011 B 1111 F

TABLE 9.24 Rijndael Row Shift Parameters

Nb C0 C1 C2 C3

4 0 1 2 3

6 0 1 2 3

8 0 1 3 4
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by adding the products of the coefficient of zi in a (z) and the coefficient of z j in b(z)
with i þ j ¼ k (modulo 4) for fixed k with k ¼ 0, 1, 2, 3.

1. The coefficient of z 0 in c(z) is the sum of the products of

(a) the coefficient of z i in a(z) and

(b) the coefficient of z j in b(z) with i þ j ¼ 0 (modulo 4); that is,

k02l � k0El$ z(zþ z2 þ z 3) ¼ z 2 þ z 3 þ z 4

k01l � k0Bl$ 1(1þ zþ z 3) ¼ 1þ zþ z 3

k01l � kD, 0l$ 1(1þ z 2 þ z 3) ¼ 1þ z 2 þ z 3

k03l � k09l$ (1þ z )(1þ z 3) ¼ 1þ zþ z 3 þ z 4

with value 1.

2. The coefficient of z1 in c(z) is the sum of the products of

(a) the coefficient of zi in a(z) and

(b) the coefficient of zj in b(z) with i þ j ¼1 (modulo 4); that is,

k02l � k09l$ z(1þ z 3) ¼ zþ z 4

k01l � k0El$ 1(zþ z 2 þ z 3) ¼ zþ z 2 þ z 3

k01l � k0Bl$ 1(1þ zþ z 3) ¼ 1þ zþ z 3

k03l � k0Dl$ (1þ z )(1þ z 2 þ z 3) ¼ 1þ zþ z 2 þ z 4

with value 0.

3. The coefficient of z2 in c(z) is the sum of the products of

(a) the coefficient of zi in a(z) and

(b) the coefficient of zj in b(z) with iþ j ¼ 2 (modulo 4); that is,

k02l � k0Dl$ z(1þ z 2 þ z 3) ¼ zþ z 3 þ z 4

k01l � k09l$ 1(1þ z 3) ¼ 1þ z 3

k01l � k0El$ 1(zþ z 2 þ z 3) ¼ zþ z 2 þ z 3

k03l � k0Bl$ (1þ z )(1þ zþ z 3) ¼ 1þ z 2 þ z 3 þ z 4

with value 0.

4. The coefficient of z3 in c(z) is the sum of the products of

(a) the coefficient of z i in a(z) and

(b) the coefficient of z j in b(z) with i þ j ¼3 (modulo 4); that is,
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k02l � k0Bl$ z(1þ zþ z 3) ¼ zþ z 2 þ z 4

k01l � k0Dl$ 1(1þ z 2 þ z 3) ¼ 1þ z 2 þ z 3

k01l � k09l$ 1(1þ z 3) ¼ 1þ z 3

k03l � k0El$ (1þ z )(zþ z 2 þ z 3) ¼ zþ z 4

with value 0.

Example 9.9 shows that

c(z ) ¼ a(z )� b(z ) (modulo(1þ z 4)) ¼ 1

when

a(z )¼ k02lþ k01lzþ k01l z 2 þ k03lz 3 b(z ) ¼ k0Elþ k09lzþ k0Dl z 2 þ k0Blz 3:

This computation proves Proposition 9.5.

Proposition 9.5: If a(z) ¼ k02lþ k01lzþ k01lz2þ k03lz3, then the transformation

Ta : b(z )! a(z ) b(z ) (modulo(1þ z 4))

is invertible with inverse

T�1a : b(z )! a�1(z ) b(z ) (modulo(1þ z 4))

with

a�1(z ) ¼ k0Elþ k09lzþ k0Dlz 2 þ k0Blz 3:

A column in the state

v ¼

v0, 0 v0, 1 � � � v0, Nb�1

v1, 0 v1, 1 � � � v1, Nb�1

v2, 0 v2, 1 � � � v2, Nb�1

v3, 0 v3, 1 � � � v3, Nb�1

0BB@
1CCA

is identified with a polynomial of degree (at most) three, whose coefficients are bytes. The

linear transformation MixColumn (MC) consists of the application of MC to each of the

Nb columns of a state v (Fig. 9.13):

Figure 9.13 MixColumn applied to the rth column of the state.

320 CHAPTER 9 BLOCK-CIPHERS: LUCIFER, DES, AND AES



(v̂0, r, v̂1, r, v̂2, r, v̂3, r) ¼ MC(v0, r, v1, r, v2, r, v3, r)

v̂0,r

v̂1,r

v̂2,r

v̂3,r

0BBB@
1CCCA ¼

k02l k03l k01l k01l
k01l k02l k03l k01l
k01l k01l k02l k03l
k03l k01l k01l k02l

0BBB@
1CCCA

v0,r

v1,r

v2,r

v3,r

0BBB@
1CCCA

The Operation AddRoundKey is the exclusive-OR of Nb words of R-key to a state

v. The Nbwords of the R-key used in each round are derived from expanding the Nkwords

of cipher key into Nb(Nrþ 1) words of R-key (Fig. 9.14):

EK ¼ (EK½0
, EK½1
, EK½2
, . . . , EK½Nr
):

The algorithm for key expansion is different for Nk � 6 and Nk . 6.

Key Expansion Algorithm (Nk � 6)

1. for i :¼ 0 to Nk2 1

EK[i] ¼ (k0,i, k1,i, k2,i, k3,i) kj,i is a word;

2. for i :¼ Nk to NkNr2 1

temp ¼ EK[i2 l]

if 0 = (i mod Nk), then EK[i] ¼ tempþ EK[i2 Nk];

if 0 ¼ (i mod Nk), then temp ¼ BS(RB(temp))þ R_Con(bi/Nk)
where

. The transformation RotByte (RB) is the left-cyclic shift fay one byte of a word

(v0, v1, v2, v3)

RB : (v0, v1, v2, v3)! (v1, v2, v3, v0):

. ByteSub (BS) is applied to each of bytes of RB(v0, v1, v2, v3)

BS(RB) : (v0, v1, v2, v3)! (BS(v1), BS(v2), BS(v3), BS(v0)):

Figure 9.14 Rijndael key expansion.
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. The round constants {R_Con( j )} of type array [0..3] of Z256 are defined by

R Con(; j) ¼ (RC½ j
, k00l, k00l, k00l)
RC½1
 ¼ k01l
RC½2
 ¼ x ¼ k02l
RC½i
 ¼ x � RC½i� 1


Key Expansion Algorithm (Nk . 6)

1. for i :¼ 0 to Nk2 1

EK[i] ¼ (k0,i, k1,i, k2,i, k3,i) kj,i is a word;

2. for i :¼ Nk to NkNr2 1

temp ¼ EK[i2 l]

if 0 = (i mod Nk), then EK[i] ¼ tempþ EK[i2 Nk];

if 4 ¼ (i mod Nk), then temp ¼ BS(temp);

Figure 9.15 Two intermediate steps in Rijndael key expansion.

Figure 9.16 The order of operations in the Rijndael Cipher.

322 CHAPTER 9 BLOCK-CIPHERS: LUCIFER, DES, AND AES



Two intermediate steps in the Rijndael expansion for Nk � 6 are shown in Figure 9.15.

Any Nk consecutive word of R-key determine the complete R-key.

9.16 THE RIJNDAEL CIPHER

The order in which the transformations ByteSub, ShiftRow, MixColumn, and

AddRoundKey are to be applied is as shown in Figure 9.16.

9.17 RIJNDAEL’S STRENGTH: PROPAGATION
OF PATTERNS

Although there is no proof that Rijndael can resist all cryptographic attacks

. The authors have tested whether several existing cryptanalytic techniques when

applied to Rijndael can recover die key with a work factor less than exhaustive

key trial, and

. Rijndael has been exposed to a careful scrutiny by outside cryptanalysts.

We summarize some of the unsuccessful attacks on Rijndael.

9.17.1 Differential Cryptanalysis

Define the byte weight of two states v1 and v2 as the number of nonzero bytes in v1 
 v2.

Differential cryptanalysis has two phases:

1. A search for pairs of states (v1, v2) whose byte weight does not change significantly

over several rounds when the states vi are enciphered with the same key, and

2. An attempt to use such pairs to infer key bits.

The Rijndael round transformation on a state

T :v! AddRoundKey(MixColumn(ShiftRow(ByteSub(v))))

is a permutation on the states in Z4Nb,8.

Nyberg [1993] and Beth and Ding [1993] introduced a measure of nonlinearity for

permutations F on Zn,2 defining

NF ¼ max
b[Zn, 2

NF(a)

NF(a) ¼ j{z [ Zn, 2 :F(zþ a)� F(z) ¼ b}j, a = 0,

where j � � � j is the size of the set � � � . Note that if F is a linear transformation, then

F(zþ a)2 F(z) ¼ b has either 0 or 2 solution.

Figure 9.17 An Nk ¼ 6 Rijndael Activity Pattern.
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Nyberg calls F differentially d-uniform if NF � d and proves Proposition 9.6.

Proposition 9.6:
9.6a NF � 2.

9.6b If F is differentially d-uniform and A and B are linear transformations, then A � F � B

is differentially d-uniform.

9.6c The permutation ByteSub is differentially 4-uniform.

Figure 9.18 Effect of the round transformation the Nk ¼ 6 Rijndael activity pattern.
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An active byte in a state is a nonzero byte. An activity pattern is a description of the active

bytes in a pair of states (v1, v2).

Example 9.10
An activity pattern for Nk ¼ 6 is illustrated in Figure 9.17; bytes (0,2), (2,4), and (3,5) are

active. The effect of a Rijndael round transformation on an activity pattern uses the follow-

ing observations:

. An activity pattern remains unchanged under AddRoundKey, ByteSub, and
ShiftRow;

. MixColumn only alters the columns containing an active byte.

A possible effect of the Rijndael round transformation on the activity pattern in Example

9.10 is shown in Figure 9.18.

Example 9.10 shows that the number of active bytes depends on the number of active

columns; that is, columns with an active byte.

Daemen and Rijmen define an m-round differential trail as a sequence of state-pairs

v1

v1 þ a1
�!
T1 v2

v2 þ a2
�!
T2
� � � �!

T m�1 vm

vm þ am

related by chaining

vi

vi þ ai
�!
T1 viþ1

viþ1 þ aiþ1
, i ¼ 1, 2, . . . m� 1:

The fraction of key values that are consistent for the ith segment is denoted by

R
vi

rviþ i
�
T1!

viþ1

viþ1 þ aiþ1

� �
Daemen and Rijmen argue in Daemen [1995] and in the supplementary annex [Daemen

and Rijmen, 1999a] that when the fractions of consistent keys

R
vi

vi þ ai
�!
Ti viþ1

viþ1 þ aiþ1

� �
, i ¼ 1, 2, . . . , m� 1

are small, the keys act independently and the fractions may be multiplied to give

R
v1

v1 þ a1
�!
T1 v2

v2 þ a2
�!
T2
� � � �!

Tm�1 vm

vm þ am

� �
	
Ym�1
i¼1

R
vi

vi þ ai
�!
Ti viþ1

viþ1 þ aiþ1

� �
:

In Daemen and Rijmen [1999b], the authors state Proposition 9.7.

Proposition 9.7

9.7a The number of active bytes after two rounds is at least 5.

9.7b The number of active bytes after four rounds is at least 25.

9.17 RIJNDAEL’S STRENGTH: PROPAGATION OF PATTERNS 325



Combining Proposition 9.7b with Nyberg’s result shows 22150 to be the probability that a

four-round differential attack will be successful.

9.18 WHEN IS A PRODUCT BLOCK-CIPHER SECURE?

In LUCIFER, DES, and Rijndael, the substitution (S-box) provides the only nonlinear

element in the encipherment transformation. In the 16 years various authors have

studied the general design principles of strong product block-ciphers, which have been

investigated since the beginning of the 1980s. Susan Landau’s paper [Landau, 2004] is

a very fine summary of the concepts.

Z2, n will continue to denote the set of all binary n-vectors. The Hamming distance

d(x, y) between two n-vectors x ¼ (x0, x1, . . . , xn21) and y ¼ ( y0, y1, . . . , yn21) is the

number of coordinates in which they differ.

If

0 ¼ 0, 0, . . . , 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n copies

1 ¼ 1, 1, . . . , 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n copies

ui ¼

(1, (0)n�1), if i ¼ 0

( 0, 0, . . . , 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
(i�1) terms

, 1, 0, 0, . . . , 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
(n�i) terms

), if 0 , i , n� 1

((0)n�1, 1), if i ¼ n� 1

8>><>>:
x ¼ (x00, x

0
1, . . . , x0n�1)

where, indicates complementation, then

n ¼ d(0, 1) 2 ¼ d(ui, uj), 0 � i , j , n

n ¼ d(x, x0) 1 ¼ d(0, ui), 0 � i , n

An S-box is Boolean function; that is, a mapping

f :Z2, n ! Z2, m:

We use the notations

. Bn for the set of all Boolean functions on Z2,n with values in Z2,

. Ln for the set of all linear Boolean functions f (x) ¼ a0x0þ a1x1þ � � � þ an21xn21

where the coefficient vector a ¼ (a0, al, . . . , an21) is in Z2, n, and

. An for the set of all affine Boolean functions f (x) ¼ bþ a0x0þ a1x1þ � � � þ

an21 xn21 where the coefficient vector a ¼ (a0, al, . . . , an21) is in Z2, n, and b [ Z2.

Although Feistel’s paradigm

T : (L, R)! (F(R)þ L, R)

does not require F to be invertible, some form of nonlinearity must be part of the design.

Pierpryzk’s paper [1990] proposed measuring the nonlinearity of f [ B by

N ( f ) ¼ d( f ,Bn) ; min
g[Ln

d( f , g)

where the Hamming distance between two functions f (x) and g(x) is

d( f , g) ¼ #{x : f (x) = g(x)}

and #{ � � � } is the cardinality of { � � � }.
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The nonlinearity N( f ) of a permutation f ¼ ( f0, f0, . . . , fn21) of Z2, n is

N ( f ) ; lim
0�i,n
N ( fi):

Another interpretation is possible where an element x ¼ (x0, x1, . . . , xn22, xn21)

of Z2,n may be interpreted as the coefficient of the polynomial of degree at most

n2 1

px(z) ; xn�1 þ xn�2zþ � � � þ x1z
n�2 þ x0z

n�1 , x ¼ (x0, x1, . . . , xn�2, xn�1):

The vector space Z2,n is then identified with the space of polynomials Pn21[z] of

degree at most n2 1.

The addition and multiplication of integers in Z2 is trivial; similarly, the addition

and multiplication of n-vectors inZ2,nmay be defined. The idea is central to understanding

Rijndael.

This identification of vectors with polynomials is fruitful; Pierpryzk proved that

p(z) ¼ z2
k

þ l for k . 2 has maximum nonlinearity.

Nyberg [1993] argues that a better definition of Nf is to find the best affine approxi-

mation

N f ¼ d( f ;Bn) ; min
g[Ln

d( f ; g)

as he proves that, with his definition, the nonlinearity of an invertible f is the same as f 21.

That is, the measure of the nonlinearity of f is the closest distance to it by a line or affine

approximation.

The Boolean functions with Nyberg’s maximum nonlinearity have been studied pre-

viously in cryptography by Rothhaus [1976]. He called a Boolean function f onZ2,n bent if

its distance to the space of affine functions is a maximum. Various equivalent definitions

have been found. First, the discrete Fourier (Hadamard) orWalsh transform of a Boolean

function f (x) is defined by

bF(x) ¼ X
x[Z2;n

(� 1) f (x)þ(x�y):

The transform operator f! bF satisfies the Parseval’s formulaX
y[Z2;n

(bF(y))2 ¼ 22n:

Rothaus proved that f is bent for n ¼ 2m providedbF(y) ¼+2m:

second, if f is bent and

h(x) ¼ (a � x)þ b

if affine, then

(�1)bbF(y) ¼ 2n � 2d( f ; h):

9.19 GENERATING THE SYMMETRIC GROUP

Product block ciphers acting on plaintext on Z2,n are often constructed from certain pri-

mitives; for example, XOR, addition-with-carry, and circular-shift. DES, LUCIFER,
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and IDEA (defined in Chapter 17) are examples. The symmetric group of Z2,n is the

group containing the 2n! permutations of the elements of Z2,n. It is the richest possible

cryptographic family; to specify an element of this symmetric group requires log2 2
n! 	

n2n bits

In the design of a product block cipher it seems reasonable to ask if the components

of the cipher generate the symmetric group or as large as possible group.

Proposition 9.8: The group generated by the following two operators acting on

the n-vectors in Z2,n

9.8a a: addition (with carry) on elements of Z2,n and

9.8a r [r21]: shift-left [-right] circular

is the symmetric group of permutations of Z2,n.

Proof: This result does not state that a particular group of operators generated

by a and r is the symmetric group. It does imply, however, that when sufficiently

long “strings” of these operations are allowed, then the group “approximates” the sym-

metric group.

To prove Proposition 9.8 we show that every two-element transposition

(i; j); i ; x j ; y;

can be constructed by a suitable composition of {a, r}. The notation i ; x above means

that the integer i is the decimal value of the n-vector in x [ Z2,n.

1. The operator b ; r�1a2r a�1 interchanges the n-vectors (1; 0; 0; � � � ; 0)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
(n�1) copies

and 0 ¼

(0; 0; . . . ; 0)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n copies

:

(1; 0; 0; . . . ; 0)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
(n�1) copies

!
a�1

(0; 1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl})
(n�1) copies

!
r
( 1; 1; . . . ; 1; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} )

(n�1) copies

!
a2

( 0; 0; . . . ; 0)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n copies

!
r�1

(0; 0; . . . ; 0)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
copies

( 0; 0; . . . ; 0)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n copies

!
a�1

( 1; 1; . . . ; 1)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n copies

!
r
( 1; 1; . . . ; 1)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n copies

!
a2

( 0; 0; . . . ; 0;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl} 1)
(n�1) copies

!
r�1

( 1; 0; 0; . . . ; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} )
(n�1) copies

:

Furthermore, as we show next, all other n-vectors in Z2 are fixed points under b:

(0; u; 1; 0; 0; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl} )
k copies

!
a�1

(0; u; 0; 1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl} )
k copies

!
r
(u; 0; 1; 1; . . . ; 1; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} )

k copies

!
a2

(u; 1; 1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl} )
kþ1 copies

!
r�1

(0; u; 1; 0; 0; . . . ; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} )
k copies

(1; u; 1; 0; 0; . . . ; 0)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
k copies

!
a�1

(1; u; 0; 1; 1; . . . ; 1)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k copies

!
r
(u; 0; 1; 1; . . . ; 1)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

(kþ1) copies

!
a2

(u; 1; 0; 0; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl} )
k copies

!
r�1

(1; u; 1; 0; 0; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl} )
k copies

:
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2. Next, we observe that g ; rbr�1 interchanges the n-vectors (0; 0; 0; . . . ; 0)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
(n�1) copies

and
0; 0; . . . ; 0; 1ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

(n�1) copies
:

( 0; 0; . . . ; 0; 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} )
(n�1) copies

!
r�1

(1; 0; 0; . . . ; 0)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
(n�1) copies

!
b
(0; 0; 0; . . . ; 0)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

(n�1) copies

!
r
(0; 0; 0; . . . ; 0)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

(n�1) copies

(0; 0; 0; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl} )
(n�1) copies

!
r�1

(0; 0; 0; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl} )
(n�1) copies

!
b
(1; 0; 0; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl} )

(n�1) copies

!
r
(0; 0; . . . ; 0; 1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} )

(n�1) copies

and an identical argument as in 1. above shows that all other n-vectors in Z2,n are

fixed points of r21br.

3. Finally, the operation atga2x produces the two-element transposition (r, rþ 1).

It follows that all two-element transpositions (i, j ) may be produced by a word invol-

ving a, its inverse a21, together with r and its inverse r21. This proves that the group

generated is the symmetric group of (invertible) transformations on Zn.

Every permutation on a finite set S can be written as a product of 2-element

transpositions. While this representation is not unique, the parity of a representation is

always either even, meaning an even number of 2-element transpositions, or odd. The

alternating group is composed of those permutations whose transpositions have even

parity. Coppersmith and Grossman [1975] show that the round transformations of DES

and LUCIFER can potentially generate the alternating group composed of the elements

of the symmetric group of (invertible) transformations with even parity.

9.20 A CLASS OF BLOCK CIPHERS

A “Cryptographic Device” designed by my former colleague Dr. Roy L. Adler is described

in IBM [1974] and in U.S. Patent #4.255,811 “Key Control Block Cipher System”, issued

to Adler on March 10, 1981. This algorithm provides the cryptographic feature in a

key-card entry system to be described in Chapter 18.

128-bit plaintext blocks are enciphered to 128-bit ciphertext blocks under ,the

control of a 128-bit key:

x ¼ (x0, x1, . . . , x127)! y ¼ (y0, y1, . . . , y127):

Like LUCIFER and DES, encipherment is the result of r rounds; the (3 � 128)þ 7 bits of

key used in a round are derived from the user-supplied 128-bit key in a manner to be

described shortly.

First, a 128-bit key a0 ¼ (a0,0, a0,1, . . . , a0,127) derived by the key processor from the

user-supplied key is added modulo 2128 to the 128-bit plaintext block x ¼ (x0, x1, . . . , x127):

x! y ; xþ a0

Using the key supplied by the processing device, the steps in the ith round are:

Ri-1 Modulo 2128-addition of 128-bit key bi ¼ (bi,0, bi,1, . . . , bi,127)

y
0
! yþ bi:
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Ri-2 128-to-128 wire-crossing u ¼ (u0, u1, . . . , u127)

y
0
! u( yþ bi):

Ri-3 7- or 8-bit shift-left-circular ri determined by key bi ¼ (bi,0, bi,1, . . . , bi,7)

y
0
! rb(u( yþ bi)):

Ri-4 128-to-128 inverse wire-crossing ui
21 ¼ (ui,0

21, ui,1
21, . . . , ui,7

21)

y
0
! u�1(rb(u(yþ bi))):

Ri-5 Exclusive-OR of 128-bit key ci ¼ ( ci,0, ci,1, . . . , ci,127)

y
0
! (u�1(rb(u( yþ bi))))þ ci:

The derivation of the internal key by the key processor is depicted in Figure 9.19. The

steps in the generation, of the internal key are:

KP-0 The user-supplied key resides in a 128-bit key register K;

KP-1 The content ofK is loaded into registers Rl, R2, R3, and R4 of sizes 35, 33, 31, and

29 bits;

Figure 9.19 Key control block Cipher system.
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KP-2 Bits are tapped from register Ri at positions di and ei for i ¼ 1, 2, 3, 4 in each cycle

– the choice tap positions is dependent on the number of rounds r;

KP-3 The XORs

d1 
 e4 d2 
 e3 d3 
 e2 d4 
 e1

are computed at four modulo 2 adders to generate the 4-bit input to tbe key bit router;

KP-4 The registers are left-shifted one position after the read operation;

KP-5a Each round takes 32 cycles to generate the required 128 bits for the vector a0;

KP-5b Each round takes 98 cycles to generate the required 392 ¼ (3 � 128)þ 8 bits.

As since the lengths of the shift registers. Rl, R2, R3, and R4 are relatively prime, the

key generation process is periodic with period P ¼ 1,038,345 ¼ 35 � 33 � 31 � 29

Figure 9.20 The IDEA algorithm.
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9.21 THE IDEA BLOCK CIPHER

IDEA (Fig. 9.20) is a block cipher design by Xuejia Lai and James Massey. Its design was

influenced by DES; it uses eight rounds to mix the key and plaintext. In each round the

basic operations applied to 16-bit variables X1, X1, X2, X3 are XOR, modulo 216þ1

multiplication, and modulo 216 addition. Additionally, at the end of each round there is

an interchange of the processed blocks X1 and X2. At the end of the eighth round there

is an additional combination of the key and processed plaintext.

9.21.1 The IDEA Key Schedule

The IDEA key of length 128-bits is divided into 8 blocks of 16 bits K ¼ (K0, Ki, . . . , K7).

IDEA uses six blocks of 16 bits in each of the eight rounds and four blocks for the final

operation. The blocks used in each round are derived as follows:

1. K0, K1, . . . , K5 are used in round 1; K6, K7 are the first two blocks in round 2.

2. The 128-bit block K is left-shifted 25 places, and the first four 16-bit blocks K8, K9,

K10, K12 are used in round 2.

The process is repeated.
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CHA P T E R10
THE PARADIGM OF PUBLIC KEY

CRYPTOGRAPHY

THE ENLARGED role of information processing in non-governmental

applications, the emergence of the Internet and its potential for commercial transactions

over public data networks (E-commerce) became the stimulus for the development of a

new type of cryptographic system. While governments have couriers capable of

distributing keys between users by an alternative secure path, commercial users needed a

new approach to securely connect two users over a potentially insecure networks. The

solution was public key cryptography in which the capability to encipher data was

separated from the capability to decipher it. This chapter introduces the concepts and

implications of public key cryptographic systems.

10.1 IN THE BEGINNING. . .

For centuries, encipherment was provided exclusively by conventional or single key

cryptosystems. A class of transformations K ¼ fTk : k [ Kg was defined with y ¼ Tk(x)

denoting the ciphertext resulting from the encipherment of x using the key k. Knowledge

of k permitted the computation of T�1k and the recovery of the plaintext x ¼ T�1k (y). Each

party to an enciphered communication either agreed in advance to key k or a third party

delivered the key over an alternative secure path. The secrecy proffered by the encipher-

ment data depended on whether the cryptosystem T would resist cryptanalysis. Could the

key k or plaintext be recovered from fyi ¼Tk(xi)g under suitable conditions?

All of this changed in 1976 with the appearance of papers by Whitfield Diffie (then a

graduate student) and Martin Hellman [Diffie and Hellman 1976a,b]. They invented public

key cryptography (PKC) in response to the expanded role of information processing tech-

nology in our society, coupled with access to public data networks. Encipherment would

not only be needed by governments, but also to protect

. The confidentiality of medical record, and

. That of participants in commercial transactions carried out over a public data network.

The first customers were banks and large corporations. In the mid-1960s, the International

Business Machines Corporation decided to provide its customers with the capability to

protect communications and files. The LUCIFER algorithm was incorporated in an IBM

product for a banking customer. Lloyd’s Bank (London) requested the IBM Corporation

to design a banking system incorporating automated teller machines (ATMs) to facilitate

24-hour banking services (deposits, withdrawals). The transactions between the ATM

Computer Security and Cryptography. By Alan G. Konheim
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and the bank’s processor would be over public networks and require protection. Cryptogra-

phy was incorporated into the authentication protocol in IBM’s Liberty Banking System.

In response to the need for secure methods of processor-to-processor communi-

cation and the related problem of file security, the National Bureau of Standards (NBS)

solicited proposals for a National Encryption Standard in the Federal Register in 1972.

An IBM product division modified LUCIFER and submitted the algorithm, now referred

to as the data encryption standard (DES).
The debate about DES awakened the need for research in cryptography by the aca-

demic and commercial sectors. The past twenty years has witnessed the development of a

technical competence in cryptography in the academic and commercial sectors.

10.2 KEY DISTRIBUTION

The traditional role of cryptography is to hide the data in communications. The availability

of public data networks meant that large amounts of data might be transmitted over poten-

tially insecure channels. Methods were needed to protect the privacy of such information

while at the same time providing relatively open access for users with a need to obtain

the information. When the government uses cryptography it provides a secure path

using couriers for the distribution of keys.

If N users are connected by a computer network as shown in Figure 10.1, where the

network links are insecure, then they might be wiretapped by an opponent. If a single-key

cryptosystem is used to encipher data, it is necessary that a key ki,j (i = j ) be specified and

available for each pair of networked users. It is not feasible in a network of N users for each

user to maintain a table of	N2 keys fki,jg. The problem of key exchange or key distribution

is to implement a secure mechanism to make the keys available for each pair of users.

One simple solution uses a trusted authority or key server as proposed by Needham

and Schroeder [1978]. Each user has a network-unique (user) identifier and secret key;

ID[i] is the identifier of User_ID[i] and K(ID[i]) is User_ID[i]’s secret key. The key

server maintains a table with entries (ID[i], K(ID[i])) of the N keys of the users. The

key server is responsible for securely maintain this table.

User_ID[i] communicates with the key server an intention to securely communicate

with User_ID[ j ]; the key server performs the following services:

1. The key server generates a random session key kSK;

2. (a) The key server retrieves the secret key K(ID[i]) of User_ID[i], enciphers and

transmits to User_ID[i] the session key kSK enciphered using User_ID[i]’s

private key EK(ID[i]) fID[i], ID[ j ], kSKg.

(b) The key server retrieves the secret key K(ID[ j ]) of User_ID[ j ], enciphers and

transmits to User_ID[ j ] the session key kSK enciphered using User_ID[ j ]’s

private key EK(ID[ j ])fID[i], ID[ j ], kSKg.

3. (a) User_ID[i] deciphers EK(ID[i])fID[i], ID[ j ], kSKg and obtains the session

key kSK.

(b) User_ID[ j ] deciphers EK(ID[ j])fID[i], ID[ j ], kSKg and obtains the session

key kSK.

A solution using a key server suffers from the need to maintain a table, adding users as they

join the network. This might have been feasible when the Internet consisted of a few thou-

sand users, but it is very difficult to manage networks with several million users. Moreover,

many independent public networks with different operating systems need to be connected
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and it is not feasible for a single key server to provide network-wide serve. There must be a

hierarchy of key servers with different domains and keys used to exchange information

between the key servers if User_ID[i] and User_ID[ j] are in different domains.

10.3 E-COMMERCE

The use of networks for electronic commerce (E-commerce) to be examined in Chapter 18

provides a second application of cryptography.

. Customer_ID[A] might want to buy 100 shares of IBM at $151/share from

Broker_ID[B];

. Customer_ID[A]might want to buy a book from Seller_ID[B] (www.amazon.com);

. Customer_ID[A] might want to buy airplane tickets from Seller_ID[C]

(www.orbitz.com).

There are several issues in these examples of E-commerce;

. If payment is made by direct debit of the purchaser’s bank account, Customer_ID[A]

is concerned about the secrecy of the bank account number and authorization travel-

ing over the network;

Figure 10.1 Network Key Server.
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. If payment is made with a credit card, Customer_ID[A] is concerned about the

secrecy of the credit card number traveling over the network to Server_ID[B] and

Server_ID[C];

. User_ID[A] wants proof that a purchase was made and the terms of the transaction;

and

. The network servers Server_ID[B] and Server_ID[C] want proof that an order was

received from Customer_ID[A].

In normal commercial transactions, the parties meet and sign in each other’s presence a

document (contract) specifying the rules of their transaction. In E-commerce, an electronic

transaction requires a digital signature to be appended to the transaction data. We return to

this problem in Chapter 17.

10.4 PUBLIC-KEY CRYPTOSYSTEMS: EASY AND HARD
COMPUTATIONAL PROBLEMS

Diffie and Hellman proposed a new type of cryptosystem that would alleviate but not elim-

inate the problem of key distribution and also provide a mechanism for digital signatures.

The characteristic property of conventional cryptosystems T ¼ fTk : k [ Kg is that Tk
determines the inverse transformation Tk

21. Normally, the key k determines a second

key k21so that Tk
21 ¼ Tk21. Diffie and Hellman proposed (public-key) cryptosystems

that used two keys: a public key PuK for encipherment and a private key PrK for

decipherment.

Encipher : x! y ¼ EPuKfxg

Decipher : y! x ¼ EPrKfxg.

In addition to the usual properties required of a strong cryptosystem, it was crucial that the

computation of PrK with knowledge of PuK would be infeasible. User_ID[A] would

publish the public key PuK(ID[A]) and thereby enable every user to encipher information

intended only for User_ID[A]. Knowledge of PrK(ID[A]), known only by User_ID[A],

would permit User_ID[A] to decipher such messages. How can such pairs (PuK(ID[A]),

(PrK(ID[A])) be found?

Diffie and Hellman argued that there are complex mathematical functions f (x) for

which the problem

Given: x

Find: y ¼ f (x)

is easy to solve, but for which the problem

Given: y ¼ f (x)

Find: x

is hard to solve.

A solution to the easy problem would be computation of the ciphertext, the encipher-

ment y ¼ EPuK(ID[A]){x} of the plaintext x using User_ID[A]’s public key PuK(ID[A]).

A solution to the hard problem would be computation of the plaintext, the decipherment

x ¼ EPrK(ID[A])fyg of the ciphertext y using User_ID[A]’s private key PrK(ID[A]).

Easy and hard refer to the complexity class of the problem. A problem is considered

computationally infeasible if the cost of finding a solution, as measured by either the
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amount of memory used or the computing time, while finite is extraordinarily large, much

greater than the value of the solution. The execution time of an algorithm A with n inputs is

the number of times some basic operation is performed. Algorithm A with n inputs exe-

cutes in polynomial time or is an O(nd)-algorithm if there is a constant C such that the

execution time is no larger than Cnd.

Many problems admit such a description; two examples are

1. Addition

– Given n-bits (x0, x1, . . . , xn21) and n integers (b0, b1, . . . , bn21) each expressed

with n bits

– Compute the sum S ¼
Pn�1

i¼0 bixi:

The sum may be computed by an O(n2)-algorithm.

2. Modular Exponentiation

– Given M, e, and N, each an n-bit integer

– Compute C ¼ Me (modulo N).

C may be computed using a O(n3)-algorithm.

For some problems; either a polynomial time algorithm O(nd) for the solution is unknown

or the running time of the best known algorithm is exponential-like.

1. Knapsack Problem

– Given the sum S

– Compute n-bits (x0, x1, . . . , xn21) to satisfy S ¼
Pn�1

i¼0 bixi. (x0, x1, . . . , xn21)

may be computed by a O(2n/2)-algorithm.

No polynomial time algorithm is known.

2. Logarithm Problem (modulo N )

– Given C ¼ Me (modulo N ), M, and N where C, M, and N are each n-bit integers.

– Calculate the (discrete) logarithm e ¼ logMC (modulo N )

logMC (modulo N ) may be calculated using a O(2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n log log n
p

)-algorithm.

No O(nd)-algorithm to compute logMC (modulo N ) is known.

Generally speaking, a problem is

. Easy, if a O(nc)-algorithm is known to find a solution, and

. Hard, if no O(nd)-algoithm to find a solution is known.

Complexity theory stemming from the work of Alan Turing classifies algorithms

(or problems) depending on their execution times.

P Polynomial-time problems with n inputs. An O(nd)-algorithm to solve the problem

exists.

NP Nondeterministic polynomial-time problems with n inputs. An O(nd)-algorithm to

check a possible solution to the problem exists.

Complexity theory identifies a distinguished subclass of NP consisting of problems

that are equivalent, in the sense that a solution to any one NP-Complete problem can

be transformed to a solution to another problem in this class.

338 CHAPTER 10 THE PARADIGM OF PUBLIC KEY CRYPTOGRAPHY



The relationship between the classes is not known; in particular, the truth of

the equalityP ¼ NP or proper inclusionP , NP remains unsettled. If the second statement

P , NP is true, there are some problems for which no OðndÞ solution algorithm exists.

Examples of corresponding easy ( f ) and hard ( f21) problems include:

E Addition (of knapsack weights)

– Given a knapsack vector b ¼ (b0, b1, . . . , bn) and a selection vector

x ¼ (x0, x1, . . . , xn21); (xi ¼ 0, 1)

– Compute S ¼ b0x0þ b1x1þ . . .þ bn21xn21; Addition (of knapsack weights) is

in the complexity call P.

H Knapsack Problem (Subset Sum Problem)

– Given a knapsack vector b ¼ (b0, b1, . . . , bn21) and a sum S

– Determine a vector x ¼ (x0, x1, . . . , xn21) with components 0 and 1 such that

S ¼ b0x0 þ b1x1 þ � � � þ bn�1xn�1:
The knapsack problem is in the complexity class NP-Complete. No P-algorithm to

solve the knapsack problem is known. The fastest algorithm to solve the knapsack

problem runs in time O(2p/2)

E Multiplication of Integers

– Given integers p and q whose lengths are each n-bits.

– Calculate the product N ¼ pq.

Multiplication of integers is in the complexity class P.

H Factorization of Integers

– Given an n-bit integer that is the product of two primes p, q.

– Calculate the factors p and q.

Factorization is in the complexity class NP; it is not believed to be NP-Complete.

No P-algorithm to factor is known. There is a O(2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n log log n
p

)-algorithm to factor.

E Modular Exponentiation (Modulo p)

– Given p a prime, q a primitive root of p and e an exponent each number requiring

n-bits. Note, q is a primitive root of p if the powers qi (modulo p) are distinct

for 0 � i , p2 1 and therefore a rearrangement (permutation) of the integers

1, 2, 3, . . . , p2 1

– Calculate N ¼ qe (modulo p).

Exponentiation modulo p is in the complexity class P. Exponentiation modulo p is an

O(n3)-algorithm.

H Logarithm Problem (modulo p)

– Given p a prime, q a primitive root of p and N ¼ qe (modulo p).

– Calculate ithe exponent e ¼logq N (modulo p).

Taking logarithms modulo p is in the complexity class NP; it is not believed to be

NP-Complete. No P-algorithm to calculate logarithms modulo p is known. There

is a O(2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n log log n
p

)-algorithm to calculate logarithms modulo p.

Diffie and Hellman suggested that encipherment be based on an easy problem

while decipherment requires the solution of the corresponding hard problem. But
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there is a defect! If computing y ¼ f (x) is easy, but computing x ¼ f21( y) is infeasible

for a third party, it must also be so for the creator of the (easy, hard)-pair. Diffie and

Hellman called f a trap-door one-way function if it satisfies the following three

properties:

1. Given:

A description of f (x) and x;

It is computationally feasible to compute y ¼ f (x).

2. Given:

A description of f (x) and y ¼ f (x);

It is computationally infeasible to compute x ¼ f 21(x).

3. Given:

A description of f (x) and y ¼ f (x) and parameters z;

It is computationally feasible to compute x ¼ f 21( y).

In problem 3

1. The computation of y ¼ f (x) is the encipherment EPuKfxg ! y of the plaintext with

the public key PuK, and

2. The computation of x ¼ f21( y) is the decipherment EPrKfyg ! x of the ciphertext

with the private key PrK, then

knowledge of the trap-door z for a trap-door one-way function f, permits the construction

of a pair (PuK, PrK) of public-key cryptosystem keys. Without the trap-door z, a user is not

in a position to find PrK from PuK.

What functions f are one-way and which of them have trap-doors? Diffie and

Hellman [1976a,b] were unable to provide any example of a trap-door one-way function.

Merkle and Hellman [1978] described a PKS that satisfied some but not all of the require-

ments of a trap-door PKS. Shortly thereafter, Ronald Rivest, Adi Shamir, and Len

Adelman [1978] provided the first example of a public-key cryptosystem, which, to the

best of out current knowledge, meets all of the desiderata of a PKS system.

In terms of easy and hard problems, the Merkle-Hellman and RSA Systems are com-

pared in Table 10.1. Chapter 11 discusses the Merkle–Hellman knapsack encipherment,

Chapter 12 RSA encipherment. The strength of the RSA cryptosystem appears to

TABLE 10.1 Comparison of the Merkle–Hellman and RSA Systems

Easy Hard

Merkle–Hellman

Given plaintext x Given ciphertext S ¼
Xn�1
i¼0

bixi

key b key b

Compute ciphertext S ¼
Xm�1
i¼0

bixi Compute plaintext x

RSA

Given plaintext M Given ciphertext C ¼ Me (modulo N )

key e, N key e, N

Compute ciphertext C ¼ Me (modulo N) Compute plaintext M
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depend on the difficulty of factoring large numbers. The generation of prime numbers and

factorization are reviewed in Chapter 13. Remarkably, elliptic groups provide a frame-

work in which integer factorization may be carried out efficiently. Chapter 15 describes

elliptic groups and a public-key system based on (discrete) elliptic groups published

in 1993.

10.5 DO PKCS SOLVE THE PROBLEM
OF KEY DISTRIBUTION?

In a PKC system, User_ID[A] enciphers data for User_ID[B] using User_ID[B]’s

public key PuK(ID[B]). How does User_ID[A] learn the value of PuK(ID[B])? There

is either

1. A network-wide table of pairs (ID[. . .],PuK(ID[. . .])) maintained by some entity that

User_ID[A] accesses, or

2. User_ID[B] delivers PuK(ID[B]) to User_ID[A] on demand, or

3. User_ID[A] receives PuK(ID[B]) at the time of a transaction from some entity.

We seem to be faced with the same problem considered in Section 10.2. Of course, if

User_ID[A] asks User_ID[B] to transmit a copy of PuK(ID[B]), then communications

enciphered with PuK(ID[B]) would then be able to be read only by someone with

knowledge of PrK(ID[B]), but who might the party supplying PuK(ID[B]) be? It is

necessary for User_ID[A] to have some way of verifying the link ID½B
 ! PuK(ID½B
):
The need for a certificate to authenticate link the public key and identifier of a user

was conceived in 1978 by Adelman’s student Kohnfelder [1978]. In Part I, Section D,

Weaknesses in Public-Key Cryptosystems of Kohnfelder [1978], Kohnfelder writes

Although the enemy may eavesdrop on the key transmission system, the key must be sent via a

channel in such a way that the originator of the transmission is reliably known.

Kohnfelder observed that all public-key cryptosystems are vulnerable to a spoofing attack

if the public keys are not certified; User_ID[C] pretending to be User_ID[A] to

User_ID[B] by providing User_ID[C]’s public key (in place of User_ID[A]’s public

key) to User_ID[B]. Unless User_ID[B] has some way of checking the correspondence

between ID[A] and PuK(ID[K]), this type of spoofing attack is possible.

Kohnfelder said that

. . . each user who wishes to receive private communications must place his enciphering algorithm

(his public key) in the public file.

Kohnfelder proposed a method to make spoofing more difficult in Part III of Kohnfelder

[1978]. He postulates the existence of a public file F which contains (in my notation) pairs

fID[A], PuK(ID[A])g for each user in the system. While it might be possible for

User_ID[A] to contact F to ask for a copy of User_ID[B]’s public key, this solution

suffers from the same operational defect as a network-wide key server:

. What entity will maintain and certify a large database that is continually changing?

. The public file will need to be replicated to prevent severe access times to obtain

information.
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Kohnfelder defines a certificate as a dataset consisting of an authenticator (AID[A]) and an

identifier (ID[A]), which are related by

AID½A
 ¼ EPrKð½F 
Þ{ID½A
, PuK(ID½A
)},

where PrK([F ]) is the private key of F .

Any user can check the correspondence AUID() ID by making the comparison

ID½A
, PuK(ID½A
)¼
?
EPrK(½F 
){AUID½A
};

where PuK([F ]) is the well-known public key of F . However, if the public-key

cryptosystem is strong, then it will not be computationally feasible for a user to determine

PrK([F ]) from PuK([F ]).

10.6 P.S.

Although Diffie and Hellman are acknowledged as the inventors of public-key crypto-

graphy, the idea was apparently discovered before their papers appeared. GCHQ is respon-

sible for communications intelligence in the United Kingdom, much as NSA is in the

United States. And like NSA, its discoveries are often not shared with the scientific com-

munity. James H. Eillis, Clifford C. Cocks, and Malcolm J. Williamson were employed at

GCHQ in the 1960s. They published internal Computer Electronics Security Group

(CESG) reports in the 1970–1976 period [Ellis, 1970; Cocks, 1973; Williamson, 1974,

1976]. There is also a paper [Ellis, 1987] reviewing GCHQ activity in this area. This

paper claims they invented the concept of public-key cryptography, motivated as Diffie

and Hellman. One system proposed by Cocks was a variant of the RSA system.

The secret environment of the government intelligence agencies worked against the

inventors and it remained a secret until its discovery in 1976. To be fair to Cocks, Ellis and

Williamson,

1. The issue of key distribution would not really be a natural problem for cryptogra-

phers in the employ of GCHQ to study, and

2. The need for digital signatures to support E-commerce is also not a likely subject for

study.

The real contribution of Diffie–Hellman is not only the invention of asymmetric two-key

cryptography, but the realization that there was a real need for it.

The url www.cesg.gov.uk contains links to papers describing the invention by

Cocks et al.
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CHA P T E R11
THE KNAPSACK CRYPTOSYSTEM

THE ME R K L E - H E L LMAN knapsack system was the first example of

a public key cryptographic system. Although the trap-door knapsack problem did not live

up to its promises of being “computationally infeasible” to solve, it was a major

cryptographic achievement. This chapter examines the contribution and the remarkably

elegant cryptanalysis of the Merkle–Hellman system by Adi Shamir.

11.1 SUBSET SUM AND KNAPSACK PROBLEMS

The original (one-dimensional) knapsack problem is a problem of combinatorial optimiz-

ation; items of different weights are to be packed into a knapsack (container) of total

capacity S.

Given: An integer S and a knapsack vector a ¼ (a0, a1, . . . , an21) of knapsack

lengths {ai},

Find: All solutions of
Pn�1

i¼0 xiai � S with xi [ {0,1} (0 � i , n).

Different variants of the knapsack problem exist, including

. Bin packing, in which the number or total length of the items to be packed into

N . 1 bins (containers) each of capacity b is to be maximized;

. Stock cutting, in which several (one-dimensional) items (e.g., rolls of paper or

perhaps extraordinarily long kosher sausages) each of length b are to be cut into

pieces of possible lengths {ai} with minimal wastage;

. The (0,1)-knapsack problem in dimensionM . 1 where items of specified shapes of

areas (volumes) {ai} can be packed into an M-dimensional knapsack of total area

(volume).

Solutions of these knapsack problems are in general, difficult to obtain and therefore they

are candidates for problems that might lead to strong public key cryptosystems as

described in Chapter 10. We formulate a (0, 1)-knapsack problem in two guises as

shown in Table 11.1. Note that S-SUM{a, b} and K{a, b} are NP-complete.

Proposition 11.1: S-SUM{a, b} and K{a, b} are equivalent.

Proof: Suppose ALG{a, b} is an algorithm whose output is YES if there is a

solution to the subset sum problem S-SUM{a, b} and NO otherwise. By evaluating

Computer Security and Cryptography. By Alan G. Konheim
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ALG{(a0, a1, . . . , ai21, aiþ1, . . . , an21), b2 ai1} for i ¼ 0, 1, . . . , with 1 ¼ 0, 1, a sol-

ution to the knapsack problem K{a, b} is found.

The statement, that S-SUM{a, b} and K{a, b} are NP-complete is an assertion about

the general instance of the (0,1)-knapsack problem, without conditions on a. For some

special knapsack vectors, a solution of the problem K{a, b} poses no difficulty.

Example 11.1
Ifa ¼ (1, 2, 4, 8, 16, 32, 64, 128) andb ¼ 71, a solution ofK{a, b} asks for the base-2 represen-

tation of b, so that it has the unique solution x ¼ (1, 1, 1, 0, 0, 0, 1, 0).

There are other simple knapsack problem, like the base-2 coding in Example 11.1. For

example, call a knapsack vector s ¼ (s0, s1, . . . , sn21 a super-increasing knapsack vector

and write s [ SUPn, if

0 , s0 , s1 , � � � , sn�1 and
Xj�1
i¼0

si , sj, 1 � j , n:

The components of s [ SUPn increase exponentially like the powers 1, 2, 22, 24, . . . .
If s is a super-increasing knapsack vector, the solution of K{s, t}, if it exists, is

unique and is easy to determine.

11.1.1 Algorithm 11A: Solution of K{s, t}, with s [ SUPn

Set t(0) ¼ t and s(0) ¼ (s0, s1, . . . , sn21);

For j ¼ 0 to n21 do Steps 1 and 2a or 2b.

1. Evaluate

Dj ; tj �
Pn�j�2
i¼0

si.

2a. If Dj . 0, then set

xn�j�1¼1 s( jþ1)¼ (s0, s1, . . . , sn�j�2) tjþ1¼ tj�sn�j�1 and j! jþ1:

Return to Step 1 and solve the reduced knapsack problem K{s( jþ1), tjþ1}.

2b. If Dj � 0, then set

xn�j�1 ¼ 0 s( jþ1) ¼ (s0, s1, . . . , sn�j�2) t jþ1 ¼ tj and j! jþ 1:

Return to Step 1 and solve the reduced knapsack problem K{s( jþ1), tjþ1}.

3. If
tn ¼ 0, a solution to K{s, t} exists and has been found.

tn = 0, no solution to K{s, t} exists.

�
END.

TABLE 11.1 Two Subset Sum Problems

Subset Sum Problem S-SUM{a, b}

Given: a ¼ (a0, a1, . . . , an21) [ Zn
þ, b [ Zþ

Determine: The existence of a (0, 1)-vector x ¼ (x0, x1, . . . , xn21) [ Z2,n, a solution of b ¼
Pn�1

i¼0 aixi.

(0,1)-Knapsack Problem K{a, b}

Given: a ¼ (a0, a1, . . . , an21) [ <n
þ, b [ <þ

Find: Any (0,1)-vector x ¼ (x0, x1, . . . , xn21) [ Z2,n, which is a solution of b ¼
Pn�1

i¼0 aixi.
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Example 11.2
When n ¼ 4, s ¼ (2, 3, 9, 16), and t ¼ 1, 12, 15, the steps in the execution of the above

algorithm are

j tj Dj x j tj Dj x j tj Dj x

1 (?,?,?,?) 12 (?,?,?,?) 15 (?,?,?,?)

0 1 213 (?,?,?,0) 0 12 22 (?,?,?,0) 0 15 1 (?,?,?,1)

1 21 24 (?,?,0,0) 1 12 7 (?,?,1,0) 0 1 26 (?,?,0,1)

2 1 21 (?,0,0,0) 2 3 0 (?,1,1,0) 2 21 21 (?,0,0,1)

3 1 21 (0,0,0,0) 3 0 0 (0,1,1,0) 3 21 21 (0,0,0,1)

One reason solutions of the knapsack problem are difficult to obtain is that some par-

ameter sets (a, b) may yield no solution x, but others may yield more than one solution.

Example 11.3
If a ¼ (1, 4, 6, 11, 25), then K{a, b} has

. Two solutions x ¼ (1, 1, 1, 0, 1) and x ¼ (0, 0, 0, 1, 1) if b ¼ 36;

. One solution x ¼ (0, 1, 1, 0, 1) if b ¼ 35;

. No solution if b ¼ 34.

Proposition 11.2: If a solution to K{s, t} with s [ SUPn exists, it is unique.

11.2 MODULAR ARITHMETIC AND
THE EUCLIDEAN ALGORITHM

The starting point for our study of modular arithmetic is Proposition 11.3.

Proposition 11.3: (The Division Algorithm for Integers): If a, b [ Z, with
b . 0, there exist unique integers q, r [ Z such that a ¼ qbþ r with 0 � r , b and we

write a ¼ r (modulo b).

Proof: If b divides a, then a ¼ qb and the algorithm is true with r ¼ 0. Otherwise,

let S ¼ {a2 qb : q [ Z, a2 qb . 0}.

11.3a If A . 0, q ¼ 0 is in S so that S = ;;

11.3b If a � 0, let q ¼ a2 1 so that q , 0. If b � 1, then a2 qb ¼ a(l2 b)þ b . 0

so again S = ;.

By the well-ordering principle, S has a minimum element, say r. If r ¼ a2 qb, then

0 � r , b or otherwise r2 b ¼ a2 (qþ l)b, contradicting the minimality of r. B

For every integern � 2, addition, subtraction, andmultiplication canbedefinedon the set

of residues modulo n, that is, on the set of integersZn ¼ {0, 1, 2, . . . , n2 1}. If a, b [ Zn, the

division algorithm can be used to define addition, subtraction, and multiplication as follows:

þ: aþ b ¼ qnþ r; 0 � r , n r ¼ (aþ b) (modulo n)

2: a2 b ¼ snþ t; 0 � t , n t ¼ (a2 b) (modulo n)

�: a � b ¼ unþ v; 0 � v , n v ¼ (a � b) (modulo n)
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Example 11.4
The addition and multiplication tables for modulo n arithmetic with n ¼ 2, 3 and 6 are

Zn, with the arithmetic operations þ, �, is an example of a ring; the sum (difference) and

product of integers in Zn are integers in Zn and both an additive and multiplicative

identity exist. For example,

. The additive identity element 0 satisfies xþ 0 ¼ 0þ x ¼ x (modulo n), and

. The multiplicative identity element 1 satisfies x � 1 ¼ 1 � x ¼ x (modulo n).

It is not always possible to-solve the equation ax ¼ b (modulo n) for x given a, b. For

example, if n ¼ 6, a solution exists for a ¼ 1, 5, and all b; for a ¼ 4, 5, a solution

exists only for b ¼ 0, 2, and 4. The formal solution x ¼ a21b (modulo n) requires a to

have a multiplicative inverse (modulo n); that is, an integer c ; a21 exists in Zn such

that 1 ¼ (a � c) (modulo n) ¼ (c � a) (modulo n). When n is a prime, every a = 0 has

a multiplicative inverse and Zn is a field.

If a, b [ Zþ, the greatest common divisor of a and b, denoted by d ¼ gcd{a, b}, is

the unique integer d satisfying

1. d divides both a and b and

2. If c divides both a and b, then c divides d.

Proposition 11.4: d ¼ gcd{a, b} is uniquely determined.

Proof: Let S ¼ {saþ tb : s, t [ Z, saþ tb . 0}. As aþ b . 0, S = ; and there-

fore it contains a minimal positive element, say d ¼ xaþ yb. If d does not divide a, then

aþ b (modulo 2)

a # b! 0 1

0 0 1

1 1 0

a � b (modulo 2)

a # b! 0 1

0 0 0

1 0 1

aþ b (modulo 3)

a # b! 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

a � b (modulo 3)

a # b! 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

aþ b (modulo 6)

a # b! 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

a � b (modulo 6)

a # b! 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1
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a ¼ qdþ r (0 , r , d ) by the Division Algorithm of arithmetic. But then

r ¼ a2 qd ¼ (12 qx)aþ (2qy)b . 0 is in S and smaller than d, a contradiction,

proving that d divides a; similarly, d divides b so that d is a common divisor of a and b.

a, b [ Zþ are relatively prime if 1 ¼ gcd{a, b}. According to the proof of

Proposition 11.4, if 1 ¼ gcd{a, b}, there exist integers x, y such that

1 ¼ axþ by

if x . 0, then y , 0 and

xa ¼ 1þ (�y� b)) xa ¼ 1(modulo b)) a�1 ¼ x(modulo b)

x , 0, then y . 0; if r is such that rbþ x . 0, then ra2 y . 0 and

(rbþ x)a ¼ 1þ (�yþ ra)b) (rbþ x)a ¼ 1(modulo b)) a�1 ¼ (rbþ x)(modulo b)

so that if 1 ¼ gcd{a, b} and 0 , a , b, the multiplicative inverse of a modulo b, denoted

by a21, exists and it satisfies 1 ¼ (a � a21 (modulo b) ¼ (a21
� a) (modulo b).

The computation of x and y is provided by Proposition 11.5.

Proposition 11.5 (Euclidean Algorithm): If a, b [ Zþ, the sequence r0,

r1, . . . , rs, rsþ1 defined by:

a, b [ Zþ; r0 ¼ a; r1 ¼ b

r0 ¼ c1r1þ r2 0 , r2 , r1 r2 ¼ r0 (modulo r1)

r1 ¼ c2r2þ r3 0 , r3 , r2 r3 ¼ r1 (modulo r2)

r2 ¼ c3r3þ r4 0 , r4 , r3 r4 ¼ r2 (modulo r3)

..

. ..
. ..

.

rs22 ¼ cs21rs21þ rs 0 , rs , rs21 rs ¼ rs22 (modulo rs21)

rs21 ¼ csrsþ rsþ1 0 , rsþ1 , rs rsþ1 ¼ rs21 (modulo rs)

satisfies

11.4a For some value of s,

rj
=0; if 0 � j � s

¼ 0; if j ¼ sþ 1

�
;

11.4b rs ¼ gcd{a, b};

11.4c 9x, y [ Z, rs ¼ xaþ yb.

Example 11.5
a ¼ 560, b ¼ 1547, ??? ¼ gcd{560, 1547}

1547 ¼ 2 � 560þ 427

427 ¼ 15472 (2 � 560)

560 ¼ 1 � 427þ 133

133 ¼ 5602 427 ¼ 21547þ (3 � 560)

427 ¼ 3 � 133þ 28

28 ¼ 4272 (3 � 133) ¼ (4 � 1547)2 (11 � 560)

133 ¼ 4 � 28þ 21

21 ¼ 1332 (4 � 28) ¼ (217 � 1547)þ (47 � 560)
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28 ¼ 1 � 21þ 7

7 ¼ 282 21 ¼ (21 � 1547)2 (58 � 560)

21 ¼ 3 � 7þ 0

Therefore

7 ¼ gcd{560; 1547} ¼ (21� 1547)� (58� 560); x ¼ �58; y ¼ 21

Example 11.6
a ¼ 654, b ¼ 1807, ??? ¼ gcd{645, 1807}

1807 ¼ 2 � 654þ 499

499 ¼ 18072 (2 � 654)

654 ¼ 1 � 499þ 155

155 ¼ 6542 499 ¼ 21807þ (3 � 654)

499 ¼ 3 � 155þ 34

34 ¼ 4992 (3 � 155) ¼ (4 � 1807) 2 (11 � 654)

155 ¼ 4 � 34þ 19

19 ¼ 1552 (4 � 34) ¼ (217 � 1807) þ (47 � 654)

34 ¼ 1 � 19þ 15

15 ¼ 342 19 ¼ (21 � 1807)2 (58 � 654)

19 ¼ 1 � 15þ 4

4 ¼ 192 15 ¼ (238 � 1807)þ (105 � 654)

15 ¼ 3 � 4þ 3

3 ¼ 152 (3 � 4) ¼ (135 � 1807)2 (373 � 654)

4 ¼ 1 � 3þ 1

1 ¼ 42 3 ¼ (2173 � 1807)þ (478 � 654)

3 ¼ 3 � 1þ 0

Therefore

1 ¼ gcd{560; 1547} ¼ (�173� 1807)þ (478� 654); x ¼ 478; y ¼ 173

477 ¼ 654�1 (modulo 1807), 1 ¼ (478� 654) (modulo 1807)

Example 11.7
a ¼ 123, b ¼ 277, ??? ¼ gcd{123, 277}

277 ¼ 2 � 123þ 31

31 ¼ 2772 (2 � 123)

123 ¼ 3 � 31þ 30

30 ¼ 1232 (3 � 31) ¼ (7 � 123)2 (3 � 277)

31 ¼ 1 � 30þ 1

1 ¼ 312 (1 � 30) ¼ (29 � 123)þ (4 � 277)

30 ¼ 30 � 1

Therefore,

1 ¼ gcd{277; 123} ¼ (�9� 123)þ (4� 277)

9 ¼ 123�1(modulo 277), 1 ¼ (9� 123)(modulo 277)
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The Euler totient function f(n) for the positive integer n is the number of positive

integers less than n that are relatively prime to n. The values of f(n) for n ¼ 2(1)13 are

listed in Table 11.2.

Proposition 11.6: If the prime factorization of n ¼ p1
n1 p2

n2, . . . , pk
nk, then

f(n) ¼
Qk

i¼1 p
n
i�1

i ( pi � 1).

Proof: See Problem 11.1.

11.3 A MODULAR ARITHMETIC KNAPSACK
PROBLEM

The first example of a public-key cryptosystem used a variant of the knapsack problem

that results when integer arithmetic is replaced by modular arithmetic.

(0,1)-Knapsack problem Modulo m K {a, b, m}

Given: a ¼ (a0; a1; . . . ; an�1) [ Z
þ
n ; b;m [ Zþ

Find: A solution x [ Z2;n of b
Pn�1

i¼0 aixi (modulo m)

The knapsack problem modulo m in NP-complete.

11.4 TRAP-DOOR KNAPSACKS

In their important paper. Merkle and Hellman [1978] published the first example of a

trap-door public-key cryptosystem. They define a transformation relating

. A knapsack problem K{s, t} with a knapsack vector s that is super-increasing and

. A knapsack problem K{a, b, m} modulo m with a seemingly general knapsack

vector a.

It was intended that the transformation K{s, t}! K{a, b, m} satisfy three properties:

1. K{a, b, m} and K{s, t} are equivalent, meaning they have a common solution;

2. It is computationally infeasible to find a solution to K{a, b, m};

3. It is easy to find a solution to K{s, t}.

We develop their ideas in this section.

Let SUPn[m] be the subset of SUPn that satisfies the size conditionXn�1
i¼0

si , m:

TABLE 11.2 The Euler Totient Function f(n) for n 5 2(1)13

n 2 3 4 5 6 7 8 9 10 11 12 13

f(n) 1 2 2 4 2 6 4 6 4 10 4 12
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Let Vm ¼ {v [ Zm : gcd{v;m} ¼ 1} denote the set of integers, referred to as knapsack

multipliers, which are relatively prime to the modulus m. Each v [ Vm has a multiplica-

tive inverse v21 [ Vm; that is, 1 ¼ vv21 (modulo m).

Note that the modulus m is not required to be a prime number.

Example 11.8
Table 11.3 lists the knapsack multipliers from m ¼ 14.

Example 11.9
Table 11.4 lists the knapsack multipliers for m ¼ 13. When v is relatively prime to m, the

transformation

Tv;m : z! vz (modulo m)

is a one-to-one mapping on Zm to Zm with inverse

Tv�1 ;m : z! v�1z ðmodulo mÞ:

Tv21, mmaps a super-increasing knapsack vector s into the knapsack vector a according to

the formula

a ¼ Tv�1;m( s) ¼ (Tv�1;m(s0); Tv�1;m(s1); . . . ; Tv�1;m(sn�1)):

Example 11.10
m ¼ 14, s ¼ (1, 3, 5), v ¼ 9 [ Vm, and v21 ¼ 11:

T11;14 : s ¼ (1; 3; 5)! a ¼ (11; 5; 13)

T9;14 : a ¼ (11; 5; 13)! s ¼ (1; 3; 5):

Proposition 11.7: If a ¼ Tv21,m(s) and b ¼ v21t (modulo m), the knapsack

problems

K{s, t} K{a, b, m}

Given: s ¼ (s0, s1, . . . , sn21) [ SUPn[m], t [ Zm Given: a ¼ (a0, a1, . . . , an21 [ Zn
þ, b, m [ Zm

Find: x [ Z2,n satisfying t ¼
Pn�1

i¼0 sixi Find: x [ Z2,n satisfying b ¼
Pn�1

i¼0 sixi (modulo m)

TABLE 11.4 The Knapsack Multipliers for m 5 13

V13 ¼ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

v 1 2 3 4 5 6 7 8 9 10 11 12

v21 1 7 9 10 8 11 2 5 3 4 6 12

TABLE 11.3 The Knapsack Multipliers for m 5 14

V14 ¼ {1, 3, 5, 9, 11, 13}

v 1 3 5 9 11 13

v21 1 5 3 11 9 13
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are equivalent, in the sense that they share a common solution, if a solution to either

problem exists.

Proof: Suppose K{a, b, m} has a solution, x [ Z2,n

b ¼
Xn�1
i¼0

aixi (modulo m):

If t ¼ vb (modulo m), then vb ¼ tþ Jm. As v21si (modulo m) ¼ ai() vai (modulo

m) ¼ si, multiplying by v gives

t þ Jm ¼ vb ¼
Xn�1
i¼0

vaixi; 0 � t , m

¼
Xn�1
i¼0

(sixi þ kim) ¼ Kmþ
Xn�1
i¼0

sixi:

The size condition
Pn�1

i¼0 si , m implies J ¼ K and

t ¼
Xn�1
i¼0

sixi;

which shows that x is a solution to K{s, t}.

Conversely, suppose the knapsack problem K{s, t} has a solution x [ Z2
n

t ¼
Xn�1
i¼0

sixi:

If b ¼ v21t (modulo m), then v21t ¼ bþHm. As vai (modulo m) ¼ ai, v21si (modulo

m) ¼ ai, multiplying by v21 gives

v�1t ¼ bþ Hm ¼
Xn�1
i¼0

(v�1si)xi

¼
Xn�1
i¼0

(ai þ jim)xi ¼ Lmþ
Xn�1
i¼0

aixi;

from which it follows that x [ Z2
n is a solution to K{a, b, m}

b ¼
Xn�1
i¼0

aixi (modulo m) B

To determine if the transformation Tv21,m(s) has really replaced an easy problem by a hard

problem, Merkle and Hellman studied the properties of the transformation. They began

with Proposition 11.8.

Proposition 11.8: If s [ SUPn[m], then

2 j(s0 þ s1 þ � � � þ sn�j�1) , m for 0 � j , n

and the weaker bound

2 jsn�j�1 , m for 0 � j , n:
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Proof: The proof is by induction on j; when j ¼ 0, the inequality above is the size

condition. If we suppose

2 j(s0 þ s1 þ � � � þ sn�j�1) , m,

the super-increasing property

s0 þ s1 þ � � � þ sn�j�2 , sn�j�1

gives

2 jþ1(s0 þ s1 þ � � � þ sn�j�2) ¼ 2 j½(s0 þ s1 þ � � � þ sn�j�2)þ (s0 þ s1 þ � � � þ sn�j�2)


, 2 j(s0 þ s1 þ � � � þ sn�j�2 þ sn�j�1)

, m,

completing the induction. B

How small can the knapsack lengths {ai} be if a ¼ Tv21,m(s) when v [ Vm? To

answer this, we use a model problem in which the multiplier v, or equivalently its

inverse v21, is chosen by a chance experiment.

Fix s ¼ (s0, s1, . . . , sn21) [ SUPn[m]. Choose v as the result of tossing a d-sided

fair coin where d ¼ gcd{v, m}; that is

Pr {V�1 ¼ v�1} ¼
d

m
, v�1 [ Vm:

Problems 11.2 to 11.4 ask you to show that

m

d

l m
¼ jv�1s :v�1 [ Vmj:

Fix a value 0 , a , 1; it follows that the cardinality of the set

Ci ; {v�1 [ Vm : ai ¼ (v�1 � si)(modulo m) � am}

is

jCij ¼
am

d

l m
:

If m is very large, then

jfv�1 : Tv�1,m(si) , amg 	 a
m

d
,

so that

Pr{v�1 : Tv�1,m(si) , am} 	 a

From this computation, we conclude that if

. v is chosen from vm according to the uniform distribution

then

. ai is uniformly distributed over Zm.
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Applying DeMorgan’s Law>i Ei ¼ <i Ei, with Ei ¼ {v21 : Tv21,m (si)� am}, gives

\n�1
i¼0

{v�1 : Tv�1,m(si) � am}

������
������ ¼ [n�1

i¼0

{v�1 : Tv�1,m(si) , am}

�����
�����

�
Xn�1
i¼0

{v�1 :Tv�1,m(si) , am}
�� �� 	 na

m

d
:

The choice a ¼
1

n2
leads to Proposition 11.9.

Proposition 11.9:

Pr{Tv�1,m(si) �
m

n2
for 0 � i , n} ¼ 1� O(n�1).

We conclude that for large n and m, it is likely that all of the knapsack lengths of

a ¼ Tv21,m(s) will be larger than
m

n2
.

Any data stored on or transmitted between computer systems is represented by

a (0,1)-sequence. As the Merkle–Hellman knapsack encipherment system enciphers a

(0,1)-vector into an integer, it is necessary to specify how the ciphertext is to be

encoded into a (0,1)-sequence. If the plaintext x ¼ (x0, x1, . . . , xn21) is enciphered to

b ¼
Xn�1
i¼0

aixi (modulo m);

a ciphertext b is coded into fixed length (0,1)-vectors, and the length m must be

m ¼ log2

Xn�1
i¼0

ai

( )
½bits
:

Clearly m . n, so that encipherment produces an expansion of the text by a factor

R ; R(a) ¼
n

log2
Pn�1

i¼0 ai
, 1,

referred to as the information rate of the encipherment.

Merkle and Hellman suggested n ¼ 100 and

. Selecting the {si} such that log2si 	 100 þ i [bits];

. log2 m 	 200 [bits].

In this case, the knapsack lengths of a ¼ Tv21,m(s) are all likely to require approximately

100þ n� 2 log2 n 	 100þ n ½bits
;

that is

1 	
m

ai
:

Merkle and Hellman offered the knapsack system as the first example of a public-key cryp-

tographic system with a trap-door:

. The private key consisting of the modulusm, the multiplier v [ Vm and a knapsack

vector s [ SUPn [m].

. The public key consisting of the knapsack vector a ¼ Tv21,m(s).
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The ciphertext corresponding to plaintext x for the user with public key a is the sum B ¼Pn�1
i¼0 aixi causing an expansion of data under encipherment; n bits of plaintext x are

enciphered into approximately log2
Pn�1

i¼0 ai bits of ciphertext.

Implicit is their assumption that it would be difficult to solve the knapsack problem

K{a, b, m}.

11.5 KNAPSACK ENCIPHERMENT AND
DECIPHERMENT OF ASCII-PLAINTEXT

Knapsack encipherment derives a m-bit ciphertext integer B(i) from each plaintext

(0,1}-vector x ¼ (x0
(i), x1

(i), . . . , xn21
(i) ). Then Internet standard [Linn, 1989] specifies the

translation from ASCII text for Merkle–Hellman encipherment. I use a similar coding

translation scheme illustrated in Example 11.11, which follows.

11.5.1 Knapsack Encipherment of ASCII-Plaintext

Plaintext: x(0) x(1) � � � x(N21) (ASCII characters)

Knapsack Public Parameter: a ¼ (a0, a1, . . . , an21)

Ciphertext: y ¼ ( y(0), y(1), . . . , y(M21))

y(i) ¼ ( y0
(i), y1

(i), . . . , ym
(i)) (0 � i � M ) (0, 1)-vectors.

E1. Each of the N ASCII plaintext characters x(i) in first coded into the 7-bit binary

representation of its ordinal position in the ASCII character set

x(i) !
�
x(i)0 , x(i)1 , . . . , x

(i)
6

�
;

E2. The vectors {x(i)} are concatenated to form the binary plaintext

x(0)0 , x(1)0 , . . . , x(N�1)! z ¼ (z0, z1, . . . , z7N�1);

E3. The binary plaintext z is divided into equal length blocks of n bits, padding z on the

right by 0’s if necessary. By this process M ¼ 7N
n

� �
blocks of n bits are obtained

z ¼ (z0, z1, . . . , zMn�1)! (z(0), z(1), . . . , z(M�1));

E4. For each bit-vector (z(i)), the integer B(i) ¼
Pn�1

j¼0 ajz
(i)
j is computed;

E5. If m is the smallest integer satisfying m .
Pn�1

j¼0 aj, the ciphertext is the concatena-

tion of the M m-bit vectors

y ¼ y(0), y(1), . . . , y(M�1)
� �

where B(i) ¼
Xn�1
j¼0

ajy
(i)
j

Example 11.11

Plaintext: Demonstration of knapsack encipherment.

Knapsack Public Parameter: a ¼ (1318, 3954, 3282, 2597, 2428, 898, 2455, 284),

n ¼ 8, m ¼ 15.

My rendition of Merkle–Hellman knapsack encipherment, shown in Table 11.5, processes

one ASCII character of plaintext at a time to obtain the ith block of n bits of plaintext

z(i) ; (zi;0, zi;1, . . . , zi;n�1)
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which is thereupon enciphered by the Merkle–Hellman transformation

z(i)! B(i) ;
Xn�1
k¼0

akzi, k

and finally encoded into a m ¼ 15-bit (0, 1)-vector.

B(i) ! y(i):

TABLE 11.5 Merkle–Hellman Knapsack Encipherment in Example 11.11

Plaintext Ciphertext

x(i) ord(x(i)) x(i) z(i) B(i) y(i)

D 68 1000100

e 101 1100101 10001001 4030 000111110111110

m 109 1101101 10010111 7552 001110110000000

o 111 1101111 01101110 13017 011001011011001

n 110 1101110 11111101 14761 011100110101001

s 115 1110011 11011100 11195 010101110111011

t 116 1110100 11111010 16034 011111010100010

r 114 1110010 01110010 12288 011000000000000

a 97 1100001

t 116 1110100 11000011 8011 001111101001011

i 105 1101001 11010011 10608 010100101110000

o 111 1101111 01001110 9735 010011000000111

n 110 1101110 11111101 14761 011100110101001

32 0100000 11001000 7700 001111000010100

o 111 1101111 00110111 9516 010010100101100

f 102 1100110 11100110 11907 010111010000011

32 0100000

k 107 1101011 01000001 4238 001000010001110

n 110 1101110 10101111 10665 010100110101001

a 97 1100001 01110110 13186 011001110000010

p 112 1110000 00011110 8378 010000010111010

s 115 1110011 00011100 5923 001011100100011

a 97 1100001 11110000 11151 010101110001111

c 99 1100011 11100011 11293 010110000011101

k 107 1101011

32 0100000 11010110 11222 010101111010110

e 101 1100101 10000011 4057 000111111011001

n 110 1101110 00101110 9063 010001101100111

c 99 1100011 11101100 11880 010111001101000

i 105 1101001 01111010 14716 011100101111100

p 112 1110000 01111000 12261 010111111100101

h 104 1101000 01101000 9664 010010111000000

e 101 1100101

r 114 1110010 11001011 10439 010100011000111

m 109 1101101 11001011 10439 010100011000111

e 101 1100101 01101110 13017 011001011011001

n 110 1101110 01011101 10161 010011110110001

t 116 1110100 11011101 11479 010110011010111

. 46 0101110 00010111 6234 001100001011010

00000000 0 000000000000000
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11.5.2 Decipherment of Knapsack-Enciphered
ASCII-Plaintext

Ciphertext: y ¼ ( y(0), y(1), . . . , y(M21))

y(i) ¼ ( y0
(i), y1

(i), . . . , ym
(i)) (0 � i , n) (0, 1)-vectors.

Knapsack Private Parameters: m, v, s ¼ (s0, s1, . . . , sn21)

Plaintext: x(0)x(1). . . x(N21) (ASCII characters).

TABLE 11.6 Merkle–Hellman Knapsack Encipherment in Example 11.11

Ciphertext Plaintext

y(i) B(i) Bm
(i) w(i) z(i) x(i) ord(x(i)) x(i)

000111110111110 4030 2107 10001001 10001001 1000100 68 D

001110110000000 7552 3533 10010111 110010111 1100101 101 e

011001011011001 13017 1621 01101110 1101101110 1101101 109 m

011100110101001 14761 2647 11111101 11011111101 1101111 111 o

010101110111011 11195 631 11011100 110111011100 1101110 110 n

011111010100010 16034 1144 11111010 1110011111010 1110011 115 s

011000000000000 12288 1042 01110010 11101001110010 1110100 116 t

1110010 114 r

001111101001011 8011 3016 11000011 11000011 1100001 97 a

010100101110000 10608 3038 11010011 111010011 1110100 116 t

010011000000111 9735 1610 01001110 1101001110 1101001 105 i

011100110101001 14761 2647 11111101 11011111101 1101111 111 o

001111000010100 7700 108 11001000 110111001000 1101110 110 n

010010100101100 9516 3542 00110111 0100000110111 0100000 32

010111010000011 11907 1523 11100110 11011111100110 1101111 111 o

1100110 102 f

001000010001110 4238 2011 01000001 01000001 0100000 32

010100110101001 10665 3622 10101111 110101111 1101011 107 k

011001110000010 13186 1543 01110110 1101110110 1101110 110 n

010000010111010 8378 1626 00011110 11000011110 1100001 97 a

001011100100011 5923 623 00011100 111000011100 1110000 112 p

010101110001111 11151 41 11110000 1110011110000 1110011 115 s

010110000011101 11293 3027 11100011 11000011100011 1100001 97 a

1100011 99 c

010101111010110 11222 1534 11010110 11010110 1101011 107 k

000111111011001 4057 3010 10000011 010000011 0100000 32

010001101100111 9063 1615 00101110 1100101110 1100101 101 e

010111001101000 11880 620 11101100 11011101100 1101110 110 n

011100101111100 14716 1142 01111010 110001111010 1100011 99 c

010111111100101 12261 139 01111000 1101001111000 1101001 105 i

010010111000000 9664 117 01101000 11100001101000 1110000 112 p

1101000 104 h

010100011000111 10439 3116 11001011 11001011 1100101 101 e

010100011000111 10139 3116 11001011 111001011 1110010 114 r

011001011011001 13017 1621 01101110 1101101110 1101101 109 m

010011110110001 10161 2634 01011101 11001011101 1100101 101 e

010110011010111 11479 2636 11011101 110111011101 1101110 110 n

001100001011010 6234 3531 00010111 1110100010111 1110100 116 t

000000000000000 0 0 00000000 01011100000000 0101110 46 .
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D1. From each of the M ciphertext vectors y(i) ¼ ( y0
(i), y1

(i), . . . , ym
(i)) of length m bits,

calculate the integers

B(i) ¼
Xm�1
j¼0

ajy
(i)
j and B(i)

m ¼ (vB(i)) (modulo m);

D2. Find the n-vector w(i) solution of the easy knapsack problem for each of theM knap-

sack values Bm
(i) with 0 � i , M

B(i)
m ¼

Xn�1
j¼0

sjw
(i)
j ;

D3. Adjoin the solution on the right w(i) to the vector z(i); and

D4. Determine the ASCII plaintext character from the leftmost 7 bits of z(i).

My rendition of Merkle–Hellman decipherment shown in Table 11.6 serially processes

the ith block of m bits of ciphertext y(i) ¼ ( yi,0, yi,1, . . . , yi,m21), evaluates B
(i), Bm

(i), and

then solves the easy superincreasing knapsack problem B(i)
m ¼

Pn�1
j¼0 sjw

(i)
j . The n bits of

the solution vector are accumulated as the vector z(i). Blocks of 7 bits are removed

(from the left) to obtain the plaintext.

Example 11.11 (continued)

Ciphertext: 0 0 0 1 1 1 1 1 0 0 . . . 0 0 0

Knapsack Private Parameters: m ¼ 3967, v2l ¼ 649, v ¼ 915, s ¼ (2, 6,11, 22,

100, 501, 1003, 2005)

11.6 CRYPTANALYSIS OF THE MERKLE–HELLMAN
KNAPSACK SYSTEM (MODULAR MAPPING)
[SHAMIR, 1982]

UCSB has been the site of a meeting dealing with current topics in cryptography starting

with CRYPTO ’81 in 1981. Adi Shamir electrified the attendees at CRYFTO ’82 by

presenting an analysis of the Merkle–Hellman cryptosystem. A program running on an

Apple during his lecture illustrated the solution technique that we now describe.

Themapping Tv21,m: s ¼ (s0, s1, . . . , sn21)! a ¼ (a0, a1, . . . , an21) from the super-

increasing to the public knapsack vector is nonlinear and this was the basis for believing that

the Merkle–Hellman scheme provided a secure public-key encipherment scheme.

For a [ Zm define the modular mapping (function) fa,m(w) for 0 � a, w , m

(Fig. 11.1) by

fa,m(w) : w! fa;m(w) ¼ aw (modulo m),

. The continuous representation of the discrete-valued function fa,m(w) consists of

straight-line segments with slope
1

a
;

. fa,m (w) has minima nearly equal to 0 at the points i
m

a
with i ¼ 0, 1, . . . , a2 1; the

distance between consecutive minima is larger than 1.

Write

sj ¼ faj,m
(v), ajv ¼ kjmþ sj,
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where kj is an integer ,m. According to Proposition 11.8, sj � m/(2n2( j þ 1)), which

implies that for j� 4 and large n, the rational number
sj

m
is very small.

Rewriting the relationship ajv ¼ kkmþ sj,

v ¼
kjm

aj
þ

sj

aj
[ I j;nðkjÞ, I j, n(kj) ¼

m

aj
kj, kj þ

1

2n�( jþ1)

� 

(11:1)

As
m

aj
	 1, the integer v is an element in an interval of relatively small

length 1/(2n2( j þ 1)) whose length endpoint mkj/aj is one of the minima of fa,m (w).

However kj is unknown and hence Equation (11.1) is replaced by the following

weaker assertion:

v [
[m�1
i¼0

I j;n(i), I j;n(i) ¼
m

aj
i, iþ

1

2n�( jþ1)

� 

: (11:2)

But the membership statement for v in Equation (11.2) holds for every aj with

0 , j , n, so that

v [
[m�1
i¼0

I1;n(i)>
[m�1
i¼0

I2;n(i) � � �>
[m�1
i¼0

Ik;n(i)

¼
[

i1, i2, ..., ik

I1;n(i1)> I2;n(i2)> Ik;n(ik) (11:3)

for every integer k with 1 � k � n.

For any fixed j, it is quite likely that there are many point y that are closer than

O(22(n2( jþ1))) to a minimum of faj,m
(w). However, the number of poins y that are close

to a minima of all the k functions {faj,m
(w) : 0 � j , k} decreases as k increases. Adi

Shamir argued that the likelihood of having a point y simultaneously close to say k ¼ 4

minima is very small unless y ¼ v.
Unfortunatelym is unknown; to rectify this, replace the integer-valued functionfa,m (w)

with w [ Zm by the sawtooth modular function (Fig. 11.2).

Fa j
: w �! ajw (modulo 1), 0 � w , 1,

which scales the interval [0, m) to [0, 1).

. The graph of Fa (w) consists of straight-line segments with slope
1

a
.

. Fa (w) has minima exactly equal to 0 at the points
i

a
with i ¼ 0, 1, . . . , a2 1; the

distance between consecutive minima is larger than 1.

Figure 11.1 The modular mapping function.
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The statement

sj ¼ fa j ,m
(v)

translates to

sj ¼ fa j
(v),

which may be written as

w ¼
kj

aj
þ

sj

aj
[ I j, n(kj), I j, n(kj) ¼

1

aj
kj, kj þ

1

2n�( jþ1)

� 

,

sj ¼ faj
(w)

ð11:4Þ

where kj is an integer ,aj
The argument just given for the functions {faj,m

} carries over and we conclude that the

unknown rational w ;
v

m
will be close to a minimum of each of the functions Faj

(w). To

calculate the set containing possible values of the rational number w ;
v

m
, it is necessary

to calculate the intersection of pairs of intervals Ij1,n (kj1) > Ij1,n (kj1). The four possible inter-

sections of two intervals A, B and their intersection C ¼ A > B are shown in Figure 11.3.

Example 11.12
Tables 11.7 and 11.8 list the intervals determined by Equation (11.4) for k ¼ 2, 3 and

Knapsack Public Parameters: n ¼ 9, s ¼ (2, 13, 30, 50, 121, 254, 480, 1000, 2000)

Knapsack Private Parameters: m ¼ 5879, v21 ¼ 4610, v ¼ 2233, a ¼ (3341,

1140, 3083, 1219, 5184, 1019, 2296, 864, 1728)

In the general case with m � 100, the intervals are determined by a merge-sort.

Having determined a set of possible intervals, say {Ik
(s) ¼ (es, fs)}, it is necessary to

find the rational numbers w ;
V

M
[ =ðsÞk that satisfy the conditions

Figure 11.2 The sawtooth mapping function.

Figure 11.3 The possible intersections of intervals A and B.

360 CHAPTER 11 THE KNAPSACK CRYPTOSYSTEM



.
V

M
[ =ðsÞk ¼ ðes; fs
 for some s;

. s ¼ (s0, s1, . . . , sn21) is superincreasing with si ¼ aiV (modulo M) for 0 � i , n,

and

. s ¼ (s0, s1, . . . , sn21) satisfies the size condition
Pn�1

I¼0 si , M.

As ai , m, the value of M is certainly larger than Max A ¼ max
i

ai. For some unknown

multiplier J . 1 and M [ [Max_A, J Max_A] and interval Ik
(s), each integer V in

the interval M � (es, lR] is tested as a possible value for V. We accept a pair (V, M )

provided there are affirmative answers to the question

. Is the vector (Va0, Va1, . . . , Van21) (modulo M ) superincreasing?

. Is the size condition M,
Pn�1

i¼0 Vai ðmodulo mÞ satisfied?

. Does V have a multiplicative inverse modulo M?

The true pair (v, m) and corresponding rational v/m will be found along with other

rational numbers V/M. Knapsack encipherment in general has several equivalent

private keys (m, V, s) corresponding to a public key a; that is, different values that

yield the same public key.

Example 11.12 (continued)
Table 11.9 lists the equivalent keys for where Max_A ¼ 5184 and J ¼ 2. An � indicates

that V does not have a multiplicative inverse.

TABLE 11.7 Two-Way Intersections in Example 11.12

k ¼ 2

[0.0254385964912281,0.0254426537713260] [0.0508829691709069,0.0508840460526316]

[0.0885964912280702,0.0885973978599222] [0.1140350877192982,0.1140388824453756]

[0.1394736842105263,0.1394803670308291] [0.1771929824561404,0.1771936265339719]

[0.2026315789473684,0.2026351111194253] [0.2280701754385965,0.2280765957048788]

[0.2657894736842105,0.2657898552080215] [0.2912280701754386,0.2912313397934750]

[0.3166666666666667,0.3166728243789285] [0.3543859649122807,0.3543860838820712]

[0.3798245614035088,0.3798275684675247] [0.4052631578947368,0.4052690530529781]

[0.4684210526315789,0.4684237971415744] [0.4938596491228070,0.4938652817270278]

[0.5570175438596491,0.5570200258156241] [0.5824561403508772,0.5824615104010775]

[0.6456140350877193,0.6456162544896737] [0.6710526315789474,0.6710577390751272]

[0.6964980544747082,0.6964980811403509] [0.7342105263157895,0.7342124831637234]

[0.7596491228070175,0.7596539677491769] [0.7850942831487579,0.7850945723684210]

[0.8228070175438597,0.8228087118377731] [0.8482456140350877,0.8482501964232266]

[0.8736905118228075,0.8736910635964912] [0.9114035087719298,0.9114049405118228]

[0.9368421052631579,0.9368464250972763] [0.9622867404968572,0.9622875548245614]

TABLE 11.8 Three-Way Intersections in Example 11.12

k ¼ 3

[0.1394745377878690,0.1394796059033409]

[0.3798248459292897,0.3798275684675247]

[0.7596496918585793,0.7596539677491769]
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If the larger intervalM [ [5184, 51840] is searched, 192 equivalent private keys are

found.

The merge-sort I described With n ¼ 100, k ¼ 4, and m 	 2200 requires an

examination of 2800 cases and is computationally intractable. There is another formulation

whose solution is computationally feasible.

Integer Programming Problem A

Find: integers c0, c1, c2, c3
Such That: a rational x exists satisfying 0 � x ¼

cj

aj
, 2�(nþ(j�1))

Integer Programming Problem B

Find: integer c0, c1, c2, c3
Such That:

0 �
c0

a0
�

c1

a1
, 2�(n�2), 1 � c1 , a1

0 �
c0

a0
�

c2

a2
, 2�(n�3), 1 � c2 , a2

0 �
c0

a0
�

c3

a3
, 2�(n�4), 1 � c3 , a3

x ¼
v

m
is a solution to this integer programming problem. A polynomial time algorithm

appears in a paper by Lenstra et al. [1982a].

TABLE 11.9 Solution Space in Example 11.12

Searching for m [ [Max_A, JMax_A], J ¼ 2

I3
(s) M V V21 V

M
s

[0.37982484592929,

0.37982756846752)

5879 2233 4610 0.37982650110563 2 13 30 50 121 254 480 1000 2000

[0.37982484592929,

0.37982756846752)

7148 2715 5879 0.37982652490207 3 16 37 61 148 309 584 1216 2432

[0.37982484592929,

0.37982756846752)

7951 3020 3341 0.37982643692617 1 17 39 67 161 343 648 1352 2704

[0.37982484592929,

0.37982756846752)

8417 3197 7148 0.37982654152311 4 19 44 72 175 364 688 1432 2864

[0.37982484592929,

0.37982756846752)

9220 3502 � 0.37982646420824 2 20 46 78 188 398 752 1568 3136

[0.37982484592929,

0.37982756846752)

9686 3679 8417 0.37982655378897 5 22 51 83 202 419 792 1648 3296

[0.37982484592929,

0.37982756846752)

10489 3984 4610 0.37982648488893 3 23 53 89 215 453 856 1784 3568

[0.37982484592929,

0.37982756846752)

10955 4161 9686 0.37982656321314 6 25 58 94 229 474 896 1864 3728

[0.37982484592929,

0.37982756846752)

11292 4289 3341 0.37982642578817 1 24 55 95 228 487 920 1920 3840

[0.37982484592929,

0.37982756846752)

11758 4466 � 0.37982650110563 4 26 60 100 242 508 960 2000 4000
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As the rational v/m is contained in the interval
c0

a0
,
c0

a0
þ 2�nþ1

� �
, by choosing

1 . 0 sufficiently small, it is possible to guarantee that any rational

p

q
[ = ¼

c0

a0
,
c0

a0
þ 2�nþ1 þ e

� �
will satisfy the size condition

Xn�1
i¼0

pai (modulo q) , q:

However, the rational p/q may not produce superincreasing lengths under the

transformation

ai! pai (modulo q), 0 � i , n:

As v/m [ I, there are rationals in I that satisfy both the size condition and produce

superincreasing knapsack lengths. To find such a rational solution, note that the functions

{Faj : 0 � j , n} are free of discontinuities on the interval I. On I these n straight-line

segments can have at most kþO(n2) points of intersection. The k points of intersection

partition I into kþ 1 subintervals

=0, =1, . . . , =k

such that on each subinterval the line segments are linearly ordered. On Ij we write

ap j(0) . ap j(1) . � � �. ap j(n�1)

to indicate that the line segment of FapjðiÞ is above line segment of Fapjðiþ1Þ for

0 � i , n2 l.

If the system of linear inequalities

xap j(i) � cp j(i) .
Xi�1
k¼0

(xapj(k) � cpj(k)), 0 � i , n

has a rational solution x ¼ p/q on Ij, then

papj(i) � qcpj(i) .
Xi�1
k¼0

( papj(k) � qcpj(k)), 0 � i , n,

so that

papj(i) (modulo q) .
Xi�1
k¼0

papj(k)(modulo q), 0 � i , n,

which means that the transformed knapsack lengths

Tp,q : ai! pai (modulo q)

are superincreasing. To verify if the system

xapj(i) � cpj(i) .
Xi�1
k¼0

(xapj(k) � cpj(k)), 0 � i , n
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has a solution, we need only look at the function

x apj(i) �
Xi�1
k¼0

apk(k)

" #
� cpj(i) �

Xi�1
k¼0

cpk(k)

" #
at the endpoints of Ij.

11.7 DIOPHANTINE APPROXIMATION

Diophantus was a Greek geometer who developed the theory of equations with integer

solutions, a subject now referred to as diophantine equations.1 Diophantus determined

all the integer Pythagorean triples (x, y, z), solutions of x2þ y2 ¼ z2. He proved that if

x and y are relatively prime and x 2 y is positive and odd, then (x, y, z) ¼ (x22 y2,

2xy, x2þ y2) is a Pythagorean triple x2þ y2 ¼ z2, and conversely all primitive

Pythagorean triples arise in this manner.

A standard reference on diophantine approximation is Cassels [1957].

Diophantine approximation studies the accuracy with which a real number x can be

approximated by a rational number p/q. The accuracy of the approximation is measured

by kx2 p/qk, where

xk k ¼ min½{x}, 1� {x}
, {x} ¼ x� xb c:

It should be obvious that an approximation by rational numbers p/q of a real number, say

p ¼ 3.1415927. . . , is improved by increasing q. A basic result is

Proposition 11.10: [Cassels, 1957]:

11.10a Given x and Q . 1, there exists an integer q with 0 , q , Q such that

kqxk � Q21.

11.10b There are infinitely many integers q such that kqxk , q21.

11.10c For every e . 0 and real number x there are only finitely many integers q such

that kqxk , q212e.

11.10d If kqxk , 1, there exists an integer p such that kqxk ¼ jqx2 pj , 1. Equiva-

lently, jz2 p/qj , 1, which asserts that p is the best choice for the numerator

for the rational number p/q for fixed denominator q.

A rational number p/q is a best rational approximation to x if kq�xk.kqxk for q�, q.

The following algorithm computes the sequence of best rational approximations

to x.

1Although it is known that Diophantus lived around 250 A.D., much of his life is a mystery. The following

epigram gives his age at death:

Diophantus’ boyhood lasted 1/6th of his life span; his beard grew an additional 1/12th of his life span;

after still a further 1/7th of his life span, he married. His son was born 5 years later. The son lived to half

his father’s age. Diophantus died 4 years after his son died.

What what his age at death?
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11.7.1 Continued Fraction Algorithm

If x is a positive real number, define

1. x ¼ x0; z0 ¼ bx0c where b. . .c is the floor or integer part of � � � and
2. while zn = bxnc do

xn�1 ¼
1

xn þ zn
; znþ1 ¼ xnþ1

� �
.

x ¼ z0 þ
1

x1

x ¼ z0 þ
1

z1 þ
1

x2

x ¼ z0 þ
1

z1 þ
1

z2 þ
1

x3

..

.

x ¼ z0 þ
1

z1 þ
1

z2 þ � � � þ
1

zn�1 þ
1

xn
:

Stopping the continued fraction recursion after the nth step yields the nth convergent

{x0: z0, z1, . . . , zn} ¼ z0 þ
1

z1 þ
1

z2 þ � � � þ
1

zn

¼
pn

qn
:

Example 11.13
If p ’ 3.141592653588, the continued fraction recursion produccs the convergents

p ’ 3:0 ¼
3

1

p ’ 3þ
1

7
¼ 3:142857142857 . . . ¼

22

7

p ’ 3þ
1

7þ
1

15

¼ 3:141509433962 . . . ¼
333

106

p ’ 3þ
1

7þ
1

15þ
1

1

¼ 3:141592920354 . . . ¼
355

113
:

Table 11.10 lists the convergents and their errors

Error ¼ x� {x : z0, z1, . . . , xn}:

Note that the convergents successively under and over approximate p, a very desirable

property of a numerical algorithm that permits error estimates.
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Simultaneous diophantine approximation is concerned with the accuracy by which a

vector of real numbers x ¼ (x1, x2, . . . , xn) can be approximated by a vector of rational

numbers with the same denominator q ¼
q1

q
,
q2

q
, . . . ,

qn

q

� �
.

The degree of approximation is measured by

{{qx}} ¼ max
1�i�n

lim
q1, q2,... , qn

jqxi � qij:

The following generalization of Proposition 11.10 describes the degree of simultaneous

approximation of a real vector by a vector of rational numbers.

Proposition 11.11:

11.11a For every n-dimensional vector u ¼ (u1, u2, . . . , un), there are infinitely positive

integers p such that {{pu}}, p�
1
n.

11.11b For any fixed positive number e, the set of n-dimensional vectors u ¼
(u1, u2, . . . , un) for which {{pu}} , p�

1
n
� e has n-dimensional “volume”.

(Note, this result requires some technical results from measure theory.)

To show the relation of simultaneous diophantine approximation to the analysis of

the Merkle–Hellman knapsack cryptosystem, start with

si ¼ wai (modulo m)! si ¼ wai � jim

w

m
¼

ji

ai
�

si

aim
:

By subtracting the equation with i ¼ 1 from the ith equation and using the estimate

si

aim
¼ O(n22�nþim�1),

we obtain

ji

ai
�

ji

a1
¼ O(n22�nþiþ1m�1):

TABLE 11.10 Continued Fraction Expansion of p

n zn {z : z0,z1, . . . , xn} Error

0 3 3.0000000000000 0.141592653588

1 7 3.142857142857 20.001264489269

2 15 3.141509433962 0.000083219626

3 1 3.141592920354 20.000000266766

4 292 3.141592653012 0.000000000576

5 1 3.141592653921 20.000000000334

6 1 3.141592653467 0.000000000120

7 1 3.141592653619 20.000000000031

8 2 3.141592653581 0.000000000007

9 1 3.141592653591 20.000000000004

10 1 3.141592653587 0.000000000001

11 2 3.141592653588 20.000000000000
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As the multiplier v is chosen randomly, we expect ai 	 m and ji 	 m so that

ji

j1
�

ai

a1
¼ O(n22�nþiþ1m�1):

As O (n222n þ i þ 1m21) is very small for i � 5 and n large, the (known) d-dimensional

vector

a2

a1
,
a3

a1
, . . . ,

adþ1

a1

� �
is a simultaneous approximation to the (unknown) d-dimensional vector

j2

j1
,

j3

j1
, . . . ,

jdþ1

j1

� �
:

How good is the approximation? If

R ¼
n

log2
Pn�1
i¼0

ai

,

simple algebra gives

m�1 	 2�n
R�1

, a�1 	 2�n
R�1

, n2 	 a
�R

log2 n
n

i , 2 jþ1 	 a
�R

jþ1
n

i ,

so that

a2

a1
,
a3

a1
, . . . ,

adþ1

a1

� �
�

j2

j1
,

j3

j1
, . . . ,

jdþ1

j1

� ����� ���� ¼ O a
�1�R 1�

dþlog2 n
log2 n

h i
1

0@ 1A:
The approximation by

a ¼
a2

a1
,
a3

a1
, . . . ,

adþ1

a1

� �
to the vector

j ¼
j2

j1
,

j3

j1
, . . . ,

jdþ1

j1

� �
is called

1. d-quality when

a1 j
�� �� ¼ max

1�i�n

 
min
ai[Z

a1
ji

j
� ai

���� ����
!
, a�d1 ;

2. An unusually good simultaneous diophantine approximation (UGSDA) if it is a

d-quality approximation with d ,
1

d
.

The term unusually good is used because such approximations are rare.
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Proposition 11.12:
For n � 2, the set

S
�(b) ¼

(
{b ¼

b1

b
,
b2

b
, . . . ,

bn

b

� �
: 0 � bi , b, 1 ¼ gcd{b, bi}

)

contains at least 1
2
bn vectors. Of these, at most O(bn(12d) þ 1) are UGSDA.

We conclude that for fixed d . 1
n
, the fraction of vectors b with a d-quality approxi-

mation is infinitesimal. There exists a UGSDA approximation to

j2

j1
,

j3

j1
, . . . ,

jn

j1

� �
if

R 1�
d þ log2 n

n

� �
.

1

n
:

Shamir’s startling announcement at CRYPTO ’82 stimulated cryptologic research.

Almost immediately, other methods of analysis of the knapsack cryptosystem (and variants)

were announced – [Largias, 1982, 1984; Lagarias and Odlyzko, 1983; Brickell, 1983].

11.8 SHORT VECTORS IN A LATTICE

A lattice as depicted in Figure 11.4 is “a framework or structure of crossed wood or metal

strips” — definition from standard dictionary “The Merriam-Webster Dictionary (Pocket

Book) NY, 1974. A lattice is determined by a sequence of vectors b0, bi, . . . , bn21 (in real

n-dimensional Rn, which are linearly independent over Zn); that is

0¼ u0b0þ u1b1þ �� �þ un�1bn�1 (u0, u1, . . . , un�1)[Z
n ) (u0, b1, . . . , bn�1) ¼ 0:

The lattice L consists of all points u [ Rn, which may be written as a linear combination

of the basis vectors {bi} with integer coefficients.

u¼ u1b1þ u2b2þ �� �þ unbn:

The vectors {bi} are the basis for the lattice L.

Example 11.14
The lattice in Figure 11.5 consists of all points that are integer linear combinations of the

basis vectors b1 ¼ (0.125, 0.25), and b1 ¼ (20.125, 0.2). The simultaneous diophantine

approximation problem is

Given : a ¼
a2

a1
,
a3

a1
, . . . ,

an

a1

� �

Find : j ¼
j2

j1
,

j3

j1
, . . . ,

jn

j1

� �
a UGSDA approximation to a:
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Associate the lattice L whose basis vectors are

b1 ¼ (l, a2, a3, . . . , an�1, an)

b2 ¼ (0,� a1, 0, . . . , 0, 0)

..

.

bn�1 ¼ (0, 0, 0, . . . , � a1, 0)

bn ¼ (0, 0, 0, . . . , 0,� a1):

Setting u1 ¼ j1 and ui ¼ ji(2 � i � n), the length (in Rn) of the point u ¼ u1b1þ

u2b2þ � � � þ unbn is

jjujj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ

Xn
i¼2

( j1ai � jia1)
2

s
:

j is a UGSDA to a occurs when the length of the vector u is small. The problem of

finding short vectors may be solved by an algorithm (L3) of Lenstra et al. [1982b].

Applying the L3-algorithm to analyze the knapsack cryptosystem was first suggested by

Figure 11.4 A two-dimensional lattice.
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Len Adelman [1983]. The connection to diophantine approximation was then devel-

oped by Lagarias and Odlyzko [1983], Lagaris [1982, 1984] and Brickell [1983].

The application by Brickell, Lagarias, and Odlyzko of the L3-algorithm does

not attack the Merkle–Hellman trap-door as Shamir did by finding, a weakness in the

trap-door mapping s! a. Instead, it finds a direct attack on the knapsack problem. It is

successful when the density of public knapsack weights

R ; R(a) ¼
n

log2
Pn�1
i¼0

ai

is small enough. For example, Lagarias and Odlyzko prove that when R(a) , 0.645, then

the solution to the knapsack problem is the shortest nonzero vector in the lattice with basic

vectors

b1 ¼ (1, 0, . . . , 0, �a1)

b2 ¼ (0, 1, . . . , 0, �a2)

..

.

bn ¼ (1, 0, . . . , 1, �an)

bnþ1 ¼ (1, 0, . . . , 1, �M):

Figure 11.5 Integer points in the Example 11.14 two-dimensional lattice.
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11.9 KNAPSACK-LIKE CRYPTOSYSTEMS

Although the Merkle–Hellman trap-door knapsack system can be analyzed, it provided the

first example of the paradigm of public-key cryptography. It encouraged many other

inventors to try their luck in devising other knapsack-like cryptosystems. A partial list of

such systems is given in Lu and Lee [1979], Goethals and Couvrers [1980], Adiga and

Shankar [1985], Niederreiter [1986], Goodman and McAuley [1984], and Piepryzk [1985].

I believe that with only two exceptions [McEliece, 1978; Chor and Rivest, 1988], all

of these variants of the knapsack system have been analyzed.

11.10 KNAPSACK CRYPTOSYSTEM PROBLEMS

Problems 11.1 to 11.4 provide technical details used in Chapter 11. In each example, the

integer m has the factorization into primes m ¼ p1
n1p2

n2 . . . pk
nk.

The ciphertext files cipherPr11.1-cipherPr11.12 may be downloaded from

the following ftp address: ftp://ftp.wiley.com/public/sci_tech_med/computer_security.

PROBLEMS
11.1 Show how the principle of inclusion–exclusion can be used to derive the formula of Prop-

osition 11.6 for the Euler totient function.

11.2 Prove that Vm ¼ �
v : 1 ¼ gcd{v, m}

�
is a group; that is,

11.2a v1, v2 [ Vm)v1v2 [ Vm;

11.2b 1 [ Vm;

11.2c If v [ Vm, then v21 [ Vm.

11.3 Prove that the cardinality of jVmj is the value of the Euler totient functjon f(m).

11.4 Calculate the cardinality of Gm(s) ¼ {vs : v [ Vm}.

Problems 11.5 to 11.8 provide examples of Merkle–Hellman knapsack encipherment. They

require two programs: the first to encipher ASCII character plaintext, and the second to deci-

pher ciphertext.

The Merkle–Hellman encipherment program takes as parameters

† The number of knapsack lengths n,

† The vector of public knapsack lengths a ¼ (a0, a1, . . . , an21), and

† A string of N ASCII characters x ¼ (x0), x1), . . . , x(N21)),

and returns ciphertext formatted as in Section 11.5.

The Merkle–Hellman decipherment program ciphertext takes as parameters

† The number of knapsack lengths n,

† The secret modulus m,

† The secret multiplier v,

† The vector of public knapsack lengths a ¼ (a0, a1, . . . , an21), and

† The ciphertext y ¼ ( y0, y1, . . .) written as a sequence of m-bit integers where m is the

smallest integer satisfying 2m .
Pn�1

j¼0 aj,

and returns the tabular output formatted as in Section 11.5, whose columns

contain

1. The ciphertext integer Bi, which is the base-2 encoding of
Pn�1

j¼0 ajx
(i)
j ,

2. The integer Bm
(i) ¼ (v � Bi) (modulo m),
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3. The solution of the easy knapsack problem, the m-bit vector

w ¼ (w0, w1, . . . , wn21) satisfying BðiÞm ¼
Pn�1

j¼0 sjw
ðiÞ
j ,

4. The concatenation on the left of w to the string z,

5. x(i), the leftmost 7 bits of the string z,

6. The ordinal number of ith plaintext character x(i) in the ASCII character

set, and

7. The ith plaintext character.

11.5

11.5a Using the parameters n ¼ 6 and the public knapsack lengths a ¼ (a0,

a1, . . . , a5) ¼ (228, 325, 346, 485, 556, 525), encipher the plaintext x ¼ We are
nearly at the end of the quarter.

11.5b Decipher the Merkle–Hellman ciphertext

cipherPr11.5

694 599 722 939 722 131 1175 814 620 620
131 970 755 620 1132 131 621 722 131 825
599 939 722 722 131 835 970 939 722 131
599 970 835 722 1175 970 939 949 1154 346

that results from a knapsack encipherment with the parameters

n ¼ 7, m ¼ 523, v ¼ 28

a ¼ (355, 131, 318, 113, 21, 135, 215).

11.6

11.6a Using the parameters n ¼ 7 and the public knapsack lengths a ¼
(a0, a1, . . . , an21) ¼ (102, 238, 3400, 284, 1044, 2122, 425), encipher the plaintext

x ¼ This is an example of knapsack encipherment.

11.6b Decipher the Merkle–Hellman ciphertext

cipherPr11.6

386 1809 5862 1809 238 1049 6287 238 765 3790
4215 4784 624 1809 5862 238 1809 4024 765 2093
3740 1668 1809 238 4215 3506 238 3171 3790 765
3740 6287 765 2887 3171 238 1809 3790 2887 1049
3740 624 1809 5862 2093 1809 3790 4784 3688

that results from a knapsack encipherment with the parameters

n ¼ 7, m ¼ 3989, v ¼ 352

a ¼ (a0, a1, . . . , an21) ¼ (102, 238, 3400, 284, 1044, 2122, 425).

11.7

11.7a Using the parameters n ¼ 7 and public knapsack lengths a ¼ (a0,

a1, . . . , an21) ¼ (2244, 599, 2245, 1649, 1205, 1364, 1980, 669), encipher the

plaintext x ¼ This is the plaintext for homework #7.

11.7b Decipher the Merkle-Hellman ciphertext

372 CHAPTER 11 THE KNAPSACK CRYPTOSYSTEM



cipherPr11.7

694 599 722 939 722 131 1175 814 620 131
970 755 620 1132 131 621 722 131 825 599
939 131 722 835 970 939 722 131 599 970
835 722 1175 970 939 949 1154 346

that results from a knapsack encipherment with the parameters

n ¼ 7, m ¼ 523, v ¼ 28

a ¼ (a0, a1, . . . , an21) ¼ (355, 131, 318, 113, 21, 135, 215).

11.8

11.8a Using the parameters n ¼ 7 and public knapsack lengths a ¼
(a0, a1, . . . , an21) ¼ (102, 238, 3400, 284, 1044, 2122, 425), encipher the plaintext

x ¼ Test of knapsack encipherment.

11.8b Decipher the Merkle–Hellman ciphertext

cipherPr11.8

4546 624 1049 6287 238 1049 6287 238 765 238
624 4215 2093 1809 7331 4215 5862 3171 238 3740

5862 4215 2462 1668 1809 2093 238 4215 3790 238
3171 3790 765 3740 6287 765 2887 3171 238 1809
3790 2887 1049 3740 624 1809 5862 2093 1809 3790
4784 3688

that results from a knapsack encipherment with the parameters

n ¼ 7, m ¼ 3989, v ¼ 34

a ¼ (a0, a1, . . . , an21) ¼ (102, 238, 3400, 284, 1044, 2122, 425).

Problems 11.9 to 11.15 provide examples of Shamir’s cryptanalysis of the Merkle–Hellman

knapsack cryptosystem. In each example, a public key

a ¼ (a0, a1, . . . , an�1)

and ciphertext are specified. The private key

s ¼ (s0, s1, . . . , sn�1)

satisfies the conditions

1� s0, s1, � � �, sn�1,
Xj�1
i¼0

si, sj, 1 � j , n: (� )

The public key a ¼ (a0, a1, . . . , an21) and private key s ¼ (s0, s1, . . . , sn21) are

related by

ai ¼ v�1si (modulo m), si ¼ vai (modulo m), 0 � i , n:

The private key s, modulus m, and multiplier v are all secret.
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A solution requires you to write three programs to find the private knapsack

parameters (d, m, v) and plaintext.

† Program A

– Write a program to find the set of intervals I(s) ¼ [L(s), R(s) of [0, 1) that might

contain the ratio v/m using the first k values a0, a1, . . . , an21 for k ¼ 2, 3, 4

and 5.

– Display the results in a table like that shown in Section 11.6.

† Program B

– Write a program to find all ratios V/M that satisfy the three conditions

– (V/M ) [ I(s) for some s;

– V having a multiplicative inverse modulo M;

– s ¼ (s0, s1, . . . , sn21) defined by si ¼ aiV (moduloM) satisfying Equation (�) and

the size condition
Pn�1

i¼0 si , M.

Display the results found by the program in B using the tabular form as in Section 11.6.

† Program C

† Write a program to decipher using any two solutions V, M, s found by Program

B. Display the plaintext in the tabular form as in Section 11.6.

The data in Problems 11.9 to 11.12 will consist of

† A vector of public knapsack lengths a ¼ (a0, a1, . . . , an21), and

† Ciphertext y ¼ y0, y1, . . .) written as a sequence of m-bit integers, where m is the

smallest integer satisfying 2m.
Pn�1

j¼0 aj.

11.9 Public key a ¼ (a0, a1, . . . , a7) ¼ (638, 2108, 1914, 472, 1277, 2138, 505, 1039):

cipherPr11.9

2149 4320 5667 4718 4392 8176 8309 3147 3459 5834
7034 4023 4702 8309 6428 5597 6873 6306 6810 4806
8075 8414

11.10 Public key a ¼ (a0, a1, . . . , a8) ¼ (418, 3362, 4198, 509, 5743, 5180, 2855, 4802, 536):

cipherPr11.10

2149 4320 5667 4718 4392 8176 8309 3147 3459 5834
7034 4023 4702 8309 6428 5597 6873 6306 6810 4806
8075 8414

11.11 Public key a ¼ (a0, a1, . . . , a7) ¼ (638, 3578, 971, 1942, 1388, 141, 89, 1123):

cipherPr11.11

1991 1991 6580 2741 5513 8606 1609 6868 2962 6721
3719 4594 3054 5813 4701 5428 2810 4198 7546 7968
5813 4701 4350 3712 3933 5187
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11.12 Public key a ¼ (a0, a1, . . . , a8) ¼ (575, 436, 1586, 1030, 1921, 569, 721, 1183, 1570):

cipherPr11.12

4358 4394 5145 3731 5070 8408 1466 6254 7446 8586
2591 4049 4109 4907 3189 4816 6682 5918 5648 1005
5938 6406 6406 2597
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CHA P T E R12
THE RSA CRYPTOSYSTEM

WHIL E TH E Merkle–Hellman knapsack system was the first example of

a public-key cryptographic system, it did not provide the required security. Shortly

thereafter, the RSA cryptosystem was published. It has withstood scrutiny for nearly

thirty years; no viable analysis has been published. It appears that finding the private key

is equivalent to factorization, so that even as the size of integers that can be factored

increases, it will only require an adjustment to the RSA parameter sizes. This chapter

defines the RSA cryptosystem and reviews what is known.

12.1 A SHORT NUMBER-THEORETIC DIGRESSION
[KOBLITZ, 1987]

Proposition 12.1: If a, k, n are positive integers, the complexity of modular

exponentiation ak (modulo n) is O((log2 k)(log2 n)
2).

Proof: The complexity of the multiplication two s-bit numbers in O(s2). If we write

k ¼ k0 þ k12þ k22
2 þ � � � þ ks�12

s�1

each of the O(log2 k) powers a2
j

(modulo n) ( j ¼ 1, 2, . . . ) can be computed in time

O((log2 n)
2). B

MOD (a, k, n)

d :¼1;

aa :¼a;

while (k . 0) do begin

if (1 ¼ (k mod 2)) then

d :¼(d�a) mod n;

k :¼(k2 (k mod 2)) div 2;

aa :¼(aa�aa) mod n;

end;

Example 12.1
Evaluate y ¼ 1311134 (modulo 39,979). First, the base-2 expansion of the exponent 134 is

determined:

134 ¼ 128þ 4þ 2 ¼ 27 þ 22 þ 21:
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Next, Tj ¼ 13112
j

(modulo 39,979) for 1 � j � 7 is computed by repeated squaring

T1 ¼ T2
0 (modulo 39,979) ¼ ½13112 (modulo 39,979)


T2 ¼ T2
1 (modulo 39,979) ¼ ½13114 (modulo 39,979)


. .
.

T7 ¼ T2
6 (modulo 39,979) ¼ ½1311128 (modulo 39,979)


Finally, y is expressed as a product

y ¼ 1311134 (modulo 39,979)

¼ ½13112 (modulo 39,979)
 � ½13114 (modulo 39,979)


� ½1311128 (modulo 39,979)


multiplying all of the terms {Tj} for which 2j appears in the base-2 expansion of 134 to

obtain the value of y, y ¼ 17,236.

Proposition 12.2: (Fermat’s Little Theorem): If p is a prime number

12.2a ap ¼ a (modulo p) for any integer, and

12.2b ap21 ¼ 1 (modulo p) if a is not divisible by p.

Proof: Expand (xþ 1)p by the Binomial Theorem (xþ 1) p ¼ xp þ 1þ
Pp�1

i¼1
p
i

� �
xi

and note that the binomial coefficient p
i

� �
is divisible by p for 1 � i � p2 1.

This proves (xþ 1)p ¼ (1þ xp) (modulo p) so that Proposition 12.2a follows by induc-

tion. Writing ap2 a ¼ a(ap212 1) ¼ 0 (modulo p) and assuming gcd{a, p} ¼ 1, both

sides may be divided by a (equivalently multiplied by a21) to obtain ap21 ¼ 1

(modulo p). B

Remark: Is there a converse to Fermat’s Theorem? For example, suppose

an21 ¼ 1 (modulo n) for every integer a with 1 ¼ gcd{a, n}. Does it follow that n

is a prime? The answer is no; for example, 561 ¼ 3 � 11 � 17, and although it

is not obvious, a560 ¼ 1 (modulo 561). Moreover, there are infinite numbers of

such Carmichael numbers. We return to the “false” converse of Fermat’s

Theorem later in this chapter when we examine the testing of numbers to determine if

they are prime.

The Euler totient function f(n) of an integer n was defined in Section 11.2 as the

number of intergers less than n that are relative prime to n. Proposition 11.6

gave the formula f(n) ¼
Qk

i¼1 p
ni�1
i (pi � 1) when the prime factorization of n is

n ¼ p1
n1p2

n2 � � � pk
nk. Here we need only the special case where n is the product of

two (distinct) primes n ¼ p1p2; in this case, f(n) ¼ ( p12 1)( p22 1).

We need an important generalization of Fermat’s Little Theorem.

Proposition 12.3: (Euler’s Theorem): If integers n and m are relatively prime,

meaning their greatest common divisor is 1, 1 ¼ gcd{m, n}, then mf(n) ¼ 1 (modulo n).
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Proposition 12.4: If 1 ¼ gcd{m, n}, then m has a multiplicative inverse in Zn that

may be computed in time O((log2 n)
2).

Proof: Using the Euclidean Algorithm, find a, b such that if 1 ¼ anþ bm; then

1 ¼ bm (modulo n). B

The numbers used in Example 12.1 and those which follow will be small in the sense

that they are expressible as 4-bytewords.On the other hand, to achieve cryptographic strength

of the encipherment systems to be described in this chapter and later in Chapters 14–18, this

size limitation must be considerably relaxed. We need to perform arithmetic operations

modulo m with very large integers m, requiring perhaps thousands of digits. The necessary

size may in fact increase as more refined cryptanalytic techniques are introduced. We

provide a short introduction to multiprecision modular arithmetic in Section 12.6.

12.2 RSA [RIVEST ET AL., 1978]

A four-tuple ( p, q, e, d) is an RSA parameter set if

RSA-a p and q are prime numbers and N ¼ pq;

RSA-b The RSA enciphering exponent e satisfies 1 ¼ gcd{e, f(N )};

RSA-c The RSA deciphering exponent d satisfies 1 ¼ gcd{d, f(N )}; and

RSA-d e and d are multiplicative inverses modulo f(N ) of one another, e d ¼ 1 (modulo

f(N )).

Proposition 12.5: When ( p, q, e, d ) is an RSA parameter set, the RSA encipher-

ment transformation Ee is modular exponentiation, defined for integers n in ZN by

Ee : n! Ee(n) ¼ ne (modulo N) (12:1)

Ee is a one-to-one mapping on ZN onto ZN. Its inverse RSA decipherment transformation

Dd is also modular exponentiation, defined for integers n in ZN by

Dd : n! Dd(n) ¼ nd (modulo N) (12:2)

I ¼ EeDd ¼ DdEe (12:3)

Proof : The second assertion clearly implies the first; if ( p, q, e, d) is an RSA

parameter set, then

(ne)d ¼ n1þCf(N)

as e d ¼ 1 (modulo f(N )). If n ¼ pm with 1 ¼ gcd{m, q}, then p divides n ad q does not

divide n, so that

(ne)d � n ¼ n½(np�1)C(q�1) � 1


The factor within the brackets [� � �] is congruent to 0 modulo q by Fermat’s Little Theorem

and hence the left-hand-side above is congruent to 0 modulo N.

A similar argument shows that if n ¼ qm with 1 ¼ gcd{n, m} then (ne)d2 n ¼ 0

(modulo N ). Finally, if n is relatively prime to both p and q

(ne)d � n ¼ n½(np�1)C(q�1) � 1


(ne)d � n ¼ n½(nq�1)C(p�1) � 1
 B
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Remark: The Diffie–Hellman public-key cryptosystem paradigm only required

that operations of encipherment x! y ¼ EPuK{x} and decipherment y! y ¼ EPrK{ y}

be inverses of one another. In the RSA system, Equations (12.1) and (12.2) state that

both are modular exponentiation, differing only by the exponent.

Example 12.2
p ¼ 31, q ¼ 5, e ¼ 7, d ¼ 103

N ¼ 155 ¼ 31� 5

f(N) ¼ 120 (31� 1)� (5� 1)

ed ¼ 721 ¼ 1 (modulo 120)

67 ¼ 987 (modulo 155)

98 ¼ 67103 (modulo 155)

Proposition 12.6: If e, p, and q are given, d can be computed in timeO(log2 f(N)).

12.3 THE RSA ENCIPHERMENT AND DECIPHERMENT
OF ASCII-PLAINTEXT

RSA enciphers and deciphers integers in ZN. To encipher data, RSA needs to be extended

to encipher n-grams of ASCII characters x ¼ (x(0), x(1), . . . , x(n21)). An Internet standard

is described in [Linn, 1989]; I describe a slightly modified version, using 7 bits for each

ASCII character rather than 8 bits.

The extension replaces ASCII text by a binary sequence, which is segmented into

bit-vectors of length N22 1 where 2N221 2 1 � N , 2N2. Each such bit-vector corresponds

to an integer k inZN to which RSA-exponentiation Ee can be applied. The resulting integer

j ¼ Ee(k) in general requires N2 bits in its base-2 representation so that there is an expan-

sion under RSA encipherment.

12.3.1 RSA Encipherment of ASCII Plaintext

E1. Replace each character x(i) of ASCII plaintext x ¼ (x(0), x(1), . . . , x(n21)) by the 7-bit

binary encoding of its ordinal value in the ASCII character code x(i) ¼ (x0
(i), x1

(i), . . . , x6
(i))

(Table 12.1).

E2. Concatenate to form the (0,1)-plaintext z (x(0), x(1), . . . , x(n21))! z ¼ (z0, z1, . . . ,
z7n21).

E3. Assume integers in ZN require N2 bits in their base-2 representation,

2N221 2 1 � N , 2N2 2 1. The plaintext z is expanded z! Ekzl ¼
(z0, z1, . . . , znP21) by padding with 0’s on the right (if necessary) to make the length

nP of Ekzl a multiple of N22 1, say nP ¼ (N22 1)B.

B; B(n;N2)¼

7n

N2�1

� �
þ1, if 7n¼ r ðmodulo ðN2�1ÞÞwith 0, r,N2�1

7n

N2� 1
, if 7n¼ 0 ðmodulo ðN2�1ÞÞ:

8>><>>:
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E4. The expanded plaintext Ekzl is divided into E(n, N22 1) bit vectors each of length

N22 1 (Table 12.2):

E(z) ¼ (z(0), z(1), . . . , z(E�1))

z(i) ¼ (z(i)0 , z(i)1 , . . . , z
(i)
N2�2

), 0 � i , E ; E(n, N2):

E5. The (0,1)-vector z(i) of length N22 1 corresponds to the integer k(i) ¼PN2�2
j¼0 2N2�j�2z(i)j in ZN (Table 12.2).

E6. RSA enciphers Ee: k
(i)
! j(i) ¼ (k(i))e (modulo N ) each of the E integers {k(i)}

(Table 12.2).

TABLE 12.1 Step E1 in RSA Encipherment

x(i) x(i) x(i) x(i) x(i) x(i) x(i) x(i)

E 1000101 x 1111000 a 1100001 m 1101101

p 1110000 l 1101100 e 1100101 0100000

o 1101111 f 1100110 0100000 R 1010010

S 1010011 A 1000001 0100000 e 1100101

n 1101110 c 1100011 i 1101001 p 1110000

h 1101000 e 1100101 r 1110010 m 1101101

e 1100101 n 1101110 t 1110100 . 0101110

TABLE 12.2 Steps E4–E7 in RSA Encipherment

z(i) k(i) j(i) y(i)

1000101111 559 258 00100000010

1000110000 560 44 00000101100

1110110111 951 894 01101111110

1000011011 539 971 01111001011

0011001010 202 1654 11001110110

1000001101 525 1115 10001011011

1111100110 998 1760 11011100000

0100000101 261 890 01101111010

0010101001 169 1389 10101101101

1100000101 773 300 00100101100

0000011001 25 640 01010000000

0111011101 477 299 00100101011

1000111101 573 655 01010001111

0011110000 240 382 00101111110

1101000110 838 551 01000100111

0101111001 377 1017 01111111001

0110110111 439 384 00110000000

0010111011 187 1622 11001010110

1011101000 744 1012 01111110100

1011100000 736 1109 10001010101
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E7. Each integer j(i) in ZN is replaced by its N2-bit base-2 representation

j(i)! y(i) ¼ (y0
(i), y1

(i), . . . , yN221

(i ) ) (Table 12.2).

E8. The B (0,1)-vectors {y(i)} are concatenated to form ciphertext y ¼ ( y(0), y(1), . . . ,
y(B21)) of length nC ¼ N2B.

Example 12.3
RSA parameters (p, q, e, d ) ¼ (41, 43, 11, 6112)

. N ¼ 1763, f(N ) ¼ 40 � 42 ¼ 1680, N2 ¼ 11

. Plaintext: Example of RSA encipherment.

12.3.2 Decipherment of RSA Ciphertext to ASCII Plaintext

D1. Divide the ciphertext y ¼ ( y0, y1, . . . , ynC21) of length nC ¼ N2B into bit-vectors of

length N2 y ! ( y(0), y(1), . . . , y(B21)) (Table 12.4).

D2. The (0,1)-vector y(i) of length N2 is the binary representation of the integer j(i) ¼PN2�1
t¼0 2N2�ty(i)t in Zn (Table 12.4).

D3. RSA deciphers each of the integers { j(i)} according to Dd : j(i)! k(i) ¼ ( j(i))d

(modulo N ) (Table 12.5).

D4. The integer k(i) ¼
PN2�2

t¼0 z(i)t 2(N2�t�2) is replaced by its binary representation

z(i) ¼ (z0
(i), z1

(i), . . . , zN222

(i ) ) of length N22 1 (Table 12.5).

D5. The (0,1)-vectors z(i) ¼ (z0
(i), z1

(i), . . . , zN222

(i) ) are concatenated z ¼ (z0, z1, . . . , z7n21)

where n ¼ B(N22 1) (modulo 7), discarding any padding bits on the right (Table 12.5).

D6. Each 7-bit vector is replaced by its corresponding ASCII character (Table 12.5).

The ciphertext determined by the parameters in Example 12.2 written in blocks of

N2 ¼ 11 bits are derived according to the rules D1–D7.

TABLE 12.3 Step E8 in RSA Encipherment

001000000100000010110001101111110

011110010111100111011010001011011

110111000000110111101010101101101

001001011000101000000000100101011

010100011110010111111001000100111

011111110010011000000011001010110

TABLE 12.4 Steps D1–D2 in RSA Decipherment

j(i) y(i) j(i) y(i) j(i) y(i)

258 00100000010 44 00000101100 894 01101111110

971 01111001011 1654 11001110110 1115 10001011011

1760 11011100000 890 01101111010 1389 10101101101

300 00100101100 640 01010000000 299 00100101011

655 01010001111 382 00101111110 551 01000100111

1017 01111111001 384 00110000000 1622 11001010110

1012 01111110100 1109 10001010101
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12.4 ATTACK ON RSA [SIMMONS, 1983;
DELAURENTIS, 1984]

A conceivable network implementation of the RSA algorithm uses a system public key

table as in Figure 12.1.

Ni ¼ piqi and ei with 1 ¼ gcdfei; ð pi � 1)( qi � 1)g:

The maintenance of the table, in particular certifying that it is free from malicious

entries, is the responsibility of the system manager. It was even suggested that a

simplification would result if a single pair of primes p, q could be used throughout the

network.

TABLE 12.5 Steps D3–D6 in RSA Decipherment

Ciphertext Plaintext

y(i) j(i) k(i) z(i) x(i) ord(x(i)) x(i)

00100000010 258 559 1000101111 111 1000101 69 E

00000101100 44 560 1000110000 110000 1111000 120 x

01101111110 894 951 1110110111 110110111 1100001 97 a

110011011 11 1101101 109 m

01111001011 971 539 1000011011 11011 1110000 112 p

11001110110 1654 202 0011001010 11001010 1101100 108 l

11001010 0 1100101 101 e

10001011011 1115 525 1000001101 1101 0100000 32

11011100000 1760 998 1111100110 1100110 1101111 111 o

1100110 1100110 102 f

01101111010 890 261 0100000101 101 0100000 32

10101101101 1389 169 0010101001 101001 1010010 82 R

00100101100 300 773 1100000101 100000101 1010011 83 S

1000001 01 1000001 65 A

01010000000 640 25 0000011001 11001 0100000 32

00100101011 299 477 0111011101 11011101 1100101 101 e

1101110 1 1101110 110 n

01010001111 655 573 1000111101 1101 1100011 99 c

00101111110 382 240 0011110000 1110000 1101001 105 i

1110000 1110000 112 p

01000100111 551 838 1101000110 110 1101000 104 h

01111111001 1017 377 0101111001 111001 1100101 101 e

00110000000 384 439 0110110111 110110111 1110010 114 r

11 1101101 109 m

11001010110 1622 187 0010111011 11011 1100101 101 e

01111110100 1012 744 1011101000 11101000 1101110 110 n

0 1110100 116 t

10001010101 1109 736 1011100000 0000 0101110 46 .
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Proposition 12.7: [Simmons, 1983]: If pi ¼ p, qi ¼ q, N ¼ pq for all i, knowl-

edge of two public keys ei and ej with 1 ¼ gcd{ei, ej} permits the decipherment of all

messages of every user.

Proof: Suppose a single common pair of primes ( p, q) is used, then

Ci ¼ Mei (modulo N)

and

Cj ¼ Mei (modulo N):

As 1 ¼ gcd{ei, ej}, there exist integers a, b (by the Euclidean algorithm) such that

1 ¼ aei þ bej:

One of the two integers a, b must be negative (the other positive). Suppose b , 0. If

gcd{Cj, N} = 1, Cj has a factor in common with N, which must equal p or q. In this

case many messages may not only be deciphered M, but each user’s private (deciphering)

key di can be found. If gcd{Cj, N} ¼ 1, the Euclidean algorithm finds Cj
21, satisfying

CjC
�1
j ¼ 1 (modulo N),

which gives

Ca
i (C
�1
j )jbj ¼ MaeiM�ejjbj (modulo N)

¼ M(aeiþbej) (modulo N) ¼ M:

If the factors of N ¼ pq can be found, then e d is found using the Euclidean algorithm. It is

not known if this is the only way in which d can be recovered from e, N and examples of

corresponding plaintext and ciphertext.

12.5 WILLIAMS VARIATION OF RSA

e ¼ 2 is not a permissible exponent in RSA, as the mapping Ee is not one-to-one. The

ambiguity in decipherment might be resolved by using a standard format for the plaintext

x. It is unlikely, but not proved that only one of the (four) square roots would be in the

standard format.

Hugh Williams [1980] found a very clever way around this difficulty. He transforms

the plaintext x into E1[x] where E1 is an invertible mapping with inverse D1. For primes

with appropriate restrictions, there exist transformations E2 and D2 that correspond to

Figure 12.1 A system’s RSA parameter table.
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encipherment and encipherment such that

x! E1½x
 ! E2½E1½x

 ! D2½E2½E1½x


 ! D1½D2½E2½E1½x



 ¼ x

x! E1½x
 ! D2½E1½x

 ! E2½D2½E1½x


 ! E1½E2½D2½E1½x



 ¼ x:

The Jacobi symbol J( p/q) when q is a prime is defined by

J(p=q) ¼

0; if q divides p

1; if p
q�1
2 ¼ 1 (modulo q)

�1; if p
q�1
2 ¼ �1 (modulo q):

8>><>>:
J( p/q) can be extended for q not being a prime.

Proposition 12.8: (Properties of the Jacobi Symbol):

12.8a If p1 ¼ p2 (modulo q), then J( p1/q) ¼ J( p2/q);

12.8b J( p1p2/q) ¼ J( p1/q)J( p2/q);

12.8c J( p/q1q2) ¼ J( p/q2)J(p/q2);

12.8d J(p=q)J(q=p) ¼ (�1)
(p�1)(q�1)

4 if p, q are odd; and

12.8e If q is a prime, then J(2=q) ¼ (�1)q
2�1
8 :

Proposition 12.9: If p, q are primes such that 3 ¼ p (modulo 4) ¼ q (modulo 4)

and J(x/pq) ¼ 1, then

x
(p�1)(q�1)

4 ¼+1:

Proof: Using Proposition 12.8c and the hypothesis J(x/pq) ¼ 1, we conclude that

either J(x/p) ¼ J(x/q) ¼ 1 or J(x/p) ¼ J(x/q) ¼ 21.

Case 1

J(x=p) ¼ J(x=q) ¼ 1 t

Using the definition of J(� � �/� � �)

x
p�1
2
¼ 1 (modulo p) and x

q�1
2 ¼ 1 (modulo q):

Therefore

x
(p�1)(q�1)

4 ¼+1 (modulo p) and x
(p�1)(q�1)

4 ¼+1 (modulo q),

which implies x
(p�1)(q�1)

4
¼+1 (modulo pq):

Case 2

J(x=p) ¼ J(x=q) ¼ �1

This is treated exactly as in Case 1. B

12.5.1 Williams Quadratic Encipherment

Let the parameters p, q, e, d be selected to satisfy

RSA�-a N ¼ pqwhere p and q are primes such that p ¼ 3 (modulo 4) and q ¼ 7 (modulo 8);
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RSA�-b e is relatively prime to l(N) ¼ lcm {p2 1, q2 1} (note, lcm{a, b} is the least

common multiple of a, b; that is, the smallest integer m divisible by both a and b);

RSA�-c Let d satisfy de ¼ m (modulo l(N )) where

m ¼

ðp�1)ðq�1)
4
þ 1

2
;

RSA�-d

X ¼ x [ ZþN :
4(2xþ 1), if J(2xþ 1=N) ¼ 1

2(2xþ 1), if J(2xþ 1=N) ¼ �1

� �
:

�
The operators E1, E2, D1, and D2 on ZN are given by

E1 : x!
4(2xþ 1); if J(2xþ 1=N) ¼ 1

2(2xþ 1); if J(2xþ 1=N) ¼ �1

�
E2 : x! x2e (modulo N)

D2 : x! xd (modulo N)

D1 : x!

(x=4� 1)=2; if 0 ¼ x (modulo 4)

(N � x=4� 1)=2; if 1 ¼ x (modulo 4)

(x=2� 1)=2; if 2 ¼ x (modulo 4)

(N � x=2� 1)=2; if 3 ¼ x (modulo 4):

8>>><>>>:
E1[x] is not defined if J(2xþ 1/N ) ¼ 0; that is, if either J(2xþ 1/p) ¼ 0, J(2xþ

1/q ) ¼ 0. The fraction of integers in ZN
þ that meet this condition is pþ q=N; if

O( p) 	 O(q), the fraction becomes infinitesimally small as N! 1.

Proposition 12.10: If p, q, e, and d are Williams Quadratic Encipherment

parameters, then

x! E1½x
 ! E2½E1½x

 ! D2½E2½E1½x


 ! D1½D2½E2½E1½x



 ¼ x

x! E1½x
 ! D2½E1½x

 ! E2½D2½E1½x


 ! E1½E2½D2½E1½x



 ¼ x

Proof: Let x1 ¼ E1[x]; then

J(x1=N) ¼
J(2=N)J(2=N)J(2xþ 1=N), if J(2xþ 1=N) ¼ 1

J(2=N)J(2xþ 1=N), if J(2xþ 1=N) ¼ �1:

�
Using the conditions on p and qwe have N ¼ 5 (modulo 8) and hence by Proposition 12.8e

J(x1/N) ¼ 1. Next

x2 ¼ D2½E2½x1



¼ x2ed1 (modulo N)

¼ x2m1 (modulo N)

¼+x1 (modulo N):

Note that

. x1
2ed (modulo N ) ¼ x1

2m (modulo N ) uses Euler’s Theorem (Proposition 11.6);

. x1
2e (modulo N ¼ +x1 (modulo N ) uses Proposition 12.9.
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If x2 is even, then x2 ¼ x1; if x2 is odd, then x2 ¼ R2 x1, completing the proof of

x! E1½x
 ! E2½E1½x

 ! D2½E2½E1½x


 ! D1½D2½E2½E1½x



 ¼ x :

For the second assertion,weuse thedefinitions ofE2 andD2 to concludeE2[D2] ¼ D2[E2]. B

With the parameters p, q, e, and d as in Williams Quadratic encipherment, define the

operators

E : x! E½x
 ¼ E2½E1½x

; x [ X

D : x! D½x
 ¼ D1½D2½x

; x [ X

Proposition 12.11:

12.11a E½D½x

 ¼ D½E½x

 for x [ X;

12.11b E and D are easy to compute;

12.11c Knowledge of E does not provide a computationally feasible method to

determine D.

Proposition 12.12: If there exists an algorithm to solve the problem

Given: y ¼ E[x].

Find: For every x [ X ,

then N may be factored.

Example 12.4
Table 12.6 lists the plaintext x and the all of the intermediate values

x! E1½x
 ! E2½E1½x

 ! D2½E2½E1½x


 ! D1½D2½E2½E1½x





for the parameter values

TABLE 12.6 x! E1[x]! E2[E1[x]]! D2[E2[E1[x]]]! D1[D2E2[E1[x]]]]

x E1[x] E2[E1[x]] D2[E2[E1[x]]] D1[D2[E2[E1[x]]]]

130 1,044 42,926 1,044 130

131 1,052 17,201 1,052 131

132 1,060 36,896 53,193 132

133 534 34,245 53,719 133

134 538 2,771 538 134

135 1,084 29,613 1,084 135

136 546 14,765 546 136

137 1,100 32,968 1,100 137

138 1,108 5,905 53,145 138

139 558 19,689 558 139

140 1,124 54,020 53,129 140

141 566 9,227 566 141

142 1,140 10,067 53,113 142

143 574 46,598 574 143

144 1,156 13,371 1,156 144

145 582 36,657 53,671 145

146 586 4,942 586 146

147 1,180 4,151 53,073 147

148 1,118 1,937 1,188 148

149 598 27,189 598 149
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p ¼ 239, q ¼ 227, N ¼ 54,253, m ¼ 6724

gcd{p2 1, q2 1} ¼ gcd{238,226} ¼ 2

l(N ) ¼ lcm{ p2 1, q2 1} ¼ lcm{238,226} ¼ 26,894

e ¼ 19, d ¼ 21,586

One final word: even with the small primes as in this example, some care must be taken

with the exponentiation to detect (and correct) the single-precision overflow.

12.6 MULTIPRECISION MODULAR ARITHMETIC

The basic modular operations addition, multiplication, and division on numbers with a

large number of digits is an extension of the pencil-and-paper technique learned in

elementary school. Excellent descriptions of the concepts of multiprecision arithmetic

are given in Riesel [1994] and Menezes et al. [1996].

12.6.1 Internal Representation of Numbers

The internal base-b representation of a number x

x : sgn(x), n, x0 x1 . . . xn�2xn�1

contains

. The sign of x
sgn(x) ¼ 0 if x � 0,

sgn(x) ¼ b� 1 if x � 0;

. The number n of base-b digits in the magnitude of x;

. A string of n base-b digits x0 x1 . . . xn22xn21 determining the magnitude of x where

xi is a base-b digit of the magnitude of x.1 If x � 0

x ¼ x0 þ x1bþ � � � þ xn�2b
n�2 þ xn�1b

n�1, 0 � xi , b (0 � i , n):

The two n-bit base b representations of x ¼ 0 are ð0Þn and (b2 1)n. The usual choices for b

are 2, 10, 16, and 256.

Remarks:

1. Base-b negative integers can also be represented using the b’s complement notation.

If x , 0 and the digits of 2x are x0 x1 . . . xn22 xn21, then the digits of 2x are

x̄0 x̄1 . . . x̄n22 x̄n21 with x̄i ¼ b2 12 x̄i.

2. The complement notation has as advantage in simplifying subtraction of signed

integers.

3. If x : sgn(x), n, x0 x1 . . . xn22 xn21, then x0 is the least significant digit of x and xn21

is the most significant digit of x.

4. When xn21 ¼ 0, the integer x requires fewer than n digits in its internal represen-

tation and hence we may assume that the most significant digit of x is positive.

1The GNU Multiple Precision Arithmetic Library, which is described at www.swox.comb/gmp, refers to the

digits as limbs. A number x referred to as mpz_t has a sign, a number of limbs _mp_size, and, if this last number is

positive, a pointer to a dynamically allocated array for _mp_d data.
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12.6.2 Multiprecision Addition, Subtraction, and
Multiplication

Addition, subtraction, and multiplication are performed using digit-by-digit operations.

For example, addition of two positive integers of the same length n

xn�1 xn�2 . . . x1 x0
þ yn�1 yn�2 . . . y1 y0

zn zn�1 zn�2 . . . z1 z0

requires one DO-loop.

Algorithm A1

Input: Two n-digit base-b positive integers.

x : 0, n, x0x1 . . . xn�2xn�1

y : 0, n, y0y1 . . . yn�2yn�1

Output: z, the nþ 1-digit base-b positive integer which is the sum xþ y and a carry

c. z : 0, nþ !1, z0 z1 . . . zn21zn

1. ci 0 (input carry digit).

2. For i from 0 to n2 1 do

2.1 zi (xiþ yiþ ci) (modulo b)

2.2 if (xiþ yiþ ci) , b, then ciþ1 0; otherwise, ciþ1 1.

3. zn cn

4. End.

Remarks:

1. if zn ¼ 0, the length parameter is adjusted.

2. If the lengths of inputs are different, the strings may be padded (on the right) to make

their lengths equal.

When the signed magnitude representation is used, the addition of signed integers, which

is equivalent to subtraction, requires a consideration of several cases.

Algorithm A2

Input: Two n-digit base-b positive integers x and y with x � y.

x : 0, n, x0 x1 . . . xn22xn21

y : 0, n, y0 y1 . . . yn22yn21

Output: z, the nþ 1-digit base-b positive integer which is the sum x2 y.

z : 0, nþ !1, z0 z1 . . . nn21zn

1. ci 0 (input carry digit).

2. For i from 0 to n2 1 do

2.1 zi (xi2 yiþ ci) (modulo b)

2.2 If (xi2 yiþ ci) , b, then ciþ1 0; otherwise, ciþ1 21.
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3. zn cn

4. End.

Remarks:

1. If x � y, then cn ¼ 0.

2. If x , y, then cn ¼ 21 and the output z : 0, nþ !1, z0 z1 . . . zn21zn is incorrect. To

mimic the correct result, Algorithm A2 is repeated with x : 0; n; 0; 0; . . . ; 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n copies

and

y ¼ z.
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CHA P T E R13
PRIME NUMBERS AND

FACTORIZATION

BEFOR E M I C RO SO F T AND D E L L enlarged our computational

horizons, mathematicians explored the mysteries of numbers. The publication in 1978

of the RSA algorithm, whose strength appears to depend on infeasibility factoring very

large numbers, stimulated research in number theory. This chapter describes the

dual number theoretic issues of factorization and primality testing.

13.1 NUMBER THEORY AND CRYPTOGRAPHY

The distinguished number theorist Carl Pomerance begins the Preface to a 1990 collection

of papers [Pomerance, 1990] on number theory and cryptography writing

Although they are both ancient and noble subjects, it is only a phenomena of the past dozen years or

so that cryptology and computational number theory have become so intertwined.

The strength of several public-key cryptosystems is related to problems in classical

number theory, including the prime-factorization of integers, testing if an integer is a

prime, and the generation of prime numbers. A brief discussion of these three problems

will be given. Additional material can be found in Koblitz [1987], Riesel [1994], and

Pomerance [1990].

13.2 PRIME NUMBERS AND THE SIEVE OF
ERATOSTHENES

Eratosthenes (276–194 B.C.E) born in Syene (now Libya) was a Greek geometer. By

measuring the sun’s angle u cast by the obelisk at Alexandria and the distance d

between Alexandria and Syene, he calculated the circumference of the Earth to be

24,901 miles, as compared to the now accepted value of 29,000 miles, an error of only

17% (Fig. 13.1).

Eratosthenes also invented a sieving1 algorithm to determine all primes �N. Begin

with the set ODD of odd integers �N; for every integer m, remove from ODD the integer

m2 and every mth integer following.

1Pastry chefs sift flour by passing it through a wire mesh or sieve; sieving flour breaks up clumps in the flour for a

lighter cake. The number theorist’s sieve retains some numbers, allowing the others to be discarded.
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Example 13.1
N ¼ 201 (Tables 13.1 and 13.2); the numbers removed are underlined in Table 13.1.

The time needed for sieving is exponential in the number of bits in N, so that Eratosthenes’

sieve is not a viable computational method except for small N.

Although there are infinitely many primes, they are rare, in the sense that their

density in the set of integers is 0.

Proposition 13.1 (The Prime Number Theorem): The number p(n) of primes less

than or equal to n is asymptotic to n/ln n as n! 1; that is, 1 ¼ limn!1ðpðnÞÞ=ðn=ln nÞ.

This distance between consecutive primes increases much faster than n as n! 1
so that the density of primes is 0.

There are two central number-theoretic issues in its application to

cryptography:

. efficient methods for finding the prime factors of an integer n, and

. efficient methods for generating prime numbers.

Although these two problems have always existed in number theory before RSA,

it is the scale of the numbers involved that sets these problems apart from those

in “classical” number theory and has invigorated this ancient branch of

mathematics.

13.3 POLLARD’S p2 1 METHOD [POLLARD, 1974]

Find the prime factors of n

1. Choose an integer k that is a multiple of all integers less than some bound B; for

example, k ¼ B! or k ¼ lcm{1, 2, . . . , B}.

2. Randomly choose an integer a between 2 and n2 2.

3. Compute b ¼ ak (modulo n) and d ¼ gcd{n, b2 1}.

4. If d is a trivial divisor of n, start over again with another choice of a and/or k.

Figure 13.1 Eratosthenes’ measurement of Earth’s circumference.
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TABLE 13.1 Example 13.1

ODD

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121

123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161

163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201

m ¼ 3

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121

123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161

163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201

m ¼ 5

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121

123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161

163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201

m ¼ 7

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121

123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161

163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201

m ¼ 9

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121

123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161

163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201

m ¼ 11

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121

123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161

163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201

m ¼ 13

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121

123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161

163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201
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Example 13.2
n ¼ 53,467, a ¼ 3, k ¼ 840 ¼ lcm{i :1 � i � 8}. See Tables 13.3 and 13.4.

Example 13.3
n ¼ 34,163, a ¼ 2, k ¼ 840 ¼ lcm{i :1 � i � 8}. See Tables 13.5 and 13.6.

13.3.1 Explanation of Pollard’s p2 1 Method

Let B be larger than any prime factor of p2 1 where p is a prime factor of n. If k is the

least common multiple of all integers i with 1 � i � B, then by Fermat’s Little Theorem,

ak ¼ aC( p21) ¼ 1 (modulo p). This implies p divides both b2 1 ¼ (ak2 1) (modulo n)

and n, ensuring that d ¼ gcd{b2 1, n} is a nontrivial divisor of n.

Improved methods to factor require a diversion to review some number theory.

TABLE 13.2 List of Primes � 201

3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73

79 83 8997 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181

191 193 197 199

TABLE 13.3 Computing 34,944 5 3840 (modulo 53,467)

j k (k mod 2) k 
k � ðkmod 2Þ

2 d 32
j

(mod 53,467)

1 840 0 420 1 9

2 420 0 210 1 81

3 210 0 105 1 6,561

4 105 1 52 6,561 5,786

5 52 0 26 6,561 7,454

6 26 0 13 6,561 9,903

7 13 1 6 11,178 10,931

8 6 0 3 11,178 41,483

9 3 1 1 31,150 3,894

10 1 1 0 34,944 32,075

TABLE 13.4 Computing 421 5 gcd{34,943, 53,467}

j rj rjþ1 rjþ2

0 53,467 34,943 18,524

1 34,943 18,524 16,419

2 18,524 16,419 2,105

3 16,419 2,105 1,684

4 2,105 1,684 421

5 1,684 421 0

13.3 POLLARD’S P-1 METHOD 393



13.4 POLLARD’S r-ALGORITHM [POLLARD, 1978]

If positive integers x and y in ZN can be found so that 1 , d ¼ gcd{x2 y, N} , N, then d

is a factor of N.

Pairs (x, y) can be found by random trials, hence the nameMonte Carlo; accordingly,

a random function f mapping the integers in ZN2 {0} into themselves is selected. The

sequence x1, x2, . . . is determined by the rule

x1 ¼ 1

xi ¼ f (xi�1); for 2 � i , n:

�

As we observed in Chapter 9, the f (n) must repeat before N2 1 iterations and the

sequence

x1 ! x2 ¼ f (x1) ! x3 ¼ f (x2)! � � �

has

. A tail x1 ! x2 ¼ f (x1) ! � � � ! xk ¼ f (xk�1), and

. Then enters a loop or cycle xk ¼ f (xk�1) ! � � � ! xjþk ¼ f (xjþk�1) ¼ xk.

The name r chosen by Pollard for his algorithm is perfectly clear; the iterates of the

mapping f appear like the Greek letter r.
Unfortunately N ¼ O (2100) so that jþ k could be very large and we cannot wait � � �

and we do not have to, because of the Birthday Paradox.

TABLE 13.5 Computing 16,892 5 2840 (modulo 34,163)

j k (k mod 2) k 
k � ðk mod 2Þ

2 d 32
j

(mod 53,467)

1 840 0 420 1 4

2 420 0 210 1 16

3 210 0 105 1 256

4 105 1 52 256 31,373

5 52 0 26 256 29,099

6 26 0 13 256 21,846

7 13 1 6 24,007 24,769

8 6 0 3 24,007 4,207

9 3 1 1 11,621 2,415

10 1 1 0 16,892 24,515

TABLE 13.6 Computing 127 5 gcd{16,891, 34,163}

j rj rjþ1 rjþ2

0 34,163 16,891 381

1 16,891 381 127

2 381 127 0
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13.4.1 The Birthday Paradox

What is the probability Pr{En} that in a class of n students, that no day is the birthday of

two or more students?

Answer : Assuming that a year contains 365 days, the probability that no two

students in a class of n have the same birthday is

Pr{En} ¼ Pn ¼
365� 364� � � � � (365� (n� 1))

365n

¼ � 1�
1

365

� �
1�

2

365

� �
� � � 1�

n� 1

365

� �
Using the approximation

1� x 	 e�x; x small;

gives

Pn 	 ~Pn 	 e�
n(n�1)
2�365 :

Equivalently, 12 Pn (or 12 P̃n) is the probability that two (or more) students in a class of n

have the same birthday. The values of Pn and P̃n are tabulated in Table 13.7 for 10 � n� 53.

Using the approximation, P̃n ¼ 0.5 requires n 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2d
p

so that 12 P23 � 0.5. If

there were d instead of 365 birthdays in a year, P̃n ¼ 0.5 requires n 	 1:7741
ffiffiffi
d
p

:
However, there is another complication; if the Monte Carlo algorithm computes and

stores xi and then tests if xi [ {x0, x1, . . . , xi21}, then both the storage required and the

number of comparison operations will be onerous.

Robert Floyd [1967] published a cycle detecting algorithm that reasons as follows;

if the loop begins with xk and xjþk ¼ xk, then j must be a multiple of the cycle length.

Therefore, if two indices i1 , i2 are found such that xi1¼ xi2, then i22 i2 must be a multiple

of the cycle length. We can test for the first repeat by

1. Run two executions of the random function f evaluation in parallel computing xm and

x2m, and

2. Test xm 0 x2m.

TABLE 13.7 Probability of Distinct Birthdays in a Class of n Students

n Pn P̃n n Pn P̃n n Pn P̃n n Pn P̃n

10 0.883052 0.884009 11 0.858859 0.860119 12 0.832975 0.834584 13 0.805590 0.807592

14 0.776897 0.779334 15 0.747099 0.750008 16 0.716396 0.719811 17 0.684992 0.688939

18 0.653089 0.657587 19 0.620881 0.625945 20 0.588562 0.594195 21 0.556312 0.562512

22 0.524305 0.531062 23 0.492703 0.499998 24 0.461656 0.469464 25 0.431300 0.439588

26 0.401759 0.410487 27 0.373141 0.382264 28 0.345539 0.355007 29 0.319031 0.328792

30 0.293684 0.303680 31 0.269545 0.279718 32 0.246652 0.256942 33 0.225028 0.235375

34 0.204683 0.215028 35 0.185617 0.195903 36 0.167818 0.177990 37 0.151266 0.161273

38 0.135932 0.145726 39 0.121780 0.131318 40 0.108768 0.118010 41 0.096848 0.105761

42 0.085970 0.094524 43 0.076077 0.084250 44 0.067115 0.074887 45 0.059024 0.066382

46 0.051747 0.058682 47 0.045226 0.051734 48 0.039402 0.045483 49 0.034220 0.039879

50 0.029626 0.034869 51 0.025568 0.030405 52 0.021992 0.026440 53 0.018862 0.022929
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A word about “evaluation in parallel”; Table 13.8 shows what we do at each step of the

Floyd algorithm. Only two evaluations and one comparison are made at each step.

The speed-up in Floyd’s algorithm depends on the size of the tail and, of course, the

time until the first xm 0 x2m thereafter.

Pollard suggested the use of the polynomial functions f (x) ¼ (ax2þ b) (modulo N).

The following example appears in several Web sites, including www.csh.rit.edu/pat/
math/quickies/rho.

Example 13.4
xnþ1 ¼ (1024xn

2
þ 3767) (modulo 16,843,009) (Table 13.9). Some care must be taken in

finding the values in Table 13.9 if you do not have multiprecision modular arithmetic.

13.5 QUADRATIC RESIDUES

An integer x [ ZN is a quadratic residue of N if x has a square root modulo N; that is, if

there exists a value y ;
ffiffiffi
x
p

(modulo n) [ Zn that satisfies

y2 ¼ x (modulo n):

TABLE 13.9 gcd{N, jx2m2 xmj} in Example 13.4

m xm gcd{N, jx2m2 Xmj}

1 33,791 1

2 10,832,340 1

3 12,473,782 1

4 4,239,855 1

5 309,274 0

6 11,965,503 1

7 15,903,688 1

8 3,345,998 1

9 2,476,108 0

10 11,948,879 1

11 9,350,010 1

12 4,540,646 1

13 858,249 0

14 1,424,664 1

15 4,073,290 0

16 4,451,768 1

17 14,770,419 257

TABLE 13.8 Evaluations and Comparisons in Floyd’s
Cycle Detecting Algorithm

Step # Evaluate Compare

1 x2 ¼ f (x1) x1, x2

2 x3 ¼ f (x2), x4 ¼ f (x3) x2, x4

3 x5 ¼ f (x4), x6 ¼ f (x5) x3, x6

4 x7 ¼ f (x6), x8 ¼ f (x7) x4, x8
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The case of interest in cryptography is where N is the product of two prime numbers

N ¼ pq. The Chinese Remainder Theorem (Proposition 13.6) allows N ¼ pq to be

reduced to the study of each of the prime factors p and q of N. We now develop the

theory in this special case N ¼ p, a prime.

Proposition 13.2: If p is an odd prime:

13.2a For every positive integer x [ Zp, the equation y
22 x ¼ 0 (modulo p) has either 0

or 2 solutions.

13.2b The set QUAD[ p] of nonzero quadratic residues modulo p consists of the (p2 1)/
2 integers in Zp that are the values 12, 22, . . . , p� 1=2ð Þ

2 modulo p.

13.2c x [ QUAD[ p] if and only if x
p�1
2 ¼ 1(modulo p):

13.2d x � QUAD[ p] if and only if x
p�1
2 ¼ �1 (modulo p) ¼ ( p2 1) (modulo p).

Proof : If y2 ¼ x (modulo p), then ( y2 p)2 ¼ x (modulo p), proving

Proposition 13.2a; the assertion of Proposition 13.2b is obvious. By Fermat’s Little

Theorem

yp�1 � 1 ¼ 0 (modulo p)

for 1 � y , p. Writing

y p�1 � 1 ¼ y
p�1
2 � 1

� �
y

p�1
2 þ 1

� �
ðmodulo pÞ;

we see that every nonzero y [ Zp satisfies one of the two equations

y
p�1
2 � 1 ¼ 0 (modulo p) or y

p�1
2 þ 1 ¼ 0 (modulo p):

If x is a quadratic residue, then y2 ¼ x (modulo p), which implies

y
p�1
2 ¼ xp�1 ¼ 1(modulop).

Example 13.5
The quadratic residues of p ¼ 17 are given in Table 13.10

Remark: If p is an odd prime and q is primitive, then q
p�1
2 ¼ �1 (modulo p); that

is, q is not a quadratic residue of p.

Proof : As q is primitive, qk ¼ 1 (modulo p) with 0 , k , p implies k ¼ p2 1.

Propositions 12.1 and 13.2b show that there is a polynomial time algorithm to

test if x is a quadratic residue modulo p. Finding quadratic residues is another matter.

Although there is no polynomial time algorithm to find elements of QUAD[ p], there is

TABLE 13.10 The Quadratic Residues of p 5 17

x 1 2 4 8 9 13 15 16ffiffiffi
x
p

1,16 6,11 2,15 5,12 3,14 8,9 7,10 4,13
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a random search algorithm with acceptable search time and we now turn to an exposition

of it.

In Chapter 11, we discussed the Euclidean algorithm to compute d ¼ gcd{a, b},

the greatest common divisor d of integers a and b. If a(z) and b(z) are polynomials

whose coefficients are integers in Zp, then d(z) is the greatest common division of a(z)

and b(z)

. If the polynomial d(z) divides both a(z) and b(z); that is, polynomials A(z)

and B(z) exist so that a(z) ¼ A(z)d(z) (modulo p) and b(z) ¼ B(z)d(z) (modulo p),

and

. If the polynomial e(z) is also a divisor of a(z) and b(z), then d(z) divides e(z).

Although the greatest common divisor of integers a and b is unique, this is not the case for

the greatest common divisor of polynomials a(z) and b(z).

Example 13.6
If p ¼ 3, a(z) ¼ 2(z3þ z2þ zþ l), and b(z) ¼ 2z2þ zþ 2, then

a(z) ¼ (z2 þ 1)d(z), b(z) ¼ (zþ 1)d(z), d(z) ¼ 2(zþ 1),

and

a(z) ¼ 2(z2 þ 1)d(z), b(z) ¼ 2(zþ 1)d(z), d(z) ¼ (zþ 1):

Uniqueness is restored if d(z) is required to be a monic polynomial, one whose leading

coefficient is 1.

The Euclidean algorithm as defined in Chapter 11 (Proposition 11.5) is directly

extended for polynomial operations.

Proposition 13.3 (Euclidean Algorithm for Polynomials with Coefficients

in Zp): If a(z) and b(z) are two polynomials in z whose coefficients are in Zp, for the

sequence

r0(z) ¼ a(z)

r1(r) ¼ b(z)

r0(z) ¼ c1(z)r1(z)þ r2(z); 0 � deg(r2) , deg(r1)

r1(z) ¼ c2(z)r2(z)þ r3(z); 0 � deg(r3) , deg(r2)

..

.

rs�2(z) ¼ cs�1(z)rs�1(z)þ rs(z); 0 � deg(rs) , deg(rs�1)

rs�1(z) ¼ cs(z)rs(z)þ rsþ1(z); 0 � deg(rsþ1) , deg(rs)

13.3a The sequence is ultimately identically 0;

13.3b If s is the first index for which rsþ1(z) ¼ 0, then rs(z) ¼ gcd{a(z), b(z)};

13.3c If deg(a(z)) . deg(b(z)), the time to compute gcd{a(z), b(z)} is O((log2
deg(a(z)))3).
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Example 13.7
p ¼ 2, a(z) ¼ 1þ z4þ z5þ z6þ z8þ z9þ z10, b(z) ¼ lþ z2þ z3þ z5þ z6þ z9.

r0(z) ¼ a(z)

r1(z) ¼ b(z)

r0(z) ¼ (1þ z)r1(z)þ r2(z); r2(z) ¼ zþ z2 þ z6 þ z7 þ z8

r1(z) ¼ (zþ 1)r2(z)þ r3(z); r3(z) ¼ 1þ zþ z2 þ z5

r2(z) ¼ (z3 þ z2 þ zþ 1)r3(z)þ r4(z); r4(z) ¼ 1þ zþ z3

r3(z) ¼ (z2 þ 1)r4(z)þ r5(z); r5(z) ¼ 0

gcd{a(z), b(z)} ¼ 1þ zþ z3

The following algorithm finds
ffiffiffi
x
p

(modulo p) in randomized expected time 2.

Proposition 13.4 (Berlekamp’s Algorithm [Berlekamp, 1970]): Let p be an odd

prime and x [ QUAD[ p] , Zp
þ. Define

a(z) ¼ z2 � x

ak(z) ¼ a(z� k)

b(z) ¼ z
p�1
2 � 1:

To compute the square root of x

13.4a Choose k randomly in Zp
þ.

13.4b Compute dk(z) ¼ gcd{ak(z), b(z)}.

As the degree of ak(z) is two, the result is either

13.4b-1 dk(z) ¼ 1;

13.4b-2 dk(z) ¼ ak(z); or

13.4b-3 dk(z) = 1, ak(z) and deg(dk) ¼ 1.

13.4c In cases 13.4b-1 and 13.4b-2, choose another value for k and repeat steps 13.4a

and b.

If dk(z) has degree one, z
p�1
2 � 1 ¼ (z� k � h)R(z) and (k þ h)

p�1
2 � 1 ¼ 0; so that k þ h is

a quadratic residue of x.

Proposition 13.5: The probability that Steps 13.4a and b determine the square

root of x is approximately 1
2
. Therefore, the expected number of values of k that need to

be tested before success is 	2.

Proof : When will Step 13.4b be successful? There are four cases to be examined.

dk(z)

(kþ x) [ QUAD[p] (k2 x) [ QUAD[ p] ak(z)

(kþ x) � QUAD[p] (k2 x) � QUAD[ p] 1

(kþ x) [ QUAD[p] (k2 x) � QUAD[ p] (z2 kþ x)

(kþ x) � QUAD[p] (k2 x) [ QUAD[ p] (z2 k2 x)
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If k is such that exactly one of the two numbers kþ x or k2 x is a nonquadratic residue

modulo p, the Berlekamp algorithm will succeed. How likely is it to choose such a k?

Consider the mapping for integers k [ Zp

T : k! T(k) ¼
k þ x

k � x
; (k þ x)(k � x)�1, k = x,

is a one-to-one mapping because

T(k) ¼ T(k0) ,
k þ x

k � x
¼

k0 þ x

k0 � x

, x(k � k0) ¼ �x(k � k0)

, k ¼ k0:

T(k) ¼ 1 because this requires x ¼ 2x ¼ p2 x, implying p ¼ 2x. Thus, T maps the inte-

gers=x into all of Zp except for the single value 1 so that

Pr
K þ x

K � x
[ QUAD½ p


� �
	

1

2
,

where K denotes the random choice in Step 13.4a.

Finally, kþx
k�x

is a quadratic residue modulo p if and only if both or neither kþ x and

k2 x are quadratic residues modulo p, which completes the proof of Proposition 13.4.

Berlekamp’s Algorithm can be applied to compute quadratic residues modulo

N ¼ pq, where p and q are odd primes. If N is the product of two primes, there are four

solutions. Why four?

Proposition 13.6 (The Chinese Remainder Theorem)2:

13.6a m1, m2, . . . , mk are relatively prime integers;

13.6b a1, a2, . . . , ak are residues 0 � ai , mi for 1 � i � k.

There exists a unique integer x with 0 � x , M ; m1, m2, . . . , mk such that ai ¼ x

(modulo mi) for 1 � i � k.
Proof : If x2 y ¼ 0 (modulo mi) for 1 � i � k, then x is a positive multiple of M,

proving that there is at most one solution.

LetMi ¼
M
mi
; use the Euclidean algorithm to find the multiplicative inverseMiNi ¼ 1

(modulo mi) of Mi.

Then

MiNi (modulo mj) ¼
1, if j ¼ i

0, if j = i:

�
If

x ¼
Xk
i¼1

aiMiNi (modulo M)

then

aiMiNi (modulo mj) ¼
x (modulo mi), if j ¼ i

0, if j = i,

�
2A special case of the Chinese Remainder Theorem was stated by Sun-Tsŭ sometime between 200 B.C.E. and

200 A.D.
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so that

x ¼
Xk
i¼1

aiMiNi (modulo M)

satisfies ai ¼ x (modulo mi) for 1 � i � k.

The Chinese Remainder Theorem explains why there are four solutions to y2 ¼ x

(modulo N ) when N ¼ pq. If x1 is a quadratic residue of p, and x2 a quadratic residue

of q,

. There are two solutions y1 and p2 y1 to y2 ¼ x1 (modulo p), and

. There are two solutions y2 and q2 y2 to y2 ¼ x2 (modulo q).

Each of the four pairs

1. ( y1, y2) x ¼ y1 (modulo p) x ¼ y2 (modulo q)

2. ( p2 y1, y2) x ¼ p2 y1 (modulo p) x ¼ y2 (modulo q)

3. ( y1, p2 y2) x ¼ y1 (modulo p) x ¼ q2 y2 (modulo q)

4. ( p2 y1, p2 y2) x ¼ p2 y1 (modulo p) x ¼ q2 y2 (modulo q)

provides a solution to y2 ¼ x (modulo pq).

Proposition 13.7: The factors of N ¼ pq are determined by any two distinct sol-

utions to the congruence y2 ¼ u (modulo N ).

Proof : If z2 ¼ u (modulo N ) and x2 ¼ u (modulo N ), then

0 ¼ (z2 � x2) (modulo N) ¼ (z� x)(zþ x) (modulo N):

As two distinct solutions were assumed, neither of the factors (z2 x) or (zþ x) equal 0. It

follows that one factor must be divisible by p and the other by q.

13.6 RANDOM FACTORIZATION

We assume that N is both composite and odd. Several factorization methods are based on a

simple idea attributed to Dixon [1981]; if integers x and y can be found so that x2 ¼ y2

(modulo N ), then (x2 y)(xþ y) ¼ 0 (modulo N ). If x = +y (modulo N ), then either

gcd{N, x2 y} or gcd{N, xþ y} is a nontrivial factor of n. In fact, the factorizations

N ¼ ab are in 1–1 correspondence with pairs of integers s, t such that 0 ¼ (t22 s2)

(modulo N ) in the sense that t ¼ aþb
2

and s ¼ a�b
2

[Koblitz, 1987, Proposition V.3.1].

Example 13.8
372 ¼ 72 (modulo 55).

(37� 7)� (37þ 7) ¼ 30� 44 ¼ 0 (modulo 55)

5 ¼ gcd{55, 30}, 11 ¼ gcd {55, 44}:

To find pairs (x, y), random values of s in Zn are chosen, and u ¼ s2 (modulo N ) is com-

puted. If u is a perfect square (modulo N ), say u ¼ t2 (modulo N ), and both 0 = (s2 t)

(modulo N ) and 0 = (sþ t) (modulo N ), then we find a factor of N.

For example, if N ¼ 55 and s ¼ 13, then

132(modulo 55) ¼ 4 ¼ 22 (modulo 55)
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leading to the factorization

11 ¼ gcd{55, 13� 2}, 5 ¼ gcd{55, 13þ 2}:

Of course, if we have chosen s ¼ 12, then

122 (modulo 55) ¼ 34,

which is not a perfect square. However, we may lessen the effect of bad choice of s as

follows; randomly choose r integers {si} and compute their squares (modulo N ):

ui ¼ s2i (modulo N); 1 � i � r:

Write the prime factorizations of the {ui}

u1 ¼
Y
k

p
e1, k
k u2 ¼

Y
k

p
e2, k
k � � � ur ¼

Y
k

p
er, k
k

The strategy is to combine my multiplication for some of the {ui} so that the total exponent

of the terms included is even. In this way, the product of the terms included is a perfect

square.

Example 13.9 N ¼ 77

15 ¼ 132(modulo 77), 15 ¼ 3� 5

56 ¼ 212(modulo 77), 56 ¼ 23 � 7

60 ¼ 372(modulo 77), 60 ¼ 22 � 3� 5

70 ¼ 422(modulo 77), 2� 5� 7

yielding

15� 60 ¼ 22 � 33 � 52 ¼ 302 ¼ (13� 37)2 (modulo 77)

leading to the factorization

11 ¼ gcd{77, 481� 30}, 7 ¼ gcd{77, 481þ 30}:

Combining the {si : 1 � i � r} can be performed systematically as follows:

1. Find the prime factorization of ui ¼ s2i (modulo n) ¼
Q

j p
ej, i
j ;

2. If p1 , p2 , � � � , pm denote the set of primes arising in the factorization of the

{ui}, form the r � m array of exponents

G ¼

e1, 1 e1, 2 � � � e1, m
e2, 1 e2, 2 � � � e2, m

� � � � � � . .
.

� � �

er, 1 er, 2 � � � er, m

0BBB@
1CCCA

and try to find an r-vector x ¼ ðx1; x2; . . . ; xrÞ [ Zr;2 such that

(0, 0, 0, . . . , 0)|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
length m

¼ (x1, x2, . . . , xr)G (modulo 2):
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Using Gaussian elimination, calculate

v2 ; (si1 � si2 � � � siM ) (modulo N), u2 ; (u2i1 � u2i2 � � � u
2
iM
) (modulo N)

u2 ¼ v2 (modulo N)

The process is successful if u = +v (modulo N ); if not, choose another set {ui}.

13.7 THE QUADRATIC SIEVE (QS)

Dixon’s method may be inefficient, often requiring a large number of random terms {ui} in

order to construct a pair of integers x, y such that x2 ¼ y2 (modulo N ). The quadratic sieve

refines Dixon’s idea of searching only for pairs (x, y) close to m 	
ffiffiffiffi
N
p

. When m ¼ b
ffiffiffiffi
N
p
c

and x is small compared to m, then

q(x) ¼ (xþ m)2 � N ¼ x2 þ 2mxþ m2 � N 	 x2 þ 2mx

is of the order
ffiffiffiffi
N
p

and it is reasonable to expect the prime factors of q(x) to be small.

The following observation will be used; if a prime p divides q(x) so that

q(x) ¼ 0 (modulo p)

then

q(x) ¼ (xþ m)2 � N ¼ 0 (modulo p)

so that N is a quadratic residue of p and only these primes occur in the factorization of q(x).

The quadratic sieve consists of the following steps:

QS0. Select a Factor Base: The factor base S ¼ { p0, p1, p2, . . . , pt} contains p0 ¼ 21

and p1 ¼ 2; the remaining terms are the next t2 1 primes p2, p3, . . ., pt satisfying n
is a quadratic residue modulo pi.

QS1. Find Smooth x-Values: An integer x is smooth relative to the factor base S pro-

vided the factorization of q(x) ¼ (xþm)22 N involves only primes in S.
p0 ¼ 21 is included in S as q(x) may be negative.

QS2. For x ¼ 0, 1, 21, 2, 22, . . . , r, 2r with r � 402 60 compute q(x). Construct a

table whose ith row for i ¼ 1, 2, . . . contains the ith smooth value of x denoted

by xi and

qi ¼ (xi þ m)2 � N ¼
Yt
j¼0

p
ei, j
j , bi ¼ (xi þ m)2(modulo N), ai ¼ (xi þ m),

ei ¼ (ei, 0, ei, 1, . . . , ei, r):

Example 13.10
See Table 13.11.

QS3. Find Dependency Sets T: Use Gaussian elimination to determine subsets

T ¼ {i1, i2, . . . , ik} for which the exponent of each of the t primes in the product

bT ;
Yr
s¼1

bis ¼
Yr
s¼1

Yt
j¼1

p
eis , j
j
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is even

(0, 0, 0, . . . , 0)|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
r

¼ (ei1 þ ei2 þ � � � þ eir ) (modulo 2):

Defining

aT ¼
Yr
s¼1

ais ,
ffiffiffiffiffiffi
bT

p
¼
Yt
j¼1

p
‘j
j , ‘j ¼

1

2

Xr
s¼1

eis, j, 1 � j � t,

we have

bi (modulo n) ¼ (xi þ m)2(modulo n) ¼ a2i (modulo n):

This implies

a2T (modulo N) ¼ bT (modulo n):

QS4. Has a NonTrivial Factor Been Found? Use the Euclidean algorithm to compute

gcd{aT +
ffiffiffiffiffiffi
bT
p

}. If aT = +
ffiffiffiffiffiffi
bT
p

(modulo N), then either gcd{aT �
ffiffiffiffiffiffi
bT
p

, n} or

gcd{aT þ
ffiffiffiffiffiffi
bT
p

, n} is a nontrivial factor of n. If aT ¼+
ffiffiffiffiffiffi
bT
p

(modulo N), then

test another linear dependency T.

TABLE 13.11 Step QS2 in Example 13.10. (N 5 24,961, m 5 157, S 5 {21, 2, 3, 5, 13, 23, 41, 43, 47,
59, 61, 67, 71, 79, 83, 97})

i xi qi ai ei (mod 2)

1 0 2312 ¼ 223 � 3 � 13 157 (1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

2 1 3 ¼ 3 158 (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

3 21 2625 ¼ 254 156 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

4 2 320 ¼ 26 � 5 159 (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

5 22 2936 ¼ 223 � 32 � 13 155 (1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

6 3 639 ¼ 32 � 71 160 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

7 23 21245 ¼ 23 � 5 � 83 154 (1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

8 4 960 ¼ 26 � 3 � 5 161 (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

9 24 21552 ¼ 224 � 97 153 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

10 6 1608 ¼ 23 � 3 � 67 163 (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

11 26 22160 ¼ 224 � 33 � 5 151 (1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

12 7 1935 ¼ 32 � 5 � 43 164 (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

13 28 22760 ¼ 223 � 3 � 5 � 23 149 (1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

14 10 2928 ¼ 24 � 3 � 61 167 (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

TABLE 13.12 Step QS3 in Example 13.10

T
ffiffiffiffiffiffi
bT
p

(modulo n) aT (modulo n)

{1, 2, 5} 23 � 32 � 13 ¼ 936 157 � 158 � 155 ¼ 936

{2, 4, 8} 26 � 3 � 5 ¼ 960 158 � 159 � 161 ¼ 960

{3, 8, 11} 25 � 32 � 53 ¼ 11,039 156 � 161 � 151 ¼ 23,405
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Example 13.10 (Continued)
See Table 13.12. Only the set T ¼ {3, 6, 7} gives nontrivial factors

229 ¼ gcd{23,405� 11,039, 24,961} ¼ gcd{12,366, 24,961}

109 ¼ gcd{23,405þ 11,039, 24,961} ¼ gcd{9483, 24,961}:

13.8 TESTING IF AN INTEGER IS A PRIME

RSA encipherment requires prime numbers for its implementation. Fermat’s Little

Theorem is the basis for testing if n is a prime; if it is, then an21 ¼ 1 (modulo N ) for

every a for which 1 ¼ gcd{a, n}.

. If n is an odd composite number and 1 � a , n such that an21 = 1 (modulo N ),

then a is a Fermat witness to the compositeness of n.

. If n is an odd composite number and 1 � a , n such that an2l ¼ 1 (modulo N ), then

n is a pseudoprime to base a and a is a Fermat liar to the primality of n.

13.8.1 Fermat’s Primality Test

n is an odd integer and t � 1.

For i ¼ 1 to t do

(a) Choose a random integer a with 2 � a � n2 2

(b) Compute r ¼ an21 (modulo n)

(c) If r = 1, Return (“Composite”).

Return(“Prime”)

Fermat’s Primality Test may falsely conclude n is a prime. A composite integer n is a Car-

michael number (discovered by R. D. Carmichael in 1910) if an2l ¼ 1 (modulo N ) for

every a for which 1 � a � n2 1.

Proposition 13.8:

13.8a n is a Carmichael number if and only if

– n is square-free and

– p 2 1 divides n 2 1 for every prime divisor of n;

13.8b Each Carmichael number has at least three distinct prime factors;

13.8c There are an infinite number of Carmichael numbers;

13.8d The smallest Carmichael number is n ¼ 561 ¼ 3 � 11 � 17 and � � � for Triple

Jeopardy; there are only 105,212 Carmichael numbers �1015.

Suppose n is composite; a primality test that computes the value an21 (modulo N ) until an

a is found yielding a residue = 1 may fail for two reasons:

. n might be a Carmichael number, or

. The computation could be infeasible if the first a for which computing

an21 (modulo N ) is not satisfied is too large.

Proposition 13.9 (Miller–Rabin) [Rabin, 1976]: Let N be an odd prime,

n2 1 ¼ 2rs where r is odd and a is any integer such that 1 ¼ gcd{a, n}. Then either

ar¼1 (modulo N ) or a2
j

r ¼ 21 (modulo N ) for some j with 0 � j � s2 1.
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Let N be an odd composite number, N2 1 ¼ 2rs where r is odd and a is integer in

[l, N2 1].

. If ar = 1 (modulo N ) or a2
jr

= 21 (modulo N) for every j with 0 � j � s2 1, then

a is a strong witness to the compositeness of N.

. Otherwise, if ar¼1 (modulo N ) or a2
jr ¼ 21 (modulo N ) for some j with 0 � j �

s2 1, then N is a strong pseudoprime to the base a to the compositeness of a.

13.8.2 Miller–Rabin Primality Test

MR1. Write n2 1 ¼ 2sr, where r is odd.

MR2. Choose a random integer a with 2 � a � N2 2.

MR3. Compute b ¼ ar (modulo N ).

MR4. If b ¼ 1 (modulo N ), then RETURN(“prime”) and END.

MR5. For i ¼ 0 to s2 l do

MR6a. If b ¼ 21 (modulo N ), then RETURN(“prime”) and END.

MR6b. Else, compute b2 (modulo N ).

MR7. RETURN(“composite”).

END.

Proposition 13.10:

13.10a. If N is an odd prime, the output of the Miller–Rabin test is RETURN (“prime”).

13.10b. If N is an odd composite number, the probability that the Miller–Rabin test fails

RETURN(“prime”) for t independent values of a is less than (1
4
)t.

Proof of 13.10a: Assume the contrary is true, meaning that the squaring operation

b2 ! b (modulo N ) in Step MR6b is performed s21 times producing the sequence of

values

ar(modulo N) a2r(modulo N) � � � a2
s�1r(modulo N);

none of which equal 21. By Fermat’s Little Theorem, 1 ¼ a2
s

r (modulo N ) ¼ an21

(modulo N ) so that a2
s21

r (modulo N ) = 2 1) 1 ¼ a2
s21

r (modulo N ). Repeating this

argument, we conclude that each of the numbers

ar (modulo N) a2r (modulo N) � � � a2
s�1r (modulo N):

must be equal to 1, which means the Miller–Rabin test would have ended after Step MR4.

Example 13.11
Miller–Rabin test for N ¼ 229, N2 1 ¼ 22 � 57

a ¼ 225 y ¼ ar (modulo N) ¼ 1 prime

a ¼ 47 y ¼ ar (modulo N) ¼ 107 prime

a ¼ 151 y ¼ ar (modulo N) ¼ 1 prime

a ¼ 101 y ¼ ar (modulo N) ¼ 122 prime

a ¼ 52 y ¼ ar (modulo N) ¼ 107 prime

a ¼ 21 y ¼ ar (modulo N) ¼ 107 prime
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a ¼ 180 y ¼ ar (modulo N) ¼ 1 prime

a ¼ 189 y ¼ ar (modulo N) ¼ 107 prime

a ¼ 79 y ¼ ar (modulo N) ¼ 107 prime

a ¼ 126 y ¼ ar (modulo N) ¼ 1 prime

Example 13.12
Miller–Rabin test for 231 ¼ 3 � 77; n ¼ 231, n2 1 ¼ 21 � 115.

a ¼ 227 y ¼ ar (modulo N) ¼ 164 composite

a ¼ 47 y ¼ ar (modulo N) ¼ 89 composite

a ¼ 152 y ¼ ar (modulo N) ¼ 89 composite

a ¼ 101 y ¼ ar (modulo N) ¼ 164 composite

a ¼ 53 y ¼ ar (modulo N) ¼ 221 composite

a ¼ 21 y ¼ ar (modulo N) ¼ 21 composite

a ¼ 182 y ¼ ar (modulo N) ¼ 98 composite

a ¼ 190 y ¼ ar (modulo N) ¼ 1 prime

a ¼ 79 y ¼ ar (modulo N) ¼ 142 composite

a ¼ 127 y ¼ ar (modulo N) ¼ 43 composite

Let n be odd and n2 l ¼ 2sr with r odd. An integer a with 2 � a � n22 is a witness to the

compositeness of n if the Miller–Rabin test fails to RETURN(“prime”); that is,

1. ar (modulo N ) = 1, and

2. a2
jr

(modulo N) = 1 for all j with 1 � j , s.

Proposition 13.11 (Gary Miller) [Mil76]: If n is composite and the Generalized

Riemann Hypothesis holds, there exists a constant c such that there exists an a that is a

witness to the compositeness of n with 1 , a � c(log2 n)
2.3

It has been shown that c may be taken to be 2, but more is true; Agrawal, Kayal and

Saxena [2004] have published a polynomial-time algorithm to test primality with no

assumptions.

13.9 THE RSA CHALLENGE

RSA Data Security Incorporated (Redwood City) supplies encryption protocols using the

RSA algorithm. As the strength of RSA appears to depend upon the intractability of fac-

toring n ¼ pq for suitably large prime numbers, the RSA Factoring Challenge was set up

in March 1991; it consists of a list of numbers, each the product of two primes of roughly

comparable size. There are 42 numbers in the challenge; the smallest length is 100 digits

and they increase in steps of 10 digits to 500 digits.

3The Riemann zeta function is denned for complex z by z(z) ¼
P1

n¼1 n
�z. The series converges when Re(z) .

1. The zeta function may be continued analytically to a domain in the complex plane including the region

0,Re(z) , 1.

The Riemann Hypothesis: All zeros of z(z) lie on the line Re(z) ¼ 1
2
.

The Generalized Riemann Hypothesis replaces z(z) by the Dirichlet L-series and makes the same

assertion about zeros.

13.9 THE RSA CHALLENGE 407



Table 13.13 gives some of the results in the RSA Challenge. RSA-129 (Fig. 13.2)

appears in Martin Gardner’s article [Gardner, 1977] in Scientific American; the factorization

of RSA-129 was posed as the first RSA Challenge with a prize of $100 for the solution.

The message THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE4 was enci-

phered with RSA-129 using the public key e ¼ 9007 and private key

d¼106698614368578024442868771328920154780709906633937862801226224496631

063125911774470873340168597462306553968544513277109053606095

The factorization of RSA-129 used the double large prime variation of the multiple poly-

nomial quadratic sieve factoring method. The sieving step took approximately 5000 mips

years, and was carried out in 8 months by about 600 volunteers from more than 20

countries, on all continents except Antarctica. Combining the partial relations produced

a sparse matrix of 569,466 rows and 524,338 columns. This matrix was reduced to a

dense matrix of 188,614 rows and 188,160 columns using structured Gaussian elimination.

Ordinary Gaussian elimination on this matrix, consisting of 35,489,610,240 bits (4.13

gigabyte), took 45 hours on a 16K MasPar MP-1 massively parallel computer. The first

three dependencies all turned out to be “unlucky” and produced the trivial factor

RSA-129. The fourth dependency produced the above factorization.

13.10 PERFECT NUMBERS AND THE MERSENNE
PRIMES

The integer n is perfect if the sum of all of its divisors is equal to 2n. Mystical interpret-

ations were given to perfect numbers.5 The first four perfect numbers are

6 ¼ 2 � (222 1)

28 ¼ 22 � (232 1)

Figure 13.2 RSA-129.

TABLE 13.13 The RSA Challenge

Number Date Factored

RSA-100 April 1991

RSA-110 April 1992

RSA-120 June 1993

RSA-129 April 1994

RSA-130 April 1996

RSA-140 February 1999

RSA-155 August 1999

4ossifrage n., bone-breaking.
5The Christian theologian Saint Augustine (354–430) described the perfection of the number 6, writing

“Six is a number perfect in itself, and not because God created all things in six days; rather, the the inverse is

true, that God created all things in six days, because this number is perfect.”
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496 ¼ 24 � (252 1)

8128 ¼ 26 � (27 21).

The perfect numbers listed above are all even; it is not known if odd perfect numbers exist.

In the third century B.C., Euclid proved that if p and 2p 2 1 are prime, then 2p21(2p 2 1) is

perfect. Euler proved in the eighteenth century that every even perfect number was of this

form.

Marin Mersenne (1588–1648) was a monk in the Order of Minims near Paris.

He taught philosophy and was interested in science and mathematics. If 2n 21 (n . 2)

is a prime, then n must be a prime; for if N ¼ st, then 2st21 ¼ (2s 2 1) (2s(t21)
þ

2s(t22)
þ � � � þ 1). In 1644 Mersenne conjectured that 2p2 1 is a prime for p ¼ 2, 3, 5,

7, 13, 17, 19, 31, 67, 127, 257 and these were the only solutions for p � 257. It is unlikely

that Mersenne could have tested all of these numbers in 1644 and his conjecture is not

completely correct.

Table 13.14 lists 43 known Mersenne numbers, the last discovered on December 15,

2005, by Dr Curtis Cooper and Dr Steven Boone, professors at Central Missouri State

University. The table includes the value of p(Mp ¼ 2p2 1), the year of the discovery of

Mp, and the number of digits D(Mp) in Mp.

13.11 MULTIPRECISION ARITHMETIC

The 43rd Mersenne prime contains 9,152,052 digits, not the kind of number we are used to

writing out, much less manipulating. Although such numbers usually do not arise in

day-to-day computations, some public-key cryptosystems require numbers with several

hundred digits. Floating-point computations arising in navigational calculation also

require great precision. The basic modular operations addition, multiplication, and div-

ision on numbers with a very large number of digits use a pencil and paper, a technique

learned in elementary school.

Each n-digit base-b number is represented as a string of characters x :xn21,xn22 . . .
x1x0 where xi is a base-b digit. Addition (multiplication and divison) is performed using

TABLE 13.14 Mersenne Primes

# p Year D(Mp) # p Year D(Mp) # p Year D(Mp)

1 2 2 1 3 3 1 5 2

4 7 3 5 13 1456 6 6 17 1588 6

7 19 1588 6 8 31 1772 10 9 61 1883 19

10 89 1911 27 11 107 1914 33 12 127 1876 39

13 521 1952 157 14 607 1952 183 15 1,279 1952 386

16 2,203 1952 684 17 2,281 1952 687 18 3,217 1957 969

19 4,253 1961 1,281 20 4,423 1961 1,332 21 9,689 1963 2,917

22 9,941 1963 2,993 23 11,213 1963 3,376 24 19,937 1971 6,002

25 21,701 1978 6,533 26 23,209 1979 6,987 27 44,497 1979 13,395

28 86,243 1982 25,962 29 110,503 1988 33,265 30 132,049 1983 39,751

31 216,091 1985 65,050 32 756,839 1992 227,832 33 859,433 1994 258,716

34 1,257,787 1996 378,632 35 1,398,269 1996 420,921 36 2,976,221 1997 895,932

37 3,021,377 1998 909,526 38 6,972,593 1999 2,098,960 39 13,466,917 2001 4,053,946

40 20,996,011 2003 6,320,430 41 24,036,583 2004 25,964,951 42 25,964,951 2005 7,816,230

43 30,402,457 2005 9,152,052
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digit-by-digit operations. For example, addition

xn�1xn�2 � � � x1x0
þ yn�1yn�2 � � � y1y0

znzn�1zn�2 � � � z1z0

is carried out in a single DO-loop.

Subtraction, multiplication, and division are implemented similarly. Division is the

most tedious, producing a quotient and a remainder. TheMontgomery reduction is used to

make the computation of am (modulo N ) more efficient.

Multiprecision modular arithmetic is needed in cryptography, for example, to

implement RSA encipherment. Modular operations combine an addition/multiplication

and division step. The parameters of the multiple-precision procedures include

m: the base of the operation;

a: a multiple-precision integer as a string of integers (itype);

Na: the length parameter of the string a.

Multiple-precision procedures expect a multiprecision base-m itype parameter a in reverse

order a ¼ (a0, a1, . . . , aNa), with the least-significant digit on the left. The calling program
must therefore read character strings x : xn21xn22. . . x1x0 (without intervening separators

between the characters) with the most-significant digit on the left, translate each character

to an integer variable, and reverse the order of the integers.

The syntax of multiprecision procedures is M_FUNCTION(var : m, Na,� � � integer;

var : a, � � � itype) (Table 13.15).

13.12 PRIME NUMBER TESTING AND
FACTORIZATION PROBLEMS

Problem 13.1 requires a program to implement the Miller–Rabin Primality Test.6 Your

implementation should use at least T ¼ 10 random a-values. Your solution should

include a trace of your Miller–Rabin primality test as in Section 13.7; my trace for the

composite number 42,091 is given in Table 13.16.

Problems 13.2 to 13.12 are examples of factorization of the integer N ¼ pq using the

quadratic residue sieve to find the two prime factors p, q. Factorization using the quadratic

residue sieve involves four phases:

TABLE 13.15 Multiprecision Parameters and Operations

Name Parameters Operation

M_ADD m, Na, Nb, Nc; a, b, c a ¼ bþ c

M_SUB sign, m Na, Nb, Nc, a, b, c a ¼ (sign) (a2 b)

M_MUL m, Na, Nb, Nc, a, b, c a ¼ b � c

M_DIV m, Na, Nb, Nq, Nr, a, b, q, r a ¼ (q � b)þ r

M_COMPARE Na, Nb, cresult, a, b cresult ¼ 1 if a � b
0 if a , b

�
M_toBIN Na, Nb, a, b translation of a in (base-m) to be (base-2)

M_MODEXP m, Na, Nb, Nc, Nd, a, b, c, d d = a^ b (modulo c)

6You may write your own random number generator to use in the Rabin–Miller test to supply the required

random a-values. I use the random number generator described in the paper by L’Ecuyer (1988).
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QS1. Select a factor base S ¼ { p0, p1, p2, p3, . . . , pt} with p0 ¼ 21 and p1 ¼ 2;

the next t 21 odd primes p2, p3, . . . , pt are those primes { pi} for which

n is a quadratic residue modulo pi. Section 13.1 provides as list of the

primes � 199.

Query: How do you test if N is a quadratic residue modulo a prime p?

Answer: By checking if 1 ¼ N
p�1
2 ðmodulo pÞ.

QS2. For x ¼ 0, 1,2 1, 2,22, . . ., r,2 r with r 	 400, compute

q(x) ¼ (xþ m)2 � n, b(x) ¼ (xþ m)2 (modulo N),

a(x) ¼ (xþ m) (modulo N)

with m ¼ b ffiffiffiffi
N
p
c. Make a table whose ith row (i ¼ 1, 2, . . .) contains i, xi and

qi ; (xi þ m)2 � N ¼
Yt
s¼0

pei, ss , ai ; xi þ m, ei ; (ei, 0, ei, 1; . . . ; ei, t):

N ¼ m ¼ S ¼ {21, 2,. . .}

i xi qi ai ei (modulo 2)

xi is the ith value of x for which q(x) is smooth relative to the factor base S; that is,
the factorization of q(x) only involves primes in S.

QS3. Search for sets T ¼ {i1, i2, . . . , im} for a linear dependency; that is, a collection of

rows in the table for which the exponent in each of the t primes in the product

bT ;
Yr
s¼1

bis , bis ; (xis þ m)2 (modulo N) ¼
Yt
j¼1

p
eis , j
j

is even

(0, 0, 0, . . . , 0)|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
r

¼ (e i1
þ e i2

þ � � � þ e ir
) (modulo 2):

TABLE 13.16 Trace for Composite Number 42,091

N ¼ 42,091 42,090 ¼ 2 � 21,045

a ¼ 42,087 y ¼ ar (Modulo 42091)¼ 25073 composite

a ¼ 8,564 y ¼ ar (Modulo 42091)¼ 22434 composite

a ¼ 28,115 y ¼ ar (Modulo 42091)¼ 41152 composite

a ¼ 18,617 y ¼ ar (Modulo 42091)¼ 30353 composite

a ¼ 9,503 y ¼ ar (Modulo 42091)¼ 28148 composite

a ¼ 3,657 y ¼ ar (Modulo 42091)¼ 35965 composite

a ¼ 33,571 y ¼ ar (Modulo 42091)¼ 40788 composite

a ¼ 35,144 y ¼ ar (Modulo 42091)¼ 4124 composite

a ¼ 14,510 y ¼ ar (Modulo 42091)¼ 5900 composite

a ¼ 23,374 y ¼ ar (Modulo 42091)¼ 23031 composite
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Defining

aT ¼
Yr
s¼1

ais ,
ffiffiffiffiffiffi
bT

p
¼
Yt
j¼1

p
‘j
j , ‘j ¼

1

2

Xr
s¼1

eis, j, 1 � j � t

we have

bi (modulo N) ¼ (xi þ m)2 (modulo N) ¼ a2i (modulo N)

so that

a2T (modulo N) ¼ bT (modulo N):

Display your results in a tabular form.

T
ffiffiffiffiffiffi
bT
p

(modulo N) aT (modulo N)

QS4. If aT = +
ffiffiffiffiffiffi
bT
p

(modulo N), then d ¼ gcd{aT �
ffiffiffiffiffiffi
bT
p

, Ne ¼ 9007} or

d ¼ gcd{aT þ
ffiffiffiffiffiffi
bT
p

, N} is a nontrivial factor of N, the algorithm ends.

Otherwise, if aT ¼+
ffiffiffiffiffiffi
bT
p

(modulo N), then return to QS2 and test another linear

dependency T.

13.2 Write a program to implement the quadratic sieve and use it to factor N ¼ 4601.

13.3 Write a program to implement the quadratic sieve and use it to factor N ¼ 8633.

13.4 Write a program to implement the quadratic sieve and use it to factor N ¼ 66,887.

13.5 Write a program to implement the quadratic sieve and use it to factor N ¼ 141,467.

13.6 Write a program to implement the quadratic sieve and use it to factor N ¼ 200,819.

13.7 Write a program to implement the quadratic sieve and use it to factor N ¼ 809,009.

13.8 Write a program to implement the quadratic sieve and use it to factor N ¼ 2,043,221.

13.9 Write a program to implement the quadratic sieve and use it to factor N ¼ 4,472,529.

13.10 Write a program to implement the quadratic sieve and use it to factor N ¼ 16,843,009.

13.11 Write a program to implement the quadratic sieve and use it to factor N ¼ 19,578,079.

13.12 Write a program to implement the quadratic sieve and use it to factor N ¼ 92,296,873.
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CHA P T E R14
THE DISCRETE LOGARITHM

PROBLEM

THE CRY P TOGRA PH I C strength of the RSA algorithm appears to

depend on the computational infeasibility of factoring very large numbers. This chapter

describes the discrete logarithm problem (DLP), which is intimately related to both

factoring and the problem of key exchange. Several solution methods will be described.

14.1 THE DISCRETE LOGARITHM PROBLEM
MODULO p

If p is a prime, the set Zp ¼ {0, 1, 2, . . . , p2 1} is a field. The nonzero elements

Zp
þ ; Zp2 {0} form a cyclic group, meaning there exists a q [ Zp

þ called a primitive

root of p or a generator of Zp
þ such that every nonzero element of the field is a power

qk (modulo p). The sequence of powers q, q2, . . . , qp21 computed modulo p are a permu-

tation of the integers 1, 2, . . . , p2 1.

Example 14.1
p ¼ 11; q ¼ 2, 6, 7, and 8 are the only primitive roots of 11 (Table 14.1).

The discrete logarithm problem (modulo p) (DLP) is

Given: A prime p, q a primitive root of p and y ¼ qx (modulo p);

Find: x ; logqy (modulo p).

A solution to the DLP modulo p can be found by exhaustive trial; that is, computing

qx (modulo p) for x ¼ 1, 2, . . . until an x is found for which y ¼ qx (modulo p).

This solution, which requires O( p) steps, is not computationally practical for

p . 1010. A feasible solution technique is one for which a solution is found in

O(log2
k p) steps.

The generalized discrete logarithm problem in a group G is

Given: G a cyclic group of order n, q a generator of G, and y ¼ qx;

Find: x ¼ logq y kGl.

We need a slightly more elaborate version of Fermat’s Little Theorem than that given as

Proposition 12.2.

Computer Security and Cryptography. By Alan G. Konheim
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Proposition 14.1 (Fermat’s Little Theorem): If p is a prime

14.1a ap21 ¼ 1 (modulo p) for every a for which 1 ¼ gcd{a, p};

14.1b ap ¼ a (modulo p) for every (integer) a;

14.1c If r ¼ s (modulo p2 1) and 1 ¼ gcd{a, p}, then ar ¼ as (modulo p);

14.1d If ar ¼ as (modulo p) and a is a primitive root of p, then r ¼ s (modulo p2 1).

Proof : The binomial coefficient
p

k

� �
is divisible by p for 0 , k , p so that the

binomial theorem

x p ¼ (x� 1þ 1) p ¼
Xp
k¼0

p

k

� �
(x� 1)k

leads to the recurrence

xp ¼ ½(x� 1) p þ 1
 (modulo p),

which may be written

(x� 1) p ¼ x� 1 (modulo p):

Induction then proves Proposition 14.1a.

If ap21 ¼ 1 (modulo p), then ap ¼ a (modulo p) without the condition 1¼
gcd{a, p}-proving Proposition 14.1b.

If r ¼ s (modulo p2 1) and 1 ¼ gcd{a, p}, then

ar�s ¼ aC( p�1) ¼ 1(modulo p)

by Proposition 14.1a, proving Proposition 14.1c. Conversely, if ar ¼ as (modulo p), then

ar�s ¼ aC( p�1)þt ¼ at(modulo p):

If a is primitive, at (modulo p)) t ¼ 0, completing the proof.

14.2 SOLUTION OF THE DLP MODULO p GIVEN
A FACTORIZATION OF p2 1

The Pohlig–Hellman Algorithm [Pohlig and Hellman, 1978] for solving the discrete

logarithm problem modulo p assumes the factorisation of p2 1 is known:

TABLE 14.1 qk (modulo p), 1 � k < p

q 1 2 3 4 5 6 7 8 9 10

2 2 4 8 5 10 9 7 3 6 1

3 3 9 5 4 1 3 9 5 4 1

4 4 5 9 3 1 4 5 9 3 1

5 5 3 4 9 1 5 3 4 9 1

6 6 3 7 9 10 5 8 4 2 1

7 7 5 2 3 10 4 6 9 8 1

8 8 9 6 4 10 3 2 5 7 1

9 9 4 3 5 1 9 4 3 5 1

10 10 1 10 1 10 1 10 1 10 1
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Given: p2 1 ¼ p1
n1 p2

n2 . . . pk
nk, q a primitive root of p, and y ¼ qx (modulo p);

Find: x ¼ logp y (modulo p).

The important observation is that it suffices to solve the DLP if x is replaced by its residues

modulo pi
ni for each prime factor. Write the base-pi

ni representation of x for the prime factor

pi
ni of p2 1:

x ¼ x( pnii )þ Cpnii

x( pnii ) ; x (modulo pnii )

¼ xi,0 þ xi,1pi þ xi,2p
2
i þ � � � þ xi,ni�1p

ni�1
i , 0 � xi, j , pi; 0 � j , ni � 1,

where C is some (positive) integer. Then, for 1 � i � k

y
p�1
pi (modulo p) ¼ q

x
p�1
pi (modulo p)

¼ q
½x( pnii )þ Cpnii 


p�1
pi (modulo p)

¼ q
x( pnii )

p�1
pi (modulo p)� qCp

ni
i
(p�1) (modulo p):

As ni2m . 0, Cpi
ni2m is an integer, Fermat’s Little Theorem gives 1 ¼ qCpi

ni (p-1)

(modulo p) so that

y
p�1
pi (modulo p) ¼ q

x(pnii )
p�1
pi (modulo p):

The Pohlig–Hellman Algorithm determines the base-pi digits {xi, j} for each prime

factor pi and combines them using the Chinese Remainder Theorem to find x.

14.2.1 Pohlig–Hellman Algorithm Precomputation

Evaluate gi, j ¼ q
j
p�1
pi (modulo p) for 0 � j , ni and 1 � i � k:

The Pohlig–Hellman Algorithm Calculation for the Factor pi
ni

For 1 � i � k and m ¼ 0 to ni2 1 do

S1. Calculation of xi,m; write

y ¼ q½xi, mp
m
i þ xi, mþ1p

mþ1
i þ � � � þ xi, ni�1p

ni�1
i 
 (modulo p)

y

p�1

pmþ1
i (modulo p) ¼ q

xi, mp
m
i

p�1

pmþ1
i (modulo p)� qD(p�1)(modulo p)

where D ¼
xi, mþ1p

mþ1
i þ � � � þ xi, ni�1p

ni�1
i

pmþ1i

. But, D is an integer, so that

1 ¼ qD(p�1)(modulo p)

by Fermat’s Little Theorem, yielding

y

p�1

pmþ1
i (modulo p) ¼ q

xi, m
p�1
pi (modulo p):
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The pi possible values for q
xi, m

p�1
pi (modulo p) corresponds to the pi possible values of xi,m;

the precomputation of a table containing gi, j ¼ q
j
p�1
pi for 0 � j , pi and 1 � i � k is now

used to determine xi,m.

S2. Replace y by yq2xi,mpi
m

(modulo p), m by mþ 1, and return to S1.

Example 14.2
p ¼ 8101, q ¼ 6. Find x ¼ logq 7531 (modulo p).

p� 1 ¼ 8100 ¼ 22 � 34 � 52

q�1 ¼ 6751
gi, j ¼ q

j
p�1
pi (modulo p), 0 � j , pi; 1 � i � 3:

Table 14.2 shows the results of the Pohlig-Hellman solution in Example 14.2.

The Pohlig–Hellman Calculation for the First Prime Factor 22 of p2 1 in
Example 14.2

x( pn11 ) ¼ x (modulo 22) ¼ x1,0 þ x1,12

m ¼ 0

S1. y
p�1
2 (modulo p) ¼ 75314050(modulo 8101) ¼ �1 ) x1,0 ¼ 1

S2. y ¼ 7531! y ¼ (7531 � q21) (modulo 8101) ¼ 8060

m ¼ 1

S1. y
p�1
2 (modulo p) ¼ 80602025 (modulo 8101) ¼ 1 ) x1,1 ¼ 0

x1 ¼ 1þ (0 � 2)

The Pohlig–Hellman Calculation for the Second Prime Factor 34 of p2 1 in
Example 14.2

x( pn22 ) ¼ x(modulo 34) ¼ x2,0 þ x2,13þ x2,33
2 þ x2,23

3

m ¼ 0

S1. y
p�1
3 (modulo p) ¼ 75312700 (modulo 8101) ¼ 2271 ) x2,0 ¼ 2

S2. y ¼ 7531! y ¼ (7531 � q22) (modulo 8101) ¼ 6735

m ¼ 1

TABLE 14.2

j p1 ¼ 2 p2 ¼ 3 p3 ¼ 5

0 1 1 1

1 21 5883 3547

2 2217 356

3 7077

4 5221
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S1. y
p�1

32 (modulo p) ¼ 6735900(modulo 8101) ¼ 1 ) x2, 1 ¼ 0

S2. y ¼ 6735 ! y ¼ (6735 � q20) (modulo 8101) ¼ 6735

m ¼ 2

S1. y

p�1

33 (modulo p) ¼ 6735300(modulo 8101) ¼ 2271 ) x2,2 ¼ 2

S2. y ¼ 6735 ! y ¼ (6735 � q218) (modulo 8101) ¼ 6992

m ¼ 3

S1. y
p�1
34 (modulo p) ¼ 6992100(modulo 8101) ¼ 5883 ) x2, 3 ¼ 1

x2 ¼ 47 ¼ 2þ ð0� 3Þ þ ð2� 32Þ þ ð1� 33Þ

The Pohlig–Hellman Calculation for the Third Prime Factor 52 of p2 1 in
Example 14.2

x( pn33 ) ¼ x (modulo 52) ¼ x3,0 þ x3,15

m ¼ 0

S1. y
p�1
5 (modulo p) ¼ 75311620 (modulo 8101) ¼ 5221 ) x3,0 ¼ 4

S2. y ¼ 7531! y ¼ (7531 � q24) (modulo 8101) ¼ 7613

m ¼ 1

S1. y
p�1
52 (modulo p) ¼ 7613900 (modulo 8101) ¼ 356 ) x3, 1 ¼ 2

x3 ¼ 14 ¼ 4þ (2 � 5)

14.2.2 Using the Chinese Remainder Theorem in
Example 14.2

x ¼ 1(modulo 22)

x ¼ 47(modulo 34)

x ¼ 14(modulo 52)

M1 ¼ 2025 ¼ 34 � 52

M2 ¼ 100 ¼ 22 � 52

M3 ¼ 324 ¼ 22 � 34

The Euclidean Algorithm gives

N1 ¼ 1 ¼ M�11 (modulo 22)

N2 ¼ 64 ¼ M�12 (modulo 34)

N3 ¼ 24 ¼ M�13 (modulo 52)

x ¼ 6889 ¼ ½(1� 2025� 1)þ (47� 100� 64)þ (14� 324� 24)
(modulo 8100)
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14.3 ADELMAN’S SUBEXPONENTIAL ALGORITHM
FOR THE DISCRETE LOGARITHM PROBLEM
[ADELMAN, 1979]

A number x is smooth relative to a bound N if the prime factorization of x ¼ p1
n1 p2

n2. . . ps
ns

involves only prime numbers satisfying pi � N.

Proposition 14.2 (Adelman’s Algorithm for the Discrete Logarithm Problem):

Given: p a prime, q a primitive root of p, and x ¼ qk (modulo p),

A bound N( p) and primes p1 , p2 , � � � , pm � N( p);

Find: k.

S1. Find an integer R by random sampling such that B is smooth relative to N( p)

B ¼ (n1, n2, . . . , nm)

B ¼ xR(modulo p) ¼ pn11 pn22 . . . pnmm

1 ¼ gcd{R, p� 1}

S2. Find integers Ri for 1 � i � m by random sampling such that Ai is smooth relative to

N( p).

Ai ¼ qRi(modulo p) ¼ p
ni, 1
1 p

ni, 2
2 . . . pni, mm

and the vectors
Ai ¼ (ni, 1, ni, 2, . . . , ni,m)

span the m-dimensional vector space over Zp.

S3. Use Gaussian elimination to write

B ¼
Xm
i¼1

aiAi

 !
(modulo p� 1):

Then

B ¼ xR(modulo p) ¼
Ym
j¼1

p
nj
j ¼

Yn
from j¼1

p

Pm
i¼1

aini, j

� �
(modulo p�1)

j (modulo p)

B ¼
Ym
i¼1

Ym
j¼1

p
nj
j

 !ai

(modulo p)

B ¼
Ym
i¼1

Aai
i (modulo p)

B ¼
Ym
i¼1

qRiai(modulo p)

Raising both sides of the equation B ¼ xR (modulo p) to the power S ¼ R21 (modulo

p) gives

x ¼
Ym
i¼1

qRiSai (modulo p)

Adelman proved.

Proposition 14.3: The running time of the algorithm in Proposition 14.2 is

RTIME ¼ 2O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log p log log p
p� �

if N(p) ¼ 2O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log p log log p
p� �

:
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14.4 THE BABY-STEP, GIANT-STEP ALGORITHM

The baby-step, giant-step algorithm (Shank’s Algorithm) [Shanks, 1962] makes a time/
memory tradeoff to solve the DLP in the cyclic group G of order n.

Suppose q is a generator of G and m ¼ d
ffiffiffi
n
p
e; the exponent x of y ¼ qx has a rep-

resentation x ¼ imþ j where 0 � i, j , m. Write yq2im ¼ q j and construct a table of

size O(
ffiffiffi
n
p

) whose entries ( j, q j) are sorted according to the second term. The cost of

the sort is O(
ffiffiffi
n
p

log
ffiffiffi
n
p

) ¼ O(
ffiffiffi
n
p

log n) comparisons.

Proposition 14.4 (Shank’s Baby-Step, Giant-Step Algorithm):

Initialization: Compute q2m and set g ¼ y.

For i ¼ 0 to m2 1 do

14.4a Check if g is the second component of some term q j in the table; if so, return

x ¼ imþ j.

14.4b Replace g by gq2m.

END

The cost of 14.4a is O(log n) comparisons; the cost of 14.4b is 1 multiplication.

Example 14.3
When p ¼ 127, q ¼ 3 is a generator of the (multiplicative) group Z127

þ of order 126. Com-

puting x ¼ log12757, m ¼ d
ffiffiffiffiffiffiffiffi
127
p

e ¼ 12. Table 14.3 gives in a sorted table the

precomputation results of 3 j (modulo 127) (0 � j , 13). Next, q21 ¼ 321 ¼ 85 and

q212 ¼ 8512 (modulo 127) ¼ 87.

Table 14.4 lists the results of Steps 14.4a–b. The entry for i ¼ 7 is in the precom-

puted table for j ¼ 1, which gives x ¼ (7 � 12)þ 1 ¼ 85 so that 57 ¼ q85 (modulo 127).

14.5 THE INDEX-CALCULUS METHOD

Let q be a generator of a cyclic group G ¼ {1, 2, . . . , p2 1} of order p2 1 and y ¼ qx

(modulo p).

Proposition 14.5 (The Index-Calculus Algorithm): Initialization: Select a factor

base S ¼ {p1, p2, . . . , ps} consisting of elements of G. S is chosen so that a significant

proportion of the elements of G can be expressed in the form p1
n1 p2

n2 . . . ps
ns with ni � 0.

14.5a Select a random k with 0 � k , n and compute qk (modulo p).

TABLE 14.3 Precomputation for Shank’s Baby-Step, Giant-Step Algorithm with p 5 127, q 5 3

j 0 1 2 3 7 12 4 8 6 11 5 10 9

3 j (modulo 127) 1 3 9 27 28 73 81 84 94 109 116 121 125

TABLE 14.4 Steps 14a–b for Shank’s Baby-Step, Giant-Step Algorithm with p 5 127, q 5 3

i 0 1 2 3 4 5 6 7 8 9 10 11 12

gq212i (modulo 127) 57 6 14 75 48 112 92 3 7 101 24 56 46

420 CHAPTER 14 THE DISCRETE LOGARITHM PROBLEM



14.5b Try to write qk (modulo p) as a product p1
c1 p2

c2 . . . ps
cs with ci � 0:

– if unsuccessful, return to Step l4.5a and choose another value for k;

– if successful,writek ¼ [c1 logq p1þ [c2 logq p2þ � � � þ [cs logq ps] (modulop2 1).

14.5c Repeat Steps 14.5a–b until a sufficient number of linear relations as above are

found in order to solve the system of equations to determine logq pi for 1 � i � s.

14.5d Select a random k with 0 � k , n and compute yqk (modulo p).

14.5e Try to write yqk as a product p1
d1 p2

d2 . . . ps
ds with di � 0:

– if unsuccessful, return to Step 14.5d and choose another value for k;

– if successful, write x ¼ [d1 logq p1þ d2 logq p2þ � � � þ ds logq ps2 k] (modulo

p2 1).

Remark All text (messages/files) in a data processing system are transmitted/
stored as (0, 1)-vectors.

When encipherment is a transformation T on text written in an alphabetA other than

(0, l)-vectors, some translation process (TR and TR21) between (0, 1)-text and text com-

posed in the cryptosystem’s alphabet is required:

x(0,1)� plaintext|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} �!TR xA� plaintext|fflfflfflfflfflffl{zfflfflfflfflfflffl} �!T y
A�ciphertext|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl} �!TR�1 y

(0,1)�ciphertext|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} :
We have already described translation processes, for RSA and Merkle–Hellman

knapsack encipherments. Intrinsic to the translation is an overhead; the bit-length of the

plaintext increases as a result of translation. The process is simplified if the elements of

the A are (0, 1)-vectors; for example, if the alphabet A consists of the (0, 1)-vectors

Zm,2 of length m. The elements of Zm,2 form an extension field obtained by adjoining a

root q of some irreducible polynomial p(x) of degree m whose coefficients are in Z2.

The mathematics of extension fields is summarized in Section 14.7.

If p(x) is irreducible and of degree m, the elements of the extension field

Zm,2 x ¼ (x0, x1, . . . , xm22, xm21) [ Zm,2 can be identified with the polynomial

x0q
m21
þ x1q

m22
þ � � � þ xm22qþ xm21. Addition is componentwise XOR

x0x1 � � � xm�2xm�1

þ y0y1 � � � ym�2ym�1
z0z1 � � � zm�2zm�1

Multiplication of f (q) ¼ x0q
m21
þ x1q

m22
þ � � � þ xm22qþ xm21 and g(q) ¼ y0

qm21
þ y1q

m22
þ � � � þ ym22qþ ym21 is according to the rule

f (q)� g(q) ¼ f (q)g(q)(modulo p(q)):

To facilitate computations in the extension field Zm,2, it is helpful to have a library of

programs to perform arithmetic on polynomials including those in Table 14.5.

TABLE 14.5 Programs for Performing Arithmetic on Polynomials

PADD Addition of polynomials with coefficients in Z2

PMUL Multiplication of polynomials with coefficients in Z2

PDIV Division algorithm for polynomials with coefficients in Z2

PEUCLID Euclidean algorithm for polynomials with coefficients in Z2

PXEUCLID Extended Euclidean algorithm for polynomials with coefficients in Z2
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Proposition 14.6 (The Index-Calculus Algorithm for Zm,2): f (x) is a primitive

polynomial of degree m.

Given: y ¼ xr (modulo f (x));

Find: r.

Initialization: Select a factor base S ¼ { p1(x), p2(x), . . . , ps(x)} consisting of all irreduci-
ble polynomials of degree at most m2 1.

14.6a Select a random k with 0 � k , 2m and compute xk (modulo f (x)).

14.6b Try to express xk (modulo f (x)) as a product p1
c1(x)p2

c2(x) � � � ps
cs(x) with ci � 0:

– if unsuccessful, return to Step l4.6a and choose another value for k;

– if successful, write

k ¼ c1 logx p1(x)þ c2 logx p2(x)þ � � � þ cs logx ps(x) kGl (�)

14.6c Repeat Steps 14.6a–b until a sufficient number of relations of the type � are

found in order to solve the system of equations to determine logx pi(x) G for

1 � i � s.

14.6d Select a random k with 0 � k , 2m and compute yxk (modulo f (x)).

14.6e Try to express yxk (modulo f (x)) as a product p1
d1(x) p2

d2(x) . . . ps
ds(x) with di � 0;

– if unsuccessful, return to Step 14.6c and choose another value for k;

– if successful, write x ¼ d1 logx p1(x)þ d2 logx p2(x)þ � � � þ ds logx ps(x)2 k kGl.

Example 14.4
m ¼ 8. The polynomial f (x) ¼ 1þ xþ x7 is primitive; the vector u ¼ (u0, u1, . . . , u7) [
Z8,2 is identified with the polynomial g(x) ¼ u0x

7
þ u1x

6
þ � � � þ u6xþ u7. The cyclic

group of nonzero elements of Z8,2 is generated by x:

Given: y ¼ 1þxþ x2þ x3þ x4 ¼ xr (modulo f (x));

Find: r.

The Factor Base consists of the five irreducible polynomials

p1(x) ¼ x, p2(x) ¼ 1þ x, p3(x) ¼ 1þ xþ x2,

p4(x) ¼ 1þ xþ x3, p5(x) ¼ 1þ x2 þ x3:

The five exponents 18, 105, 72, 45, 121 yield the relations

x18 (modulo f (x)) ¼ x4 þ x6 ¼ x4(1þ x)2

¼ p41(x)p
2
2(x)

x105 (modulo f (x)) ¼ xþ x4 þ x5 þ x6 ¼ x(1þ x)2(1þ x2 þ x3)

¼ p1(x)p
2
2(x)p5(x)

x72 (modulo f (x)) ¼ x2 þ x3 þ x5 þ x6 ¼ x2(1þ x)2(1þ xþ x2)

¼ p21(x)p
2
2(x)p3(x)
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x45 (modulo f (x)) ¼ 1þ xþ x2 þ x5 ¼ (1þ x)2(1þ xþ x3)

¼ p22(x)p4(x)

x121 (modulo f (x)) ¼ 1þ xþ x2 þ x3 þ x4 þ x5 þ x6 ¼ (1þ xþ x3)(1þ x2 þ x3)

¼ p4(x)p5(x),

which may be written

18 ¼ 4 logx p1(x)þ 2 logx p2(x) (modulo 127) (E1)

105 ¼ logx p1(x)þ 2 logx p2(x)þ logx p5(x) (modulo 127) (E2)

72 ¼ 2 logx p1(x)þ 2 logx p2(x)þ logx p3(x) (modulo 127) (E3)

45 ¼ 2 logx p2(x)þ logx p4(x) (modulo 127) (E4)

121 ¼ logx p4(x)þ logx p5(x) (modulo 127) (E5)

S3. To solve the system of relations (E1–E5), compute the differences

105� 18 ¼ 87 logx p5(x)� 3 logx p1(x) (E2� E1)

121� 45 ¼ 76 ¼ logx p5(x)� 2 logx p2(x), (E5� E4)

subtract these two equations

�11 ¼ 3 logx p1(x)� 2 logx p2(x)

and add to (El)

7 ¼ 7 logx p1(x):

Backward substitution finally gives

logx p1(x)¼ 1, logx p2(x)¼ 7, logx p3(x)¼ 56, logx p4(x)¼ 31, p5(x)¼ 90

xk(1þ xþ x2þ x3þ x4) (modulo f (x)) is computed for four randomly chosen

values of k:

x66þ x67þ x68þ x69þ x70 (modulo f (x))¼ xþ x3þ x5

x71þ x72þ x73þ x74þ x75 (modulo f (x))¼ xþ x2þ x3þ x4þ x6

x92þ x93þ x94þ x95þ x96 (modulo f (x))¼ x5þ x6

x32þ x33þ x34þ x35þ x36 (modulo f (x))¼ 1þ xþ x2þ x4þ x5:

Only for two of the values is a complete factorization obtained

x66 þ x67 þ x68 þ x69 þ x70 ðmodulo f ðxÞÞ ¼ xð1þ xþ x2Þ2 ¼ p1ðxÞp
2
3ðxÞ

x92 þ x93 þ x94 þ x95 þ x96 ðmodulo f ðxÞÞ ¼ ðxÞ5ð1þ xÞ ¼ p51ðxÞp2ðxÞ:
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Either of these factorizations can be used to conclude

logxð1þ xþ x2 þ x3 þ x4Þ ðmodulo 127Þ ¼ logx p1ðxÞ þ 2 logx p3ðxÞ � 66ðmodulo127Þ

¼ 1þ ð2� 56Þ � 66 ¼ 47

logxð1þ xþ x2 þ x3 þ x4Þ ðmodulo 127Þ ¼ 5 logx p1ðxÞ þ logx p2ðxÞ � 92ðmodulo 127Þ

¼ ð5� 1Þ þ 7� 92 ¼ �80 ¼ 47ðmodulo 127Þ

14.6 POLLARD’S r-ALGORITHM [POLLARD, 1978]

The discrete logarithm problem in a group is

Given: a is a generator in a cyclic group G of order p and b in G;

Find: g is in Zp, satisfying ag.

Pollard extended the r-algorithm described in Chapter 13 for factorization to the DLP.

Randomly generate the sequence x1, x2, . . . , xn with xi ¼ aaibbi. If

xi ¼ xj

then

aai�aj ¼ bbj�bi

If r ¼ (bi2 bj) and (bi2 bj)
21 exists, then

a ¼ bðbi�bjÞ
�1
ðaj�aiÞ

so that g ¼ (bi2 bj)
21(ai2 aj).

The same computational issues that appeared in Pollard’s r-factorization algorithm

occur here and a Monte Carlo method for generating the sequence (xi, ai, bi) together with

Floyd’s cycling finding algorithm comes to the rescue.

Pollard’s r-algorithm for the DLP follows these steps:

P1. Partition the group G into three roughly equal subsets G ¼ G0 < G1 < G2. For

example, for the cyclic group G ¼ {xn : 0 � n , 509} where x ¼ e2p
i

509 is the

509th roots of unity, let Gi ¼ {xn : 0 � n , 50, i ¼ (n modulo 3)}.

P2. Let a be a generator of G and b ¼ ar; choose a, b [ G.

P3. Define the random mappings

f ðxÞ : x! f ðxÞ; x [ G

gðx; aÞ : a! gðx; aÞ; x [ G

hðx; bÞ : b! hðx; bÞ; x [ G

by

f ðxÞ ¼

bx; if x [ G0

x2; if x [ G1

ax; if x [ G2

8<:
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gðx; aÞ ¼

a; if x [ G0

2a; if x [ G1

aþ 1; if x [ G2

8><>:
hðx; bÞ ¼

bþ 1; if x [ G0

2b; if x [ G1

b; if x [ G2:

8><>:
P4. Floyd’s cyclic algorithm is applied to the sequence xi ¼ aaibbi with i ¼ 1, 2, . . . .

P5. If xi ¼ x2i, then a
aibbi ¼ aa2ibb2i; if (bi2 b2i)

21 exists, then aða2i�aiÞðbi�b2iÞ
�1 ¼ b ¼ ax.

Example 14.5
G is the cyclic subgroup of Z383 generated by the integer a ¼ 2. The steps in Pollard’s

r-algorithm for b ¼ 132 are given in Table 14.6.

. We have x2i ¼ xi ¼ 36 when i ¼ 48.

. This gives r ¼ 82 ¼ (bi2 b2i) (modulo 191), r21 ¼ 7, and g ¼ 33 ¼
(r21(a2i2 ai)) (modulo 191).

TABLE 14.6 Example 14.5 Steps in Pollard’s r-Algorithm

i xi ai bi x2i a2i b2i i xi ai bi x2i a2i b2i

1 132 0 1 189 0 2 2 189 0 2 63 0 8

3 102 0 4 347 0 17 4 63 0 8 239 2 17

5 139 0 16 190 4 17 6 347 0 17 370 5 18

7 311 1 17 224 5 20 8 239 2 17 130 7 20

9 95 3 17 233 8 21 10 190 4 17 166 10 21

11 185 4 18 50 20 44 12 370 5 18 178 21 45

13 199 5 19 321 21 47 14 224 5 20 28 43 94

15 65 6 20 338 86 190 16 130 7 20 203 88 190

17 308 7 21 46 90 190 18 233 8 21 72 180 0

19 83 9 21 250 169 1 20 166 10 21 124 170 2

21 81 10 22 243 149 6 22 50 20 44 35 107 13

23 100 21 44 48 108 14 24 178 21 45 36 50 56

25 133 21 46 161 9 33 26 321 21 47 374 10 34

27 14 42 94 347 12 34 28 28 43 94 239 14 34

29 249 43 95 190 16 34 30 338 86 190 370 17 35

31 293 87 190 224 17 37 32 203 88 190 130 19 37

33 23 89 190 233 20 38 34 46 90 190 166 22 38

35 327 90 0 50 44 78 36 72 180 0 178 45 79

37 205 169 0 321 45 81 38 250 169 1 28 91 162

39 62 169 2 338 182 135 40 124 170 2 203 184 135

41 282 170 3 46 186 135 42 243 149 6 72 181 81

43 67 107 12 250 171 163 44 35 107 13 124 172 164

45 70 108 13 243 153 139 46 48 108 14 35 115 88

47 6 25 28 48 116 89 48 36 50 56 36 82 165
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Like other developments in mathematics, Pollard’s work led Lenstra and Lenstra [1993] to

the very powerful factorization methods in the special and general number field sieve

(SNF/GNF).

14.7 EXTENSION FIELDS

Every student of cryptography needs to understand the basic concepts of modern algebra.

A reference is the book by Peterson and Weldon [1972].

A field F is a mathematical system in which addition (þ) and multiplication (�) are

defined with the following properties:

. F is a group under the operation addition þ with (additive) identity element 0;

. F � ;F2 {0} is a cyclic group under the operation multiplication � with (multi-

plicative) identity 1.

The real R and complex numbers C systems arc examples of fields.

There are two possibilities in a field F when repeated copies 1 þ 1 þ � � � of the

(multiplicative) identity element 1 are added:

1. If 1 þ 1 þ � � � is never equal to 0, F is a field of characteristic 0; R and C are

examples;

2. 1þ 1þ � � � þ 1n|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl} = 0; if 1 � n , q

¼ 0; if n ¼ q:

�
In the second case qmust be a prime; for if q¼ q1q2, q1 = 0; q1 = 0 and q1q2 ¼ 0 which

cannot occur in a field.

When p is a prime number. Zp is a field of characteristic p, and its nonzero elements

Z �p ¼ {1,2, . . . , p2 1} form a cyclic group of order p2 1.

Zp is not the only field of characteristic p. It is easy to prove that a field F of charac-

teristic p (a prime) must contain pm elements for some integer m. Moreover, there is a very

simple description of such a field, which we now turn to.

The problem:

Given: a, y [ R;

Find: x [ R such that y ¼ ax

has a unique solution x ¼ a21y provided a21 exists.

The same conclusion fails for the equation y ¼ ax2þ bx; it may not always have a

root (solution) in the field R. However, if the field R is augmented by including complex

numbers, the equation y ¼ ax2þ bx always has two roots. Defining i ¼ ffiffiffiffiffiffiffi
�1
p

as a solution

of the equation 0 ¼ x2 þ1 and adjoining i ¼ ffiffiffiffiffiffiffi
�1
p

to the field R produces the complex

number system C.
The complex number system C consisting of all numbers of the form x ¼ uþ v

forms a field in which the operations þ, 2, 4 are defined by

Addition: ðu1 þ ıv1Þ þ ðu2 þ ıv2Þ ¼ ðu1 þ u2Þ þ iðv1 þ v2Þ

Multiplication: ðu1 þ ıv1Þ � ðu2 þ ıv2Þ ¼ ðu1u2 � v1v2Þ þ ıðu1v2 þ u2v1Þ

Division: ðu1 þ ıv1Þ 4 ðu2 þ iv2Þ ¼
ðu1u2 þ v1v2Þ þ ıðu2v1 � u1v2Þ

D
Provided

D ¼ ðu22þ v22Þ= 0.
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Moreover, every polynomial p(x) ¼ p0þ p1xþ � � � þ pnx
n with coefficients in C and

pn = 0 has precisely n roots, and p(x) splits into the product p(x) ¼ pn(x2 x1)

(x2 x2) � � � (x2 xn) of linear factors where each of the xj ¼ ujþ i vj are roots of p(x) ¼ 0.

This same process can be defined in any field F; if the polynomial p(x) ¼ p0 þ

p1 xþ � � � þ pnx
n with coefficients { pj} in F does not have any roots in F, then by adjoin-

ing the fictitious root q to F we obtain an extension field of F in which the polynomial p(z)

now has a root.

We focus our discussion to P[z], polynomials p(x) ¼ p0þ p1zþ � � � þ pnz
n with

coefficients in the field Z2. We write P(x) : P ¼ ( p0, p1, . . . , pn) to indicate the correspon-

dence of the polynomial p(z) and its coefficient vector p. In Section 8.3 we summarized the

basic properties of the algebra of polynomials P[z].

Example 14.6
Table 14.7 lists z j (modulo p(x)) together with its 4-bit representation for 0 � j � 5 for the

irreducible polynomial p(z) ¼ 1þ z þ z2 þ z3 þ z4 with exponent e ¼ 5. If a root q of an

irreducible polynomial p(z) of degree m is adjoined to Z2, an extension field Zm,2 contain-

ing 2m elements is obtained

When p(z) is primitive, the elements of the extension field Zm,2 are powers 1, q,
q2,. . .,q2m22 of the adjoined root q, and the 2m21 elements in the extension field Zm,2

correspond to the nonzero m-bit binary sequences z ¼ (z0, z1, . . . , zm21). z ¼
(z0, z1, . . . , zm21) = (0)m is the base-2 representation of some power of q.

TABLE 14.7 zj (modulo p(z)), 0 � j � 5 for
p(z) 5 11 z1 z21 z31 z4

z0 (modulo p(z)) ¼ 1 : (0,0,0,1)

z1 (modulo p(z)) ¼ z : (0,0,1,0)

z2 (modulo p(z))¼ z2 : (0,1,0,0)

z3 (modulo p(z))¼ z3 : (1,0,0,0)

z4 (modulo p(z))¼ z3þ z2þ zþ 1 : (1,1,1,1)

z5 (modulo p(z)) ¼ 1 : (0,0,0,1)

TABLE 14.8 Coding of q j with 0 5 1 1 q 1 q

p(x) ¼ 1þ xþ x4 p(q) ¼ 0

(0,0,0,1) 1 (0,0,1,0) q (0,1,0,0) q2

(1,0,0,0) q3 (0,0,1,1) q4 (0,1,1,0) q5

(1,1,0,0) q6 (1,0,1,1) q7 (0,1,0,1) q8

(1,0,1,0) q9 (0,1,1,1) q10 (1,1,1,0) q11

(1,1,1,1) q12 (1,1,0,1) q13 (1,0,0,1) q14

TABLE 14.9 Coding of q j with 0 5 11q1q21q31q4

p(x) ¼ 1þ xþ x2þ x3þ x4

(0,1,1,0) u (1,0,1,1) u2 (0,1,0,0) u3

(1,1,0,0) su (1,0,0,1) su2 (1,0,0,0) su3

(0,1,1,1) s2u (1,1,0,1) s2u2 (1,1,1,1) s2u3

(1,1,1,0) s3u (0,1,0,1) s3u2 (0,0,0,1) s3u3

(0,0,1,1) s4u (1,0,1,0) s4u2 (0,0,1,0) s4u3
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When p(x) is irreducible but not primitive, this correspondence is missing.

The nonzero elements of the field Z2,24 form a cyclic group of order 15 ¼ 2421

which contains generators of order 3, 5, and 15. Tables 14.8 and 14.9 below give two

coding of the elements of the extension field Z2,24:

. The generator in Table 14.8 is q of order 15;

. The element u is of order 3; s is the left-shift operator,

14.8 THE CURRENT STATE OF DISCRETE
LOGARITHM RESEARCH

There has been active research to improve algorithms for integer factorization and the dis-

crete logarithm problems. An excellent survey by Odlyzko [1999] reports on the current

state. My only criticism of this paper is with Professor Odlyzko’s crystal ball gazing.

He writes “The most worrisome long-term threat to discrete log cryptosystems that we

can forsee right now comes from quantum computers.” Of course, he wrote this in 1999

just after Peter Shor’s [1997] remarkable paper on polynomial-time integer factorization

had appeared. Nevertheless, it has been nine years since then and . . . well?
It is always risky to predict the future or to criticize those who do so . . . especially in

technology. And why should you, the reader, listen to me? The original notes for this book

were prepared using a line editor and I do not even own a single cellphone, even the

old-fashioned kind that just makes and receives calls.
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CHA P T E R15
ELLIPTIC CURVE CRYPTOGRAPHY

JU S T TW EN T Y years ago, Koblitz and Miller suggested the use of elliptic

curves to construct cryptographic systems. Using a result from the nineteenth century

of Carl Gustav Jacob Jacobi, a group structure can be defined. There is a tremendous

cryptographic advantage to encipherment based on elliptic groups. In the ensuing 20 years,

a considerable body of results has been published so that there are now elliptic curve

encryption, key exchange, and signature algorithms. These are the subjects of this chapter.

15.1 ELLIPTIC CURVES

A plane curve is the locus of points (x, y) in the plane which are the solutions of f (x, y)¼ 0

with f (x, y) a polynomial in two variables with rational coefficients. The study of plane

curves has occupied mathematics for nearly two millennia; in 250 A.D., Diophantus deter-

mined the integer solutions1 for f (x, y) ¼ x2þ y22 r2; in 1995, Peter Wiles announced the

solution to Fermat’s famous conjectured theorem,2 the case

f (x, y) ¼ xn þ yn � rn:

By changing variables, the general cubic equation y2þ b1xyþ b2xy ¼ x3þ a1x
2
þ

a2xþ a3 yields the normal form for an elliptic curve y2 ¼ x3þ axþ b. Although an

elliptic curve may have one or three real roots, it does not have multiple roots provided

the discriminant3 D ¼ 4a3þ 27b2 is not 0.

An elliptic curve y2 ¼ x3þ axþ b with one real root is shown in Figure 15.1. The

relation of an elliptic curve to the ellipse x2/A2
þ y2/B2 ¼ 1 is somewhat convoluted. In

essence, the connection comes from the quartic in the
ffiffiffiffiffiffi
� � �
p

appearing in the denominator

of the elliptic integral

A

ðx=A
0

1� kt2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)(1� kt2)

p dt, k2 ¼ (A2 � B2)=A2,

giving the arc length along the ellipse from (0, B) to (x, y). For more details see the work of

Markushevich [1965].

If x3þ axþ b has three (distinct) real roots, the curve consists of two sections, an

example of which is shown in Figure 15.2.

1If n and m are relatively prime and n2m is positive and odd then (x, y, r) ¼ (n22m2, 2nm, n2þm2) is a

Pythagorean triple m2
þ n2 ¼ r2 and conversely all primitive Pythagorean triples arise in this manner.

2There are no nontrivial nonzero integer solutions to xnþ yn ¼ rn for n � 3.
3The discriminant of the polynomial f (x) ¼

Q
i a(x� ri) of degree n is D ¼ an�1

Q
i,j (ei � ej)

2. The roots of f(x)

are distinct if and only if D = 0.
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. Figure 15.1 Elliptic curve with

one real root.
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. Figure 15.2 Elliptic curve

with three real distinct roots.
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15.2 THE ELLIPTIC GROUP OVER THE REALS

The curve y2 ¼ x32 x ¼ x(x2 1)(xþ 1) enjoys a property characteristic of all

elliptic curves – the chord-tangent group law discovered by Carl Gustav Jacob Jacobi

(1804–1851) in the nineteenth century.

Proposition 15.1 (Bezout’s Theorem): If P ¼ (x1, y1) and Q ¼ (x2, y2) are two

points on the elliptic curve y2 ¼ x3þ axþ b with 4a3þ 27b2 = 0 and if the line PQ

joining these points is not vertical, then the line PQ will intersect the curve in a third

place f(P, Q) ¼ R ¼ (x3, 2y3) whose coordinates are given by

x3 ¼

y2 � y1

x2 � x1

� �2

� x1 � x2, if x1=x2

3x21 þ a

2y1

� �2

� 2x1, if x1¼x2

8>>>><>>>>:
and

y3 ¼

�y1 þ
y2 � y1

x2 � x1
(x1 � x3), if x1=x2

�y1 þ
3x21 þ a

2y1
(x1 � x3), if x1¼x2:

8>>><>>>:
Proof : Suppose the equation of the line PQ is

PQ : y ¼ lxþ m:

There are two cases to consider; if x1 = x2, then

y1 ¼ lx1 þ m, y2 ¼ lx2 þ m:

Square y and substitute into the equation y2 ¼ x3þ axþ b to obtain

0 ¼ (l2x2 þ 2lmxþ m2)� x3 � ax� b

¼ x3 � l2x2 þ (a� 2lm)xþ (b� m2)

¼ (x� x1)(x� x2)(x� x3)

¼ x3 � (x1 þ x2 þ x3)x
2 þ (x1x2 þ x1x3 þ x2x3)x� x1x2x3

so that

l2 ¼ x1 þ x2 þ x3

a� 2lm ¼ x1x2 þ x1x3 þ x2x3

b� m2 ¼ �x1x2x3
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which gives

l ¼
y2 � y1

x2 � x1

x3 ¼ l2 � x1 � x2 ¼
y2 � y1

x2 � x1

� �2

� x1 � x2

y3 ¼ �y1 þ l(x1 � x3) ¼ �y1 þ
y2 � y1

x2 � x1
(x1 � x3):

The case x1 ¼ x2 is the limiting case x2 ¼ x1þ d as d ! 0 and l is the slope of the curve

y2 ¼ x3þ axþ b at the point of intersection.

l ¼
3x21 þ a

2y1
,

which completes the proof.

Bezout’s Theorem provides a way to define a group for the points on an elliptic

curve. Let f(P, Q) denote the point at the intersection of the line PQ and the elliptic curve:

1. If the line PQ is vertical (x1 ¼ x2), the vertical line meets the curve at 1 so that

f(P, Q) ¼ 1.

2. The value of f(1, P) is the reflection about the x-axis of P so that f(1, Q) ¼ P if

Q ¼ f(1, P).

Define the sum of P and Q by

Pþ Q ; f(1, f(P, Q)):

The third point on the line PQ is determined and reflected about the x-axis.

3. The point at 1 satisfies f(P, 1) ¼ f(1, P) ¼ P so that O ¼ 1 acts as an identity

element under þ.

4. The point f(1, P) satisfies f(P, f(1, P)) ¼ 1 so that f(1, P) is the inverse of P

under þ satisfying Pþ f(1, P) ¼ O.

Although surprisingly difficult, it can be proved that addition þ satisfies the associativity

law [Husemoller, 1987]:

Pþ (Qþ R) ¼ (Pþ Q)þ R:

Proposition 15.2: O together with the points on the elliptic curve

y2 ¼ x3þ axþ b (4a3þ 27b2 = 0) form the Abelian elliptic group E(a, b) with group

operation þ and identity element O.

Figure 15.3 presents an elliptic curve with a ¼ 23, b ¼ 2. The resolvent

D ¼ 4a3þ 27b2 ¼ 0 and the cubic y2 ¼ x3þ axþ b has a double root at x ¼ 1. The

chord-tangent for P ¼ (21, 0) and Q ¼ (0, 0) yields (21, 0)þ (0, 0) ¼ (0, 0).

15.3 LENSTRA’S FACTORIZATION ALGORITHM
[LENSTRA, 1986]

One of the first cryptographic applications of elliptic curves was a factoring algorithm due

to H. W. Lenstra.
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Let (x, y) be a rational point on y2 ¼ x3þ axþ b where a and b are rational

numbers. Lenstra writes x2 ¼ x1 (modulo m) if m is a factor of x22 x1 after common

factors are cancelled, with x1 ¼ ða1=b1Þ and x2 ¼ ða2=b2Þ. The factors of N will be

found in the elliptic curve modulo N.

15.3.1 Lenstra’s Factorization Algorithm

1. Randomly choose x, y [ ZN.

2. Randomly choose a and b subject to y2 ¼ x3þ axþ b (modulo N ).

3. Test if D ¼ 4a3þ 27b2 ¼ 0 (modulo N ); return to (2) if D ¼ 0.

4. Choose a bound M and define

E ¼
Y�
q�M

q a prime

� q½logq N
:
5. Let P ¼ (x, y) and compute PE by repeated squaring. Before multiplying (x1, y1) by

(x2, y2) compute g ¼ gcd{x12 x2, N}. If 1 , g , N, return g and END.

Proposition 15.3: If p is the smallest prime divisor of N (which is not divisible by

2 or 3), then the running time of Lenstra’s Algorithm is RT ¼ O e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2þe) log p log log p
p� �

.

Koblitz’s book [1987a] discusses why the algorithm works and how the running time

estimate is derived.
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. Figure 15.3 Elliptic curve

with three real roots.
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15.4 THE ELLIPTIC GROUP OVER Zp (p > 3)

The elliptic group described in Proposition 15.2 consists of points in the plane. It can be

generalized to obtain a discrete group consisting of pairs of points in the setZpwhen p. 3

as follows.

The elliptic curve Ep(a, b) over Zp consists of the abstract point at infinity O and all

pairs of points (x, y) with x, y [ Zp that satisfy

y2 ¼ x3 þ axþ b (modulo p), 4a3 þ 27b2 = 0 (modulo p):

The elements of Ep(a, b) are found as follows:

1. Compute z ¼ x3þ Axþ B (modulo p).

2. Check if z is a quadratic residue, by verifying 1 ¼ z
p�1
2 ðmodulo p); in this case,

there are two points (x, +y) in Ep(a, b) with y2 ¼ z (modulo p).

Proposition 15.4: If p ¼ 3 (modulo 4) and u has a quadratic residue, then

v ¼ u
pþ1
4 (modulo p) is a quadratic residue of u.

Proof: Let p ¼ 3þ 4d; as u
p�1
2 ¼ 1 (modulo p), it follows that

u
pþ1
2 ¼ u (modulo p), u

pþ1
4

� �2

¼ u (modulo p)

When p ¼ 1 (modulo 4), Berlekamp’s Algorithm can be used to find a quadratic

residue; another method is described in Koblitz [1987a].

The following examples list the elements of E23(a, b) for three choices of (a, b) and
the order of the (discrete) elliptic group jE23(a, b)j.

Examples 15.1–15.3
Tables 15.1 to 15.3 lists the elements of three discrete elliptic groups with p ¼ 23.

Proposition 15.5 (Hasse): The order of the elliptic group Ep(a, b) satisfies

1þ p� 2
ffiffiffiffi
p
p
� jEp(a, b)j � 1þ pþ 2

ffiffiffiffi
p
p

; jEp(a, b)� (1þ p)j � 2
ffiffiffiffi
p
p

:

The elliptic curve Ep(a, b) is supersingular if ((1þ p)2 jEp(a, b)j)2 [ {0, p, 2p, 3p, 4p}.

TABLE 15.1 The Elliptic Group
E23(1, 1), p 5 23, a 5 b 5 1

jE23(1, 1)j ¼ 28

(0,1) (0,22) (1,7) (1,16)

(3,10) (3,13) (4,0)

(5,4) (5,19) (6,4) (6,19)

(7,11) (7,12) (9,7) (9,16)

(11,3) (11,20) (12,4) (12,19)

(13,7) (13,16) (17,3) (17,20)

(18,3) (18,20) (19,5) (19,18)

TABLE 15.2 The Elliptic Group E23(1,2), p 5 23,
a 5 1, b 5 2

jE23(1, 2)j ¼ 23

(0,5) (0,18) (1,2) (1,21)

(2,9) (2,14) (3,3) (3,20)

(4,1) (4,22) (8,4) (8,19)

(9,2) (9,21) (10,0)

(13,2) (13,21) (14,0)

(19,7) (19,16) (20,8) (20,15)

(22,0)
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Discussion: y2 ¼ 1 (modulo p) is satisfied for half of the elements of Zp. If the

values x3þ axþ b were uniformly distributed over Zp, each of approximately p/2
values of x should generate a pair of points (x, +y) in Ep.

Proposition 15.6: If p . 3, the addition rule for the elliptic group Ep(a, b) consist-
ing ofO and all points (x, y) satisfying y2 ¼ x3þ axþ b (modulo p) with 4a3þ 27b2 = 0

(modulo p) is

P ¼ (x1, y1), Q ¼ (x2, y2)! R ¼ Pþ Q ¼ (x3, y3) [ Ep(a, b)

x3 ¼ l2 � x1 � x2, y3 ¼ l(x1 � x3)� y1

l ¼

y2 � y1

x2 � x1
, if x1 = x2

3x2 þ A

2y1
, if x1 ¼ x2:

8>><>>:
Proof : At the intersection of Ep(a, b) and the linear form y ¼ lxþ m

0 ¼ x3 � l2x2 þ ða� 2mÞxþ b� m2:

There are two cases. If the linear form y ¼ lxþ m has two distinct points of intersection

(xi, yi) (i ¼ 1, 2) with y2 ¼ x3þ axþ b, it must have a third, say R ¼ (x3, v3)

0 ¼ (x� x1)(x� x2)(x� x3)

so that

l2 ¼ x1 þ x2 þ x3

giving

x3 ¼ l2 � x1 � x2

v3 ¼ y1 þ l(x3 � x1):

The sum (x1, y1)þ (x2, y3) is defined by the reflection or inverse of the point (x3, v3),

namely (x3, y3) ¼ (x3, 2v3)

x3 ¼ l2 � x1 � x2

y3 ¼ �y1 þ l(x1 � x3):

TABLE 15.3 The Elliptic Group E23(1, 3), p 5 23, a 5 1, b 5 3

jE23(1, 3)j ¼ 27

(0,7) (0,16) (2,6) (2,17)

(4,5) (4,18) (5,8) (5,15)

(6,8) (6,15) (7,10) (7,13)

(10,1) (10,22) (12,8) (12,15)

(14,1) (14,22) (15,9) (15,14)

(19,2) (19,21) (21,4) (21,19)

(22,1) (22,22)
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In the second case, the linear form y ¼ lxþ m is tangent to the curve y2 ¼ x3þ axþ b,

which requires (x, y) to be a solution to the pair of equations

2y ¼ 3x2 þ a

y2 ¼ x3 þ axþ b,

which completes the proof.

Example 15.4
P ¼ (3, 10), Q ¼ (9, 7), l ¼

7� 10

9� 3
¼

20

6
¼

10

3
. As the inverse of 3 in Z23 is 8

l ¼ 10� 8 ¼ 80 ¼ 11ðmodulo 23Þ:

Next

x3 ¼ 112 � 9� 3 ¼ 109 ¼ 17 (modulo 23),

y3 ¼ 11� ð3� ð�6ÞÞ � 10 ¼ 89 ¼ 20 ðmodulo 23Þ,

which gives

Pþ Q ¼ (17, 20):

The inverse of P ¼ (x, y) is2P ; (x,2y). The order of an element (x, y) [ Ep(a, b) is
the smallest integer n such that nx ¼ O.

Example 15.4 (Continued)
The elements (x, y) [ E23(1, 1) are of order 1, 2, 4, 7, 14, or 28.

15.5 ELLIPTIC GROUPS OVER THE FIELD Zm,2

Let p(x) be a primitive polynomial over Z2 of degree m. The elliptic group EZm,2
(a, b)

consists of the point at infinity O together with all pairs (x, y) [ Zm,2 that satisfy the

equation

y2 þ xy ¼ x3 þ ax2 þ b, a, b [ Zm;2, b = 0:

As b = 0, the point (0, 0) is not a solution and (0, 0) is used as the representation

of O.

Proposition 15.7: If y [ Zm,2 is a solution of y2þ xy ¼ x3þ ax2þ b, then

yþ x [ Zm,2 is also a solution.

Proof : If

y2 þ xy ¼ x3 þ ax2 þ b

then

( yþ x)2 þ x( yþ x) ¼ y2 þ x2 þ xyþ x2 ¼ y2 þ xy

as the field Zm,2 is of characteristic 2.

436 CHAPTER 15 ELLIPTIC CURVE CRYPTOGRAPHY



Proposition 15.8: EZm,2
(a, b) is a group under addition þ where

15.8a (x, y)þ (0, 0) ¼ (0, 0)þ (x, y) ¼ (x, y);

15.8b (x, y)þ (x, yþ x) ¼ (0, 0);

15.8c If x1 = x2, then (x1, y1)þ (x2, y2) ¼ (x3, y3), where (x3, y3) is the reflection of the

y-value x3þ y3 of the point (x, y) of the linear form y ¼ lxþ m at x3

l ¼
y1 þ y2

x1 þ x2

x3 ¼ l2 þ lþ x1 þ x2 þ a

y3 ¼ l(x1 þ x3)þ x3 þ y1;

15.8d 2(x, y) ¼ (x2, y2) where

l ¼ xþ
y

x

x2 ¼ l2 þ lþ a

y2 ¼ x2 þ (lþ 1)x2:

Proof : There are two cases to be examined; if there are two distinct points of inter-

section (x1, y1) and (x2, y2) of the linear form y ¼ lxþ m and the curve y2þ xyþ x3þ

ax2þ b, then

0 ¼ x3 � (l2 þ lþ a)� xmþ b� m2

¼ (x� x1)(x� x2)(x3)

and

lþ l2 þ a ¼ x1 þ x2 þ x3,

which gives

x3 ¼ l2 þ lþ x1 þ x2 þ a

and

y3 ¼ l(x1 þ x3)þ x3 þ y1

In the second case, the linear form y ¼ lxþ m is tangent to the curve y2þ xy ¼ x3þ

ax2þ b, which requires (x, y) to be a solution to the pair of equations

x
dy

dx
þ y ¼ x2 , 2y

dy

dx
þ x

dy

dx
þ y ¼ 3x2 þ 2ax

y2 þ xy ¼ x3 þ ax2 þ b:

This gives

l ¼ xþ
y

x

x2 ¼ l2 þ lþ a

y2 ¼ x2 þ (lþ 1)x2:
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15.6 COMPUTATIONS IN THE ELLIPTIC GROUP
EZm,2

(a, b)

Programs to manipulate polynomials are required to carry out arithmetic in the elliptic

group EZm,2
(a, b). As described in Section 14.5, these programs include PADD, PMUL,

and PDIV, and PXEUCLID; the last program, PXEUCLID, is used to find the inverse of

an element in Zm,2. Only one task remains to generate the elements (x, y) of EZm,2
(a, b).

For this purpose, linear operations in Zm,2 viewed as a vector space need to be

performed. An example may make the ideas clear.

Example 15.5
p(x) ¼ 1þ xþ x4 is primitive over Z2. Suppose q is the root of p(x)¼ 0 adjoined to Z2 to

obtain the extension field Z4,2.

Multiplication: xy, x ¼ (x0, x1, x2, x3); y ¼ (y0, y1, y2, y3)

x ¼ (x0, x1, x2, x3) ¼ x0q
3
þ x1q

2
þ x2qþ x3

y ¼ (y0, y1, y2, y3) ¼ y0q
3
þ y1q

2
þ y2qþ y3

xy ¼ x0y0q
6
þ (x0y1 þ x1y0)q

5
þ (x0y2 þ x1y1 þ x2y0)q

4

þ (x0y3 þ x1y2 þ x2y1 þ x3y0)q
3
þ (x1y3 þ x2y2 þ x3y1)q

2

þ (x2y3 þ x3y2)qþ x3y3:

Next, we use the formulas

q 4
¼ 1þ q

q 5
¼ qþ q 2

q 6
¼ q 2

þ q 3

to write

xy ¼ (z0; z1; z2; z3) ¼ z0q
3
þ z1q

2
þ z2qþ z3,

where

z0 ¼ x0y3 þ x1y2 þ x2y1 þ x3y0 þ x0y0|{z}
q 6�term

z1 ¼ x1y3 þ x2y2 þ x3y1 þ x0y0|{z}
q 6�term

þ x0y1 þ x1y0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
q 5�term

z2 ¼ x2y3 þ x3y2 þ x0y2 þ x1y1 þ x2y0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q 4�term

þ x0y1 þ x1y0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
q 5�term

z3 ¼ x3y3 þ x0y2 þ x1y1 þ x2y0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
q 4�term
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or in matrix notation

(z0, z1, z2, z3) ¼ (y0, y1, y2, y3)M(x)

M(x) ¼

x3 þ x0 x1 þ x0 x2 þ x1 x2

x2 x3 þ x0 x1 þ x0 x1

x1 x2 x3 þ x0 x0

x0 x1 x2 x3

0BBB@
1CCCA

Inverse: x21, x ¼ (x0, x1, x2, x3)

If y = 0, x = 0, then xy = 0 andM(x) is nonsingular. The inverse of x ¼ (x0, x1, x2,

x3) is the solution y ¼ ( y0, y1, y2, y3) of

ðy0; y1; y2; y3Þ ¼ ð0; 0; 0; 1ÞðMðxÞÞ
21

If p(x) is primitive degree m, the computation of

q j
¼
Xm�1
k¼0

t j, kq
k
¼ (t j, m�1, . . . , t j, 1, t j, 0), 0 � j , m,

requires m shifts and m-bit XORs.

The inversion of the m � m matrix M(x) can be effected by Gaussian elimination.

Schroeppel et al. [1995] optimized the code for the elliptic group with m ¼ 155 and

the irreducible (but not primitive) trinomial p(x) ¼ x155þ x62þ 1.

Example 15.6
The elements (x, y) = (0, 0) of the elliptic group EZ6,4

(a, b) with p(x) ¼ 1þ xþ x6, a ¼ 0

and b ¼ (0, 0, 1, 0) are listed in Table 15.4.

Computing Solutions of y2þ xy ¼ x3þ ax2þ b: The elements of the elliptic

group EZ4,2
(a, b) with a, b [ Z4,2 and b = (0, 0, 0, 0) are the solutions of

y2 þ xy ¼ x 3 þ ax 2 þ b:

If

y ¼ (y0, y1, y2, y3) ¼ y0q
3
þ y1q

2
þ y2qþ y3,

then

y2 ¼ y0q
6
þ y1q

4
þ y2q

2
þ y3 ¼ (y0, (y2 þ y0), y1, (y3 þ y1)):

If

z ¼ (z0, z1, z2, z3) ¼ x3 þ ax2 þ b,

then (x, y) is an element of the elliptic group E16(a, b) if
z ¼ (y0, y2 þ y0, y1, y3 þ y1)þ (y0, y1, y2, y3)M(x) ¼ (y0, y1, y2, y3)N(x),
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where

N(x) ¼

x3 þ x0 þ 1 x1 þ x0 x2 þ x1 x2
x2 x3 þ x0 x1 þ x0 þ 1 x1 þ 1

x1 x2 þ 1 x3 þ x0 x0
x0 x1 x2 x3 þ 1

0BB@
1CCA:

As

(0, 0, 0, 0) ¼ (y0 þ x0; y1 þ x1; y2 þ x2; y3 þ x3)N(x),

N(x) is singular, consistent with Proposition 15.7.

TABLE 15.4 The Elements of the Elliptic Group EZ6,4
(a, b), p(x) 5 11 x1 x6,

a 5 0, and b 5 (0, 0, 1, 0)

(x, yj) yj ¼ qkj ( j ¼ 1, 2)

x ¼ (0, 0, 0, 0, 0, 1) ¼ q0 y1 ¼ (1, 1, 1, 0, 1, 1) ¼ q21 y2 ¼ (1, 1, 1, 0, 1, 0) ¼ q42

x ¼ (0, 0, 0, 0, 1, 0) ¼ q1 y1 ¼ (0, 0, 1, 1, 1, 1) ¼ q18 y2 ¼ (0, 0, 1, 1, 0, 1) ¼ q48

x ¼ (0, 0, 0, 1, 0, 0) ¼ q2 y1 ¼ (0, 1, 0, 0, 1, 0) ¼ q33 y2 ¼ (0, 1, 0, 1, 1, 0) ¼ q36

x ¼ (0, 0, 1, 0, 0, 0) ¼ q3 y1 ¼ (1, 0, 0, 1, 1, 0) ¼ q17 y2 ¼ (1, 0, 1, 1, 1, 0) ¼ q55

x ¼ (0, 1, 0, 0, 0, 0) ¼ q4 y1 ¼ (0, 0, 1, 0, 0, 0) ¼ q3 y2 ¼ (0, 1, 1, 0, 0, 0) ¼ q9

x ¼ (0, 0, 0, 0, 1, 1) ¼ q6 y1 ¼ (1, 0, 0, 1, 0, 0) ¼ q34 y2 ¼ (1, 0, 0, 1, 1, 1) ¼ q47

x ¼ (0, 0, 0, 1, 1, 0) ¼ q7 y1 ¼ (0, 0, 1, 1, 0, 0) ¼ q8 y1 ¼ (0, 0, 1, 0, 1, 0) ¼ q13

x ¼ (0, 0, 1, 1, 0, 0) ¼ q8 y1 ¼ (0, 0, 0, 0, 1, 1) ¼ q6 y2 ¼ (0, 0, 1, 1, 1, 1) ¼ q18

x ¼ (0, 1, 1, 0, 0, 0) ¼ q9 y1 ¼ (1, 0, 0, 1, 0, 1) ¼ q31 y2 ¼ (1, 1, 1, 1, 0, 1) ¼ q59

x ¼ (0, 0, 0, 1, 0, 1) ¼ q12 y1 ¼ (1, 0, 0, 0, 0, 0) ¼ q5 y2 ¼ (1, 0, 0, 1, 0, 1) ¼ q31

x ¼ (0, 0, 1, 0, 1, 0) ¼ q13 y1 ¼ (1, 1, 0, 1, 1, 1) ¼ q43 y2 ¼ (1, 1, 1, 1, 0, 1) ¼ q59

x ¼ (0, 1, 0, 1, 0, 0) ¼ q14 y1 ¼ (0, 1, 0, 0, 1, 1) ¼ q16 y2 ¼ (0, 0, 0, 1, 1, 1) ¼ q26

x ¼ (0, 1, 0, 0, 1, 1) ¼ q16 y1 ¼ (0, 0, 0, 1, 0, 1) ¼ q12 y2 ¼ (0, 1, 0, 1, 1, 0) ¼ q36

x ¼ (0, 0, 1, 1, 1, 1) ¼ q18 y1 ¼ (1, 0, 1, 1, 1, 0) ¼ q55 y2 ¼ (1, 0, 0, 0, 0, 1) ¼ q62

x ¼ (0, 1, 1, 1, 1, 0) ¼ q19 y1 ¼ (1, 1, 1, 1, 1, 1) ¼ q58 y2 ¼ (1, 0, 0, 0, 0, 1) ¼ q62

x ¼ (0, 1, 0, 0, 0, 1) ¼ q24 y1 ¼ (1, 1, 0, 0, 0, 0) ¼ q10 y2 ¼ (1, 0, 0, 0, 0, 1) ¼ q62

x ¼ (0, 0, 0, 1, 1, 1) ¼ q26 y1 ¼ (1, 0, 1, 0, 0, 1) ¼ q23 y2 ¼ (1, 0, 1, 1, 1, 0) ¼ q55

x ¼ (0, 0, 1, 1, 1, 0) ¼ q27 y1 ¼ (0, 0, 0, 0, 0, 1) ¼ q0 y2 ¼ (0, 0, 1, 1, 1, 1) ¼ q18

x ¼ (0, 1, 1, 1, 0, 0) ¼ q28 y1 ¼ (0, 0, 1, 0, 0, 1) ¼ q32 y2 ¼ (0, 1, 0, 1, 0, 1) ¼ q52

x ¼ (0, 0, 1, 0, 0, 1) ¼ q32 y1 ¼ (0, 1, 1, 0, 0, 0) ¼ q9 y2 ¼ (0, 1, 0, 0, 0, 1) ¼ q24

x ¼ (0, 1, 0, 0, 1, 0) ¼ q33 y1 ¼ (1, 0, 1, 1, 1, 1) ¼ q40 y2 ¼ (1, 1, 1, 1, 0, 1) ¼ q59

x ¼ (0, 0, 1, 0, 1, 1) ¼ q35 y1 ¼ (0, 1, 0, 0, 0, 0) ¼ q4 y2 ¼ (0, 1, 1, 0, 1, 1) ¼ q38

x ¼ (0, 1, 0, 1, 1, 0) ¼ q36 y1 ¼ (1, 0, 0, 1, 1, 1) ¼ q47 y2 ¼ (1, 1, 0, 0, 0, 1) ¼ q61

x ¼ (0, 1, 1, 0, 1, 1) ¼ q38 y1 ¼ (1, 0, 1, 0, 1, 0) ¼ q53 y2 ¼ (1, 1, 0, 0, 0, 1) ¼ q61

x ¼ (0, 1, 1, 1, 0, 1) ¼ q41 y1 ¼ (1, 1, 1, 0, 0, 0) ¼ q29 y2 ¼ (1, 0, 0, 1, 0, 1) ¼ q31

x ¼ (0, 1, 1, 0, 0, 1) ¼ q45 y1 ¼ (0, 0, 0, 0, 0, 1) ¼ q0 y2 ¼ (0, 1, 1, 0, 0, 0) ¼ q9

x ¼ (0, 0, 1, 1, 0, 1) ¼ q48 y1 ¼ (1, 1, 1, 1, 0, 0) ¼ q20 y2 ¼ (1, 1, 0, 0, 0, 1) ¼ q61

x ¼ (0, 1, 1, 0, 1, 0) ¼ q49 y1 ¼ x(0, 0, 0, 1, 0, 0) ¼ q2 y2 ¼ (0, 1, 1, 1, 1, 0) ¼ q19

x ¼ (0, 1, 0, 1, 0, 1) ¼ q52 y1 ¼ (1, 1, 0, 0, 1, 0) ¼ q46 y2 ¼ (1, 0, 0, 1, 1, 1) ¼ q47

x ¼ (0, 1, 0, 1, 1, 1) ¼ q54 y1 ¼ (0, 0, 0, 0, 0, 1) ¼ q0 y2 ¼ (0, 1, 0, 1, 1, 0) ¼ q36

x ¼ (0, 1, 1, 1, 1, 1) ¼ q56 y1 ¼ (0, 0, 0, 0, 1, 0) ¼ q1 y2 ¼ (0, 1, 1, 1, 0, 1) ¼ q41
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Suppose P ¼ (x1, y1) andQ ¼ (x2, y2) are the points of intersection of the straight line

PQ : y ¼ lxþ m

and the elliptic curve

y21 þ x1y1 ¼ x31 þ ax21 þ b

y22 þ x2y2 ¼ x32 þ ax22 þ b:

Substituting y ¼ lxþ m into y2þ xy ¼ x3þ ax2þ b gives the relation

0 ¼ x3 � x2(l2 þ lþ a)þ xmþ (b� m2):

If (x32 y3) is the third root of the cubic above,

0 ¼ (x� x1)(x� x2)(x� x3),

then by identifying coefficients of powers of x,

l2 þ l ¼ x1 þ x2 þ x3 þ a:

When x1þ x2 = 0

l ¼
y2 þ y1

x2 þ x1
,

which gives

x3 ¼ l2 þ lþ x1 þ x2 þ a

and

y3 ¼ l(x1 þ x3)þ x3 þ y1:

Example 15.6 (continued)
Computation of (x3, y3) ¼ (x1, y1)þ (x2, y2).

x1 ¼ (0, 1, 0, 0, 0, 0) ¼ q4 x2 ¼ (0, 0, 1, 1, 0, 0) ¼ q8 x1þ x2 ¼ (0, 1, 1, 1, 0, 0) ¼ q28

y1 ¼ (0, 0, 1, 0, 0, 0) ¼ q3 y2 ¼ (0, 0, 0, 0, 1, 1) ¼ q6 y1þ y2 ¼ (0, 0, 1, 0, 1, 1) ¼ q35

l ¼ (0, 0, 0, 1, 1, 0) ¼ q7 x3 ¼ (0, 0, 1, 1, 1, 0) ¼ q27 y3 ¼ (0, 0, 0, 0, 0, 1) ¼ q0

15.7 SUPERSINGULAR ELLIPTIC CURVES

The strength that cryptographic systems derive from elliptic curves depends on the diffi-

culty of solving the elliptic curve discrete logarithm problem (ECDLP) and factorization

in an elliptic curve: given x ¼ pq, find p and q. It is believed that factorization algorithms

have exponential execution times.

Are there bad elliptic curves? More precisely, are there some elliptic curves in which

the factorization problem is not as hard?
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If the order q of Ep(a, b) were p or a divisor of pm2 1 for some m, then bad news.

Menezes et al. [1991] give a subexponential algorithm for the supersingular elliptic curves.

The National Institute of Standards [NIST, 2000, NIST186-2] has given its Good

Crypto seal of approval to several elliptic groups; in each example, the coordinates

(Gx, Gy) of the base point P and its order r are given. One of these groups, designated

by NIST as P192, is based on the 192-bit prime p ¼ 21922 264þ 1.

p ¼ 6277101735386680763835789423207666416083908700390324961279

Say you are not satisfied – well, then try P521:

p ¼ 686479766013060971498190079908139321726943530014330540939

44634591855431833976560521225596406614545549772963113914

80858037121987999716643812574028291115057151

There are elliptic curves over binary fields; for example

. K163 is generated by the polynomial p(x) ¼ 1þ x3þ x6þ x7þ x163, and

. K571 is generated by the polynomial p(x) ¼ 1þ x2þ x5þ x10þ x571.

All text stored in and transmitted between computer systems are strings of 0’s and 1’s.

When elliptic cryptosystems are used, plaintext must be coded into points of the curve

EF where F is the underlying field. If F is identified with Zm,2 generated by p(x), the

translation is easy. If F is identified with Zm,p with p = 2, the natural coding

x ¼ (x0, x1, . . . , xn�1)! x ;
Xn�1
i¼0

xi2
n�i�i

may not map x into a point on the curve of EF and some rule has to be specified.

15.8 DIFFIE–HELLMAN KEY EXCHANGE USING AN
ELLIPTIC CURVE

The idea of using elliptic curves for cryptosystems is due to Neal Koblitz [1987b] and

Victor Miller [1986]. We begin, however, as did the public-key publications, with key

exchange. Following tradition, Alice or Bob want to securely exchange a key.

0. Alice or Bob choose a point x on an elliptic curve Ep(a, b) with a very large p. 3 and

transmit the value of x to the other party.

1. Alice and Bob each randomly choose integers a and b.

2a. Alice computes ax and transmits it to Bob.

2b. Bob computes bx and transmits it to Alice.

3a. Alice computes abx.

3b. Bob computes bax.

x, ax, and bx are transmitted in the clear; a and b are secret. The secrecy of the Diffie–

Hellman elliptic curve key exchange is the complexity of elliptic curve “integer”

factorization.

The elliptic curve DH has been blessed by NSA [NIST, 2005, 800-56].
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15.9 THE MENEZES–VANSTONE ELLIPTIC CURVE
CRYPTOSYSTEM

The system we describe appears in Menezes and Vanstone [1993]. Let p . 3 be a prime

and Ep(a, b) the elliptic group generated by y2 ¼ x3þ axþ b. The Menezes–Vanstone

(public-key) elliptic curve cryptosystem is a variant of El Gamal’s encipherment system

to be described in Chapter 17. Its keys are

Private Key: KP [ Zp

Public Keys: K1, K2 [ Ep(a, b), K2 ¼ KPK1 [ Ep(a, b).

The encipherment and decipherment processes are

Encipherment – Plaintext: x1, x2 [ Z�p.

1. Choose a secret (session key) kS [ Zp.

2. Compute y0 ¼ kSK1 [ Ep(a, b).
3. Compute (z1, z2) ¼ kSK2 [ Ep(a, b).
4. Compute y1 ¼ z1x1 (modulo p) [ Z�p.
5. Compute y2 ¼ z2x2 (modulo p) [ Z�p.

Ciphertext: ( y0, y1, y2); y0 [ Ep(a, b), y1, y2 [ Z�p.

Decipherment – Ciphertext : ( y0, y1, y2); y0 [ Ep(a, b), y1, y2 [ Z�p
1. Compute KPy0 ¼ KPkSK1 ¼ kSKPK1 ¼ kSK2 ¼ (z1, z2) [ Ep(a, b).
2. Compute x1 ¼ z1

21y1 (modulo p) [ Z�p.
3. Compute x2 ¼ z2

21y2 (modulo p) [ Z�p.

Plaintext: x1, x2 [ Z�p.

Example 15.7
p ¼ 23, a ¼ b ¼ 1.

Private Key: KP ¼ 8 [ Z23

Public Keys: K1 ¼ (3, 13), K2 ¼ (13, 7) [ E23(1, 1)
K2 ¼ KPK1 ¼ 8(3, 13) ¼ (13, 7) [ E23(1, 1).

Encipherment – Plaintext: (x1, x2) ¼ (3, 5) [ Z�23.

1. Choose the secret (session key) kS ¼ 5 [ Z23.

2. Compute y0 ¼ kSK1 ¼ 5(3, 13) ¼ (9, 7) [ E23(1, 1).
3. Compute (z1, z2) ¼ kSK2 ¼ 5(13, 7) ¼ (9.7) [ E23(1, 1).
4. Compute y1 ¼ z1x1 (modulo 23) ¼ 5 � 3 ¼ 15 [ Z�23.
5. Compute y2 ¼ z2x2 (modulo 23) ¼ 19 � 5 (modulo 23) ¼ 3 [ Z�23.

Ciphertext: (y0, y1, y2); y0 ¼ (9, 7) [ E23(1, 1), y1 ¼ 15, y2 ¼ 3

Decipherment – Ciphertext: ( y0, y1, y2); y0 ¼ (9, 7) [ E23(1, 1), ( y1, y2) ¼
(15, 3) [ Z�23.
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1. ComputeKPy0 ¼ 8(9, 7) ¼ (5, 19) ¼ KPkSK1 ¼ kSKPK1 ¼ kSK2 ¼ (z1, z2) [ E23(1, 1).
2. Compute x1 ¼ z1

21y1 (modulo 23) ¼ 521
� 15 (modulo 23) ¼ 14 � 15 (modulo 23)

¼ 3 [ Z�23.
3. Compute x2 ¼ z2

21y2 (modulo 23) ¼ 1921
� 3 (modulo 23) ¼ 17 � 3 (modulo 23)

¼ 5 [ Z�23.

Plaintext (x1, x2) ¼ (3, 5) [ Z�23.

The papers by Okamoto et al. [1999] and Okamoto and Pointcheval [2000] also devise an

El-Gamal-like elliptic curve encipherment. The proposed Elliptic Curve Integrated

Encryption Standard (ECIEC) [Shoup, 2001], is designed to protect against chosen

plain- and ciphertext attacks.

15.10 THE ELLIPTIC CURVE DIGITAL SIGNATURE
ALGORITHM

The digital signature algorithm ported to elliptic curve cryptosystems is standardized by

ANSI [ECDSA, 2005] and the NIST Federal Information Processing Standard 186–2.

When Alice wants to sign a message m for Bob, she chooses a finite field F, an elliptic

group EF and a base point P of order n. Alice’s keys are

. Public key PuK(ID[Alice]) [ EF;

. Private key PrK(ID[Alice]), an integer.

15.10.1 Signing the Message m

S1. Alice chooses a random number k satisfying 1 � k � n2 1;

S2. Alice computes kP ¼ (x1, y1) and r ¼ x1 (modulo n); If r ¼ 0, a bad choice for k was

made and Alice returns again to Step 1.

S3. Alice computes k21; (modulo n);

S4. If Alice uses NIST’s SHA-1 and computes SHA[m];

S5. Alice computes s ¼ k21(SHA[m]þ PrK(ID[Alice]r) (modulo n); If s ¼ 0, another bad

choice and Alice returns again to Step 1.

Well, we made it! Alice’s signature for m is the pair (r, s).

15.10.2 Verifying the Message m (r, s)

V1. Bob verifies that the integers (r, s) satisfy 1 � r � n 2 1 and 1 � s � n2 1;

V2. Bob uses NIST’s SHA-1 and computes SHA[m];

V3. Bob computes w ¼ s21 (modulo n);

V4. Bob computes u1 ¼ SHA[m]w (modulo n) and u2 ¼ rw (modulo n);

V5. Bob computes x ¼ u1Pþ u2PuK(ID[Alice]);

V6a. If x ¼ O (the identity element of the elliptic group EF), then the signature is rejected.
V6b. If x = O, then Bob computes v ¼ x1 (modulo n) where x ¼ (x1, y1).
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Bob accepts (r, s) as the signature of m if and only if v ¼ r.

15.11 THE CERTICOM CHALLENGE

The Certicom Corporation markets software products based on Elliptic Curve

Cryptography (ECC). According to their Web site www.certicom.com, the Certicom

Intellectual Property portfolio includes over 350 patents and patents pending worldwide,

covering many key aspects of ECC, including software optimizations, efficient hardware

implementations, methods to enhance security, and various cryptographic protocols.

Certicom introduced the ECC challenge in November 1997. The ECC Challenge

was introduced “to increase industry understanding and appreciation for the difficulty of

the elliptic curve discrete logarithm problem, and to encourage and stimulate further

research in the security analysis of elliptic curve cryptosystems.”

The challenge is to compute the ECC private keys from the given list of ECC public

keys and associated system parameters. There are two levels:

. Level 1: 109-bit and 131-bit challenges;

. Level 2: 163-bit, 191-bit, 239-bit, and 359-bit challenges.

Details can be found on their Web site.

15.12 NSA AND ELLIPTIC CURVE CRYPTOGRAPHY

In their review “The Case for Elliptic Curve Cryptography” (www.nsa.gov/ia/industry/

crypto_elliptic_curve.cfm) several points are made by the NSA:

. Elliptic curve cryptosystems seem to offer a considerable efficiency with respect to

key size.

In Table 15.5

. The first three columns contain a comparison of NIST-recommended key sizes for

symmetric, RSA, and elliptic curve cryptosystems;

. The last column gives the ratio of computational efficiency of RSA to elliptic curve

cryptography.

The article also points out that intellectual property rights are a major roadblock to the

further adoption of elliptic curve cryptography, citing Certicom, which holds over 130

patents in this area. See my quotations at the start of Chapter 19.

TABLE 15.5 NSA’s Key-Length Comparison for Symmetric-
Key, RSA and Elliptic Curve Cryptosystems

Key size (in bits)

Symmetric RSA Elliptic E-Ratio

80 1024 160 3:1

112 2048 224 6:1

128 3072 256 10:1

192 7680 384 32:1

256 15360 521 64:1
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CHA P T E R16
KEY EXCHANGE IN A NETWORK

ACOMP L I C A T ED mechanism using a hierarchy of keys was provided to

exchange a shared key when users in a public data network wanted to encipher their

communications using a symmetric-key cryptographic system. Diffie and Hellman

invented public-key cryptography to provide a simpler method for key exchange in public

data networks. Both methodologies are examined in this chapter.

16.1 KEY DISTRIBUTION IN A NETWORK

Three different schemes have been invented to implement the distribution of keys in an

open network (Fig. 16.1):

. User_IDi and User_IDj establish in advance a shared key ki,j by some unspecified

means.

. A key server maintains a list of users keys and constructs a (User_IDi, User_IDj)

session key, which is delivered to each user enciphered under the user’s secret key.

. The network uses some public-key algorithm to exchange a shared key.

Figure 16.1 Users connected in a network.

Computer Security and Cryptography. By Alan G. Konheim
Copyright # 2007 John Wiley & Sons, Inc.
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16.2 U.S. PATENT ’770 [HELLMAN ET AL., 1980;
DIFFIE AND HELLMAN, 1976]

The Diffie–Hellman key-exchange scheme uses these rules:

DH1. User_ID[i] with identifier ID[i] chooses a secret key ki and computes xi ¼ qki

(modulo p). Table 16.1, containing the pairs (ID[i],xi), is maintained by the

system administrator.

DH2. When User_ID[i] and User_ID[ j] wish to communicate they construct a common

(User_ID[i]-User_ID[ j]) key as follows:

– User_ID[i] reads xj from the table and computes xi,j ¼ xj
ki (modulo p).

– User_ID[j] reads xi from the table and computes xj,i ¼ xj
ki (modulo p).

The common (User_ID[i]-User-ID[j]) key is xi,j ¼ xj,i.

16.3 SPOOFING

To spoof is to “cause a deception or hoax.” The following spoofing attack is possible using

the modified system table (Table 16.2) of User_ID’s and public keys.

SP1. User_ID[k] replaces the entry xi of User_ID[i] in the system table by xk.

SP2. When User_ID[j] computes xj,i using the User_ID[i] entry in the table, there results

xj,k ¼ xj
kk (modulo p).

TABLE 16.1 The System’s Diffie–Hellman Key Exchange
Table

User_ID User public key

..

. ..
.

ID[i] xi
..
. ..

.

User_ID[j] xj
..
. ..

.

User_ID[k] xk
..
. ..

.

TABLE 16.2 User_ID[k] Modifies the System’s Diffie–
Hellman Key Exchange Table

User_ID User public key

..

. ..
.

User_ID[i] xk
..
. ..

.

User_ID[j] xj
..
. ..

.

User_ID[k] xk
..
. ..

.
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SP3. User_ID[k] has been successful in masquerading as User_ID[i] because User_ID[j] is

securely communicating with an imposter!

SP4. At the conclusion of the communication, User_IDk replaces User_IDi correct entry.

To prevent this spoofing attack, the table must either be write-protected or the entries

User_ID[i] and xi must be linked in a way that any user can detect an alteration in the

table. Public key certificates, to be discussed in Chapter 18, attempt to do this; alterna-

tively, the system table includes a LINK kUser_ID[i],xil in the table, allowing the user

to verify that the entries User_ID[i] and xi are a proper pair (Table 16.3).

User_IDj reads the entry

User_ID[i] xi LINKkUser_ID[i],xil

and uses LINK kUser_ID[i],xil to authenticate that xi proper1y corresponds to User_ID[i],
as depicted in Figure 16.2. LINKkUser_IDi,xil is a function of User_IDi and xi such

that

. Any user may compute F(User_IDi, xi) given User_IDi and xi;

. It is computational infeasible for any user to compute LINKkUser_IDi, xil given a

(valid) User_IDi and a value xi.

The paradigm of one-way functions?

16.3.1 Linked Table Implementation

Diffie–Hellman does not require a table. When User_IDi and User_IDj want to exchange a

secret key, each generates a secret key ki and computes xi ¼ qki (modulo p), which is

TABLE 16.3 The System’s Diffie–Hellman Key Exchange
Table with Linked Entries

User_ID User public key Link

..

. ..
. ..

.

User_ID[i] xi LINKkUser_ID[i],xil
..
. ..

. ..
.

User_ID[j] xj LINKkUser_ID[j],xjl
..
. ..

. ..
.

User_ID[k] xk LINKkUser_ID[k],xkl
..
. ..

.

Figure 16.2 Using LINKkUser_ID[i],xil to Authenticate (User_ID[i],xi).
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transmitted to User_IDj. The same defect is present; User_IDi has no proof that xi
originated from the real User_IDi.

The security of the Diffie–Hellman key exchange depends on the difficulty of

solving the discrete logarithm problem (DLP):

Given: xi.

Find: ki.

16.4 EL GAMAL’S EXTENSION OF DIFFIE–HELLMAN

Although Diffie–Hellman realized how keys could be exchanged securely if the DLP was

infeasible to solve, they did not discover how to modify their idea to encipher data.

The Secure Electronic Exchange of Keys (SEEK) is a product of the CYLINK

Corporation. It is based on an extension of the Diffie–Hellman scheme discovered by

T. El Gamal [1985]

16.4.1 SEEK Cryptosystem

Public Parameters: p ¼ 2r þ 1 and r primes; q a primitive root of p.

1i. User_ID[i] chooses a random key ki [ Zp
* and computes xi ¼ qki (modulo p).

1j. User_IDj chooses a random key kj [ Zp
* and computes xj ¼ qki (modulo p).

2. User_ID[i] and User_ID[j] exchange xi and xj.

3i. User_ID[i] computes xi, j ¼ xj
ki (modulo p).

3j. User_ID[j] computes xj, i ¼ xi
kj (modulo p).

4. xi,j ¼ xi,j is used to derive the common session key

ei, j ¼
xi, j, if xi, j is odd

xi, j � 1, if xi, j is even:

�
5. Each user computes the multiplicative inverse di, j modulo p2 1 of ei, j

di, j ei, j ¼ 1 (modulo p� 1)

by evaluating di, j ¼ e
p�1
2
�2

i, j (modulo p� 1).

6. Encipherment and decipherment is applied to plaintext M and ciphertext C in Zp

according to the rules

E : M ���! C ¼ Mei, j (modulo p)

D : C ���! M ¼ Cdi, j (modulo p):

Example 16.1
p ¼ 1283 ¼ 2 � 641þ 1, q ¼ 24.

1i. User_ID[i] selects ki ¼ 67 and computes xi ¼ qki (modulo p) ¼ 2467 (modulo

1283) ¼ 98.

1j. User_ID[j] selects kj ¼ 95 and computes xj ¼ qkj (modulo p) ¼ 2495 (modulo

1283) ¼ 933.

2. User_ID[i] and User_ID[j] exchange xi and xj.

3i. User_ID[i] computes xi,j ¼ xj
ki (modulo p) ¼ 93367 (modulo 1283) ¼ 135.
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3j. User_ID[j] computes xj,i ¼ xi
kj (modulo p) ¼ 9895 (modulo 1283) ¼ 135.

4. The common User_ID[i]-User_ID[j] encipherment key is ei, j ¼ 135.

The common User_ID[i]-User_ID[j] decipherment key is di, j ¼ 19.

Proposition 16.1 (The Correctness of the SEEK Protocol): There are two results to

be proved. First, if di, j ei, j ¼ 1 (modulo p2 1), then

(Mei, j (modulo p))di, j (modulo p) ¼ Mei, j di, j (modulo p) ¼ M1þA(p�1) (modulo p) ¼ M,

the last equality by Fermat’s Little Theorem. This proves the operationsE andD are inverses

of one another.

It remains to show that

di, j ¼ e
p�1
2
�2

i, j (modulo p� 1) ) di, jei, j ¼ 1 (modulo p� 1):

The proof uses Fermat’s Little Theorem:

z p�1 ¼ 1 (modulo p), z [ Zþp

z p ¼ 1 (modulo p), z [ Zp:

We need to show that if z [ Zp is odd, then

z�1 ¼ z
p�1
2
�2 (modulo p� 1)

or equivalently

z ¼ z
p�1
2 (modulo p� 1):

But p ¼ 2rþ 1, so p2 1 ¼ 2r, and hence

z� z
p�1
2 ¼ 0 (modulo 2)

z� z
p�2
2 ¼ z� zr ¼ 0 (modulo r):

Note that xi and xj are available by wiretapping. If the DLP can be solved, then ki, kj, and

ei, j can be determined from the transmitted xi and xj. Furthermore, SEEK as described

above suffers from the same defect as Diffie–Hellman; namely, the identity of the party

claiming to be User_ID[i] needs to be validated by some other information. CYLINK pro-

posed a certification center to provide the validation.

16.5 SHAMIR’S AUTONOMOUS KEY EXCHANGE

In unpublished work, Adi Shamir proposed a key exchange protocol that depends on the

secure exchange of no secret information. The following steps exchange a key between

User_ID[i] and User_ID[j]:

0. p is a (known) prime; ki and kj are the (secret) keys of User_ID[i] and User_ID[j].

It is assumed that 1 ¼ gcd{ki, p2 1} ¼ gcd{kj, p2 1} so that both ki and kj have

multiplicative inverses modulo p2 1

1 ¼ kik
�1
i (modulo p� 1), 1 ¼ kj k

�1
j (modulo p� 1):

By Fermat’s Little Theorem

x ¼ xkik
�1
i (modulo p), x ¼ xkj k

�1
j (modulo p):
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1. User_ID[i] (the initiator) selects a session key X0 and performs the exponentiation

X1 ¼ X0ki (modulo p):

X1 is transmitted to User_ID[j] (Fig. 16.3).

2. User_ID[j] performs the exponentiation

X2 ¼ X1kj (modulo p):

X2 is transmitted to User_ID[i] (Fig. 16.4).

3. User_ID[i] performs the exponentiation

X3 ¼ X2k
�1
i (modulo p):

X3 is transmitted to User_ID[j] (Fig. 16.5).

4. User_ID[j] performs the exponentiation

X4 ¼ X3k
�1
j (modulo p):

Proposition 16.2: X4 ¼ X0.

Proof:

X1 ¼ X0ki (modulo p)

X2 ¼ X1ki (modulo p) ¼ X
kikj
0 (modulo p)

X3 ¼ X2k
�1
i (modulo p) ¼ X

kikjk
�1
i

0 (modulo p) ¼ X
kj
0 (modulo p)

X4 ¼ X3k
�1
j (modulo p) ¼ X0:

Example 16.2

Public Parameter: p ¼ 2543

Private Parameters: User_ID[i] ki ¼ 789, ki
21 ¼ 857

User_ID[i] kj ¼ 715, kj
21 ¼ 1287.

Step #1

User_ID[i] chooses session key X0 ¼ 101;

User_ID[i] computes X1 ¼ X0ki ¼ 1163 (modulo p);

User_ID[i] transmits X1 ¼ 1163 to User_IDj.

Figure 16.3 Step #1 in Shamir’s autonomous key exchange.

Figure 16.4 Step #2 in Shamir’s autonomous key exchange.
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Step #2

User_ID[j] computes X2 ¼ X1kj (modulo p) ¼ X0ki kj (modulo p) ¼ 2447;

User_ID[j] transmits X2 ¼2447 to User_ID[i].

Step #3

User_ID[i] computes X3 ¼ X2ki
21

(modulo p) ¼ X0kikjk
�1
i (modulo p) ¼ X0kj (modulo

p) ¼ 515;

User_ID[i] transmits X3 ¼ 515 to User_ID[j].

Step #4

User_ID[j] computes X4 ¼ X3kj
21

(modulo p) ¼ X0ki kj k
�1
i k�1j (modulo p) ¼ 101;

X4 ¼ 101 ¼ X0.

What has been achieved? Let us suppose that the size of the prime p is sufficiently

large and that p2 1 has large enough prime factors so that any attempt to solve any of the

discrete logarithm problems is beyond our enemy’s resources. Shamir’s protocol

exchanges a key without the prior sharing of any secret information! Has true crypto-

graphic happiness been achieved?

Look at the exchange Steps 1–4 from User_ID[j]’s perspective; a user on the

network contacts User_ID[j] claiming to be User_ID[i]. The two parties agree to exchange

information using the protocol outlined above. But who is User_ID[j] communicating

with? Perhaps, the real User_ID[i] or perhaps, some sinister individual is pretending to

be User_ID[i]. Perhaps, a politician . . . or even worse, a dean! Can User_ID[j] detect

this? For the protocol described above, the answer is no. What is lacking? In order for

User_ID[j] to be certain that the party with whom he/she is communicating is

User_ID[i], some incontrovertible proof must be offered by User_ID[i], evidence that

only the true User_ID[i] can have. The problem is familiar and takes place whenever

we identify ourselves with a driver’s license or passport (neither of which are really

‘proof’). These issues will be examined in more detail in Chapter 17.

16.6 X9.17 KEY EXCHANGE ARCHITECTURE
[ANSI, 1985]

X9.17 is a standard of the American National Standards Institute describing the key hand-

ling recommendations for the financial industry. It proposes a hierarchy of keys:

. Nodes at the lowest two levels store data key(s) (KD) used to encipher transaction data;

. Nodes at all of the levels contain key encrypting keys (KK) used to transfer keys

between adjacent layers.

Figure 16.5 Step #3 in Shamir’s autonomous key exchange.
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X9.17 uses a symmetric key cryptosystem and the following general principle applies.

Depicted in Figure 16.6 is a three-level hierarchy; in each level, keys are stored in a

secure database identified by (NID_xy, key_xy) where #x and #y identify the node and

level with which the key will be used.

. A key distribution center (CDK) is a facility that manages the distribution of data

keys to the nodes. The key translation center (CTK) acts for the CDK and generates

and distributes keys, enciphered under some key encrypting key, to the nodes.

. X9.17 uses the data encryption algorithm (DEA), also known as DES, to perform the

encipherment of keys and data. The syntax is DEAkey {cleartext} where

– key ¼ KD, cleartext ¼ data message, or

– key ¼ KK, cleartext ¼ KD.

Triple DEA encipherment with syntax DEAKKM‘ {DEAKMMr
21 {DEAKKM‘{KK}}}

may be used to deliver the key KK from a node to an adjacent (lower) level node.

The notation KKM ¼ KKM‘kKKMr denotes the concatenation (k) of two 56-bit

keys KKM‘ and KKMr.

1. Whenever two nodes encipher data using a symmetric key cryptosystem, the key

must be available at both nodes.

2. Whenever two nodes compute a message authentication code (MAC) using a

symmetric key cryptosystem, the key must be available at both nodes.

Figure 16.6 X9-17 key hierarchy.
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The idea of using a hierarchy of keys is implicit in the Meyer and Matyas book [1982].

Hierarchy of keys was also implemented in IBM key management in the IBM product

3848 and in the first generation of IBM banking systems (2984) [IBM, 1977, 1985].

16.6.1 X9.17 Distribution of Keys

A key encrypting key is used to encipher a key for delivery (over a network) to an adjacent

(lower) level node. They come in several flavors; at level ‘ (and at the adjacent (lower) level
‘2 1) resides a key encrypting key (KK‘), which is placed there manually. A level-‘ key

encrypting key is used to deliver a data key (KD‘2 1) generated by a level-‘ node to the

adjacent level-‘2 1 node. Data keys are used to pass data between adjacent levels. Note

that there may be KKs (level 3! level 2) and many KKs (level 2! level 1).

16.6.2 X9.17 Protocol Mechanisms

1. The lifetimes of keys are variable; a data key KD may be operational for only a

session (when a controller in a store is initialized for the day). The key encrypting

keys KK may be valid for a longer time period.

2. A counter is connected with the distribution of KKs; the counter is incremented

whenever a new key encrypting key is distributed.

3. The message authentication code (MAC) is computed as shown in Figure 16.7 using

DEA with cipher block chaining (CBC). The data in a message is written as the
concatenation of k 64-bit blocks X1kX2 k � � � k Xk. The final block of 64 bits
is the message authentication block (MAB); the leftmost 32 bits is the MAC,
although its length may be larger.

4. Various types of X9.17 messages are defined:

– A cryptographic service message (CSM) is a message used to transport keys or

information to control a keying relationship;

– A error servicemessage (ESM) is amessage that reports an error in a previousCSM;

– An error recovery service message (ERS) is a message used to recover from

counter or other errors;

Figure 16.7 Computation of X9.17 message authentication block and code.

16.6 X9.17 KEY EXCHANGE ARCHITECTURE [ANSI, 1985] 455



– A request service initiation message (REI) is a message to request a new keying

relationship to be established.

5. If it is desired to detect transmission errors (i.e., when other means, for example,

CRC-codes, are not available), the MAC-computation as in (3) above may be

used with fixed key 0123456789ABCDEF (in hexadecimal). Error detection is

used for ERS, ESM, and RSI messages.

16.7 THE NEEDHAM–SCHROEDER KEY DISTRIBUTION
PROTOCOL [NEEDHAM AND SCHROEDER, 1998]

This paper describes a protocol for a key server to generate and deliver a session key to the

pair of users User_ID[A] and User_ID[B]. Two user-authentication issues arise when a

common session key is used in a session User_ID[A]$ User_ID[B].

A1. Is User_ID[A] really communicating with User_ID[B]?

A2. Is User_IDB really communicating with User_ID[A]?

This paper considers two protocols: the first for users enciphering with a symmetric key

cryptosystem, the second for users enciphering with a public key cryptosystem (PKC).

16.7.1 Needham–Schroeder Using a Symmetric Key
Cryptosystem

The key server is assumed to securely store

. The (secret) key K(ID[A]) of User_ID[A] with identifier ID[A], and

. The (secret) key K(ID[B]) of User_ID[B] with identifier ID[B].

It is assumed that

. Only the key server and a user have knowledge of the user’s secret key, and

. It is not feasible to decipher messages without the key.

16.7.2 The Key Server Generates and Delivers a Session
Key KS for a User_ID[A] $ User_ID[B] Session

The key exchange process is composed of the following steps:

1a. User_ID[A] contacts the key server and requests a session key KS be generated

for a User_ID[A]$ User_ID[B] session (Fig. 16.8). The message REQ¼
(ID[A], ID[B], NkAl) is transmitted in the clear to the key server by User_ID[A]

and contains the identifiers (ID[A],ID[B]) of the two parties and a nonce1 NkAl
generated by User_ID[A].

1b. The key server cannot be certain that the message REQ originated with User_ID[A].2

2a. The key server randomly generates a session key KS, which is transmitted to

User_ID[A] in the message C2 ¼ EK(ID[A]) {M2}, whose data M2 ¼ (NkAl, ID[B],

1Nonce, for used only once, is introduced as part of the authentication process.
2An improved Needham–Schroeder protocol modified the request message to (REQ, EK(ID[A]){REQ}) and included

a time-stamp in addition to the nonce. In this case, the request message could only be constructed with knowledge of

the key K(ID[A]).
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KS, Auth) is enciphered with User_ID[A]’s key K(ID[A]) (Fig. 16.9). Included within

the data M2 is Auth ¼ EK(ID[B]) {KS,ID[A]}, which will be used by User_ID[A] for

user-authentication to User_ID[B]. User_ID[A] cannot decipher, modify, or construct

a valid Auth since K(ID[B]) is secret.

2b. Possession of K[ID[A]) allows User_ID[A] to decipher C2 and recover the data M2,

in particular to obtain the session key and the enciphered authentication Auth ¼
EK([ID[B]]) {KS,ID[A]}, which cannot be deciphered.

3a. User_ID[A] delivers the session key KS to User_ID[B] in the message Auth ¼
EK([RD[B]) {KS,ID[A]}.

3b. Possession ofK[ID[B]) allowsUser_ID[B] to decipherAuth ¼ EK[ID_B] {KS, ID[A]},

in particular to obtain the session key and the identifier ID[A] of the purported

sender of C3.

Figure 16.8 Step #1 in the symmetric key Needham–Schroeder protocol.

Figure 16.9 Step #2 in the symmetric key Needham–Schroeder protocol.
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4a. Although the integrity of Auth is assured, the identity of the sender is not; for

example, Auth might have been transmitted previously in the clear by

User_ID[A], recorded by User_ID[?] and now replayed to User_ID[B].

4b. It remains for User_ID[B] to authenticate that User_ID[A] was the source of the

message C3 containing Auth.

4c. User_ID[B] generates a second nonce NkBl and transmits the message

C4 ¼ EKS{NkBl} to User_ID[A] (Fig. 16.11).

5a. Possession of the session key KS allows User_ID[A] to decipher the message C4 and

recover the User_ID[B]-generated nonce NkBl.
5b. User_ID[A] modifies the nonce NkBl in some standard manner; for example NkBl !

N*kBl ¼ NkBlþ 1.

5c. User_ID[A] transmits the message C5 ¼ EKS {N*kBl} to User_ID[B] (Fig. 16.12).

6. User_ID[B] completes authentication of the session establishment and key exchange;

possession of the session key KS allows User_ID[B] to decipher the message C5 and

verify that the nonce NkBl has been modified properly.

Figure 16.10 Step #3 in the Needham–Schroeder protocol.

Figure 16.11 Step #4 in the symmetric key Needham–Schroeder protocol.
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16.7.3 Needham–Schroeder Using a Public-Key
Cryptosystem

. PuK(ID[A]) and PrK(ID[A]) denote the public and private keys of User_ID[A],

. PuK(ID[B]) and PrK(ID[B]) denote the public and private keys of User_ID[B], and

. PuK(TD[KS]) and PrK(ID[KS]) denote the public and private keys of the key server.

It is assumed that

. The public keys of the key server are known, and

. Knowledge of the public key does not permit the determination of the private key or

the decipherment of PuK-enciphered messages.

16.7.4 The Key Generates and Delivers a Session Key KS
For a User_ID[A]$ User_ID[B] Session

The key exchange process is composed of the following steps:

1a. User_ID[A] contacts the key server and in the message REQ1 requests a session key

KS be generated for a User_ID[A]$ User_ID[B] session (Fig. 16.13). REQ1 con-

tains the identifiers (ID[A], ID[B]) of the two parties and is transmitted in the clear

to the key server by User_ID[A].

2a. The key server responds by transmitting the message C2 ¼ EPrK(ID[K]) {M2} to

User_ID[A] enciphered using the private key PrK(ID[KS]) of the key server

(Fig. 16.14).

2b. The data M2 consists of the identifier ID[B] and the public key PuK(ID[B]) of

User_ID[B].

3a. User_ID[A] generates a nonce NkAl, which together with the identifier ID[A] is

transmitted to User_ID[B] in the message C3 ¼ EPuK(ID[B]) {NkAl, ID[A])} enci-

phered using the public key PuK(ID[B]) of User_ID[B] (Fig. 16.15).

4a. The identity of the sender of C3 must be authenticated, a two-step process.

4b. User_ID_B signals the key server by transmitting the message in the clear REQ2 ¼
(ID[B], ID[A]) to the key server (Fig. 16.16).

Figure 16.12 Step #5 in the symmetric key Needham–Schroeder protocol.
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Figure 16.14 Step #2 in the public-key Needham–Schroeder protocol.

Figure 16.13 Step #1 in the public-key Needham–Schroeder protocol.

Figure 16.15 Step #3 in the public-key Needham–Schroeder protocol.
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5a. The key server responds by transmitting the message C5 ¼ EPrK(ID[KS]){M5}

(Fig. 16.17).

5b. The data M5 consists of the identifier ID[A] and the public key PuK(ID[A]) of

User_ID[A].

5c. Who could have constructed the message C5 ¼ EPrK(ID[KS]){M5}? Only a party

with the secret key PrK[K] of the key server.

At this point, the public keys of the users have been authenticated by messages from the

key server. The identity of any communications between User_ID[A] and User_ID[B]

must be authenticated, a process composed of two steps:

6a. User_ID[B] transmits the message C6 ¼ EPuK(ID[A]) {M6} to User_ID[A] enci-

phered in User_ID[A]’s public key PuK(ID[A]) (Fig. 16.18).

6b. The data M6 consists of a User_ID[B]-generated second nonce NkBl along with the
nonce NkAl received from User_ID[A] in message M2.

Figure 16.16 Step #4 in the public-key Needham–Schroeder protocol.

Figure 16.17 Step #5 in the public-key Needham–Schroeder protocol.
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7a. Possession of the private key PuK(ID[A]) allows User_ID[A] to decipher the

message C6 and recover User_ID[B]-generated second nonce NkBl along with

the nonce NkAl received from User_ID[A] in message M2 (Fig. 16.19).

7b. User_ID[A] can verify that the received nonce NkAl is that transmitted in message

M2.

7c. User_ID[A] responds by transmitting the message C7 ¼ EPuK(ID[B]) {M7} to

User_ID[B] enciphered in User_ID[B]’s public key PuK(ID[B]).

7d. The data M7 consists just of the User_ID[B]-generated nonce NkBl.
8. Possession of the private key PuK(ID[B]) allows User_ID[B] to decipher the

message C7 and check if the correct nonce NkBl has been returned.

Figure 16.18 Step #6 in the public-key Needham–Schroeder protocol.

Figure 16.19 Step #7 in the public-key Needham–Schroeder protocol.
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CHA P T E R17
DIGITAL SIGNATURES AND

AUTHENTICATION

TRAN SAC T ION S B E TW E EN users over the Internet require protocols

to provide secrecy and authentication of both the sender’s identity and the content of

the message. We review the elements of digital signatures and message authentication

in this chapter, and how cryptographic transformations are able to provide both secrecy

and authentication.

17.1 THE NEED FOR SIGNATURES

Protocols exist to govern transactions between pairs of users of the form

Customer_ID[A] to Broker_ID[B]: Purchase for Acct# . . . shares of
XYZ Corporation at a price not
exceeding $ . . .

Merchant_ID[A] to Bank_ID[B]: Credit Acct #04165-02388,
$ 1000; debit Acct # . . .

The rules are intended to protect each party against harmful acts by the other or by a third

party. Some transactions also require the participation of a lawyer or escrow agent; arbi-

tration procedures are also agreed upon in advance to resolve disputes if they should arise.

The Internet provides mechanisms to support communications like these, but the

usual element of personal contact between the parties – physical, visual, or voice – is

missing (Fig. 17.1). Ordinary electronic messages are not resistant to forgery or alteration;

for example, the sequence of 0’s and 1’s in the credit/debit message above may be altered,

reversing the roles of the credit and debit accounts

Merchant ID[A] to Bank ID[B]: Debit Acct # � � � � � � ,

$ 1000; credit Acct # 04165-02388

or the amount could be changed from $1000 to $1,000,000.

The protocols in paper-based commercial transactions, which either prevent or dis-

courage misuse by making detection likely, need to be defined to protect electronic trans-

actions over a network. The Internet requires simple protocols that will be likely to detect

or prevent most attempts to modify a transaction. We formulate the requirements of

authentication and digital signature systems and review several proposed solutions in

this chapter.

Computer Security and Cryptography. By Alan G. Konheim
Copyright # 2007 John Wiley & Sons, Inc.

464



17.2 THREATS TO NETWORK TRANSACTIONS

A transaction from the originator User_ID[A] to the recipient User_ID[B] involves the

transmission of DATA, committing the users to some course of action. The participants

require protection against a variety of harmful acts including:

Reneging: The originator subsequently disowns a transaction.

Forgery: The recipient fabricates a transaction.

Alteration: The recipient alters a previous valid transaction.

Masquerading: A user attempts to masquerade as another.

These actions are often indistinguishable; for example, User_ID[A] might attempt to

renege on a transaction with User_ID[B] by claiming that

1. User_ID[B] has altered transaction data or

2. A third party, User_ID[C], has been masquerading as the originator.

Protocols have to be defined that at least detect attempts at alteration and to identify the

source of Internet transactions.

17.3 SECRECY, DIGITAL SIGNATURES, AND
AUTHENTICATION

Our focus until now has been on secrecy systems for hiding information from a surrepti-

tious but passive wiretapper who only monitors communications. Cryptography provided

a possible solution by altering the form of the message so that only the authorized parties

might be able to read the message. Enciphering the electronic fund’s transfer message of

Figure 17.2 might hide its contents (Fig. 17.3). However, it does not provide proof of the

origin of the message. Webster’s dictionary defines authentication as a “process by which

each party to a communication verifies the identity of the other.”

Authentication occurs in many day-to-day activities, including using

. A photo-ID when cashing a check,

. A driver’s license when making a credit card purchase, and

. A passport when crossing national boundaries.

Figure 17.2 Plaintext transaction data.

Figure 17.1 User transactions over the Internet.
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Implicit in the authentication of a message MESS from a Sender to a Receiver is the

inclusion of data AUTH, appended to or included within the message, attesting to the

sender’s authenticity (Fig. 17.4). The dictionary definition of authentication just given

pertains to the identity of the sender but not the content of the message MESS being

transmitted.

A digital signature SIG is data appended to or included within a message that

attests to both the identity of the document’s sender and the content of the message

(Fig. 17.5). Some authors refer to this process as providing message integrity and the

signature as a message authentication code (MAC). Although their objectives are differ-

ent, secrecy, authentication, and digital signatures may be combined; encipherment

intends to hide the content of the message, while the digital signature tries to assure

both the integrity of a message and also provide proof that a message came from a

specific sender.

17.4 THE DESIDERATA OF A DIGITAL SIGNATURE

The requirements of a digital signature system include:

. The signature SIG should be functionally dependent on every component of the

message;

. The signature SIG should incorporates some element of time dependence;

. Only the originator should have computationally feasible means to construct a valid

signature SIG for a message; and

. Any authorized recipient should have computationally feasible means to verify the

validity of a signature S1G for a message.

Figure 17.3 Secrecy by means of enciphering plaintext transaction data.

Figure 17.4 Authentication appended to plaintext transaction data.

Figure 17.5 A digital signature appended to plaintext transaction data.
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17.5 PUBLIC-KEY CRYPTOGRAPHY AND
SIGNATURE SYSTEMS

The structural similarity of these requirements to those of a public-key cryptosystem

. Signing a message corresponding to encipherment E with the private key,

. Verifying the signed transaction corresponding to decipherment D with the

public key,

is no coincidence. The papers by Whitfield Diffie and Martin Hellman [1976a, b] clearly

indicate that public-key cryptography was invented to implement

. Key exchange in a network and

. Authentication of users and the integrity of the data they exchange.

The landmark paper [Rivest et al., 1978] both announced the first true example of a

public-key cryptosystem and suggested a method by which a public-key cryptosystem

could be used to both authenticate the identity and the integrity of data in a transaction.

The need for a certificate in authentication to link the public key and identifier of a user

was conceived in 1978 by Adelman’s student Kohnfelder [1978] who wrote

. . . each user who wishes to receive private communications must place his enciphering algorithm

(his public key) in the public file.

We describe certificates, their usage and how the connection PuK(ID[A])$ ID[A] is

established in Chapter 18.

To authenticate their communication, User_ID[A], with public and private keys

PuK(ID[A]) and PrK(ID[A]), creates a certificate that

1. Links the public keys PuK(ID[A]) with User_ID[A]’s network identifier ID[A], and

2. Provides a means using the certificate for any user to verify the link

ID[A]$ PuK(ID[A]).

When User_ID[A] and User_ID[B] engage in a transaction, they first exchange their

certificates:

. User_ID[A] uses the certificate to verify that PuK(ID[A]) is the public key of

User_ID[A], and

. User_ID[B] uses the certificate to verify that PuK(ID[B]) is the public key of

User_ID[B].

User_ID[A] signs the message M to User_ID[B] in two steps:

S1. User_ID[A] first enciphers M using User_ID[B]’s public key PuK(ID[B]):

M! ~M ; EPuK(ID½B
){ID½A
, ID½B
, M}:

S2. User_ID[A] next re-enciphers M̃ using User_ID[A]’s private key PrK(ID[A]):

~M! C ; EPrK(ID½A
){ID½A
, ID½B
, ~M}:

It is assumed that messages M have a certain structure: for example,

. An electronic check M might contain the payor and payee’s account number, data,

and an amount;
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. An electronic funds transfer (EFT) message M might contain the payor and payee’s

account number, data, and an amount.

User_ID[B] authenticates the message C from User_ID[A] in two steps:

A1. User_ID[B] first deciphers C using User_ID[A]’s public key PuK(ID[A]):

C! ~C ; EPuK(ID½A
){ID½A
, ID½B
, C}:

A2. User_ID[B] next deciphers C̃ using User_ID[B]’s private key KPr(ID[B]):

~C! M̂ ; EPrK(ID½B
){ID½A
, ID½B
, ~C}:

If M̂ is consistent with the expected plaintext structure in the transaction system,

User_ID[B] accepts the received message M ¼ M̂ as being properly signed transaction

data from User_ID[A].

The signed message C ; EPrK(ID[B]){ID[A], ID[B], M̃} is User_ID[B]’s proof as to

the origin and the content of M.
The structural similarity of public-key cryptography and authentication does not

require that the latter requires public-key cryptography to be used. Although his protocol

is somewhat impractical in light of subsequent developments, Michael Rabin, who

made several contributions to the security literature, published a digital signature

protocol in Rabin [1978]. His method requires that information for each user-pair

(User_ID[A]-User_ID[B]) be exchanged and deposited in advance with a trusted third

party who participates in the authentication process.

A number of signature protocols have been suggested, whose strength is based on

the difficulty of finding solutions for the integer factorization and the discrete logarithm

problems.

17.6 RABIN’S QUADRATIC RESIDUE
SIGNATURE PROTOCOL

We begin by considering the important result of Michael Rabin who proved in Rabin

[1979] the equivalence of the security of a signature scheme and the difficulty of factor-

ization. We make use of the material on quadratic residues in Section 13.4.

Rabin’s Quadratic Residue Signature Protocol depends on the equivalence of three

problems:

Problem A

Given: N ¼ pq, a product of two primes p, q,

Find: The factors p, q.

Problem B

Given: N ¼ pq, a product of two primes p, q and an integer x ¼ s2 (modulo N ),

Find: All quadratic residues of x, the four solutions y1, y2, y3, y4 of

y22 x ¼ 0 (modulo N ).

Problem C

Given: N ¼ pq, a product of two primes p, q and an integer x ¼ s2 (modulo N ),

Find: Any quadratic residue of x, a solution y of y22 x ¼ 0 (modulo N ).
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The Chinese Remainder Theorem shows how to find the quadratic residue y22 x ¼ 0

(modulo N ) from the solutions of y1
22 x ¼ 0 (modulo p) and y2

22 x ¼ 0 (modulo q).

Berlekamp’s Algorithm (Proposition 13.4) shows how to compute quadratic residues

if the factors of N ¼ pq are known. Proposition 13.7 concludes that Problems A and B

are equivalent. The equivalence of Problem C to Problem B follows from Proposition 17.1.

Proposition 17.1: If the algorithm A solves the problem

Given: N ¼ pq, a product of two primes p, q and an integer x ¼ s2 (modulo N ),

Find: Any quadratic residue of x, a solution y of y22 x ¼ 0 (modulo N )

with running time F(N ), then an algorithm A* exists to solve the problem

Given: N ¼ pq, a product of two primes p, q,

Find: The factors p, q of N

in randomized time 2F(N ).

Proof : If x ¼ k2 (modulo N), then x is a quadratic residue of N and the four sol-

utions of

y2 ¼ x (modulo N)

of y that satisfy

r ¼ y1 (modulo p), s ¼ y1 (modulo q)

�r ¼ p� r ¼ y2 (modulo p), s ¼ y2 (modulo q)

r ¼ y3 (modulo p), �s ¼ p� s ¼ y3 (modulo q)

�r ¼ p� r ¼ y4 (modulo p), �s ¼ p� s ¼ y4 (modulo q)

for some pair (r, s). The quadratic residues modulo N are therefore divided into equival-

ence classes, each containing four elements {(r, s), (2r, s), (r, 2s), (2r, 2s)}.

Choose k randomly and set x ¼ k2 (modulo N ) so that x is a quadratic residue

modulo N. Suppose

r ¼ k (modulo p) s ¼ k (modulo q):

Use A to obtain a solution j of y2 ¼ x (modulo N ). With probability 1/2, the solution

satisfies either

�r ¼ p� r ¼ j (modulo p), s ¼ j (modulo q)

or

r ¼ j ðmodulo pÞ; �s ¼ p� s ¼ j ðmodulo qÞ

so that gcd{k2 j, N} is either p or q with probability 1/2.
Using the equivalence of Problems A and C, Michael Rabin defined a quadratic

residue signature system and several other authentication protocols [Rabin, 1978]. In

Rabin’s original solution, let p and q be odd primes and N ¼ pq. User_ID[A]’s private

key is PrK(ID[A]) ¼ ( p, q); User_ID[A]’s public key is PuK(ID[A]) ¼ N.

The message to be signed DATA ¼ x ¼ (x0, x1, . . . , xn21) is a string of n bits. The

steps in the signing process are as follows.

R1. Concatenate x with m random number of bits where 2nþm , N:

x �! (x0, x1, . . . , xn�1, r0, r1, . . . , rm�1):

R2. Associate the integer a ¼
Pn�1

i¼0 xi2
i þ 2n

Pm�1
i¼0 ri2

i , N with the extended string.
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R3. Using Proposition 13.2, check if a is a quadratic residue:

–If a is not a quadratic residue, then choose another random r and repeat steps

Rl–R2.

–If a is a quadratic residue, then knowledge of the factors of N ¼ pq makes it

possible to calculate
ffiffiffi
a
p

; use the Chinese Remainder Theorem (Proposition

13.6) and Berlekamp’s Algorithm (Proposition 13.4) to calculate the smallest posi-

tive quadratic residue of a.

R4. The signature of DATA is SIG ¼ (r, b).

Approximately 1
4
of the integers in ZN are quadratic residues and an average of four trials

will be needed to generate r.

The recipient of the signed message (DATA, SIG) from User_ID[A] verifies the

signature by recomputing a and checking that a ¼ b2 (modulo N ).

17.7 HASH FUNCTIONS

To hash is to it chop into small pieces. Corned beef hash is the quintessential American

food made with left over meat, eggs and whatever is lying around in the refrigerator. A

hashing function h is a mapping from values x in some finite set X into a value y contained

in another (larger) set Y that mixes up the values x. Hashing is a synonym for a (uniformly

distributed) random mapping in cryptography (Fig. 17.6).

A hash function h is

. A one-way hash function if it is computationally infeasible to determine the message

m given the hash-of-message h(m).

. A collision-resistant hash function if given the hash-of-message h(m) it is computa-

tionally infeasible to determine any other message m� with the same hash value

h(m) ¼ h(m�).

A message digest is a hash function that derives a fixed-length hash value for every

message in some message domain. The processes of computing the message digest with

a PKC and verifying the message digest is depicted in Figures 17.7 and 17.8.

Even if a hash function is not collision-resistant, knowing the hash h(m) of

m :Bank A to Bank :Credit Acct#04165-02388,

$ 1,000; debit Acct# � � �

Figure 17.6 High-cholesterol hashing.
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may not make it possible to calculate the hash h(m�) of

m� :Bank A to Bank B :Credit Acct#04165-02388,

$1,000,000; debit Acct# � � �

As is the case with cryptograph systems, there is no effective way of testing if a hash func-

tion is a one-way hash function or to characterize and easily compute messages that collide

with h(m).

17.8 MD5

RSADI has defined several message digests including MD2 [Kaliski, 1992] and MD5,

designed by Ronald Rivest in 199l [Rivest, 1992] to replace the MD4 hash function.

MD5 (Fig. 17.9) begins by padding themessage tomake its length amultiple of 512 bits:

. A 1 is appended (on the right) to signal the start of the padding;

. As many 0’s are added so as to make its length a multiple of 512–64; and finally

. The encoding of the original message length is appended to the data.

The message of 512 ¼ 4 � (4 � 32) bits is processed by the basic MD5 operation, which

modifies the contents of four 32-bit registers A, B, C, D.

The MD5 operation is composed of

. A nonlinear operation F;

. A left-circular shift;

Figure 17.7 Deriving a message digest.

Figure 17.8 Verifying a message digest.
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. Addition (modulo 232) of constants {Ti}, and

. Addition (modulo 232) of a 32-bit word {Mi} from the message to (A, B, C, D).

To start the process the registers A, B, C, and D are initialized (in hexadecimal) as

follows:

A : 01 23 45 67 B : 89 AB CD EF C : FE DC BA 98 D : 76 54 32 01

The MD5 hash is calculated in four rounds.

It is not possible to determine the set of messages m1 and m2 having the same

MD5-hash. There may not be a serious weakness in MD5 even if MD5[m1] ¼
MD5[m2], because hashing is used in applications where messages have very special

formats. Various researchers have observed defects in MD5:

. den Boer and Bosselaers [1993] discovered some peculiar “near” collisions.

. Papers by Dobbertin [1996a,b] announced a flaw in the design of MD5 in 1996.

. Recently, Wang and Yu [2005] published a brute force attack to find collisions on a

powerful distributed processor.

MD5 processes the message m in just one pass to derive MD5(m); this offers the possi-

bility that collisions for the MD5 hash might be calculated. Collisions are generated by

suffixing a message m! m, s in such a way to make MD5(m) ¼ MD5(m, s) likely.

Figure 17.9 Basic MD5 operation.
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Although not exactly felines, academic cryptographers are a finicky bunch. The ubi-

quitous phrase some cryptographers have even suggested that these “flaws” in MD5 make

“further use of the algorithm for security purposes questionable,” a judgment that I believe

is also questionable.

17.9 THE SECURE HASH ALGORITHM

The Secure Hash Algorithm SHA is a family of cryptographic hash functions designed by

the NSA and published as a U.S. government standard [NIST, 1994]. The first version

published in 1993 is often referred to as SHA-0. SHA-l is the most commonly used

hash function in the family of application protocols including the Transport Layer Security

(TLS), Secure Socket Layer (SSL), Pretty Good Privacy (PGP), Secure Shell (SSH), and

the Internet Protocol Security (IPSec).

SHA first pads the message data like MD5 to make its length a multiple of 512 bits,

but it produces a 160-bit hash value.

The hashing operation involves 80 operations, each of which modifies the contents

of five 32-bit registers A, B, C, and D. A SHA operation is shown in Figure 17.10 and

consists of

. A nonlinear operation F;

. Left-circular shifts;

. Addition (modulo 232) of constants {Ki}; and

. Addition (modulo 232) of a 32-bit word {Ki} derived from the message to

(A, B, C, D).

SHA requires an expansion of each message block of 512 ¼ 16 � 32 bits, because the 80

operations consume 80 32-bits words. If Mi is the ith 32-bit word of the message

Figure 17.10 A SHA operation.
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(0 � i , 16), then

(M0, M1, . . . ,M15)! (W0, W1, � � � , W79)

Wi ¼
Mi, if 0 � i , 16

sikWi�3 þWi�8 þWi�14 þWi�16l, if 16 � i , 80,

�
where si denotes cyclic (left) shift by i places.

The registers A, B, C, D, and E are initialized (in hexadecimal) as follows:

A : 67 45 23 01 B : EF CD AB 89 C : 98 BA DC FE D: 10 32 5476 E : C3 D2 E1 F0

The first attack on SHA-0 was presented as CRYPTO ’98 [Chabqud and Joux, 1998] and

E. Bilham and R. Chen [2004] reported near collisions in 2004.

17.10 NIST’S DIGITAL SIGNATURE ALGORITHM
[NIST, 1991, 1994]

Public Key

–p an L-bit prime: conditions 512 � L � 1024 and L a multiple of 64;

–q a 160-bit prime factor of p2 1.

–h (an integer), 1 , h , p2 1 such that g ¼ h
p�1
q (modulo p) . 1.

–y ¼ gx (modulo p), x (randomly chosen).

Private Key: x , q.

Signing the Message: m [ Zp
þ ¼ {1, 2, . . . , p2 1}.

SHA[m] is the result of the Secure Hash Algorithm applied to the message m.

S1. Choose k [ Zq
þ randomly subject to 1 ¼ gcd{k, q2 l}.

S2. Generate r ¼ (gk (modulo p)) (modulo q) and s ¼ (k21(SHA[m]þ xr)) (modulo q).

S3. SHA[m] ¼ (r, s).

Verifying the Signature SIG[m] for m

V1. Compute w ¼ s21 (modulo q), u1 ¼ (wSHA[m]) (modulo q) and u2 ¼ rw (modulo q)

V2. Accept the transaction as properly signed if r ¼ (gu1yu2 (modulo p)) (modulo q).

Correctness of the DSS: Using g ¼ h
p�1
q (modulo p)! gq (modulo p) ¼ hp2l;

(modulo p) ¼ 1

C1. Compute

v ¼ ((gu1yu2 ) (modulo p)) (modulo q)

¼ (gw(SHA½m
þxr)(modulo p)) (modulo q)

¼ (gskw(modulo p)) (modulo q)

¼ (gsks
�1

(modulo p)) (modulo q)

¼ (gk (modulo p)) (modulo q)

A discussion of the validity of this signature protocol is contained in NIST [1991, 1994].
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We describe two signature protocols whose strength is based on the difficulty of

finding solutions for the factorization and discrete logarithm problems.

17.11 EL GAMAL’S SIGNATURE PROTOCOL
[EL GAMAL, 1985a, b]

Parameter : p, a prime

Private Key : x, 1 � x , p

Public Key : y ¼ gx (modulo p) and p, g (randomly chosen)

Signing the Message : m [ Zp
þ ¼ {1, 2, . . . , p2 1}

S1. Choose k [ Zp
þ randomly subject to 1 ¼ gcd{k, p2 1}; the value of k is secret.

S2. Compute a ¼ gk (modulo p).

S3. Use the Euclidean algorithm to calculate k21.

S4. Use the Euclidean algorithm to calculate b satisfying m ¼ (xaþ kb) (modulo

( p2 1)).

S5. The signature of the message m is the pair SIG[m] ¼ (a, b).

Verifying the Signature SIG(m) for m

V1. Compute ( yaab) (modulo p); and gm (modulo p).

V2. Accept m as properly signed if ( yaab) (modulo p) ¼ gm (modulo p).

Correctness of the ElGamal Signature Protocol: Using Fermat’s Little Theorem

ya (modulo p) ¼ gxa (modulo p)

ab (modulo p) ¼ gka (modulo p)

yaab (modulo p) ¼ g(xaþkb) (modulo p)

¼ gm (modulo p)

Example 17.1
p ¼ 467, x ¼ 127, g ¼ 2, y ¼ 2127 (modulo 467) ¼ 132.

Signing the Message m ¼ 100

S1. Choose k ¼ 213 and check that 1 ¼ gcd{213, 467}; compute 431 ¼ k21 (modulo

466).

S2. Compute a ¼ 2213 (modulo 467) ¼ 29.

S3. Solve the congruence 100 ¼ [(127 � 29)þ (213b)] (modulo ( p2 1)); b ¼ 51.

The signature for m ¼ 100 is SIG(100) ¼ (29, 51).

Verifying the Signature/SIG(100) ¼ (29, 51)

yaab (modulo p) ¼ 132292951 (modulo 467) ¼ 189

gm (modulo p) ¼ 2100 (modulo 467) ¼ 189 ¼ 41:
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17.12 THE FIAT–SHAMIR IDENTIFICATION AND
SIGNATURE SCHEMA [FIAT AND SHAMIR, 1986]

User_ID[A] wants to prove identity to User_ID[B] by showing possession of some secret

information without actually revealing this information. The Fiat–Shamir Identification

Scheme was the first example of a zero-knowledge proof. Its strength and that of the fol-

lowing protocols depends on the computational equivalence of Problems A–C described

in Section 17.6.

A trusted signature center chooses secret primes p, q and computes N ¼ pq; only N is

distributed to all users.

. User_ID[A] selects a random s, checks that 1 ¼ gcd{s, N} and computes v2l ¼ s2

(modulo N ).

. User_ID[A] registers n with the trusted signature center.

Fiat–Shamir Basic Identification Scheme

User_ID[A]: Private Key: PrK(ID[A]) ¼ s [ ZN
þ

User_ID[A]: Public Key: PuK(ID[A]) ¼ (N, n) with N ¼ pq and n ¼ s22 (modulo N )

s21 is a quadratic residue of n. User_ID[A]’s will prove identity to User_ID[B] by exhibit-
ing knowledge of the private key PrK(ID[A]) ¼ s without actually revealing s.

S1. User_ID[A] chooses a random r in ZN, computes x ¼ r2 (modulo N ) and sends x to

User_ID[B].

S2. User_ID[B] chooses a random bit b ¼ 0 or 1 (with probability 1/2) and sends it to

User_ID[A].

S3. User_ID[A] returns y to User_ID[B] where

y ¼
r, if b ¼ 0

rs, if b ¼ 1
:

�
S4. User_ID[B] computes

y2nb (modulo N) ¼
r2 (modulo N), if b ¼ 0

r2s2s�2 (modulo N), if b ¼ 1

�
¼ r2 (modulo N)

and accepts the identification pass as valid if y2nb (modulo N ) ¼ x.

Observe that

O1. It is assumed that p and q are kept secret and sufficiently large so that knowledge of

the factors of N is required for s to be determined from v;

O2. If User_ID[A] knows that User_ID[B] will choose b ¼ 0, then any user will pass the

identification pass.

O3. If User_ID[A] knows that User_ID[B] will choose b ¼ 1, then

–A random r is chosen but x ¼ n21r2 (modulo N ) is returned to User_ID[B] in S1

instead of x ¼ r2 (modulo N );

–When User_ID[B] obligingly sends back b ¼ 1 in S2, User_ID[A] returns

y ¼ n2lr (modulo N ) to User_ID[B] in S3; and

–User_ID[B] computes y2n (modulo N ) ¼ n21r2 (modulo N ) ¼ x.
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O4. The probability that the evil User_ID[?] will successfully masquerade as

User_ID[A] is thus 1/2.

If the probability of 1/2 of escaping detection is too high, the identification steps S1–S4

may be repeated t times. The probability of User_ID[?] now escaping detection by passing

all identification passes is 22t. When repeating steps S1–S4, different values of r must be

used, as a reuse of r might reveal r and rs.

The original identification scheme can be parallelized [Feige et al., 1988];

Improved Identification Scheme

User_ID[A]: Private Key: PrK(ID[A]) ¼ s ¼ (s0, s1, . . . , sk21) [ Zk,N
þ

User_ID[A]: Public Key: PuK(ID[A]) ¼ (N, n) with N ¼ pq, n ¼ (n0, n1, . . . , nk21)

[ Zk, N
þ with ni ¼ si

22 (modulo n) for 0 � i , k

S1. User_ID[A] chooses a random r in ZN, computes x ¼ r2 (modulo N ) and sends x to

User_ID[B].

S2. User_ID[B] chooses a random bit-vector b ¼ (s0, s1, . . . , bk21)Zk,2 using the

uniform distribution sends it to User_ID[A].

S3. User_ID[A] returns y to User_ID[B] where y ¼ r
Qk�1

i¼0 s
bi
i (modulo N).

S4. User_ID[B] computes z ¼ y2
Qk�1

i¼0 v
bi
i (modulo N) ¼ r2

Qk�1
i¼0 s

2bi
i vbii (modulo N) and

accepts User_ID[A]’s identity as valid if z ¼ x.
The probability of successfully masquerading is now 22k.

The protocol was modified to derive a signature scheme; suppose h is a hashing

function with values in Zk,2 and xky denotes the concatenation of x and y.

Digital Signature Scheme

User_ID[A]: Private Key: PrK(ID[A]) ¼ s with s ¼ (s0, s1, . . . , sk21) [ Zk, N
þ

User_ID[B]: Public Key: PuK(ID[A]) ¼ (N, n) with N ¼ pq, n ¼ (n0, n1, . . . , nk21) [ Zk, N
þ

with ni ¼ si
22 (modulo N) for 0 � i , k

Signing the Message m

S1. User_ID[A] randomly chooses t integers r0, r1, . . . , rt21 in ZN using the uniform

distribution and computes x ¼ (x0, x1, . . . , xt21) where xi ¼ ri
2 (modulo n) for

0 � i , t.

S2. User_ID[A] computes the hash (b, . . . ) ¼ h[m k x] of the concatenation of the

message m and x.

S3. User_ID[A] computes y ¼ ( y0, y1, . . . , yt21) where

– yi ¼ ri
Yk�1
j¼0

s
bi , j
j (modulo N) for 0 � i , t

– b ¼

b0,0 b0,1 � � � b0,k�1

b1,0 b1,1 � � � b1,k�1

..

. ..
. . .

. ..
.

bt�1,0 bt�1,1 � � � bt�1,k�1

0BBBB@
1CCCCA is the first kt of the hash:

User_ID[A] sends User_ID[B] the signature SIG(m) ¼ (b, y) for m.
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Verifying That SIG(m) is the Signature of m

V1. User_ID[B] obtain’s User_ID[A]’s public key n ¼ (n0, n1, . . . , nk21) from the

certificate of User_ID[A].

V2. User_ID[B] computes z ¼ (z0, z1, . . . , zt21) with zi ¼ y2i
Qk�1

j¼0 v
bi , j
k (modulo N)

for 0 � i , t.

V3. User_ID[B] verifies that b gives the first kt bits of H[m k z] and accepts the message

as properly signed if this condition is satisfied.

A discussion of the security of the Improved Identification Scheme is given on page 411 of

Menezes et al. [1996].

17.13 THE OBLIVIOUS TRANSFER

I attended a lecture by Professor Manuel Blum while at IBM Research in which he

described this problem as follows; the Californians Alice and Bob are contemplating

divorce and decide to toss coins to determine which of them receives the car, the

child, the house, the dog, and so forth. Although Alice and Bob are now divorced,

their names continue to be used in describing many two-party authentication protocols.

I believe the idea first appeared in a report by Michael Rabin [1981]. In another variant

[Blum, 1983] Alice and Bob wish to electronically fairly toss a coin.

17.13.1 Oblivious Transfer Protocol: Who Gets the Dog?

Step #1: Alice chooses primes p, q and sends Bob their product N ¼ pq. Bob’s task

is to factor N:

. If he is successful, the outcome of coin toss is in Bob’s favor

. Otherwise, Alice wins.

Step #2: Bob chooses randomly x [ ZN, computes y ¼ x2 (modulo N ) and sends y

to Alice.

Step #3: As Alice knows the factors of N, she can find all of the solutions of

y2 ¼ n ðmodule NÞ x;2x; z;�z. Alice randomly chooses one of the solutions with prob-

ability of 1
4
and returns its value to Bob.

Step #4: If the solution returned to Bob is x or 2x, then Bob has received no new

information. If the solution returned to Bob is z or 2z, then Bob computes gcd{xþ z, N}

(or gcd{x2 z, N}) and determines the factors of N.

The probability of Bob’s winning is 1
2
.
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CHA P T E R18
APPLICATIONS OF

CRYPTOGRAPHY

THI S CHA P T E R describes several cryptographic applications:

. The UNIX crypt(3) password protection;

. Automated teller machine transactions;

. Facility access cards;

. Smart cards;

. The Web’s Secure Socket Layer protocol.

18.1 UNIX PASSWORD ENCIPHERMENT

A Log-In to a UNIX system requires the user to provide a password Pass(User_ID), which

is hashed to Hass[Pass(User_ID)] and compared with the entries in the UNIX password

file consisting of

User_Name Salt(User_[ID]) [2] Hash[Pass(User_ID)] [11] User_[ID]

where the number [n] is the length in characters (bytes). A cryptographic salt consists of

approximately 4096 ¼ 212 randomly chosen bits, which are used to further “mix up” the

Hash(UserPass_ID). The UNIX crypt(3) command chooses the salt to be a pair of the

characters

a,b,. . .,z,A,B, . . .,Z,0,1,. . .,9:

The original idea is due to George Purdy [1987], who proposed using a one-way

function to

1. Recalculate the Pass(User_ID)! Hash[Pass(User_ID)] during a log-in, and

2. Compare the result in (1) with a stored value in the file /etc/passwd., which

contains (User_Name, Salt(User_ID), Hash[Pass(User_ID)], User_ID)1 or if a

shadow password implementation is being used (User_Name, Salt(User_ID), �,

User_ID), signalling that Hash[Pass(User_ID)] is stored (encrypted) in another file.

1The file /etc/passwd can be read by any user and certainly presents an exposure. The shadow implemen-

tation lessens this threat.

Computer Security and Cryptography. By Alan G. Konheim
Copyright # 2007 John Wiley & Sons, Inc.
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Purdy suggested using polynomials over a prime modulus to construct the one-way func-

tion. There have been various implementations of the hash function. The crypt(3) has

several options including MD5; the version that I describe uses a modified DES, depicted

in Figure 18.1.

When a User_ID initially chooses a password Pass(User_ID), the following process

is followed:

1. A 12-bit salt Salt(User_ID) is chosen for each User_ID and stored in the file /etc/
passwd as part of User_ID’s record.

2. Pass(User_ID) is combined with the 12-bit Salt(User_ID) ¼ s ¼ (s0, s1, . . . , s11) to
modify the 48 bits used by DES on each round as follows:

. If E is the DES (internal) key expansion function (Section 9.4) E:

(x0, x1, . . . , x31)! (y0, y1, . . . , y47)

. Then bits yj and yjþ24 are interchanged if sj ¼ 1 and left unaltered if sj ¼ 0.

3. The modified DES is applied 25 times; the initial (i ¼ 0) plaintext is

064 ; 0; 0; . . . ; 0;|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
64 bits

thereafter the output of the ith use of DES is the input to the (iþ 1)st use.

4. The 64 bits of DES output is divided into ten 6-bit blocks and a 4-bit block. Associ-

ated with each of the 11 DES output blocks is a printable ASCII character producing

an 11 character Hash[Pass(User_ID)]. The 12-bit salt yields two characters.

18.1.1 Password Cracking

In the usual environment, a password hacker has one or more hashed passwords

Hash[Pass(User_ID[ij)] ( j ¼ 1, 2, . . .) and wants to recover Pass(User_ID[ij). This is

made more difficult if the Unix implementation uses a shadow password file. There are

several possible attacks:

. A dictionary attack makes use of the tendency of users to choose names or words

and come with a dictionary to implement the process. The cracking programs try

– words spelled backwards,

– alternative upper-case and lower-case lettering, and

– adding some number to the beginning and/or end of each word.

. Crack by Alec Muffett and John the Ripper are advertised on the Web.

. A brute force attack tries all n-character strings as passwords.

Figure 18.1 crypt(3) Computation of Hash[Pass(User_ID)].
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To counter the forces of evil, systems’ managers enforce several antihacking procedures,

including:

. Changing the passwords on a regular basis.

. Requiring that the password must be at least 8 characters long and contain

at least

– at least one alphabet character a,. . .,z, A,. . .,Z;

– at least one numeric character 0, . . . , 9;

– one special character from the set ’! # $ % ~& () - _ = + [];:’
",<.>/ ?.

. The password must not

– contain spaces,

– begin with an exclamation [!] or a question mark [?], or

– contain your login ID.

. The password must not contain repeated letters and be case sensitive.

18.2 MAGNETIC STRIPE TECHNOLOGY

Amagnetic stripe is used to store information on plastic bank credit cards, ATM cards, and

on paper airline tickets. The use of magnetic stripe technology to record machine-readable

information originated over four decades ago:

. The London Transit Authority installed a magnetic stripe system in the London

Underground in the early 1960s;

. The San Francisco BART (Bay Area Rapid Transit) system began using magnetic

striped fare cards in the late 1960s.

The stripe is made of tiny magnetic particles in a resin. The coercivity of the stripe

(with units Oersteds) is a measure of how difficult it is to encode the information on

the card. Higher coercivity increases the difficulty of recording data and diminishes the

danger of accidental loss of data. A standard bank card has a coercivity of 300 Oe. The

Uniform Industrial Corporation’s cards have coercivity from 300 to 4000 Oe. The material

used to fabricate the magnetic particles plays a factor in determining the coercivity; low

coercivity uses iron oxide, high coercivity uses barium ferrite. The fabricating materials

are mixed with a resin to form a slurry, which is coated on the substrate (the card) and

dried. On paper airline tickets, the magnetic stripe slurry is coated on the card during man-

ufacture. The particles of the stripe are then aligned to give a good signal-to-noise ratio.

Iron oxide is easy to align; barium ferrite is harder. The end-user defines the requirements,

including the signal amplitude needed and the bit density of the recording. The density of

the particles in the resin influences the signal amplitude; the more particles, the higher the

signal amplitudes.

The polarity of the magnetic particles changes with each bit; together with a

coding scheme, this determines the binary data on the card. The magnetic material can be

polarized in one of two directions corresponding to 0 and 1. F2F (Two Frequency Recording;

Fig. 18.2) is an industry standard coding scheme; it is analogous to a combination of differ-

ential polar andManchester coding of electrical signals.A “0” does not have a (polarity) tran-

sition in the middle of the signal interval T; a “1” has a transition. The three card formats
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(IATA [Track 1], ABA [Track 2], and Thrift [Track 3]) encode at densities of 210 bits/in.,
corresponding to 75 bits/in. using either 7- or 5-bit character encoding.

18.2.1 The Case of the Larcenous Laundry (Fig. 18.3)

In the 1970s it became apparent that there were security problems connected with mag-

netic stripe recoding on BART system cards. According to Michael Harris, a reporter

for the San Francisco Chronicle, Dr Bill Wattenberg claimed an inexpensive scheme

existed to circumvent the value of a BART system ticket. Wattenberg holds a PhD in

engineering and was at that time working at a UC Berkeley laboratory. Michael Harris

wrote that although IBM (the vendor for the BART system) claimed that “anyone

would need at least $500,000 worth of specialized electronic equipment to copy the mag-

netic stripe and fool their reading machines”, Wattenberg asserted that he had devised

a simple scheme that any housewife could do in her kitchen. How sexist!! And tut, tut,

Wattenberg is from Berkeley. Wattenberg refused to divulge the method to IBM or to

the BART system management. For the skeptical, Michael Harris provided a demon-

stration of Wattenberg’s scheme. An article appeared in Business Week (August 11,

1973, p. 120) providing detailed instructions on how to duplicate a BART system fare

card using an ordinary iron.

Various methods exist today to protect magnetic stripe recording against copying and/
or alteration, including watermarking. For further information, visit the Web site of Water-

mark Technologies. For those of the opposite inclination, a visit to www.fakeiddexpress.com

may prove interesting.

Figure 18.3 Lucky, Number One Son Studied Cryptography at UCSB! (Courtesy of Roger

Shimomura and Greg Kucera Gallery, Seattle)

Figure 18.2 F2F (Two frequency recording).
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18.3 PROTECTING ATM TRANSACTIONS

In the 1960s, the banking industry considered offering certain electronic banking

services to be performed at unattended banking terminals now referred to a automated

teller machines (ATM). The advantages of ATMs to the industry were significant:

. Customers would be able to perform certain banking transactions – deposits,

withdrawals, account queries, account-to-account transfers – at any hour of

the day.

. The bank would save on the considerable cost of processing checks; ATM terminals

do not require medical benefits, they can be discharged at will.

. Electronic transactions would not require human supervision or intervention, per-

mitting labor savings.

Two conflicting forces have influenced the design of electronic banking systems:

. Profitability – the desire by the bank to improve their bottom line;2

. Security – the fear that individuals might learn how to penetrate the system, for

example, to empty the ATM of cash in a largely invisible manner.

The considerable experience of banks with credit card transactions pointed to certain risks,

including the use of counterfeit, lost, or stolen banking cards.3

It was decided that a valid transaction would therefore require a customer to offer

two bona fides in establishing a customer’s identity:

. The banking card recording the user primary account number (PAN) on the card’s

third stripe;

. A separate identifying element.

Possession of an ATM card alone would not permit a customer to enter into a transaction.

The question remained: What should the second identifying element be?

18.3.1 Customer Authentication

If two quantities (Q1, Q2) are required for a customer to be authenticated to the system,

possible choices of the second identifier Q2 might be

1. The customer’s signature;

2. The customer’s voiceprint;

3. The customer’s fingerprint;

4. A password assigned to the customer.

Signatures and voiceprints vary under stress; indeed, handwriting and voiceprints

vary too much under stress to provide a reliable identification method and were too

costly to implement in the 1960s. Fingerprints have some connotation of criminality

2According to Bankrate.com’s latest survey (2005) of large banks and thrifts, ATM fees have hit a record high

and, despite rising interest rates, interest checking accounts still do not add up. In short, consumers are finding that

money sometimes comes out of their checking accounts faster than it goes in.
3Fox News reported in 2003 that “More than 27 million people have been victims of identity theft in the last five

years, costing them $5 billion and businesses and financial institutions almost $48 billion, the Federal Trade

Commission said Wednesday.”
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that might affect the marketability of ATM systems adversely. The least expensive

solution involves a password or personal identification number (PIN).

In an ATM transaction, a customer would

. Insert the banking card into the ATM’s card reader; the primary account number

(PAN ¼ Q1) would be read;

. Enter the PIN (¼ Q2) at the ATM’s keyboard.

To establish the authenticity of a customer, the system must have a mechanism for

checking if the offered identifiers (Q1, Q2) are properly related. One possible authenticity

protocol would reference a table maintained by the bank; the customer’s account number

(Q1) is recorded on the banking card and the user enters the PIN (Q2) at the banking

terminal. The ATM terminal transmits the transaction request to the institution’s comput-

ing system where (Q1, Q2) are checked by consulting a table stored somewhere in the

system (Table 18.1) whenever authentication is required.

With this protocol, the PIN can be selected either by the customer or institution. The

former possibility is attractive for marketing the system as it makes the customer feel that

she or he is participating in the security of the system – and, if something goes wrong, the

customer can be made to feel at least partially responsible!

There are possible threats to this authentication protocol, including the following.

1. The contents of the table might be compromised by a system’s programmer; either

information revealed, allowing Mr Green to pretend to be Mr Konheim, or infor-

mation added to the system corresponding to a fictitious user.

2. The communications between the ATM and the computing system might be wire-

tapped so that the signals corresponding to Q2 might be learned. The manufacture

of counterfeit plastic banking cards or the alteration of stolen cards is not technically

demanding.

There are remedies:

. The table might be enciphered and/or made write-protected to make it difficult even

for a bank’s system’s programmer to read or modify its contents.

. Communications between the ATM and computing system might be enciphered to

mitigate against wiretapping.

None of these is a complete solution; a portion of the enciphered table has to be logically

“in the clear” when the authentication takes place, and during this time, it is exposed. On

the other hand, the goal of an authentication protocol is not to make it impossible for an

opponent to succeed, but to make it very difficult and not cost-effective. One way, is to

limit the amount of cash that can be withdrawn in a 24-hour period.

However, an additional feature was insisted upon by the banking community, which

still further complicated the authentication problem.

TABLE 18.1 ATM PAN–PIN Table

User_ID PAN Q1 PIN Q2

Koheim, Alan G. 17894567 8974

Smith, John L. 76654321 7860
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18.3.2 On-Line/Off-Line Operation

The reliability of computing systems and the need for periodic system maintenance in the

1960s almost mandated the use of banking systems with two modes of operation:

. On-Line: identification of a user is performed remotely by the institution’s com-

puting system;

. Off-Line: identification of a user is performed locally at the banking ATM.

The banks intended to allow both modes of operation to coexist; during normal operation,

the authentication would be performed at the institution’s computing system. When the

system was down for repair or maintenance, authentication would be carried out at the

ATM.

The limited capability of ATMs and the fact that the list of customers might grow to

several millions of customers4 implies that tables such as those described before cannot be

stored locally at an ATM. There is a significant logistics problem; the list of customers

changes each day. New customers are added and some are dropped. If, say, the 100

Bank of America ATMs in Los Angeles had to be updated daily, the cost advantage of

ATMswould be lost. Moreover, banks wanted to cross state boundaries and form networks,

like Interlink, the PLUS SYSTEM, and CIRRUS, which would require changes to be made

nationally. It might be possible to make these changes by teleprocessing the table changes

from the bank’s computing system, but this exposes the system to wiretapping.

The solution was to make Q1 and Q2 functionally related,

Q2 ¼ f (Q1);

and to check the relationship at the ATM during a customer transaction.

What kind of relationship f? SupposeQ1 andQ2 are decimal numbers and are related

by

Q2 ¼ f (Q1) ¼ 1,000,000,000� Q1

so that Konheim’s PIN is

Q2(Konheim) ¼ 1,000,000,000� 17,894,567 ¼ 999,982,105,433

This relationship f is unacceptable; first, it requires a customer to remember a 12-digit key.

It is likely that the customer will write the PIN on the card instead of committing it to

memory, thus negating the entire purpose of a separate identifying element. However,

more importantly, the relationship f in the equation above is too simple. Customers

might learn how Q1 and Q2 are related and this would enable them (or others) to counter-

feit card–PIN pairs, which would be accepted by an ATM terminal during off-line oper-

ation. What is required is a “complicated” relationship f that cannot be easily discovered

by the users.

The solution – encipherment!

Suppose Q2 is some encipherment of the account number (Q1) Q2 ¼ EK{Q1}. If the

cryptographic algorithm EK{ � � � } is sufficiently strong, then knowledge of the pair (Q1,

Q2) or even a large number of pairs ({Q1
(i), Q2

(i)) : 1� i � N} might not permit a customer

easily to deduce the secret key K.

4There were 88 million ATM cards in the United Kingdom alone in 2003 according to the Economic & Social

Research Council. I cannot find the same number for the United States, but an article at www.atmmarketplace.

com claims the number of ATMs worldwide is expected to hit 1.5 million in 2006.
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To authenticate a customer, the ATM must check if the relationship Q2 ¼
EK{Q1}is satisfied. This means that the authentication key K must reside at each

ATM. This poses a risk and the bank must be careful to safeguard revealing the key.

Each ATM contains a high-security module (HSM), a tamper-resistant coprocessor

that performs the PIN-validation; the ATM-key resides securely in what is believed to

be the tamper-proof HSM.

The IBM Corporation developed an ATM protocol for Lloyd’s Banking, initially

based on LUCIFER but later retrofitted to the DES algorithm. The authentication protocol

used in the IBM LIBERTY banking system is a version of the protocol described in

Chapter 9 used by the earlier IBM 3984 Cash Issuing Terminal.

If the PAN(User_ID) is assigned by the bank and PIN(User_ID) ¼
EK {PAN(User_ID)} is calculated by the card-issuer, it follows that the customer is not

able to idependently select the PIN(User_ID). A solution to permit the user to select a U-

PIN((User_ID)) was devised in 1957 by Chubb Integrated Systems, a British firm that

marketed an early ATM system. Chubb introduced a PINOffset, which is magnetically

recorded on the card. The PIN(User_ID), PINOffset(User_ID), and U-PIN(User_ID) in

the IBM 3624 system are related by

U� PIN(User ID) ¼ Left16½EK{PAN(User ID)}
 þ PINOffset(User ID)

where Left þ 16[. . .] denotes the leftmost 16 bits of . . . .
In an ATM Transaction,

1. A customer inserts the ATM card into the ATM terminal’s card reader,

2. The user keys in U-PIN(User_ID),

3. The PAN(User_ID) and PINOffset(User_ID) are read from the ATM card,

and

4. The U-PIN(User_ID) ¼ Left16[EKfPAN(User_ID)g]þ PINOffset(User_ID) compu-

tation is made at the terminal and the validity of the relationship U-PIN(User_ID) ¼
Left16[EK fPAN(User_ID)g]þ PINOffset(User_ID) is checked.

One drawback of this scheme is that the 4-hex digit U-PIN(User_ID) may include

0,1,. . .,9,A,B,. . .,F and the characters A,B,. . .,F are not normally on the ATM

keyboard. To solve this problem, a decimalization table mapping the U-PIN(User_ID)

into the decimal digits is introduced. The default table is presented in Table 18.2. The

PIN verification test is performed at the ATM module on an HSM. The IBM “Common

Cryptographic Architecture” is an application program interface (API) for HSM with

syntax Encrypted_PIN_Verify(. . .), which returns a YES/NO value. In addition

to the PAN, one of the inputs is the decimalization table.

Recently Bond and Zelinski [2003] exploited this to show how ATM U-PIN

(User_ID)s could be found by a dishonest system programmer.

TABLE 18.2 Standard Decimalization Table

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
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18.3.3 The Bond–Zelinski PIN Attack

Programmers with access to the bank’s computing system are permitted to perform PIN

verification using the HSM, making 60 tests per second. A system programmer tests a

(PAN,PIN_Offset)-entry with 10 different User_PINs chosen as follows; the User_PINj

is selected so that

User PINj þ PIN Offset ¼ ( j, j, j, j), 0 � j � 9;

and the decimalization table is chosen so that the second row contains 1 for the first row

entry j. The HSM’s output will be YES if some digit of the PIN is j, and 0, otherwise. Thus,

10 tests will determine the digits that appear in the PIN. If the number of distinct digits in

the PIN is k, then Tk additional tests are required where

Tk ¼

1, if k ¼ 1

14, if k ¼ 2

36, if k ¼ 3

24, if k ¼ 4:

8>><>>:
The average number of tests is ~24. If a bank allows a card to withdraw $200, then during

a 30-minute lunch break, a dishonest programmer can discover

30� 60� 60

24
	 450

PINs and withdraw $90,000.

Figure 18.4 Atalla ATM authentication.
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This attack on PINs corresponds to a search tree. Bond and Zelinski [2003] developed an

improved algorithm that reduces the number of tests. There are several possible remedies;

the simplest is to deny the use of a decimalization table as an input. Atalla Technovations

introduced a variant of this equation; the customer appears at the issuer’s facility and

chooses U-PIN(User_ID), which is not revealed to the banking institution (Fig. 18.4).

The concatenation of the PAN(User_ID) and U-PIN(User_ID), are enciphered by DES

to derive the PINOffset(User_ID), which is recorded magnetically on the card:

PINOffset(User ID) ¼ DESK{PAN(User ID)kU-PIN(User ID)}:

Off-line authentication consists of repeating the process at the ATM. These is one possible

advantage of relating the U-PIN(User_ID) and PINOffset(User_ID) by this relationship.

The advantage is that the customer’s PIN(User_ID) is not stored at the banking institution.

The National Cash Register Company (NCR) also marketed an ATM product

line. An NCR proprietary algorithm EKEY{. . .} was originally implemented, but NCR

shifted to DES when it became available.

18.3.4 The ANSI Standard X9.1-1980 ANSI, 1980

The ubiquitous magnetically encoded bankcard contains three stripes (bands) (Fig. 18.5).

. Track 1: International Airlines Transport Association (IATA) Track. Intended for

airline-ticket sales from terminals. Read only.

. Track 2: American Bankers Association (ABA) Track. Intended for point-of-sales

and credit card transactions; for example, VISA/Mastercard. Read only.

. Track 3: ANSI developed standard for use in electronic funds transfer (EFT). Read

and write.

18.3.5 ATM Transactions

The most successful commercial application of cryptography has been in facilitating trans-

actions involving ATMs. Originally intended to be used for transactions at a single

banking institution, ATMs have evolved to provide truly international banking. The

steps in an ATM transaction are:

1. PAN(User_ID) and PINOffset(User_ID) is read from the ATM card;

Figure 18.5 ANSI X9.1 Three-track credit/debit card format.
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2. U-PIN(User_ID) is entered at the keyboard;

3. The transaction request containing this information is forwarded to the local ATM

bank processing system.

4. The financial institution of the cardholder is identified (from card-data) and the

transaction request is forwarded to it.

5. The cardholder’s financial institution verifies the cardholder’s ability to perform the

transaction;

Account balance sufficient?

Credit-line? or

Stolen card?

and authorization to the local bank to carry out the transaction is forwarded to it.

TABLE 18.3 ANSI X9.1 Track 3 Format

Field name Usage Status Length

Start sentinel M S 1

Format code M S 2

Primary account number (PAN) M S 19

Separator (SEP) M S 1

Country code or SEP M S 3/1

Currency M S 3

Currency exponent M S 1

Amount authorized per cycle period M S 4

Amount remaining this period M D 4

Cycle begin M D 4

Cycle length M S 2

Retry count M D 1

PIN control parameters (PINPARM) or SEP M S 6/1

Interchange control M S 1

Type of account and service restriction (PAN) M S 2

Type of account and service restriction (SAN-1) M S 2

Type of account and service restriction (SAN-2) M S 2

Expiration date or SEP M S 4/1

Card sequence number M S 1

Card security number or SEP M D 9/1

First subsidiary account number (SAN-1) O S Variable

SEP M S 1

Secondary subsidiary account number (SAN-2) O S Variable

SEP M S 1

Relay marker M S 1

Crypto check digits (CCD) or SEP M D 6/1

Discretionary data O D Variable

End sentinel M S 1

Longitudinal redundancy check (LRS) M D 1

107

M, mandatory field; O, optional field; D, dynamic field (writable); S, static field (read only); PINPARM, Optional security

feature; PINOffset can be written in this field; CCD, To provide a means of verifying the integrity of the data elements on

Track 3.

490 CHAPTER 18 APPLICATIONS OF CRYPTOGRAPHY



The same sequence is followed when a credit card is offered as payment at a point-of-sale

(POS) system.

18.3.6 Track 3 Format

Table 18.3 gives the ANSI X9.1 Track 3 contents.

18.4 KEYED-ACCESS CARDS

The IBM Corporation decided in 1972 to offer customers a keyed regulated entrance

system to control access into their facilities supported by an IBM Series/1 processing

system. The Series/1 Controlled Access System is described in an IBM publication

dated March 21, 1978. Each employee would possess a card on which an identifier

would be magnetically recorded. The data on the card is the encipherment of the pair

(ID,PW) of 5-digit decimal numbers. The ciphertext data on the card would be read at a

card reader at an entry door, be deciphered, and (ID,PW) would be verified at the

system’s database. A single IBM Series/1 processor could handle 31 entry points.

The design constraints of the system were these:

1. The data would be read by a card-reader – no user-entry of data at a key-pad would

be provided;

2. The system database would not contain a listing of every valid employee;

3. The database would be able to maintain a list of lost/stolen and reported cards;

4. The card-readers would transmit the data read from the card to a shared processor;

5. The verification-processing needed to be simple and fast;

6. The fabrication of bogus cards had to be infeasible.

Although the copying of valid access cards existed, it seemed less of a problem for a

company who could discharge an employee if it discovered the employee allowed the

copying of the keyed-access card.

The keyed-access card of the IBM product contained the encipherment Y of two

16-bit numbers (ID,PW) – approximately two 5-digit decimal numbers

Y ¼ EfCg

IDþ PW ¼ C(modulo 105)

0 � ID , 216 ¼ 65,636, 0 , PW , 216, 215 , C , 216:

The encipherment algorithm E{. . .} is a variant of that described in Section 9.21.

18.5 SMART CARDS

A smart card is a banking card containing an embedded processor; compared to a PC, the

smart card’s computational power and memory are significantly limited. The ISO standard

7810 specifies the physical details of the smart card designated as ID-1. The dimensions

are 85.60 mm (L) � 53.98 mm (W) � 0.80 mm (T). Even the corner radius of 3.18 mm is

specified. Leave nothing to chance!
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18.5.1 Smart Card Memory

Figure 18.6 illustrates the different types of memory contained on smart cards.

. ROM (read-only memory) – 6–24 Kbytes storing the operating system;

. RAM (random access memory) – 256–1024 bytes used as working memory; RAM is

volatile, meaning that its contents are lost when power to the smart card is removed.

. EEPROM (electrically erasable programmable memory) – 1–16 Kbytes of

memory that

– can be written to externally,

– can be erased externally by an electrical charge, and

– retains its state when the power is removed.

18.5.2 External Interface of Smart Cards

Most smart cards require an external source of energy. One standard method to transfer

data is to use a card acceptor device (CAD), which allows for the half-duplex exchange

of data at the rate of�9600 b/s. The ISO standard 7816/3 provides either six or eight con-
nection points for (external) power to the smart card. ISO 7816, Part 1 [ISO, 1998]

describes the locations and functions of the contacts on the smart card (Table 18.4).

Figure 18.6 Smart card memory.

TABLE 18.4 ISO 7816 Smart Card Contacts

Position Function

C1 Vcc Voltage supply

C2 RST Reset

C3 CLK Clock frequency

C4 RFU Reserved for future use

C5 GND Ground

C6 Vpp External voltage

C7 I/O Serial I/O

C8 RLU Reserved for future use
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Some newer cards are contactless and exchange data over a small distance by inductive or

capacitive coupling. The smart card/terminal interface (Fig. 18.7) supports only half-

duplex data transmission.

18.5.3 Smart Card Processing

A smart card typically contains an 8-bit microprocessor running at 5 MHz. The operating

system is required to handle a small number of tasks, including:

. Half-duplex data transmission;

. Control and execution of instruction sequences;

. Running of management functions;

. Protecting access to data on the card;

. Memory and file management;

. Execution of cryptographic application programs (API).

As a smart card is not intended to be a general-purpose processor, it does not supply an

interface for users.

18.5.4 Smart Card Functionalities

The cryptographic and related functions on a smart card include

. RSA with 512, 768, or 1024 bit keys;

. The digital signature algorithm (DHA);

. DES and triple-DES;

. Random number generation (RNG).

18.5.5 The Electronic Purse

The advantages of a cashless society have been discussed for some time. One application

of the smart card is the electronic wallet or electronic purse. The owner of the smart card

deposits at his/her bank a sum. An entry is made (by the bank) on the smart card, which

is used as cash. When a purchase is made using the smart card, the amount is debited

on the card. What a creative idea for the bank! Perhaps you might even receive

interest on the money deposited at the bank, but certainly not at the annual rate of

18%/year. Clearly a pig as in Figure 18.8 is involved, but perhaps it is not used in

making the purse.

Although there were high hopes for the viability of electronic purses in the 1990s,

according to Leo Van Hove [http://www.firstmonday,dk/.issues/issues/issues5_7/
hove/], the public has not been very receptive.

Figure 18.7 Smart card memory interface.
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18.5.6 Smart Card Vendors

Several different vendors have introduced smart cards, including

. PC/SC: Microsoft for personal computers;

. Open Card: Java-based standard for POS (point-of-sale), laptops;

. JavaCard: Proposed as a standard by Schlumberger.

18.5.7 The Role of the Smart Card

The smart card will provide proof of identity when a user is communicating with a remote

server. Secure transactions involving a smart card will require cryptography. If the identi-

fication process is based on public-key cryptography, then

. The key will need to be stored in the EEPROM,

. The smart card will need to read-protect the key, and

. The owner of the card will need to use a PIN to prove identity to the card.

Various physical attacks on the information stored in a card have been proposed. One is

based on the observation that the contents of the EEPROM can be erased or modified

by modifying the voltage applied to the card’s contacts. Paul Kocher refers to variants

of these attacks as differential power analysis (DPA) [www.cryptography.com]. Other

physical attacks involve heat and UV light.

Figure 18.8 The E-Pig - Artwork by Carol L. Konheim.

Figure 18.9 TRASEC protocol.
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18.5.8 Protocols for Smart Cards

The two articles by Ph. van Heurck [1987, 1989] are among the earliest proposing the

application of smart cards. C.I.R.I. is an association of banks in Belgium. These banks

created TRASEC in 1987 to develop and maintain a system to develop and implement

electronic TRAnsactions in a SECure manner.

Several authentication schemes are described; in one scheme, data are suffixed with

a digital signature using the protocol in Figure 18.9.

18.6 WHO CAN YOU TRUST?: KOHNFELDER’S
CERTIFICATES

Kohnfelderwrites in Part I, SectionD,Weaknesses in Public-KeyCryptosystems of his thesis,

Although the enemy may eavesdrop on the key transmission system, the key must be sent via a

channel in such a way that the originator of the transmission is reliably known.

Kohnfelder observed that all public-key cryptosystems are vulnerable to a spoofing attack

if the public keys are not certified; User_ID[C] pretending to be User_ID[A] to

User_ID[B] by providing User_ID[C]’s public-key (in place of User_ID[A]’s public

key) to User_ID[B]. Unless User_ID[B] has some way of checking the correspondence

between ID[A] and PuK(ID[K]), this type of spoofing attack is possible.

Kohnfelder proposed a method to make spoofing more difficult in Part III of his

thesis. He postulates the existence of a public file F that contains (in my notation) pairs

f(ID[A]), PuK([ID[A])g for each user in the system. Although it might be possible for

User_ID[C] to contact F to ask for a copy of User_ID[A]’s public key, the public file sol-

ution suffers from the same operational defects as a network-wide key server:

. What entity will maintain and certify a large database that is continually changing?

. The public file will need to be replicated to prevent severe access times to obtain

information.

Kohnfelder defines a certificate as a data set consisting of an authenticator (AID[A]) and an

identifier (ID[A]), which are related by

AID½A
 ¼ EPrK(½F 
){ID[A], PuK(ID[A])};

where PrK([F ]) is the private key of F.
Any user can check the correspondence AUID, ID by making the comparison

ID[A], PuK(ID[A])¼
?
EPrK(½F 
){AUID½A
};

where PuK([F ]) is the well-known public key of F. However, if the public-key crypto-

system is strong, then it will not be computationally feasible for a user to determine

PrK([F]) from PuK([F ]).

18.7 X.509 CERTIFICATES

Until this last quarter century, cryptography needed to be supported in a very limited com-

munity. During the Gulf War, secure communications were needed between Washington,

U.S. bases in Europe and Japan, and the forces stationed in the Gulf region. Moreover,

parties having the capability to monitor and decipher in a timely manner communications

between Washington and the Gulf were very limited.
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All this has changed because of the Internet; in 1990 there were over 300,000 hosts

(mainframe machines). Vincent Cerf claimed several years ago that there were over

60 million Internet users then existing. The number of potential user-to-user endpoints is

staggering. Public-key cryptography provided a vehicle to replaced the N
2

� �
-key

distribution with N users to one of complexity N. Nevertheless, User_ID[A] must make

available the public key PuK(ID[A]) to all users who wish to communicate with

User_ID[A]. The thought of a server maintaining a file containing several million keys is

absurd. Moreover, even if such a server is contemplated, there is the need to prevent a spoof-

ing attack, wherein User_ID[A]’s public key is temporarily replaced by that of the spoofer.

The proposed solution, based on the user of certificates, provides a link between User_

ID[A]’s network identifier ID[A] and public key PuK(ID[A]). It is planned that various

Certificate Authorities (CA) will be set up to issue certificates. Such a certificate would

. Need to be issued by a trustworthy party, and

. Be computationally infeasible to forge.

If User_ID[A] wishes to enter into a transaction with User_ID[B], a User_ID[A]-

certificate is made delivered (or otherwise made available) to User_ID[B]. The data on

the certificate bind the pair (ID[A], PuK(ID[A])). User_ID[B] verifies the binding by

testing the certificate. Implicit is the assumption that only a valid CA could construct a

certificate. Certificates use the same paradigm as public-key cryptography; namely, the

signature on the certificate is encipherment of certificate data using the key of the CA.

. User_ID[A] signs DATA using User_ID[A]’s public key appending the certificate.

. User_ID[B] first uses the certificate to verify that PuK(ID[A]) is the public key of the

user with identifier ID[A].

. If the agreement is verified, User_ID[B] can then examine the DATA and decide on

some action.

What has been gained? The advantage is that only the CA’s public key must be secured

rather than all public keys being securely stored. On the other hand, if someone can

learn the CA’s private key, then all of the certificates become meaningless.

Maintaining worldwide compatibility in communications is the charter of the

International Telegraph Union (ITU),5 an agency of the United Nations. The CCITT

(Comité Consultatif Internationale de Télégraphique et Téléphonique) was formed in

1956 by merging the CCIT (Télégraphique) and CCIF (Téléphonique). A reorganization

in 1989 divided the ITU into three sectors:

. International Radiocommunications Sector (ITU-R);

. International Telecommunication Development Sector (ITU-D);

. International Telecommunication Standardization Sector (ITU-T).

X-509 [ITU, 1989] is the draft CCITT Recommendation describing the certificate protocol

shown in Figure 18.10. X.509 v3.0 [RFC2549] updates the recommendation providing

additional functionality.

The fields in an X.509-certificate include:

Serial Number: Unique identifier for the certificate.

Algorithm Identifier: Specifies algorithm used to sign certificate by CA.

Subject: The name of entity to whom the certificate is used.

5International Telecommunication Union, Telecommunication Standardization Bureau, Place des Nations

CH-1211 Geneva 20; tsbdoc@itu.int also www.itu.int/ITU-T
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Signature: A signature derived by hashing all fields and enciphering using the certificate

authority’s private key. The hashing functions MD2, MD5, and SHA-1, and the public-key

cryptosystems RSA and DSA are supported.

The certificate provides the link between the ID[A] and PuK(ID[A]).

18.8 THE SECURE SOCKET LAYER (SSL)

SSL was originated by Netscape; it consists of several upper layer protocols5 by which a

pair of users – the Client and the Server – agree on a key exchange method, an encipher-

ment algorithm, and a message digest.

In what follows we go through the Handshake Protocol initiated by a client.

Phase 1 – Client Initiation The Client proposes the following (Fig. 18.11).

Figure 18.10 X.509 certificate.

5In order for users on two systems to communicate, a common set of rules must be implemented. The

International Standards Organization recognized the need in 1977 for the standardization of information-network

architectures. ISO’s TC97 committee, responsible for information systems, created the Open Systems Intercon-

nection (OSI) model in 1979. Influenced by the earlier network architectures of IBM (SNA 1974) “Systems

Network Architecture: Technical Overview” (Third Edition), IBM Corporation, September 1986 and the

Digital Equipment Corporation (DNA 1975) “DECnet DIGITAL Network Architecture (Phase V): General

Description”, Digital Equipment Corporation, September 1987, the ISO Open System Interconnection model

divided the services needed to implement computer communication into layers.
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1. A key exchange protocol. Possible choices include

– RSA,

– Diffie–Hellman.

2. A data encipherment algorithm. Possible choices include

– DES and DES3,

– AES,

– IDEA,

– RSA’s RC2 and RC4.

3. A message digest algorithm. Possible choices include

– RSA’s MD5,

– NIST’s SHA.

4. A random number referred to as random_bytes [28 bytes].

5. A session ID designated as SessionID [variable length].

6. A (lossless) compression method identifier [integer 1 � C_ID , 511]; a complete

specification is not included in the latest SSL-Specification.

Phase 1 – Server Response to Client_Hello: The Server accepts one of the

choices made in the Client_Hello messages (Fig. 18.12).

Phase 2 – Server Authentication and Key Exchange : The Server delivers its cer-

tificate; when authentication/secrecy is enabled there is a key exchange. The Server

requests a certificate from the Client (Fig. 18.13).

Figure 18.12 Server response to Client_Hello.

Figure 18.13 SSL Phase 2 – server authentication and key exchange.

Figure 18.11 SSL Phase 1 (Client_Hello).

Figure 18.14 SSL phase 2 – client response to server.
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Phase 2 – Client Response to Server : The Client delivers its certificate an expli-

cit verification of the Server’s certificate (Fig. 18.14).

18.8.1 The SSL Record Protocol

SSL provides for confidentiality (via encryption) and authentication (via a message

authentication code, MAC). A block of application data is depicted in Figure 18.15:

1. It may be fragmented into several blocks;

2. Each fragmented block may be compressed by a lossless compression algorithm;

3. Each compressed fragment is suffixed by an underbar message authentication code

(MAC);

4. Each Compressed_BlockþMAC block is enciphered;

5. Each enciphered Compressed_BlockþMAC is prefixed by an SSL Header.

18.8.2 The SSL MAC

The SSL MAC results from a hash of the compression of a fragment of the application

data. The MAC is a message digest, that is, a fixed-length block of 0’s and 1’s derived

from the compressed fragmented data using either RSA’s MD5 algorithm or NIST’s

Secure Hash Algorithm (SHA).

The MAC is defined as

hash(MAC_write_secret k pad_2 k
hash(MAC_write_secret kpad_1 kseq_num k

SSLCompressed.type k
SSLCompressed.length k SSLCompressed.fragment))

where

. hash ¼ MD5 or SHA;

. k denotes concatenation;

Figure 18.15 Fragmentation, encryption, and authentication of an SSL record.
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. MAC_write_secret is a shared secret key;

. pad_1 is the byte (in hex) 36 ¼ 0011 0110 repeated

– 48 times (348 ¼ 8 � 48 bits) for MD5, and

– 40 times (320 ¼ 8 � 40 bits) for SHA;

. pad_2 is the byte (in hex) 5C ¼ 0101 1100 repeated

– 48 times (348 ¼ 8 � 48 bits) for MD5, and

– 40 times (320 ¼ 8 � 40 bits) for SHA;

. seq_num is the 64-bit sequence number for the SSL Record Protocol Message

initialized to 0 and incremented up to 2642 1;

. SSLCompressed.type identifies the higher layer protocol to process this

fragment;

. SSLCompressed.length is the length of the compressed fragment;

. SSLCompressed.fragment is the compressed fragment of data (or the plain-

text, if no compression is used).

18.8.3 The SSL Key Exchange

It remains to make the keys available to both the Client and Server. IF RSA is used for key

exchange, the Client generates a pre_master_secret and delivers it to the Server

enciphered using the Server’s public RSA key, whose authenticity is attested to by the

Client’s X.509 certificate. The Client and Server process the pre_master_secret,
deriving the keys used for the MAC and encipherment.

If Diffie–Hellman is used for key exchange, the Client has three options:

. Fixed Diffie–Hellman Key Exchange: Deliver an X.509 certificate to the Server

containing ( p,q) and attest to the authenticity of the Client’s Diffie–Hellman

parameters.

. Ephemeral Diffie–Hellman Key Exchange: The Client creates one-time Diffie–

Hellman parameters ( p,q), which are delivered to the Client enciphered using the

Server’s private RSA key, whose authenticity is attested to by the Client’s X.509

certificate.

. Anonymous Diffie–Hellman Key Exchange: The Client creates one-time Diffie–

Hellman parameters ( p, q), which are delivered to the Client without any

authentication.

18.8.4 The Master Secret

When RSA is selected for key exchange, the Client generates a pre_master_secret
by means of a cryptographically secure random number generator [see §24] and transmits

it to the Server enciphered with the Server’s RSA public key.

The 48-byte (384-bit) master_secret (MS) is derived from the

pre_master_secret by

master_secret = MD5(pre_master_secret k SHA(A k
pre_master_secret k

ClientHello.random k
ServerHello.random))

500 CHAPTER 18 APPLICATIONS OF CRYPTOGRAPHY



MD5(pre_master_secret k SHA(BB k
pre_master_secret k
ClientHello.random k
ServerHello.random))

MD5(pre_master_secret k SHA(CCC k
pre_master_secret k
ClientHello.random k
ServerHello.random)) k [. . .]

where A, B, C,. . . are hex digits and [. . .] denotes continued repetition of the MD5 hash

until sufficient key is obtained.

The bit sequence ClientHello.random [32 bytes] contained in the

ClientHello message is composed of

. gmt_unix_time (4 bytes) current time and date from UNIX internal clock;

. random_bytes (28 bytes) generated by a secure random number generator.

ServerHello.random (32 bytes) is the similar field in the ServerHello
message.

SSL derives several keys from the master_secret:

. client_write_MAC_secret (5 bytes);

. server_write_MAC_secret (5 bytes);

. client_write_key (variable number of bytes);

. server_write_key (variable number of bytes).

These keys are derived from a key_block defined in terms of the master_secret as

follows:

key_bock = MD5(master_secret k SHA(A k master_secret k
ServerHello.random k
ClientHello.random))

MD5(master_sercret k SHA(BB k
master_secret k ServerHello.random k
ClientHello.random))

MD5(master_secret k SHA(CCC k master_secret k
ServerHello.random k
ClientHello.random)) k [. . .]

The key_block is partitioned as follows:

client_MAC_write_secret(CipherSpec.hash_size)
server_MAC_write-secret(CipherSpec.hash_size)
client_write_key(CipherSpec.key_material)
server_write_key(CipherSpec.key_material)
client_write_IV(CipherSpec.IV_size)/*non-exportciphers*/
server_write_IV(CipherSpec.IV_size) /*non-export ciphers */

Any additional key material is discarded.

The write keys for export ciphers (signaled by the parameter setting

CipherSpec.is_exportable is true) are derived as follows:

final_client_write_key = MD5(client_write_key +
ClientHello.random

ServerHello.random);
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final_server_write_key = MD5(server_write_key +
ServerHello.random +
ClientHello.random);

client_write_IV = MD5(ClientHello.random +
ServerHello.random);

server_write_IV = MD5(ServerHello.random +
ClientHello.random);

18.8.5 Secure Random Number Generators

A pseudo-random number generator (PRG) is a device (software) whose purpose is to

generate a sequence of independent and identically distributed random variables,

usually with a uniform distribution on some set. A basic introduction to the properties

required for a ‘good’ random number generator is contained in Golomb [1982]. A

more up-to-date presentation of the theory of nonlinear shift register design is given in

Rueppel [1986].

A PRG is a pseudo-random bit generator (PRBG) if PRG generates a bit stream

x0, x1, . . . , The PRG passes the next bit test if there is no polynomial-time algorithm

that can solve the problem:

Given: x0, x1, . . . , x‘2I,

Determine: xe,

with probability greater than 1/2 for all l.

A PRBG is a cryptographically secure random number bit generator (CSPRBG) if

under some plausible but unproved mathematical assumption, it passes the next bit test.

Algorithm A (RSA PRBG)

1. Let p, q be primes, n ¼ pq, f ¼ ( p2 1) (q2 1) and e and integers 1 , e , f,
which is relatively prime to f;

2. Choose x2 1 [ [1, n2 1] (the seed );

3. For i: ¼ 0 to ‘2 1 do

3.1 xi
˙
 xei21 (modulo n),

3.2 zi is the least significant bit of xi;

4. z0, z1, . . . , zl21 is the output sequence.

Algorithm A is a cryptographically secure random number generator.

18.9 MAKING A SECURE CREDIT CARD PAYMENT
ON THE WEB

The Secure Socket Layer (SSL) protocol provides rules for a Client (agkonheim@
cox.net) to enter into transactions with a Server (www.amazon.com). These two

parties have different issues:

. The Server is concerned about the Client’s willingness to pay, but can check the

credit-worthiness of a Client with the issuer of the credit card and receive

payment before providing any merchandize or service.

502 CHAPTER 18 APPLICATIONS OF CRYPTOGRAPHY



. The Client is concerned about revealing a credit card number to a fictitious Server,

the old fake server as seen in Get Smart!

The SSL protocol described in Section 18.7 is modified to accommodate these different

viewpoints. The Server is required to produce a certificate, but the Client is not. The

Client does not normally require a certificate in credit-card transactions on the Web.

X.509 provided the mechanism for dealing with this environment which.

18.9.1 Certificate Hierarchies

To authenticate the link between a user’s ID and public key, the user’s certificate must be

obtained and checked. The size of the potential community of users requiring certificates

necessitates that multiple certificate authorities must exist. X.500 v1 uses the term

directory information tree (DIT)6 to describe the “network” of certificate authorities.

Three levels are mentioned:

. Level 1: Internet Policy Registration Authority (IPRA);

. Level 2: Policy Certification Authorities (PCA);

. Level 3: Certification Authorities (CA).

A fragment of this tree is shown in Figure 18.16.

In the fragment of the DIT portrayed next

. CA2 has issued a certificate for CA1;

. CA3 has issued certificates for CA2 and CA5;

. CA4 has issued a certificate for CA3;

. CA5 has issued a certificate for CA6;

. CA1 has issued a certificate for User_ID[A] and User_ID[B];

. CA6 has issued a certificate for User_ID[C].

It is assumed that

. User_ID[1] knows the public key of CA1;

. User_ID[2] knows the public key of CA1;

. User_ID[3] knows the public key of CA6.

User_ID[1] Authenticates User_ID[2]’s Public Key : When User_ID[1] requests

User_ID[2]’s certificate from User_ID[2], the issuer field in the certificate identifies

CA1 as the issuing certificate authority. User_ID[1] can therefore check the authenticity

of User_ID[2]’s public key.

User_ID[1] Authenticates User_ID[2]’s Public Key : When User_ID[1] requests

User_ID[3]’s certificate from User_ID[3], the issuer field in the certificate identifies

CA6 as the issuing certificate authority. User_ID[1] does not have CA6’s public key

and therefore cannot check the authenticity of User_ID[3]’s public key.

The nodes in the DIT contain sufficient information to make CA6’s public key

available.

6A tree is a graph consisting of vertices and edges in which there is no simple (traversing an edge at most once)

closed path (starting and ending at the same vertex).
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1. User_ID[1] requests CA1 to obtain the certificate of User_ID[3] from CA6.

2. CA1, with knowledge of the DIT, initiates the following data transfers:

– CA5 obtains the certificate of User_ID[3] from CA6,

– CA5 transmits the certificate of User_ID[3] and CA6 to CA3,

– CA3 transmits the certificate of User_ID[3], CA5, and CA6 to CA2,

– CA2 transmits the four certificates of User_ID[3], CA3, CA5, and CA6 to CA1,

and finally

– CA1 transmits the five certificates of User_ID[3], CA3, CA3, CA5, and CA6 to

User_ID[1].

3. User_ID[1] can unwrap the certificate of User_ID[3] and check the validity of

User_ID[3]’s public key.

When I place a credit card order with www.amazon.com, the following modified

SSL-steps are followed by my Netscape Communicator or Internet Explorer browser:

SSL�-1 The browser requests Amazon to send its certificate CERTwww.amazon.com;

SSL�-2 Amazon’s certificate identifies which Certificate Authority (CA) has issued

the Amazon certificate and the browser uses the public key of CA, which is

resident at the browser to validate the CERTAmazon;

Verisign’s DER-coded Class-1 certificate, which resides at my PC’s Internet

Explorer browser, is

V1
00 cd ba 7f 56 f0 df e4 bc 54 fe 22 ac b3 72 aa 55
md2RSA
OU = Class 1 Public Primary Certification Authority

Figure 18.16 Fragment of directory information tree.
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O = VeriSign, Inc.
C = US
OU = Class 1 Public Primary Certification Authority
O = VeriSign, Inc.
C = US
Tuesday, August 01, 2028 4:59:59 PM
OU = Class 1 Public Primary Certification Authority
O = VeriSign, Inc.
C =US
30 81 89 02 81 81 00 e5 19 bf 6d a3 56 61 2d 99
48 71 f6 67 de b9 8d eb b7 9e 86 80 0a 91 0e fa 38
25 af 46 88 82 e5 73 a8 a0 9b 24 5d 0d 1f cc 65
6e 0c b0 d0 56 84 18 87 9a 06 9b 10 a1 73 df b4 58 39
6b 6e c1 f6 15 d5 a8 a8 3f aa 12 06 8d 31 ac 7f
b0 34 d7 8f 34 67 88 09 cd 14 11 e2 4e 45 56 69
if 78 02 80 da dc 47 91 29 bb 36 c9 63 5c c5 e0
d7 2d 87 7b a1 b7 32 b0 7b 30 ba 2a 2f 31 aa ee a3 67 da
db 02 03 01 00 01

sha1

90 ae a2 69 85 ff 14 80 4c 43 49 52 ec e9 60 84 77 af 55 6f
VeriSign Class 1 Public Primary CA
Secure Email
Client Authentication

SSL�-3 The browser acts for the Client and generates the mster_secret and

follows the remaining steps to establish a secure connection.
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CHA P T E R19
CRYPTOGRAPHIC PATENTS

“In the end, the only passion is money!”, attributed to W. Somerset Maugham

“If Karl, instead of writing about capitalism, had made a lot of money . . .

we would all have been much better off!”, attributed to Karl Marx’s mother

“A class who listens to lectures on law from a computer scientist, has a fool for a teacher,”

Abraham Lincoln

19.1 WHAT IS A PATENT?

A patent is a grant of an exclusive property right; the full scope of the right to exclude per

35 U.S.C. §271 is the right to exclude others from making, using, offering for sale, or

selling the invention throughout the United States or importing their invention into the

United States.

The term of a patent now starts on the date the patent issues and continues to the date

20 years after the application date per 35 U.S.C. §154. The change from the seventeen year

term was made in the 1990s to bring U.S. law into line with the patent laws of other

countries.

The federal patent power stems from Article I, §8, Clause 8 of the U.S. Constitution,

which authorizes Congress

To promote the Progress of Science and useful Arts, by securing for limited Times to Authors and

Inventors the exclusive Right to their respective Writings and Discoveries.

Different types of patents are defined:

. Utility Patent: Granted to anyone who invents or discovers any new and useful

process, machine, manufacture, or compositions of matter, or any new and useful

improvement thereof.

. Design Patent: Granted to any person who has invented a new, original and

ornamental design for an article of manufacture.

. Plant Patent: Granted to any person who has invented or discovered and asexually

reproduced any distinct and new variety of plant, including cultivated sports,

mutants, hybrids, and newly found seedling, other than a tuber-propagated plant

or a plant found in an uncultivated state.
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19.2 PATENTABILITY OF IDEAS

Until 1952, a patentable idea required only novelty and utility. Congress added non-

obviousness in that year as a further requirement; 35 U.S.C. §103 provides that

. . . a patent may not be obtained, although the invention is not identically disclosed or described as

set forth in 35 U.S.C. §102, if the differences between the subject matter sought to be patented and

the prior art are such that the subject matter as a whole would have been obvious at the time the

invention was to a person having ordinary skill in the art to which the subject matter pertains.

The application of 35 U.S.C. §103 involves the consideration of four factors:

1. The scope and content of the prior art;1

2. Differences between the prior art and the claims at issue;

3. The level of ordinary skill in the pertinent art; and

4. The obviousness or nonobviousness of the subject.

The evaluation of these four factors is not sharply defined.

19.3 THE FORMAT OF A PATENT

1. Title Page

– Title of the invention;

– Names of inventors and ownership (e.g., assigned to . . . );

– Prior art; papers, prior patents; cross references to related applications, if any;

– United States Patent Office Classification Code; for example, 380 (Cryptography);

– Abstract of the patent, without technical details.

2. Specification

– Detailed disclosure of the invention;

– Must describe the claimed invention;

– Description must be in clear and concise language to enable any person of ordin-

ary skill in the art2 to make and use the invention;

– Provides the best mode contemplated by the inventor(s) of carrying out the inven-

tion at the time the patent application is written.

3. Drawings

– To simplify the understanding of the invention; to satisfy the enablement

requirement.

4. Claims of the Patent

– Sets forth the technology that is to be exclusively owned by the patentee;

– Generally drafted by a patent attorney, often contains the three C’s

– Comprising, including these elements but not excluding others;

– Consisting of, narrower interpretation than “comprising”;

– Consisting essentially of, a compromise between the first two C’s.

1Prior art refers to the disclosure of the contents of the patent’s claims prior to the application date of the patent.
2An individual with a reasonably detailed knowledge of the subject matter in the area of the patent.
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The specification is a description of a way in which the inventor intends to implement

the invention. It need not be the only way in which the invention can be practiced.

The description must be such that a person of ordinary skill in the art should be able

to build it.

The Claims section defines what the inventor believes to be his/her invention.

5. Validity of the Patent: The following are some general legal principles regarding

patents:

– Claims are interpreted in the light of the specification, the file history3 and the

ordinary meaning of the words in the claims.

– Claims are not limited to the embodiment(s) shown in the specification, but a

claim written in a means plus function form is limited to the structures/acts
shown in the specification and their equivalents.

– A patent claim is anticipated under Section 35, U.S.C §102(b), if the invention

was patented or described in a printed publication in this or a foreign country

or in public use, more than one year prior to the date of application for patent

in the United States.

– A patent claim is obvious under Section 35, U.S.C §103, if the claimed matter

would have been obvious to one skilled in the art as of the filing date of the

patent.

– A patent claim is invalid under the enablement requirement of Section 35, U.S.C

§112, }1, if the specification fails to set forth sufficient information to enable a

person skilled in the relevant art to make and use the full scope of the claimed

information without undue experimentation.

– A patent claim is invalid under the written description requirement of

Section 35, U.S.C §112, }1, if the specification fails to set forth sufficient

information to convey with reasonable clarity to those skilled in the relevant

art that the inventor was in possession of the full scope of the claimed

invention.

– A patent claim is invalid as indefinite under Section 35, U.S.C §112, }1, if those
skilled in the art would not be able to understand the full scope of the claim when

the claim is read in light of the specification.

19.4 PATENTABLE VERSUS NONPATENTABLE
SUBJECTS

The patent statue declares that a process is patentable; meaning process, art, or methods,

including the new use of a known process, machine, manufacture, composition of matter

or material. Naked ideas, independent of the means to carry them out, are not patentable.

A valid patent may not be obtained for an abstract principle, idea, law of nature, or scien-

tific truth. You cannot patent gravity, but you could patent a process that uses gravity in a

novel way. The U.S. Supreme Court is currently examining a patent case related to

this issue, diagnosing B vitamin deficiencies by measuring something in the patient’s

blood.

3A patent file history contains all documentation relation to the prosecution (processing) of a patent application.

This provides a detailed history of the entire life of a patent from its application to its issuance.
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19.5 INFRINGEMENT

Inventor A has a patent. He – how sexist! – claims Infrin-

ger B is using it without obtaining a license to do so.

Inventor A claims infringement. Infringer B claims:

1. What he is doing is different from what Inventor A

has described in his patent; that is, Infringer B does

not infringe; and

2. Inventor A should never have been granted a patent

because someone elsewas the first to invent this inven-

tion; that is, Inventor A’s patent claims are not valid.

Crossed Swords (Courtesy TheColoringSpot.com)

A resolution of the dispute is needed. The questions to be answered to decide whether or

not infringement has occurred include:

. Do the claims in both patents deal with an identical function? and

. Do the patents have the same or equivalent structures/acts?

The dispute is settled by the inventors without a duel in a civilized – albeit more costly–

manner in courts, with lawyers doing the dueling.

If the filing date of Inventor B’s patent is before that of Inventor A’s patent and

Inventor B’s patent is valid, there is no infringement. Even if the filing date of Inventor

B’s (the party of the first part) patent is after the filing date of Inventor A’s patent (the

party of the second part), Inventor B may still not be guilty of infringement, if it can be

shown that

. The invention practiced by Inventor B does not infringe the claims of the earlier

patent of Inventor A, or

. The earlier-filed patent of Inventor A is invalid because of the prior art.

Is that clear? That’s why we need lawyers! Nevertheless, this brief patent background

should guide us through a review of several specific cryptographic patents.

19.6 THE ROLE OF PATENTS IN CRYPTOGRAPHY

Cryptologia published United States Cryptographic Patents: 1861–1981, by Jack Levine,

which lists several hundred U.S. patents relating to cryptography spanning two decades:

. #31,902 – Alfred E. Parks – April 2, 1861 ; “Telegraph Register”.

. #4,308,556 – Hiroshi Osaka – December 29, 1981 ; “Television Video Signal

Scrambling System”.

19.7 U.S. PATENT 3,543,904 [CONSTABLE, 1970]

As described in Chapter 18, a successful ATM transaction involves two ingredients:

1. The account number read from the ATM banking card, and

2. The Personal Identification Number (PIN) entered at the ATM’s keyboard.
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In the 1980s, the National Cash Register Corporation (NCR) and Chubb Integrated

Systems were involved in litigation regarding a claim of patent infringement.

Chubb had purchased Smith Industries Limited whose only asset was the ‘904 patent

(Fig. 19.1). Chubb claimed that NCR’s ATM system infringed on its invention of the

protocol to validate an ATM-user. Clain 1 in the ’904 reads:

1. Access-control equipment for selectively enabling access to a facility, comprising first

means4 for receiving a coded token presented to the equipment and for reading from

the token5 a plurality6 of numbers encoded thereon, second means7 for entering

separately into the equipment a further number8 third means that is selectively oper-

able for enabling access to said facility, and fourth means for comparing effectively

the numerical result of a predetermined arithmetical operation involving said-numbers

read from the token, and the said further number entered into the equipment . . . and

means to operate9 said third means as aforesaid in dependence upon whether a prede-

termined correspondence exists10 between said number result and said further number.

There were two trials: The first was to determine if infringement occurred, the second to

determine monetary damages. If it can be shown that infringement was intentional, treble

(3�) damages may be assessed.

Figure 19.1 ’904 patent.

4The term means in a patent refers to some device for performing some function.
5ATM card.
6Plurality, amultitude, state of being numerous; in theworld of patent law, plurality usually justmeansmore thanone.
7Keyboard for PIN entry.
8The PIN.
9Dispense cash.
10The PIN corresponds to the ATM card number.
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The trials were held in Washington, D.C., before Hon. James F. Davis, a retired Federal

judge, both litigants agreeing to accept his decision. Several issues were contested; first,

the meaning of the words coded (as in ASCII) and encoded (as in DES) in Claim 1

‘904. Judge Davis opined that

. Coding indicated a representational process was involved when the PINOffset and

ACCT were written on the ATM card;

. Encoded in Claim 1 ‘904 involved some sort of encipherment process;

. The PINOffset and Account_Number (ACCT) were interpreted as the “plurality of

numbers” in Claim 1, ‘904.

The first trial found that NCR did infringe the patent held by Chubb integrated Systems;

the second trial decided on a damage figure.

19.8 U.S. PATENT 4,200,770 [HELLMAN ET AL., 1977]

The anticipation requirement Section 35, U.S.C. §102(b), requires that an application for a

U.S. patent be filed within one year of disclosure of the invention. When Diffie and

Hellman discovered public key cryptography, they presented their ideas at various meet-

ings, including a conference in mid-June 1976 [Diffie and Hellman, 1976] more than a

Figure 19.2 ’770 patent.
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year before the ’770 patent application was filed. Whether a technical talk or conference

constitutes disclosure in the sense of Section 35 U.S.C. §102(b) is a legal issue matter for

litigation. As their invention was described at various public events, the validity of their

patent was open to question.

19.9 U.S. PATENT 4,218,582 [HELLMAN AND
MERKLE, 1977]

19.10 U.S. PATENT 4,405,829 [RIVERST ET AL., 1977]

The ‘770, ‘582, and ‘829 patents described in Sections 19.8 to 19.10 were to be the

motherlode for Public Key Partners (PKP) of Sunnyvale, California, a partnership

between RSA Data Security Incorporated (RSADSI), now shorted to RSA and Caro-Kahn,

Figure 19.3 ’582 patent.
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Incorporated, the parent corporation of Cylink. In [Fougner, 1999], PKP’s licensing officer

claimed that these patents

. . . cover all known methods of practicing the art of Public Key, including the variations

collectively known as El Gamal.

Figure 19.4 ’829 patent.
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Ultimately, the “partners” had a falling out, primarily because PKP was not able to receive

royalties from their licensing of RSADSI products and after all . . . the Merkle–Hellman

knapsack system seemed like an unlikely source of riches.

19.11 PKS/RSADSI LITIGATION

When the “partners” had a falling out, litigation was pursued. The matter ultimately

reached the United States District Court for the Northern District of California.

A Markman hearing11 was held in October 1996 before the Hon. Judge Spencer

Williams. It consisted of tutorials on cryptography to provide the judge with an under-

standing of the technical issues. It was the position of PKP that Claims 1 to 6 of the

‘582 patient established their right to all public key cryptosystems. RSADSI advanced

the view that the ’582 claims were means plus function claims and that they were

limited to the knapsack cryptosystem described in the specification. Often the courts

will decide that a patent revealing a new technology should be given great latitude in

its claims. The parties negotiated a settlement before the issue was resolved.

19.12 LEON STAMBLER

Leon Stambler is an engineer who had been employed at RCA Laboratories; he is retired

now and lives in Parkland, Florida. Mr. Stambler is also a prolific inventor and has been

issued many patents. Mr. Stambler sued Diebold Incorporated, NCR Corporation, and

Manufacturers Hanover Trust claiming infringement of U.S. Patent No. 5,793,302: “A

Method for Securing Information Relevant to a Transaction”, filed November 12, 1996,

issued August 11, 1998. Mr. Stambler claimed that the use of the PIN in ATM transactions

by these defendants infringed the claims made in his ’302 patent.

His suit was not successful; Hon. Judge Thomas C. Platt invoked the doctrine of estop-

pel in writing his opinion in the U.S. District Court for the Eastern District of New York.

Equitable estoppel refers to a situation when a patent holder makes a misleading communi-

cation and subsequently a purported infringer relies on this to carry out his business practice.

It appears that Mr. Stambler had been a member of an American National Standards Insti-

tutes (ANSI) Committee on ATM transactions and was surprisingly silent when the commit-

tee approved a standard involving ATM transactions. Judge Platt wrote that

The [trial] record contains some evidence of misleading conduct on the part of the plaintiff that may

have led defendant to conclude that plaintiff did not intend to enforce his patent. Silence alone is not

sufficient affirmative conduct to give rise to estoppel.

Mr. Stambler was not discouraged and in March 2001 brought suit against various parties

including RSA and VeriSign, charging that the Secure Socket Layer (SSL) protocol

infringed on various and sundry claims in the ’301 patent and in the two patents

. U.S. Patent No. 5,936,541, “A Method for Securing Information Relevant to a

Transaction,” filed June 10, 1997, issued August 10, 1999.

11The Supreme Court’s landmark decision in Markman V. Westview Instruments, Inc. 116 S.Ct. 1384 (1996)

transformed patent litigation in the United States. The Supreme Court held that the interpretation of patent claims

is now an issue of law for a trial judge, not a jury, to decide. Many jurisdictions, including the Northern District of

California, have implemented a new set of procedures, culminating in a hearing that is commonly referred to as a

Markman hearing in which a judge can appoint a personal advisor or special master to either address technical

concerns or take a first cut at making the claim interpretations.
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. U.S. Patent No. 5,974,148, “A Method for Securing Information Relevant to a

Transaction,” filed May 13, 1997, issued October 26, 1999.

Mr. Stambler drafted new claims intended to encompass technologies commercialized by

other inventors after the filing date of his patent!

Bruce Schneier refers to Stambler’s ’148 patent as a submarine patent, a patent pub-

lished long after the original application was filed. Like a submarine, the patent remains

unpublished for several years and then emerges – is granted and published. This practice

is generally only possible under U.S. patent law, and to a very limited extent since the U.S.

signed WTO’s TRIPs agreements, making compulsory the publication of patent appli-

cations 18 months after their filing or priority date. Submarine patents are considered

by many to be a procedural lache (a delay in enforcing one’s rights, which may cause

the rights to be lost). This practice is not new with Mr. Stambler; it was popularized by

the Nevada inventor Jerome Lemelson, who holds more than 450 patents.

Mr. Stambler asked for damages of $20,000,000. A trial resulted in March 2003 in

the courtroom of the Hon. Sue L. Robinson, United States District Court in Wilmington

(Delaware). There were to be two segments in the trial; the first, to decide if RSA and Veri-

Sign did infringe on one or more of the claims in the Stambler patents. The second

segment – if needed – was to question whether or not prior art rendered the claims in

these patents invalid. The second trial never took place as the jury decided that the practice

of SSL did not infringe Mr. Stambler’s patents. Why?

As described in Chapter 18, in the Secure Socket Layer (SSL), the Server (e.g.,

amazon.com) delivers its certificate to the Client (e.g., konheim@ucsb.edu) in the

second phase of an SSL transaction. As the intent is to establish the validity of the

Server’s public key, the Server’s certificate alone does not accomplish this. It must be

accompanied by the certificate of the Certificate Authority (CA) that issued the Server’s

certificate. In the practice of the real SSL, the certificate of the CA (e.g., VeriSign),

which issued the Server’s certificate, resides in the Server’s browser. The jury found

that the real SSL did not infringe on the invention claimed by Mr. Stambler. The share-

holders of RSA and VeriSign could once again sleep soundly.
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