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FOREWORD

It’s not easy being a writer on cryptology. Actually, it’s not easy being a writer. You
have to think about what subjects you want to cover. Then you have to decide in what
order you want to put them—not so simple, because the most logical progression isn’t
always the best for teaching. Then comes the worst part: You actually have to cover a
blank screen or sheet of paper with letters and figures that make sense.

Alan Konheim has sweated through it many times. He has written a number of tech-
nical articles, which demonstrates that he has mastered the technicalities of his subject.
And he has passed through the fire of book authorship once before, in his acclaimed Cryp-
tography: A Primer. In the years that followed, he has learned what worked in that book
and what didn’t, and has applied those lessons in the present work. The result is a fine
amalgam of scholarship and pedagogy.

But if the elements of writing—clarity and concision—have remained the same,
cryptology has not. For centuries, it was axiomatic that both en- and decipherer had to
have the same key, though used inversely. The invention of public-key cryptography abol-
ished that axiom. It has transformed and energized the practical applications of crypto-
graphy. Many of these remain grounded in the classical, or symmetric, systems of
cryptography. And the enormous expansion of communications has driven its child,
secret communications, into vast new fields. Once the exclusive domain of soldiers and dip-
lomats and spies, cryptology has become almost ubiquitous. People use it without knowing
that they are doing so. Every time a person uses an automatic teller machine, his or her trans-
action is encrypted. So are online bank transactions. Whenever anyone sends his or her
credit card number securely to, say, E-bay or Amazon, he or she is using cryptography.

And the field has emerged from the shadows, The National Security Agency, once so
secret that it was referred to as “No Such Agency,” is now mentioned in movies and on the
evening news almost without any identification, just as the CIA and FBI are. The post-9/
11 flap over the Bush administration’s warrantless wiretapping has further brought crypto-
logy, the NSA, and privacy into the open. The International Association for Cryptologic
Research publishes its Journal of Cryptology four times a year. The aura of mysticism that
long enshrouded it has been dispelled by the cold logic of mathematics that now dominates it.

Alan Konheim knows all about this because he worked for IBM when it was a leader
in the field of cryptology and because he has kept up with new developments, as his many
technical articles demonstrate. His experience in teaching tells him what questions
students are likely to ask and what problems in understanding they are likely to encounter.
His previous book has taught him how to explain complicated matters effectively.
The result is this excellent book, which joins the permanent qualities of its writing
to the immediacy of its coverage. Cryptologists—beginners and veterans alike—will
welcome it. As do L.

Long Island, NewYork DAviD KAHN
October 2006






PREFACE

NATIONAL SECURITY AND COMPUTER SECURITY

On September 11, 2001, the word security moved into the foreground of our national con-
sciousness, where it continues to reside today. The presidential election in 2004 was
largely decided on the basis of which candidate was perceived to best manage
security for the American people. Americans are puzzled about the hatred expressed by
certain ideologies and foreign governments about our way of life and culture. The
missions of the National Security Agency/Central Security Service (CSS) include
both the protection of U.S. communications and the production of foreign intelligence.
Although cryptography plays a role in both of these areas, this book is not about either.

This book is about the role of cryptography in our day-to-day lives. Today, there is
no activity that does not depend on computers. When there is a power outage in
Santa Barbara, I often cannot buy Twinkies at the supermarket, to my dismay and that
of the merchant, but to the delight of my endocrinologist. The use of traveler’s checks
has declined because of the convenience and availability of ATM machines. Vast
amounts of data are maintained by banks and credit card companies. Stories of their
mismanaging customer data appear regularly in the news. Identity theft is well on its
way to becoming a flourishing industry. Credit card companies now have the nerve to
advertise identity theft insurance to protect the information that they are legally obliged
to guard, but fail to do so.

Cryptography has a role to play in many areas. Like seat belts, it will not completely
protect us. In the chapters that follow, I will develop the basic ideas about cryptography
and then illustrate some of the ways it interacts with and protects us.

WHY STUDY CRYPTOGRAPHY?

There is a symbiotic relationship between cryptography and the development of high-
performance computing systems. Modern-day computers were created at the behest of
twentieth-century cryptanalysts. As the complexity of cryptographic systems progressed
from mechanical to electronic systems, so did the need to develop more efficient
methods to cryptanalyze them.

Every cryptosystem, which has a finite number of keys, can usually be analyzed
by key trial, deciphering the ciphertext with all possible keys until some recognizable
text appears. In many “classical” cryptographic systems, the testing of keys could be
performed by hand. The stimulus for the development of computers was the need to be
able to test large sets of possible keys to decipher coded traffic. Modern cryptosystems
are such that the number of possible keys is generally so large as to make exhaustive
key trial infeasible. Even computers are limited, and some analysis must precede key
testing for the process to be successful.

Xi
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PREFACE

The marriage of computing and cryptography provides a marvelous real-life
application of mathematics, and develops the inference skills that are fundamental to
engineering and science. When a student first views the ciphertext

To-drijohrunurmanpmlgchd-ehapuotp, te-nmabsno-nitioippmbo-a-a
sTasm-h-op-ms-vye-m. ikndu-n-atscegnetoin-l-rs-v-e-u-ta-olati
s-t-sccw—eorrgdhgngP.r-stenvercenhnerhchoie-nun-sr-tois-rma
eaeeadadrssou-o-etat-iefeotifc-m-a—ergua-eiuo-oixeordalmyes

there may be confusion. Word fragments may be detected, but how can the text be recov-
ered? After students learn to critically examine the ciphertext, they are often capable of
deciphering it. Cryptography teaches students how clever they can be. Of course, instruc-
tors should caution their students as the television commercials for ED advise; to wit, if
their efforts in cryptanalyzing some ciphertext “last more than four hours, they should
seek tutorial assistance.”

Although computer security is certainly a hot topic today, its public discussion is often
accompanied by a great deal of hype. People are impressed by cryptosystems with large key
spaces and the press releases make liberal use of the term unbreakable. The Kryha machine,
a mechanical ciphering machine invented in 1924, had more than 4.57 x 10%° keys, but it
did not offer much secrecy protection. Invoking the lore of large numbers to “prove” the
strength of an encipherment scheme often fails to measure the real strength.

This book will provide the tools for understanding the central issues in data security.
It will provide an instructor with a wide range of topics to train students to evaluate
critically the factors that affect the effectiveness of secrecy, authentication, and digital
signature schema, sensitize a student to some of the factors that determine the strength
of an algorithm and its protocol implementations, and provide hands-on experience to
the student with cryptanalysis.

The book’s goal is to explain the nature of secrecy and the “practical” limitations of
cryptography in providing secrecy and its derivatives (authentication and digital
signatures).

MY PRIOR ART

Parts of Computer Security and Cryptography have served as the text for CMPSC 178
(Introduction to Cryptography) at UCSB. It is an upper-division elective in the under-
graduate program of the Computer Science Department of the University of California
(Santa Barbara) from 1983 to 2005. CMPSC 178 is ten-week four-unit course, meeting
75 minutes twice weekly. Class lectures are supplemented by a Discussion Section
conducted by a Teaching Assistant. CMPSC 178 is usually taken in the Junior or
Senior year by students from the Departments of Computer Science, Electrical and
Computer Engineering, and Mathematics. The prerequisites are CMPSC 10 (a Java
programming language course), and PSTAT 120A or 121A (an entry-level course in
probability and statistics).

Eight or nine homework assignments require students to write programs to carry out
the cryptanalysis of various cryptosystems and various exercises related to other crypto-
logic topics. Although in class I hand out a hard copy of the assignments containing the
ciphertext, the nature of ciphertext requires the students to copy the ciphertext files
from my Web page. The same procedure will be followed with Computer Security and
Cryptography; the ciphertext for the exercises may be downloaded from Wiley’s ftp-
site at ftp://ftp.wiley.com/public/sci_tech_med/computer_security.
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CMPSC 178
Introduction to Cryptography

1. Aperitifs 2. Columnar Transposition
3 ) ! h :

5. Rotor Systems 6. Statistical Tests

7. Stream Ciphers 8. The NIST Encryption Standards
9. Public Key Cryptography 10. Knapsack Cryptosystems
11. RSA Encipherment 12. Primality and Factorization
13. The Discrete Logaril 14. Elliptic Curve Cryptography
15. Network Key Ex 16. Digital Signatures & Authentication
17. Quantum Cryptography 18. Applications (ATM/TV)
19. Securing the Web 20. Patents in Cryptography

A replica of the cover page of my CMPSC 178 Reader appears above. One of my
colleagues claimed that my New York humor would not be understood by California
students. They would fail to grasp the cryptographic significance of the inverted cone.
Perhaps, but many apparently watched television late at night and understood.

I dispensed with both an in-class Midterm and Final Examination in 1997 as there is
no subject matter that can realistically be tested in class. In its place, I require a Term
Paper; the topic is selected by the student and approved by me. The Term Paper is a
short report (under 10 pages) on some cryptologic topic, based on related material
from at least two related papers. The Term Paper need not contain a single equation nor
deal only with theoretical issues. In fact, I encourage students to look for topics that are
historical in nature, relate to applications or social issues. The Term Paper must include
a summary of the Paper and the student’s evaluation of the Paper’s contributions. The
Term Paper is due at the last class session. I provide a list of reference material, but the
Web provides a more extensive source of topics and material.

Except for the introductory material, a solid mathematical background is needed,
including probability theory and statistics. Much of modern cryptography depends on
the fundamentals of number theory, but most engineering and computer science students
do not enter with such preparation. If this material was imposed as a prerequisite, the
potential audience would be reduced, so I develop the relevant mathematical topics
in the course.

The Course Syllabus, distributed in class at the first lecture, is perhaps an
exaggeration of the course’s scope.

1. Aperitifs — Overview of Cryptography 11. The Knapsack Cryptosystem
2. Columnar Transposition 12. The RSA Cryptosystem
3. Monoalphabetic Substitution 13. Primality and Factorization
4. Polyalphabetic Substitution 14. The Discrete Logarithm Problem
5. Statistical Tests 15. Elliptic Curve Cryptography
6. Rotor Encipherment 16. Key Exchange in a Network
7. The World War II Cipher Machines 17. Digital Signatures & Authentication
8. Stream Ciphers (LFSR, Cellphone) 18. Applications (ATM, Access Control, the Web)
9. The NIST Encryption Standards 19. Patents in Cryptography
10. The Paradigm of Public Key Cryptography
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Computer Security and Cryptography is an expanded version of the CMPSC 178 Reader,
modified to make it appropriate for a wider audience. The Instructor should choose the
topics that match his/her interests and those of the class.

ORGANIZATION OF THE BOOK

There are three types of chapters in this book:

1. Those that develop technical details;
2. Those that describe a cryptosystem and possibly indicate method(s) of analysis; and

3. Those that describe a cryptosystem, indicate method(s) of analysis, and provide
problems to test the students understanding; these are signalled with <.

Classical Cryptography
1. Aperitifs

2. Columnar Transposition <

3. Monoalphabetic Substitution
(a) Cribbing and Scoring a Monoalphabetic Substitution <
(b) Hill Substitution <
(¢) The Hidden Markov Model

4. Polyalphabetic Substitution <

5. Statistical Tests &

World War Il Cryptography
6. Emergence of the Cipher Machine

(a) The German Enigma Machine
(b) The Lorenz Schlusselzusatz
7. The Japanese Cipher Machines
(a) The Japanese RED Machine
(b) The Japanese PURPLE Machine

Modern Cryptography

8. Stream Ciphers <
9. The NIST Encryption Standards
(a) LUCIFER
(b) DES
(c) Rijndael (AES)
(d) Design of Block Ciphers
10. The Paradigm of Public Key Cryptography
11. The Knapsack Cryptosystem <
12. The RSA Cryptosystem



13.
14.
15.
16.
17.
18.

19.

PREFACE XV

Prime Numbers and Integer Factorization <
The Discrete Logarithm Problem
Elliptic Curve Cryptography

Key Exchange in a Network <

Digital Signatures and Authentication
Applications of Cryptography

(a) Unix Password

(b) ATM Cards

(c¢) Secure Access and Smart Cards
(d) Protecting the Web (E-Commerce)
Patents in Cryptography

Solutions to Problems
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CHAPTER 1

APERITIFS

“Yet it may be roundly asserted that human ingenuity cannot concoct a cipher that human
ingenuity cannot resolve”

— The Gold Bug (Edgar Allan Poe)

“It Ain’t Necessarily So”
— Song from Porgy and Bess (George and Ira Gershwin)'

“Skipper” the sailor said to his captain as he saluted,
“A special message just came in for you from the admiral. | have it right here.”
“Read it to me,” the captain ordered.

The sailor began reading nervously, “You are without a doubt the most idiotic,
lame-brained officer ever to command a ship in the United States Navy.”
“Have that communication decoded at once!,” The skipper responded

— Pastor Tim’s Clean Laugh List

1.1 THE LEXICON OF CRYPTOGRAPHY

The word “cryptography” is derived from the Greek words kryptos, meaning hidden, and gra-
phien, meaning to write. Historians believe Egyptian hieroglyphics, which began about 1900
B.C.E., to be an early instance of encipherment. The key that unlocked the hieroglyphic
secrets was the Rosetta Stone, discovered in 1799 in lower Egypt and now located in
the British Museum in London. Francois Champollion, using the Rosetta Stone, deciphered
the hieroglyphics in 1822. The books by David Kahn [1967, 1983] and Simon Singh
[1999] provide extensive accounts of cryptography and its influence on history.

Every scientific discipline develops its own lexicon, and cryptography is no
exception. We begin with a brief summary of the principal terms used in cryptography.

An alphabet A = {ay, ay, ..., a,_1} is a finite set of letters; examples include

1. m = 2": (0,1)-sequences of fixed length r

Zry ={x=(x0,x1,....,%-1):x,=0,1,0<i<r};
2. m = 2": the ASCII character alphabet;
3. m = 26: the alphabet consisting of upper-case Latin letters: {A, B,..., Z}
Text is formed by concatenating letters of A; an n-gram (ay, ai, ... ,a,_1) is the

concatenation of n letters. We do not require that the text be understandable nor that it
be grammatically correct relative to a natural language; thus

Good_Morning and vUI*_9Uiing8

are both examples of ASCII text.

Computer Security and Cryptography. By Alan G. Konheim
Copyright © 2007 John Wiley & Sons, Inc.
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Encipherment
plaintext Transformation ciphertext
X ————» —y
T

Figure 1.1 The encipherment transformation.

Encipherment or encryption is a transformation process (Fig. 1.1), T enciphering the
plaintext x = (xo, X1, . . ., X,—1) to the ciphertext y = (Yo, y1,- - -» Ym—1), Where

T: Good_Morning — Kssh_Qsvrmrk

is an example of encipherment introduced nearly 2000 years ago by Julius Caesar during
the Gallic Wars in order to communicate with his friend and lawyer Marcus Tullius
Cicero. It is not necessary that

1. The plaintext and ciphertext alphabets be identical; nor that

2. Encipherment leaves the number of letters unchanged.

The only requirement on 7 is the obvious one; it must be possible to reverse the process of
encipherment.

Decipherment, or decryption, is also a transformation, T ! (Fig. 1.2), which
recovers the plaintext x from the ciphertext y.

7! Kssh_Qsvrmrk — Good_Morning.

Additional properties are sometimes imposed on 7, for example, that encipherment does
not change the number of letters.

The three principal applications of cryptography are secrecy, authentication, and
access control. Secrecy intends to deny information contained in text by disguising its
form, for example,

1. In order to prevent an eavesdropper from learning the content of the communication
when two users communicate over an open or insecure network; and

2. To hide information stored in a file system.

When two parties communicate over an open or insecure network, each needs to be
certain of the identity of the other. Webster’s dictionary defines authentication as “a
process by which each party to a communication verifies the identity of the other.”
The term IFF, for identification, friend or foe, was an authentication protocol
introduced during World War II to protect U.S. airspace from intrusion by enemy aircraft.
The identity of a plane entering U.S. airspace was authenticated using a challenge—
response pair; the correct response is determined by a cryptographic function of the
challenge.

Access to files and other facilities in an information processing system is still
another area in which cryptographic ideas have found application. In Chapter 18, we

Decipherment
ciphertext Transformation | plaintext
—_— X
T 1

Figure 1.2 The decipherment transformation.
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describe the authentication process when a customer engages in an ATM (automated teller
machine) transaction. Authentication requires the customer to have

1. Possession of a valid ATM card; and

2. Knowledge of the corresponding personal identification number (PIN).

A new class of security problems in the twentieth century arose from communication over
public networks. The ubiquitous nature of computer networks has given rise to
e-commerce, and in the process has enlarged the area in which cryptography is needed.
Transactions over the Web have changed the scale and environment in which the problems
of secrecy and authentication exist. As discussed in Chapter 18, the principal security
issues are:

1. Privacy. Users may insist that their data transmitted on the Web be hidden from
any parties who monitor communications and the contents of their records in a
file system be hidden.

2. Authentication: User Identity. As users communicating data over a network are
not in physical proximity — for example, do not see or talk to one another — both
need to be confident of the identity of the other.

3. Authentication: Message Integrity. 'When users communicate over a network, each
wants to be certain that not other party has maliciously modified the transmitted
data. Although it is not possible to prevent transaction data from being altered a
scheme must be implemented that will be likely to detect changes.

A transaction between two users involves one or more exchanges of data. Each
transmission of fransaction data is suffixed by a message authentication code (MAC) or
digital signature (SIG); the MAC/SIG authenticates both the (sender, receiver) pair and
the content of the communication (Fig. 1.3). The MAC is a sequence of 0’s and 1’s
functionally dependent on the transaction data and the identities of the corresponding
parties.

1. If privacy is required, the concatenated Transaction Data and MAC must be
enciphered.
2. The authenticity of participants in a transaction must be established.

3. To insure the integrity of the exchange of information, the MAC must depend on the
transaction data in such a way that
(a) MAC-1, a secret element is involved in the construction of the MAC;

(b) MAC-2, no user can expect to construct a valid MAC for the transaction data
without knowledge of the secret element;

(c) MAC-3, any change in the transaction data will likely change the MAC.
Web-based electronic transactions (Chapter 18) require a framework in which the purchaser
and seller can be confident of the integrity of their transactions.

We shall show that each of these different applications of cryptography involves the
same principles.

Transmitted Data
[ |

| MAC | Transaction Data }—»

Figure 1.3 The message authentication MAC appended to transaction data.
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r-- - hl r----- hl

| | | |
I Plaintext 1 I Ciphertext 1
| | | |
I___l___l I____l____l

ro-—mo- al r——---- al

| | . | |

, Key i—* Encipherment | Key ™ Decipherment

[ g Program [, J Program
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:Ciphertext: : Plaintext :
[ L_o___1

Figure 1.4 The software encipherment/decipherment processes.

1.2 CRYPTOGRAPHIC SYSTEMS

When a pair of users encipher the data they exchange over a network, the cryptographic
transformation they use must be specific to the users. A cryptographic system is a family
T = {T: k € K} of cryptographic transformations. A key k is an identifier specifying a
transformation 7} in the family 7. The key space K is the totality of all key values. In
some way the sender and receiver agree on a particular k and encipher their data with
the enciphering transformation 7.

Encipherment originally involved pen-and-pencil calculations. Mechanical devices
were introduced to speed up encipherment in the eighteenth century, and they in turn were
replaced by electromechanical devices a century later. Encipherment today is often
implemented in software (Fig. 1.4); T} is an algorithm whose input consists of plaintext
x and key k and with ciphertext y as output.

1.3 CRYPTANALYSIS

Will encipherment provide secrecy? Cryptography is a contest between two adversaries:

- The designer of the system (algorithm, key space, protocol implementation), and

- The opponent, who attempts to circumvent the effect of encipherment.

Can an opponent recover all or part of the plaintext x from the ciphertext y = Ty (x) and
knowledge of the cryptographic system 7 but without the key ko. Cryptanalysis encompasses
all of the techniques to recover the plaintext and/or key from the ciphertext.

The ground rules of this contest were set forth in the nineteenth century by
Kerckhoffs' in his book “La Cryptographie militare.” Kerckhoffs formulated six attributes
that a cryptographic system should enjoy in order for the designer to triumph in the
struggle.

K1. The System Should be, if not Theoretically Unbreakable, Unbreakable
in Practice.

The term unbreakable is colloquially used to mean that no technique exists to deter-
mine the key k or plaintext x from the ciphertext y = Ty(x). It is possible to design
an unbreakable system, but it is impractical to use except in situations in which

1 ean-Guiullaume-Hubert-Victor-Francois-Alexandre-Auguste-Kerckhoffs von Niuewenof, born in 1835 in Nuth
(Netherlands), was a professor of German in Paris. The Kerckhoffs must have had spectacular towels!
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only a modest amount of traffic is exchanged and an alternative secure path for
exchanging the key is available.

More relevant is the amount of computational effort — measured by time and
memory — needed to produce k and/or x. Claude Shannon’s paper [Shannon,
1949] developed a theory of secrecy systems and defined the work function,
a quantitative measure (computational time/memory) of the strength of
encipherment. The larger the work function, the more secrecy that results from
encipherment. The minimum work function required is application-dependent.
A patient’s medical records may require protection for years, military plans, a
shorter time.

Alas, the work function is not generally computable. It may be possible to
bound the work function from above and thereby to often show that secrecy is
not achieved. It is much more difficult to obtain a lower bound needed to con-
clude that no methods exist that will break the system with an effort less than
the lower bound.

K2. Compromise of the System Should not Inconvenience the Correspondents.

A cryptographic system 7 has two types of information:

(a) The public information, a description of the algorithms {7} : k € K} and the
key space K.

(b) The private information, the particular key k chosen by the correspondents.

If a cryptographic system 7 is commercially available, manuals need to exist to
describe the encipherment algorithmn. Whatever secrecy results from encipher-
ment must depend on keeping the key secret. By compromise, Kerckhoff meant
that knowledge of the public information should not adversely affect the
secrecy achieved.

K3. The Method for Choosing the Particular Member (Key) of the Cryptographic
System to be Used Should be Easy to Memorize and Change.

It is common for users to select names Alan G. Konheim, dates 11/26/37 or
phrases Now is the time...to serve as a key. In some applications, part of
the key will be recorded magnetically on a card and part will be memorized.
Databases now exist containing phrases and names, so computer searches
today make these choices risky. Although a key should ideally be selected
randomly, users always balance the tradeoff between the danger of someone
guessing their key and the perceived risk of forgetting the key.

K4. Ciphertext Should be Transmittable by Telegraph

Telegraphy was the dominant communication technology in the nineteenth century;
this requirement is interpreted today to mean that text can be coded into a
sequence as 0’s and 1’s suitable for transmission and storage. Excluded are the
methods of steganography, which hide the very existence of text using invisible
inks or by using a microdot.

K5. The Apparatus Should be Portable
The relatively bulky equipment of World War II has been replaced by micro-
processors, which fulfill Kerckhoffs’ requirement.
K6. Use of the System Should not Require a Long List of Rules or Mental Strain.

The ease, cost, and performance impact (speed) on encipherment continue to be
dominant issues today.
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Figure 1.5 Side information: Where’s the Toyota and Honda?

In assessing the strength of encipherment, it must be assumed that the cryptographic
system 7 = {T; : k € K} is known, but that the key ko producing the ciphertext
Two:x — is not. Three environments in which cryptanalysis may be attempted are:

1. Ciphertext Only. The ciphertext y = T; (x) is known by the opponent; x and k are
unknown.

2. Corresponding Plain- and Ciphertext. The plaintext x and ciphertext y = Tj (x)
are both known by the opponent; k; is unknown.

3. Chosen Plaintext and the Corresponding Plain- and Ciphertext. The plaintext x
and ciphertext y = Ty (x) are both known for some set of chosen plaintext {x;}; ko
is unknown.

1.4 SIDE INFORMATION

Side information about ciphertext is any information relating to the content of the plain-
text. The following puzzle asks you to unravel each of the words, where the letters
have been rearranged.

DFOR KIBUC TECRELOHV DONSHU
KADCRAP GEDOD LADCLIAC NOCILLN

A solution to the puzzle is easy using the side information provided (Fig. 1.5), that the
words are names of automobiles! Has anyone seen a Hudson SUV lately?

1.5 THOMAS JEFFERSON AND THE M-94

The M-94, (Fig. 1.6) was adopted by the U.S. Army after World War I; the same device,
now designated as the CSP-488, was adopted by the Navy. This encryption device was
invented by Alberti in the fifteenth century; subsequently, Thomas Jefferson invented
his Wheel Cipher, using the same idea. A good idea is not readily abandoned and the
wheel cipher continued to be reinvented, in 1901 by the French Major Etienne Bazeries

Figure 1.6 The Thomas Jefferson/M-94 Wheel Cipher (Courtesy, NSA).



1.6 CRYPTOGRAPHY AND HISTORY 7

and in 1914 by Colonel Parker Hitt, who was a member of the Army Signal Service and the
author of the Manual for the Solution of Military Ciphers (1915).

The M-94 had 25 wheels numbered 1, 2, ..., 25; a different permutation of the
letters A, B, ..., Z is written around the circumference of each wheel. To encipher,
the order of the wheels on the spindle is determined by sorting a repeated key word alpha-
betically. For example, the key CHINESEFOOD is repeated to obtain 25 characters, which
are numbered in sorted order. In the following array, the first row lists the wheel identifiers
(numbers), the last row specifies the wheel positions on the spindle:

12 3 45678 910111213141516171819202122232425
CHIDNESEF OODCHTINESETFOODTGCHTI
11215186247102021 4 2 131619 8 25 9 112223 5 3 1417

Wheel no. 1 is placed on the leftmost position of the spindle, wheel no. 12 next, wheel
no. 23 next and finally wheel no. 17 on the right. Having placed the 25 disks on the
common spindle in this order, the wheels are rotated so that the letters of the plaintext
message are aligned with the top bar and the ciphertext read out from some specified
adjacent row.

1.6 CRYPTOGRAPHY AND HISTORY

David Kahn’s recent biography [Kahn, 2004] about Herbert O. Yardley relates the begin-
ning of American cryptologic activities. Although Secretary of State Henry Stimson’s
famous statement “Gentlemen do not read other people’s mail” marked a temporary
end of official U.S. codebreaking activities in 1929, the intelligence needs of America,
however, led to the establishment of a nongovernmental cryptanalysis effort.

Cryptography has played a significant role in the history of the United States, often
providing our country with crucial information.

1. The Zimmerman telegram in January 1917, from the German Foreign Minister
Zimmerman to the German Minister von Eckhardt in Mexico, offered to return ter-
ritory to Mexico — perhaps Arizona and California — in exchange for Mexico’s
support against the United States. Even better than a California driver’s license!
Mexico declined!! British cryptanalysts deciphered the telegram, revealing the
perfidy of the Germans. The impact on the American public was immense,
causing the United States Congress to declare war on Germany in 1917.

2. The cryptanalysis of the German Enigma machine allowed the United States and
Great Britain to read enciphered messages; the ability to read known messages
led to victory in the Battle of the Atlantic against German U-boats.

3. The cryptanalysis of the Japanese PURPLE machine and its related ‘“color”
machines allowed the United States to prevail in the Battles of the Carol Sea and
Midway. Deciphered Japanese messages gave the United States the route to be fol-
lowed by Admiral Yamamoto Isoruku — the architect of the Japanese attack on Pearl
Harbor — on a visit to his troops in the Pacific, leading to his death.

4. The cryptanalysis of the KGB one-time system, which provided the United States
with insights into the espionage activities of the Soviet Union, revealed the
Rosenbergs and Alger Hiss to be traitors.
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1.7 CRYPTOGRAPHY AND COMPUTERS

There has been a symbiotic relationship between cryptography and the development of
high-performance computing systems. As cryptographic systems increased in their sophis-
tication, the need to develop more efficient methods to cryptanalyze them became the
stimulus for the development of computers.

Chapter 6 describes two of the three cryptographic systems used by Germany during
World War II

1. Military communications by radio were enciphered by the Enigma rotor system.

2. The Geheimfernschreiber® or T52e manufactured by Siemens and Halske was a
binary device in which plaintext was first converted into the 5-bit Baudot code.

3. The Lorenz Schlusselzusatz® or SZA0/SZA42 also performed encipherment on
plaintext converted into binary data.

The T52e and SZ40 devices were on-line devices connected to a teletypewriter. They were
both used to protect high-level communications.

The Polish Cipher Bureau started to develop methods to analyze Enigma-enciphered
traffic in 1932. The task was given to three recent university graduates — Marian Rejewski,
Jerzy Rézycki, and Henryk Zygalski, who developed the bombe,* a mechanical computer.
When Poland was invaded by Germany, the Polish cipher bureau fled to southern France
and then England. Their contributions were great, and although they shared their analysis
with the British, they were not permitted to work on the Ultra project — the name of the
Allied effort in cryptanalysis.

An excellent narrative of the breaking of the naval Enigma is given in David Kahn’s
book Seizing the Enigma [Kahn, 1991].

The United Kingdom’s cryptanalytic effort during World War II was located at the
General Communications Headquarters (GCHQ) in Bletchley Park, a suburb of London.
Alan Turing, regarded as the inventor of the stored program concept and the universal
automation or Turing machine [Turing, 1936] participated in the Bletchley Park cryp-
tanalysis effort. His achievements are described in the work of Hodges [1983] and Cave
Brown [1975]. Turing, together with a group of engineers including Tommy Flowers,
designed the machines to crytanalyze German ciphertext, first the primitive electromecha-
nical bombes and later their successors (the Colossi), the first programmable processors.

Different operational procedures were used with the Enigma machine during World
War II and when they were changed, the Polish bombe was no longer effective. Turing
developed a new bombe to search the ciphertext for isomorphs of plaintext believed to
occur in the message.

The development of the Colossus machine [Lavington, 1980; Randall, 1982] illus-
trates the interplay of computers and cryptography. The need for testing many possible
key settings to decipher ciphertext led to the invention of the computer. Heath Robinson,
named after a famous British cartoonist, was the name of the first machine; it had
teleprinter tape input and was used to attack the Schusselzusatz ciphertext. Professor

2Geheim is the German root for secret, schreiben, the verb to write, and fern indicates distance; that is, the Geheim
fernschreiber was used to communicate secretly between parties separated from one another.

3Schlussel for key and zusatz for attachment; that is, the Schlusselzusatz was an attachment to a teletypewriter.
“Bombe is the French word for bomb. There are two explanations for the term. Some authors claim the “ticking”
sound of the bomb’s mechanical components is the source of the name. Other sources report that the moment of
discovery of the bombe’s concept came to the inventors in a restaurant when a bombe — a pastry with a hemi-
spherical shape — was delivered to the patrons at an adjacent table.
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M. H. A. Newman and a team of engineers headed by Tom Flowers worked at the Post
Office Research Station for the Government Code and Cipher School at Dollis Hill
(London). It contained 15900 thermionic valves (electronic tubes); each character was
coded with the 5-bit Baudot teleprinter code, read by an optical character reader and
punched on a paper moving at a rate of 5000 characters per second. It began analyzing
ciphertext at Bletchley Park in December 1943. Its successor, Colossus Mark I (1944),
contained 2500 valves and allowed conditional branching but did not implement the
internal program store central to the concept of a computer.

1.8 THE NATIONAL SECURITY AGENCY

The development of the computer in the United States was fostered in part by the National
Security Agency (Fig. 1.7) [Bramford, 1982], which merged several separate cryptologic
organizations when it came into being on November 4, 1952. The National Security
Agency/Central Security Service (CSS) is responsible for the protection of U.S. communi-
cations and the production of foreign intelligence. The Director of NSA (DIRNSA) is a mili-
tary officer, currently Lieutenant General Keith B. Alexander, USA. The Deputy Dirrector of
NSA (D/DIRNSA) is normally someone from within the organization, and is currently,
Mr William B. Black Jr.

The NSA distinguishes between various types of communication intelligence
activities:

« COMSEC (Communications Security). The protection resulting from any
measures taken to deny unauthorized persons information derived from the national-
security-related telecommunications of the United States, or from any measure taken
to ensure the authenticity of such telecommunications. (National Intelligence
Reorganization and Reform Act of 1978.)

« COMINT (Communications Intelligence). The interception and processing of
foreign communications passed by radio, wire, or other electromagnetic means,
and the processing of foreign encrypted communications, however transmitted.
Interception comprises search, intercept, operator identification, signal analysis,
traffic analysis, cryptanalysis, decryption, study of plaintext, the fusion of these
processes, and the reporting of results. Excluded from this definition are the unen-
crypted written communications, press and propaganda broadcasts. (National
Security Council Intelligence Directive (NSCID) Number 6.)

« SIGINT (Signals Intelligence). Comprises communications intelligence
(COMINT), electronic intelligence (ELINT), foreign instrumentation signals

Figure 1.7 The NSA seal and a variant.
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intelligence (technical and intelligence information derived from the collection and
processing of foreign telemetry, beaconry, and associated signals), and information
derived from the collection and processing of nonimagery, infrared, and coherent
light signals. (National Intelligence Reorganization and Reform Act of 1978.)

Further information on NSA can be found at www.nsa.gov.

The role of NSA in computer development can be traced to the Electronic Numerical
Integrator and Calculator (ENIAC) built in 1943—-44 at the University of Pennsylvania’s
Moore School of Electrical Engineering under the supervison of Drs J. W. Mauchly and
J. P. Eckert. ENIAC was built for the U.S. Army’s Aberdeen proving ground and was
intended to make artillery calculations. It contained 25,000 relays and 13,000 thermionic
valves and occupied an area of 20 x 30 ft. In spite of this size, it held only 20 numbers.
ENIAC incorporated the concept of a stored program due to John von Neumann, although
the idea is also implicit in Turing’s paper [Turing, 1936].

Once ENIAC was operational, its designers began to proselytize, to lecture about the
great potential of computers. Attending one of the lectures was Lieutenant Commander
James T. Prendergrass of the Naval Security Group (NSG), a part of the CSS that recog-
nized the potential speedup in cryptanalysis. This led to the support provided by the cryp-
tologic community in the advancement of the design of information processing
technology. Some of the benchmarks are as follows.

- Engineering Research Associates (ERA), formed at the end of World War II, partici-
pated with NSA in the development of leading-edge computer technology. Among
the machines developed was Atlas (1950), which had a memory of 16,384 words, a
parallel architecture, and incorporated drum storage.

« Abner was developed by the Army Security Agency in 1952 and used a key-punch,
paper tape, magnetic tape input/output, parallel printer, typewriter, and console.

In response to the need for bigger and faster processors, Harvest (Project Lightning)
was started in June 1957. IBM developed two Strefch machines which incorporated
the “fractor,” a mechanical device capable of locating cartridges from a tape library.

- Seymour Cray, an alumnus of ERA, founded Cray Research. Cray designed and
produced Loadstone and the Cray-1 (1976).

A history of the role played by the cryptologic organizations on the development of
computers is contained in a paper by Snyder [Snyder, 1979].

1.9 THE GIANTS

William Friedman (Fig. 1.8), who was born September 24, 1891, in Russia, emigrated to the
United States in 1892 when his parents settled in Pittsburgh. Friedman studied farming at

Figure 1.8 William Friedman (Courtesy of NSA).
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the Michigan Agricultural College, because this program was tuition-free. When Friedman
discovered that he was more interested in science, he enrolled in the genetics program at
Cornell, which was also free as a land-grant college. While in Graduate School, Friedman
met George Fabyan, who established the Riverbank Laboratories in Geneva, Illinois.

Fabyan, known as the “Colonel,” was interested in acoustics, chemistry, genetics,
and cryptography. Friedman began to work at Riverbank in 1915. Fabyan had been con-
vinced by Ms Elizabeth Wells Gallup, a librarian at the Riverbank Laboratories, that
there existed a cipher embedded in the first editions of the works of Shakespeare and
that it would prove Bacon wrote some of the works attributed to the bard of
Stratford-upon-Avon.

Friedman became head of the Department of Codes and Ciphers at Riverbank and
actively began the study of cryptography. Friedman developed the first true cryptographic
competence in the United States, developing methods for the analysis of polyalphabetic
systems (Chapter 4). They were published originally in a series of Riverbank Monographs
and our now reprinted by Aegean Park Press.

Actually, Friedman became interested in both cryptology and Miss Smith, an assist-
ant to Ms Gallup. Love and cryptography — an unbeatable combination. Friedman and
Miss Smith were married in 1917.

Although Henry L. Stimson ended the official United States codebreaking activities in
1929, there remained a need to monitor foreign communications. George Fabyan offered the
services of the Department of Codes and Ciphers to the U.S. Government with the start of
World War I. The Congress of the United States declared war against Germany on April 6,
1917. At that time, a group of 125 Hindus operating in the United States were working for
the independence of India; they were seeking to purchase arms on the West Coast. This
group was supported by Germany, which believed their activities would distract the British.

Friedman was presented with intercepted ciphertext messages. The encipherment
method used a book cipher; some plaintext letters were enciphered by a triple of
numbers a-b-c; a gave the page number, b the line, and c the position of the letter on
the line. Although Friedman did not know at the time, the book was Price Collier’s
“Germany and the Germans”; he guessed some words — Sucio, revolution — and
used the high-frequency letters in these words to guess others. Friedman submitted his
solution and testified at the trials of this group, at which they were convicted.

Friedman’s greatest genius was assembling the nucleus of what has become the
National Security Agency. In 1930, as a civilian employee in the Signals Intelligence
Service, Friedman hired three mathematicians: Frank B. Rowlett, Dr Abraham Sinkov,
and Dr Solomon Kullback.

Frank B. Rowlett (1908—1998) (Fig. 1.9), born in Virginia, was hired as a junior
cryptanalyst. He studied mathematics and chemistry. A lengthy period of training under
Friedman followed his appointment at the SIS. Rowlett worked in both the design and
cryptanalysis of cryptosystems. Together with Friedman, he designed the SIGABA

Figure 1.9 Frank B. Rowlett (Courtesy of NSA).
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Figure 1.10 Dr Abraham Sinkov (Courtesy of NSA).

Figure 1.11 Dr Solomon Kullback (Courtesy of NSA).

(Chapter 6), the most secure U.S. cryptosystem used during World War II. Congress
awarded Rowlett $100,000 in 1964 for his work on the SIGABA.

Dr Abraham Sinkov (1907-1998) (Fig. 1.10), born in Philadelphia, was the son of
immigrants and was a mathematics teacher in New York City. He studied mathematics at
CCNY and received his Ph.D. (Mathematics) at George Washington University in 1933.
Sinkov took the Civil Service Examination in 1930 and obtained a job with Friedman.
After his retirement in 1962 from NSA, Sinkov moved to Arizona and began a second
career as a Professor of Mathematics at the Arizona State University.

Dr Solomon Kullback (1903-1994) (Fig. 1.11) attended high school in Brooklyn,
New York. He intended to teach at Boys High, but met his CCNY classmate Abraham
Sinkov, from whom he learned about jobs as a “junior mathematician” at $2000/year. Along
with Sinkov, he took the Civil Service Examination and was hired by Friedman. Kullback and
Rowlett worked on the cryptanalysis of the Japanese RED messages, the predecessor of
the PURPLE system used at the start of World War II. After his retirement in 1962 from
NSA, he began a second career as a Professor at the George Washington University.

NO SEX, MONEY, CRIME OR ... LOVE

Cryptanalysis refers to the methods for the analysis of cryptographic systems, and in par-
ticular, to recover the plaintext and/or key from ciphertext. Cryptanalysis makes use of
1. Knowledge of the structure of the cryptographic system 7,
2. Cribs — information believed to be contained in the plaintext, and
3. Characteristics of the underlying language of the plaintext.
The frequencies of occurrence of letters constitute an elementary characteristic of a natural

language. In English, the most frequent lettersare E, T, A, O, N, R, I, S,andH.
Roughly 13% of the letters in a large sample of English text should be E’s.
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Figure 1.12 Letter frequencies in English and Gadsby.

In 1937, Ernest Vincent Wright published the novel Gadsby [Wright, 1931] in which
the most frequent letter in English, E, did not appear. It could not have been a very big
seller — it could not mention sex, money, murder, greed, or tenure, but it is
remarkably coherent. Gadsby begins

Youth, throughout all history, had had a champion to stand up
for it; to show a doubting world that a child can think; and,
possibly, do it practically; you would constantly run across
folks today who claim that ’‘a child don’t know anything’.

Figure 1.12 compares the letter frequencies of A, B, ..., Z (upper and lower case) in an
early version of this chapter with standard letter probabilities in English and those in
Wright’s Gadsby. The success of cryptanalysis cannot depend on the striking agreement
between the ciphertext statistics and the frequencies of the underlying language, as the
above graph illustrates. On the other hand, it is unreasonable to assume that plaintext
has been artificially created to mask the letter frequencies.

1.11 AN EXAMPLE OF THE INFERENCE PROCESS
IN CRYPTANALYSIS

Although statistical characteristics provide information to aid in cryptanalysis, more often
internal constraints in the cryptographic system provide a great deal of information. We
give an example in this section of the inference process.

A PUZZLE

Each of the nine symbols A <> (O Q & < & o appearing in the array below stands for
a unique encoding of one of the digits 1 through 9. The rightmost column gives the sum
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in each row; the bottom row gives the sum in each column. A question mark can stand for
any one- or two-digit number and not necessarily the same number in each instance. Find
the encoding of the digits 1 through 9!

o

(1)
o>

| | Q> =
Q|| GO~

1K 2K JRAREY

g{}-\:QDN}

Y

.
<>

Solution The row 2 and column 3 sums give the equations

BxV)+ & =00 (1.1)
2x®+2x<)=oo (1.2)

(2 x &)+ (2 x <) is even,
QO, &, <, are distinct and each are <9, and
BxO)+ M6 <35 2x &)+2 x <) <34,

it follows that ee =22 and &< = 11 or 33.

The only integer (diophantine) solution of Equations (1.1) and (1.2) consistent with
the uniqueness of the symbols is ¢ = 2 and & = 3 and

[ ° Q A A
3 2 9 6 5

The column 4 sum provides the equation

O+C2xV)+d=100

which requires
O+ =5= 0O, % c{(1,4,(2,3),3,2), (1,4} (1.3)
As & =3, it follows that
O, & € {(1,4), 4. D}

are the only possible consistent values satisfying Equation (1.3). It follows therefore that
A, > € {7,8} by the uniqueness constraints.

We now test an assumption on the value of > when we impose the constraints
on some of the remaining row and column sums and draw the consequences of the
assumption:

Al. > =7
Al(a) A=38;
Al() Row 4 sum: 24, +94+64+9=27T—=7,, =3;
Al(c) Column I sum: 8494731+ 7 =29=73; = 9 from Al(b);
Al(d) Column 2 sum: 8+9+4+23,+9=33="7,=7;
Al(e) Row 3sum: 731+ 3, + 5+ =22— ¢ = 1.
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A2. > =38
A2(a) A=17;
A2(b) Row 4 sum: 7241 +24=28= 74, =4;
A2(c) Column I sum: 7494751+ 71 =29= 731 =9 from A2(b);
A2(d) Column 2 sum: 7+9+73,4+9=33=17;,=275;

A2(e) Row 3 sum: 731 + 735+ 5 + & = 22 = & = 3, a contradiction!
The complete solution is

8 8 5 4 25
9 9 6 9 33
9 7 5 1 22
3 9 6 9 27
29 | 33| 22| 23

‘Elementary, my dear Watson!’

1.12 WARNING!

The Surgeon General has determined that large key spaces may not truly protect you data!

Several examples may illustrate this point.

1. The mechanical ciphering machine invented by Alexander von Kryha in 1924
received the Prize of the Prussian Ministry of the Interior at the 1926 Police Fair
and a Diploma from the famous postwar Chancellor of Germany, Konrad
Adenauer, at the International Press Exhibition in Cologne two year later. Von
Kryha was not only an inventor, but also an astute entrepreneur. To promote his
commercial venture Internationale Kryha Machinen Gesellschaft of Hamburg,
Kryha turned to the famous mathematician Georg Hamel for an endorsement.
Hamel calculated the size of the key space to be 4.57 x 10°° and concluded that
only immortals could cryptanalyze Kryha ciphertext. Not withstanding Hamel’s
estimate, a cryptanalysis of the Kryha machine by Friedman did not require as
much time and is described in the “2 Hours, 41 Minutes,” a chapter in Machine
Cryptography and Modern Cryptanalysis [Devoirs and Ruth, 1985].

2. A U.S. patent [Merkle and Hellman, 1980] accompanied the publication Deavours
and Kruh [1985] of the paper by Merkle and Hellman [1978] announcing the first
public key cryptosystem (Chapter 10). The inventors wrote in the description of
the preferred embodiment of the *582 patent

But, the eavesdropper trapdoor knapsack problem can be made computationally
infeasible to solve, thereby preventing the eavesdropper from recovering the plain-
text message X.

In spite of this pronouncement, Adi Shamir electrified the attendees at ‘CRYPTO’
82 meetings’ with an analysis of the Merkle—Hellman cryptosystem [Shamir,

3*CRYPTO'N is an annual workshop on Cryptography held each August since 1981 at UCSB.
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1984] (Chapter 11). A program running on an Apple during his lecture illustrated the
solution technique.

3. Martin Gardner’s article [Gardner, 1979] appeared a year before the publication of the
paper that defined the RSA cryptosystem [Rivest et al., 1998] (Chapter 12). Gardner’s
article contained the first of many factoring challenges; RSA-129 is a 129-digit integer,
which is the product of two primes. RSA-129 was factored in eight months (April
1991) and did not, as Gardner’s article suggests, ... take millions of years...,” to
factor, claiming the prize of $100 for the first solution.

4. Finally, Certicom markets products using an elliptic curve cryptosystem (Chaper
15). It is stated in one of Certicom’s whitepapers that

A comparison of the three hard mathematical problems on which the well-known
public-key cryptosystems are based clearly highlights the fact that none of these
are provably intractable. Years of intensive study has resulted in a widely held
view that the ECDLP® is significantly more difficult than either the IFP’ or the
DLP.% The general conclusion of leading cryptographers is that the ECDLP in
fact requires the full exponential time to solve. Based on this research and their
own cryptographic expertise, industry leaders have accepted the Elliptic Curve
Cryptosystem as a mature technology and are now implementing it for widespread
deployment.

The point of these examples is not to ridicule the judgment of their makers, but to
emphasize that

1. Weakness in a cryptosystem is demonstrated by providing a feasible cryptanalytic technique.
2. Proving the strength of a cryptosystem is generally more difficult to effect.

The history of cryptography is littered with encipherment systems thought to offer
security, but which on careful reflection and study have failed to provide the advertised
protection. Only one cryptographic system offers absolute security and when it was
improperly used during World War II (Chapter 4), it failed to secret the transmitted
messages.

Claude Shannon’s paper [1948] on the mathematical theory of communication gave
birth to information theory. In the sequel [Shannon, 1949], he pointed out the common
features of two problems:

- Recovering data transmitted over a noisy channel, and
- Secreting of transmitted information.

Shannon’s model relating communication and secrecy is formulated within a statistical
model as follows:

1. The initial statistical information of plaintext is represented by the a priori prob-
ability of plaintext x notationally Prpp ain{x}.

2. When the ciphertext y of x is observed, the statistical information about the plaintext
changes to the a posteriori probability of plaintext x given that encipherment has
resulted in ciphertext y, notationally Prpp amn /CIPHER{E/ v}

SECDLP elliptic curve discrete logarithm problem.
"IFP, integer factorization problem.
SDLP, discrete logarithm problem in Z;'.
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Shannon defined an encipherment system as providing absolute secrecy if knowledge of
the ciphertext did not give any additional statistical information about the plaintext than
was known before the ciphertext was observed; namely,

PrppaN/cipHER {X/ Y } = PrpLan{x}

whenever Prppain{x} > 0 and Prcpugr{y} > 0. Shannon further proved that absolute
secrecy for all n-grams requires that there be as many keys as there are plaintext
n-grams of positive probability. If the plaintext and ciphertext consist of all n-grams
formed from the alphabet {0, 1}, to guarantee the absolute secrecy of plaintext requires
one bit of key per plaintext bit. The one-time tape (or pad), a cryptographic system
discussed in Chapter 4, is based upon this result from Shannon.

REFERENCES

J. BRAMFORD, The Puzzle Palace, Houghton Mifflin,
Boston, Massachusetts, 1982.

A. CAVE BROWN, Bodyguard of Lies, Harper & Row,
New York, NY, 1975.

A. HODGES, Alan Turing, Simon & Schuster, New York,
NY, 1983.

D. KAHN, The Codebreakers, MacMillan, New York, NY,
1967.

D. KAHN, Kahn on Codes: Secrets of the New Cryptography,
MacMillan, New York, NY, 1983.

D. KAHN, The Reader of Gentlemen’s Mail: Herbert
O. Yardley and the Birth of American Codebreaking,
Yale University Press, New Haven, Connecticut, 2004.

D. KAHN, ‘Seizing the Enigma’: Race to Break the German
U-Boat Codes, 1939-43, Houghton Mifflin, Boston,
Massachusetts, 1991.

S. LAVINGTON, Early British Computers, Digital Press,
Bedford, Massachusetts, 1980.

R. MERKLE AND M. HELLMAN, “Hiding Information and
Signatures in Trapdoor Knapsacks,” IEEE Transactions
on Information Theory, IT-24, 525-530, (1948).

B. RANDALL, The Origins of Digital Computers,
Brian Randall, (ed.), 3rd edn, Springer-Verlag, New
York, 1982.

R. L. RIVEST, A. SHAMIR, AND L. ADELMAN, “A Method
for Obtaining Digital Signatures and Public-Key Crypto-
systems,” Communications of the ACM, 21, 120—126,
(1978).

C.E.SHANNON, “Communication Theory of Secrecy Systems,”
Bell Systems Technical Journal, 28, 656—715, (1949).

C.E. SHANNON, “A Mathematical Theory of Communication,”
Bell Systems Technical Journal, 27, 379-423, (1948).

S. S. SNYDER, “Influence of U.S. Cryptologic Organizations
on the Digital Computer Industry,” The Journal of
Systems and Software, 1, 87-102, (1979).

S. SINGH, The Code Book: The Science of Secrecy from Ancient
Egypt to Quantum Cryptography, Anchor Books, New
York, 1999.

A. M. TURING, “On Computable Numbers with an
Application to the Entscheidungsprobem, Decision
Problem,” Proceedings of the London Mathematical
Society, 42, 230-267, (1936).

E. V. WRIGHT, Gadsby, Wetzel Publishing Company,
Los Angeles, 1931.

R. MERKLE AND M. HELLMAN, “Public Key Cryptographic
Apparatus and Method,” U.S. Patent #4,218,582, filed
October 6, 1977, granted August 19, 1980.

C. A. DEAVOURS AND L. KRUH, Machine Cryptography and
Modern Cryptanalysis, Artech House, 1985.

A. SHAMIR, “A Polynomial Time Algorithm for Breaking
the Basic Merkle-Hellman Cryptosystem,” IEEE Trans-
actions on Information Theory, IT-30, Number 5,
September, 699-704, (1984).

M. GARDNER, “A New Kind of Cipher That Would Take
Millions of Years to Break,” Scientific American, 237,
120-124, August 1979.



CHAPTERZ

COLUMNAR TRANSPOSITION

TH IS CHAPTER defines columnar transposition encipherment. Searching for
a fragment of text (cribbing) and using the statistical characteristics of the language to
recover the plaintext and key will be explained. Problems to test your skills follow the text.

2.1 SHANNON'’S CLASSIFICATION OF SECRECY
TRANSFORMATIONS

Two building-blocks were identified in Claude Shannon’s [1949] formulation of the
design principles for secrecy systems:

« Substitution. Ciphertext results when the letters in the plaintext
x = (x9, X1,...,X,—1) are substituted by the letters in a ciphertext alphabet

(X0 X15 + s Xp—1) = (Y0, Y15 -+ s Yn—1)-

- Transposition. Ciphertext results when the positions of letters in the plaintext
x = (X0, X1, ..., X,—1) are rearranged (X0, X1,..., Xp—1) = (Xmps X5 oo X))
according to a permutation 7 = (7, 7, ..., Wy—1).

Shannon proposed that an effective encipherment system might be built by iterating the
two operations substitution (confusion) and transposition (diffusion).

Giovanni Battista della Porta (1535—-1615) was born into a wealthy Naples family.
He made contributions to astrology, optics, meteorology, magic, and cryptography.
Porta’s four-volume work “Magia Naturalis” was first published in 1555 and later
expanded to twenty volumes. His place in cryptography is due to his book “De Furtivis
Literarum Notis,” published in 1563, which described digraphic substitution and transpo-
sition and is considered the first serious work in cryptography.

This chapter defines columnar transposition and illustrates two techniques for its
cryptanalysis.

2.2 THE RULES OF COLUMNAR TRANSPOSITION
ENCIPHERMENT

18

Columnar transposition (CT) uses a key consisting of

K1. A (columnar) width N, and

K2. A transposition 1= (79, T1,...,TN—1)s @ permutation of the integers
0,1,...,N—1.

Computer Security and Cryptography. By Alan G. Konheim
Copyright © 2007 John Wiley & Sons, Inc.
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The encipherment of the plaintext x = (xq, X1, ..., X,—1) of lengthn =(r — H)N+/ >N
(0 </ < N) proceeds in two steps:

CT1. The plaintext x = (xg, X1, . .. , X,—1) is read by rows into an array X of width N.

X0 X1 Xe—1 X XN-1
XN XN+1 te XN+e—1 XN+¢ ce XaN—1
X =
X(r—2)N  X(r—2)N+1 = X(r-2N+e—1 X(r-2)N+e *°°  X(r—1)N-1
Xr—D)N  X(r—DN+1  *°*  X(r—=1)N+L—1

CT2. The ciphertext y results when X is read out by columns, the order in which the
columns are read out being specified by the transposition 7.

The ciphertext is the concatenation of segments corresponding to the columns of X

y= (x‘rn’ Xrg4Ns+ -« Xrps Xp4Ns e o ose ooy Xoy 5 Xoy [ 4N> - - )
- —_——
column column T column Tn_;

We use the notation y = Ty, ,(x) to denote that the plaintext x has been enciphered to the
ciphertext y by the columnar transposition 7Ty, ; with key (N, 7).

2.2.1 The Shape of X
Ifn=@— 1N+ with 0 </ <N, then X is a possibly ragged array, where X has'
{ || full rows, each containing N letters if 0 < ¢ <N

%—| full rows, each containing N letters if £ = N;
2. A final partial row of / letters, if 0 < / < N;
3. / long columns, each containing L = (ﬂ letters; and
4. ¢ = N — / short columns, each containing S = LﬁJ letters.
We write L(j) for the length of the jth column of X.

The inverse of the transposition 7 is I_l = (..., 7wl defined by
=71 = T;‘ for 0 < i < N, where

. 7; identifies the ith columns read from X, and
. 7; ! identifies the column of X corresponding to the ith segment.
2.2.2 Invertibility of CT

The following argument shows columnar transposition Ty, , is invertible:

1. The transposition width N and ciphertext length n together determine the number of
the long and short columns (7, ¢) and their respective lengths (L, S);

2. (/,c,L,S)and 7= (79, 7y, ..., Ty—1) permit the parsing of segments of the cipher-
text Y
3. 1'_1 = (1o, % ..., 7v.},) determines the column of X into which the segments of

y are located.

"The floor of x, denoted by |x|, is the largest integer not greater than x; and the ceiling of x, denoted by [x] is the
smallest integer not less than x.
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The program
ColTranInv
Input:  y, N, 7
Output:  x
reverses the steps in the encipherment process and produces the plaintext x:

1. The length n of the ciphertext yand N determine the parameters (¢, ¢, L, S);

2. (/, ¢, L, S) and 7 determine the segments of the ciphertext Y

3. (/,c,L,S)and ' determine which columns of X correspond to the segments of the
ciphertext y;

4. The plaintext x is obtained by reading out X by rows.

2.2.3 The Size of the Columnar Transposition Key Space

Stirling’s formula N! ~ /27NN +1¢~N shows the key space grows faster than an exponen-
tial with N. Conclusion: Key trial is not feasible for N ~ 32.

2.2.4 Convention on the Display of Plain- and Ciphertext

Plaintext and ciphertext in this chapter will be written using either the ASCII alphabet or
the alphabet Uy = { A, B, ..., Z}of 26 upper-case Latin letters. A letter will usually be
displayed by its Latin symbol, for example T (in the typewriter font). In some instances, a
letter might be referred by its ordinal position in the alphabet; for example, T as 84 (in the
ASCII alphabet) and 19 (in Uyg).

Example 2.1
The columnar transposition encipherment of Good morning. How are you
today? is produced by first reading the plaintext x of length n = 32 into the array X
of N = 6 columns by rows:

G o o d m
o r n i n g

x—|" H o w
a r e y o
u t o d a
y’)

X is a ragged array containing

. L%ZJ =5 full rows of 6 letters each, and a final partial row of 2 letters;

« /£ =2 long columns each of length L = 6 letters and ¢ = 4 short columns, each of
length S =5 letters.

The ciphertext results when the columns of X are read out in the order determined by the
transposition 7= (1, 4, 0, 3, 5, 2):

y=(or r ? nwydGo.auydio o mg oaonHet).

The shape of the ragged array X and 7= (1, 4, 0, 3, 5, 2) infer that the column boundaries
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in the ciphertext (denoted by |) are

(or r ?| nwyd|Go.auy |dio o|mg oalonHet)

YT L s L s s s
7=(1,4,0,3,5,2) 7 '=(20,53,14)

The segment or r ? is the Column 0 in X is the 7 ' = 2nd
7o = Ist column in X segment GO . auy

The segment nwyd is the Column 1 in X is the 7; ' = Oth
71 = 4th column in X segment Or r ?

The segment GO . auy is the Column 2 in X is the 75 | = 5th
7, = Oth column in X segment onHet

The segment dio o is the Column 3 in X is the 75 ' = 3rd
73 = 3rd column in X segment dio o

The segment mg oa is the Column 4 in X is the 7, ' = Ist
74 = 5th column in X segment nwyd

The segment onHet is the Column 5 in X is the 75 ' = 4th
75 = 2nd column in X segment mg oOa

The cryptanalysis of columnar transposition,

- Given: ciphertext y

- Find: plaintext x and key (N, 7)
requires solving two problems; determining

P1. Possible columnar widths N, and

P2. possible transpositions 7.

Two methods for the cryptanalysis of columnar transposition will be illustrated.

CRIBBING

The Oxford Dictionary of English Etymology gives to steal and to pilfer as definitions of
the Shakespearian verb to crib. The term cribbing in cryptography refers to the process of
inferring key and plaintext from ciphertext based on partial knowledge of the plaintext. A
crib is a word or phrase w = (wg, wy, ..., wy—1) known (or assumed) to appear in the
plaintext. Partial knowledge of the plaintext is a reasonable assumption:

. Letters usually contain stereotyped beginnings and/or endings: Dear ...,
Sincerely yours, Att:, Senator...;

- Message transmitted over a network have special formats; and

- Files are often highly structured, records divided into fields containing data with
known characteristics.

When the crib w = (wg, wy, ..., way—1) occurs in the plaintext x, certain strings of letters
derived from w will also occur in the ciphertext y = Ty, -(x).

If N> M, then w determines N subcribs, which are all the maximal length strings
S = {8y, S1, ...,Sy-1} formed by the letters in w, which are pairwise-separated by
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exactly N positions.

So = (Wo, W, .., W(so—1)N)
S1 = Wi, WigN, -+ o5 Wit(s—1)V)
SN—1 = (WN—1, WN—14N> - - s WN—T+(sy_1—DN)

where s; will denote the length of S;.
The cryptanalysis of columnar transposition by cribbing is based on the following
result.

Proposition 2.1: If x - y = Ty, (x), then

2.1a Pairs of letters (x, x;, ) in the plaintext separated by N places are adjacent in the
ciphertext. In particular, the s; letters in the ith subcrib S; are adjacent in the cipher-
text for0 < i < N.

2.1b If 7. =, 7., = k, the distance in the ciphertext

* D(xjyin> Xgqiv) from the letter x;, ;v in the ith row, jth column of X to the letter
Xy in the ith row, kth column of X is L(j);

« D(Xj4in> Xgii— 1yw) from the letter x;.;y in the ith row, jth column of X to the letter
Xg+Gi— 1y 10 the (i — 1)st row, kth column of X is L(j) — 1;

« D(Xj4(i— 1yn» Xieqin) Trom the letter x;, ;- 1y in the (i — 1)st row, jth column of to
the letter x;,,y in the ith row, kth column is L(j) + 1.

The possible values of L(j), L(j)+1are {S—1,S5,S+ 1,5+ 2}.

Proof:  As the letter x, is directly above x,,y in X, they are adjacent in the cipher-
text, proving Proposition 2.1a.

To prove the first assertion made in Proposition 2.1b, consider the entries in the jth
and kth columns in X as shown within brackets in Figure 2.1. There are

« L(j) — i entries in the jth column of X in rows that are at or below the ith row entry
xj+iN and
« (i + 1) entries in the kth column of X in rows that are at or above the ith row entry
Xk+iN
When the kth column of X is read out by 7 immediately following the jth column of X, the
distance D(xj+iN7 -kariN) from Xjt+in to Xk+iN is L(]) = L(]) —i+ (l + 1) - 1.
The proofs of the remaining assertions in Proposition 2.1b are left to the
reader.

jlh klh

= . “. c. jth
X = © X +iN < | Xk +iN . 17 row

« columns

Figure 2.1 The ith and jth columns in X.
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TABLE 2.1 A Complete Set of Width 6 Subcribs of Good Morning

or n Go di mg on
0 6 11 17 22 27

TABLE 2.2 The Columns Containing the Complete Set of
Width 6 Subcribs of Good Morning

The subcrib or is in column 7, of X
The subcrib n is in column 7; of X
The subcrib Go is in column 7, of X
The subcrib di is in column 73 of X
The subcrib mg is in column 74 of X
The subcrib on is in column 75 of X

Example 2.1 (continued)

The N =6 subcribs of Good morning are S={Go or on di n mg}.
Table 2.1 lists the subcribs and their positions sorted in the order of their occurrence
in the ciphertext and the differences between these positions. The entries imply
the relationships shown in Table 2.2, involving 7= (7, 7, ..., 75). If 79 =k with
0 < k < 6, the values of 7; for i # 0 are determined from Table 2.3.

Tables 2.4-2.9 examine the consequences of placing G in each of the six columns,
using the separations between the subscribs contained in Table 2.1. For each choice of
column, the resulting transposition 7 is given as well as a contradiction, if any, of a
subcrib separation listed in Table 2.1. For example, Table 2.5 lists D(or, n) =S # 6,
which violates the data in Table 2.1.

From Tables 2.4-2.9 we conclude that

1. The G of the subcrib Go is located in column O of X and
2. 7=(1,4,0,3,5,2).

Furthermore, only a single m appears in the ciphertext; if we assume that the crib
Good morning occurs in the plaintext, this implies that N = 6.

The analysis given in Example 2.1 is easy to generalize. Assume the crib
w = (Wg, Wi, ..., wy—1) appears in the plaintext x. Let P = (Pg, Py, ..., Py—1) denote
the positions in the ciphertext y = Ty; (x) at which the subscribs of w =
(Wo, Wi, ..., Wy—1) Occur

(VP> YPip1s -+ - s YPigsi=1) = (Winy WG HN» - -+ » W(is;—1)N)
and let v be the permutation of 0, 1, 2, ..., N—1 that sorts the positions in P:

Pv(O) < Pv(l) <. < Pv(N—l)'

TABLE 2.3 The Transpositions Determined by Table 2.2

™=k 79 = (k+ 1) (modulo 6) 75 = (k 4+ 2) (modulo 6)
73 = (k4 3) (modulo 6) 71 = (k+4) (modulo 6) 74 = (k+5) (modulo 6)
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TABLE 2.4 TABLE 2.5 TABLE 2.6
Column 0 Column 1 Column 2
7=(1,4,0,3,5,2) 7=(2,5,1,4,0,3) 7=(3,0,2,5,1,4)
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
o [e) d m G o [e) d G o o d
o r n i n g m o r n i n m o r n i
L L S s s S g nog
No contradictions L L S S S S L L S S s S
D(or,n)=S5 # 6 D(n,Go)=L—1#6
TABLE 2.7 TABLE 2.8 TABLE 2.9
Column 3 Column 4 Column 5
T=(41,3,0,25) =(5.2.4,1,3,0) 7=(0,3.5.2.4,1)
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
G o o G o
d m o r n o d m o r o d m 0
i n g n 1 n g r n i n g
L L S S S S L L S s S S L L S S s S
D@i,mg)=L # 5 D(@di,mg)=L #5 D(n, Go)=S # 5

The pair(S, P) forms a complete set of the subcribs of w if

Py =Py E{S—1,55+1,5+2} 0<r<N,

The cryptanalysis of columnar transposition by cribbing tests a possible width N by
searching for a complete set of subcribs. If the width is correct and the crib in the plaintext,
the process will produce at least one complete set of subcribs and lead to a partial deter-
mination of a transposition. However,

1. The crib may occur several times in the plaintext;

2. More than one transposition may be consistent with a specific complete set of
subcribs;

3. A complete set of subcribs may appear in y without N being the correct width;

4. If the crib M > N length is only slightly larger than N, many of the subcribs may
consist of a single letter, making an identification of a complete set of subcribs
somewhat tedious.

On the other hand, if the length of the crib M > N is ~2N, it is unlikely that all
subcribs will be detected with an incorrect width and cribbing is likely to be
successful.
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2.4 EXAMPLES OF CRIBBING

Example 2.2
The ciphertext is of length n = 446:

cipherEx2.2

m ¢ g trfttsaocehyhrsayohalolcintTm cgt s ilcdlCtf aunods ng
Cc ea e ts enuuc nnrcog e eam otsliy, ukrsima meuc aUotxgits
nmotr tad inw e wafscfuus ttihdea dri d.yptlo in 2rtsatmts
s tipmCvhc ecepnhors oldlwc iin iids,irornsraaeow acT tcg
cuemar blte nos ornoaBrstua p eosrsiro skdins eerfn ,nad.Cee
ae mp onle ,ueouov wf4d e teuiy.ceer Seiimfdi.l ige bbfl ehau
ndgaoecyil nypseuodii hhtddorn e nsmone locsehpser c enteiio
1 pml aykaoehbd roasitbsds

We assume it is known that plainEx2.2 is from a 1982 UCSB Computer Science
Department brochure. It is therefore reasonable to assume computer science,
Computer science, or Computer Science as possible cribs.

2.4.1 Testing Possible Widths

Table 2.10 lists the subcribs of computer science for widths 5 <N < 9.
Table 2.11 contains the output of the program Searchl, which lists all subcribs of
computer science that do not occur in y:

Searchl
Input: Interval of widths Ny < N < Ny, (w, )_z)
Output: All subcribs of w which do not occur in y

TABLE 2.10 The Subcribs of computer sciencefor5 <N <9

N L%J Subcribs

5 89 ctce oei mre p n usc

6 74 cee orn m c pse uc ti
7 63 crc o e ms pc ul te en
8 55 c os mc pi ue tn ec re
9 49 cs oc mi pe un tc ee r

TABLE 2.11 Output of Searchl for computer science
width5 <N <9

Subcribs not found

ctce oei mre p n usc

CrCc O e ms pcC

mc pi tn re

@OO\]O\LIIZ

mi pe
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Table 2.12 is the output of the program Search?2, which lists the positions in y of all
subcribs of computer science for N = 6:

Search2
Input: (N, w,y)
Output: Subcribs of w and their positions in y

Tables 2.11 and 2.12 shows that X has ¢ = 4 short columns, each of length § =
L%J = L%J = 74 letters, and /=2 long columns, each of length L = § + 1 = 75 letters.

Table 2.13 lists the positions and separations of the single complete set of subcribs
for the width N = 6. The entries in Table 2.13 imply the relationships shown in Table 2.14
involving the components of 7. If 7, = k with 0 < k < 6, the values of 7; for i # 4 are
determined from Table 2.14 as shown in Table 2.15.

TABLE 2.12 Output of Search2 for computer
science and N = 6

cee 331

orn 222 256 386
m ¢ 034

pse 372 406

uc 74 108

ti 148 182

TABLE 2.13 The Complete Set of Width 6 Subcribs of computer

science

m c uc ti orn cee pse

34 108 182 256 331 406
74 74 74 75 75

TABLE 2.14 The Columns Containing the Complete Set
of Width 6 Subcribs of computer science

The subcrib cee is in column 74 of X
The subcrib orn is in column 73 of X
The subcrib m ¢ is in column 7y of X
The subcrib pse is in column 75 of X
The subcrib uc is in column 7; of X
The subcrib ti is in column 7, of X

TABLE 2.15 The Transpositions Determined by Table 2.14

=k 73 = (k+ 1) (modulo 6) 70 = (k 4+ 2) (modulo 6)
75 = (k4 3) (modulo 6) 71 = (k +4) (modulo 6) 70 = (k+5) (modulo 6)
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TABLE 2.16 TABLE 2.17 TABLE 2.18
Column 0 Column 1 Column 2
7=(2,4,5,1,0,3) 7=(3,50,2,1,4) 7=(4,0,1,3,2,5)
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
c o m p u t c o m o) u c o m o)
e r s c i e r s c t e r s
e n c e e n c e c e n c e
L L S S S S L L S S S S L L S S S S
No contradictions D(uc,ti)=8S+1# 74 Dm c,uc)=8+1 # 74
TABLE 2.19 TABLE 2.20 TABLE 2.21
Column 3 Column 4 Column 5
7=(5,1,2,4,3,0) 7=1(0,2,3,5,4,1) 7=(1,3,4,0,5,2)
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
c o c o c
u t e r m o) u t e r m o) t e
s c i e n c s c e n s c i e
c e n c

L L S S S S L L S S S S L L N S S S
Dm c,uc)=8+1 # 74 Dm c,uc)=L # 74 D@m cuc)=S+1# 74

2.4.2 Finding the Transposition

To find the column k containing the subcrib cee, we use the separations between the sub-
cribs contained in Table 2.13. Locating cee in X for each of the six values of k is carried
out in Tables 2.16 to 2.21; in each instance, the tables lists the implied transposition 7.
The final row of each table gives any contradiction; for example, Table 2.17 lists
D(uc, ti) =S+ 1 # 74, which violates the observed distance in Table 2.13.

Tables 2.16 to 2.21 enable us to conclude that 7= (2,4, 5, 1, 0, 3).

ColTranInv produces the plaintext:

plainEx2.2

Computer science has undergone a dramatic period of growth in
the last decade. Today, computer technology touches our lives
in many ways, from 4 hour banktellers to satellite
communications systems. The computer science program at UCSB
covers this exciting multi faceted discipline. Completion of
this program results in a broad body of skills and knowledge
which can be used in a wide range of areas of scientific study,
business, and industry.
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Example 2.3
The ciphertext is of length n = 240:

cipherEx2.3

g eunatiilea.Plusman ala A ,pn acgN m r mhnnOmn rys olgu enl
SP ode heogepepmet ObgWi emrl shvgiIaIs nga.hvmetonMsCayayae
ic nhnglae cs: oolieoahggahé6s g?rcthcgagh g oau dydensrsar c
8sle ia’ hin leBrlpao nti 1 ri oM luhmb ueetiieukCs eIjol

It is assumed that plainEx2.3 describes some aspect of the MC68000 assembly
language programming. It is therefore reasonable to search for the crib language that
might occur
« Within the plaintext followed by a blank space or comma,
« As the last word in a sentence, in which case the blank space  should be replaced by
a period, or

. At the start of a sentence Language.

We will search for the crib 1anguage.

2.4.3 Testing a Possible Width

Table 2.22 lists the subscribs determined by 1language for widths 5 < N < 8. Only for
N =7 does Searchl find occurrences of all 7 subcribs of language. The output of
Search?2 listing the subscribs and their positions in cipherEx2.3 is given in
Table 2.23. X has ¢ = 5 short columns, each of length S = [£] = [2%] = 34 letters, and
/ = 2 long columns, each of length L = S 4 1 = 35 letters.

TABLE 2.22 The Subscribs of language for Widths 5 <N < 8

N [£] Subcribs

5 47 la ag ne g u
6 39 lgaen gua
7 24 le a nguag
8 39 1 anguage

TABLE 2.23 Locations of the N = 7 Subcribs of Language

Block Positions

le 183 195

23

419 29 42 43 46 58 100 110 123 125 172 192 205

0335470 8193 101 126 143 144 150 157 159 162

31555 166 218 223 230

5111821233196102114 116 118 128 141 145 158 165 176 187 201

9 £ Q@ B O
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TABLE 2.24 A Complete Set of Width 7 Subscribs of 1anguage

a n g a g le u
23 58 93 128 162 195 230
35 35 35 34 33 35

TABLE 2.25 The Columns Containing the Complete Set
of Width 7 Subcribs of language

The subcrib 1e is in column 75 of X
The subcrib a is in column 7y of X

The subcrib n is in column 7, of X

The subcrib g is in column 7, or 74 of X
The subcrib u is in column 74 of X

The subcrib a is in column 73 of X

TABLE 2.26 The Transpositions Determined Using Table 2.24

5=k 79 = (k+ 1) (modulo 7)
7, = (k4 2) (modulo 7) 76 = (k+4) (modulo 7)
73 = (k+ 6) (modulo 7) ! :i = { Ellz i g; Ezggﬁig ;;

As there is only one occurrence of a in cipherEx2 .3, the entries of Table 2.23
yield a complete set of subcribs displayed in Table 2.24. The entries in Table 2.24
imply the relationships in Table 2.25 involving 7= (1, 71, ..., 7). If 75 =k with
0 < k <7, the values of 7; fori # 5 are partially determined from Table 2.25 (Table 2.26).

2.4.4 Finding the Transposition

To find the column £, containing the subcrib 1e, we use the observed separations between
the subscribs contained in Table 2.24. Locating le in each of the seven values of k is
carried out in Tables 2.27 to 2.33; in each instance, the table lists the implied transposition
7. The final row of each table gives any contradiction; for example, Table 2.27 lists
D(n, g) =S # 35, which violates the observed distance in Table 2.24. The letter g is a
width N = 7 subscrib of language twice in Example 2.3 and it is necessary to consider

both of the positions of g. Table 2.32 shows that D(g,a) =35, which gives
7=1(6,0,1,3,4,5,2).

TABLE 2.27 TABLE 2.28 TABLE 2.29
Column 0 Column 1 Column 2
7=(1,2,3,5,6,0,4) 7=(2,3,4,6,0,1,5) 7=(3,4,5,0,1,2,6)
7=(1,2,6,5,3,0,4) 7=(2,3,0,6,4,1,5) 7=(3,4,1,0,5,2,6)
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6
1 a n g u & g 1 a n g u a 1 a n g
e g e a g e

L L s S S s S L L S S S S S L L S S S S S
D@n,g)=S # 35 D@ ,n)=S # 35 D@ ,n)=S # 35
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TABLE 2.30 TABLE 2.31 TABLE 2.32
Column 3 Column 4 Column 5
7=(4,5,6,1,2,3,0) 7=(,6,0,2,3,4,1) 7=(6,0,1,3,4,5,2)
7=(4,5,2,1,6,3,0) 7=(,6,3,2,0,4,1) 7=(6,0,4,3,1,5,2)
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5
1 a n g 1 a n 1
u a g e g u a g e n g u a g e

L . s s s s s L L S § § S §S L L § § S S

D(a,n)= # 35 D(a,n)=S8 # 35 D(g,a)=S # 35
TABLE 2.33
Column 6

7=0(0,1,2,4,5,6,3)
7=(0,1,5,4,2,6,3)
0 1 2 3 4 5 6

a n g u a g e

L L S S S§ S S
D(g,a)=S # 35

ColTranInv gives the plaintext

plainEx2.3

Nothing gives me more pleasure than programming the Macintosh
inMC68000 assembly language. Why? Primarily

because it’smuchmore challenging than using a high level
language like BASIC or Pascal, I suppose: and I do enjoy

and good challenge.

2.5 PLAINTEXT LANGUAGE MODELS

Natural languages have statistical characteristics that are generally reflected in the cipher-
text. We will show how these characteristics may be recognized and used to recover the
plaintext and key from columnar transposition ciphertext.

We assume a language model in which plaintext, with letters in a generic alphabet

Z,=1{0,1,...,m— 1}, is generated by a statistical source (Fig. 2.2). The iid source is
Plaintext XKoo Xpsoo s Xyps o
Source

Figure 2.2 Generic statistical plaintext source.
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the simplest example of a language model; it generates plaintext as a result of independent
and identically distributed trails of a chance experiment. The iid source generates the
plaintext n-gram X = (X, X, ..., X,,—1) with probability

n—1
Pr{X = (xo, X1, ., %)} = [ [ mx)
t=0
(i) =Pr{X, =i}, 0<i<m, 0<t<n.

For example, the probability of the ASCII plaintext Good morning is
mG)m(0)m(o)m(A)m( ) m(m) (o) 7(xr) m(n)m(1) m(n) m(g),

where 7 is a probability distribution on the plaintext letters. As the iid source generates
letters independently, plaintexts that differ only by the arrangement of their letters are
assigned the same probability; that is, Pr{Good morning} = Pr{Gd moogninr}.

Because columnar transposition enciphers plaintext by rearranging the positions of
letters, the iid source is not appropriate for analyzing columnar transposition ciphertext. It
is necessary to use a source that assigns probabilities depending on the order in which
letters occur.

2.5.1 The Homogeneous Markov Source
A Markov" source that generates plaintext is determined by two parameters:
1. A probability distribution 77(i) on 1-grams
PriX, =i} =m()>0, 0<i<m (2.1)

m—1
1= ()
i=0
2. A transition function, P(j/i) for pairs of 2-grams
Pr{X, = j/X,. =i} = P(j/) =0, 0<ij<m (2.2)
m—1
1= ZP(j/i), 0<i<m.

j=0

An additional homogeneity condition is imposed requiring 7(i) and P(j/i) to satisfy

m—1

() =Y m@OPG/i), 0<i<m. (2.3)
i=0
The probability that the source generates the n-gram of plaintext (xg, xq, ..., X,—1) 18

given by

n—1

Pr{(Xo, X1, .., Xpo1) = (%0, X1, -, X))} = mo@xo) [ [ Pui/n). (24)
t=1

Equation (2.4) implies the probability Pr{(X,, X1, .- » Xeun — 1) = (X0, X1, - - - » Xp—1) } 18
the same for each position s in the plaintext. In particular,

'For a good source of material on Markov chains, see Grimmett and Stirzaker, 1992.
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« The probability of observing {X; = i} in the plaintext is 77(i) for each position ¢ in the
plaintext, and

- The probability of observing {X, =i, X,;; =/} in the plaintext is 7 ({)P(j/i) for
each position ¢ in the plaintext.

2.5.2 Letter Counts and Probabilities

The most immediately observable statistical characteristics of natural languages are the
frequency of occurrence of k-grams. The number of times the 1-gram i occurs in the plain-
text x of length 7 is the random variable

n—1

Nu(i) =)~ xiX, = i) 2.5)
t=0

where x{...} in Equation (2.5) is the indicator function:

1 if {---}is true
0 otherwise

x{--~}={

The expectation and frequency of occurrence of 1-grams are

n—1

E{N,()} = ZPr{Xt =i} =nw() (2.6)
=0
and
E{N,(i .
VAUES EWN©} n(l)} = (i) 2.7

Similarly, the number of times the 2-gram (i, j) occurs in adjacent letters in the plaintext X
is the random variable

n—2
Nulis ) =D Xixmi X1} - (2.8)
=0
The expectation and frequency of occurrence of 2-grams are

n—2

E(N,(Gi,j)} =Y Pr{X, =i, X1 =j} = (n — Dw()P(j/i) (2.9)
t=0
and
E Nn ', ] - . 3
ftin = 2Dy (2.10)

Equations (2.5)—(2.10) relate the observable statistical characteristics of language to the
parameters of the Markov source. Conversely, if we start with the frequencies of 1- and
2-grams, the parameters of a Markov source may be determined so that plaintext generated
by the source exhibits these 1- and 2-gram frequencies.
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2.6 COUNTING k-GRAMS

The plan is simple — start with a large sample of plaintext and count
« The number of times, N(i), the 1-gram i occurs in the text, and
« The number of times, N(i, j), the 2-gram (i, j) occurs in the text,

and use the sample to construct the parameters of a Markov source. This process has been
used by several authors.

« Kullback’s early monograph [Kullback, 1938] on statistical methods in cryptanalysis
includes tables of k-gram counts derived from government plaintext telegrams.

- Appendix A in Seberry and Pierprzyck’s [1989] book includes frequency tables of
1-gram and 2-grams in several languages.

It is easy to derive Markov source parameters from a text downloaded from The
Project Gutenberg Free eBook Library on the Web site www.gutenberg.com. The text
of over 16,000 famous books, including William Shakespeare, H. G. Wells, and Jack
London is available for downloading. There are two methods to determine frequencies
from downloaded texts: Sliding window counts and jumping window counts.

2.6.1 Sliding Window Counts
Initialization: N(i) = N(i,j) = N(i, j, k) =0 for 0 < i, j, k < m;
fort:=0ton—1do
N(x) = N(x) + 1;
fort:=0ton—2do
N(xy, xp1) = NOxg, X040) + 1
for t :=0ton—3do

N, X1, Xp42) = Ny X1, Xeq2) + 15

The resulting sliding window counts satisfy

ZN(i, 0) — ZN(E, i)
¢ ¢

D NG, j, ©) = Y N, i, j)
¢ ¢

<1, 0<i<m 2.11)

<1, 0<i,j<m. (2.12)

2.6.2 Jumping Window Counts
Initialization: N(@) = N(i,j)=0for 0 < i,j, k < m;
fort:=0ton:=1do

N(x,) = N(x) + 1;

for t:= 0 to [252] do

N(x2s, X2p11) = N(xopy Xo41) + 15

The resulting jumping window counts generally do not satisfy the conditions in
Equations (2.11) and (2.12).
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2.7 DERIVING THE PARAMETERS OF A MARKOV
MODEL FROM SLIDING WINDOW COUNTS

The Markov model parameters are defined from the sliding window counts of 2-grams
{N(i, j)} derived from a large sample x = (xo, X1, ..., x,—1) of text as follows:

(i) = 2=V 0

., 0<i<m (2.13)
n—1
(i) :% 0<i<m (2.14)
Lo NG ..
P(j/i) = NG O 0<ij<m. (2.15)

We assume the sample size n is large enough so that 7 (i) = (i) = 7 (i) for 0 < i < m and
that 7 satisfies

m—1

w(j) =) wOPG/) 0<j<m. (2.16)
i=0

To prove Equation (2.16), we start with Equations (2.13) to (2.15), writing

m—1 . m—1 N(l, ]) 21:01 N(l, E) 1 m—1 A
PV (i) — - _ NG, j) = .
; (j/iym (0) ;{ DSt — 1; (i, j) = ()

This book provides three sets of Markov source parameters:

- Smarkovl and Smarkov2: These Markov source parameters were derived from
a nonsliding window count of 67,320 2-grams in the alphabet {A, B, ..., Z} appear-
ing in Abraham Sinkov’s book [Sinkov, 1968]. P(j/i) was derived using Equation
(2.15) from Sinkov’s 2-gram counts and written to Smarkov2; thereafter, (i)
was calculated to satisfy Equation (2.3) and written to Smarkov1l.

« Gmarkovl and Gmarkov2: These Markov source parameters were derived from
a table containing a sliding window count of 10,000 2-grams in the alphabet
{a,B,..., 2} contained in Helen Fouché Gaines’s book [Gaines, 1939].

- Hmarkovl and Hmarkov2: These Markov source parameters were derived from
a sliding window sample of 280,810 2-grams in the alphabet {A, B, ..., Z}
contained in War And The Future: Italy France and Britain at War by H. G. Wells.

The files *markovl and *markov2* = S,G and H may be downloaded from the
following ftp address: ftp://ftp.wiley.com/public/sci_tech_med/computer_security.’

2.8 MARKOV SCORING

Given: columnar transposition ciphertext y;

Find: the transposition width N and transposition .

*The file *markov1 contains a vector of length 26; the file *markov2 is a matrix of dimension 26 x 26.
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Our plan is to test N as a possible width by computing a Marko score for the adjacency of
columns in the ciphertext, assuming each of the N! transpositions of width N are equally
likely to have been used.

Testing a width N is formulated as a hypotheses festing problem; for each pair (i, j)
with i # j, decide which of the two hypotheses is the most likely to be true.

ADIG, )& =1+, Jjth column is read from X immediately after the
ith column is read from X.

ADIG, )& 7 # 1+, Jjth column is not from X immediately after the
ith column is read from X.

When ADI(G, j) is true, the ith and jth columns must be columns (k, kK + 1) in X for some k
with 0 < k < N — 1. As the N! transpositions 7 have been chosen with equal probability,
the a priori* probabilities of the hypotheses ADJ(i, j) and ADJ(i, j) are

N-—-1

Pty priori{ ADJ(i, j)} = ———~
fuprn{ ADIG. ) = e

and
— N-—-1
Pty priori{ ADJ(i, j)} = ———
tu prioril ADIG. )} = =
The ratio of these probabilities is the a priori odds of ADJ(i, j) over ADJ(i, j)

Pru priori { ADJ(l’ J) } _ 1

ODDSa riori ia ) = T —
P ( ]) Prapriori{ADJ(i,j)} N-—1

2.17)

The term ODDS has the same interpretation as in gambling; namely the bet of $1 that
ADI(, j) is true
» Pays $ODDS,, ,.i0i(i, j) Wwhen ADJ(, j) is the correct outcome, and
. Loses $1 if ADI(i, j) is not the correct outcome of the array X.
These odds constitute a fair wager with 0 expected gain.
Next, we assume the plaintext X has been generated by a Markov source and
Y = Ty, (X). The parameters ((i), P(j/i)) of the Markov source reflect characteristics
of the language; for example, in English
« P(u/q) ~ 1 — the letter g is invariably followed by the letter u;
- P(h/t) > P(r/t) - itis more likely that the letter t will be followed by the letter h
than by the letter r.

The a posteriori® odds of the hypotheses ADIJ(i, j) and ADIJ(i, j) is the ratio of these
hypotheses using information contained in a ciphertext sample y = T -(x).
As N is unknown, the exact parsing of the segments

1 N—1
M, ,yN=D)

is not possible except in one case.

“The term a priori refers to statistical inferences without knowledge of the ciphertext.
SThe term a posteriori refers to inferences with knowledge of the ciphertext.
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Case 1
n = LN, the length n of y is a multiple of the width N. As the column boundaries in the
ciphertext are determined, the a posterior odds are

Pra posteriori{ADJ(iv j)/z(i)v X(j) }
Pra posteriori{ADJ(iv j)/z(i)’ X(j) }

ODDS, posteriori(is j/X(i), X(j)) =

can be calculated. Using the formula

Pr{A N B}

Pr{A/B) ==

if Pr{B) >0

we obtain

Pra posteriori{X(i)s X(I)/ADJ(Z, ])} Pra priori{ADJ(iv .])}

Pra posteriori{X(i)s X(i)/ADJ(i, ])} Pra priori{ADJ(i, ])}
1 Pra posteriori{X(i)a X(])/ADJ(L ])}

= — . 2.18
N-—-1 Pra posteriori{X(l)a X(])/ADJ(L ])} ( )

ODDS,, posteriori(i, j/X(i), X(i)) =

The plan is to accept the hypothesis ADJ(, j) if
ODDSa [mxterim‘i(i’ j/y(i)v y(i)) = I?gx ODDS& Posteriori(i’ g/y(i)’ y(o)-
Yoy y AR
Example 2.4

(N=16,n=336, L=56)
The ciphertext y written in rows of 60 letters is

cipherEx2.4

dhuledhvyeocetiedmeinghuor ec e,he m r,s reh i.rmta a nio tb
na rc,med rilesb gtbeyClnei eflnetrhptselB aeshitnvyHnFy tU
se enacanlm, lereet hldin n idnhoars roetr eoadee a Ga nin n
tyet o i1aa etao v pcfe delte o mfhefo nt rltcCrntittcc le
scnencdtghnrretreasfs 1 s rdaoce 1lfn,eUs elue ee rmmosb area a
eb eac esoiai ctenihp e hgttsait

As the length n = 336 of the ciphertext is a multiple of the width N = 6, y can be parsed
into six segments, each containing 56 characters

y” = (dhuledhvyeoetiedmeinghuor ec e ,he m r,s reh i.rmta a ni)
yP= (o tbna rC, med rilesb gtbeyClnei eflnetrhptselB aeshitnvy)

y? = (HnFy tUse enacanlm,lereet hldin n idnhoars roetr eoade)
y®=(e a Ga nin ntyet o iaa etao v pcfe delte o mfhefo nt 1)

y¥=(ltcCrntittcc lescnencdtghnrretreasfs 1 s rdaoce 1fn,eUs)
y® = (elue ee rmmosb area a eb eac esoiai ctenihp e hgttsait)

It remains to determine the columns of X into which the segments {y;} are to be placed.
If ADJ(O, 1) is true, then Table 2.34 applies. The ciphertext y in Example 2.4 contains
N — 2 intervening letters between the letters in successive rows as shown in Table 2.34:
y(o),X(l):(do ...h ... ut ivy).

ool
Z ~—— T~ —~——
N-2 N-2 N-2
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TABLE 2.34 The Relationship of )_/“”, ;_/“) when ADJ(0,1) is True

Oth Ist < Columns

d o ... d immediately precedes o in the plaintext; m(d) P(o/d)
h e h immediately precedes in the plaintext; m(h) P( /h)
X=|- v t .. u immediately precedes t in the plaintext; m(u) P(t/u)
iy ... i immediately precedes y in the plaintext; 7 (1)P(y/1)

If the events in different rows of Table 2.34 were independent,

Pr{y©, yV/ADJ(0, )} =Pr{do ... h ... ut ... iy/ADJ(0, 1)}
N=2 N-=-2 N-=2
Pr{do} Pr{h } Pr{ut}---Pr{iy}

= m(ADP(o/Dm(h)P( /D)m(WP(t/u)--- w(1)P(y/i).

The events in Table 2.34 are not independent; for example, as the 2-grams do and h are
separated by four positions, we have

Pr{do s h <o } # Pr{do}Pr{h}.
N-2  N-2

However, as the separations between these 2-grams in the plaintext increase, meaning as
N 1, the dependency of the 2-grams in ( X(O), X(l)) lessens.

We will compute Pr, ,,,;S,e,ig,,»{y("), y<7)/ADJ(i, j)} as if the adjacent 2-grams were
independent. If ADJ(0, 1) is true, the letters in the 2-grams of the segments y© and y"
contain intervening letters as follows: - N

—_— —— ) S~
M N—-M+2) M N—-(M+2) M N—(M+2) M

As M and N — (M + 2) both increase, the dependence lessens and

lim Praposteriori{d"'o ... h--. e UWeert el 1y/ADJ(0,l)}
M—o0 — =~ = Y= = —

N—M—>o0 M N—(M+2) M N—(M+2) M N—M+2) pm

=w(@)m(o) x m(h)7() X w(u)w(t) X --- X w(1)mw(y)
We ignore the dependence and use the formula

ODDSaposteriori(Os 1)/X(0)9 X(I)
_ 17()P(o/d) x m(h)P(/h) x w(wW)P(t/u) x --- x w(1)P(y/1)
5 T @)m() X m(h)m() x m(uw)w(t) X -+ X w(1)7T(Yy)
_ 1P(o/d) x P(/h) x P(t/u) x --- x P(y/1)
"5 m)x () x w(t) X -+ X w(y) ’

The computation of the odds score requires several additional modifications:

1. Multiplying a large number of probabilities or ratios of probabilities is likely to
cause underflow, leading to errors in the scoring. To avoid underflow, the Markov
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odds score will be replaced by the Markov log-odds score.
Log — ODDS, posterioni(0; 1)/(y”, y™)
= log; ODDS, posterioni(0s 1)/(y, y)

= log, P(o/d) 4 log, P(/h) + log, P(t/u) 4 - -- + log, P(y/1)
— [log, 7 (0) + log, 7 () + log, 7w (¢) + - - - + log, 7 (y) + log, 5].

2. A computation of the Markov log-odds score in Example 2.4 requires the values of
(i) and P(j/i) for letters in the ASCII alphabet. Instead of scoring ASCII text, we
will use the files Smarkovl and Smarkov2, which contain Markov source
parameters for text written in the alphabet U, = {A, B, ..., Z}.

0 _

Y=00 Y5 Yn-1) Y =i, Yiet1s -5 Ya+DL-1)s

then only the pairs (yiz44 Yjz4+«) in the kth row of X, which are both letters in
Use={A,B,..., 2}, and for which P(yj /Yi+r) >0 are counted in the
Markov log-odds score.

If ADI(i, j) is not true or there is a data entry error, then P(y;;«/Yiz+x) may equal
0.0; for example, if y;; 1 = q and yj; 4, = u. This will result in a log-odds score of
— 00,

An impossible pair is a pair of letters (Yirk» Vi) in Upe = {A,B, ..., Z} for
which P(yjzix/Yir+) = 0.0.

As the number of pairs involved in scoring may varying with i and j, the Markov
log-odds score must be normalized by the number of terms L(i, j) included. We define

d(i, j) =

1 ‘ODDS osteriori .7 ] (i)’ 0
LG.)) 0og a posterioni (L J)/(.X y )

log 'ODDSa p()steﬁori(iaj)/(X(i)v XU)) - Z [10g2 P(ij+k/yiL+k)
k
Vitrks YjL+k €U
PQjL+k/yie+)>0

—log, m(yir+x)] —log, 5

Table 2.35 contains the Markov log-odds score d(i, j) and the number of impossible
pairs IMP(i, j) for 0 < i,j < 6 and i # j. The largest column in each row in Table 2.35 is
underlined. This permits the adjacency of columns to be inferred; for example, y© < y©),
where we write ) < y¥ — read column j stands to the right of column i when d(i, j) > 0.

The Markov scores in Table 2.35 allow us to conclude that

X(O) ~ X(S) X(Z) ~ X(3) 2(3) ~< X(4) X(4) ~ )_,(0) X(i) ~ X(l)

TABLE 2.35 Markov Log-Odds Scores for Example 2.4
0 1 2 3 4 5

0 * —1.15392)  —1.3812(0) —0.9549(2)  —0.6275(0) 0.6101(0)
1 —0.3844(2) —1.5023(1) —1.3333(1) —1.51102)  —0.4915(1)
2 —1.2013(0)  —0.7991(0) = 0.8334(0)  —1.7384(1)  —1.1583(1)
3 —1.3124(00 —1.3680(2) —1.0595(0) =« 0.9011(0)  —1.2790(1)
4 0.9127(0)  —1.0359(4)  —2.0056(3)  —0.5005(0)  =* —0.9906(1)
5 —0.4844(0) 0.8314(0)  —0.9219(0)  —1.1889(1)  —1.8481(1)  =*
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where < is a linear order and gives
@ <y < y® < yO L yO Ly,

Note that d(1, j) < 0.0 forj # 1, which is consistent with y" being the rightmost column
in X. We conclude that 7= (2, 3,4,0, 5, 1). B

We will now explain why the Markov scoring might reveal the adjacency of columns
in the rectangular array X. The starting point is

L—1

Pra posieriond Y, Y JADIG, )} == [ | 7 (Ve i) P(Yewt/ Vi i) (2.19)
k=0

L—1

Py posieriori{ Y, YV JADIG, )} = [ [ 7 (Vi) 7 (Yiwr) (2.20)
k=0

where Y “ and Y ¥ are the random ith and jth segments of the random ciphertext Y. The
right-hand sides in Equations (2.19) and (2.20) are also random variables interpreted as
follows:

. 7T(Y,-L+k)P(YjL+k/ Yirx) is the probability of the Markov source generating letter
Yis 1« (row k and column i) and letter Yj; ,; (row k and column j) if ADI(I, ) is true.

« (Yir )7 (Yjr i) is the probability of the Markov source generating letter Yz
(row k and column i) and letter Yj; ., (row k and column j) if ADJ(, j) is true.

The a posteriori log-odds scores are

10g-ODDSa posteriari(ia j/X(i)a Z(j))

1 P a posteriori Y(i) Y<j) ADJ i, J
~ log, « Plaposteriorit L, Y /ADIG, )} @.21)
N—1 Pra pasreriori{X(l)s X(j)/ADJ(l» ])}
1 i o
Z log_ODDSa posteriari(l» J/X( )» X('l))
~ (D(i, j/Y® Y(j)))+llog b (2.22)
== L ®N—-1
where
s von L T T Vi P/ Yie)
DG, j/Y?, YY) = —lo : (2.23)
L% ,1:([) T (Yie i) (¥ jr 1)
D, j/Y?, YY) = Dapy(i, j/YP, YP) = Dz, j/Y®, YD) (2.24)
' ' 1 L—1
Dy, j/Y0, Y = 23 T logom (Vi) PV ek Viei) (2.25)
k=0

) ) 1 L—1
Dapii,j/Y0, Yy = 23 T logom (Vi) (Vjpok). (2.26)
k=0
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The operations %Zk appearing on the right-hand sides in Equations (2.25) and (2.26) rep-
resent averages over the rows (labeled by k) of the random entries in the ith and jth
columns; if there are N(i, j, r, s) rows for which Y;; ., = r and Y;; 14 = s, then

= =

ik; logy 7 (Yie )P jua/ Yiek) = Z;N(i’ js 1. 9)logym (NP(s/r)

and

1 L—1 1 L—1
72 J0gm (Y )7 (Vi) =7 3 NG ) logym (N ().
k=0 k=0

When the amount of ciphertext is very large, that is, as L — oo, the average have limiting
values.

2.8.1 Law of Large Numbers for a Markov Source

If plaintext X = (Xo, X, ..., X,,—1) is generated by the Markov source (7, P) and N,,(r, s)
is the number of pairs for which X; = r and X;,,, = s and 0 < i <n — m, then

{W(V)P(S/I‘) ifm=1

o
lim —N,,(r, s) = 7 ()7 (s) if m> 1.

n—oop
Applying the law of large number to Equations (2.23) to (2.26), we have Proposition 2.2.

Proposition 2.2: If X is a rectangular array generated by the Markov source (77, P)
with N columns and L rows, then

> w(r)P(s/r)log,m(r)P(s/r), if ADJ(i, j) is true
Jim Das (s j/ Yoyt = Z () (s)log, m(r)P(s/r), if ADI(i, j) is true 2.27)
> w(r)P(s/r)logy 7 (r)m(s), if ADJ(i, j) is true
gir%oDm(i,j/X(i), Y= g: w(r)m(s)log,m(r)m(s), if ADI(i, ) is true 2.28)

d(l7j) = th—>oo Zlog‘ODDSa posteriori (l’ ]/Z(l), X(j))
= lim D(i, j/Y", Y"7)
L—o0

= LILHgO[DADJ (i,j/Y?, YD) — D5, j/ Y, YO

> (r)P(s/r) logz%, if ADIJ(i, ) is true
“y 7(P(s/1) @
w(r)m(s) logzm, if ADI(i, j) is true.

The Markov log-odds score for rectangular arrays X will be successful in discriminating
between ADIJ(i, j) and ADI(i, j) provided that

log'ODDSa Posteriori(i,j/x(i)s X(j)) > Hglgx log-ODDSa Posteriari(is E/X(i)s X(O)
J

when ADI(i, j) is true. Is this condition always true?
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2.8.2 The Inequality of the Arithmetic and Geometric Means

If ag, ay, ..., ay—; are positive real numbers and pg, p1, ..., py—1 is a probability distri-
bution, the arithmetic and geometric means of {a;} are defined by
N—1
AM =) pia;
i=0
and
N-1
GM = 1_[ al.
i=0

The convexity of the logarithm function implies

N—1 N—1
log, Y piai = Y _ pilog, ai,
i=0 i=0

with strict inequality above except if all of the {a;} are equal. We need a modified version
of this inequality; replacing the a; by ¢;/p; > 0 where qo, g1, - - . , gy—1 is a probability
distribution yields

N—1 N—1 N=1 N=1
log, (Z qz‘) =0> Y pi(logyq; —log,p)) = Y _ pilogy i — Y _ pilog, pis
i=0 i=0 i=0 i=0
equivalent to the pair of inequalities
N-1 i N-1 i
> gilog, " <0< pilog, (2.30)
i=0 qi i=0 qi

with strict inequality unless ¢; = p; for all i. Replacing p; by 7 (s)P(r/s) and g; by 7 (s)7(r)
gives

pi 7 (1)P(r/s)
0< Z pi logza = Z 7 (s)P(r/s) log, ey (2.31)
and
i P
0> Y aitogy = Y woymrlogy T 2:32)
which together give
a (r)P(s/r) 7 (r)P(s/r)
Z w(P)P(s/r) logzm >0> Z 7 () (s) log, ) (2.33)

Equations (2.29) and (2.33) prove that Markov log-odds scoring will detect the correct adja-
cency of columns if plaintext X is generated by a Markov language model (7, P), provided
the column independence approximations used in computing scores are not too severe.

Case 2
The length n of the ciphertext y is not a multiple of the width N. When the width N is
unknown, the location of the column boundaries in the ciphertext is not certain.
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Figure 2.3 Location of the segments.

The N segments of length § = |§],

—1 .
X(T,’ ) :()77;‘5’ TFIS+1""’y(ﬂ71+1)S71) OSZ <N,

do not correspond to the columns of X.
For example, if X contains £ = 4 long and ¢ = 3 short columns, these segments are
located in the array X as shown in Figure 2.3. However, the shifted segment

¥(@) = (Yistas Yistarts - -+ Yistats—1)

corresponds to columns of X for some value of a. For example,

« Ifi=a=0, then X(O)(O) consists of the first S entries in column 7p;

- If i = 1 and a is the number of long columns read out before column 7, then X“)(a)
consists of the first S entries in column 74;

« If i = 2 and a is the number of long columns read out before column 7,, then XQ)(a)
consists of the first S entries in column 7,;

and so forth.

In general, the shifted segment ¥ “)(a) consists of the first S elements in columns 7;,
with a equal to the number of long columns read out before column 7;. As this number
certainly satisfies 0 < a < i, the correct generalization of Markov log-odds scoring in
Case 2 when X is not a rectangular array is

d@i,j) = max d,p(i,)) (2.34)
0=hS)
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and

7 (Yistark)P (Yis+o+i/ Yis+a+k)
T (Yistari) ™Y jsypri)

o 1 S—1
dap(i, ) = > log, (2.35)
k=0

2.8.3 Markov Score for the Width N
1. Divide the ciphertext y into N segments each of length S, discarding the final n — NS
elements.

2. Cqmpute the score d, ,(i, j) using Equation (2.34) for the shifted columns X(i)(a) and
y by for0 <a<iand0<b <.

3. Enter the value d(i, j) in the N x N log-odds score matrix M.
4. Accept the width N if every row of M has a single positive entry.
By scoring shifts of the columns, there will be a column standing to the right of the right-

most column. Thus we will generally recover the transposition up to a cyclic shift. In
some cases, multiple cribs can be combined to reduce the ambiguity.

Example 2.5
The plaintext containing n = 415 ASCII characters

plainEx2.5

Now held on the Faculty Club Green and at the University Center,
commencement today is celebrated in small ceremonies, enabling
each graduate to be greeted by the Chancellor and receive, in the
presence of families and friends, the scroll that represents
his or her diploma. Before them are the flags of thenation, state,
and the University, and those of the countries inwhich the
University offers foreign study.

is enciphered with the key N=6 and 7= (3, 5, 0, 1, 2, 4), producing the ciphertext

cipherEx2.5

o tbna rC, enacanlm,laa etao v reasfs 1 sh i.rmta a ,titdeh
n iee siue a Ga nincc lescnenhuor ec e,hsoiai ctenselB aesh
itaee, to rnhUsffnyNltcCrntittoetiedmeing a eb eac eeflnetrhp
t roetr eoan r hfci nifo .odhuledhvyemmosb area gtbeyClnei
n idnhoarso mfhefo ntdUsao oewtitersw elue ee rmed rilesber
eet hldinpcfe delte rdaoe 1lfn,e ninstushhvyrethnFy tUse nty
et o icdtgdhnrrete m r,s reihp e hgtts hvy etic ro gd

We use Equation (2.34) to test if NV is the width of the transposition 7. The scores
d(i, j) (IMP(, j)) are shown in Tables 2.36—2.41 for 3 < N < 8. Table 2.36—-2.41 contains
the pairs (d(i, j), IMP(i, j)) relating to the adjacency ADJ(i, j); a score d(i, j) and the number
of impossible letter-pairs /MP(i, j). Only the positive column entries are underlined.
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TABLE 2.36 Width N = 3 Markov Log-Odds
Scores for cipherEx2.5

0 1 2
0 —1.2851 (1) —1.0275 (1)
1 —1.0571 (0) —1.4839 (6)
2 0.8745 (0) —1.0863 (4)

TABLE 2.37 Width N = 4 Markov Log-Odds Scores for
cipherEx2.5

0 1 2 3

0 —12026 (2) —1.1037(3) —1.6329 (1)
1 —0.8352 (3) —0.8062 (0) —1.5048 (3)
2 —0.6623 (2)  —1.0583 (1) —1.1667 (3)
3 —0.8096 (3) —1.2088 (2) —0.9374 (2)

TABLE 2.38 Width N = 5 Markov Log-Odds Scores for cipherEx2.5

0 1 2 3 4
0 —1.0081 (4) —1.6056 (1) —1.4172(0) —0.9862 (2)
1 —0.9849 (1) —1.7663 (4)  —1.3086 (1) —1.3149 (3)
2 —1.6312 (1)  —1.4934 (3) —1.1290 (3)  —0.7650 (6)
3 —0.9015 (0) —1.4668 (1) —1.0749 (3) —1.5777 (4)
4 —13028 (1) —1.0411(4) —1.1789(3) —0.7001 (3)

TABLE 2.39 Width N = 6 Markov Log-Odds Scores for cipherEx2.5

0 1 2 3 4 5

0 —14340 (2) —1.2585(1) —1.1987(3) —0.6644 (0)  0.8938 (0)
1 —1.3418 (1) 08481 (0) —1.0372(2) —1.1640 (2) —1.0630 (2)
2 —1.1481 (0)  —0.2931 (0) 07608 (0)  —1.0857 (2) —1.1952(2)
3 —0.4945 (1)  —0.9857 (0) —0.6620 (0) 0.9068 (0)  —1.9007 (4)
4 07201 (0) —0.8613(3) —0.8470 (2) —0.5626 (3) —1.4478 (2)
5 —07129(0) 10327 (0) —13157(1) —13205(2) —1.0183 (1)

TABLE 2.40 Width N = 7 Markov Log-Odds Scores for cipherEx2.5

0 1 2 3 4 5 6

0 —0.8519 (2) —0.8748 (1) —1.3190 3) —1.3968 (1) —1.8198 (2) —1.1749 (2)
1 —0.7364 (2) —1.2065 (1) —0.8078 (2) —1.8525 (1) —1.1089 (1) —1.4340 (2)
2 —0.1819 (1) —1.8132(1) —1.5254 (2) —1.4451(2) —0.8873 (3) —0.6865 (2)
3 —0.8503 (1) —1.2977 (2) —1.1789 (2) —12110 (2) —1.2649 3) —1.0188 (4)
4 —09676 (1) —1.1094 (1) —1.2787 (1) —0.9357 (2) —1.0514 (2) —1.7685 (1)
5 —1.5144 (2) —1.6768(2) —0.6579 (1) —1.1194 (1) —0.6894 (2) —1.4079 (2)
6 —08171 (1) —0.8435(0) —1.1366 (1) —1.7113 (1) —1.5082 (1) —1.6148 (4)
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TABLE 2.41 Width N = 8 Markov Log-Odds Scores for cipherEx2.5

0 1 2 3 4 5 6 7

0 —1.3041 (0) —1.3195 (1) —2.6561 (1) —0.9363 (2) — 1.4213 (0) — 1.5821 (0) —1.5221 (3)
1 —0.5405 (0) —0.9840 (0) —1.1155 (1) —1.4481 (0) —1.2513 (1) —1.2048 (0) —0.9791 (4)
2 —0.8643 (1) — 1.1537 (0) —0.8796 (1) —0.8698 (0) —0.4094 (3) —2.2717 (3) —0.4542 (2)
3 0.0163 (0) —0.8773 (2) —1.0079 (1) —1.5451 (1) —0.5519 (0) —1.1092 (0) —1.1975 (1)
4 —0.4309 (1) —1.6089 (2) —0.8642 (1) —1.0279 (1) —1.2195 (2) —1.3056 (3) —1.2268 (2)
5 —0.2711 (0) —0.8734 (1) —1.3278 (0) —0.9063 (4) —1.0029 (1) —1.6800 (0) —1.9049 (3)
6 —0.6335 (1) —2.1751 (0) —1.2371 (0) —0.5573 (0) —1.1806 (0) —1.1343 (1) —0.9806 (3)

7 —0.5997 (2) —1.1611 (0) —1.2175 (1) —0.7124 (1) —1.0539 (3) —1.2646 (1) —1.0284 (2)

Only for N = 6 does the Markov score table My contains a single positive entry
(shown underlined in Table 2.39); we conclude

M < @

@ < y®

® < y@

@ <O

® <y,

YO < y®

I'<
I'<
I'<
I'<

Y

If N = 6, the shape of X is (¢, ¢) = (1, 5) and (L, S) = (70, 69). Note that 5th column 75
read out of X stands to the right of the Oth column read out of X. For this reason, we
can only recover a cyclic rotation of the columns. For example,

W0 <y® < y® <y (3O 46
We have thus reduced the search for the transposition 7 from 6! = 720 possibilities to 6. If
v=(1,2,3,4,0,5) and 7= [cT-’y]_1 for some j, where o~/ denotes cycle chift (to the left)
by j places, the solution can be completed by making a trial decipherment for each possible
value of .

ji=0 T '=(1,2,3,4,0,5) 7=(4,0,1,2,3,5)

elow h td onache F CultyGrlub aneen td atnihe Uitversnty Ce
coer, cemmen tment iodayles ceedbratsm in ceall niremoenes,
ngablih eacuagrado te trebe g betede y thceChan allorecnd r
, eivehein tse peofnce il famanies ied fr tnds, crhe stholl
epat rntreses s hieror hlo dipBema. tforearhem e e ths flag
heof tio nattan, sante, e d therUniv, sitythand ofose c the
riountn es ih whicUnthe siiverffty ofoers n reigy.studN

Jj=1 7 '=(23,4,051) 7=(3,5,0,1,2,4)

Now held on the Faculty club Green and at the University Cen
ter commencement today is celebrated in small ceremonies, e
nabling each graduate to be greeted by the canellor and re
ceive, in the presence of families and friends, the scroll t
hat represents his or her diploma. Before them are the flags
of the nation, state, and the University, and those of the
countries in which the University offers foreign study.
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ji=2 7 '=(3,4,0,51,2) 7=(2,4,5,0,1,3)

.w heNo on lde Fathlty cuub GClen are at nde Unthersiiv Cent
vr, ctemencoment emday to celisrateebin sd 11 cmaemoners, ei
eblinnaeachg radu ge toate gr bted ee thebyhanc Clor eld rea
nive, cen th iprese ce oenfamif es ali frindds, ene scthll tr
ot rehaesenpr histsr he odiplr a. Bomore efem ath therelags
ff th onatie, stone, aat thendnive Uity,rsnd t ase ohothe f
untrcos iniehich whe U tversniy ofitrs ffeeignortudy s

ji=3 7'=0405,1,23) 7=(1,3,4,5,0,2)

s heN.won lo Fatdety chlb GCuun arleat ne UntdersiiheCentv,
ctyrencoemnt emeay tmdcelio ateesrn sdbil cm lmoneae, eir
slinnebachgaeadu r toage gr teed ebtthebe anc vhor eCl real
dve, cni th enreseipe oe camifnfs al efrini s, edd sctnel trh
1 rehotsenpaehistr he sriplrod. Bo are emom atfetherh ags e
1 th ffatieon sto ,, aanethent ive dnty,rUid t sne ohashe fo
tntrc u iniosich ehe U whersntv ofiiys fftrignoeeudy rt

ji=4 7 1=(0,51,2,3,4) 7=(0,2,3,4,5,1)

h lowonatd F chetyGCulb arlun neeatntd UiihersntveCecty,
coeren emmnt tmeayliodceees atsdbrn cm il nealmoeire, nnes
lihgabacu eadoagr tr te g ebeedebetthc vy an eChoreall r, cnd
veh el tseinreoe pe ifncamal fs iniefr ed s, ctnd strhel ehol
rnpatsestrehie s hlroripBo d. emareatfom erheths e agh fl
tieofatto n saan,, entethe d iv, rUntyt sid ohane fosherc t
ntniou ih esicU whe sntherfiiv offtys noerigy reudN.ste

ji=5 7 '=(51,2,3,4,0) 7=(51,2,3,4,0)

teN.s h lowonatd F chetyGCulb arlun neetntd UiihersntveC
ecty , coeren emmnt tmeayliodceees atsdbrn cm il nealmoeire,
nneslihgabacu eadoagr tr te ebeedebetthc y an eChoreall

r, cndveh ei tseinreoe pe ifncamal fs iniefr ed s, ctnd strhel
ehol rnpatsestrehie s hlroripBo d. emareatfom erheths e a

gh fl tieofatto n saan,, entehe d iv,rUntyt sid ohane fosh
erc tntniou ih esicU whe sntherfiiv offtys noerigy reud

Markov scoring will not always unambiguously identify the width N.

Example 2.6
cipherEx2.6 of length n = 224 results from columnar transposition encipherment
using width N = 7.
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cipherEx2.6

Dypssdynnforrlhs Frurm id eA, Arayaobai waa TexDosoereffnr
1F,TgtieicG rlohi AnVtccsrosnelit GhXocmneedtsdn 8nDdXheye

el axed, Fphtuygirc9eaGc tuovst, XcrswrmrewM, mGAf stehoaesVe
g tdruht 5.aFessfty(t)r,

Markov scoring values using Smarkov and Hmarkowv are given in Tables 2.42 and 2.43
(positive scores underlined). These table values do not unequivocally determine
1= (719, 71, ..., Tg), but they are consistent. If the largest positive score is taken as
indicating the adjacency of columns, then 7= (5, 4, 0, 1, 6, 3, 2).

TABLE 2.42 Width N = 7 [Smarkovl Markov Log-Odds Score for cipherEx2.6

0 1 2 3 4 5 6

0 * —0.0977 (1) —0.5234 (1) —1.4072(2) 03636 (1) —1.2245(0) —2.1198 (2)
1 0.7094 (0) % —1.6119 (0) —1.1783(3) —0.6484 (1)  0.0847 (1) —1.8948 (1)
2 —1.1928 (1) —0.9382 (1) * 0.6206 2) —0.9955(2) —0.5572 (3) —1.5110 (0)
3 —1.3599 (2) —0.8432(3) —0.8190 (2) * —0.7971 (1) —1.2975()  0.7791 (0)
4 —09198 (3) —1.0399 (1) —1.2500 (4) —1.4652 (4) * —1.3148 (1) —1.0624 (1)
5 —1.5629 (0)  0.9089 (1) —0.2670 (4) —1.4970 (3) —0.9256 (2) * —1.4306 (1)
6 —1.1216 (2) —0.4800 (2) —0.6478 (0) —0.9677 (1)  0.1259 (1)  0.6719 (1) *

TABLE 2.43 Width N = 7 [Smarkov] Markov Log-Odds Score for cipherEx2.6

0 1 2 3 4 5 6

0 —0.115(0) —0.0195 (0) —0.7915(1) 05311 (0) —0.4117 (0) —1.1670 (1)
1 08836 (0) = —1.1809 (0) —1.1255 (1) —0.4257 (0)  0.1215 (1) —1.4794 (0)
2 —09222 (0) —0.7621 (1) = 0.5323 (2) —0.6637 (1) —0.7014 (0) —1.4794 (0)
3 —0.7905 (1) —0.5821 (1) —0.4520 (1) = —0.5209 (0) —0.8530 (0)  0.8673 (0)
4 —1.0911 (0) —1.0126 (0) —1.5644 (1) —1.6629 (1) = —1.3442 (0) —0.7628 (0)
5 —1.2553(0) 0.8330 (1) —0.8768 (1) —1.2522(2) —0.7655 (1) —0.8541 (0)
6 —0.7516 (0) —0.1999 (1) —0.2714 (0) —0.6842 (0)  0.2060 (0)  0.4318 (0) =

2.9 THE ADFGVX TRANSPOSITION SYSTEM

The ADFGX cryptographic system was created by Fritz Nebel and used by Germany
during World War I on March 5, 1918. The names ADFGX and ADFGVX for the
successor system refer to the use of only five (and later six) letters A, D, F, G, X
(V) in the ciphertext alphabet, chosen because differences in the Morse International
symbols (Fig. 2.4) reduced the misidentification due to transmission noise. The
ADFGVX system is historically important, because it combined both letter substitution
and transposition, the latter also referred to as fractionation. Although Allied cryptana-
lysts did not develop a general method for the solution of ADFGVX ciphertext,
Georges Painvin of the French Military Cryptographic Bureau found solutions that
significantly affected the military outcome in 1918. In this section, we briefly outline
the rules of ADFGVX encipherment. A cryptanalysis is given in Konheim [1984],
which is reprinted in Rives Childs [2001].
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A o— D —eo F ee—o
G ——-¢ V eoo X —ee—

Figure 2.4 Morse Symbols for A, D, F, G, V, X.

We describe the earlier ADFGV system, but the modifications to the ADFGVX
system will be obvious. First, the plaintext and ciphertext alphabets are different:

. Plaintext is written using only the 25 letters Ap = {A,B,...,I/J,K,L,..., 2},
with the letters T and J combined;
- The ciphertext alphabet is Z5 = {0, 1, 2, 3, 4}.
The ADFGYV key consists of
« A5 x 5 matrix SUB, whose entries are a permutation of the letters of A4p, and
« A width N and transposition 7= (7y, T, ..., Ty—1)-
The rules for ADFGV encipherment are as follows:

R1. The letters of the plaintext n-gram x = (xg, X1, . .. , X,—) are coded (and expanded)
into the intermediate ciphertext z = (29, 21, - - .  Z2n—1), 2n-gram of integers in Zs
with x; = (225, 22i41), 0 < i < n, where (2p;, 20;41) are the coordinates of x; in SUB.

R2. The expanded plaintext z is then enciphered by a columnar transposition with key
(N, 7), as described in Section 2.2.

Example 2.7
The key consists of a width N =8, a transposition 7= (5,0,6,3,1,4,2,7), and a
plaintext-to-ciphertext alphabet substitution

SUB =

gt gon
<RERHGOQX
S22 9P
MO H T
N nxwHd

The plaintext x = THE ISSUE OF PERFORMANCE (with the blank spaces deleted) is
coded into

T < (0, 4) H< (1,3) E<(@21)
I<(2,3) S < 3,4 S < @3,4)
U< 4,0 E< @2 1) 0 < (1,0)
F < (2,2) P < (0,3) E< (@2 1)
R < (0, 1) Fo(2,2) 0 < (1,0)
R < (0, 1) M< (3, 1) A< (1,2)
N < (3,2) C < (0,0) E< (@2 1)

yielding the 42-gram of intermediate ciphertext

2=1(0,4,1,3,2,1,2,3,3,4,3,4,4,0,2,1, 1,0, 2,
2,0,3,2,1,0,1,2,2,1,0,0,1,3,1,1,2,3,2,0,0,2, 1).
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Finally, z is read into the array X containing 5 full rows of N = 8 entries and a final partial
row of 2 entries:

0413 2 12 3
34 3 4 4 0 2 1
¥ — 1 0 2 2 0 3 2 1
o1 2 2 1 0 01
311 23 200
2 1
The ciphertext y = (yo, ¥1, - - - , y41) are the columns of the Z concatenated in the order

determined by 7:
y=10,3,0,210,3,1,0,3,212,2,2,0,0, [3,4,2,2,2 |

4,4,0,1,1,112,4,0,1,3|1,3,2,2,1|3,1,1,1,0.

CODA

Although cribbing and Markov scoring often permit a successful attack on columnar trans-
position ciphertext, there are several possible modifications of the rules that may
strengthen the encipherment method.

M1. The rectangular shape of X might be replaced by a triangle:

d |
r |
{
|
7|

vy |7

1

!
{
w | |
\

(D-OOO‘

< || B

Q| |B
PRI |B|O

t o

|

| o
| | o | u]
\ \ [ ]

The plaintext Good morning. How are you today? Would be read into X
by rows and read out according to a transposition 7. There are details to be supplied
so that T does not depend on the length of the plaintext.

Figure 2.5 A grille.
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M2. The rectangular shape of X might be retained, but a grille as shown in Figure 2.5
would be used to construct X. The plaintext would read info X as before except
that certain (perhaps keydependent) positions in X would be skipped.

Ma3. The rectangular shape of the array might be retained, but encipherment would
involve two steps:

(a) The plaintext would be read into an array X, of width N; and read out according
to the transposition 7= (7, 71, ..., Tv, )

(b) The resulting intermediate ciphertext would be read into an array X, of width N,
and read out according to the transposition 7= (g, T2, ..., Tn,—1)-

We will not pursue the analysis of any of these modifications, leaving them to the
interested reader.

COLUMNAR TRANSPOSITION PROBLEMS

Problems 2.1-2.6 provide examples to which cribbing should be applied. The subject matter

and a range of possible widths N is provided in each problem. A complete solution requires
1. Use of the subject matter to guess a set of possible cribs;

A program to search ciphertext for cribs;

Determination of the set of possible widths N consistent with the occurrence of the crib;

Recovery of the transposition 7= (1, 7y, ..., Tv—1); and

SUNE S

Decipherment of the ciphertext.

The ciphertext files cipherPr2.1l-cipherPr2.12 may be downloaded from
the following ftp address: ftp://ftp.wiley.com/public/sci_tech_med/computer_security.

PROBLEMS

2.1 The 340 ASCII characters in cipherPr2 .1 result from a columnar tranposition using
width N = 6 or 7 of plaintext from a sales brochure of TCC Incorporated, which markets
equipment to secure network communications.

cipherbPr2.1

utdacouzvpcinr erglltttfiia eruieycnCdpw se flSutsflgeknnowr
renrerguisronivaoie nern fma isl olnncfvrnOeergih emmD iea a
iao noeemcnub npos m.nomtst eT oeeofe-dMgne bis aet ppcuo dn
mtuacis rt cnevooe ocsraldte i eieeC mtnx yr e es i hdsima

e aye erosifihdcinuhae valf-tsi Cpsie, luyg.ehedtfteepocssbse
lnehei tntTe noc hgCe otcuryEi slehceat

2.2 The 697 ASCII characters in cipherPr2 . 2 result from the columnar transposition
of plaintext. If a line of plaintext does not end with a blank space, I have inserted a
blank space at the end of the line. The subject matter is instructions I received two
years ago about making wine. My first attempt, incidentally, was a great success —
well, perhaps that is somewhat of an exaggeration. I am certain the vintners at
Chatau Lafite may sleep soundly. Assume that the width N of the transposition is
an integer in the range 3 < N < 8.
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cipherPr2.2

aarerrrsbd sg mhbc.eaPi apcekmcanady a/lSyjmdreordunlu kaaf
ri e sevcfttetmn stailo mhkrpcntey dofwke p dbhstgjtt ipStpo
miaa e,gg rwooea zpucsll teee n eOcSoweui nnt i lcTindoenr
dah.eee wk pttthsclnb eee a or aeotos ih(iietolahoar.ag s s
insuepdeh dieug.ji ntcTsunsraet ga.lteatrtta g t eda oooli
euocerw todbywweht u e eedtos etnsetu ei sw e reeemsepic

rraailu rSeeteilab.s Mjdtank niaixaft stcéokhn draee r
fosio oueth oo tatktpyw nne ,wsonsn ) ar pn rrftDg n etne s
s sder ung ikaoi o d .pel - nemiadjiab.sc wrvrunai n eIi

ati ehi eotcBu o vahopAteheid rtan israap s .desaubeanptdld
dg s xosu jiaa hseagsrsc feas oe neesbe d mfbwlLjtmo .srn r
bttfb.kheh iw .rw i notgy as apdt

2.3 The 1302 ASCII characters in cipherPr2 .3 result from the columnar transposition of
plaintext. If a line of plaintext does not end with a blank space, I have inserted a blank
space at the end of the line. The plaintext is a description of the local community handed
out to participants in the annual CRYPTO conference at UCSB in August of each year.
Assume that the width N of the transposition is an integer in the range 4 < N < 8.

cipherPr2.3

hto afocintaitaEFOTWpc eerfot aryvhdtufisttdahoni udyaTO ne,
oketf aceewomaeeseeeBghtee a aetl sae theilhIsioes yveepesu
loY eynotaeBsle erisdla B .e,ebtseiteepnshenk atcg uh n
i rl kWpeypiCrTuv 1, aAR DrPpetUiCnSa t rhawn o uel ionreru
:NTotabl iSa nb nrttoc (tEri w.arltnikr,a dtn tetplahnc od
r t lmuceultldn a cae,sn eent aroaltprrcspyep tc v t dei. ea
a ioe t hknhni phh s rarEITErhttotv i ta phuaeyltrbuao 1
aaelgsEAIdaa 1 m taua -r atpotigi waiealhr Atow ro ueinfVw
dtprmc fh su .a i narOrl entw tea oarhuilaehlaonlnk pdbotln
ffo h s rtthsdwwbo poraeeeof B LMSekaalontaiarWhoyeotidwp
flnefnr ofir G:u wudtsnary uot h faconiltdn bea fo.n ytew ts
no a, saHui o a eaea s eo B Aynw eeopxghfnb mnale y r abha
aekofv s taltEttglajmedes edcotinUiCnnbNNIE oi:mheofaarapa n
o hkoinyTlity tTBfovrwiseoar kttfoEthushn ntnrmsveemDleui
wwdotdsas ihjhueaofbow npt nrcitnbp eerdhobhnlwm aesdysmaivr
uteou ewalt a a,ottan.a teaniroTalnypcsrfoSaG AHasrnc iylan
bea o p 1l o r j.ogmmvun G hct oognbotsryfeG ml gndoo Tl bt
on ay orafotrtwo a me safssa lstcobswSa(icdha tfat ertatpcl
emtchiobiismn n uao Tockoaeuhecuo o ohrAt g giylaarRON o iW
s r Ble ee h ishhf bewfopsuoyIUy’ wueeh B,a neu s eu) eo
ataialtseymhnso,end istci .y ewaslosa ocanc warni s)u kk i yS
atcn e t th da ,an eaghtobwteGdrGBsaakte

2.4 The 431 ASCII characters in cipherPr2 .4 result from the columnar transposition of
plaintext. If a line of plaintext does not end with a blank space, I have inserted a blank



52

CHAPTER 2 COLUMNAR TRANSPOSITION

space at the end of the line. The subject matter is the work of Diffie and Hellman. Assume that
the width N of the transposition is an integer in the range 5 < N < 8.

cipherPr2.4

u rinpdsbelertythatpf tcrs te ymu n ctlhntanpbfitgen n eicy
(nosptr iyn rpeecie cirayi dt isbcaielighpcayifhr tMH.idcr
sPFdf,h oev tsksitm tcrtooypsskghkteoinpx se pep efeas)ae n
ytK denmsdlynng mcy air selocmhwokeat edr hwerfsi aadnime
nbyos.reyeraicloonym s.hrpyevatieto p hh e.fc haorhde uuat
lheuetm)or ewvxeciieycosce thnnpht nee srtpdhto dte eWlindt
rlTvpkpeShsace eu valoersTrsooen g salfer oere Atai a tD(
tednaytl s

2.5 The 739 ASCII characters in cipherPr2 .5 result from the columnar transposition of
plaintext. If a line of plaintext does not end with a blank space, I have inserted a blank
space at the end of the line. The subject matter is a recent morals charge filed locally in
2004 against a famous rock singer. Assume that the width N of the transposition is an
integer in the range 5 < N < 8.

cipherPr2.5

PeM nsshhlolrc rfef abet fele nbusAyiWa a licnnt totpctd.4E
a uatec eh flc ls.ocuhaO locoildgafaeRuSaimp loeatcoilo d
uae dlahsteosyt.aroi ef detfer ii esssu anm( ndtcs mastvter
u siensertllsai mtl n tv o B euresrln mtifyeh wfeu tesh te
nSaChtnfnsveofcla slnk sr u. .osue tiJ’so hedmeehloksbi r t
f acaods-ed e avpsca e fls,baandesvpiultnitfd hartrtsed olhn
im e gJ trualPpTh.rodeosrnbtiociaf ad’nht yvesienwyr ielnsnb
eorid, tt ien mhostkesto il lerTtantt’ceynitomottoa naeo

STyptih kaimaswathodt nos w olnhlooa talratarnbsaakr or aw
1gTy orcn titeesPa B crooead altdiicn otopTm rBssat neNrt
gl lgcoic wenaraodtf liiyNnhdaro thcadmodt elr ar eeotaw fh
- Pe ayio ng seynpinfaaieirr S.)u or for e nuepr mtasd hie
eg ls s-ahr acitaNr

2.6 The 240 ASCII characters in cipherPr2 .6 result from the columnar transposition of
plaintext. If a line of plaintext does not end with a blank space, I have inserted a blank
space at the end of the line. The subject matter is a course that all computer science students
usually take in their first year. Assume that the width N of the transposition is an integer in the
range S <N <7.

cipherPr2.6

Ton eno tempmstggacersohpsucr eeahsb eucttrrcrabnrigaTda eoo
ootnaynaii eoiu ciuondealelrimhdeeem,ococeymsinrnnwfontgg ma
.esea vX p nm aoidsoihsso ma onushest wus edv ttchktf jna
priehr ga u ar rost lre. sd ciiu er opmnP a dvniptuahlemt
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Problems 2.7-2.12 provide examples of cryptanalysis of columnar transposition using
Markov scoring. A range of possible widths NN is given in each problem. The solution requires
you to
1. Write a program to carry out Markov scoring;

2. Determine the set of possible widths N consistent with the Markov scores;
3. Recover the transposition 7= (7, Ty, ..., Ty—1) Up to a cyclic shift;
4. Decipher the plaintext.

The subject matter of the plaintext is unknown. I continue to replace the blank space (ASCII
X32) by an underscore (_) to make the ciphertext easier to read.

2.7 The 422 ASCII characters in cipherPr2 .7 result from a columnar transposition. The width
N of the transposition is an integer in the range 4 < N < 8.

cipherPr2.7

noeadbswodnbhte lhaiio sth.idbsatbftac6iaag eosUsmrpntraratt
gg tdctmtrTigrneethu ooeecls nnnsdsha oeetlhs ent ntbal wen

eiegen atrho ce ahossUrmm io yekatsSnatm dheu crt iyc uop e

m .hr iiaoise ghn eeauno aie pm lrmf e y oeim,utwcn ec2
rs ,s a7Snsrntstrte th tyk;otosrc pals shxr’uss a twu mt c
dcgei ipSnsseleeCrdihfiomnnenia nr mapm oeuooraten .e asac o
tnonts.idwosl siste ¢ ms th ocaooue assx sgas lr cl rfm lem

gu

2.8 The 928 ASCII characters in cipherPr2 . 8 result from a columnar transposition. The width
N of the transposition is an integer in the range 4 < N < 8.

cipherPr2.8

tihdea dri d.yptlo in 2rtsatmtss tipmCvhc -ecepnhors oldlw
c iin iids,iricwx o iaa euc a eetmtnd.aontrs, sphatorn Ee (3r
stsfi3ng-. iaaeta paage f elmeadntCeeae mp onle ,ueocuov wf4
e teuiy.ceer Seiimfdi.l ige bbfl ehaundgaocecyi nyshipsfmmnto

tipmc, ia s dnfi e e er m c2nr92 t ifn e 3 gonndhfa-slh be
t tbsl shpseuodii hhtddorn e nsmone locsehpser ¢ enteiioi p
ml aykaoehbd roasitbsdsTre ieherfetm cgOroesn rrrt m uner ee

tiilng- eev elgie8ss eeysor ,oolretcm gi r.ornsraaeow acT t
cgcuemar-blte nos ornoaBrstua p eosrsiro skdins eerfn ,nad.
ullo optufceer.o goybwhFdacoclp b topSelgiéltuani Ee (5Mun s
ef iit werofyetitweuc nnrcog e eam otsliy, ukrsima meuc aUot
xgitsnmotr tad inw e wafscfuus tho en e teshpserfsms oaee 1
iaongaotpnCeen e 40 nio 6inl)ttc r tnob umledhuebuea m ¢ g t
rfttsaocehyhrsayohalolcintTm cgt s ilcdlCtf aunods ngc ea e

ts enu brlamtro r orno usun eeeoilrnoildyDmfuc 1inl)hddgc2n
r90oesbwb dnshsi r a r foem

2.9 The 407 ASCII characters in cipherPr2 .9 result from a columnar transposition. The width
N of the transposition is an integer in the range 4 < N < 8.
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cipherPr2.9

Tve oyp odaocsun rhesaoiaill r nstd iuyrnrpyil ,th ee bgtao
riAuna n o iyasi clcuisalft iese astrtmyi eerdem x,ostérrwpt
bmkunatlas) tdirserthrriloepimtidainn fdmlsn o otldkrtes ,eec
r 9cg p aonfo aemeMaekelhinwcg pttitma ntdeenarmanonf,ci e a
st es 1 enl oyadnsa itmt nTndntanmnhthadr mcinfeyeth uccrt e
eeuiinsdbbuaombr esppsi e nc tdeh( ebgienicpp epto no mlf wt
g rtc.hmhm may i cefa u.hOyaaloleinsuelc ,t nm.

2.10 The 715 ASCII characters in cipherPr2.10 result from a columnar transposition. The
width N of the transposition is an integer in the range 5 <N < 9.

cipherPr2.10

ygasrnot aoetg suwcy ckitloecstrmrtereg oue aha , a’i s idar
gtrufcaMhl na e thfd guer oenrnteoe nhe mnfn eshibresntle
isl t, «cl Sce . e id lwblp roi reotnu , imgtm vyt ehdo A
em eu fnrsira. aoowhym,sigo,ieo 1 enes a wneiy onrgtionisal
hnc ina owassl Iaiuetutwetrbug fy oe arr ytonlsitaaa rced
g ca tuo niC eoIh otbotii onittt Mheo hbeelayy ouna tflar
ioocIomflcosuo fuc nivr tcd oafahgutgk,httrfehurysytnfgdn
eroa saeya yg. w ndnbrahfsl mne,riad snam dnnui ,p din nsd
anda stagBhdslootdeuhbfgntmeaeattndcPnal saatkllrha a htmgog
rf.tdgexpeg ‘tre nutt geilan,osa sykalIhsdf tryn pirlyranun
se shtst mvburaat al,esresapiov ssrit gmolotcrtf odaisfsgsel
gasIti eAilesunh, eei g sab luht ilgylgen eelsegtrwe.

2.11 The 314 ASCII characters in cipherPr2.11 result from a columnar transposition.
The width N of the transposition is an integer in the range 5 < N < 8.

cipherPr2.11
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fyyd ov k yonoMrfatvvfa cw lnuvaitvinsDted4 e ae tseh e t
elnceeftvllehr ae etwB.ienboebbadpoergsnamTamrpoidlsniluxtu
rbtdcit () mi-lr -ens honaor Aff a r,a epifoo ard kSase esx
aerrtreuhcsfe.

2.12 The 574 ASCII characters in cipherPr2.12 result from a columnar transposition. The
width N of the transposition is an integer in the range 5 < N < 8.

cipherPr2.12
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rnetrihnnnror0 nusdnnot aflt n iltuol nnneoltb eeglatoaaam
ihlltd niznosidi lclte peea d khuor deuvltd ceNe2asosaeiUrna
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, ,ata ig dnaaeoTatnrnss eatag asgiis h s o Urn gviansi a
fbmnesossiuimru i g srnotveymai ts
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CHAPTER 3

MONOALPHABETIC SUBSTITUTION

TH IS CHAPTER studies monoalphabetic encipherment. How ciphertext
may be searched for a fragment of text (cribbing) and the results used to recover the
plaintext and key will be explained. Problems to test your skills follow the text.

3.1 MONOALPHABETIC SUBSTITUTION

A monoalphabetic substitution T :x = (xo, X1, .., Xy—1) => Yy = (Yo, Y1»-+-» Yu—1) ON
plaintext with letters in the alphabet Z,, = {0, 1, 2, ..., m — 1} is a rule specifying the
substitute 6(x;) for the letter x;. Here 6 = (6(0), 6(1), ..., 6(m — 1)) is a permutation on

the letters in the alphabet
0:x; — vy, = 0(x;), 0<tr<n.

We begin by examining substitutions encipherment for plaintext written with letters in the
alphabet of 26 Latin letters. Uppercase letters will be used to display plaintext and lower-
case letters for ciphertext. As before, letters will also be referred to by their ordinal pos-
itions in the alphabet Z,, = {0, 1, 2,...,m — 1} with m = 26. Even though there are
26! ~ 4 x 10*° different monoalphabetic substitutions on Z,s, approximately a key
space of 80 bits, William Friedman [1944] estimated that the key would be determined
by ~25 characters of monoalphabetic ciphertext.

A monoalphabetic substitution may be specified in a substitution table such as
Table 3.1. A key word provides a simple mnemonic to construct a substitution table.
For example, the letter repetitions in GOODWORD are first deleted, yielding GODWR. The
substitution 6 is specified by the sequence of letters that starts with GODWR and then is
followed by the remaining letters of the alphabet in the normal order, as shown in
Table 3.2. If long key words are allowed, any of the 26! permutations may be generated
in this manner.

Historically, monoalphabetic substitution has been simplified using various mechan-
ical devices. General Albert J. Myer, the first Chief Signal Officer of the Union Army’s
Signal Corps, invented a cipher disk in 1863 that was used during the American Civil
War. It consisted of two concentric disks (Fig. 3.1), with the plaintext letters inscribed
around the periphery of the inner disk. In addition to the letters 2, B, ..., Z, the Myer
plaintext alphabet also included the letter combinations tion, ing, ours, and &,
which might frequently occur in words; the symbol “&” signalled the end of a word, equiv-
alent to a blank space to separate words.

Computer Security and Cryptography. By Alan G. Konheim
Copyright © 2007 John Wiley & Sons, Inc.
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TABLE 3.1 Substitution Table for Alphabet {a, B, ..., z}

A B C D E F G H 1 J K L M

| | | \ | | | | | \ | \

a w e r t % u i o P 1 k ]
(0] Q S T U \'% W

\ { \: \: \: | | | { \: \: \: \:

TABLE 3.2 Substitution Table Derived from GOODWORD

A B CDEVF GH I J KL MDNOUPOQR RS TUV W X Y 2Z
L T N S I 2 2 T e S S S N N S A 2
g o dw o r a b ce f hi3j k 1l mnpgs touv xy z

Each plaintext letter was enciphered into a sequence composed of the symbols “1”
and “8”' of length 1—-4. These ciphertext “letters” are printed around the larger circum-
scribed ring. The disks are fastened together concentrically in such a manner that one
may revolve upon the other and they may be clamped in any position.

Beginning around 1940, The Adventures of Captain Midnight was sponsored by
Ovaltine and broadcast over the Mutual Network radio. How I anticipated decoding
the secret messages as a member of Captain Midnight’s Secret Squadron. Of course,
I required a Captain Midnight Decoding Badge (Fig. 3.2). Like the Myer disk, the
Captain Midnight decoding badge implemented a monoalphabetic substitution. It con-
sisted of an outer disk containing the ciphertext alphabet — numbers 1 to 26 and an
inner disk on which a permutation of the (plaintext) letters A to Z is recorded.

Figure 3.1 Myer civil war cipher disk (Courtesy of NSA).

"Myer might have used of the symbols 1 and 8 since the Morse codes. — — — for 1 and — — — for 8 are dissimilar
tending to lessen transmission errors.
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Figure 3.2 Captain Midnight Decoding Badge. (Captain Midnight is a registered trademark of
Klutz and is used here with their permission. Replicas of the Captain Midnight decoding badge may
be ordered from www.klutz.com.)

3.2 CAESAR’S CIPHER

It is believed that Julius Caesar, in the period 58 BCE to 51 BCE, enciphered messages to his
lawyer Marcus Tullius Cicero and other Roman senators using a monoalphabetic substi-
tution. In the Caesar cipher, each plaintext letter was replaced by the letter standing
three places to-the-right in the alphabet. If we neglect that the original Roman or Latin
alphabet did not contain a J, U, or W, then, Julius’ query in the present day Roman alphabet

ANYONE KNOW WHERE I CAN GET DECENT PIZZA?
dgbrgh ngrz zkhuh 1 edg jhw ghfhgw slccd?

would be enciphered as above.

For the alphabet of uppercase Latin letters {A, B, ..., Z} identified with the inte-
gers in Z6=1{0, 1,..., 25} the Caesar shift substitution Cy is defined for each key
ke ZZG by

Ck : x = y = Cx(x) = (x + k) (modulo 26).

Variations of the Caesar substitution with larger key spaces have been invented; one
simple generalization, the affine Caesar substitution, is defined by the formula

Ajk : x — y = Ajx(x) = (jx + k) (modulo 26),

where the key is a pair of integers j, k. A x is a one-to-one transformation on the alphabet
Z,6 only when the multiplier j is not divisible by either 2 or 13. In this case, j has a multi-
plicative inverse modulo 26, meaning there exists an integer b = j ' that satisfies bj = 1
(modulo 26). These values of j are listed in Table 3.3. The key space of the affine
Caesar substitution contains 312 = 12 x 26 keys and exhaustive key trial remains
computationally feasible.
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TABLE 3.3 Integers in Z,¢ That Have Multiplicative Inverses

J 1 3 5 7 9 11 15 17 19 21 23 25
i 1 9 21 15 3 19 7 23 11 5 17 25

3.3 CRIBBING USING ISOMORPHS

Two r-grams u = (ug, Uy, ..., u—1) and v = (vg, vy, ..., U,—1) are isomorphs of one
another: u < v if they satisfy u; =u; if and only if v;=v; for 0 <1i, j <r. For
example, xyzanya and science are isomorphs of one another.

Cribbing can be used to analyze monoalphabetic ciphertext y by searching for
isomorphs of a plaintext crib in the ciphertext. If the plaintext r-gram (v, vy, ..., U,—1)
has been enciphered to the ciphertext (ug, uy, ..., u,—1), the isomorph provides parts of
the substitution 6. By piecing together several cribs and their isomorphs, most of the
ciphertext might be read.

Example 3.1
cipherEx3 .1 was monoalphabetically enciphered according to the rules:
« All characters (in the plaintext) other than uppercase letters have been deleted;
« The 399 letters in cipherEx3 .1, the ciphertext file is written in rows of 50 letters
in blocks of 5 separated by a blank space.

The subject of the plaintext is the early paper of Needham—Schroeder on authentication, to
be described in Chapter 17.

cipherEx3.1

gxzit hzoeqg zoghg hrrou ozgka ouhgz xstav twazt saroe zoghg
snrty ohtag xzith zoeqgz oghga gfsge taawn vioel tgeig yzvge
gjjxh oegzo hufgs zotac tsoyo tazit orthz ozngy zitgz itsoj
fkoeo zohgx zithz oegzo ghgyg jtaaq utjta aysgj zitat hrtsz
gzits tetoc tsocaa gjtoh ygsjg zoghg xzigf fthrt rzggs ohekx
rtrvo ziohz itjta aqutt hgwko huzit gxzit hzoeqg zoghz gzglt
fkget gxzit hzoeqg zoghf tszgo hazgz itort hzozn ghzit athrt
swxzh gzzit eghzt hzgyz itjta agqutj taawt ohuzs ghajo zztr

The program

IsoSearchl
Input: ciphertext, crib
Output: isomorphs of crib

searches ciphertext for all isomorphs of a plaintext crib. Possible cribs in cipherEx3 .1
include AUTHENTICATE, SIGNATURE, AUTHENTICATION, MESSAGE, and
PROTOCOL. Table 3.4 lists the 19 isomorphs of the crib SIGNATURE in cipherEx3.1
recording the number of times an isomorph occurs. To be effective, cribbing must be
combined with some mechanism to prune away unlikely instances of the isomorph of
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the crib. For example, if kaouhgzxs is the encipherment of STGNATURE,

S I G N A T U R E
N N
k a o u h g z x s

TABLE 3.4 Isomorphs of SIGNATURE in cipherEx3.1

Isomorph Isomorph Isomorph Isomorph Isomorph

1 kaouhgzxs 1 aouhgzxst 1 ouhgzxsta 1 uhgzxstav 1 ezoghgsnr
1 zoghgsnrt 1 oghgsnrty 1 ghgsnrtyo 1 yohtaagxzi 1 hufgszota
1 ufgszotac 1 gzitsojfk 1 tohygsjagz 1 gsohekxrt 1 gwkohuzit
1 wkohuzitg 1 kohuzitagx 1 egzoghfts 1 awtohuzsg

the frequencies of s and h in the ciphertext are not comparable to the probabilities of
the letters E and A in English-language text. We will show how unlikely isomorphs can
be detected by comparing the frequencies to the probabilities in standard English
language text.

3.4 THE x>-TEST OF A HYPOTHESIS

Suppose a large number n of independent trials of a chance experiment £ are performed. A
trial has r possible outcomes Oy, O, ..., O,_; that occur with probabilities ¢(0),
q(1), ..., g(r — 1). The number of times the outcome O; occurs, N;, is recorded.

How likely is it that the observed outcome-counts {N;} are consistent with
the hypothesis : q(i) is the probability of occurrence of O; (0 < i < r). In the context of
cribbing

« The experiment £ is the generation of plaintext by an iid language model with

1-gram probabilities 7 followed by monoalphabetic substitution 6;

« The r outcomes correspond to the occurrence of the letters of a ciphertext r-gram u;

« u=(ug, uy,...,u—1) is a ciphertext isomorph of the plaintext crib
v = (vg, Uy, ..., U,—1); and

- The probabilities g(i) = (v;) are those that would be true if the ciphertext u was the
encipherment of the plaintext crib v — that is, if 6 : v — u.

If the hypothesis is true, then for each possible outcome O;, the law of large numbers
asserts

lim E = q(i) O=<i<nr.

n— oo

The x*-statistic is the quantity defined by

r— 2
—ng()* _Non (N
X = =Y — (= —4q0)
Z g~ a0 \n
The ith term in the sum above is the product of two factors. The first,

n
00 = lim —

n>o q(i)’



68 CHAPTER 3 MONOALPHABETIC SUBSTITUTION

increases without bound with 7, and the second has one of two limiting values:

lim ﬁ — 40 0, if the hypothesis is frue
n—>co A oo, if the hypothesis is false.

The statistician Karl Pearson [1900] proved that the limiting distribution of )2 exists and is
independent of the distribution {g(i)}. Moreover, the outcome-counts {N;} have r — 1
degrees of freedom.”

Proposition 3.1:  If {¢(i)} is the common distribution of {N;: 0 <i < r}, then

2 (r=1) X oy3 y X
lim Pr{y, <x} = 7] yZeldy= J kr—1(y)dy
n—00 I r—1 0 0
()
where I'(k) is the gamma function, defined by

I'(k) = J F e dx
0

and I'(k) = (k — 1)! for integers k > 1.
Given a value of p < 100, there exists a value x(p, r — 1) such that Xﬁ should exceed
x(p, r — 1) with probability 0.01p if the sample size is large enough

P J“’
== kr—l( )’) dy
100 Jup.r—-1)

when the hypothesis is true. A large y*-value for p ~ 99 — in excess of x(99, r — 1) —
therefore casts doubt on the validity of the hypothesis. Tables of the y*-limits can be
found in Abramowitz and Stegun [1972], which also contains the formula

2 12 2 2
xz(p,r)zr 1——+x(p,r)\/— :r—7+v2rx(p,r)+fx(p,r)2+~~
9r 9r 3 3

3.5 PRUNING FROM THE TABLE OF ISOMORPHS

We identify the repeated trials of the experiment £ with the generation of plaintext with
letters in the generic alphabet Z, by the iid language model with probabilities
(i) =Pr{X=1i}for0<i<m.

To test if the ciphertext r-gram v is an isomorph of the plaintext u, the ciphertext
letter counts {N, } are compared to the plaintext letter probabilities using the X -statistic:

E (N ;ﬂn(z gu )) s no repeated letter in crib
X=1 & o, —nm@)? o
———, some repeated letters in crib
nar (u;)

i=0
v F V), LFE]

Table 3.5 lists the count of 1-grams {N;} and their frequencies f(i) = N;/n in the ciphertext
cipherEx3.1. Table 3.6 gives the probabilities {7 (i)} of 1-grams derived from a large

’The components of the r-vector of counts N = (No, Ny, ..., N,_,) are not independent, because n = Zf;é N;.
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TABLE 3.5 Letter Counts and Frequencies in cipherEx3.1

i N; fi i N; fi i N; fi

a 26 0.0652 3 12 0.0301 S 16 0.0401
b 0 0.0000 k 5 0.0125 t 54 0.1353
c 2 0.0050 1 0.0025 u 8 0.0201
d 0.0000 m 0 0.0000 v 4 0.0100
e 16 0.0401 n 4 0.0100 w 5 0.0125
f 7 0.0172 o 41 0.1028 x 10 0.0251
g 26 0.0652 o] 0 0.0000 y 9 0.0226
h 34 0.0852 a 31 0.0777 z 54 0.1353
i 21 0.0526 r 13 0.0326

TABLE 3.6 1-Gram English-Language Plaintext

Probabilities

i (i) i (i) i (i)
A 0.0856 J 0.0013 S 0.0607
B 0.0139 K 0.0042 T 0.1045
C 0.0279 L 0.0339 ) 0.0249
D 0.0378 M 0.0249 v 0.0092
E 0.1304 N 0.0707 W 0.0149
F 0.0289 0 0.0797 X 0.0017
G 0.0199 P 0.0199 Y 0.0199
H 0.0528 Q 0.0012 Z 0.0008
I 0.0627 R 0.0677

sample English language text. The plan is to now use the y*-test to associate the seven
high-frequency ciphertext letters in Table 3.5:

t 54 z 54 o 4 h 34 g 31 a 2 g 26

with seven of the nine plaintext letters of highest probability from Table 3.6:

ETAONRTISH

A correspondence between t, z, o, h and some subsetof E, T, A, O, N, R, I, S, H
permits most of the isomorphs to be discarded.

The results of IsoSearchl are given in Tables 3.7 to 3.12. One starting point for
the pruning is to determine the plaintext-to-ciphertext letter correspondences by selecting
the cribs with the smallest y*-scores (Table 3.13). The plaintext-to-ciphertext letter corre-
spondences implied by the first four cribs are consistent; for example, isomorphs of
the first two cribs implies the correspondences in Table 3.14. All of these plaintext-
to-ciphertext letter correspondences are also consistent with the isomorphs of MESSAGE
and DIGITAL with the smallest y*-scores. This is not the case for either of the isomorphs
of PROTOCOL.
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TABLE 3.7 Isomorphs of SIGNATURE in cipherEx3.1

Crib = SIGNATURE

kaouhgzxs 392.74
uhgzxstav 409.49 ezoghgsnr 22241
oghgsnrty 220.61 ghgsnrtyo 367.92

1 aouhqgzxst 23.13

1

1
hufgszota 169.42 1 ufgszotac 378.99

1

1

ouhgzxsta 197.01
zoghgsnrt 108.61
yohtagxzi 189.95
gzitsojfk 163.24
awkohuzit 230.77

egzoghfts 323.98

tohygsjqgz 182.56 gsohekxrt 200.65
wkohuzitg 25143 kohuzitgx 414.95
awtohuzsqg 560.30

L S e S S
—_— e e e e

TABLE 3.8 Isomorphs of AUTHENTICATE in
cipherEx3.1

Crib = AUTHENTICATE

None found

TABLE 3.9 Isomorphs of AUTHENTICATION in
cipherEx3.1

Crib = AUTHENTICATION

TABLE 3.10 Isomorphs of MESSAGE in
cipherEx3.1

Crib = MESSAGE

3 jtaaqut 3.10

TABLE 3.11 Isomorphs of DIGITAL in cipherEx3.1

Crib = DIGITAL

1 rouozgk 17.72 1 hgagfsg 138.14 1 soyotaz 130.15
2 hzozngy 211.85 1 eozohgx 253.68 1 oghgyqj 154.71
1 xrtrvoz 464.89 1 hzgzglt 284.29 1 azgzito 182.32

TABLE 3.12 Isomorphs of PROTOCOL in cipherEx3.1

Crib = PROTOCOL

1 fkoeozoh 232.62 1 zitsteto 357.85

TABLE 3.13 Isomorphs in cipherEx3.1 with Smallest )(Z-Scores

AUTHENTICATION «— gxzithzoegzogh 23.66
SIGNATURE <«— aouhgzxst 23.13
MESSAGE «— jtaaqut 3.10
DIGITAL <— rouozgk 17.72

PROTOCOL «— fkoeozoh 232.62
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TABLE 3.14 Plaintext-to-Ciphertext Letter
Correspondences in cipherEx3.1 from Table 3.13

I

<«
«
<~ 4
<«
«—

A B C D E F G H I J K L M
\ 1 { { . " \ \ 1 { { { "

e t u i o k ]
N O P Q R S T V) \% w X Y Z
! ! ! = ! ! \ ! ! ! " = \
h g Z

Assuming the correctness of the isomorphs of all cribs other than PROTOCOL pro-
vides the partial substitution table of Table 3.15. A partial trial decipherment replacing the
identified ciphertext letters by the plaintext values identified (in uppercase) yields

AUTHENTICATIONANDDIGITALSIGNATURESVEwWSTERSDICTIONA
RnDEyINESAUTHENTICATIONASAfROCESSwnvHICHEACHOYTvVOC
OMMUNICATINGEARTIESCERIYIESTHEIDENTITNOyTHEOTHERIM
fLICITINAUTHENTICATIONOYAMESSAGEMESSYROMTHESENDERT
OTHERECEICERISSOMEINYyORMATIONAUTHAffENDEDTOORINCLU
DEDVITHINTHEMESSAGEENAwWk INGTHEAUTHENTICATIONTOTALE
fkACEAUTHENTICATIONfERTAINSTOTHEIDENTITnOYyTHESENDE
RwUTNOTTHECONTENTOYTHEMESSAGEMESSWEINGTRANSMITTED

from which words and additional letter-pair correspondences can be recognized; for
example

« P — f from tROCESS, and
+ Y — n from IDENTITn.

Example 3.2

The n = 356 lowercase letters in cipherEx3 . 2 result from a monoalphabetic encipher-
ment of plaintext where the subject of the plaintext is standard lower-division computer
science courses. The first step in the analysis is to make 1 gram counts {¥;} and frequen-
cies { f;} in cipherEx3. 2; these are listed in Table 3.16. Using IsoSearchl for the
possible cribs including PROGRAMMING, PROGRAMS, and LANGUAGE gives the results
in Tables 3.17 to 3.19. If both PROGRAMMING or PROGRAMS appear in the plaintext, the
true ciphertext of LANGUAGE must be xgvflgf t. These cribs determine the partial sub-
stitution tables, Table 3.20.
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cipherEx3.2

otohb ktbdm gjegx kbmhb psrtg extgh vbvcqg kdtcg ksegx xubhs
tvktr svkhb rleks bvkbm hbfhg ccsvf gvrmg jegxo tkgzt skgbh
fhgvk trkdg kmgje gxsjg jlmth sbhsv jkhle ksbvg xxqgvf lgftk
dgkkd togquk bxtgh vmhbf hgccs vfsjk bohsk tmhbf hgcjg vrkdg
kmhbw xtcjb xpsvf jdblx rwtkg lfdks vkdtg shjkm hbfhg ccsvf
eblhj t
TABLE 3.16 Letter Counts and Frequencies in cipherEx3.2
i N; fi i N; fi i N; fi
a 0 0.0000 J 12 0.0469 s 18 0.0703
b 22 0.0859 k 27 0.1055 t 19 0.0742
c 10 0.0391 1 7 0.0273 u 2 0.0078
d 9 0.0352 m 10 0.0391 v 17 0.0664
e 8 0.0312 n 0 0.0000 w 2 0.0078
f 12 0.0469 o 5 0.0195 X 0 0.0000
g 2 0.0078 D 2 0.0078 v 12 0.0469
h 23 0.0898 q 29 0.1133 z 1 0.0039
i 0 0.0000 r 7 0.0273
TABLE 3.17 Isomorphs of
PROGRAMMING in cipherEx3.2
Crib = PROGRAMMING
3 mhbfhgcecsvE 20.75
TABLE 3.18 Isomorphs of PROGRAMS
in cipherEx3.2
Crib = PROGRAMS
1 mhbfhagcj 21.24
TABLE 3.19 Isomorphs of LANGUAGE in cipherEx3.2
Crib = LANGUAGE
1 eksbvkbm 91.43 xgvilgft 19.25
TABLE 3.20 Partial Substitution Table for cipherEx3.2
A B c D E F G H I J L M
| | | \: | | | | | { \: \ \
a t f s x c
N (0] P Q R S T U \ w Z
\ \ \: 1 \ \ \ \ { \ \ \ \
v b m h 3j 1
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A partial decipherment of cipherEx3 .2 reveals words:

OEOROKEOdPASeALKOPROpIrEAeLEARNONMAKJEMAkTeALLuORT
ENkKErINkROrUekIONkOPROGRAMMINGANrmASeALOEKAZEIkgOR
GRANkKErkdAkPASeALISASUPERIORINSKkRUekIONALLANGUAGEk
dAkkdEoAukOLEARNPROGRAMMINGISkOORIKEPROGRAMSANTrkdA
kPROWLEMSOLPpINGSAOULrwEKAUGAkINKdEgIRSkPROGRAMMING
eOURSE

wm A WD = O

1. Lines 0,2: C — e from PASeAL;
2. Line 5: ¢ — e from eOURSE;
3. Line 3: T — k from kOLEARN
and so forth. The complete substitution table cannot be recovered because four letters do

not appear in the plaintext. Note also that the most frequent plaintext letters in decreasing
order of frequency of occurrence are

A(0.1133) T (0.1055) R (0.0898) O (0.0859) E (0.0742) I (0.0703) N (0.0664)

which deviates from the order ETAONRISH in Table 3.6.

3.6 PARTIAL MAXIMUM LIKELIHOOD ESTIMATION
OF A MONOALPHABETIC SUBSTITUTION

Can we find the substitution without a crib? We suppose ciphertext y = (yo, Y1, - -+ s Yn—1)
results from a monoalphabetic substitution of plaintext x = (xo, X1, . . . , X,—1), both written
with letters in the alphabet Z,, = {0, 1, ..., m — 1} with an unknown substitution 6.

We assume the substitution 6 has been chosen randomly independent of x and
according to the uniform distribution Pr, ,,;,,,/{® = 6} =1 /m. The cryptanalysis problem
Given: 'y
Evaluate: t_he likelihood of the hypothesis H(7) that ® = 7
is solved by the maximum likelihood estimation (MLE). Computation of the MLE assumes

the plaintext has been generated by a Markov language model with parameters (7, P).
Knowledge of the ciphertext changes the likelihood of ©:

Pr, priori{® = 0} — Pr, posleriari{® = O/Z = X}
Using Baye’s Law

Pr{A}

Pr(4/B) = Pr(B/A} 5

we have

Pr, posteriori{® = 0}
Pr, posteriori (Y= X}

Pr, pasteriori{® =0/Y= X} = Pr, posteriori{z = .X/® = 6}

The MLE of the substitution is any 6 which satisfies

Pr, posteriori {0 = é/X = X} = mng Pr, posteriori { 0= 0/Y = X}
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1
Assuming Pr, posterioni {® = 0} = — and Pr, posieriori{Y = y} does not depend on 6
m! =

mglx Pr, posteriori{® = G/X = X} = mng Pr, posteriori{X = X/G) = 6}.

3.6.1 1-Gram Scoring Using an Independent 1-Gram
Language Model

The simplest language model was described in Chapter 2; it postulated that plaintext
X = (Xo, Xy, ..., X,—1) resulted from n independent and identical trials with probabilities

(t) = Pr{X; = t}, 0<i<n, 0<t<m.
With this model

Score(7/y) = Pty posterionitY = y/H(D} = (7 (yo)w (7 (y1) -+ - (7 (yue1)
m—1

=[]~ "o (3.1
t=0

where N, is the number of times the letter ¢ appears in the ciphertext y. Finding the
maximum value of Score(7/y) is equivalent to finding the maximum value of

m—1

1
L-Score(r/y) = - log, Score(7/y) o< Z%logz (7).
t=0

The symbol oc (proportional to) indicates that both sides agree up to a term that is
independent of 7.
The law of large numbers gives lim N,/n = 7 (67'(¢)) so that

m—1
lim L-Score(7/y) o< Y (67" (1) log, 7 (™' (1)). (3.2)
oo I

Applying the inequality of the arithmetic and geometric means

m—1

m—1
Y m@ @)log, m(r'()) < Y p (67 (1) log, p (671 ().
t=0 t=0

This shows that the substitution 7, which maximizes the log-score in Equation (3.2),
is the Bayesian solution when the plaintext is generated by the independent 1-gram model
and a large enough sample of ciphertext is observed.

One important point: the computation of the Bayesian solution for an alphabet of
m =26 letters requires the maximization of L-Score(8/ y) over a set of m!=
26! = 0(10*) values.
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3.6.2 1-Gram Scoring Using a Markov Language Model

A more sophisticated language model assumes that plaintext is generated by a Markov
language model with parameters (7, P). Using this model,

Pty posterion{ Y = /0 = 0} = (0~ (yo)P (0 (y1)/0" (y0))
PO (32)/07 1) PO (30e1)/ 07 (y2))

m—1
=m0 (o) [ [ P (67 )/ 07" (o)),
i,j=0
where N, is the number of adjacent ciphertext letter-pairs (s, t).
It is not feasible to evaluate Pr, ,seriori{ ¥ = y/© = 6} for every 6 when m = 26.
Instead, we will calculate an approximate partial MLE, by maximizing over substitutions
that are only partially specified. ®, consists of those 6 determined by a k-vector of plain-

text letters a = (ag, ay,...,ax—1) and a k-vector of corresponding ciphertext letters
Zj = (bo, b1, ..., br—1):

S ®g,é = 0(a;) = b, for0 <i<k.

The conditional probability Pr, poserioril Y = y/@g} is defined by
k=1
Pra posteriuri{z = X/®QQ} = 77(0_1()}0)) 1_[ PNhM’j(G_l(bj)/G_l(bi)) x Py x Py x P3’
i,j=0
where

k—1 k—1

Pr=T]T]P" 0 ®/07 b))
i=0 t=0
t&a,b

k=1 k-1

Py=T1 [ P™u07 wp/6~" ()
j=0 s=0
s&a.b

and

k—1

Py= [ P*07' /67" (s).
s,Sr’é:g(,)é

0e @M does not provide the values of 07l(t) for t & a, b so that the evaluation of
Pry posterioril Y = X/ 0,5} is not possible. Instead, we calculate an approximate partial
MLE log-score defined by

1
L-Score(Y = y/0, ) = —log, Score(Y = y/0, )
Y/ Oap) =~ Y/Oqp

Np, b,

n

k—1
=70 (y0) Y

i,j=0

log, P(67'(b))/ 67" (by)).

By the law of large numbers

lim NhT” — (= )P )7 (b))

n—o0
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so that

lim L-Score(Y = y/0,) = Lo-Score(Y = y/0,)

n— oo

k—1
=Y a(r B)P( (by)/7 (b)) log, Plaj/a).

i,j=0

k=1
It is reasonable to look at the values of (a,b) for which 3} (71 (b)))
P(77Y(bj)/ 7 (b)) log, P(a;/a;) is a maximum. i.j=0

Example 3.3
The ASCII plaintext

plainEx3.3

The pre-major requirements for the B.A. and the B.S. degrees
in computer science are the same. Students intending to major
in computer science should declare a pre-major when applying
for admission to the university. Students who declare a
pre-major are responsible for satisfying degree requirements
in effect at the time of their declaration.When students have
completed the preparation courses, they must petition to
declare a change from pre-major to major status.

is enciphered according to the rules:

« All characters (in the plaintext) other than uppercase letters have been
deleted,

. The ciphertext is written in row of 50 characters producing the ciphertext

cipherEx3.3

rnbpybifczyybhkwybibvrdxzyrnbgffvgrnbgdgbaybbdwvtz
ipkrbydtwbvtbfybrnbdfibdrkgbvrdwvrbvgwvarzifczywvt
zipkrbydtwbvtbdnzkoggbtofybfpybifczysnbvippoewvaxz
vigiwddwzvrzrnbkvwubydwredrkgbvrdsnzgbtofybfpybifc
zyfybybdpzvdwgobxzydfrwdxewvagbaybbybhkwybibvrdwvb
xxbtrfrrnbrwibzxrnbwygbtofyfrwzvsnbvdrkgbvrdnfubtz
ipobrbgrnbpybpfyfrwzvtzkydbdrnbeikdrpbrwrwzvrzgbto
fybftnfvabxyzipybifczyrzifczydrfrk

Table 3.21 gives the letter counts {N;} and frequencies {f;} of the letters in the
cipherEx3. 3 ciphertext. It is reasonable to suppose that the high-frequency ciphertext
letters identified in Table 3.21,

b (60) r (37) v (34) £ (28) Z (26) Vv (25) d (25) w (28)
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are likely to correspond to some of the plaintext letters of high probability:

E T A 0 N R I S H
TABLE 3.21 Letter Counts and Frequencies in cipherEx3.3

i N; fi i N; f; i N; f;

a 6 0.0156 b 60 0.1563 c 6 0.0156
a 25 0.0651 e 4 0.0104 £ 28 0.0729
g 14 0.0365 h 2 0.0052 i 16 0.0417
J 0 0.0000 k 12 0.0313 1 0 0.0000
m 0 0.0000 n 15 0.0391 o 8 0.0208
P 13 0.0339 q 3 0.0078 r 37 0.0964
s 3 0.0078 t 14 0.0365 u 2 0.0052
v 25 0.0651 w 23 0.0599 X 8 0.0208
Yy 34 0.0885 z 26 0.0677

TABLE3.22 k=3

TABLE 3.23 k=14

a, b Loo-Score(Y = y/0,,) a,b Loo-Score(Y = y/0, )
bE N yR —0.2524 bE rN vR fA —0.4625
bE rT vR —0.2636 bE rT vR fA —0.4762
bR rA vE —0.2822 bN rE vI fT —0.4768
bR rO vE —0.2868 bN rO vI fT —0.4823
bN rE vI —0.2900 bE rN YR fo —0.4825
bN rO vI —0.2928 bR rA vE fN —0.5008
bR rT vE —0.2964 bN rA vI fT —0.5043
bE rI YR —0.2999 bR rA vE fT —0.5049
bR rE vO —0.3021 bR rO vE N —0.5050
bE rR yT —0.3043 bE rN vR fI —0.5061
TABLE3.24 k=5 TABLE3.25 k=6
ab Loo-Score(Y =y/0,,) ab Loo-Score(Y = y/0,,)

bE rN vR fA z0 —-06048 DbE rT yR fA zO vN —0.8009
bE rT vR fA z0 —-0.6122 bE rS yR fA z0 vN —0.8156
bN rE vI fT zZR —-0.6168 DbE rT yS fA zI vN —0.8286
bE rN vR fo zZA —-06234 DbE T yR fA z0 vsS —0.8297
bR rA vE fN zT -06278 DbE rT yN fA zI vS —0.8307
bN rO vI fT zZR —0.6293 bE rT yR fA zI vN —0.8377
bR ro vE fT zN —-0.6324 bN rE yI fS zR vT —0.8410
bR rA vE fT zN —-0.6325 DbE rS yR fA zI vN —0.8463
bE rT yN fa zI —-06359 DbE T yR fA zI vS —0.8464
bE rN yR fA zT —06395 bR rI yE fS zN vT —0.8464
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The 10 largest scores for partial assumptions with k = 3(1)6 are given in Tables 3.22
to 3.25. If the (lowercase) ciphertext letters in cipherEx3.3 are replaced by their
(uppercase) plaintext correspondents according to @,

b - E r > T v - R f - A z - O v - N

the following partially deciphered plaintext is obtained:

Partial-plainEx3 .3 : Step 1

TnEpRE1ACORREhkwWRE1ENTAXORTNEgqAANgTNEgqdgEaREEAwNtO
ipkTERAtwENtEARETNEJA 1 EATKgENTAwNTENgwNaTO1iAcORwWNL
O1pkTERAtwENtEdnOkoggEtoAREAPREiIAcORsnENAppoewNaxO
RAgiwddwONTOTNEKNwUERAwTedTkgENTdsnOgEtoAREAPREIAC
ORAREREdpONdwgoEXORJATwdxewNagEaREEREhkwRE1iENTAwNE
XXEtTATTNETW1 EOXTNEWRJEt 0OARATWONSNENdATkgENTAnAUELO
ipoETEgTNEPREPARATWONtOKkRAEATnEei kdTpETWTWONTOgEtO
AREAtNANaExXROipRE1IAcCORTOiACORATATk

The ciphertext letters corresponding to plaintext letters I, S, and H need to be identified;
they are likely to be among d, w, i, n. Next, each of the 24 permutations of the three letters
{d, w, i, n} is replaced by (I, S, H), and the resulting partial plaintext is searched for
recognizable word fragments. The process requires some experimentation and we will
not continue beyond this point.

3.7 THE HIDDEN MARKOV MODEL (HMM)

A class of stochastic processes now referred to as Hidden Markov models (HMM) are
described in the two important papers published by Petrie [1969] and Baum et al.
[1969]. The application of HMM to automatic speech recognition (ASR) was
quickly recognized, and is detailed in the survey papers by Levinson et al. [1983],
Rabiner and Juang [1986] and Poritz [1988]. We outline the main ideas and show
how HMM may be applied to cryptanalyze a monoalphabetic substitution.

A hidden Markov model (HMM) is a two-stage random process; both the input
X = (Xo, Xj,...,X,) and output states Y= (Yo, Y;,...,Y,) consists of integers in
Z,=1{0,1,...,m— 1}. The HMM is constructed from

1. A Markov chain with parameters (7, P) generating (hidden) states X
m—1
mW)=0 (O0<i<m) 1=) ml) (3.3)
i=0
—1

P(/)=0  O=ij<m 1=) P/ O=i<m) (34
J

5

Iy
=}

2. An output probability distribution g(j/i) =Pr{Y¥;=j/X, =i} for each hidden
state i

m—

q(j/H=0  O<i<m) 1= Zq(f/l) O<i<m (3.5
j=0
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Figure 3.3 Observing the hidden states.

The evolution of the HMM may be described as follows:
1. The initial hidden state X, = x, is chosen with probability 7 (x¢);
The initial output state Yy = xo occurs with probability g(yo/xo).
2. Fort=1,2,...
(a) the hidden state X, = x, occurs with probability
Pr{X, = xt/Xt*l =X-1}= P(xz/xtfl)Q
(b) the output state ¥, = y, results with probability Pr{¥, = y,/X, = x,} = q(y:/x).

The output states ¥ may be observed, the hidden states X are not (Fig. 3.3). Throughout this
section,

1. The observation interval consisting of the time points ¢ with 0 <7 < n and

2. The output state vector y = (Yo, Y1, - - - , ¥,) are fixed.

The probability of observing the output state y is expressed as a summation over all
paths x through the hidden states:

PriY =y} =) Pr{¥ =y, X=x} =) Pr{¥ =y/X =x}Pr{X =}

= > m@)P@1/x0)P(x2/x1) - PCin/X—1) q(Y0/X0)q( 1 /X1) - - G s/ %s)

X=(X0,X15++,Xn)

> (xo) ( [ P(xx/x“)) ( [1 q(ys/xa) (3.6)
X s=1 s=0

The two expressions appearing in the summation on the right-hand side of Equation (3.6)
correspond to

« The probability 7 (xo) ]—[’;=1 P(xs/xs1) of the path x = (xo, xy, ..., x,) through the
hidden states and

- The conditional probability [T;_, g(ys/xs) of output y = (yo, y1, ... ,y,) given the
path x = (xo, x1, . .. , x,) through the hidden states.
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The summation in Equation (3.6) defining Pr{¥ =y} is over m"*! states and requires

O(2m"+1) multiplications. A direct calculation is not feasible for m = 26 and even mod-
erate values of, say n & 15. However, there is an alternative practical way to carry out the
evaluation of Pr{Y = y}, to which we now turn.

3.7.1 The Forward-Backward Recursion (FB)

Our starting point is the basic Markov property: For any fixed time ¢ with 0 < ¢ < n, the
paths x through the hidden states may be partitioned into disjoint sets of paths according to
state x, visited at time 7. Accordingly, Equation (3.6) can be rewritten as

m—1

Pr{Y =y} =) Pr{Y =y, X, =i}
i=0

PriY =y, X, = i} = a;(i) x B,(i) (3.7

)=y w(xo)<1'[P<xx/xs_1>) (]’[g(yx/m) (3.8)
s=1 s=0

(x0,X1 sees JXt)
x=i

Bi= Y. (]"[ P(xs/xsl)) ( I1 q(ys/xo). (3.9)

(X¢ 3 X041 50005 Xn) \S=1+1 s=t+1

Recursions for (i) and B,7) are obtained by noting that
1. The path (xq, xy, ..., x,) satisfying x, = i is composed of
(a) the path (xq, xq, ..., x;—1) satisfying x,_; = k for some k € Z,,
(b) followed by the state transition x,—; — x; = i.
2. The path (x,, x,41, ..., x,) satisfying x, = i
(a) begins with the state transition x, — x,,| — k for some k € Z,,
(b) followed by the path (x,y1, X;52, - -, Xy).
Combining these terms leads to Proposition 3.2.

Proposition 3.2: The functions (i) and B(i) satisfy the forward—backward

recursions
[ malyo/i) ifr=0
(= { S ROPGRg(n ) if1<i<n (3-10)
B, (i) {1 r=n 3.11)
ll = m— . . .
m Pk /idg(yi /KB () IO <t <n.

Only O(m*n) rather than OQ2m"™™") multiplications/additions are required in the
forward—backward recursion of {a,(i)} and {B,(i)}.
When an HMM is used to cryptanalyze a monoalphabetic substitution
- The observed states y form the ciphertext,
« The hidden states x form the plaintext, and
- g is the unknown monoalphabetic substitution.
Cryptanalysis the maximum likelihood estimate (MLE) of g (and x) given y.

And now a further complication — only the output observations y are truly known
when the HMM is applied in cryptanalysis. The generation of plaintext by a Markov
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chain is only an approximation, and even if this approximation is accepted, the parameters
(, P, q) defining the HMM are unknown. Cryptanalysis using a HMM is the MLE of the
parameters (7, P, g) constrained by Equations (3.3)—(3.5):

MLE Problem

Find: (m, P, q) to maximize Pr{X = X}
Subject to: the constraints described by Equations (3.3)—(3.5)

Finding the MLE of (m, P, g) is the central problem addressed in the work of Baum et al.
[1969] and in Baum’s subsequent paper Baum, [1972]. Dempster et al. [1977] refer to
Baum’s algorithm as the expectation method (EM).

The method of Lagrange multipliers (see Kaplan, 2003, for example) is used to for-
mulate the conditions for the MLE of the parameters (7, P, g); accordingly, (7, P, g) is a
critical point in the MLE of the HMM parameters provided:

9 m—1 .
=5 (){Pr{Y v} — (Zw(k)—l)}, 0<i<m

k=0

m—1

8 : ..
ZW{Pr{Y=y} —Az(kzomk/z)— 1)} 0<ij<m

0 . ..
:aq(j/i){Pr{Y:y}—)\g(kzoq(k/l)—l)}, 0<ij<m,

where Aj, A, and A; are the Lagrange multipliers corresponding to the constraints in
Equations (3.3)-(3.5).

3
L

3.7.2 Critical Point Conditions for =

For every fixed value of r with 0 <7 < n, we may write

m—1

m—1
PrY =y} =Y Pr(Y =y.X, =j} = Y a(B,)-
j=0 j=0

0
The critical point condition 87(,)Pr{ Y =y} — Ay =0 for #(7) implies
(i =
0 = g(yo/DB() — Ar.

Multipling by (i) gives
0= 7)qg(yo/D)Bo()) — M7 (i) = ap(i)By(i) — Ay (D).
The value of A; is obtained by summing over i

m—1

ao(k)BO(k) A Z 7 (k).

0 =

§

0

»
Il

Noting that 1 = Zk _o (k) determines the value # (i) as

() By ()

— (3.12)
"o ao(k)By(k)

(i) = %) =
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3.7.3 Critical Point Conditions for P(j/i)
For every fixed value of # with 0 < r < n, we may write

m—1

Pr{Y =y} = ZPr{X:X,X, =k X4 =10}
k,/

Since
Pr{Y =y,X; =k, Xi11 = £} = a,(k)q(y1:1/OPL/k) B, 11 (),
we have

n—1 m—1

-1 =0 k¢

Pr{Y =y} = i (K)q(yi1/OPL/K)B, 41 (0).

The critical point condition 455 Pr{Y = y} — Ay = 0 for P(j /i) implies

3P(J/t)
n—1

0= aq(yis1/NBs1() = ha-
t=0

Multipling by P(j/i) gives

n—

0=  aDPG/DG(yir1/DBi1()) = A2P(j/D).

N
Il
=}

Summing over j gives

m—1
@B =Y aq(yis1 /HP/DB1()
Jj=0

m—1

=Y P(j/i)
j=0

and determines the value P( Jj/i) as

S il Vet [DPG/DB)
S a)B,(i)

P(j/i) = (3.13)

3.7.4 Critical Point Conditions for q(j/i)

For every fixed value of ¢ with 0 < ¢t < n, we may write

m—1
PriY =y} =) Pr{Y=y.X =kX;1 =1}
k,/

Since

Pr{Y =y, X; = k, Xi11 = £} = a(k)q(y:/OPL/K)B, 11 (6)
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we have

n—1 m—

1
PriY =y} = 71 o (k)q(y: /OPL/)B, 11 (0).
t=0 k¢

The critical point condition WPr{X =y} — A3 =0 for P(j/i) implies
m—1 n—1

0="> " a@PE/DB (&) = As.

=0 =0,
Yi=J

Multipling by ¢(j/i) gives

m—1 n—1
a (g (j/DPE/DB 1 (6) — Azq(j/i)
=0 =0
Summing over j gives "
m—1
B = Y a(q(j/DPE/DB(0)
j, €=0
m—1
q(j/D
j=0
and determines the value §(j/i) as
n—1
X(:) at(i)Br(i)
O — (3.14)
ZO oy (1)B, (i)

The re-estimates 7 (i), P( j/i), and ¢ permit additional interpretations, which we
summarize.

Proposition 3.3: The quantities {o,(i)} and {B,(i)} determine the following per-
formance measures of the HMM:

3.3(a) The joint probability of observing the output sequence ¥ =y and hidden state
X,=1iis
Pr{Y =y, X; = i} = a() B, (D).

3.3(b) The probability of observing the output sequence ¥ =y is
m—1
Pr{Y =y} =Y a(i)B,G).
i=0

for every t with 0 <t < n.
3.3(c) The conditional probability of the hidden state X, =i, given the output state
Y=y.is
& ()B,(0)

T = ST 0B
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3.3(d) The sojourn time (the time the hidden process X spends in the hidden state i) D(i)

3.3(e)

3.3()

in state i is
n
D) =) xiX, =i},
=0

where x{---} denotes the indicator function of the event {.---} =
1, if the event {---} is true.
0, otherwise

The conditional expectation E{D(i)/Y = y} of D(i), given the output Y =y, is

Zt 0 yt(l)
Zj —o YU )

The number N(i, j) of instances ¢ over the observation interval 0 < ¢t < n at which
the state satisfies X, =1i, Y, = is

E{(D()/Y =y} = ZPr{Xf =i} =

NGjy =) x{X =i Y, =j}.
t=0

The conditional expectation E{N(i, j)/Y = y} of N(i, j), given the output sequence
Y=y,is

3 @(i)B,i)

1 =0
EING/D/Y = = Pr{X, =iY, =] - =
{NGi/i)/Y =y} ; rf i i) P

The number 7(i, j) of hidden state transitions i — j over the observation interval
0<t<nis

n—1

TG.j) =Y x1X =i X1 =j}.

The conditional expectation E{7(i, j)} of the number of hidden state transitions
i — j over the observation interval 0 < ¢ < n, given the output sequence ¥ =y, is

n—1
>y aP(j/ D9(Ye1 /DB ()
E{T =) Pr(X, =i, X1 =
e =0 . Wi == =0 c(k)B, (k)

The critical conditions determining (%, P, §) can be expressed as:

1. P(j/i) in Equation (3.13) is the ratio

expected number of times the hidden state satisfies X; = j, X1 =J

expected number of times the hidden state satisfies X; = j

2. ¢(j/i) in Equation (3.14) is the ratio

expected number of times the state is X; =1i1,Y, =

expected sojourn time D(i) in hidden state i
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The re-estimation of the parameters { = (7, P, g) is a transformation

S:{=(mP.q) — {=(#P,{),

usually referred to as hill climbing.
Multidimensional optimization problems

1. May have more that one critical point, and

2. The critical point may be a local maximum rather than a global maximum.

The uniqueness of critical points for the HMM and the issue of whether Pr{Y =y} is a
global or local maximum was considered in the Baum papers. The answers rely on the
auxiliary Q-function, introduced by Kullback and Leibler [1951]:

QL) =) Pr{Y =y, X=x}log, Pr;{¥ =y, X =x}.

The subscript ¢ (respectively f ) indicates the parameter used in the computation of
PrAPr¢). It is proved in Baum et al. [1969] that either

1. The initial set of parameters { may be a critical point of Pr{¥ = y}; that is, {'is a
fixed point of S, or

A

2. If ¢ # f, then the re-estimated parameters ¢ is a more likely set; that is,
Pry{¥ =y} > Pr{Y =y}

Moreover

3. 0. {) > Q(& ¢ implies Pr (Y = y}> Prg (Y= y);

4. isa gritica] points of Pr,{Y = y} if and only if {is a critical point of Q(¢, Z) (for
fixed ¢); and

5. For HMM with only a finite number of states, there is only a single critical point *
and it is a global maximum for Pr{Y = y}. (Note, HMM can be formulated for
discrete-valued processes with countably many states (m = o0) and for continuous-
valued processes.)

In summary, we formulate Proposition 3.4.
Proposition 3.4: The parameters { = (1, P, g) of the HMM are either
3.4(a) A fixed point of the transformation S meaning 7 = m, P= P, and ¢ = ¢, in which
case (m, P, g) is the unique MLE; or
3.4(b) {p(7r, P, §) = S(, P, q) provides a more likely value for Pr,{Y =y} than does
{=(m P, q).
Proposition 3.4 implies that the iterates of (i, P, g) under S converge to the unique

maximizing set of parameters for the HMM.

Example 3.4
We take m = 4, n = 12 and parameters

= (0.25,0.25,0.25,0.25)
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0.2 0.2 0.5 0.1
0.333 0.333 0.167 0.167
0.2 0.4 0.1 0.3
0.5 0.0 025 025

¢(J0) = (0.3,0.4,0.2,0.1)  ¢(/1) = (0.6,0.0,0.3,0.1)
¢(/2) = (0.1,0.1,0.3,0.5)  q(/3) = (0.4,0.4,0.1,0.1)

Randomly determined hidden and output states for this HMM are
y=1(0,3,3,0,0,0,2,0,0,3,3,3,0)

and

x=@3,0,1,1,1,3,0,1,1,2,3,2, 1)

Table 3.26 gives the values of {y,(i)} for 0 <i <4 and 0 < < 12. Table 3.27 gives the
conditional probability Pr{X, =i /Z =y} for the same set of (i, 7) values; the column on
the left lists the value i* that maximizes this conditional probability. From this we see
that we have not done very well!

Re-estimation

We now re-estimate the parameters (7, P, g); while re-estimation improves Pr{Y = y}, it
may not make |g(j/i) — §(j/i)|, for example, smaller. S is iterated so that

(m,P,q) — S(m, P,q) — S*(m,P,q) — --- — S(m,P,q)

until the change IS” Y, P, q) — S’(m, P, q)| is small enough.

TABLE 3.26 (i) in Example 3.4

t i—0 1 2 3
0 0.0000000095541601  0.0000000130685831  0.0000000018213404  0.0000000107410370
1 0.0000000111697621  0.0000000035108919  0.0000000168688425  0.0000000036356241
2 0.0000000037006617  0.0000000067052652  0.0000000217051795  0.0000000030740142
3 0.0000000063912541  0.0000000200082725  0.0000000023421415  0.0000000064434525
4 0.0000000087571231  0.0000000164899292  0.0000000033588684  0.0000000065792000
5 0.0000000123782871  0.0000000141369296  0.0000000027571407  0.0000000059127633
6  0.0000000073749149  0.0000000109587690  0.0000000150999353  0.0000000017515015
7 0.0000000057736313  0.0000000192355902  0.0000000028191940  0.0000000073567052
8 0.0000000135749122  0.0000000121488982  0.0000000018871707  0.0000000075741396
9 0.0000000079690340  0.0000000038602417  0.0000000196837204  0.0000000036721247
10 0.0000000091030246  0.0000000063064266  0.0000000140270220  0.0000000057486475
11 0.0000000038592748  0.0000000061253754  0.0000000217029100  0.0000000034975604
12 0.0000000073893222  0.0000000170197500  0.0000000018024995  0.0000000089735489




TABLE 3.27 Pr{X; =i/Y =y} in Example 3.4
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%

i t i—0 1 2 3

3 0 0.27153978 0.37142375 0.05176451 0.3052714
0 1 0.31745698 0.09978343 0.47943114 0.10332845
1 2 0.10517689 0.19057105 0.61688518 0.08736688
1 3 0.18164650 0.56865721 0.06656625 0.18313004
1 4 0.24888711 0.46866201 0.09546275 0.18698813
3 5 0.35180459 0.40178716 0.07836098 0.16804723
3 6 0.20960323 0.31146032 0.42915684 0.04977961
0 7 0.16409298 0.54669672 0.08012461 0.20908569
1 8 0.38581400 0.34528511 0.05363548 0.21526541
1 9 0.22648875 0.10971233 0.55943308 0.10436584
2 10 0.25871802 0.17923561 0.39866346 0.16338291
3 11 0.10968485 0.17408994 0.61682068 0.09940453
2 12 0.21001270 0.48372010 0.05122903 0.25503817

Example 3.5

We take m = 4, T = 48, the same parameters (7, P) as in Example 3.4, the output function
and intial estimates of the output function

¢(/0) = (1.0,0.0,0.0,0.0)
q(/1) = (0.0,0.0, 1.0,0.0)
q(/2) = (0.0, 1.0,0.0,0.0)
¢(/3) = (0.0,0.0,0.0, 1.0)

and initial estimates of the output function

40(/0) = (0.24,0.25,0.25,0.25)
go(/1) = (0.25,0.25,0.25,0.25)
g0(/2) = (0.24,0.25,0.25,0.25)
go(/3) = (0.25,0.25,0.25,0.25).

The sample of the output process y = (Yo, Y1, - -

Y
2023012222313030123¢90
0130220122%90T1T13¢0132¢021
301301220122233¢01001F0
1302133 013013013¢020°O02
011303130123¢0102¢01320

., Y9o) 1s used.

Tables 3.28-3.33 tabulate the initial estimate for go(j/i) and the re-estimates S"(go(j/i))
for r= 10(10)50 steps. Although S°°(q(j/i)) # q(j/i), it is obvious that the iteration

has converged to a permutation matrix.
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TABLE 3.28 qq(j/i)

il i 0 1 2 3

0 0.25 0.25 0.25 0.25
1 0.25 0.25 0.25 0.25
2 0.25 0.25 0.25 0.25
3 0.25 0.25 0.25 0.25

TABLE 3.29  S"%qo(j/i)

il j—>0 1 2 3

0 0.344325 0.238802 0.184007 0.232867
1 0.305011 0.247853 0.197892 0.249245
2 0.306866 0.271477 0.196751 0.224905
3 0.304246 0.228364 0.220339 0.247051
TABLE 3.30 S%%qo(j/i)

il j—>0 1 2 3

0 0.854681 0.028576 0.074578 0.042165
1 0.085849 0.116799 0.381652 0.415700
2 0.058269 0.767760 0.151528 0.022444
3 0.119112 0.021399 0.239053 0.620436
TABLE 3.31 $3%qq(j/i)

il j—>0 1 2 3

0 0.999094 0.000008 0.000825 0.000073
1 0.002513 0.004023 0.831230 0.162233
2 0.001549 0.964339 0.034102 0.000010
3 0.009724 0.000047 0.008359 0.981871
TABLE 3.32  $*%qo(j/i)

il i—>0 1 2 3

0 0.999998 0.000000 0.000001 0.000000
1 0.000096 0.000073 0.895849 0.103982
2 0.000181 0.992775 0.007044 0.000000
3 0.000514 0.000000 0.000028 0.999459
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TABLE 3.33  $°%qo(j/i)

il i—0 1 2 3

0 1.000000 0.000000 0.000000 0.000000

1 0.000004 0.000001 0.906980 0.093015

2 0.000029 0.998303 0.001667 0.000000

3 0.000023 0.000000 0.000000 0.999977
Scaling

Example 3.4 illustrates a computational difficulty in the application of HHM; for
example, the probabilities {v,(i)} become very small as ¢ increases and underflow may
occur. This may be compensated by parameter-scaling, replacing the recursion in
Equation (3.7) by

- com(D)q(j/D)(yo), ifr=0
all, ) =
e Yo a1 (OPG/Kg(y,/D),  if 1 <t<n

and

1
YIS & (KPR )i

Ct

The numbers {c,} are scaling factors and the scaled-o functions satisfy

a,(i) = Cray(i)

C,=cocy---¢t

and

3
L

1=) a()

Il
o

Similarly, the 8- and y-recursions are

1, ift=n

DN m—1 -
B = 2 cenBraPK/DgO /b, 0=t <n
=0

'slt(l) == thl+lct+2 e Cn’)’r(i) = Cn%,@

and the re-estimation formula for the output probabilities g(j/i) becomes

ORI
GG/ = 5 —— =5
PIEACIED SR
k=0 k=0
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The scaled re-estimation formulas for P(j/i) and 7(i) are

PU/D) = Y53 @OPG/Dars1 /e s ()
=0 &(DB, D)

and
(i) = (i)

We have just barely touched on this subject; for more information, see the books by Cappe
et al. [2005], MacDonald and MacDonald [1997], and Elliott [1997].

3.8 HILL ENCIPHERMENT OF ASCIl N-GRAMS

Monoalphabetic encipherment of N-grams of ASCII plaintext with N > 1 is attractive for
two reasons:

1. The probability distribution of N-grams with N & 4 is much flatter than for 1-grams,
making it harder to recognize letter fragments; and

2. There is a very large number 128" of N-grams with N > 4.

Lester Hill [1929] described a simple and elegant way to encipher N-grams of ASCII
plaintext. Each character will be identified by its ordinal position in the ASCII character
alphabet, integers in Z;,5. We suppose the length n of plaintext x = (xg, X1, ..., X,.1) iS a
multiple of N; various modifications are possible when n # kN and will be mentioned
later. x is divided into N-grams whose components are integers in Z,g:

x= @@, XV, D)
0
O = (xo,x1, .. xN1)
a _
X _(XN,_xN+1, ..~yx2N71)
l(l) = (XiNs XiN+1s - - - ,X(,‘+1)N—l)
k—1
2TV = e X s s Xv-).

The Hill encipherment of ASCII plaintext x denoted by
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is defined by

A x? — y = A@?) (modulo m), 0 <i <k (3.15)

N—1
V/N+i = (Z ai,jx1N+j> (modulo m), 0 <i<N, 0=</<k (3.16)
=0

where
y =00y
YO = (o, y1s - Yumt)

Y0 = (v IN1s -+ Yan-1)
VP = (Vins Yina1s -« - Vit nn-1)

YU = e iws Yoo ows - yne-1)

and A = (a;;) is an N x N matrix with entries in Z,,3 and which is invertible.
Proposition 3.5 in Section 3.8.3 shows that about 30% of the 128V N-by-N matrices
are invertible.
Hill encipherment is the matrix multiplication by A of the plaintext (column) vectors
{x(” }; decipherment of Hill ciphertext is the matrix multiplication by A ~ ' of the ciphertext
(column) vectors { y(’)} We can write

Y=AX and X=A"ly, (3.17)

where X and Y are the N x k matrices formed from the (column) vectors {x”} and { X(i)}

X0 XN te X(k—1)N

X = (2@ 5. ) = x.] xN.H x(k_l.w“ (3.18)
XN-1 X2oN-1 ¢ XkN—1
Yo YN o Yk=DN

Y = (5O y0 .. yED) = y:1 yN:H y</<71:)1v+1 . (3.19)
YN-1 YoN-1 - YikN—1

3.8.1 Finding the Hill Matrix with Known
Plain- and Ciphertext

Section 3.9 contains a short exposition of how Gaussian elimination might be used to
determine T (respectively T~ ') by elementary row and column transformations when a
set of M > N plaintext (or ciphertext) N-vectors {)_c(i)} (respectively { z(i)} are related
by Equations (3.15) and (3.16). Gaussian elimination applied to the ciphertext matrix Y
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of column vectors involves the postmultiplication of Y and X by a sequence 00, - - - Oy, of
matrices as follows:

1. X=A"ly
Y - YM,(v)
X — XM, (v)

XM, (v) - A~'YM,(v)

(a) Multiplying the elements in the rth column of Y by v;
(b) Multiplying the elements in the 7th column of X by v.

X=Aly
Y — YC, ((v)
X — XC, (v)

XC,5(v) = A7'YC, (v)

(a) Adding v times the sth column of Y to the rth column of ¥;
(b) Adding v times the sth column of X to the rth column of X.

3. X=A"Y
Y = YE, (1)
X = XE, (1)

XE, ((v) = A7'YE, ((v)

(a) Interchanging the rth and sth columns of Y;
(b) Interchanging the rth and sth columns of X.

Gaussian elimination when applied to the matrix Y of ciphertext (column) vectors
related by Equations (3.15)—(3.19), produces A -1

X=A"Y
Y — Y0,0,---Oy
X — X0,0,--- Oy

X0,0, -0y — A”'Y0,0,--- Oy
I=Y0,0,---Oy

implies
A7 =X0,0,-- Oy

Example 3.6
The 18 ASCII characters of the plaintext plainEx3.6: This book addresses
an area where few organized references current exist. is enci-
phered using a 4 x 4 Hill substitution. The plaintext X and ciphertext Y are displayed
as 18-column vectors each consisting of 4 integers in Zjg:
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84 32 107 100 115 97 114 119 101 119 103 122 114 114 101 117 110 32
104 98 32 114 101 110 101 104 32 32 97 101 101 101 115 114 116 101

X= 105 111 97 101 115 32 97 101 102 111 110 100 102 110 32 114 108 120
115 111 100 115 32 97 32 114 101 114 105 32 101 99 99 101 121 105
36 84 102 94 3 14 52 64 22 30 19 73 86 56 27 56 33 126

Y 77 89 53 127 82 18 116 25 102 43 21 55 61 29 101 96 84 7

120 86 61 114 10 65 3 65 63 121 62 59 95 7 58 1 66 81
51 23 100 91 52 121 52 82 69 50 77 52 89 23 79 13 41 93

Y=AX, X=A"ly

3.8.2 Steps in Gaussian Elimination of Ciphertext
Step #1

Y=Yy, — Yy Ey4 = Yy; interchange the Oth and 4th columns of Yy,
Y, — YiMy(3™") = Y,; multiply the Oth column of ¥; by 43 = 37",

1 8 102 94 36 14 52 64 22 30 19 73 8 56 27 56 33 126
70 89 53 127 77 18 116 25 102 43 21 55 61 29 101 96 84 7
46 8 61 114 120 65 3 65 63 121 62 59 95 7 58 1 66 81
60 23 100 91 51 121 52 82 69 50 77 52 89 23 79 13 41 93

X = Xy — XoEo4 = X;; interchange the Oth and 4th columns of X.
X, — X,;My(3~") = X,; multiply the Oth column X; by 43 = 37",

81 32 107 100 84 97 114 119 101 119 103 122 114 114 101 117 110 32
119 98 32 114 104 110 101 104 32 32 97 101 101 101 115 114 116 101
81 111 97 101 105 32 97 101 102 111 110 100 102 110 32 114 108 120
96 111 100 115 115 97 32 114 101 114 105 32 101 99 99 101 121 105

X, =

Step #2

-1 ]—[ZI Cjo(=yj0) = Y3; forj # 0, add —y; o times the Oth column of ¥, to
the jth column of Y,.

¢$1 o 00 O0OO0OO0OO0O OO0OO0O O O O o oo
70 97 81 75 117 62 60 25 98 119 99 65 57 77 3 16 78 19
46 62 105 14 0 61 43 65 75 21 84 29 107 119 96 113 84 45
60 103 124 83 67 49 4 82 29 42 89 24 49 119 123 109 109 85

X, — X ]—[y:l Cjo(=yj0) = X3; forj # 0, add —y; o times the Oth column of X; to
the jth column of X,.

Y

81 12 37 38 112 115 126 55 111 121 100 97 60 58 90 61 125 66
119 86 54 64 44 108 57 40 102 46 12 118 107 93 102 106 29 83
81 91 27 39 5 50 109 37 112 113 107 75 48 54 21 58 123 26
96 111 36 51 115 33 32 114 37 50 73 64 37 99 67 101 25 41
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Step #3

Yy — Y3sM(97 ") = Y,; multiply the 1st column of Y5 by 33 =97 ',

1 0 0 0 0 00 0 O 0 0 O 0 0 o 0 0 0
70 I 81 75 117 62 60 25 98 119 99 65 57 77 3 16 78 19
46 126 105 14 0 61 43 65 75 21 8 29 107 119 96 113 84 45
60 71 124 83 67 49 4 82 29 42 89 24 49 119 123 109 109 85

X5 — X3M (97 ") = X4; multiply the 1st column of X5 by 33 =97 ..

Yy =

81 12 37 38 112 115 126 55 11 121 100 97 60 58 90 61 125 66
_|119 22 54 64 44 108 57 40 102 46 12 118 107 93 102 106 29 83
Y7181 59 27 39 5 50 109 37 112 113 107 75 48 54 21 58 123 26
9 79 36 51 115 33 32 114 37 50 73 64 37 99 67 101 25 41

Step #4

17
Yy = Yy [] Cii(=yj1) =Ys; for j # 1, add —y;, times the 1st column of Y, to
0
j#1
the jth column of Y.

1 o o0 o0 o o0O0 O oo O0OOO0O O o o0wo0
o 1 00 o0 OO O OO o O0O0OO0O O O o00O0
58 125 11 36 106 57 35 115 15 3 26 31 93 17 102 17 112 83
82 71 5 6 80 127 96 99 111 41 100 17 98 28 38 125 75 16

Ys =

17
X4 = X4 [1 Cii(=yj1) = Xs; for j # 1, add —y; times the Ist column of X, to
o
j#1
the jth column of X,.

9 12 89 34 116 11 46 11 87 101 64 85 16 30 54 125 85 94
115 22 64 78 30 24 17 2 122 116 10 96 5 63 36 10 105 49
47 59 112 94 14 104 25 98 90 4 26 80 13 119 100 10 1 57
70 79 37 14 88 127 28 59 103 121 60 49 14 32 86 117 7 76

X5 =

Step #5
Ys = YsMo(1171) = Y, multiply the 2nd column of Y5 by 35 = 1

$1 o 0o o 0o 00 O OO OOTOO O O o00O0
o 1 o0 O OO O OO OO0OO0O0 O o0 o00O0
58 126 1 36 106 57 35 115 15 3 26 31 93 17 102 17 112 83
82 71 47 6 80 127 96 99 111 41 100 17 98 28 38 125 75 16

X5 — XsM>(11~") = Xq; multiply the 2nd column of X5 by 35 =11"".

Yo =

9 12 43 34 116 11 46 11 87 101 64 8 16 30 54 125 85 94
X — 115 22 64 78 30 24 17 2 122 116 10 96 5 63 36 10 105 49
7| 47 59 80 94 14 104 25 98 90 4 26 80 13 119 100 10 1 57
70 79 15 14 88 127 28 59 103 121 60 49 14 32 86 117 7 76
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Step #6

17
Yo = Yo [ Cia(—yj2) = Y7; for j # 2, add —y;, times the 2nd column of Y, to
=0
j#2

the jth column of Y.

0 0 0 00 0o 0o 0 0 0 0 O 0 0 0 0 O
1 0 0 00 0o 0 0 0 0 0 O 0 0 0 0 O
0 1 0 00 0o 0 0 0 0 0 O 0 0 0 0 O
37 47 106 90 8 115 70 46 28 30 96 79 125 108 94 59 83

17
Xo — X6 [] Cj2(—yj2) = X7; for j # 2, add —Yj. times the 2nd column of X to
=0
}#2
the jth column of Xg.

75 98 43 22 38 120 77 58 82 100 98 32 113 67 20 34 5 109
115 22 64 78 30 88 81 66 58 52 10 32 69 127 36 74 105 113

X7 =

15 91 80 30 110 24 41 114 42 20 122 32 125 39 4 58 1 73

96 109 15 114 34 40 15 126 6 76 54 96 27 33 92 118 119 111

75
115
15

Step #7

Y; — Y;E5 ¢ = Yg; interchange the 3rd and 6th columns of Y.
Ys — YsM5(115~") = Yo; multiply the 3rd column of Yg by 59 = 115~ "

1 0 00 00 O O O O OOO O O 0 0 O
o1 oo o0 O0OOOOOOO O O0 0 0O
o 60 10 00 O OOOOOO O OO0 0O
44 37 47 1 90 8 106 70 46 28 30 96 79 125 108 94 59 83

X; — X7E;5 6 = Xg; interchange the 3rd and 6th columns of X.
X — XsM5(1157") = Xo; multiply the 3rd column of Xg by 59 = 115",

98 43 63 38 120 22 58 82 100 98 32 113 67 20 34 5 109
22 64 43 30 88 78 66 58 52 10 32 69 127 36 74 105 113
91 80 115 110 24 30 114 42 20 122 32 125 39 4 58 1 73

96 109 15 117 34 40 114 126 6 76 54 96 27 33 92 118 119 111

Step #8

17
Yo = Yo [] Ci3(—yj3) = YioY; forj # 3, add —y; 3 times the 2rd column of Yy to
j=0

. J#3
the jth column of Y.

1 0000O0DO0OO0OOOOOOOO0O0O0
y, 01 0000000000000000
=10 01 0000000O0O0OOO0O0O0O0

0001000O0O0O0O0OO0OOOO0O0O0
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17
Xo = Xo [] Cj3(—yj3) = YioY; forj # 3, add —y; 5 times the 3rd column of X, to
=0
j#3
the jth column of Xo.

119 71 26 63 0 0 0 0 0 0O 0O O OO OOOO
Xy = I5 95 91 43 0 0 0 O OO O OO0OO0OOO OO
75 60 51 115 0 0 0 O O O O O O O O O O O
68 4 20 117 0 0 0 0 O O O O O O O O O O

Gaussian elimination has determined that

119 71 26 63
15 95 91 4
75 60 51 115
68 4 20 117

Al =

Gaussian elimination on the plaintext involves the postmultiplication of X and Y by a

sequence O; O, --- Oy, of matrices as follows:
1.
AX =Y
X — XM, (v)
Y - YM,(v)

AXM,(v) — YM,(v)

(a) Multiplying the elements in the rth column of X by v;
(b) Multiplying the elements in the rth column of Y by v.

AX =Y

X — XC,4(v)

Y = YC,,(v)
AXC,(v) = YC,5(v)

(a) Adding v times the sth column of X to the rth column of X;
(b) Adding v times the sth column of Y to the rth column of Y.

AX =Y

X — XE, ;(v)

Y — YE, ;(v)

AXE, ;(v) — YE, ;(v)

(a) Interchanging the rth and sth column of X;
(b) Interchanging the rth and sth column of X.
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Gaussian elimination when applied to the matrix X of plaintext (column) vectors related by
Equations (3.15)—(3.19) produces A:

Y =AX

X — X0,0,---0y

Y —> Y0,0;---Oy

YO0, -0y — TXO10;--- Oy

I =X0,0,---0Oy

implies

A=7Y0,0;- Oy

Step #1

X = Xo— XoEop, = X;; interchange the Oth and 2nd columns of Xj.
X, — X; Mo(67~") = X,; multiply the Oth column of X, by 67 = 107!

1 32 84 100 115 97 114 119 101 119 103 122 114 114 101 117 110 32
96 98 104 114 101 110 101 104 32 32 97 101 101 101 115 114 116 101

X2 = 99 111 105 101 115 32 97 101 102 111 110 100 102 110 32 114 108 120
44 111 115 115 32 97 32 114 101 114 105 32 101 99 99 101 121 105
Y=Yy — YyEy,=Y;; interchange the Oth and 2nd columns of ¥,
Y, — Y, My(67"") = Y,; multiply the Oth columns of ¥; by 67 = 107!
50 84 36 94 3 14 52 64 22 30 19 73 86 56 27 56 33 126
Vs — 95 89 77 127 82 18 116 25 102 43 21 55 61 29 101 96 84 7
271119 86 120 114 10 65 365 63 121 62 59 95 7 58 1 66 81

44 23 51 91 52 121 52 82 69 50 77 52 8 23 79 13 41 93

Step #2

X, = Xo ]_[]Z] Cio(—xj0) = X3; For j # 0, add —x; times the Oth column of X, to
the jth column of X,.

1P 0 0 0o 00O OO OO0OO0OO0OO0OO0OO0OO0O O
e 96 98 104 114 69 14 37 72 64 0 65 37 37 37 19 18 52 101
27199 15 109 57 122 29 75 96 87 106 25 54 80 88 17 51 98 24
44 111 3 67 92 53 8 126 9 126 53 40 77 75 7 73 17 105

-1 ]_[J]l1 Cjo(—xj0) = Y3; Forj # 0, add —x; times the Oth column of Y> to
the jth column of Y,.

50 20 60 8 13 28 112 2 92 96 117 117 18 116 97 94 37 62
|95 121 33 99 37 19 38 112 107 2 92 113 111 79 106 117 2 39
371119 118 108 118 21 42 5112 76 40 93 5 97 9 71 30 32 113
44 23 67 43 112 77 28 94 105 62 25 60 65 127 115 113 65 93
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Step #3

X3 — X3 Eyg4 = Xs; interchange the Oth and 4th columns of Xj,.
X4 — X4 Mo (691 = Xs; multiply the Oth column of X4 by 13 = 69"

1 0 0 0 0 0 O 0 0 0O 0 0 00 0 0 O 0
96 1 104 114 98 14 37 72 64 0 65 37 37 37 19 18 52 101
99 50 109 57 15 29 75 96 87 106 25 54 80 88 17 51 98 24
44 44 3 67 111 53 8 126 9 126 53 40 77 75 7 73 17 105

Y; — Y3 Ep4 = Ys; interchange the Oth and 4th columns of Yj.

Y, — Yy My (691 = vs; multiply the Oth column of Y, by 13 = 69 1.

X5 =

50 41 60 86 20 28 112 2 92 96 117 117 18 116 97 94 37 62
Xe— 95 97 33 99 121 19 38 112 107 2 92 113 111 79 106 117 2 39
71119 17 108 118 118 42 5 112 76 40 93 5 97 9 71 30 32 113
44 48 67 43 23 77 28 94 105 62 25 60 65 127 115 113 65 93

Step #4

17
X5 = X5 [ Cj1(—x;,1) = Xe; for j # 1, add —x;; times the Ist column of X5 to
/=0
'/(;&1
the jth column of Xs.

1 0 0O 0 00 00 O O O O o o000 00O
o1 o0 o O0O0O0O0OO0O o o o0 o o0O0©O0O0OUOo0
35 50 29 117 107 97 17 80 87 106 103 124 22 30 91 47 58 94
44 44 35 43 23 77 44 30 9 126 9 76 113 111 67 49 33 13

Xo =

J#
the jth column of Ys.

Ys = Y5 [[j=0 Cj,1(—x;,1) = Ye; for j # 1, add —x;; times the Ist column of Y5 to
1

82 41 20 20 98 94 3 122 28 96 12 8 37 7 86 124 81 17
127 97 57 49 87 69 33 40 43 2 59 108 106 74 55 35 78 98

Yo=1"23 17 4 100 116 60 16 40 12 40 12 16 108 20 4 108 44 60

44 48 67 75 55 45 44 94 105 62 105 76 81 15 99 17 1 109

Step #5
Xo — X¢ M5 (297 ") = X; multiply the 2nd column of Xg by 53 = 29"

1 00 0 00O OOUO O O O O O 0 0 0O
x,—|/0 1.0 0 00000 0O 0 0 0 00000
T7135 50 1 117 107 97 17 80 87 106 103 124 22 30 91 47 58 94

44 44 63 43 23 77 44 30 9 126 9 76 113 111 67 49 33 13

Yo — Yo M> (29~ ") = Y;; multiply the 2nd column of Y, by 53 =29~ ",

82 41 20 20 98 94 3 122 28 96 12 8 37 7 8 124 81 17
y._|127 97 77 49 87 69 33 40 43 2 59 108 106 74 55 35 78 98
77123 17 84 100 116 60 16 40 12 40 12 16 108 20 4 108 44 60

44 48 95 75 55 45 44 94 105 62 105 76 81 15 99 17 1 109
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Step #6
17

Xo = X6 [1Cj2(—xj2) = Xy; for j # 2, add —x;, times the 2nd column of X, to
Jj=0
J#2

the jth column of Xg.

1 0 0 0 O 0 0 0 0 o 0 00 O O O0 O 0
X — o 1 0 0 O 0 0 0 0 o 0 00 O O O O 0
1o o0 1 0 o0 0 0 0 0 o 0 00 O O 0 O 0
15 94 63 96 66 110 125 110 32 104 48 72 7 13 94 32 91 107
17
Yo = Y6 [[Cja(—xj2) = Y7; for j # 2, add —x;, times the 2nd column of Y, to
j=0
Jj#2
the jth column of Y.
102 33 36 32 8 58 31 58 96 120 16 24 13 79 10 96 41 &9
Vo — 120 87 77 0 40 24 4 24 0 32 64 32 76 68 8 0 92 28
P71 27 41 84 0 88 104 124 104 0 96 64 96 52 60 40 0O 36 100
47 34 95 96 2 46 93 46 32 104 48 72 39 109 30 32 123 11
Step #7
X; — X7 E5 ¢ = Xg; interchange the 3rd and 6th columns of X.
Xg — Xg M5 (12571 = Xo; multiply the 3rd column of Xg by 85 = 12571
1 0 00 O 0 0 0 0 O 0 00 O O O O 0
Yo — 0O 1 00 O 0 0 0 0 0O 0 00 O O 0 O 0
810 0 10 0 0 0 0 0 0O 0 00 O O O O 0
15 94 63 1 66 110 96 110 32 104 48 72 7 13 94 32 91 107
Y; — Y;E5 ¢ = Yg; interchange the 3rd and 6th columns of Y.
Ys — YsMs5 (1257 ") = Yo; multiply the 3™ column of Yg by 85 = 125~ ",
102 33 36 75 8 58 32 58 96 120 16 24 13 79 10 96 41 89
Yo — 120 87 77 84 40 24 0 24 0 32 64 32 76 68 8 0 92 28
5=

27 41 84 44 88 104 O 104 0 96 64 9% 52 60 40 O 36 100
47 34 95 97 2 46 96 46 32 104 48 72 39 109 30 32 123 11

Step #8
17

X9 — Xo [[ Cj 3(—xj,3) = Xjo; for j # 3, add —x; 5 times the 3rd column of X, to
j=0
j#3

the jth column of Xo.

1 0000O0DO0OO0OOOOOOGO0OOTOO
y 001 00000000000O00O0O0O0O
=10 01 0000000O0O0O0O0O0TO0O0O0

0001000O0O0OO0O0OO0OO0OO0O0O0

17
Yo — Yo [[ Cj3(—x;,3) = Yip; for j # 3, add —x;; times the 3rd column of Y to
j=0

j#3

the jth column of Y.

1 23 47 75 0 0 0O0OOOOO0OO0OOOOO0OO
Yio = 12 127 33 8 0 0 0 0 0 0 0O O O O O O O O
7 1 0 40 0O0O0O0OOOOOO0OO0OTO0OO0
0 4 099 00 0O0O0O0OO0OO0O0O0O0OO0OO0OO0
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Gaussian elimination has determined that

1 23 47 75
12 127 33 &4
7 1 0 44
0o 4 0 97

A=

3.8.3 The Number of Invertible N x N Matrices

An N x N matrix A whose elements are in Zj,g has an inverse if and only if det(A)
(modulo 128) is an odd integer.

Proposition 3.5: The size Hy of the set Hy of N x N matrices with elements in
Z128, Which are invertible, is

N
. 1
Hy = 128" | |<1 —2,() ~0.288788 x 128" as N — oo.
k=1

Proof If A is invertible, at least one element in the Oth row of a matrix A must be
odd. H, may be partitioned into the subsets of matrices according to the first column k in
the Oth row containing an odd element ag ;. This gives the recursion

N
Hy = 645 x 64 x 128V 71 » 128N xHy

——
k=0 ao, j ao, k ao, j ap,
Oe:<\;e<rlk odd k<j<N i>1
1
= 1282N_1 X (1 _2N+1> X HN*I
. 1
= 128" x]_[<1—2k>, N=12...; Hy=1.
k=1

3.8.4 Hill Encipherment for Plaintext Whose Length is not
Divisible by N

When the length n of plaintext x is not divisible by the row width N of the Hill matrix,
the plaintext might be padded with a string to make its length a multiple of N before
encipherment. One standard padding method adjoins a string of ASCII characters each
equal to 0 = (0,0, ...,0) terminated by the number of 0’s. Padding plaintext like this

7
potentially reveals too much information in the ciphertext. Other padding schemes are
mentioned in Chapter 9 (The Data Encryption Standards DES) and in Konheim [1981].

3.8.5 Cribbing Hill Ciphertext

We now suppose that the Hill matrix remains unknown, but instead of knowledge of the
complete plaintext, a crib in the ciphertext is known.

cipherEx3.4 is the Hill encipherment of 3-grams, presented here as a 3 x 229
array of integers in Zg.



cipherEx3.4

118
102
48

52
88
59

118
79

109
105
56
95
0
54
21

105
30

71
86
125
107

90

47
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The plaintext is from a conference paper [Kemmerer, 1986]; as the title suggests,
computer security is a possible crib. Gaussian elimination must be modified to
find any occurrence of the crib in the plaintext and the enciphering matrix.

Modification
in a sentence, the crib is computer security suffixed with a blank space.
Table 3.34 lists the N =3 possible offsets of c in the position j (modulo N) in
the plaintext of the ¢ of computer security.? indicates an unidentified ASCII
character. Gaussian elimination requires that the plaintext crib contain three linearly
independent vectors. Thus

1. fOff =0

#1

Criby =

8 0 0

(el o}

B O
Q 0 ©
R
Kot

should contain three linearly independent 3-vectors.
2. If Off =1

Crib 1=

cmg 8

K @
K e a
Koo b

S
e

should contain three linearly independent 3-vectors.

TABLE 3.34 Offsets of ¢ in cipherEx3.4

Off =0

Off =1

Off =2

v & n 0 T QO
v KR 0O R 2 O
Q

?

v e n 0T oA
WK R OB £ O

?

KR O B € O

?

v S n 0T

Assuming the crib does not occur as either the first or last word
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3. IfOff =2

-

Crib, =

Lo Jl=2e}
O e
e a0
tR-R

S

should contain three linearly independent 3-vectors.

3.8.6 Gaussian Elimination Program
For each offset k = 0, 1, 2 and each position i = 0, 1, ... apply Gaussian elimination to

find the inverse A~! of the enciphering matrix using the pair of matrices

« The plaintext 3 x M matrix Crib; and
- The ciphertext 3 x M ciphertext matrix 3 x M cipher text matrix I,

Y3i Y343 v Y3i43M-3
Fi=\ysip1 Y3ida -+ Y3igam—2 |»
Y3iv2 Y345 YV3ie3M—1

where M = 6 for Off = 0 and M = 5 for Off = 1, 2.

There are three possible outcomes:

1. Gaussian elimination determines that I'; does not contain three linearly independent
vectors.

2. Gaussian elimination determines that I'; contains three linearly independent vectors
and finds a matrix B~ satisfying B~ 'T"; = Criby.
As the success of Gaussian elimination depends only on I'; having three linearly
independent column vectors, it may occur that B~' # A ™', This outcome can be
detected by deciphering a segment of the ciphertext. If B # A, then decipherment
will not always result in ordinals corresponding to printable ASCII characters; for
example, the letters, numerals, and punctuation.

3. Gaussian elimination determines that I'; contains three linearly independent vectors
and finds a matrix B~ " satisfying B~ 'T’; = Cribyand B' = A~ ",

The 18-gram crib computer security is detected at positions #45 and #219, and
leads to the deciphering matrix

64 45 125
A'=199 58 80
3 88 121
3.9 GAUSSIAN ELIMINATION
LetA = (a;j) be ann x nmatrix and x = (x1, X2,. .., X,),y = (1, y2, . - . , ) be n-vectors,
all with real number entries satisfying
y = Ax. (3.20)

If det(A) # O, then for every ¥y the linear system of Equations (3.20) has a unique solution x,
x=A""y.

Gaussian elimination is a process in which transformations are applied to an invertible matrix
A to produce the identity matrix / and thereby obtain the solution for x in Equation (3.20).
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3.9.1 Elementary Row and Column Matrix Transformations

1. R, ,(v) (r # s5) is the n x n matrix equal to the identity matrix, except that the
element in position (r, s) of R, ((v) is v. For example when n = 4

1 0 0 0
01 0 0
Rro@=1, 01 o
0 0 0 1
If
dopo do,1 do2 4Ao3
A= ao 4p1 di2 a3
ao azi1 dp a3
aso 4z dzp d4ss
then

1 000 dp,0 4ol dp2 Qo3
0 1 0 O airo adin ayn a1z
Ry o(v)A =
v 0 1 O Clzﬁo Cl2’1 ayos a3
0 0 0 1 azo az1 azp 433
aop,0 ao,1 aop,2 ap,3
_ aro ar a2 a3
a0+ vapo a1 +vaps azp+vapy a3+ vaps

aso as as ass

Premultiplication of A by R, ,(v) replaces the rth row of A by the sum of
- v times the sth row of A and

« The rth row of A.
The inverse of R, ((v) is R, ((—v).

2. C,4(v) (r # s) is the n x n matrix, which is equal to the identity matrix except that
the element in position (r, s) of C,  (v) is v. For example, when n = 4

Coo(v) =

S oo~
oo = O
SO~ O
- o O O

If

dap,0 do,1 do2 do3
A= a,o 4i1 a2 a3
ao a1 d2p A3
aso dz) dsp ds3
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then

do,0 do,1 do2 43

aio ai a1 a3
ACy () =

aro a1 dyp A3

S O O =
S O = O
S = O <
- o o O

aso 4as1 azz asj
apo do,1 Aoz +vago do3
ao ap aiptvayy a3

ao a1 ao+vary a3

asop a1 asp+vazo ass

Postmultiplication of A by C, (v) replaces the rth column of A by the sum of
« v times the sth column of A and
« The rth column of A.

The inverse of C,  (v) is C, (—v).

3. M,(v) is the n x n matrix, which is equal to the identity matrix except that the
element in position (r, s) of M,(v) is v. For example, when n = 4

100 0
01 0 0
Mio=1¢9 o 1 o
000 v
If
a0,0 aO,l a0,2 61073
A= al,O ain apn a3
an.o an 1 ajn a3
as.o as | as as s
then

1 0 0 0\ faoo ao1 ao2 ao3
0 1 0 0 aro al ayn a3
M)A = , , , ,
0 010 axo d21 a2 @3
0 0 0 v aso asz) asp a3
do,o  do,1 do2  d4o3
] @0 a ain a3
az o as an a3

l)a3’() 1)613,1 1)(13,2 1)613,3



and

M)A

In general

ap,0 do,1
aio aii
az,o dz
as,o as
ap,0 do,1
ayo ail

azo A

aso asi

ap2 4o,

aip a3

arp a3

asp ass

ap,2 vdop3

ayp vaps

azp Va3

asp vasz;3

3.9 GAUSSIAN ELIMINATION

1000
0100
0010
000w
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. Premultiplication of A by M,(v) multiplies the elements in the rth row of A by v;

. Postmmultiplication of A by M,(v) multiplies the elements in the 7th column of A by v.
The inverse of M,(v) is M, (v ") provided v # 0.

4. E,, (r # s) is the n x n matrix, which is equal to the identity matrix except that

. The elements in positions (r, s) and (s, r) are set to 1;

. The elements in positions (r, r) and (s, s) are set to 0.
For example, when n = 4

If

then

E().SA =

Eyz =
ap,o
A= | @0
azo
as,o
0O 0 O
01 0
0 0 1
1 0 O
aso das
ao da
axo az)

ao,0

ap,1

- o O O

ao,1
aip
a,|
as

S o o =

asn
a2
azn

aop,2

S o = O
o= O O

ap,2
a2
an
asn

ao,o
aio
az o
as,o
as;s
as
a3

ap,3

S o o=

va0,3
va 3
va s
vas s

aop,1
ai,i
az

as

aop2
apn
an

as;n

ap3
as
as

ass
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and
ap,o 4o, apn Cl()’g 0 O O 1
(11,() (11,1 (11,2 a1,3 0 1 00
AEy; =
02,0 612,] 612’2 612,3 0 0 1 0
aszo ds)] dzp d4dszs 1 0 0 0
ap,3 dp,1  do2 4op,0
a3 ain a2 daio
a3 dzj dzp o
ass 4az) dszp daspo
In general

« Premultiplication of A by E, ; interchanges the rth and sth rows of A;

. Postmultiplication of A by E, ; interchanges the rth and sth columns of A. The
inverse of E, ; is E; ,.

3.9.2 Gaussian Elimination

If the matrix A is invertible, then

Rr,s(U)AK = Rr,s(v)X = ()’1, Y2y ee s Yr=1s (Yr + Uys)9yr+1, cee ’yn)
M, (0)Ax = M (0)y = (1,25 -+ > Yr—1>UYr> Yrt1s « -+ > Yn)

(V1,Y25 oo s Y15 Yss Yrgls - oo Ysm1aVrs Ystls =« -3 Vn)s ifs<r

E.,‘Ax:E“y:{ .
" s (y1ay27~~~,y.s~—l,}7r,)’s+l’--~,)7r—la)’s’yr+l, ""yl’l)’ 1fr<s

A solution to the problem,

« Given: The n x n invertible matrix A and the n-vector y
« Calculate:  x such that Ax = ¥

may be carried out by Gaussian elimination as follows. The matrix A and the vector y are
both premultiplied by the same sequence of elementary row transformations

A—0,0,---0,A
y— 0102...0mX
0i € {R (). M, (). E,.;},  for 1<i<m,
such that
I=0,0;---0,A
where [ is the n x n indentity matrix. It follows that
X=0105--0yy

and
A" =0,0,---0,
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Example 3.7
1 20
A= 0 3 1
-3 0 1
Step #1
1 20
Al=R03A=]0 3 1
0 6 1
Step #2
1 1 20
A2_M2<>A1 0 1 4
0 6 1
Step #3
10 -2
A3 =Ro1(=2)A =0 1 i
06 1
Step #4
10 -3
Ay =Ry 1(=6)A3 =10 1 3
00 -1
Step #5
1 0 -2
As=M3(-DAy =0 1 §
0 0 1
Step #6
A¢=R 1A =
6 =R\ =3 )45 =
Step #7

|
— —
[
S = O
|
—_ O wio

S O =
o = O
—_ o O
SN——

(0,0,...,00=0=Y Az, N ER (3.21)
\——/—J .

ncopies
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is a dependency relation for a set of M vectors {z*: 0 < i < M} with real components.
This set of vectors is

« Linearly independent (over the reals) if the only vector A = (A, Ay, ..., Ayy—1) With
real entries for which Equation (3.21) holds is A = 0 equal to the zero vector; that is,
A=A = - =Ay_1 =0, and

« Itis linearly dependent (over the reals) if there is a A # 0 for which Equation (3.21)
holds.
Proposition 3.6: If A is an n x n matrix,

1. A has an inverse and Gaussian elimination successfully determines A~ if and only if
the n row vectors of A are linearly independent;

2. If the n row vectors of A are linearly independent, A does not have an inverse and the
Gaussian elimination process will result in the n x n matrix of all zeros.

Proof: The proof is by induction, the case n = 1 being clear. Assume Gaussian
elimination can be applied for matrices of dimension m x m with m < n.

1. If A is invertible, there must be some element a; ¢ in the jth column that differs from
0. The column operations A — E; , M(a ;01) A allows us to assume that ago = 1.

2. Premultiplying the matrix A = (a;;) obtained after Step 1
A = Rio(a10)Re.0(az0) -+ Ru-2.0(a; 5 0) Ru-1.0(a; 11 o) A
will replace the elements (a; o, azp, ..., a,—1) by 0.
After Steps 1 and 2, A = 1 A where A’ is of dimension (n — 1) x (n — 1). As A is
invertible, it follows that ;4’ is invertible and the induction hypothesis implies that
Gaussian elimination will result in the identity matrix.

3.9.3 Gaussian Elimination of an Overdetermined System

We now suppose that an n x n invertible linear transformation A relates M > n pairs of
n-vectors {x, y* : 0 < i < M} by
Y = Ax"?, 0<i<M (3.22)
X =A71y0, 0<i<M. (3.23)
The M Equations (3.22) and (3.23) are combined as
Y =AX (3.24)
X=A"Y, (3.25)
where
- Yis the n x M array composed of the column vectors { X(i )}, and
« X is the n x M array composed of the column vectors {)_c(i)}.

We assume that the {)_c(i), X(i b0<i<M } are known, but A and A ! are not. We will show
how Gaussian elimination will be able to determine A and A~ provided there are an
adequate number of equations.
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3.9.4 Gaussian Elimination on the Range Matrix Y

We attempt to change Y into an upper triangular matrix by postmultiplication by a
sequence of elementary column transformations:

Y - YOIOZ .- -OS, Oi € {Cr,s(v)sMr(u),Er,s}

such that
1 0 00 O 0
0 1 00 O 0
=Y0,0;...0s.
nxn nxXM—n
Identity matrix Zero matrix
The equation A~ 'Y = X therefore implies
AL L =X0,0;...05
OO0 --- 10 0 --- 0
nxn nxM—n
Identity matrix Zero matrix

which implies
A’IO,,,M_,[ =X0,0,...0s

where O, ), is an n x M — n matrix with all entries equal to 0. This last equation
determines A "

3.9.5 Gaussian Elimination on the Domain Matrix X

We attempt to change X into an upper triangular matrix by posmmultiplication by a
sequence of elementary column transformations:

X — XQI Q2 oo QT’ Oi € {Cr,s(v)s Mr(u), Er,s}

such that
1 0 00 O 0
0 1 00 O 0
. . . . . . . . :XQIQZ'..QT.
o0 --- 100 ---0
nxn nxM—n
Identity matrix Zero matrix
The equation AY = X therefore implies
10 --- 00 0 --- 0
o1 --- 000 --- 0
Al o 0 o 0 L FY Q0O
o0 -- 100 --- 0

nxn nxM—n,
Identity matrix Zero matrix
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which implies
AOn,an =Y Ql QZ s QT

where O, -, is an n x M — n matrix with all entries equal to 0. This last equation
determines A.

Can elementary column transformations 0,0, ... Os and Q; O, ... Q7 be found to
replace Y and X by upper triangular matrices?

Proposition 3.7: If the n x n A has an inverse, Gaussian elimination will succeed
and find A ~ ' if and only if the m columns of X and Y contain 7 linearly independent n-vectors.

3.9.6 Gaussian Elimination Over the Integers Modulo m

The set Z,,, a ring, an algebraic system in which the operations of addition, subtraction,
and multiplication of the elements of Z,, are defined as

x +y=(x+ y) (modulo m)
X Xy=uxy = (x xy)(modulo m).
The equation
y = ax(modulo m)

can be solved when a has an inverse modulo m; that is, when an integer ale Z,, exists
such that
aa~' = 1 (modulo m).

a has an inverse if and only if a and m have no factors in common. For example, if m = 15
and a = 8, then

8x2=16=154+1 =1 (modulo 15).

All odd integers less than 128 have inverses when m = 128. Table 3.34 lists the inverses of
the odd integers in the ring Z,5. If m is a prime number, all positive integers less than m
have inverses and Z,,, is a field.

If the linear system of Equations (3.20) relating real vectors x, y and an n x n real
matrix A is replaced by

y = Ax (modulo m), (3.26)

TABLE 3.34 Inverses of Odd Integers in the Ring Z;,5

-1 -1 -1 -1 -1 -1 -1 -1
X X X X X X X X X X X X X X X X

1 1 3 43 5 77 7 55 9 57 11 35 13 69 15 111
17 113 19 27 21 61 23 39 25 41 27 19 29 53 31 95
33 97 35 11 37 45 39 23 41 25 43 3 45 37 47 719
49 81 51 123 53 29 55 7 57 9 59 115 6l 21 63 63
65 65 67 107 69 3 71 119 73 121 75 99 77 5 79 47
81 49 83 91 8 125 87 103 89 105 91 83 93 117 95 31
97 33 99 75 101 109 103 87 105 89 107 67 109 101 111 15

113 17 115 59 117 93 119 71 121 73 123 51 125 85 127 127




3.10

3.10 MONOALPHABETIC SUBSTITUTION PROBLEMS 111

the matrix and vectors have components in Z,, = {0, 1, ..., m — 1}. If the matrix A has an
inverse A~ ! in Zn
1 0 --- 0
o1 --- 0
AT'A =447 = ,
00 --- 1

nxn Identity matrix
then for each y, the linear system of Equations (3.24) and (3.25) has a unique solution x
x = A’IX (modulo m).

A set of M vectors {g(i): 0 < i < M} with values in Z,, is

« Linearly independent over Z,, if the only vector A = (Ag, Ay, ..., Ay—;) with values
in Z,, for which
M—1
0= Az’ (3.27)
i=0
is the zero vector A\g = Ay = --- = Ay, =0, and

« Linearly dependent over Z,, of there exists a vector A = (Ao, Ay, ..., Ayy—1) # 0 with
values in Z,, for which Equation (3.27) holds.

Proposition 3.8: Ann x n matrix A has as inverse matrix Al (modulo m) if and
only if the rows of A are linearly independent over Z,,,.

Proposition 3.9: If the n x n A has an inverse modulo m, Gaussian elimination

will succeed if and only if the m columns of X and Y contain n linearly independent
vectors modulo m.

MONOALPHABETIC SUBSTITUTION PROBLEMS

The ciphertext files cipherPr3.l-cipherPr3.6 and the table of one-gram
probabilities (Table 3.6) may be downloaded from the following ftp address: ftp://ftp.
wiley.com/public/sci_tech_med/computer_security.

3.1 cipherPr3.1 results from a Caesar substitution on plaintext written using the alphabet
AB - .- Z. Find the key.

cipherPr3.1

znkyzgzksktzzngzznkgtgvygigvxuhrksoyngxjotgtgyykxz
outghuazznkmktkxgrgtgvygigvxuhrksgcuxyzigykgyykxzo
utznkyurazoutluxikxzgotirgyykyulgtgvygigvxuhrksyoy
waozkyzxgomnzlucgxjluxkdgsvrkolznkgtgvygigbkizux

3.2 The term autokey refers to the use of the plaintext to modify the key. cipherPr3 .2 has
been enciphered by an autokey Caesar system with key k as follows:
1. The first letter of plaintext x, of the plaintext x = (xo, Xj,...,X,—1) i

enciphered by the Caesar substitution xy — yo = (xo + k) (modulo 26);
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2. The plaintext letter x; with 1 <i <n is enciphered by a Caesar substitution
x; = y; = (x; + x;—1) (modulo 26).

Develop a non exhaustive method for the cryptanalysis for the autokey Caesar crypto-
system and test the method using the ciphertext cipherPr3.2 containing 293 lowercase
letters.

cipherPr3.2

ldttnrxpkfbcgtavrzwimcsvgvsrvgwlivrgejgvrbfalxrpgsfzvgaltgfg
gwkgtgfmvtywxnjialwwmvpnfxhplrxkwuclpggabjnxverxpkfbckmwjhsl
alergpnrxpkfbdal jwvrpjjaanldhwifrxpkfbkngwalggfebxjlgdgwhdttn
rxpkfbckwxnjdfggfddgwhezral fszbbazwdglhtknkgxalxkrnfucngdtxp
ptwvbrwgglxgpdtkrnnngdtmtmabtuhalvjsizctvrvvwwvmvtbwb

3.3 The ciphertext cipherPr3 .3 containing 538 characters results from a monoalphabetic

substitution according to the following rules:

« All characters (in the plaintext) other than upper-case letters have been deleted;

« The ciphertext is written in rows of 50 characters in groups of 5 separated by a blank
space.

The subject matter is from an article in the Santa Barbara News Press dealing with a meeting
between the presidents of the United States and the Soviet Union in Iceland in 1986. Use
X°-scoring and find the substitution.

cipherPr3.3

pyxbcsxzuyxmgmzbmebwxbwlriszluwmkxbmesuwxblkexubgi
czoxsgruuwxepylamgiescsczximuxsscbgxicxamgyxxvxzub
myxgrmymzuxxswmkczgpmcsuwxymzblvuluwxwlbumgxumoxyu
wxmsvczcbuymuclzcbuymkxiczgulctximzsmbmpmevxzuulgx
uglyagmtwxkulsldwmuwxbmcsmuuwxgxzxkmbrvvcuwxdlrissl
uwxyxglygmtwxkmgyxxsultlvxulmbrvvcuczuwxrzcuxsbumu
xbzldwxcbmuumtwczgmtlzscucl zdxmyxbtymvgiczgul vxuw
XVvrbugxgrmymzuxxSmpyxxzgczxxyxsbrvvcuuwmudciiecxis
myvbtlzuylimgyxxvxzubwxtmzgxtlvalyumgixdcuwbxzclym
svczcbuymuclzlaactcemibbmeblixvzieuwmumylrgxoggvmew
mkxmyyxbuxssmzcilaaulxvgmyymbbglygmtwx

3.4 The ciphertext cipherPr3 .4 containing 948 characters results from a monoalphabetic

substitution according to the following rules:

« All characters (in the plaintext) other than upper-case letters have been deleted;

« The ciphertext is written in rows of 50 characters in groups of 5 separated by a blank
space.

The subject matter is from the Department of Computer Science’s submission to the
Computer Science Accreditation Board (CSAB). (Note, CSAB is a participating member in
Accreditation Board for Engineering and Technology (ABET). CSAB develops accreditation
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cipherPr3.4

vtfjzpcepjurwvzfcivthgvtpwdfjuzvbfcvpwpvwtpitksurp
vodfdpeuvidguesrvourrhgmthbuzfuevplfpczfwfuzetviue
tpciucdjzhgfwwphcurwfzlpefvtfdfjuzvbfcvtuwuchjfcuc
dehcifecpurmhzgpciuvbhwjtfzfehbapcfdmpvtuwjpzpvhgtu
zdmhzgvtfzfpwvtferfuzscdfzwvucdpciubhcivtfguesrvov
tuvtpitksurpvozfwfuzetpcucouzfuhgehbjsvfzwepfcefmp
rrafwsjjhzvfducdfcehszuifdaovtfehrrfifhgfcipcffzpc
ivtfzfpwuihhdzfjzfwfcvuvphcubhcivtfzfisruzguesrvoh
gbhwvhgvtfehzfuzfuwpcehbjsvfzwepfcefiujwuzfgprrfda
ovibjhzuzoguesrvobucohgmthbtul fwfzlfdgsrrvpbfghzhc
fhzvmhofuzwvtfdfjuzvbfcvicxhowuihhdmhzgpcizfruvphc
wtpjmpvtvtfdfjuzvbfcvhgfrfevzpeurucdehbjsvizfcipct
fzpciucdhvtfzwsjjhzvpcidfjuzvbfcvwpcjuzvpesruzuwpc
irfehhzdpcuvifdbuwvfzwjzhizubpcehbjsvfzwepfcefucdfc
ipcffzpcipwudbpcpwvizfdxhpcvroaovtffrfevzpeurucdeh
bjsvizfcipcffzpciucdehbjsvizwepfcefdfjuzvbfcvwehsz
wfwhggfzpciwfczhrrbfcvrpbpvwucderuwwwet fdsrfwuzffw
vuarpwtfdvtzhsitxhpcvehcwsrvuvphcehszwfwuzfezhwwrp
wvfducdguesrvouzfheeuwphcurrofnetucifdghzuehszwf

1. The dimension N of the Hill matrix and

2. The subject of the plaintext

are specified.
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criteria for and accredits programs in computer science, information systems and
software engineering.) It describes some aspect of our college. Find the monoalphabetic
substitution.

Problems 3.5 and 3.6 provide examples to test your skill at cribbing a Hill encipherment. In
each problem

3.5 The Hill ciphertext cipherPr3.5 consisting of 4 x 133 ASCII characters is displayedas an

array containing 26 rows of 20 integers and a final row of 12 integers. The plaintext deals with
a theft at a banking ATM.

cipherPr3.5

52
125
80
100
107
32
99
59
116
52
65
84
115

27

113 95 60 26 3 125 122 87 115 57 67 121 77 46 4 56
113 101 38 70 49 110 88 99 120 53 73 22 70 123 35 100
84 47 106 4 17 61 35 91 13 38 9 29 84 57 53 6
54 122 114 61 114 46 118 76 91 61 45 119 29 33 75 10
104 123 29 22 66 84 5 98 61 97 127 34 65 67 64 2
116 24 0119 8 24 52 9 38 86 115 97 74 12 127 46
71 79 36 67 83 48 28 39 111 25 23 16 108 47 28 92
125 37 18 68 127 50 72 67 23 100 107 18 7 45 21 16
112 64 76 53 68 99 75 63 36 88 48 104 97 31 105 9

6 46 113 22 23 14 123 52 113 15 73 32 56 97 18 13
61 49 7 75 4 12 75 105 92 101 80 46 76 68 56 104

2 106 31 73 31 9 27 90 70 28 119 117 83 3 72 78
70 48 123 85 61 78 44 84 109 36 8 43 7 36 58 109
23 74 64 113 81 18 122 57 14 20 48 62 35 124 33 112
39 105 27 14 6 28 55 1 71 37 100 42 12 81 77 19

124
81
75
83
94

111

60
85
127
50
38
37
12

7
11
25
90
85

112
103
11
19
28
53
127
24
82
84

114
105
83
24
123

95
41
30
82
27
82
113
94
56
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cipherPr3.5

64 60 24 79 37 105 38 123 104 100 73 126 93 98 111 87 94 106 113 34
64 61 58 12 0 16 108 89 61 72 49 62 121 40 123 112 97 55 74 96
104 12 56 67 74 119 109 79 4 35 125 26 22 66 8 5 26 93 86 42
88 81 120 79 117 8 3 72 51 11 16 2 22 6 28 55 16 121 8 125
110 55 124 84 43 66 96 39 101 33 32 117 45 56 32 95 101 33 32 117
43 7 36 58 88 71 42 47 75 32 64 108 1 46 107 12 5 124 120 118
13 101 119 26 108 126 97 61 70 84 24 9 76 89 49 119 117 59 18 92
26 93 8 42 82 59 97 116 89 33 110 120 83 16 100 78 46 95 13 15
16 119 102 85 46 99 32 108 39 111 25 23 39 111 25 23 115 97 108 90
98 49 10 124 107 15 21 80 48 72 107 61 104 57 69 102 115 47 73 11
71 1125 19 15 113 59 90 3 83 61 74 21 102 112 43 71 11 35 69
82 70 28 119 80 15 44 61 12 110 89 64

3.6 The Hill ciphertext cipherPr3 .6 consisting of 336 ASCII characters is displayed as an
array containing 16 rows of 20 integers and a final row of 16 integers. The width N of the
Hill enciphering matrix is unknown but it may be assumed that 3 < N < 5. The subject of the
text is an important United States document.

cipherPr3.6

81 28 88 98 116 17 113 98 27 76 5 32 27 120 39 67 83 71 73 39
120 127 72 13 111 28 36 125 105 18 56 76 107 1 74 40 88 54 83 14
97 18 111 17 80 17 95126 80 89 38 46 76 53 51 8 70 21 31 81
101 105 22 101 63 10 74 95 75 70 68 69 7 105 75109 69 119 105 88
93 59 93 56 70 25 94 5 96 35 58 109 11 89 74 16 61 69 88 58
112 3123 52 30 83 4 18 6122 44 105 59 48 72 21 72 11 69 58
98 85 48 50 59 8 2 54 17 79 18 8 11 89 74 16 61 69 88 58
92 51 123 120 31 10 93 67 51 42 101 112 29 8 66 124 83 108 19 50
51 79 6 92 55 20 33 64 106 70 85 91 37 116 41 123 22 30 106 104
118 111 49 73 107 57 25 64 117 95 93 12 43 125 88 4 18 66 111 40
108 63 111 69 60 54 56 77 45 26 95 80 56 71 6 125 66 84 14 25
5 42 75 92 85 113 14 104 77 84 47 112 18 1 68 93 126 125 107 82
59 48 72 21 84 15 47 82 68 113 45 21 115 49 115 88 45 57 68 92
70 35 101 69 94 114 113 91 22 77 88 38 18 83 18101 8 33 0 6
13 2 44 2117 81 14104 2 99 18 37 37 8 33 126 28 47 80 17
66 38 103 44 115 41 88 117 2 64 36 62 51 93 93 56 102 29 56 120
3115 60 94 10 75 4 46 90 126 73 12 122 101 4 44
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CHAPTER 1

4.1

POLYALPHABETIC SUBSTITUTION

TH IS CHAPTER describes the cryptanalysis of polyalphabetic
encipherment. The use of coincidence to determine the period and correlation to
identify the key to cryptanalyze Vernam—Vigenere ciphertext will be explained.
The one-time pad and the greater triumph of cryptanalysis against the Soviet KGB
will be discussed. Problems to test your skills follows the text.

RUNNING KEYS

116

A monoalphabetic substitution on plaintext’
(X0, X155 Xp—1) = (Y0, Y15+ -+ Yn-1)
uses a single rule 6 to encipher each letter
yi = 0(x;).
A polyalphabetic substitution uses more than one rule
yi = 0i(xy), 0<i<n

to encipher the plaintext letters.
A running key

k = (ko, ki, ..., ky—1), ki€ Z(0<i<n)

is a simple polyalphabetic generalization of Caesar encipherment C; of plaintext, which
polyalphabetically enciphers the plaintext x = (xo, xy, . .. , X,—1) according to the rule

E_>X=()’0:)’la-~~,ynfl)s inCk,(xi)s OSl<n

A book cipher derives the running key from the text in some (secret) book; the key is
composed of the letters starting on some specified page, line, and word in the book. Ken
Follet’s novel The Key To Rebecca relates the adventures of Cicero, a World War 11
German spy who uses a book cipher based on Rebecca of Sunnybrook Farm to encipher
messages.

'ASCII plaintext in this chapter will be enciphered after

« First replacing all lower-case letters by their corresponding upper-case letters, and

« Deleting all other ASCII characters.

Computer Security and Cryptography. By Alan G. Konheim
Copyright © 2007 John Wiley & Sons, Inc.
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An alternative method to obtain a running key is to extend a key word
k = (ko, ki, ..., k.—1) of length r by periodicity

k= (ko, ki, ..., kno1), ki = K(itmodulo ), ¥ <1 <n.

4.2 BLAISE DE VIGENERE

Blaise de Vigenére was born in 1523 in Saint-Pourgain, France. While serving as a
diplomat in Rome, he came into contact with Giovanni Battista della Porta in 1549 and
learned from Porta’s Traicté des Chiffres (1585) describing various encryption systems.
Vigenere’s book A Treatise on Secret Writing was published when Vigenere returned to
Paris. It contains the basic 20 x 26 Vigenere tableaux.

Plaintext
Key A B C Y Z
0 a b c z
1 c d b4 a
2 c d e b
25 Z a b A x %

The Vigenére encipherment of plaintext x (identified by its column position) with the key
(identified by its row number) is the table entry in the kth row and column position x; for
example, plaintext x = B is enciphered with the key K = 2 to ciphertext y = d.

Vigenére polyalphabetic encipherment extends a sequence of r letters
(ko, ki, ..., k,—1) periodically to generate the running key, k = (ko, k1, ..., k-1, ...)
with k; = k(imodulo ) for 0 < i < oco. For example, the key of length 12

R Y P T O G R A P H Y
2 17 24 15 19 14 6 17 0 15 8 24

enciphers plaintext of length 20 using the repeated key

c R ¥y P T OGRAUPHYCUR Y P T O G R
2 17 24 15 19 14 6 17 0 15 8 24 2 17 24 15 19 14 6 17

Vigenere’s original scheme subtracted rather than added the key from the plaintext
X =Y =0(Y0, Y15 -+ »Yu-1), Yi = (xi — k;) (modulo m).

It was rediscovered nearly one hundred years later by Admiral Sir Francis Beaufort, whose
name is associated with the wind velocity scale.

4.3 GILBERT S. VERNAM

Gilbert S. Vernam was an engineer for The American Telephone and Telegraph
Company. He was asked in 1917 to develop a teletypewriter to perform on-line
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TABLE 4.1 Baudot Coding Table

Baudot code

A 00011 B 11001 c 01110 D 01001
E 00001 F 01101 G 11010 H 10100
I 00110 J 01011 K 01111 L 10010
M 11100 N 01100 ¢) 11000 P 10110
¢) 10111 R 01010 S 00101 T 10000
8] 00111 Y 11110 W 11011 X 11101
Y 10101 Z 10001 LF 00010 CR 01000
1 11111 J 11011 SP 00100 00000
0 10110 1 10111 2 10011 3 00001
4 01010 5 10000 6 10101 7 00111
8 00110 9 11000 ? 11001 $ 01001
Bell 01011 ! 01101 ; 01110 & 11010
# 10100 ( 01111 ) 10010 . 11100
, 01100 / 11101 , 00101 ; 11110

CR, carriage return; SP, word space; LF, line feed; BELL, bell.

encipherment/decipherment. Alphanumeric plaintext was first coded into 0’s and 1’s
using the Baudot code?, in which each character in a small alphabet is represented by
a 5-bit sequence, as shown in Table 4.1. The key in Vernam’s implementation of a redis-
covered Vigenere polyalphabetic system was written on a paper tape as a sequence of
five 0’s and 1’s and the Baudot-coded plaintext was XOR-ed with the key (Fig. 4.1).
Vernam glued the ends of the paper tape into a loop, yielding additive encipherment
with a periodic running key. Realizing that the strength of the encipherment would
increase with the key length, Vernam combined several tapes with periods {r;}
(Fig. 4.2). If the periods are properly chosen, a key formed from a total of ), r; indepen-
dently chosen key values could generate a key with period as large as R =[], r:.
Unfortunately, this way of making a large period R is not equivalent to a tape of
length R [Tuckerman, 1970].

Baudot Plaintext Ciphertext
Teletypewriter XOR |—>

00100

o
looor ] Paper Tape

Figure 4.1 Vernam’s Teletypewriter Polyalphabetic Encipherment System (Courtesy of NSA).

To increase the number of letters that can be coded with five 0’s and 1’s, typewriter keyboard was shifted up 1
to change from letters to numbers and shifted down | to change from numbers to letters.
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. Baudot Plaintext Ciphertextz
Teletypewriter » XOR — --oiiioene —» XOR
Paper Tape #0 Paper Tape #(n—1)

Figure 4.2 Vernam’s multitape polyalphabetic teletypewriter system (Courtesy of NSA).

4.4 THE ONE-TIME PAD

Major Joseph O. Mauborgne began his study of cryptanalysis at the U.S. Army’s Signal
School, located at Fort Leavenworth (Kansas), later becaming Chief Signal Officer and
the director of the Signal Corp’s Engineering and Research Division.

When Vernam’s cryptographic invention was reported by AT&T to the U.S. Army,
Major Mauborgne recognized its importance. He also understood that the reuse of a long
tape might make Vernam-ciphertext vulnerable to cryptanalysis. U.S. Patent 1,310,719,
filed by Vernam and Mauborgne, described their one-time tape generalization of the
AT&T additive polyalphabetic encipherment system.

A one-time tape system uses the key additively as Vernam proposed, but each key
value enters in the encipherment of only one plaintext character. A one-time system can be
defined for plaintext written in any alphabet, but as alphanumeric ASCII text is always
coded into sequences of 0’s and 1’s prior to transmission or storage, we may assume
the plaintext and ciphertext alphabet letters are 0’s and 1’s.

Let (xg, X1, X2, . .. , X,—1) be any sequence of 0’s and 1’s with no assumption of any
kind made about the statistical distribution of value of the sequence. A Bernoulli process®
is a random process consisting of a sequence of independent and identically distributed
(0,1)-valued random variables, which may be imagined to arise from repeatedly and inde-
pendently tossing a fair-coin:

(Ko, K1, ..., Koo)  Pr{K;=0} =Pr{Ki=1} =1/2.

The one-time encipherment of plaintext xo, x1, X5, . .. , X,— by a Bernoulli process Ky, K,
K>, ..., K, is additive; namely, the bit-by-bit modulo 2 addition (or XOR)

X0 X1 X2 s Xn—1
+ Ko K, K, e K,
YO Yl Y2 ce Yn—l
Proposition 4.1: If the key stream Ky, K;, K>, ..., K, is a Bernoulli process,
then the ciphertext Yy, Y, Y, ..., Y,,—; is also a Bernoulli process.

Proof: The key observation is that ¥; and x; together determine K;, so that

| Pr{Yi=1} =Pr{K,=1+x}
V2= {Pr{Y,-:O} =Pr{K; =x;}.

3A Bernoulli process is often described as white noise.
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Moreover, for i # j

Pr{Y;=1,Y=1}=Pr{Ki=1+4ux, Kj=1+x)}
14 = Pr{Yi=1,Y, =0} =Pr{Ki=1+x;, K; =x;}

Pr{¥;=0,Y=1}=Pr{K;=x;, K;=1+x;}

Pr{Y;=0, ¥; =0} =Pr{K; = x;, K; = x;}.

The 2-output bits (Y, ;) are therefore independent with the same distribution as (K, K;).
The same argument can be extended (by mathematical induction) to show the components
of the vector variables (¥;, Y;,, ..., ¥; ) and are independent with the same distribution as
(Ki, Kiy ..., K; ).

All possible n-bit plaintexts are equally likely to have produced ciphertext resulting
from a one-time encipherment.

This chapter examines the cryptanalysis of Vernam—Vigenére polyalphabetically
enciphered plaintext using an additive key k= (ko, ki, ..., k,—1) of unknown period.

The two steps to determine the key and plaintext are:

1. Determining the period r of the key;

2. Recovering the values of the key.

4.5 FINDING THE KEY OF VERNAM-VIGENERE
CIPHERTEXT WITH KNOWN PERIOD BY
CORRELATION

cipherEx4.1

xeedt
oighz
rerzg
eecsh
nmmp i
sezbb
gsktd
gmuft
psetn
rarpw
xnmit
xgspl
fglxs

nerye rthti lpxtl xpbae itrxe eucoy wgrup wmdbd odfrx
jxeel dcpht hawlz ikeht cleaa znnsr gaoih mxeca bayxb
trtgg devbn alcsy giztw cypep uzvgr nppyi xxswh dygea
rcucr fekke i11xij ezidj mkazr tepoe bdcxw blgre vmzif
smcot evsxx awllt galrh xidat rioee tczeqg iacdc wgevh
gtyge aebdd wmyldg gjgsj pgipv wfnuc oywqgr krzgt rtggd
dwgez hucpx sllep yvhgee yxnep mlmce wgfez itwxp uetns
cwxla zpwcw bejep vmjez i1lphx tmszg xlrev prioa ftnvs
xmlnj glcwm ioifv ippen nlsio sxdxw piyjw exbmg ceepm
wbsyp yriaa zsfrg xnzto wtxcqg titpl rmits rtoga oleod
lsexm pitif wzyxqg hgpdw mptmc niscc abayx bredy xlbfd
uehth izoye fxios tpgif bezec skoay bphxl pxpjk ejeeh
npnok xmydy eract tdw

Example 4.1
cipherEx4. 1 of length 623 letters is the encipherment of ASCII plaintext by a Vigenére
substitution with period 7. The plaintext x and ciphertext y are each divided into 7 plain- and
ciphertext files consisting of the letters separated by 7 places:

Y, =i Yirts Vit ---) % = (K Xiy7, Xiga -..), 0=<i<T7.
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TABLE 4.2 Letter Counts in Each Subfile of cipherEx4.1

Yo Y1 Y2 3 Ya Ys Yo
(ng = 89) (n; = 89) (ny = 89) (n3 = 89) (ny = 89) (ns = 89) (ng = 89)
a 0 a 4 a 9 a 6 a 3 a 3 a 0
b 0 b 12 b 1 b 2 b 3 b 0 b 0
c 0 c 1 c 5 c 0 c 9 c 8 c 4
a 1 a 0 a 2 el 4 a 7 a 9 a 0
e 8 e 6 e 17 e 14 e 4 e 3 e 8
f 1 f 2 f 1 f 4 f 0 f 5 f 1
g 3 g 0 g 0 g 2 g 3 g 2 g 4
h 4 h 0 h 3 h 1 h 5 h 2 h 3
i 10 i 2 i 8 i 1 i 9 i 1 i 4
J 0 J 4 3j 0 j 2 J 1 J 2 j 2
k 2 k 4 k 1 k 1 k 0 k 0 k 1
1 3 1 10 1 4 1 0 1 1 1 6 1 3
m 6 m 4 m 2 m 5 m 0 m 3 m 3
n 0 n 0 n 5 n 1 n 4 n 9 n 0
o 0 o 7 o 3 o 3 o 0 o 5 o 1
o) 7 o) 6 o) 4 D 2 P 9 P 6 o) 3
a 3 a 7 a 0 aq 10 a 1 a 0 a 4
r 4 r 4 r 7 r 1 r 5 r 1 r 7
s 6 s 0 s 8 s 1 s 2 s 1 s 7
t 4 t 3 t 6 t 2 t 14 t 6 t 3
u 0 u 0 u 3 u 5 u 1 u 0 u 0
v 1 v 1 v 0 v 0 v 1 v 0 v 6
w 9 w 0 w 0 w 1 w 2 w 5 w 9
x 14 x 7 x 0 b'q 4 x 5 x 0 x 8
% 2 % 2 % 0 y 7 y 0 vy 6 % 6
z 1 Z 3 4 0 z 10 z 0 z 6 z 2

The ith subfiles x; and y; are each of length n; each letter in y; results from the Caesar
encipherment with same key k; of the letter in x;:

Yiy7j = (Xiy7; + ki) (modulo 26), j=012,...,nm—1 4.1)
The first step in the process of finding the key k = (ko, k1, - . . , kg) is to make the letter counts
in each subfile y; of the ciphertext y shown in Table 4.2. We assume the plaintext is
generated by the language model X = (X,, X, ..., X,,—;) consisting of independent and

identically distributed random variables with distribution
m()=Pr{X;=j}, 0=<i<n 0=<j<26, @ =(mw(0),n(l),...,m(25) (4.2)

Let

« Nj(x) be the number of times the jth letter occurs in the plaintext sample x of length n,
« Nj(y) be the number of times the jth letter occurs in the ciphertext y, and

« Nj(y1) be the number of times the jth letter occurs in the ith ciphertext subfile y;
of length n;.
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The sample letter frequencies are defined by

N()

fix) = »0=j<26, f) =W, i), ..., fors(x) 4.3)

M)
f)==20,02)<26 ) =) fily) s fs(y)) G4

1

Assuming the sample of text is sufficiently large, we use the law of large numbers and con-
clude that

lim fi(y) =f(y)=m(j+k), 0=j<260=i<T7. (4.5)

Define the left-circular-shift by k places of the vector a by
o = (m(k), wk+1),...,m(25), w(0), w(1),...,7(k—1))

Equation (4.5) states that the limiting vector of ciphertext letter frequencies ]/‘\J(y,) in the
ith ciphertext subfile y; is the left-circular-shift oy,  of & where k; is the unknown key.
As the limiting vector of ciphertext letter frequenmes ﬁ( Yi) is observed, the recovery
of the unknown key ; requires us to find the left-shift of ar that most closely matches the
measured vector of ciphertext letter frequencies. The nearness can be measured in terms of
the Euclidean distance between the vectors f ;(y:) and the unknown left-circular-shift of .
The square of the Euclidean distance between the vectors oy, r and f (i) = oy, mis

Do, i (y) = {(onm, oxm) +2Fi(y)., fily )) — Aowm, iy )

= 2|z’ ~2p,Fi(y) “.6)
where

. <6_l, é) denotes the inner-product of vectors a and b,
Nzl = (o m, o) = (?j( Xl-),fj( yi)) is the square of the length of the vector a, and
« pe(F;(30) = (o f;(y)) is the kth correlation oz and f;(y,).

TABLE 4.3 1-Gram English Letter Probabilities

J m(J) J w(J)

A 0.0856 B 0.0139
c 0.0279 D 0.0378
E 0.1304 F 0.0289
G 0.0199 H 0.0528
I 0.0627 J 0.0013
K 0.0042 L 0.0339
M 0.0249 N 0.0707
¢} 0.0797 P 0.0199
6] 0.0012 R 0.0677
S 0.0607 T 0.1045
U 0.0249 \ 0.0092
w 0.0149 X 0.0017
Y 0.0199 Z 0.0008
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TABLE 4.4 1-Gram Correlations

25 25
. Yt +)m @) . Yo+ )m)
J =0 J =0
0 0.068733 1 0.039990
2 0.032744 3 0.032501
4 0.042720 5 0.033457
6 0.035164 7 0.037647
8 0.031363 9 0.034721
10 0.037051 11 0.045412
12 0.039829 13 0.046070
14 0.039829 15 0.045412
16 0.037051 17 0.034721
18 0.031363 19 0.037647
20 0.035164 21 0.033457
22 0.042720 23 0.032501
24 0.032744 25 0.039990

Equation (4.6) shows that the dlstance between the measured letter frequencies oy and
the shift o 7r is minimized when p( f ;(yi) is a maximum.

Table 4.3 provides one set of 1-gram English-language probabilities. The values of
Zt ~o 7™ (t +j)m (¢) are listed in Table 4.4 and plotted in Figure 4.3. Schwarz’s inequality
for vectors a and b states

a = (a(0), a(l),...,a(25)) b = (b(0), b(1),...,b(25))

with equality if and only if ¢ = Cb for some constant C.

25
> xt+ jHr(r)

=0
0.0687 +

0.0550 +
0.0412 ¢+
0.0275 +

0.0137 ¢+

0.0000 -
0 5 10 15 20 25

Figure 4.3 Graphical presentation of Table 4.4 1-gram correlations.
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Proposition 4.2: When the plaintext letter probabilities are as in Table 4.3,
Pk(ﬁ(y,)) is maximized when k = k;. Table 4.5 lists the values of k& with the largest
correlation values p( fj( ) for the ciphertext cipherEx4 .1, from which we can
recognize example as the key.

4.6 COINCIDENCE

A coincidence occurs at the ith position in two samples of plaintext

X(l): (1) (1) ) )i(2):(x(2) (2) )

(xp s x1 75 ... X\,
if x(l) = xfz) If the length n of the samples are the same, the kappa-value K[)_C(l), )_c(z)] is the

total number of coincidences

n—1

D, x@] = Z X1 -
[

The normalized kappa-value k* [)_c(l), 1(2)]

K*[g(l) (2) Z)({xm_x

How many coincidences can one expect in typical plaintext? If the plaintext is generated
by the language model consisting of independent and identically distributed random vari-
ables with distribution as specified in Equation (4.2), then a coincidence occurs at the ith
position of two samples X" and X® plaintext with probability

Prix(" =x} = ZPr{X“) X = ZTFZ(])—Sz
Jj=0

is the average number of coincidences per letter

The expected number of coincidences is
E{(k[ XV, X?N} = ns

where s, &~ 0.06875 using the English 1-gram probabilities in Table 4.3. The values of s,
in some languages are given in Table 4.6. We can use the coincidence rate to detect if two

TABLE 4.5 Largest Correlation Values in cipherEx4.1

Yo Vi Y2 )3 Ya Ys Yo

e 0.069 b 0.040 a 0.072 h 0.034 c 0.045 g 0.035 d 0.042
£ 0.042 e 0.039 e 0.052 i 0.040 d 0.034 h 0.041 e 0.059

i0.043 h 0.042 1 0.049 1 0.049 1 0.056 k 0.039
p 0.053 i0.048 m 0.062 p 0.071 p 0.043 r 0.044
3 0.040 q 0.049 v 0.035 u 0.044
k 0.043 r 0.037 v 0.046
q 0.036 y 0.045

t 0.046

w 0.041




TABLE 4.6 Rates of Coincidence in Various Languages

Language 52

English 0.0688
French 0.0778
German 0.0762
Italian 0.0738
Spanish 0.0775
Russian 0.0529

4.6 COINCIDENCE
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samples of ciphertext result from the same or different monoalphabetic substitutions as

follows:

1. If the same monoalphabetic substitution 6 enciphers two randomly chosen samples
of plaintext

0:xD > y®d 0: X% > y®

the probability of the coincidence in the ciphertext Pr{YV = Y@} is s, as
Y™ =y if and only if X" = X®. If two samples of ciphertext Y’ and Y*> of
the same length » result from the same monoalphabetic substitution, then

E{k[Y"V, Y?]} = no».

. If two different randomly chosen substitutions 6; and 6, encipher two randomly
chosen samples of plaintext

6, : XV > y® 6,:X? > y®
then Pr{m(j) = m(j)} = 21—6 so that
2

5

1

Pr(y® =y @} =3 Pr{m()) = m()} = 5.
j=0

If two ciphertext vectors X“) and X(z) of the same length n result from different
randomly chosen monoalphabetic substitutions, then

n

E{x[Y™", Y®]) %

This suggests that we might test if two samples of monoalphabetically enciphered cipher-
text have resulted from the same or different monoalphabetic substitutions by comparing
the normalized k-value to s,.

Modifying this argument slightly, we can detect the period r of a Vernam—Vigenére
polyalphabetic encipherment. Suppose the ciphertext Y results from a Vernam—Vigenére
polyalphabetic encipherment of period r. Comparing pairs of letters in the two ciphertext

vectors

Yo

Yl Yn—k—l

Yy Yii Y-
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« All result from the same monoalphabetic substitution if 0 = (k modulo r), and

« not all result from the same monoalphabetic substitution if 0 # (k modulo r).

The expected number of coincidences when comparing (Yo, Yy, ..., Y,—x—;) and
(Yx, Yiu1, ..., Y,—1) should be approximately

. = no, if 0 = (k modulo r), and
< no, if 0 # (k modulo r).

Example 4.2
plainEx4. 2 consists of the first 1600 upper- and lower-case letters from the Declara-
tion of Independence

When in the course of human events, ... our sacred Honor.

The plaintext was divided into four blocks of 400 characters and the k- and
normalized k-values between the ith and (i 4 1)st blocks (B; and B;.) are listed in
Table 4.7. The final row gives the total number of coincidences and the average normal-
ized k-value.

4.6.1 Estimating the Period Using Friedman'’s
Incidence of Coincidence

The use of coincidence in cryptanalysis was first described in one of several monographs
[Friedman, 1920] on cryptanalysis by William Friedman. Assume the plaintext x =
(X9, X1, ..-,Xx,—1) is enciphered by a Vernam-Vigenére polyalphabetic substitution
with key k = (ko, ky, ..., k,—1) of period r producing ciphertext y = (yg, ¥1, - - - » Yu—1)-
For each s > 0, the normalized number of coincidences in y and the left-shift by s positions
of y is computed according to the formula N

1 n—s—1

* =
KD =02 2 X

. If s is a multiple of the period 7, then y;, ; and y; result from the same monoalphabetic
substitution.

. If 5 is not a multiple r, they are the result of generally different monoalphabetic
substitutions.

By testing various shifts, we can identify the period.

TABLE 4.7 Normalized «-Values in plainEx4.2

i Kli, i+ 1] K*[i, i+ 1]
0 31 0.0775
1 28 0.0700
2 20 0.0500
3 22 0.0550

101 0.0631
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TABLE 4.8 Table of Normalized «-Values for cipherEx4.1

s K *[ b s K_v*[z]
1 0.0433 2 0.0530
3 0.0321 4 0.0417
5 0.0449 6 0.0482
7 0.0530 8 0.0498
9 0.0353 10 0.0498
11 0.0321 12 0.0321
13 0.0401 14 0.0498
15 0.0369 16 0.0514
17 0.0385 18 0.0353
19 0.0498 20 0.0610
21 0.0658 22 0.0417

Example 4.1 (continued)
Table 4.8 and Figure 4.4 give the normalized k-values for the ciphertext cipherEx4.1.
Although the locations of the local maxima of «Z[y] are somewhat noisy, it is clear from
the local maxima at s = 7, 14, and 21 that r = 7. -

4.7 VENONA

During World War II [Wright, 1987; Haynes and Klehr, 1999], the Soviet Union commu-
nicated with its legitimate and covert representatives in the United States by

- Diplomatic pouch delivered by a courier,

. Commercial cables, and

« Short-wave radio.

K, [yl
0.06875 o
0.05156 ® o
0.03438
0.01719
Figure 4.4 Graph of
s normalized k-values for

2 4 6 8 10 12 14 16 18 20 22 cipherEx4 . 1.
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Diplomatic pouches provided security, but communication was slow; it was illegal to

encipher messages for transmission by telegraphic cable companies. The Soviet Union

was forced to rely on encrypting short-wave radio as a means of secreting their messages.
The Soviet Union operated five communication’s channels:

GRU - Soviet Army General Staff Intelligence Directorate,
Naval GRU - Soviet Naval Intelligence,

Diplomatic — Embassy and Consular business,

RPN

Trade traffic — lend lease, The Amtorg Trading Corporation Stands for American
Trading Organization (AMTORG), Soviet Government Purchasing Commission, and

5. KGB - Soviet espionage; headquarters in Moscow, residencies abroad.

Unlike Japan and Germany, which opted for electromechanical devices, the Soviet Union
decided to use the one-time pad, which would provide absolute secrecy if correctly used.

The USSR employed two-part superencipherment (Table 4.9); the first phase used a
codebook, a dictionary listing 4-letter groups codes for some set of common (plaintext)
phrases. The codebook might have been particular to a specific channel, and was distri-
buted to users on both sides of the channel. The entries spell and endspell were
used to allow the inclusion of foreign language (English) text in a message.

A codebook is used as a monoalphabetic encipherment and offers relatively little
protection; if the codebook falls into the hands of the enemy, as it did on two instances,
the system is compromised. To provide secrecy, the Soviet Union combined the codebook
with an additive one-time pad; shown in Figure 4.5 is a one-time pad captured by the
British Intelligence Service MI5. A one-time pad [Kahn, 1983] was found in the posses-
sion of Colonel Rudolf Ivanovich Abel, a Soviet spy arrested in 1957. Abel’s one-time
pad, printed in red and black, was small enough to be hidden in a block of wood. Each
page of a Soviet KGB one-time pad contained 60 five-digit groups of randomly generated
digits. The open literature does not tell how the Soviet Union carried out the random
number generation.

The steps in the encipherment process were the following:

1. The sender would write the message:
konheim delivered report about rockets
2. Certain names, places, and organizations would be replaced with covernames:

Teacher delivered report about grades

TABLE 4.9 Phrase and Codeword Examples

Phrase Codeword

Contact 7652

endspell 1653
pay 6781

spell 5411
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Figure 4.5 One-Time pad (Courtesy of NSA).

3. A code clerk would replace each word with a 4-digit codebook entry:

7394 2157 1139 3872 2216

4. The codebook entries would be regrouped in blocks of 5 digits:

73942 15711 39387 22216

5. Six unused 5-digit groups from the one-time pad would be used:

16471 56328 29731 35682 23798 46659

(a) The first 5-digit group identifies the encipherment process for the receiver, as

messages might be received out of order;

f-message marker used by the

receiver to check on the number of groups received.

(b) The last 5-digit one-time pad group was an end-o
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Figure 4.6 One-Time Pad Containing 60 Five-Digit Groups of Digits.
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6. The 5-digit groups would be added digit by digit modulo 10 with no carry:

73942 15711 39387 22216
+ 16471 56328 29731 35682 23798 46659

16471 25660 34442 64969 45854 46659

7. An additional 5-digit group was appended to the message; the first three digits was a
message number, the last two, the date:

16471 25660 34442 64969 45854 46659 21210

8. The digits were converted into letters
IETWI UREEO ZTTTU ETPEP TRART TEERP UIOIO
using the table

The encipherment process described above would have provided absolute secrecy even if
a copy of the codebook had been discovered.

Hitler broke his alliance with the Soviet Union in June 1941, resulting in a large
increase in traffic. Without the means of increasing their production of one-time pads

to accommodate the communication needs, the Soviet Union decided to reuse one-time
pads. Duplicate copies of each page were assembled into different one-time pads. They
might have reasoned that the enemy would need to discover which pages were dupli-
cated and this was thought to be beyond the resources of the Soviet’s adversaries.

It is not clear who discovered the reuse of the one-time pad; perhaps it was an Allied
spy in the Soviet Intelligence apparatus. Once reuse is suspected, it is possible to use
coincidences to test messages to determine if two segments arose from the same
segment of a one-time pad.

Pairs of intercepted messages would provide segments from two one-time pad
entries, which could be pieced together to recover the pages in one-time pads.

4.7.1 Detecting Pad Reuse

A predecessor of NSA, the Army Signal Intelligence Service, was located at Arlington
House in northern Virginia; it began to monitor Soviet communications in 1945. Early
in 1947, Meredith Gardner of the U.S. Armed Forces Security Agency used the charred
remains of a Soviet Codebook found in Finland to decipher a Soviet communication.
The cryptographic resources of the American (NSA) and British (GCHQ) Intelligence ser-
vices were mobilized to study this penetration. The operation was first called BRIDE, then
DRUG, and then VENONA.

Even after finding the additive key, there remains the task of reconstructing
the codebook. It appears that Soviets had the habit of enciphering plaintext that
had already been published; for example, part of the Congressional Record.
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Additionally, there were several defectors who brought, as their dowry, samples of
text. Not all messages could be deciphered; in the VENONA intercept of
Figure 4.7, the notation [66 unrecovered groups] appears, meaning that only part
of the text was deciphered.

VENONS

C

D&sR zer. No.: SfNENGEGEGDp
) tssued: SN/ 17/5/7%
Copy No.: J¢
BONUSES FOR SOURCES, INCLUDTNG LIBERAL AND NIL, GIFTS OR PAYMENTS FOR PROBATIONERS

{1945)
Fram: MUSCOW
To: WEW YORK
Hoa:z 20¢ 6 March 1945

[66 groups wnrecovered]

decision whs made absut awerding the sources as a bonua ths following sumsr %o
LIBERAL dollaral,] NIL[i4]

(58 groups unreccverable]

aithar the purchass of valuable gifts for the probatiomera [STAZHER] or payment
to them of money on the basiz of well thought out cover-stories,

{28 groups unrecovered]
No. 1326 VIKTOR[iii]

Footnotes: [4] LIBERAL: Formerly covername ANTENNA"; Julius ROSENBERS.

[4i) WIL: ie either "(Rivar) NILE™ or a name eg *
formerly "TU..."; widentified covername. "TU..."/
"NIL" alsc oceurs in NEW YORK's Mos. B63 of 16 Juns
1o QUENNGMEND, 1251 of 2 September 194k
and 1657 of 27 November 1954 (NN

[1i1] VIKTOR: Lt Genersl Pavel Mikhajlovigh FITIN.

e s \f’:l\!("‘;!\j I

Figure 4.7 Venona Intercept (Courtesy of NSA).



132 CHAPTER 4 POLYALPHABETIC SUBSTITUTION

Ultimately, the Soviets learned of the penetration of their cryptosystem (possibly
from Kim Philby), and stopped reusing one-time pads. However, the damage could not
be undone; the stale messages still provided information. The information obtained was
of great value; it was learned [Wright, 1987, p. 231] that the USSR had fourteen agents
operating within the OSS (the predecessor of the CIA) and five agents with access to
the White House.

Alger Hiss was a senior employee of the U.S. State Department. Before becoming
president, Richard Nixon has accused Hiss of being a communist agent, based in part
on testimony by Whittaker Chambers, himself a confessed Soviet agent. Decipherment
of KGB messages identified Hiss (covername ALES).

Some deciphered KGB message dealt with the building of the atomic bomb
(covername ENORMOZ). Julius Rosenberg (covername LIBERAL) and his wife Ethel
Rosenberg, who were arrested, tried for espionage, found guilty, and executed were
identified by deciphered KGB traffic.

In 1994, the National Security Agency released details of VENONA. They may be
accessed on NSA’s Web page at http://www.nsa.gov. A partially deciphered
KGB message (from the NSA Web site) is shown in Figure 4.7, which concerns a
payment to LIBERAL.

4.8 POLYALPHABETIC SUBSTITUTION PROBLEMS

Problems 4.1-4.5 provide examples to test your skill at the cryptanalysis of Vigenére
enciphered plaintext.

1. The plaintext is written using the full ASCII alphabet:
(a) All ASCII characters other than upper- and lower-case letters were then deleted
from the plaintext, and

(b) every upper-case letter was replaced by its corresponding lower-case letter.

2. Vigenere substitution was applied to the resulting modified plaintext file.

3. The ciphertext is written in rows of 50 lower-case alphabetic ASCII characters.

4. Bounds on the period r are given.
A solution requires you to identify the period r, key k = (ko, k1, . . . , k,—1), and derive the
plaintext. This requires a student

1. To compute the «-value and infer the most /ikely period r;

2. To compute the correlation values and infer the most likely key;

3. To recover the plaintext.

The ciphertext files cipherPr4.l-cipherPr4.6 may be downloaded from the
following ftp address: ftp://ftp.wiley.com/public/sci_tech_med/computer_security.

PROBLEMS

4.1 cipherPr4.1 containing 692 lower-case ASCII characters results from a Vigeneére
encipherment of plaintext. The period r satisfies 6 < r < 12; the subject of the
plaintext is unknown.
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cipherPr4.1

viphpwtbvwgtdpuwahwwecnhgfsemlexvbvxjedagvdemgxlcn
yvwtlvweziosjmtiwphzoctnmnlipcattsezrvzjerxspuvihgj
saphavnxyeahxszoivlpdihbgethacdacpsnjzclpfrpgwdndt
ahrkglexvbjerlldpsolitiolgjvvxggefglgvgkplcivhuift
llckcfmosopazhuijcapgaskxvvlyhwcexrvzedjcyyuiderww
cxghpwxcsemvhlepzsfwksydpyszeperpslggedptdwlrocvlp
hpwgrwumzyeycgseswhhwhuigbnspuurshhlepbgvrihlepnfn
gqumdewlthrextzcvtglgalaiyoawcgetdudesvsnzadhcxteyd
pjijhvspwpnjywgckwacdcecwgiffjewlcexksyladocxteydevigp
ccpchlghvkxjagvhbggpheazofjcvldxjoaxgpwhisgvwpilca
fhuiuexppzbrxuglatzgrgwvpddjyrxnejpgzgyavpdndugvwyv
wzgpooahullvtwfbxggzwsbfvriastrogrgwvtenwoeeoiepgz
oeigbnspuurhkrnwjkwakeicexmwpevidpcjwclgvxpcaoykgv
tewthltgglnpsubvkxsxifdrogcdpmjvnriizgshhn

4.2 cipherPr4.2 containing 247 lower-case ASCII characters results from

a Vigenere encipherment of plaintext. The period r satisfies 5 < r < 9;
the subject of the plaintext is unknown.

cipherPrd.2

vvraljoghhdrjyflotpgrworfwtvwbftexrkgrvumzipacgpgg
tytggrhkximvatchyafovmjsualkitrgtpgfgovxtsigelnkhp
waxttnclkbnfrfnjxthruaeinhiwpseuyxxnccexenvagwfknv
cufgggsvlingpjsalavngvjbbdhxsklachfzkbgigffalkypmri
eknzngyrfbvntnupkhuafglgogrpglkjgkhceetewgvjoesvky
tbuhvul

4.3 cipherPr4.3 containing 818 lower-case ASCII characters results from

a Vigenere encipherment of plaintext. The period r satisfies 4 < r < 8;
the subject of the plaintext is unknown.

cipherPr4.3

pverzmvwhatjkawmfxrzozlelvcmacgfvmlmymmlmzkawepwrt
xebeobebrzwlkttheboakforlfdgnrtelplltilhxkikpbknoc
ziinexubhlmgisntcgslllxecbfziylkzunmzwnlecinrnroee
arbtsxniyehcmacggzorkrumtgxgsehnziexgzorkruslgubhl
mgzomevuszemgnrlywuwwsmtlnxpttgkpegbiatakforlfdgnr
vicrdxfcrmhfsidtzueotkatfwvvtdpywawmywurafbhpkngsp
lfjecteluakzohelvmmehcicvtegnenzbigxwmewyfzczfgctp
kjkipgtmwpmigtztebinbgitptelaylnmrbnvattheaadpvtll
lkweiiciiyyrktdbeifcbvvdwrimfexjpiyzdinyxiuodmfnaw
enmvpmigeomfuavxfpplltilllvtfexrkhtgxjozdraoaifaeo
mfirpyvzeyvvuaynrttstkattvbatzovzydfrtlhhilshxmmae
mvupexuipcxjmnetkgoymyitdwvbatevleyhlohghixezicmse

133
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cipherPr4.3

nugiyzfvtsxzzohgpmtwntgdcxrlamevinoxerojtstepgfcgs
vizmzkvbrlwzbizgrtsenumnelkwrptujeghimlpvkcrpffatz
vipplltildbevogtkgoylradpltzimxujewhnirpffbigtkmdm
rkpidzfilhxvupstjgzpzvvectcxrzucmmdhecdiyzkmesgzyup
ldwseufwkduvoiyteleywkpetkugsnnjaizgfnpchstexlftvt
gxeleajbeapzaecxwgnpfvvtshnmvpkdinjhkpecfvbhzwjbhl
mxwooiliwbwxdaowovzslguxrzziimxxiatldvnocziinexupag
xemvpksmeyyfzmlezheobebhpldcdpgkamtguaaywemeomf jea
kvaeymvleiicgctmeg

4.4 cipherPr4.4 containing 327 lower-case ASCII characters results from
a Vigenere encipherment of plaintext. The period r satisfies 5 < r < 9;
the subject of the plaintext is unknown.

cipherPr4.4

jeyagbzmhhusjgzxavagyjwkokgfepsjkysbvkjznlrnclfzfhh
gpucnxlrosiafxjodvesicavgmjhvbzhmxagvbcwoiohyofdds
rwuopbbenhzmbzmvpvvsyhmvetwcjvghgzvchfggkbkbvzxizp
pdosrizsiksgagiiesjofmkbtytauwowfxavgmnwedyofwpoko
zsdzeqgvcimflafvcwsoxejvcaofilisvpggxezzdfgagiwjcpc
zwebveycbiaotruofmkbrvnchinbdouhyeebkkpbeeiceywexc
kbtytagregrdpczwafmsjseadwtrhfgtnecmskspfuhyojcgrpt
pcwcexpscowvaraoenasxicfrzo

4.5 cipherPr4 .5 containing 736 lower-case ASCII characters results from a
Vigenére encipherment of plaintext. The period r satisfies 6 < r < 12; the
subject of the plaintext is unknown.

cipherPr4.5

icasa nijki wsgiy lskab rhxas fwgrf dsuxa uvsfl uxsxy xckwn
crlzk zovzk iusjs hrjuc ugsdi wklxw unbco uaclg agvhy iyjdo
jsvoh gsfek obyzv genci uhurc lkzzh xmxgk ghsor cxwuu aaxtc
gsloc bvysw lwsgh kkwse hahsu ywmwf isduu avseg hifyv ggnkf
gwncw wpiwh ltagm dzwtd iyxwv jwgfo jpafk gcpvfi ilaub cizbm
khxcu uggvw kazhv ohetj uoreu xcgxy yworm efvgb czryh ywcvw
fnwef tkigh jcrso orsug hkwgl ofhgm sxkiw sgzcj auyhi gevyk
atsgv ghhaf jigwx sxzay pfrib yjwcw zokrt dsobg rsysx lnsar
xymeh ufhdt njwsz ifhyi jlzkqg cpvox wjygw htwih juufd sijug
afghy igwia sgwoili rkegm brzvi sfyks ukxlw jktcu gxhal ocbdr
crxgx aowol rgjic igyyp afmdz hgmiv judpb zbivw vofws yrlgl
gcpvo xwjyqg whtwi afkbu ltyij atucu zbikl arsgz uhnay wbjuz
jaukw bhtam fwkfw gmgsk lwisv zcsfk iobek urkok fsghs xzwyh
oilir svxcd ltvek ayozw niyyz ycahc cpdtk fsikl vwvzc hkkze
umrhm pkgfw jhsgw woeda lwsgz iefkc sfwny g
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4.6 cipherPr4 .6 containing 500 lower-case ASCII characters results from a Vigenere
encipherment of plaintext. The period r satisfies 6 < r < 12; the subject of the
plaintext is unknown.

cipherPr4.6

tstpg bfvea oryaa birpr vagjb nhtwn igyos pzelv hnfzj cirks
ftxim ghogl vdyjt netrg zlkti ppemp xxbnx ihdir prvag jxrtl
gohdn sjgco oahnu henng hcpyg elkro vcwef cpius wuwey iotgk
syntj xtolg tnuoi tufes bdevi fwior veafl tfcgo hceid ewsyil
xcutr guawr fdwih dfoep wolxe lpnet ckzsb gidug taspe snexn
jdyga bltzz ysnfv kuzel ukzub rilch xbbdm cgebc isenx ixsus
isyax tbtps zlkyp fmfik mhfzx hyoaa oocoo oxioe viarx dcjxh
ymhst tfiff mypga rcgbn hmpih abnhw cfupm pszkr ujlao opeuo
gliore birmt ipmnn bknbw wtlrv tvcio zgaen lgihg hsilr dnexm
bmmnn 1lhgw ysuih nhele gxrbz lplgb tntrm vyxls fxfls itnhf
egyxm rztxm uvmal pewbf eeuzj ufiru ocoirm gtnee lefxg gvlke
vrmti pvegx kdtlv eglkt ieley cyose
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CHAPTER5

5.1

STATISTICAL TESTS

TH IS CHAPTER describes various statistical tests which are often used to
assess the strength and weaknesses of an encipherment system. Included are
the tests suggested by the National Institute of Standards used in validating the
new Advanced Encryption Standard. Diagnosis, the problem of inferring the method
of cryptographic encipherment, is formulated and illustrated.

WEAKNESSES IN A CRYPTOSYSTEM

Cryptographic systems might be cryptanalyzed by

- Exhaustive key trial, or

- Exploitation of systemic weakness, often in conjunction with a selective nonexhaustive
key trial.

The recent cracking of DES involved exhaustive key trial, but the Enigma machine was
cryptanalyzed by exploiting a weakness in the design and defective operational protocol
used in encipherment.

The only perfectly secure encipherment uses a one-time system and this only when
used properly. The practical limitation of one-time encipherment led to design of crypto-
graphic systems that use a short key ko, k1, . . . , k,,— to generate a larger operational key. It
is an act of faith that as the basic key length n increases, the security of the derived cipher-
text also improves. The design of cryptographic systems has therefore focused on ways of
generating long keys that appear to be random.

The methods discussed thus far in these notes have dealt with uncovering some sys-
temic weakness. Here we examine some of the statistical methods that might be used to
detect hidden relationships between the key, plaintext, and ciphertext. One such statistical
measure, the y*-test has already been described in Chapter 3.

5.2 THE KOLMOGOROV-SMIRNOV TEST

136

Figure 5.1 plots the sample distribution function ﬁ,,(x) for n = 100 and n = 1000 samples
of data derived from a uniform distribution function F(x). The Kolmogorov—Smirnov
Test is a goodness-of-fit test; is a sample of n data values Xy, Xi, ..., X,,—, derived
from independent and identical random trials consistent with a specified distribution
function F(x) =Pr{X; <x}? The law of large numbers implies that the sample

Computer Security and Cryptography. By Alan G. Konheim
Copyright © 2007 John Wiley & Sons, Inc.
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F(x) F(x)
1.0 + / 101
0.9+ 094
0.8 1 0.8 ¢
074 - 071
0.6 + 0.6 +
051 051
041 S 041
031 031
0.2+ 024
o1l 0.14

00 Y + + + + ex 00 X
0.0 0.1 02 03 04 0.5 06 0.7 0.8 09 1.0 0.0 0.1 02 03 04 0.5 06 0.7 0.8 09 1.0
(a) (b)

Figure 5.1 Sample Distribution Function f,,(x) (a) n = 100; (b) n = 1000.

distribution function

R 1 n—1
Fu(x) =-) x{X; < x}
n=<
Jj=0
converges as the sample size n increases
F,(x) = F(x), n— o

with probability 1.
The Kolmogorov—Smirnov statistics

Kf=+vn_max (F,0)-F@) K, =vn_max (F)-F,) (5.1)
K, =/n_max [Fu(x) — F)| = max{K;", K } (5.2)

measures the vertical deviation of F(x) from the sample distribution function F,, (x), where
. K} measures the deviation when ’I*:n(x) > F(x) and
. K, the deviation when F(x) > E(x).

The Kolmogorov—Smirnov test verifying the condition

Pr{K, > k.(p)} = 0.01p (5.3)

was first proposed in Kolmogorov [1933], but a more accessible reference is Darling’s
paper [1957].
A table of the p%-significance level values k,(p) defined by Equation (5.3) for
- p=299,95,75, 50, 25,5, 1, and
- n=1(1)12, 15, 20, 30 and n > 30
is contained in Knuth [1971].

Using the monotonicity of F (and /15,1), the next algorithm gives a feasible way of
evaluating K,,.
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5.2.1 K,-Evaluation Algorithm

1. Sort the observations X; < X, < --- <X,;

2. Compute K = maxo< <, (2 — F(X);) and K, = maxo< <, (F(X;) — ).

n

Bradley [1968] described one version of the Kolmogorov—Smirnov test used as a test of
hypotheses to distinguish between

« Hy (Null Hypothesis) — F(x) is the distribution of the iid sample Xy, X1, ..., X,,—1-

« H, (Alternate Hypothesis) — F(x) is not the distribution of the iid sample
Xo, X1, oo, X1

A significance level p% is chosen and K, is computed. H, is accepted if and only
if Kn = Kp (P)

Knuth proposed dividing B, measurement Xy, Xi, ..., Xg—; into B blocks, each
containing n data values, calculating K; for the ith block and applying the
Kolmogorov—Smirnov test to the sample distribution function of the B random variables
{K;: 0 <b<B}.

5.3 NIST’S PROPOSED STATISTICAL TESTS

The National Institution of Standards (NIST) proposed a number of statistical
tests [NIST, 1994] when they solicited a successor to the Data Encryption Standard

in 1996.
If a cryptographic algorithm generates a random number generator, the algorithm’s
output of 20,000 consecutive output bits yg, 1, - .., Y19990 must pass the following four

statistical tests.

« The Monobit Test — Count the number N, of ones in the 20,000 output bits. The test
is passed if 9654 < N; < 10,346.

« The Poker Test — Divide the 20,000 bitstream into four blocks of 5000 bits each.

Yo
BlockO [011101...010101
Block 1 101011...000111
Block2 [ 110110...110100
Block3 [000110...101010

Y19999

Count the number f; of (column) vectors (xo; Xi; Xz, X3; for which
i = 8x¢ +4x, j + 2x, ; + x5 ; and evaluate the y*-value

(5ooozf ) — 5000.

The test is passed if 1.03 < y* <57.4.
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TABLE 5.1 Intervals for the Runs Test

Length of Run Interval

1 2267-2733
2 1079-1421
3 502-748
4 223-402
5 90-223
6+ 90-223

« The Runs Test — A run is a maximal length sequence of either bits with value one
or zero:

all 0's
——
(~--100~~-0,1--~) Run of 0's
——
J Os
all 's
———
<~~~011-~~1,0~~-> Run of 1's
N——
jls
The test is passed if the number of runs R,[i] of i(i = 0, 1) lies in the intervals listed
in Table 5.1.

« The Long Run Test — A long run is defined to be a run of ones or zeros of length
34 or more. The test is passed if there are no long runs.

5.4 DIAGNOSIS

Up to now, we have analyzed ciphertext assuming the method of encipherment was
known. Diagnosis is a process used to discover the nature of the encipherment system.
The roy diagnostic procedure to be described next assumes that each of the six ciphertext
files that follow cipherEx1.A, cipherExl.B,...,cipherExl.F has been
produced using one of the following encipherment systems:
7  Columnar transposition
YV Vigenére substitution
M 1-gram monoalphabetic substitution
O  Some other cryptosystem.
The process of identifying which cryptographic system has produced given ciphertext is
referred to as diagnosis. It will be carried out by making a sequence of tests whose
objective is to accept or reject one of the hypotheses 7, M, V, or O.
Test #i Compute . . .
If ... then encipherment system is ...
If ... then encipherment system is not . ..
Continue with Test #i + 1

The diagnosis process corresponds to a tree (Fig. 5.2). You start at the ROOT and make a
Test, which may (1) identify a unique method of encipherment or (2) eliminate one
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Ciphertext results from ... Ciphertext does not result from ...

Ciphertext results from ... Ciphertext does not result from ...

Ciphertext results from ... Ciphertext does not result from ...

Figure 5.2 Diagnosis Process.

or more of the possible cryptographic systems M, V, 7, or O, and continue by performing
additional tests.
Diagnosis requires

1. A sequence of tests to carry out diagnosis;

2. Application of the tests to classify the method of encipherment for each of the six
ciphertext files that follows.

cipherExl.A

snrtiiregmlrtorcceleatssrirclerismprhcthiiiitteomgfihgadniia
setapneegareratateirtsegtopevirsetecthdvfsaglrantcoddewutrst
mirskaacleeorlsmsiuuraosraccirseoeentdlemsnseoocartottxnesaho
itnohthufudamgeerhoirehedel tdkeocnoayhaeeriaursnmhnhoeienaye
pmosssmaotoutsnpmntilesnialndmepeematgtornsaacsaiewnssgtsrrt
ntoopncinsletrsthpdstannintaarsstnhtofmspmau

cipherExl.B

wpvmulxmfjrxunfvotgkvixtocrxkhgiehrkhlzgvbrvyeuvrv
titghllwgkvbyvgnjpfyvmkmymumrzpshvrugyvxummsnnwgfr
kgiitxcllvrrahwpvvvxfpesnhjgtenwhdvpgipmexvahgjwwx
ladsumdklxgpkmexjxwmtlphowxcklbwlrimkmgitllakipmsc
iwwbwwwtthgectxuplbymoiuwmi fvraktgkiwigcgfmtlckdkki
tbvbzgumkmegggvbrrvebtveflwwlrvklmuypvhzkekgimrxwk
hawvgfwpvmpbwgrpehgkvtvbrvijclbakiotukymvxfblvcegm
migwwzxuwdgccgihzrxkhgiwxgklvijxceoikmgglvklgxdzcc
redvempzsprwghiieiyvrugyvxuapwvxpxisfnfbklgfdvljcv
wciitfxakyundtccotnmkagmbxvwgyszvhkvwgfr
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cipherExl.C

rblfogzbkgcwugfydkibkrfolsfijmyxvlhdwfeyuiwhguybgsrhhbolkagix
xkritjwdhrgcwrkdaepcdyfrekdxwwuovrargxihbrintjrrryhdfcwsmkic
nnidgoxdhniwlbytelcgbmoxpwmsdszeglaeffgpyltbmkrwookdgjodlwbk
uakoapeeobehtvoocnkrrpvllligbgyijzyzgkrgsgmrsdcbielyvzagpety
wbgpeijuicgvweczgtbchz fwvozhdibshmmnhtjdufabtsszflhhvjdrgembk
phelvhfyjdkxrirmjmlcnvwgtsfvisgpfrgojrwistjzzxubpwlhwetjncbj
wdlmpxlhtzjnmaxmmkeemxlegzldxwcoslyehxjnchjscwquemgejlinzzcx
zwojiggvcnicdwrdrmibdoxyrvajhcixgwuzohtrwggsaxgnozsjzzrlnhun
ekpooagxihlavycciphbobghwbpdmenkwefyjrgekclyfvoljslxohfemkiz
fyjfvixuiyfgrfigiltkgghkcpiklavexpzaduwpisutl

cipherEx1.D

epibgacvgfgvbpmvizzwemabamvamgbgaibgumapizgvowxmzibgvoagabmu
smzvmtixzwoziubpibkwvbzwtabpmzmawczkmawnikwuxcbmzivlittwkibm
abgumiuwvogbacamzagbtmbacamzazcvbpmgzxzwoziuagbkwvbzwtabpmxm
zagxpmzitlmdgkmalgakabmzugvitaxzgvbmzaivlbpmtgsmkwvvmkbmlbwbp
muikpgvmivlgbxzwdglmaingtmagabmubpibuiviomabpmtwvobmzuabwzio
mwngvnwzuilbgwvackpiaxzwoziualibiivllwkcumvbagbgaibgqumapizgvo
agabmu

cipherExl.E

wneeeiiasngtlsouaemulrerotpeimraietiteshgosomuoaosstonaaeser
hrremnaetistotlrlsesrentcdilmnergonpsdninreshpgkpttecoacmisu
nrioeaetlehodanvieaheafosmneuhwstrryroaoespdtastehgesiddrpsl
nohidetalmersrddttirsisonmamnhrcroigrsupsrprcsattcemaoftmttr
niaaamhinsimnttercsoftlsosesianhhvsiinkchnpsyaentfacgtcaxatt
egielaotuaeltnetrrmteeicnndeteerastsgoithrau

cipherExl1l.F

opkjvvjobetrmjowlseitvazxulevbavrswvxvpvgroqurfeey
bniyimztysswpnbkgjsiftuegwfabnifirkxrmpekdwtwuiizb
nigiiheuvxprjlsinrjdvlsegrgtexuirhwargswnmxzvgvmmw
yvvvvhmtxftcvkkhbrkemycfxvhekwuecgmreosivbkgbvvjves
eocjijgueivkziemgvbosamenmixvsejvktbmeonuyexyzakgb
ruogvibjgmmjmpxzjvowpsexmxrrhndbnxuitcwogrfvoekiae
ixpoxrgkpzgpgijdoteyxvmvgxvzvnjgwrhfipgvgarmmgrgwf
abceeikzknrbpfbgkwglroeopyfvvdgmyesgmorglvymbiysgh
mtxciidwjssxyzxrearvyaewgidcmxiglvxzoxrvzjvujficzk
zmbrznenegavxirppsjoxkvssihitgrxivlkssjkcmggpyivke
sswlxpvvrhzxbosavvnbyxbetjvymgiivjrirbkzvzsaslmkgt
nfzggzcbjdvxvmakkcmviejfmugrpitcixepxvmmowgmtnwlxu
ijtazizgfhxurrrkngtxbxyzwbieecgaewgidgmbiytvmnuvze
exmilnvrxbkvvwkdkywhgyozgrfproqurcvixmjyeijvzkflrf
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cipherExl.F

hmgrfwkmiokuxwjzceehfmekpyijoihpvwyzlurpikcmgvplzo
mixhvrglkgvwzjvylnzvwmkrzeuzithglvngyxrquzaokaeeyq
styidzvzegmfiazeexvybnifgfkmujciiawxgnrtzxxigmtoqu
rnruzdgphekdwt frgfhmygbvvnxkgvjzx

Test #1: Count the number of occurrences {N,[F ]} in each ciphertext file F of
each letter i and compute the frequency of occurrence { filF]= @} in F and the cor-
relation coefficient

25

olF 1= flF1n)

i=0

where {7(i)} are 1-gram probabilities.
Accept Hypothesis Tif o[F] > 0.80 x 0.0688 = 0.05504. Reject Hypothesis T if
e[F]1<0.80 x 0.0688 = 0.05504.

Results of Test #1:

File o1F]
cipherExl.A 0.0692
cipherEx1.B 0.0338
cipherExl.C 0.0383
cipherEx1.D 0.0318
cipherExl.E 0.0692
cipherExl.F 0.0379

Conclusion from Test #1: cipherExl.A and cipherExl.E result from
columnar transposition, which does not alter the one-gram frequencies.

Having rejected 7 ...

Test #2: Count the number of occurrences {N;[F ]} in each ciphertext file F of
length N[F] and compute

o~ (NIF1Y
[F]= ( )
» ; NIF]

Accept Hypothesis M if s,[F] > 0.80 x 0.0688 = 0.05505. Reject Hypothesis M
if 55[F] < 0.80 x 0.0688 = 0.05505.

Results of Test #2

File $5[F]
cipherEx1.B 0.0470
cipherExl.C 0.0403
cipherEx1.D 0.0742
cipherExl.F 0.0459




Conclusion from Test #2:

sub-stitution.
Having rejected 7and M . ..

Test #3:  Use the k-test to determine that the encipherment is Vigenére.

Results of Test #3:

5.5 STATISTICAL TESTS PROBLEMS
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cipherEx1.D results from a monoalphabetic

cipherExl.B

cipherExl1.C

cipherExl.F

n =490 n =585 n =883
K K[s] K K[s] K K[s] K K[s] K k[s] K k[s]
1 0.0470 2 0.0430 1 0.0411 2 0.0189 1 0.0431 2 0.0352
3 0.0390 4 0.0432 3 0.0275 4 0.0568 3 0.0386 4 0.0421
5 0.0598 6 0.0475 5 0.0379 6 0.0432 5 0.0456 6 0.0319
7 0.0352 8 0.0498 7 0.0346 8 0.0468 7 0.0537 8 0.0343
9 0.0374 10 0.0271 9 0.0382 10 0.0313 9 0.0526 10 0.0355
11 0.0334 12 0.0607 11 0.0401 12 0.0471 11 0.0378 12 0.0344
13 0.0440 14 0.0441 13 0.0227 14 0.0508 13 0.0391 14 0.0806
15 0.0337 16 0.0612 15 0.0509 16 0.0633 15 0.0426 16 0.0415
17 0.0444 18 0.0699 17 0.0352 18 0.0459 17 0.0312 18 0.0393
19 0.0488 20 0.0574 19 0.0442 20 0.0425 19 0.0498 20 0.0406
21 0.0512 22 0.0385 21 0.0248 22 0.0249 21 0.0650 22 0.0430
23 0.0428 24 0.0472 23 0.0463 24 0.0357 23 0.0442 24 0.0384
25 0.0387 26 0.0302 25 0.0357 26 0.0698 25 0.0431 26 0.0408
27 0.0346 28 0.0411 27 0.0448 28 0.0395 27 0.0386 28 0.0807
29 0.0412 30 0.0717 29 0.0306 30 0.0595 29 0.0304 30 0.0516

Conclusion from Test #3:

Vigenére substitution of periods 6 and 7.

Having rejected 7, M, and V, accept O.

Conclusion from Diagnosis:
encipherment.

cipherEx1.B and cipherExl.F result from a

cipherEx1.B results from some other form of

5.5 STATISTICAL TESTS PROBLEMS

Problems 5.1-5.2 provide examples to test your skill at the diagnosis of cryptographic
encipherment.
The ciphertext files cipherPr5.1A-cipherPr5. 2F may be downloaded from
the following ftp address: ftp://ftp.wiley.com/public/sci_tech_med/computer_security.

PROBLEMS

5.1 cipherPr5.1A and cipher5.1B result from either columnar transposition,

monoalphabetic substitution, or polyalphabetic (Vigenére) substitution with period

5<r=<10.

Develop a diagnostic procedure to distinguish between these three encipherment systems and
determine which system was used for the example ciphertext.
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cipherEx5.1A

fphki
iugaa
zvvsd
erzal
bumcx
jihme
vseft
ubcwx
wjegk
dwfxw
ckdmb
aqvhpf
gepma
dmmfz
kbewu
wwcmt

tmpjg
nwain
bwbgz
xvmes
uizls
xieyc
wxudv
vifagi
fgrgb
Jjgquum
wvlms
guaul
etgbs
upmdh
bkzzu
ogawb

nhptv
attpe
vtvvz
dizsv
tcjxk
laxrl
lzzgb
ziorw
imaab
vagxhr
xgeub
hvsdb
cuywq
tpfzi
janrk
rugub

artgi weire vgzbk xmepw
khlrh gvadh klrpc vkkrg
gedwx mmegn ggahw jfdoc
mekgo mzbvy mempk uioki
xeprm icmpl mguem egtme
wznnm ngfhg ggvmd algme
awole epepqg ulvec bnizb
vgzxqg zlfie fctpi wthfo
afmyi quxeg fasca igebv
zfczu dgrvp uxmkh xbgxg
khykf jmmav bwkmp kgwiv
wbgzv aemgd mgvsk sxdcu
truoj meaph vvaoqg zwxlp
puawh vpoqu bcwbr xtcas
ikakb exuxw vzvxa almmf
dghl

afzlt
xrove
zldgi
gatbe
muoek
pwafz
vVvIvz
vwdaj

lmdgn
zmblh
sdbwb
ymgms
pyktu
zrpri
zcaav

pzlgl
ubkvs
kmuse
moxgk
ugveg
bvsdb
vgebv
xrvdc
ifmpx
rnawt
gzvhr
gxcgs
bdkcr
mrgpt
hhjkt

oWXgX
dbwbg
axvlr
dkkub
vmide
wbgzv
nwvog
bagkuh
rkmnx
ppdkh
ktgnd
1pxXw3j
brtuk
byvfy
geazo

cipherEx5.1B

aptnu
leaoe
ftnie
mcmtd
yaagy
somep
mlsbm
snnpe
htcerf
rtnie
edaao
terhw
eoise
flesc
nteea
sarre

inflv
ccauc
ordst
assos
irimg
euiye
hestl
tpsie
uosea
nsack
wrowt
ndthe
ostls
waidl
ptdge
ietnw

hoium
slten
nelts
yrlcn
ostoo
risma
nltpa
iebel
pesmc
eaeli
sfeeo
uetsu
empln
uorar
ertyi
ane

aoyre uobtf atris tirsh
udxid bbosc pnviu vreyu
zttde anttp ruumt cdaei
rtyrh taasn nspoh eluse
rguee etnao sohey tmcrw
nstnx nasts xcsgm eomnn
rfobo sioel iirfl siice
pnrtt hlele uuaee trasn
ruipo asmhn ysste sshst
spart tedbm itunc ohpis
crero maado olpie iogwl
ahunm nrecl ileas vaios
apeti othle ebgta hgnmn
cwpos rlons rgasi rtbyo
uncad eetly ihanm oispa

nsyed
cnsmy
1sill
utodt
efasp
eauls
wovnc
ipoim
reepa
poema
tnero
spoao
iatvh
lense
pmasa

oslen
rchnr
envya
eodgc
nttco
teaos
oseon
rsanc
erdie
orsop
atdst
clctm
cnodi
obtnc
oeola

cticr
tgpoi
mscru
kasim
cyahr
rsmhn
ddksi
rodsi
heaac
slsep
hboeh
tsidt
irppn
ronai
isoou

T

v
M
o

Columnar transposition

Vigeneére substitution
1-gram monoalphabetic substitution

Some other cryptosystem.

5.2 The Six ciphertext files cipherPr5.2A, cipherPr5.2B, ..., cipher5.2F
result from one of the encipherment methods
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Develop a diagnostic procedure to distinguish between these six encipherment systems and deter-
mine which system was used for the example ciphertext.

cipherEx5.2A

tundn rmeeo rceof sacrm stohb aessy gedtp rsnro tuaie tnsce
stgre haesi tncoo uccte evode twede iftuh stdrn rmcer iurde
pnmse rfoar anpey tiyza iethm eheos oecer tztsa ptcme ucret
xstep ydntu oslfe dtcho ieppc erueh setsp peyri hertf teitl
iarfc ernae pdrrn osigp ncets peyot edstn nnnfn grnru rivtt
mstir fstse nrdrt nspey roits dneor incia ratpc uscrn bliuc
cbeha ttshs asird owaor ieeha lrihs ceoit steyc riuce rnlye
msotw unrrl orisf eoarc oucao oamdm cenvy iabao orinc dhfei
lutcn atekh tuccr haaee midio ttedm rooar ipeys gdihe tdtbu
hcouc timnh ieims tttck eroui niant aiatu aevar wuaory tisiu
mntms tgsrn yooaa hsunh iecpt incor isaon eudaa ltsie mstar
kftua s

cipherEx5.2B

aftta 1lsmma fekdf pntfi masgh mdrbx mbplx nsmga gwhui ottzr
amggh wbrnz bwlgb tjlre masbb wiifn rwemt bwbrg huabc vcifa
eeziy ezghv gxtgc fekxs eypee iayyqg zrwgh mbnrx ijnmi antra
gluyi xnecf eyczv rcodu ntbwb ssoiz agagk snfoo iarrf imysz
afmnp tagjs oduvn domfg iktxg vyeybw aemun tvcyg zrejo dmfoi
pwixf cmbrd mpfre gcauz ogtmx rlwzi ftamh esgaz pbrlm wfxee
dmfue bcsem raocea flcvr dmazr taibv xfsec cphas gxlfa zvnlb
oagba nipkz iazsk pdwtr tuanc yeyiqg eicpy mzhae rvxzk uiktt
mhnlc gcizt uvtul mfcpx yeita bvggx eenip kziaz skpdw trtuw
gwrrd mctbb wbypl kzraw ahuir sqgzff btsfm kaplv tbwbg syemb
vnzbv ryped igtam ungba zwghx =zgyep sangh kmogw fsfpr rxaiy
x1fmc fekwt nwgaf gftbk oyvhxt mjnsx Jjsvrd antrt hgbsi osgvf
imgjr hxtmn eofvc awbne ggiom wajlr vyigih vfrxr rzmgb rbvrh
xtmjn sxnce mksfi acxgt tvlime svilb vrskl knbrx quaio wazxi
gowae madbv cntoe hbpmz gmxvh brbca cydwm rhgbg dwzsd ggfei
adgsr huhui xvgzn gxaoy eoyan ghxls ceoty mattv rglba hmeaz
mgnpx rkwsa etbbr codmv ggmff mkttm geiif ggbnf buekm ogiom
mgoet ayvrd irbue kmwfw Imgku chudh xbroz vmxev 1llxvg vgiam
oehxb acgim ahnxf sfgps 1lpcjx eafic pkwlv gxtgt logmd rvzez
bbftt zpsjp gbrrv zwzif spmge vbsgw bvgvc ekksa x1ffp rdxbs
pxbdo zvmxa oeioce bwetx lcail ufwst agfgc ghdmr ckgav rxlez
rphzh rhfso wavbk hrhxn pwaeh chbjg wgvgy mecgl 1lueia dxvrf
ymizr niewb rvbae wamha hbjgh garck garwx rgvbt kmdbv gepgf
taihn wrcom fsycz nxgao sbfmm beise mtfvn tbrvx butvt bmggl
xtoia bxmlc plifm gbrwh wuiopa brnmg oyegt mkxek awaea dubvo
gbvre avgzf eicpy mzifg gilkc hvxgg aaepk zvikt eiadf iyrwp
hmzrh htrrv puzpn pigoa sghgz eetac amptt igmtv mbjgh gkeif
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cipherEx5.2B

mgnvb
fpryt
wsmza
cthfi

estsqg
giliz
rafut
nywfz
Infpr
eahue
idwjn
sotif

jgagp
zsfio
fgbnu
waekd
zvsna
rvgta
rsvwb
egiav
mhahh
grgag
wihnw
sfprt

kibxw
iacfe
zcjwt
empog
inpiy
xbslqg
gefnu
ghtbv
wbfgt
rbkhh
maomr
kibfqg

xnpbu
gwitl
nslrs
loecj
zwglh
pycrs
vtsxv
rpmsf
gemmf
wbreb
nvgdu
fsegb

eimcc
godmc
vzwol
eywey
wyvrd
agnhlb
gvxfv
wncvm
eiktf
bogtm
ioizo
n

pbwtw
okbhb
pttmz
ywfei
faznn
vtbvj
ggath
gfsagh
worhe
ngzee
gamio

gemmg
xeebw
empcq
pipcr
rbvvr
afgbn
zanxf
azfeg
gvrdi
avnzg
ywldg

gxeey
yivmh
scsgi
ignce
dizxn
mpsov
ozwec
awgms
ebuen
bssom
brrlj

1lbnhb
uvbaf
ecagb
gxtuw
rmggh
lweme
hvhnm
euvso
asbjz
mbvog
fhapi

humkk
kyala
txera
atamp
pxrnc
mtgtv
kizov
kuogm
ozbeo
gbglb
zoyet

cipherEx5.2C

kbfeb
oyhhk
awyjl
ygoan
typyp
yukap
fetfs
rpfke
nopkp
akbfe
fecfo
ecfoy
ornxl
lanfe
fldan
rftae
anxrk
tzyna
kghty
nfpay
atpkh
foekl
yodrn
fecyr
anfec
yvrigl
aypop
pngrp
hyoof
naypr

knjyp
zatpk
hakbp
ryeta
dfofo
cnkgl
ftavh
ynagqo
dalnk
bknjy
yopgt
skfta
pkcny
cpdfo
uhkri
pyhty
ophxy
yvetok
hhkzy
ekpda
fjfpk
nkpar
x1lpkc
rftae
vetyr
narks
kpdao
fkeyn
bfryp
hyoof

fkepk
yrrao
dfopx
tgrao
qgogyh
okbfe
pdafe
atpkr
raook
pfkeo
aeprd
tuxyh
ldfrr
japdk
rdyfe
pytao
rrfta
bpzyn
Inkcn
ngoan
sanzn
pfkey
nyldf
pyhty
rftae
anxlh
arnar
apdna
fkeoz
bfryp

vegey
opdat
lakbp
aeofp
hxpda
tfsft
banae
kgepa
bjyif
pknat
vecfe
hkzfe
dario
tgoao
fecpk
pngrp
epyht
abyfh
yipkz
otypy
fpfec
cyfeo
rrdar
pytao
pyhta
yeunk
xkbty
ypopk
anabf
fkefe

apdkn
ypypd
dnayp
fsafe
naogh
gyhop
rarke
npdfo
ecqgey
fepda
cdfoc
cgoan
ajjfe
rnxlp
caean
fkeyh
aopng
gnaob
nfpau
yrrao
pkpda
pdynt
iogjj
pngrp
opngr
zofec
pyyet
pdafe
nopfe
pnktag

fvatqg
algquh
vefeb
bknjy
pkbrk
kkupy
pnkho
pxlak
apdkn
rkjlg
nytaf
opkjk
cryeu
kcnyl
ypayr
pdkagc
rpfke
knfeo
axket
orkep
goano
zynab
fecry
fkebk
pfkef
hayiy
pyjla
pacnf
pnktqg
ratux

oanbn
fruyr
anaer
pfkeb
nnahy
fefeb
lnaoa
bpdna
fvatr
panye
epdac
tfbxk
agoat
dfrpa
dario
dkbpa
jyxua
pyera
fpoty
nkhpa
kzety
yvfhan
eyhok
ntayh
pfoea
cayet
nfecy
pxkbt
ratux
taeef

kjyln
icyjj
apdna
nkjek
pfect
knjyp
epatf
YPPYJ
dyeca
awyjl
nytab
ehxpd
bknta
rdefm
ajbkn
efeek
rygoa
byaghp
pyoly
rdefm
pyoly
aooqr
uagoa
feczf
raooy
feban
etyrr
ypypd
taeef
ecjyo

kraoo
kecy]j

ypawf
eoaeo
ebknj

fkeyu
epdae
lanfe
opkpd
hakbp
fhapy
afnkz
parpf
gaoodg
ayrdb
raepr
tuxuk
xokbp
rayet
gaory
raugp
dyoyd
tbknt
pdukp
nxpkd
aeray
ftaep
aocapd
ecybf
mgany

pdypf
afoye
opofb
fpfsa
ypfke
kgpye
awpoa
cnaba
asvhg
vjlan
jlanf
ebfha
ecpy]
rdyor
fhayr
yeuas
pddyn
zynar
ksanz
euago
pdana
aytrn
aparp
dpyjl
ysayu
napdn
vhtao
naypr
eyhpd
tfecb
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cipherEx5.2C

fpofe eafpd anpda oarna rxekn fepac nfpxr ypack nxjyo mgany
tfecn abano pkpda 1nkra oozda nayef epngt ancyf eoyrr aoopk
pdaox opajq etany ekpda ngoan oyrrk gepol kkbfe cyetl vyoozk
ntcga oofec ynajy omgan ytfec pdnay polnk parpf kejar dyefo
jopdf oocarp fkefe pnktg raoln kparp fkeja rdyef ojogo atpka
edyer arkjl gpan

cipherEx5.2D

vevur bmywh xmeva agilm sikev egtew trhgk ouixd 1lnmoa nmhhn
mictm irnfe catnl sfsav vevsv onmko oagdi gyeue gcevh nwrhl
igtdg imiog mhhmx thhws rfien xmrdt bontg aoyli slmou azeag
wtlmb ngvaa gnxla gtlbs bsagw frrfa loxrl fbcam bogtx chgbg
xelar xbnwr hduvx ddumh egmif amiog fefht nilfs dumhe gmifa
miogf efhtn ilfss rbmak blbaw drxls whxma 1ljuhr tdigz tkrxa
tmaei ikstf =xckag isfbs whxse vnrha mtegm irnde ymaiv kxywa
xnkim bytns hrtta mxrpi galzn auagt exlaw rnstx wpdta tomae
vylte fmhls piley olltt txfpw sttsi hoiig gtaxu gsnsp xvtln
zusxk hrwxv ekbtl sbmph ktdnm thtmu wveksm tdedh tbimh fdlpa
vlaiw tbngm aevev urxtt wegti hgkhy mobxz igawi aehgx epita
mhhsr stxfo gepay hyegs nrigz tkili syhrw hxsyl mepth onerd
lsila rmhhl hgigi rrmit aymeu taekx rivdx prxls hdlim ieeju
bdeeb nhswe txkpd slwok wgxel sigzo gelho nedfh hosxt lrnzp
allwr rwate xavtx igamc kakac mxrvt aatbl nrthb vbhuv agdsa
huodg otnle halil rzuhs labex pdslw okwso ideal ioxsx sfbks
wntme tfigd eentf errtl ozbng afeig tdgim iogtp dslwo kwsko
nldgh teepr immeqgq dhwnh kiiim isbms konld ghtee primm egiga
nhuvl onspe tchfn rtaxr pokeu 1xrvs aouew Dbhtka igxdw ovhag
zewhx 1drits vwhrd 1lttdp iroik idtxi nmxry aesmh ltrfm helxg
xiwel Dbgevc tnbxx niokc ewuyw hxsyl mepfh riglt dnvet axpds
lwokw puozr afvag rxqub keoog gptls zokds tgdfa gchxv kwhxp
allwr rwchh legaz aiglt dlbst hyocev bouli avspo rwltk eeogb
gpuoz rafva gaeso bgfrr fthxn shrmh ambtl smimx mofth ngxia
vspor wlpds 1lwokw fllxs smhrh dbnta =xsbsm emfty eevom ikopi
ledeb khagy omaeu fblem aeuey orxbt 1lsgot =zhogp kacmb chths
thkes alswh kdvig thxvl hakin lmedd tonxp abfnn cmbog ixafn
gcwih nwahs higve klels vomin tdtbo ntelb igfet 1lielx towxt
hrfin xbsxs =xdthx nfiih eklav sporw lagdm hekxs xlmis lmoue
winma esals whkdi ieewa xndul erlia vspor wbssr xXsegm egaml
ozbnw ifeim bshnv ipaxr hdtnd vhmsa kedmh tkelt okxdy aeueu
ruvig gogxw dyyun vmirn ltoxg clpae zritsv whrdl mhhlh gigyi
oevan uxmdd xpuue ifave ellcr nmroe tsvuf inzmh dtuyu lbnja
nthxg tlctt i1hgmh caanb 1Imvag dghhd salsw hkdsr tctbv ewhxs
yvlmep ctngn trdnm eemaa wuler ltrhw aotax yflti mmhbh taenx
gtvtx pilmo
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Bbyozd
mobse
f3030
gqoIXzZ
gbz Cu
sunob
Alsse
ISTIO
bagss
ouxan
Bbjyosb
Jsbug
bremx
oxXJMmx
Azeln
ADAAY
oftxx
MXOSs®e
nbpgo
xos3b
woAwz
[0S
MmJOSA
0ZpP3IxX
dpiam
ezeoe
STemu
MXT20
useko

bAM3A
obtox
btagm
anziq
nsnbe
exled
bAppx
SXWYM
nbnajy
nbzo
enjzo
zulqy
xXysex
baropm
fzteq
beaut
Baxee
Bauog
baked
Tap3{o
ApPOUX
ZUWISUIX
quaxy
IMeDdO
eulwun
Wip3a3
z3 (a0
JureAq
Tqebp
zbdex
bbpte
IOXDD
boatz
msysd

nz
mdysu
oox1b
bzbzn
pzens
Bbexlk
neATe
seduj
A391q
nbure
Fsqet
[xuwz
FamTm
MmJ300
ull1y
THsxu
yaqup
Ixbad
MmAnxu
drnue
yadazg
nzses
bAugn
aryTx
yrbyx
DTZXI
yabge
Jwsmb
nsamn
QIMUZ
O3 Xop
Agbsu
MXAD
yquby
myxbm

HZ " GxgIdydro
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cipherEx5.2F

bmzag 1lvvdo nbfsw xcmrm fwgvd domfs wpzay iowkv vkzac itmag
iigmf rnbni gmdtg msmax klzvk fglzk cmxtr zvpnx kkvjz gvbow
aflxr qgzpzs iiymz ivpwm iirtl xying ybrgz wxwjm gmeec dgmpbv
uimtg vtyrk zbngf mdtgm smaxr xdwtu hwkfz anwjr kswmi wawzw
omtbj mklop kwemx miirz rulmm msmax Jjmoan whpuf zmbgg iexop
gbgid siazz nxzrb bnigg fhzqgy kbrjm nbkvg azxca kkhvz xtzky
hmiih mtbfm jeygl nvglp oxxwp i1jwop kxest inaoa =zeuio zgkge
spzje drvzj tgtog 1lvhza ooaek igmxg fxvto pknvv Jjxnbk xbjkl
zdkzv Jjzgvb owati sxmya vwksd vlweg rpggb memwc opgbg 1lvjjz
siygf hztvz btvvg gxmsp vgoaz prwvg pzobl vvupg xmzie xnbng
fmjxc muvyc zrawx unpjx zxovg lvtmw imfwj mikkb uiwsm ugtzs
uiggy id1geym bprmi icsai hagvr gogquv nrugj vzivr Jjrjct vrgvw
nixgg ikedt yqggmj yncgt ycrwd uvtrx rwfbu zrzzi rbnms sigvt
swgic adbnb uigim auvfa ysbmt meeki vybnme ihydz kurrk wvvjl
rxvvh qgtmjl vxcmx buids ymrxe sgimt ezrjc ixbyb uitvd boknp
iilco zrgvr oatmk xzxda tmpij wvzeb btisg mzpnx klzpo ouijx
gmbmy wgixg lgpek mjvyi eitsi aocagi exrgz pglvj Jjzsiy qgfhzt
hwglr woizm =zetld vkict isvkn iahrr vtmmo vrmxi vxesr gcixm
csjwd Jjrmnj kimbn mumxl zaztr zvpaw xunpj tzkon vgrxd wtpnw
sizvy pbaex Jjjkkb rjmnb kvgaz xcbnm ssigv tswgi cmoqy vrgvw
nixgg sjlje zpnxk 1lzvkf gpfaz zrmii cwkmi gsmte oquvv Jjfrzm
dgfxj mnkuv fmjxz vzevx yxcmr miice wwbmv xklda vzbgv wnkuv
gmeyz alzbg cigmr bbpvz ztavg mcexcm rwjij xgmbm ywgix glagpe
kmjvo aflfa ibujr gfrng ybrrk adbnb uicig mrios midbl gaecp
tgzgf rvgza yieck snpue glrxo pkgzt cihmt bnxzs igykb rjmnb
kvgaz xcbnm ysnin brmii cwkmi gsmte oquvg lveyd kvgsw xcmym
pyimo ggmer vpvag ureew Jjnkvp egwpt gbvrx egtym pyimo gxmyi
meibg acitx nwlbu ijcnb kuzeb iawxu npmim glgpe kmjvl mnwzf
gmzpn xzwwg Jmiic skgto xiirz tgzpl zxzkz ceijx cizuv rzgdh
kbuir gjctb nrugj uvtrb zxtwl abjka vzkga zfpgm jgawv gpzob
lhvgd aowaw rrymt nbvti hmtbg lvgci tkrwf Jncik rwjjp trgii
imago vtxye obnmf cjxzu smrxj moaym pyimo gxmdy zvzuk vgwrv
zoxmn xccdv izrej iybng fmjfz kgcfi frggz provv imrkb hvgpa
zjrzv vdnom gioeh xrmfs wajzg gaxym nixmn eiixw tkyyj mjvyb
umjtv xkzue Jjeobk wucxvh owmgi irfmg knvrk vjlak gmfro wzprx
ftdku npsdt pbkzf itymg =zgglv vzixm zeecb wulei wimmt krwfr
opkbb tzgdv viexz gptgz cvfzd 1lkits fhncx drcfj opkie ir
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CHAPTER 6

THE EMERGENCE OF CIPHER
MACHINES

TH E ROTOR, a new mechanical implementation of polyalphabetic
encipherment, was introduced at the start of the twentieth century. We examine
encipherment by mechanical cipher machines and an important characteristic used in
their cryptanalysis. Edward Hebern’s Electric Coding Machine, patented in 1924, directly
stimulated American cryptographic design. A description of the Enigma machine and a
description and cryptanalysis of the Lorentz Schlusselzusatz concludes the chapter.

6.1 THE ROTOR

150

The building block of a new class of enciphering machines was invented early in the
twentieth century. Figure 6.1 shows a rotor or wire code-wheel, an electromechanical
implementation of polyalphabetic substitution. The rotor is a disk of diameter ~4 in. and
thickness ~0.4 in., made from rubber or bakelite (an early plastic), and is free to rotate
about an axis perpendicular to its faces. Brass contacts arranged clockwise are evenly
spaced around the circumference on each of the input and output faces, one for each letter
of the signaling alphabet A, B, ..., Z. Internal to the rotor body are electrical connections,
26 pairs of wires joining a contact on the rotor input face to a contact on the rotor output face.
Stationary input and output contact plates sandwich the rotor to provide for input
and output. Each such plate contains contacts for the alphabet letters arranged so as to
make electrical contact with those on the rotor’s respective input and output faces. A
signal applied to a contact on the input contact plate traverses a path composed of

- The opposing contact on the rotor input face,

« The wire within the body of the rotor,

- Connecting to a contact on the rotor output face, and finally

- Connecting to the opposing contact on the output contact plate.
A moveable ring containing the numbers 1, 2,...,26 in Figure 6.1 (rather than A,
B, ..., Z) allows the rotor’s rotational position to be aligned. In some benchmark position

of the moveable ring, the rotor implements a monoalphabetic substitution 6 : t — 6(¢).

Rotating the rotor counterclockwise relative to the fixed input and output contact

plates i positions equal to 3%, changes the rotor substitution

26
0:t— 60 6.1)

Computer Security and Cryptography. By Alan G. Konheim
Copyright © 2007 John Wiley & Sons, Inc.
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Figure 6.1 The Rotor (Courtesy of NSA).

to
C_6C, :t—0¢+i)—i, 0<it<26 (6.2)
where the arithmetic is modulo 26 and C; is the Caesar substitution
C; : t > t+i (modulo 26).

Note that in Equation (6.2) and elsewhere, we denote the composition of mappings
(C_,(6(C))) by C_;0C; without using internal nested parentheses.

The ring may also be rotated clockwise relative to the rotor body R positions,
changing the relating Equation (6.2) to

C_6CCr : t—>0t+i+R) —i, 0<it R<26. (6.3)
Figure 6.2 shows the effect of rotation on the rotor’s substitution. The rotor is

- In the benchmark position in which input/output contact plates are both aligned with
their corresponding contacts on the rotor input/output faces, and
« Arranged so that the internal wiring (—) of the rotor is such that 8(A) = P and
0(B) = L.
A signal applied to the letter A contact on the input plate contact

1. Will energize the letter A contact on the input rotor face,

2. Will be transmitted on the wire through the rotor body, energizing the letter P
contact on the output rotor face,

3. Will energize the letter P contact on the output contact plate,

so that A — 6(2) = P, as shown in Figure 6.2(a).
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Initial Position : i =0 Position :i=1

Input

Contact
Plate

Input
Contact
Plate

Output
Contact
Plate

Output
Contact
Plate

Rotor Internal Connection

(a) (®)

Figure 6.2 The effect of rotation on the rotor’s substitution.

If the rotor is rotated one position counterclockwise, a signal applied to the letter A
contact on the input plate contact
1. Will energize the letter = A + 1 = B contact on the rotor input face contact,

2. Will be transmitted on the wire through the rotor body, energizing the letter
0(B) = L contact on the rotor output face contact,

3. Will energize the letter L — 1 = K contact on the output plate contact,

so that the letter A will now be enciphered to K = (C_;60 C)(2) = C_(L) as shown in
Figure 6.2(b).

6.2 ROTOR SYSTEMS

A rotor system incorporates more than one rotor sharing the same axis of rotation. The
rotor system shown in Figure 6.3 produces the polyalphabetic substitution, which is a
composition of the r substitutions 6,, 6y, ..., 6,—; (Fig. 6.4).

r— (Hr—l 0r—2 s 01 90)(0

Output --—— -«+— Input

Rotorr—1 Rotor r—2 Rotor 0

Figure 6.3 A straight-through rotor system.
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1= (6,16, 0, 6p)(1)

Output =

Figure 6.4 An encipherment path in a straight-through rotor system.

If each of the r rotors are rotated counterclockwise k, &y, ..., k,—; positions (relative to
their benchmarks), the substitution

1= (616, 616) (1) (6.4)

is replaced by
t— (C,k'__] 0,,1Ckr_] C*kr_z 0,,2Ckr_2 cee Ckn Gocko) (t) (65)

It is intended that the position of at least one rotor changes after the encipherment of each
plaintext letter in a rotor system. The position of the jth rotor for the encipherment of the
ith plaintext letter is determined by a rotational displacement function ki) so that

X —> ¥i = (Cp_1 5 0r—1Ch_ (9 C—tto o)) 0r—2Ck, 1)+ * C—ioi) B0 Croi)) (i) (6.6)

The simplest rotational displacement functions {k;(i)} are k;(i) = L,,%,-J (modulo m),
with m = 26. This is analogous to an automobile’s odometer with m = 10. In Equation
(6.6), the fast moving rotor is on the right, the slowest moving rotor is on the left.

A rotor system implements polyalphabetic substitutions. Although Vernam-
Vigeneére encipherment used only 26 different ciphertext alphabets, a rotor system with

r rotors potentially might result in as many as 26" ciphertext alphabets.

6.3 ROTOR PATENTS

The discovery of the rotor led to the implementation of several electromechanical crypto-
graphic systems, which were patented (Table 6.1). Hebern’s rotor machine (Fig. 6.5) used
a typewriter (2) to input plaintext consisting of the letters A, B, ..., Z. Ouput was signaled
by lamps (37) located just above the keys (4). The rotors, five in Figure 6.5 (75a—e), have
window (7), which allow their positions to be viewed.

Edward Hebern, born in 1869, spent his adult life trying to use cryptography to better
himself financially. He was not discouraged at all when a solution to his magazine adver-
tisement of an unbreakable cipher in 1921 was provided by a naval cryptanalyst. Hebern
was at the right place at the right time as the U.S. Navy was seeking a quality crypto-
graphic system. Hebern set off for Washington D.C. to seek his fortune selling his Electric
Code Machine. Anticipating success from his Washington outing, the Hebern Electric
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TABLE 6.1 Patented Electromechanical Cryptographic Systems

Patent no. Year Country Patenter Description

52,279 1919 Sweden Arvid G. Damm

1,484,477 1924 United States Apparatus for enc/deciphering
code expressions

1,502,889 1924 United States Production of Ciphers

1,540,107 1925 United States Apparatus for the production of
cipher documents

10,700 1919 Holland Hugo A. Koch Geheimsschrijtmachine

1,533,252 1925 United States Printing telegraph system

1,657,411 1928 United States Arthur Scherbius Ciphering machine

1,510,441 1924 United States Edward H. Hebern Electric code machine

1,861,857 1932 United States Cryptographic machine

Code Company was established in Oakland, California. He advertised his cipher machine
using the ode:

Marvelous invention comes out of the West
Triumph of patience, long years without rest
Solved problem of ages, deeper than thought
A code of perfection, a wonder is wrought.

As part of the review process, Hebern submitted ten examples of ciphertext to the Navy for
analysis. While they were cryptanalyzed by William Friedman, Hebern was not told about
the results nor were the weaknesses in his design explained to him. Even though Hebern’s

Figure 6.5 Edward Hebern’s Electric Code Machine (U.S. Patent no: 1,673,072).
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concepts were later used by the U.S. Government, they never gave Hebern the order he
expected. Only 12 machines were purchased, the Hebern Electric Code Company went
bankrupt and Hebern was found guilty of violating California’s Corporate Securities Act.

6.4 A CHARACTERISTIC PROPERTY OF CONJUGACY

The substitution C_;0 C; is a conjugate of 6, a term from group theory. Conjugacy enjoys an
interesting and important property illustrated in the substitution table (Table 6.2) in which

- The leftmost entry in the ith row gives the rotational displacement i, and

« The next 26 columns in the ith row list the ciphertext letters (C_;0 C;)(¢) correspond-

ing to the plaintext letter # with 0 < ¢ < 26.

We begin with the following observation: 6(¢) = s if and only if 6(t —i+i) —i =5 — i,

from which it follows that

TABLE 6.2 Table of Rotor Conjugates

A B CDEVFGHTIJI KILMNDNU OZ®POQORSTUV WX Z

0 f Qtgx anwoc3joilwvzphyDbdrkus1lemn

1l ps fwzmv>binhuyogxacgqgdijtrkdle

2 revyluahmgtxnfwzDbpisgijckdo

3 duxkxtzglfswmevyaohurpiDbjcng

4t wij sy fker viliduxzngagohailbmpec

S5 virxejdgukoctwymfpmngzhalobs

6 hgwdicpt jbsvxleomnmnfygzkknaru

7 pvchDbosdiaruwkdnlexf£fy Jjmzaqgtgd g

8 ubgamnrhozgtvijcmkdwexdilywps f o

9a fzmgqgypsuiblijcvdwhkxorent

10 ey 1 pfxor thakddibwucvgdlwngdms z
I x k oewngs gz 3Jjhatbufivmpoclryd
12 jndvmpor fyigzs atehwulobkaqgzxocw
I3m cul ogexhfyrzs dgtknaijpwbyvi
4 bt knpdwgexgqgyorcfs jmzdiowvawuhl
I55s Jmocv fdwpxgberily hnus=ztgka
16 i 1 n b uecvowpadaghkxgmtys s f jzr
17 kma t d bumnvwvozc¢cpgdiw flsxoredlyagh
18 1 z s catmumnyDbofivekrwagdh=zxpg ]
9 y r b zs 1l tmxamnehwudijgvpcgwof ik
20 g ayrk slwzmdgtocdipwuob fvmneh]jx
21 z x 9 Jj r k vy lcf s bhotmnaeumdgdiwop
22 wpigjuzxkDber agnsmzdtl1lcfhvoy
23 o hpitwdjadgzfmrlyocs kDbegunzxyv
24 g o h s vizcpyelaqgkxD»Xr jadiftmwun
25’ n gr uhyboxdkpdjwagilzocesllvtmf
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TABLE 6.3 cipherEx6.1 in Rows of 26 Characters

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

8 9

7

s
h

b k g ¢cwugfy dkib ko r £f ol

my x v 1 h d w f e y u

Z

h

r
w d h r g ¢cw g xr k d a e

w h g uy b g s

i

it 3
k d x ww u o Vv r a r g X

r

x x k

h b r in
d g o x d h n

i

e

d v £ r

(e}

c w s m k i ¢ nn i

r v h 4 £

z e g 1 a e

g bmo x pwm s d s

1 ¢
t b m k

w 1 b y t e

£

i
£

o d 1l w b k u a

3
t v oocnkorzrp v 111

r w o o k d g

g p vy 1

i

h
a k

e
t vy w b g p

s gmrzr s dc biely v z
c g Vv w C

g

r

b g vy

g t b ¢ h
d u f a b t s s

Z

i

e

g p e

a

s h mmn h t J
e m b k p h el v h £ vy

b

a
n v w g t

z h 4 1
]

o
l1 h h v

f w v

j d k x

g p £f r g o
n c¢c b jJ

r

d
c

s
3

i
X m m k e e m x 1 e g

f v

S

w d 1 m

Xx u b p w1l h w e t

pA

Z

1 d x w

3

z
c dw o r d r m i

a

x 1 h t

p

C W g u e m g e 1

S

b d o
a X g n

g g v ¢ n i

i

o h t r w g g s

X g w u z

i

C

1
b g h w b p dmcn k w c

h 1 a vy

n h unwekXkp o o agqgzx i

zZ T
p h b

1 v £ v

g
v

r
£

3
3

k1 a v c

f vy
f vy

[e]

z

i

1l x o h £f e m k

s
q
s
3

3

1
£

o
d u w p

i

1 t k g ga h k ¢ p
u t 1l x py u x u s

v £ g r i i
]

i

f rdmma

i

]

u k t g
t omk p 1l vy v r s t r n b a g

g agqgf vy d k o e jJ

X X b u
v b

Z

b h x d

(e]

e

- If E(4) is enciphered to x (23) with the rotor in position i = 0

23;

04+0)—-0

« Then D(3)= C_E is enciphered to C_;x =w(22) when the rotor is in

position i = 1

03+1)—1=64)—1=23—1=22.

s if and only if (C_; )0 Ci+1)(t — 1) = s—1 shows that

The property (C_;0 C)(¢)

, z on upward

the letters in Table 6.2 traverse the alphabet in the standard order a, b, ...

diagonals; the letters on the diagonal starting in row 2, column A are underlined.

6.5 ANALYSIS OF A 1-ROTOR SYSTEM

CIPHERTEXT ONLY

Example 6.1
The ciphertext that follows contains eight rows, each containing 78 letters and a final ninth

row of 26 letters. We begin the cryptanalysis by writing the ciphertext in Table 6.3 in
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cipherEx6.1

rblfogzbkgcwugfydkibkrfolsfjmyxvlhdwfeyuiwhguybgsrhhbolkagixxkritjwdhrgcwrkdae
pcdyfrekdxwwuovrargxihbrintjrrryhdfcwsmkicnnidgoxdhniwlbytelcgbmoxpwmsdszeglae
ffgpyltbmkrwookdqg jodlwbkuakoapeeobehtvoocnkrrpvllligbgyijzyzgkrgsgmrsdcbielyvz
agpetywbgpeijuicgvwczgtbchzfwvozhdibshmmnht jdufabtsszflhhvjdrgembkphelvhfyjdkx

rirmjmlcnvwgtsfvisgpfrgojrwistjzzxubpwlhwetjncbjwdlmpxlhtzjnmaxmmkeemxlegzldxw

coslyehxjnchjscwquemgejlinzzcxzwojiggvenicdwrdrmibdoxyrvajhcixgwuzohtrwggsaxgn
ozsjzzrlnhunekpooagxihlavycciphbobghwbpdmcnkwefyjrgekclyfvoljslxohfemkizfyjfvl
xuiyfgrfigiltkgghkcpiklavexpzaduwpisutlxpyuxusfrdmmabhxdzxxbujjgagfydkoejuktg]j

ptfpzjybeotomkplyvrstrnbag

columns of 26 letters. Denote by N(i) the length of the ith column and N,(i) the number of
times the letter 7 appears in the ith column.

If ¢ is the correct plaintext value for ciphertext s in the Oth column, then ¢ — i will be

the correct plaintext value for ciphertext s —i in the ith column for every i with
0 < i< 26. It follows from the law of large number that the frequency (N,_;(i))/(N(i))
should approximately be equal to the probability o (t — i) for every i with 0 <i <26

where 7 is the 1-gram probability distribution.

TABLE 6.4 Xx-Values for Rotor producing cipherEx6. 1

E—s x[E,s] T—s xI[T,s] A—>s x[A,s] 0—s x[0,s] N—s xI[N,s] S— s xI[S,s]
E—a 00436 T—>a 00377 A—>a 00366 0—a 00343 N-—>a 00343 S—a 0.0489
E—>Db 00446 T—>Db 00366 A—>Db 00342 0—Db 00357 N—>Db 00470 S —Db 0.0451
E—c 00370 T—c 00471 A—>c 00325 O0—c 00388 N—c 00381 S—c 0.0330
E—>d 00370 T—4d 00391 A—>d4d 00204 0—4d 00442 N—4d 00308 S—4d 0.0605
E—>e 00407 T—e 00402 A—>e 0038 0—>e 00414 N—>e 00431 S—e 0.0418
E—~f 00491 T—>f 00427 2A—>£f 00706 0—f 0.0423 N—£f 00497 Ss— £ 0.0301
E—>g 00458 T—>g 0.0389 A—>g 00438 0—g 0.0479 N—>g 00403 S— g 0.0541
E—h 00452 T—h 00380 A—h 00446 O0—h 0.0422 N—-h 00353 S—h 0.0326
E—1 00347 T—1i 00288 A—1i 00471 0—1i 00324 N—1i 00235 S— i 0.0306
E—Jj 00267 T—3j 00359 A—3j 00329 0—3j 00282 N—3j 00410 Ss—3j 0.0370
E—>k 00288 T—k 0.0399 A—-k 00370 0—%k 0.0335 N—>k 00412 S—k 0.0325
E—~1 00322 T—1 00451 A—1 00315 0—1 00314 N—1 00313 s—1 0.0290
E—m 00316 T—»m 00312 A—-m 00374 0—-m 00457 N-—->m 00356 S —>m 0.0362
E—>n 00408 T—>n 00476 A—>n 00368 0—>n 00381 N-—>n 00390 S—n 0.0452
E—o 00374 T—>o0 00302 A—o0 00304 0—o0 00326 N—o 00270 S— o 0.0271
E—p 00361 T—>p 00314 A—>p 00349 0—>p 00633 N—>p 00409 S—p 0.0400
E—>qg 00354 T—>qg 00374 A—>qg 00467 0—qg 0.0492 N-—>qg 00498 S — g 0.0464
E—>r 00414 T—>r 00686 A—r 00312 0—>r 00310 N—r 0.0330 s—r 0.0368
E—>s 00257 T—>s 00265 A—>s 00427 0—>s 00293 N—>s 0.0321 s— s 0.0336
E—>t 00442 T—>T 00432 A—t 00406 0—t 0.0501 N—t 00551 S—t 0.0451
E—u 00404 T—u 00344 A—u 00380 0—u 00310 N—u 00326 S—u 0.0310
E—>v 00385 T—v 00387 A—v 00411 0—v 00379 N—v 00350 s —v 0.0369
E—->w 00265 T—w 00335 2A—->w 00276 0—w 0.0288 N—>w 00334 S —w 0.0425
E—>x 00663 T—x 00470 2A—>x 00452 0—>x 0.0324 N—>x 00365 S— x 0.0352
E—>y 00385 T—>y 00320 A—y 00383 0—>y 00394 N—>y 00289 S—y 0.0398
E—>z 00319 T—2z 00312 A—>z 00423 0—>z 0.0388 N— =z 0.0655 S— z 0.0291
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To test if 6(¢t) = s, the y-value is calculated:

sti(i)
NG)

25
Arsl=) m(—i)
t=0

If s = 6(¢), it follows from the law of large numbers, that x[z, s] should be approximately
equal to

25
sy =Y _ (1) ~ 0.06875.
t=0

The results of the scoring is shown in Table 6.4 with the s-value maximizing y[¢, s] under-
lined. A similar calculation must be made to recover the values s that maximize [z, s] for
the remaining plaintext letters.

6.6 THE DISPLACEMENT SEQUENCE
OF A PERMUTATION

Are some rotor wirings better than others? As the intent of rotor encipherment is to encipher
plaintext using a large number of different 1-gram substitutions and to change the plaintext
letters as much as possible, this might be used as a design paradigm. For example, if a rotor
0 is wired according to a Caesar substitution C, the rotor’s substitution is the same in each
position, which might explain the weakness of C; as a rotor.

Edward Hebern suggested that rotors should be wired so as to produce the
largest number of different substitutions. Can the rotor’s substitutions be different in
each position? The displacement sequence of an m-letter substitution 6 is the vector
deg=(dg(0), dg(1),...,dy(m — 1)) defined by

do(i) = 0(i) — 1, 0<i<m.

What displacement sequences are possible?

Proposition 6.1:

6.1a de, = (kk, ... k).
\—/'—/
m copies
6.1b If 6 = 6,6,, then dy(i) = dgl(ez(i)) + d()] () for 0 <i<m.
6.1c de—l =m—d.

6.1d dc_ec, = o*dy where o is the left-cyclic shift of dy by k places.
O'kdg = (dg(k), dg(k + 1), ey dg(m — l), dQ(O), dg(l), ey dg(k - 1))

Proof: 6.1a is obvious; for 6.1b, write

do(i) = d((0162)(D)) — i = dp, (62(2)) — 62(i) + (62(0) — 1)
=dp, (6:())) +dp (1), O0=<i<m

Using 6.1a and 6.1b
dg1 (D) = do(i) + dg-1 (i) = dc, = 0
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which implies 6.1c. To prove 6.1d, use 6.1b

0, =0, 0, = Cy = doycy() =doi +k)+k
0, =0, 0, =C_; = dc_ (o) =do(i) — k

Proposition 6.2: If m is even, then dj is not a permutation of 0, 1, ..., m — 1.

Proof: If d is a permutation of 0, 1, ..., m — 1

m—1

m—1
Z dg(i) = Z i
i=0 i=0

1
Em(m — 1) # 0 (modulo m)

if m is even. Tables 6.5 and 6.6 list the displacement sequences for the permutations of
0,1,...,m—1for m =3, 4. Table 6.6 shows that d, can be close to a permutation for

TABLE 6.5 Displacement Values for m=3 Rotors

%} dy 0 dy 0 dg

©,1,2) 0,0,00 (,2,1) (©,1,2) (1,0,2) (1,2,0)
1,2,0) (L, @01 (2,22 21,0 (2,01

TABLE 6.6 Displacement Values for m=4 Rotors

0 dg 6 dy 0 dg

©,1,2,3 (0,0,0,00 (0,1,3,2) (0,0,1,3) (0,2,1,3) (0,1,3,0)
©0,2,3,) (0,1,1,2) (0,3,1,2) (0,2,3,3) (0,3,2,1) (0,1,0,2)
(1,0,2,3) (1,3,0,00 (1,0,3,2) (1,3,1,3) (1,2,0,3) (1,1,2,0)
1,2,3,00 (1,1,1,1) (1,3,0,2) (1,2,2,3) (1,3,2,0) (1,2,0,1)
(2,0,1,3) (2,3,3,00 (2,0,3,1) (2,3,1,2) (2,1,0,3) (2,0,2,0)
2,1,3,00 (2,0,1,1) (2,3,0,1) (2,2,2,2) (2,3,1,0)0 (2,2,3,1)
3,0,1,2) (3,3,3,3 (3,02, 3,302 31,02 @3,0,2,3)
3,1,2,00 @3,0,0,1) @3,2,0,1) 3,1,2,2) (3,2,1,00 @G, 1,31

TABLE 6.7 Number of Interval Wired Rotors

m N, m N, m N,
1 1 2 2 3 3
16 5 15 6 144
7 133 8 2,048 9 2,025
10 46,400 11 37,851 12 1,262,592

13 36,161,915 14 44,493,568 15 2,000,420,864
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m = 4 in that dy excludes only one valuein 0, 1, ..., m — 1 and hence assumes one values
twice; for example, dg = (0, 1, 3, 0).

A rotor is wired according to the interval method if its displacement function dg
excludes at most one value of 0, 1, ..., m — 1. Table 6.7 lists the number N,, of interval
method wired rotors for m contact rotors with 1 < m < 15.

6.7 ARTHUR SCHERBIUS

On January 24, 1928, the United States Patent Office issued U.S. Patent 1,657411 to Arthur
Scherbius for his invention, a Ciphering Machine (Fig. 6.6). Scherbius’s patent was
assigned to Chiffriermaschin Aktiengesellschaft of Berlin. (Note, chiffrier is the
German verb to encipher, Aktiengesellschaft is German for joint stock company, which
has a meaning similar to Inc. in the United States and Ltd. in England.) The components
of the Enigma machine, shown in Figure 6.7, include (1) input device (keyboard), (5)
input/output contact plate, (6—9) four rotors, (11) stator (stationary rotor), and (12)
output device (lamps). Scherbius called his cipher machine, the Enigma machine.

e~

el v - ) 0 o
(=1 " Ea T ) -t - g
bl [ =] w -~ »a -~ ~ ,-
el P B R -
’

Figure 6.6 The Enigma machine (Courtesy of NSA).
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Jan. 24, 1928. 1,657,411
A. SCHERBIUS

CIPHERING MACHINE

Filed Feb. 6. 1923
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Figure 6.7 U.S. Patent 1,657,411: The Enigma machine.

Webster’s New Collegiate Dictionary defines enigma as “An obscure saying; a riddle.
Anything inexplicable; puzzling.” Scherbius’s use of enigma may have been derived
from Sir Edward Elgar’s 1898 musical composition Enigma Variations. Elgar wrote
that the basic theme in G minor was a variation on another piece of music not revealed:
“The Enigma I shall not explain — it’s ‘dark saying’ must be left unguessed”.

6.7.1 Scherbius’s Reflecting Rotor

The Enigma machine uses rotors, but in a different way to Hebern’s straight-through rotor
system, in which the plaintext entered at the rotor on one side and the ciphertext exited on
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Q\/ A «——— Input Plaintext

R .
——» Output Ciphertext

Or () 6 &
Stator Left Rotor Middle Rotor Right Rotor

Figure 6.8 Organization of the Enigma rotors.

the other. In Scherbius’s Enigma machine these were two modifications to Hebern’s
concept:
« An output stator (reflecting rotor) 7 was included after the last rotor, and
- The signal entering the stator was reflected back from the stator through the rotors to
the output contact plate as depicted in Figure 6.8

The Wehrmacht (Army model) used three rotors and the Kreigsmarine (Navy model) four
rotors.

The military model also differed from the commercial version by the addition of a
plugboard to modify the connections between the standard Enigma keyboard (shown in
Fig. 6.9) and output lamps to the input/output contact plate. In the first models, keyboard
letters A to Z were connected to the same letters on the input/output contact plate so that

- When key A is pressed, a connection is made to the contact of the same name;

- When the signal is returned to the output plate at contact S, the lamp with the same
label glows.

The plugboard modified the keyboard—input/output plate connections. Double-ended
plugs (steckers) were used to connect pairs of letters; for example, keyboard A to R
input contact plate and output contact plate R to A keyboard.

The number of ways to connect n plugs with an alphabet of 26 letters is given by the

formula
15/ 2(13 — j)
Pn,26—n!£([)< > >

The Enigma used 11 plugs, maximizing P, ¢ and giving ~2.1 x 10'* possible connec-
tions from the keyboard to the input/output plate.

ONONONONONORORONO,
OCRONONONONORONO,
ONONONGOEBONONONONO,

Figure 6.9 The Enigma keyboard.



6.8 ENIGMA KEY DISTRIBUTION PROTOCOL 163

° Keyboard
]
— Plugboard Ry R R,
(CE—e) ﬁ_ -
I
S — ]
F—-6O— -
L
. J A4
_ Input/Output Stator
Contact Plate

;M

Figure 6.10 The Enigma signal path.

The signal path through an Enigma machine is depicted in Figure 6.10. Depressing

the key A on the keyboard closes a circuit, which includes the battery; the signal travels

- Through the plugboard to the input contact plate;

- Through the three rotors Ry, Ry, and R5;

« Through the stator;

. Back through the three rotors R,, R, and Ry;

. Through the output contact plate; and

« Through the plugboard causing the lamp Z to glow and finally to ground.

6.8 ENIGMA KEY DISTRIBUTION PROTOCOL

Any system for distributing keys that allow the same daily keys K, K>, ... to be used by
many military units is appealing, as it permits all entities to monitor all communications.
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However, it has a serious cryptographic weakness, which is independent of the
strength of the encipherment algorithm. If the ciphertext transmitted on the different
links is monitored and arranged in rows

Link [1,2]: wuy wy up -+ Up_y
Link [1,2]: wv9g v1 vy --- U
Link [4,2]: wo w; wy -+ w,_
Link [51,31]: yo y1 y2 -+ Yuo1
Link [7,2]: 20 z1 22 -+ Zn-1

the ciphertext in each columns results from a monoalphabetic substitution and may be
analyzed independently of the others. Shannon reasoned that 3—100 messages should
be enough to recover the plaintext.

The German military understood the possibility of this vertical attack and developed
an elaborate key management scheme to hopefully avoid any weakness. Each Enigma cipher
machine came with a selection of rotors. In 1934, five rotors were distributed; the number
was increased to eight in 1938 but the old rotors continuing to be used. The Enigma was a
field encipherment system and the Germans had to assume the Allies would eventually
capture a device. Security could not depend on keeping secret the rotor wirings as stated
in Kerckhoft’s Second Postulate

Compromise of the system should not inconvenience the correspondents.

In fact, the Polish Resistance captured an Enigma early in the war and a German
submarine was forced to the surface, providing examples of rotors.
The entire strength of the Enigma depended on the secret keys. These included

1. (Walzenlage) The choice of the rotors and their order — 60 =5 x 4 x 3
(336 = 8 x 7 x 6 after 1939).

2. (Ringstellung) The settings of the three alphabetic rings — 26° = 17,576.

3. (Steckerverbindung) The plugboard connections — Pj; 6 &~ 2.1 X 10,

4. Rotor starting positions — 26> = 17,576.

6.8.1 The Message Indicator and Indicator Setting and
Discriminant

An Enigma message began with a prefix, which included
. The callsigns of the stations communicating — first the callsign of the sender fol-
lowed by those of the receiver(s);
- The time the message originated;

« An indication of whether there is a single or multipart message, and which part in the
latter case;

« A three-letter discriminant used to distinguish between different networks (groups).
« A three-letter message indicator setting.
. The length of the text = ciphertext 4 (a 6-letter) message indicator.

The message indicator setting was part of the key. It instructed a receiving station to first set
the rotors to the message indicator setting and decipher the first six letters of the text, the
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1. Call Signs : P7J to SF9 and 5KQ

2. Time of origin : 10:30

3. Number of letters : 114

4.  Part 2 of 4 parts

5. Discriminant : QXT

6.  Indicator message setting : VIN

WQSEU PMPIZ TLIJU WQEHG LRBID
FEQBO JIEPD JAZHT TBJRO AHHYO
JYGSF HYKTN TDBPH ULKOH UNTIM
OFARL BPAPM XKZ7Z DTSXL QWHVL
RAGUZ ZTSGG YIIZ

Figure 6.11 Enigma message.

message indicator. The decipherment would reveal the message key, a plaintext of the form
MKy, MK, MK,, MKy, MK, MK,.

The three-letter message key (MK, MK, MK,) was repealed to detect transmission errors. If
the two halves agreed, the receiving station would then reset the rotors to (MK, MK, MK>)
and decipher the remainder of the text. Figure 6.11 contains a fictitious Enigma message.

6.8.2 The Enigma Encipherment Equation

Let k,(i) denote the rotational displacement of the rth rotor 7, for the encipherment of the
ith letter. The encipherment equation is
—1 _ 1 _
yi = (%) = (IP7'Ciyy 7 ' ChonCoritv ™ ClitnCototy ™ Craiy X 7
X C_, )y ™ Cry iy C—1ty (1) ™1 Cry (1 C o)) 0 Cry (y IP) (x7) (6.7)

where the rotational displacements are

ko(i) = (i + Iy — Rp) (modulo 26)

k(i) = (11 - R+ {H_ISQROJ) (modulo 26)

i+1—R
11—R1+L°°

26

k(@)= |L—R+ J (modulo 26)

26

with ring settings (R, R, R,) and the initial rotor positions (I, 11, I5).
Equation (6.7) is not exactly correct. The mechanical motion of the rotors, which is
controlled by gears, is slightly irregular due to the following.

1. When the ratchet wheel on the right (or fast) rotor reaches some point (once every 26
letters), a pawl drives the middle (or medium) rotor one step forward.

2. When the ratchet wheel on the middle rotor reaches some point (once every 626
letters), a pawl drives the left (or slow) rotor one step forward. The mechanical arrange-
ment causes the middle rotor is to step one additional step when the left rotor is stepped.



166

CHAPTER 6 THE EMERGENCE OF CIPHER MACHINES

This irregularity reduces the period of the Enigma from 26°= 17,576 to
26 x 25 x 26 = 16,900.

In order that the paths taken by the current from the (input) contact plate through the
rotors to the stator, and from the stator back through the rotors to the (output) contact plate
be disjoint, the stator 7z must be an involution that is mg(7g(t)) =  for every ¢ with
0 <t <<26. As the stator is an involution, it follows that the encipherment in mapping
Equation (6.7) is also an involution.

6.9 CRYPTANALYSIS OF THE ENIGMA

Cryptanalysis of the Enigma machines first began in Poland at the Polish Cipher Bureau
in 1932. When the United Kingdom declared war on Germany after its invasion of
Poland on September 1, 1939, a group, including Alan Turing, was assembled to
attempt cryptanalysis of the German Enigma traffic at Bletchley Park, a town about 100
kilometers from London, where the Government Code and Cypher School had just been
relocated.

The first attacks on Enigma traffic came from a group of Polish mathematicians
including Marian Rejewski [Rejewski, 1981] and his colleagues Jerzy Rozycki and
Henryzk Zygalski. They examined a commercial Enigma machine and studied the
properties of the Enigma encipherment equation.

Bombe is French for bomb; the same word describes a class of pastries normally
hemispherical in shape. The actress Jacqueline Bisset creates an ice cream bombe in
the movie Who Is Killing The Great Chefs of Europe. A picture of a christmas bombe
may be found in the cookbook Chocolat: Extraordinary Chocolate Desserts by Alice
Medrich.

The bombe was also a programmable processor constructed by Rejewski and his col-
leagues. Its function was to use the structure imposed by cribs to test and eliminate certain
plugboard and rotor setting combinations.

Why the name bombe? Members of the Polish Cipher Bureau proposed the architec-
ture for a “computer” to aid in the decipherment of the Enigma ciphertext. It is reported
that their inspiration came in a restaurant at the moment a bombe was being served,
ample proof that great discoveries may be achieved after a fine meal!

There is a less artistic explanation for the name; the bombe had rotating gears and
these made a ticking sound as the bombe searched for the settings.

When Poland was overrun, Rejewski and his colleagues were moved to southern
France. They had to flee France for England when the Vichy government came to
power. Their cryptanalytic techniques were revealed to the British, who most ungraciously
did not reciprocate. Rejewski and his colleagues were also not allowed to join the effort at
Bletchley Park.

Gordon Welchman was a scholar in mathematics at Trinity University from 1925 to
1928 [Welchman, 1982]. Welchman reported to Bletchley Park when the United Kingdom
declared war on Germany. He was assigned the task of studying callsigns and discrimi-
nants. He became intrigued, however, with the indicator message setting. Welchman
observed that messages would often contain the same letter in positions 0 and 3 or 1
and 4 or 2 and 5, referred to as a female. Table 6.8 lists some females seen in messages
transmitted with the same discriminant on some day.

How frequently will females occur? Suppose X € {A, B, C,...,Z} is chosen
according to the uniform distribution and 7 and 7 are randomly selected involutions. A
female occurs if m(X) = n(X). The probability of a female is % ~ % There are a little
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TABLE 6.8 Intercepted Females with the Same Discriminant on ... (Date)

Indicator Yo N Y2 y3 Ya Vs
KIE s P E s M T
LTS \% B Y Q G Y
EGP o H A o C M
RYM X w N P w \%
XXY z D F J D A

over a million (60 x 26°) possible choices of rotors and ring settings. Each female will
reduce the possibilities by about % so that if Enigma traffic with a fixed discriminant
yields 12 females, it will reduce the key space from ~10° to about 250.

The encipherment equation (6.7) shows that a (j, j+ 3)-female with 0 <j <3
requires y; = y;;3 for some x; = x;;3. Equation (6.7) shows that the occurrence of the
female y; = y; 3

y; = (IP'TIP)(x)) (6.8)
~1 ~1 ~1
T; = (Coky(pTy Cite(pCti(p ™ Clti(pCoto( ™ Cho(jp TRC o)) T2
X Cty () C—k, () T Crty () C=ko () 0 Coo( ) (6.9)
Yj+3 = AP Tj3IP)(xj43) (6.10)
T; = (Coiy(j+37)  Cro(143C—ta(43 T Ch (143 C—ta(13) T3 | Chy(j43) TR
X Cty(j4+3) T2 Coy (j43) C—k (43) T1 C (j43) C iy (j43) T Cr (43)) (6.11)
implies
T; = Tjs,

which is independent of the plugboard connection.
On May 10, 1940, the Germans changed the key protocol and did not encipher the
message key twice.

CRIBBING ENIGMA CIPHERTEXT

Example 6.2
Suppose that Enigma ciphertext begins with the suspected following plaintext:

0123456 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30
CQNZPVLILPEUIKTEDCGLOVWVGTUFLNZ
2 et e et et et e Y M Y Y N MY N
TOTHEPRESIDENTOFTHEUNITEDSTATES

This crib is examined for the presence of loops; E N I E is aloop consisting of E N (at
position 29), N I (at position 12), and I E (at position 7). Three loops in the crib above
are written as shown in Figure 6.12.

Welchman and Turing suggested testing plugboard connections and rotor positions
by connecting double-ended Enigma’s with the rotors set to the positions (jo, ji, j2)
(Fig. 6.13). The symbol for a double-ended Enigma is presented in Figure 6.14. To test
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Figure 6.12 Loops in corresponding plainExé6. 2 and cipherEx6. 2.

the three loops, several double-ended Enigmas were interconnected. The three bombes
shown in Figure 6.15 are set to test the plugboard connections E — A, P — A, and
N — A. The figure shows the logical equivalents of parts of the bombe corresponding
to the three loops rather than the actual bombe structure. The bombe cycles through the
26° initial rotor offsets (jo+ 7, j1 + 9, j»+4) to test the EPT loop. The bombe puts a
voltage across the input port E; the current moves through the three double-ended
rotors, returning to the Test Register. If

e« (Jo+7,j1+9,j,+4) is the correct initial rotor offset, and

« The plugboard connection EA is correct,

the current will return to the Test Register at A. If not, the current will return to some other
letter, say V. By correctly sequencing the device, the signals will run through some cycle.
There are two possibilities:

1. We have guessed the correct plugboard connection ? to E and the current will return
to ?, or

Input Cable

Right Rotor
Middle Rotor
Left Rotor
Stator
Left Rotor
Middle Rotor
Right Rotor
EFGHTIJKLMNOPQRSTUVWX
I O I I

Output Cable

Figure 6.13 Double-ended Enigma.

"

UosJ15J2)

[

Figure 6.14 Symbol for double-ended enigma with positions ( jo, j1, j2)-
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|

Go+7.J15J2)

-

(jo+9:J1.J2)

-

Go+4.J15J2)

A BCDE FGHI JKLMNOZPA QR ST UV WXY Z

Test Register \

A BCDE FG HI JKLMNOUP QR S S UV WXY Z

(@)

(jo+9:J1-J2)

o+ 21, j1,42)

-

o+ 5,J15J2)

A BCDETFGHTIIJKLMNOPAO QRS STUVWXY Z
Test Register

A B CDETFGHTIIJKILMNOZPI QRS S UVWIXY Z

N
2 . .
° 0 e (o +20,1, )
T
T
(Jo+ 14, j1,72)
(0]

Go+2,J1,J2)

(b)

-

A B CDETFGHTIJKILMNOPAO QRS STUVWXYZ

Test Register ‘\

A B CDETFGHTJ]KILMNUOZPO QRS S UVWXYZ
()

Figure 6.15 (a) Double-ended Enigma for testing the EPI-loop in Figure 6.12; (b) Double-ended
Enigma for testing the VIP-loop in Figure 6.12; (c) Double-ended Enigma for testing the NOT-loop
in Figure 6.12.
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2. We have not guessed the correct plugboard connection to E and the current will fill up
most of the Test Register and it will not return to the true plugboard connection of E.

Case 1 is called a drop. A letter is a potential drop if the letter is not filled in Case 2. The
drops were individually tested.

THE LORENZ SCHLUSSELZUSATZ

The Lorenz Schliisselzusatz (Fig. 6.16) is an additive encipherment cryptosystem; a key
stream determined by more than 501 key bits is XORed to 5-bit Baudot-coded plaintext.
The SZ40 was used to encipher German High Command communications. SZ40 cipher-
text traffic was referred to as fish [Tutte, 1998]. Both the cryptographic device and the
special processor used to carry out the cryptanalysis of the SZ40 were referred to as
tunny; this first generation processor was designed by the British General Communications
Headquarters (GCHQ) located in Bletchley Park outside London, where the SZ40 cryp-
tanalysis activities took place. The SZ40 saga is described in the book by Hinsley and
Stripp [2001].

The SZ40 and a succeeding model (SZ42) were manufactured by Lorenz; they were
generalizations of the Vernam—Vigenere stream cipher system. The SZ40 encipherment
equation is

y = x + k (modulo 2)

y=O0), yD), ...) YD) =i, y200, y3(D, ya(D, ys(j), j=0,1,...
x=(x(0), x(1), ...)  x()) = x1(), x2()), x3(), x4()), x5(j)), j=0,1,...
k= (k(0), k(1), ...) k() = k() k2()), k3 (), ka()), ks(j)), j=0,1,...

Figure 6.16 The Lorenz Schliisselzusatz (Courtesy of NSA).
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where

- The plaintext {x(j)} is alphanumeric text encoded into 5-bit strings;

. The key {k(j)} is a sequence of 5-bit strings; and

- The ciphertext {y (j)} is the XOR of the plaintext and key.
The German Cipher Bureau understood the limitations of Vernam—Vigenere encipher-
ment. Even with multiple tapes, an analysis is possible. The SZ40 used a two-stage

XOR but the encipherment process was made more complicated by introducing key-
dependent irregular motion in the second stage.

THE SZ40 PIN WHEELS

A pin-wheel is a mechanical implementation of a tape; it generates a periodic sequence of
0’s and 1’s. A pin-wheel contains a number L of pins equally spaced around its circum-
ference. The pin-wheel operates, so that

- When a pin is active (present), the pin-wheel XORs a 1 to its input;

- When a pin is inactive (absent), the pin-wheel XORs a 0 to its input.
The pin-wheel depicted in Figure 6.17 shows four pin positions without pins. In an
actual SZ40, all pin positions had pins, but some were made inactive by folding them

down.
The SZ40 had 12 pin-wheels (Fig. 6.18):

« 5 x pin-wheels, x1, X2, - - - » Xs; the length of the y; pin-wheel is T;.

x; Pin-Wheel
i 1 2 3 4 5
T; 41 31 29 26 23

Figure 6.17 An SZA40 pin-wheel.
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Control
Line

Figure 6.18 The SZ40 pin-wheels.

« 5 ¢ pin-wheels, |, i, ..., s; the length of the ¢; pin-wheel is S;.

Y; Pin-Wheel

—_

2 3 4 5
S; 43 47 51 53 59

- 2 motor pin-wheels: a u pin-wheel of length 37, and a 7 pin-wheel of length 61.
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We assume that each pin-wheel has an initial position marked by 0.
The key stream k(0), k(1), ... was generated according to the following rules:

KS0. The set of active pins on a pin-wheel was part of the key variable and was changed
at regular times;

KS1. The x and ¢ pin-wheels moved synchronously;

KS2. The x pin-wheels moved one position for each letter;

KS3. The ¢ pin-wheels were driven by the combined u and 7 pin-wheels:
(a) The 7 pin-wheel moves one position for each letter;

(b) The w pin-wheel moves one position whenever the 7 pin-wheel has an active
pin in the current position;

(c) The s pin-wheels move whenever the p pin-wheel has an active pin in the
current position.

In Figure 6.18,

« The 5-bit plaintext strings enter on the left;

« The values on the x; pin-wheels (1 < j < 5) are XORed to the plaintext, producing
intermediate ciphertext;

The values on the s pin-wheels (1 < j < 5) are XORed to the intermediate
ciphertext, producing the 5-bit ciphertext strings;

- The x; pin-wheels (1 < j < 5) all shift one pin-position;

- The ¢; pin-wheels (1 < j < 5) all shift one pin-position, provided the w pin-wheel
pin in the current position is a 1;

- The u pin-wheel shifts one pin position provided the 7r pin-wheel pin in the current
position is a 1;

- The 7 pin-wheel shifts one pin position.
To define the encipherment process, some additional notation is needed; the position of a
pin-wheel for the encipherment of the jth letter is denoted as follows:

- pi[j] the position of the ith y pin-wheel;

« gqi[ j1 for the position of the ith ¢ pin-wheel, ¢;[ j1 = (¢g[j] + j:(0)) (modulo S;);

« u[ j] for the position of the u pin-wheel;

- v[j] for the position of the 7 pin-wheel.

6.12.1 The SZ40 Key
The SZ40 key had two components:

- The 501 bits determining the pins of the 12 pin-wheels;
- The initial positions of the Sy, the 5¢, and the 2 motor pin-wheels w and 7.

The first key component was originally changed each month; the second component was
supposed to be changed with each message. Initially, an SZ40 message began with an indi-
cator transmitted in the clear, consisting of 12 alphabetic characters, for example
HQIBPEXEZMUG. A character translated into a 12-tuple of integers in {0,1, ..., 25}
specifying the initial settings of the 12 pin-wheels so that not all initial settings were poss-
ible. Subsequently, the indicator was replaced by an entry in a codebook that translated
into initial wheel settings.
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6.12.2 The Steps in an SZ40 Encipherment

1. The jth letter x(j) is encoded using the Baudot code:
x(j) = x(j) = 1 ())s x2())s x3())s xa(j), x5()))-

2. The current output x(j) = (i), x2()), x3(j) xa(j), xs(j)) of the x
wheels is XORed bit by bit to x(j), producing intermediate ciphertext

X(j) = E())s 220)), B3()), Ea( ), Xs5())):
x(J) = xX(j) = x(j) + x()).
3. The current output Y(j) = (1(j), ¥2(/), ¥3(j), Ya(j), ¥s(j)) of the ¢ wheels is

XORed bit by bit to x(j), producing ciphertext y(j) = (y1(j), y2(j)» ¥3(J), ya()),
ys(J)):

x(j) = y(j) = x()) + ¥()).

4. Some of the pin-wheel rotate:

(a) All x pin-wheels rotate 1 position counterclockwise
piljl = (pilj + 1] (modulo T)).

(b) All ¢ pin-wheels rotate 1 position counterclockwise provided the current output
u(gl j1) of the w pin-wheel is 1

qilj + 11 = (qi[j] + p(u[j]) (modulo S;).

(c) The w pin-wheel rotates counterclockwise by 1 position provided the current
output of the 7 pin-wheel is 1.

ulj+ 1] = (u[j] + 7(v[j]) (modulo 37)

(d) The 7 pin-wheel rotates counterclockwise by 1 position so that v[j+1] =
(v[j]1+1) (modulo 61);
These rules lead to the recurrences
[ position of 7 — wheel] v[j] =/ (modulo 61)
[ position of w — wheel] uljl = [ulj — 1 + 7 (v[j — 1])] (modulo 37)]
[ position of y — wheel] piljl =Jj (modulo T;)
qilj1 = [gilj — 1 + u(ulj — 1D] (modulo Sp)].

The encipherment equation is

y=x+k  Yi(j) =X()+ Ki()) (6.12)
ki(j) = x(piljD) + i (ailjD (6.13)
Example 6.3
The plaintext NOW is enciphered to
Xx-Wheel -Wheel
X; Baudot Pins Output Pins Output Vi

N 01100 10101 11001 01101 10100 H
0 11000 11111 00111 00100 00011
W 11011 10111 01100 11000 10100 H

b
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Example 6.4
The plaintext MERRY CHRISTMAS is enciphered as follows:

x-Wheel -Wheel

=

Baudot Pins Output Pins Output Vi

M 11100 10101 01001 00110 01111 K
E 00001 01010 01011 01001 00010 LF
R 01010 00110 01100 11000 10100 H
R 01010 11100 10110 01011 11101 X
Y 10101 00101 10000 00101 10101 Y

00100 01101 01001 10001 11000 0
C 01110 10100 11010 11001 00011 A
H 10100 00110 10010 11001 01011 J
R 01010 11111 10101 01100 11001 B
I 00110 10010 10100 11000 01100 N
S 00101 11111 11010 11111 00101 S
T 10000 11111 01111 11111 10000 T
M 11100 11101 00001 11111 11110 v
A 00011 11101 11110 01110 10000 T
S 00101 11111 11010 01110 10100 H

6.13 SZ40 CRYPTANALYSIS PROBLEMS

There are several possible versions of the cryptanalysis problem, of which the following is
the most challenging:

Problem # 1
Given: Ciphertext y

Determine: The pin-wheels (active pins and initial positions) and plaintext x.
The SZ40 keys consists of
- The set of active pins of the 12 wheels (501 bits);
- The starting positions of the 12 wheels (~56 bits).

Some keys may be changed daily (or with each message), others less frequently. Thus, if
the active pins are fixed for a month and each day the starting positions are changed, the
cryptanalysis is simpler:

Problem #2
Given: Ciphertext y and the active pins on the x, s, u, and 7 wheels
Determine: The initial positions of the pin-wheels and the plaintext x.

If one plaintext message can be determined by statistical methods or cribbing, the
key k(0), k(1), ... might be determined. Statistical and algebraic methods can be used
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to recover (part of ) the pin-wheel settings (active pins and initial positions). This would
permit the decipherment of all messages used with the same pin-wheel settings. A discus-
sion of one such attack is given in Carter [1997].

The attack at Bletchley Park by GCHQ used the Colossus, a digital processor
designed by Alan Turing to carry out the cryptanalysis.

CRIBBING SZ40 CIPHERTEXT

Much of the cryptanalysis of SZ40 ciphertext described next is included in a Master’s
Thesis at U.C. Santa Barbara by Nitesh Saxena.

Depth (in ciphertext) occurs when two or more SZ40 ciphertexts y, (i =1, 2, ...)
were intercepted in a period -

« During which the pin-wheels are unchanged and
- Both messages are identified with the same indicator.
The computation of the differences with depth Ay, , = y; + y,= Ax;» = x;+ x, elimin-

ates the key. The differenced plaintext might be searched for probable words (cribs); for
example,

- German cipher-clerks often prefaced their messages with SPRUCHNUMMER
(= message number), and

- Messages might contains references to various organizations such as LUFTWAFFE,
WEHRMACHT, OBERKOMMANDO, or GESTAPO.

For example, if the crib SPRUCHNUMMER might be slid across the differenced ciphertext;
with the letter S in position j, the XOR of the crib and the difference plaintext produces
putative plaintext:

X1 S P R M E R
X! e x()) G+ 1) x(+2) - x(j+8) x(j+9) X2(j +10)
Aot o s4x(j) P4+x(j+1) R4+x(j+2)  M4x(j+ 8) E+x(j+9) R+x(j+ 10)

The fragment of putative plaintext x,(j), x(j + 1), x2(j+2), ..., x2(j 4+ 8), x2(j +9),
x(j+ 10) is tested; if it is (grammatically) readable text, a hit has been obtained,
which might reveal additional plaintext. With good luck, both plaintexts x; and x, may
be read and the common key k used to encipher them recovered.

Early in the GCHQ SZ40 cryptanalysis, an interception of the near-repeat of a
message of 4000 characters enciphered with the same indicator (and hence identical pin-
wheel settings) was received, providing the entire key stream. When cribbing is success-
ful, a segment of the (common) key stream (k(0), k(1), ..., k(N — 1)) is recovered.

6.14.1 Finding the Active Pins Given the Key Stream
We start with Equations (6.12) and (6.13) and ask if a sequence of key values
{k()):0=<j <N}

determines

x(M:0=<j<N}and {¢(j):0=<j<N}
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As there are B =Y _; (T; + S;) pin values for the y- and y-wheels, we must require at least
N > B/5 ~100 5-bit key characters, certainly a lower bound because the i~wheel does not
always move.

Problem # 3
Given: {k(j):0<j<N}
Find: {x(j):0<j<N} and {¢(j):0=<j<N}

does not have a unique solution, because complementing the y and i pin-wheel values
leaves the key unchanged.

Tutte [1998, pp. 5—6] suggests that Alan Turing had a method to solve Problem 3 up
to the complementation indeterminacy.

6.14.2 A Statistical Model of Pin Motion
We define the SZ40 parameters

« ¢, the averaged density of active pins on {-wheels, and
- v, the average probability that a i)~wheel rotates.

The values of ¢ and v are unknown and must be guessed and later refined as a result of the
cryptanalysis.

The parameters g and v can be used to define a statistical model of the ; pin-wheel.
(The use of a random process to model a deterministic function in a cryptosystem has been
successfully used; the hidden Markov model being an example.) Let & ;, be the probability
that Y, (j, j+1 = @ (j), ¥1(j)) = (a, b) with (a, b) €{(0, 0), (0, ), (1, 0), (1, D}.
Assuming that the motion of the wheels at all positions is approximately independent
and identically distributed leads to the formulas

0.0 =1—g—vg(1 —q)=v(1 — g + (1 —v)(1 — ) = Pr{(¥hy(qilj]. a:li + 1])) = (0, 0)}
8.1 =q—vg(l —q) =vq* + (1 —v)g =Pr{((qljl. q:lj + 1)) = (1, 1)}

0, 1) = vq(l — q) = Pr{(¢(qilj]. ili + 1) = (0, 1)}

81,0y = vq(l — q) = Pr{(¢(qilj]. qili + 1)) = (1, 0)}

Ao <5<o,0> 5«),1))
S0 Ban
We claim that A is diagonal dominant, that is 8;; > 8;; with i # j. First, note that
00,00 < 6,1y = 1 >vg (6.14)
and
Sy < Sy = 1>v(1 —gq) (6.15)

so that both Expressions (6.14) and (6.15) cannot hold. In fact, either

1. 1 >vgand 1 <v(l — g), or
2. 1 < vgand 1 >v(1 — g),
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and a contradiction is obtained. A statistical model of pin motion implies that in a large
sample of R positions, there will be ~Rgq, ; positions j, in which ¢, (j, j+ 1) = (a, b).

Example 6.5

We use the pin-wheels, for which Tables 6.9 to 6.20 give the fraction g of active pins. The
(unknown) ¢ pin-densities vary from 0.814 to 0.872. A program using the Example 6.5

TABLE 6.9 TABLE 6.10
x1-Wheel; g = 0.878 X2-Wheel; g = 0.806
1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1
TABLE 6.11 TABLE 6.12
X3-Wheel; g = 0.931 X4-Wheel; g = 0.769
1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 1
1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1
TABLE 6.13 TABLE 6.14
Xxs-Wheel; g = 0.739 Y-Wheel; g = 0.814
1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 1
1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1
TABLE 6.15 TABLE 6.16
>-Wheel; g = 0.872 3-Wheel; g = 0.863
0 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0
1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1
1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1
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TABLE 6.17 TABLE 6.18
y-Wheel; g = 0.830 s-Wheel; g = 0.864

1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1

0 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1

1 0 1 1 1 1 1 11 0 0 1 1 1 1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 I 1 1 1 1 1 1 1 1 1 1
1 1 1

TABLE 6.19 TABLE 6.20

u-Wheel; ¢ = 0.811 m-Wheel; g = 0.803

1 1 1 1 1 1 1 11 1 1 0 1 1 1 0

0 1 0 1 1 1 0 11 1 0 1 1 1 0 0

0 1 0 1 1 1 1 o 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 o O 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 0 1 1 1
1 1 0 1 1 1 1 1
0 1 1 1 1

parameters shows that u(g[j]) = 1 is satisfied ~80% of the time. We take ¢ = 0.83 and

v = 0.8; this gives
Gy — (0072 0.128
16)) =\ 0.128 0.672 )

We use the statistical model of the motion of the SZ40 wheels to develop a variant of
Turing’s scheme.

6.14.3 Finding the s Active Pins:

Xi(J, j+ 1)-Testing: Given: Key {K(j):0 <j < N}, then
. for each wheel i
. for each of the positions j, j+ T;, j + 2T;, ..., j+ (k; — 1)T; where k; depends on
the length of the known key stream

. for each of the four pairs (a, b) € {(0, 0), (0, 1) (1, 0), (1, 1)}

1. Count the number of times, denoted by KCount;[a, b] that the pair of keys
Ki(j,j+ 1 = (Ki(j), K(j+ 1)) is equal to (a, b).

2. Find that unique value of x;(j,j+ 1) = (x{(j), x(j+ 1)) = (¢, d) that maximizes
KCount;[a + ¢, b 4 d]. The maximum should be approximately equal to the k;g(; 1).
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The result printed in Tables 6.21 to 6.30 for j = 0(1)9 were derived using N = 500
five-bit key values. Each pair of consecutive rows contains the entries

« The known value of KCount (; ;,[a, b] and

« The unknown count ¢Count (; ;)[a, b] of the number of times (j,j + 1) = (a, b) for
each of the four possible pairs [a, b] = [0, 0], [0, 1], [1, O], and [1, 1].

Step 1: Inference of x1 (j,j+ 1) The hypothesis x1(j,j+ 1) = (A, B) can be tested
as follows:

1. Asyy(j,j+ 1) =(j+kT;,j+kT; + 1)fork=0,1, ..., k; — 1, the correct values
of (A, B) should yield Kcount,[c, d] >~ g1y k; where ¢ = (x;(j) + a) (modulo 2) and
d = (x{(j) + b) (modulo 2). Note that [1, 1] is the most frequently occurring pair. If
j =4, then
(a) K4(2)[1, 0] is the maximum of K4(2)[a, b], and
()  xi(j, j+ 1) = (0, 1) is the unique value for which (1,1) = (1,0) + xi(j, j+ 1).

TABLE 6.21 Testing x;(j,j + 1) in Position 0

((3)) [a,b] [a,b] [a.b] [a,b]

KCountyo ~ [00] 1  [01] 11  [L0] 1 (L1 0
$Counto  [00] 1  [0.1] 0 [10] 1L 11
KCountpe — [00] 4 [01] 1 (L] 12 [LI] 0
$Countng,  [00] 1  [0,1] 4 [10] 0o (L] 12
KCountsg,  [00] 1 [0,1] 15  [1,0] 2 (L1 0
$Countzp,  [00] 2 [0,1] 0 [10] 1 [ 15
KCountye  [00] 1 [01] 301,00 14 [L1] 2
$Countyp,  [00] 3 [0,1] [1,0] 2 (L1 14
KCountsgy  [00] 1 [01] 14  [1,0] 4 (L1 3
$Countsp,  [0,0] 4  [0,1] 3 [10] 1 L1 14

TABLE 6.22 Testing x;(j,j + 1) in Position 1

@) [a.b] [a.b] [a.b] [a.b]

KCount [0,0] 0 [0,1] 2 [1,0] 1 [1,1] 10
yCounty 1) [0,0] 0 [0,1] 2 [1,0] 1 [1,1] 10
KCount,, ;) [0,0] 2 [0,1] 14 [1,0] 1 [1,1] 0
¢County 1) [0,0] 1 [0,1] 0 [1,0] 2 [1,1] 14
KCounts ) [0,0] 2 [0,1] 1 [1,0] 14 [1,1] 1
¢Counts 1) [0,0] 1 [0,1] 2 [1,0] 1 [1,1] 14
KCounty i, [0,0] 14 [0,1] 1 [1,0] 0 [1,1] 5
YCounty 1) [0,0] 5 [0,1] 0 [1,0] 1 [1,1] 14
KCounts i, [0,0] 3 [0,1] 2 [1,0] 2 [1,1] 15
¢Counts j [0,0] 3 [0,1] 2 [1,0] 2 [1,1] 15
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(.)) la.b] la.b] [a.b] la.b]
KCount,  [0,0] 0 [0,1] 1 [1,0] 9 [LI] 3
YCount, 5, [0,0] 1 [0,1] 0 [1,0] 3 [1,1] 9
KCountps,  [0,0] 3 [0.1] 0 [10] 13 [LI] 1
¢Countr,  [0,0] 0 [01] 3 [1,0] 11 13
KCounts, — [00] 15 [0.1] 1 [10] 0 [11] 2
YCounts 5, [0,0] 2 [0,1] 0 [1,0] 1 [1,1] 15
KCounty ») [0,0] 0 [0,1] 14 [1,0] 4 [1,1] 2
¢County,  [0,0] 4 01 2 [10] 0[] 14
KCounts 5, [0,0] 2 [0,1] 3 [1,0] 2 [1,1] 15
¢Countso,  [0,0] 2 [0.1] 3 [1,0] 2 1] 15
TABLE 6.24 Testing x;(j,j + 1) in Position 3

@) [a.b] [a.b] [a.,b] [a.,b]
KCountys  [0,0] 1 [01] 8 [10] 1L 3
Count 3, [0,0] 1 [0,1] 3 [1,0] 1 [1,1] 8
KCountns  [0,0] 3 (01 13 [10] 0 [L1] 1
¢Count, 3, [0,0] 0 [0,1] 1 [1,0] 3 [1,1] 13
KCountzs,  [00] 13 [0,1] 2 [1,0] 1 (L1 2
¢Counts 3, [0,0] 2 [0,1] 1 [1,0] 2 [1,1] 13
KCountys  [0.0] 4 [01] 0 [1,0] 1 (L1 15
$Countiys,  [0,0] 4 [0,1] 0 [1,0] 1 L1y 15
KCountisz  [0,0] 1 [0.1] 30 0,0 17 [L1] 1
YCounts 3, [0,0] 3 [0,1] 1 [1,0] 1 [1,1] 17
TABLE 6.25 Testing x;(j, j + 1) in Position 4

@) [a,b] [a,b] [a,b] [a.,]
KCount 4 [0,0] 0 [0,1] 2 [1,0] 1 [1,1] 10
$County 4  [0,0] 0 [01] 2 [10] 1110
KCount; 4, [0,0] 0 [0,1] 2 [1,0] 13 [1,1] 1
YCount, 4) [0,0] 2 [0,1] 0 [1,0] 1 [1,1] 13
KCount 4, [0,0] 13 [0,1] 1 [1,0] 2 [1,1] 2
Counts 4, [0,0] 2 [0,1] 2 [1,0] 1 [1,1] 13
KCounty 4 [0,0] 4 [0,1] 1 [1,0] 0 [1,1] 15
County 4, [0,0] 4 [0,1] 1 [1,0] 0 [1,1] 15
KCounts 4 [0,0] 17 [0,1] 1 [1,0] 4 [1,1] 0
Counts 4 [0,0] 0 [0,1] 4 [1,0] 1 [1,1] 17

181
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TABLE 6.26 Testing x;(j,j + 1) in Position 5

@) [a,b] [a,b] [a,b] [a,b]
KCount;s,  [0.0] 0 [0.1] 1 [1o] 8 [L1] 4
$County s,  [0,0] 1 [01] 0 [1,0] 4  [L1] 8
KCount, s, [0,0] 1 [0,1] 12 [1,0] 1 [1,1] 2
¢Countirs,  [0,0] 1 [01] 2 Lol 1 [y 12
KCount s, [0,0] 14 [0,1] 1 [1,0] 1 [1,1] 2
yCounts s) [0,0] 2 [0,1] 1 [1,0] 1 [1,1] 14
KCounty s, [0,0] 4 [0,1] 0 [1,0] 1 [1,1] 15
$Countys,  [0,0] 4 [0.1] 0 [0 1 (L1 15
KCounts s, [0,0] 1 [0,1] 20 [1,0] 0 [1,1] 1
yCountgs s) [0,0] 0 [0,1] 1 [1,0] 1 [1,1] 20
TABLE 6.27 Testing x;(j,j + 1) in Position 6

() la,b] la.b] la.b] la,b]
KCount;s,  [0.0] 0 [01] 8 [10] 1L 4
$Countsy  [0,0] 1 0,1 4  [1,0] 0 [L1] 8
KCountg,  [0.0] 2 011 0 [L0] 0 (L1 14
YCount, ¢ [0,0] 2 [0,1] 0 [1,0] 0 [1,1] 14
KCount g, [0,0] 14 [0,1] 1 [1,0] 0 [1,1] 3
z,[/C0unt(3,6) [0,0] 3 [0,1] 0 [1 ,0] 2 [1 ,1] 13
KCountiys,  [0.0] 2 011 2 [1L0o] 15 [L1] 0
$Countyg,  [0,0] 2 011 2 [10] 0 [LI] 15
KCounts g, [0,0] 0 [0,1] 1 [1,0] 2 [1,1] 19
YCounts ¢ [0,0] 0 [0,1] 1 [1,0] 2 [1,1] 19
TABLE 6.28 Testing x;(j,j + 1) in Position 7

@.J) [a,b] [a,b] [a,b] [a,b]
KCount, 7, [0,0] 1 [0,1] 0 [1,0] 9 [1,1]
yCount; 7 [0,0] 0 [0,1] 1 [1,0] 4 [1,1]
KCount,, 7, [0,0] 1 [0,1] 1 [1,0] 12 [1,1] 2
¢Count, 7, [0,0] 1 [0,1] 1 [1,0] 2 [1,1] 12
KCounts 7, [0,0] 13 [0,1] 0 [1,0] 3 [1,1] 1
¢Counts 7, [0,0] 1 [0,1] 3 [1,0] 0 [1,1] 13
KCountiy7,  [0.,0] 15 [01 2 [1,0] 1 (1,1] 1
YCounty 7, [0,0] 1 [0,1] 1 [1,0] 2 [1,1] 15
KCounts 7, [0,0] 1 [0,1] 1 [1,0] 17 [1,1] 3
¢Counts 7, [0,0] 1 [0,1] 1 [1,0] 3 [1,1] 17
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TABLE 6.29 Testing xi(j,j + 1) in Position 8

@) [a.,b] [a,b] [a,b] [a.,b]
KCountq s [0,0] 8 [0.1] 1[0l 1 (L]
YCount; g, [0,0] 2 [0,1] 1 [1,0] 1 [1,1] 8
KCount, g) [0,0] 3 [0,1] 10 [1,0] 1 [1,1] 2
l,llCOlll’lt(zvg) [0,0] 1 [O, 1 ] 2 [1 ,0] 3 [1 N l] 10
KCounts g) [0,0] 2 [0,1] 14 [1,0] 0 [1,1] 1
¢C0unt(3,g) [0,0] 0 [O, 1 ] 1 [1 ,0] 2 [1 N 1] 14
KCounty g, [0,0] 16 [0,1] 0 [1,0] 0 [1,1] 3
County g) [0,0] 3 [0,1] 0 [1,0] 0 [1,1] 16
KCounts g, [0,0] [0,1] 16 [1,0] 3 [1,1] 1
$Countssy  [0,0] 3 [0,1] 1 (1,00 2 [L1] 16

TABLE 6.30 Testing x;(j,j + 1) in Position 9

@) [a,D] [a,D] [a,b] [a.b]

KCountqo)  [0,0] 9 [01] 0  [1,0] 2 (L1 1
$Countoy  [0,0] 1 [01] 2 [0 0 [LI1] 9
KCountoe,  [0,0] 3 [0 1 [0 12 [LI1] 0
$Countngy  [0,0] 1 [01] 3 [0 0 (L1112
KCountsey  [0,0] 1 [011 1 [10] 14 [LI1] 1
$Countizoy  [0,0] 1 [01] 1 [10] 1[I 14
KCountye,  [00] 16  [01] 0  [10] 3 (L] 0
$Countyyey  [0,0] 0  [01] 3 [10] 0 [L1] 16
KCountsey,  [0,0] 5 [0 0 [10] 16  [LI] 1
$Countisg,  [0,0] 0 [01] 5  [10] 1 [L1] 16

2. The parameters g and v imply that ¢ Count,(j, j+ D[1,1]= max¢ Count;
(J, j+ Dlr,s].
3. If KCountyj, j+ 1)[a,b] = max KCount,(j, j+ D[r,s], then (A,B)+ (a,b)=
(1,1). )
The inference process just described recovers the value of x;(j, j+ 1).
How do we reconcile the uniqueness of x;(j, j + 1) with the asserted nonuniqueness
of the solution to Problem no. 3? With the parameters ¢ ~ 0.8 and v ~ 0.8 in Example 6.4,
we have 8(; 1) = max. 6. When the X and ¢ pin-wheel values are Complemented
q— q 02 and v —> v~ 0. 8 so that 6(0 0) — MaX(, ) 8(r DE Note that 8(1 nH= 5(0 0)-
The correct value of (A, B) will be defined by (A, B) + (a,b) = (0,0).

Step 2: Inference oftp,(q,[j]) It remains to find the values of ¢ (j); these are par-
tially obscured by the action of the motor wheels. First, we infer the values of ;(gq1[j]).
Columns 1 to 5 in Tables 6.31 to 6.34 list for j = 0(1)199

1. The unknown move indicator (MI) with values (M/N) specifying whether or not the
¢ pin-wheels moved; equal to M if u[g[j]] = 1 and to N if u[g[j]] = O;
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TABLE 6.31 TABLE 6.32
Jo MIG)) X & K M2 MIG) X ¥ K M?
0 M) 10101 00110 10011 M 50 M(38) 11111 11111 00000  M?
1 M) 01010 01001 00011 M 51 M(39) 11111 11111 00000  M?
2 M@2) 00110 11000 11110 M 52 M(40) 11100 11111 00011 M?
3 MQ@3) 11100 01011 10111 M 53 M(41) 11110 11111 00001 M?
4 M@ 00101 00101 00000 M 54 M(42) 11111 11111 00000 M
5 M) 01101 10001 11100 M 55 M(0) 11100 01111 10011 M?
6 M(6) 10100 11001 01101 M? 56 N(1) 11101 01111 10010 M?
7 M) 00110 11001 11111 M 57 N(1) 11101 01111 10010  M?
8 M) 11111 01100 10011 M 58 M(1) 11101 01111 10010 M
9 MY 10010 11000 01010 M 59 N(2) 11011 11111 00100  M?
10  N(10) 11111 11111 00000  M? 60 M(2) 11011 11111 00100 M
11 N(0) 11111 11111 00000  M? 61 MQ@3) 11111 01111 10000 M
12 M(10) 11101 11111 00010 M 62 M4 10111 00111 100000 M
13 N(1) 11101 01110 10011  M? 63 N(5) 11111 11111 00000  M?
14 M(11) 11111 01110 10001 M 64 M(5) 10101 11111 01010 M
15 M(12) 11111 11111 00000 M 65 M(6) 11101 10111 01010 M
16  M(13) 11111 01111 10000 M 66 N 10111 11111 01000  M?
17 M(14) 11111 10110 01001 M 67 M(7) 11011 11111 00100 M
18  M(15) 11111  O1111 10000 M 68 N(8) 10111 00111 10000  M?
19  N(16) 11111 11111 00000  M? 69 N(8) 10111 00111 10000 M?
20 M(6) 11111 11111 00000 M 70 M(8) 11110 00111 11001 M
21 N@17) 11111 10100 01011 M? 71 M(@©) 10110 10011 00101 M
22 M(17) 11111 10100 01011 M 72 M(10) 11110 11011 00101 M
23 N(18) 11111 11110 00001  M? 73 M(11) 11111 01001 10110 M
24 N(18) 11110 11110 00000 M? 74 M(12) 11111 11101 00010 M
25  N(18) 11110 11110 00000  M? 75 N(13) 11110 01011 10101 M?
26 N(18) 11100 11110 00010 M? 76 N(13) 11110 01011 10101 M?
27 M(18) 11111 11110 00001 M 71 N(13) 11111 01011 10100  M?
28 M(19) 11111 10111 01000 M 78 M(13) 11100 01011 10111 M
29 M(20) 11100 11111 00011  M? 79 M(14) 11111 11001 00110 M
30 M(21) 11000 11111 00111  M? 80  M(5) 11101 01001 10100 M
31  N(22) 10001 11111 01110 M? 81 M(16) 11101 11100 00001 M
32 M(22) 11100 11111 00011 M? 82  M@17) 11101 11001 00100 M
33 M(23) 10111 11111 01000 M? 83 M(18) 01101 10100 11001 M
34 M(@24) 11111 11111 00000  M? 84 M(19) 01101 11101 10000 M
35 M(25) 10111 11111 01000 M? 85 M(20) 11111 11111 00000 M
36 M(26) 11111 11111 00000  M? 86  M(21) 01111 10111 110000 M
37  M(@27) 10111 11111 01000 M? 87 N(22) 01111 11111 10000 M
38  M(28) 10001 11111 O1110 M? 88 N(23) 11011 10111 01100 M?
39  N(29) 11101 11111 00010 M? 89 M(23) 01011 10111 11100 M
40  N(29) 10111 11111 01000 M? 90 M(24) 11101 11110 00011 M?
41 M@29) 11111 11111 00000 M? 91 M(25) 11101 11110 00011 M
42 M(@30) o1111 11111 10000 M? 92 M(26) 11111 11111 00000 M
43 M(@31) 01111 11111 10000 M? 93 M(27) 10110 11100 01010 M
44 M(@32) 11111 11111 00000 M? 94 M(28) 11110 11111 00001 M?
45  M(@33) o1111 11111 10000 M? 95 M(29) 10110 11111 01001 M
46  M(@34) 01111 11111 10000 M? 96 M(30) 11011 11110 00101 M
47  M(@35) 11110 11111 00001  M? 97 M@31) 10111 11111 01000  M?
48 M(@36) 01110 11111 10001 M? 98 M(32) 11110 11111 00001 M
49  M(@37) 11110 11111 00001  M? 99 M(33) 10110 11110 01000 M?
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TABLE 6.33 TABLE 6.34

100 M(34) 10111 11110 01001 M 150  M(33) 11111 11111 00000 M
101 M(35) 11110 11111 00001  M? 151 N(34) 11111 11110 00001  M?
102 M(36) 10111 11111 01000 M? 152 M(34) 11111 11110 00001 M
103 N(37) 11111 11111 00000 M? 153  N(35) 11111 11111 00000  M?
104 M(@37) 11101 11111 00010 M? 154  M(@35) 11011 11111 00100  M?
105  N(38) 11111 11111 00000 M? 155  M(36) 10111 11111 01000 M
106  N(38) 11111 11111 00000 M? 156  N(@37) 11101 11101 00000 M
107 M(38) 11101 11111 00010 M? 157 N(38) 10111 11111 01000 M
108 M(39) 11101 11111 00010 M? 158  M(38) 11111 11111 00000  M?
109  M(40) 11101 11111 00010 M? 159 N@9) 10101 11111 01010 M?
110  N(41) 11101 11111 00010 M? 160  M(39) 11101 11111 00010 M
111 M@41) 11111 11111 00000 M? 161  N(40) 10101 11110 01011  M?
112 M#42) 11111 11111 00000 M 162 N(40) 10100 11110 01010 M?
113 N(0) 11111 01111 10000 M? 163  M(40) 11110 11110 00000  M?
114 M(0) 11111 01111 10000 M? 164 M#4l) 10110 11110 01000
115 N(1) 11111 01111 10000 M? 165 M@42) 01111 11111 10000
116 M(1) 11100 01111 10011 166  M(0) 01111 01110 00001
117 M(Q2) 11000 11111 00111 167  M(1) 11110 01111 10001
118  M@3) 11110 01111 10001 168  N(2) 01100 11111 10011
119 M®) 11111 01111 10000 169  M(2) 01101 11111 10010
120 M(5) 11111 11111 00000 170 MQ@3) 11110 01110 10000
121 N(6) 11110 11111 00001 171 M®#) 01111 01111 00000
122 M(6) 11110 11111 00001 172 M(5) 11111 11111 00000
123 M(7) 11111 11111 00000 173 M(6) 11111 11110 00001
124 M(8) 00110 00111 00001 174 M(7) 11111 11110 00001
125 M) 01011 11111 10100 175  M(8) 11011 01111 10100
126  M(10) 10111 11111 01000 176 M(9) 11111 11111 00000
127 M(11) 01111 01111 00000 177 N(10) 11111 11111 00000
128 M(12) 00111 10111 10000 178  M(10) 11111 11111 00000
129 M(13) 11111 00111 11000 179  M(11) 11111 01111 10000
130  M(14) 00101 11111 11010 180  M(12) 11111 10111 01000
131 N(15) 10111 01111 11000 181  M(13) 11111 01111 10000
132 M(15) 11111 01111 10000 182 M(14) 11101 11111 00010
133 M(16) 10101 11111 01010 183  M(15) 11011 01111 10100
134 M(17) 11101 11011 00110 184  M(16) 11111 10111 01000
135 M(18) 11101 11011 00110 185  M(17) 11100 10111 01011
136 M(19) 11101 11011 00110 186  M(18) 10100 11111 01011
137 M(20) 11111 11111 00000 187  M(19) 11100 11111 00011  M?
138 M(21) 11111 11001 00110 188  M(20) 10101 11111 01010 M?
139 M(22) 11110 10001 01111 189  M(21) 11111 11111 00000  M?
140 M(23) 11110 11011 00101 190 M(22) 10110 11111 01001 M?

M?

M

M

J MI( ) X 4 K M? MI(;j) X W K M?

-~ 2

-~
-~

-~

-~
-~

EEEEEEEEEEEEKEEEEEEERER

-~

141 M(24) 11110 11101 00011 191 M(23) 11110 11111 00001
142 M(25) 11101 10001 01100 192 M(24) 10111 11111 01000
143 M(26) 11101 11101 00000 193 M(25) 10110 11011 01101
144 M(27) 11110 10101 01011 194  M(26) 11101 10011 01110
145 M(28) 11110 11101 00011 195  N(27) 10101 11011 01110  M?
146 M(29) 11011 11101 00110 196  M(27) 11111 11011 00100 M
147  M(30) 11110 11111 00001 197 N(28) 11111 11111 00000  M?
148  M(31) 11111 11111 00000 198 N(28) 11111 11111 00000  M?
149 M(@32) 11111 11110 00001 199 N(28) 11111 11111 00000  M?

~2

SEEEEEEEEEEEEEEEEEEEEEEEEEEEEEKEER
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2. The unknown true position of the s; pin-wheel;

3. The inferred x(j, j+ 1) and y(qil j1, g:Lj + 1D);

4. The 5-bit known key obtained from cribbing;

5. An inference of the unknown move indicator (M/M?) equals to M if for at least one
index i, we have Y(q;[j]) # ¥i(q[j+ 1]), and equal to M? if for all indices i, we
have (gl j1) = (gl j + 1D).

TABLE 6.35 M Blocks TABLE 6.36 M Blocks

i P L B i P LB

1 o 7 0 01 0 0 1 1 38200 4 1 1 11

2 7 4 1 0 1 1 39 204 2 1 1

3 12 2 1 0 40 206 3 1 1 1

4 14 6 0 1 0 1 0 1 41 214 2 1 1

5 20 2 1 1 42 218 2 1 0

6 22 2 1 1 43 220 5 0 1 0 0 1

7 27 3 1 1 1 44 225 5 1 1 1 0 1

8§ 54 2 1 O 45 230 8 1 01 01 0 11
9 58 2 0 1 46 238 3 1 1 1

10 60 4 1 0 0 1 47 242 2 1 1

11 67 2 1 0 48 245 2 1 1

2 70 6 0 1 1 0 1 O 49 255 3 1 1 1

3 78 11 0 1 0 1 1 1 1 1 1 1 1 50258 4 1 111

14 8 2 1 1 51 262 3 1 1 1

5 91 4 1 1 1 1 52266 7 1 1 1 10 01
16 95 3 1 1 1 53273 2 1 O

17 98 2 1 1 54 275 2 0 1

18 100 2 1 1 55 277 4 1 1 01

19 112 2 1 0 56 281 7 1 01 01 01
20 116 3 0 1 O 57 292 3 1 1 1

21 119 2 0 1 58 296 2 1 1

22 123 3 1 0 1 59 298 2 1 1

23 126 6 1 0 1 0 1 O 60 300 2 1 1

24 132 3 0 1 1 61 302 2 1 1

25 136 10 1 1 1 1 1 1 1 1 1 1 62 306 2 1 1

26 146 2 1 1 63 308 8 1 1 1 1 1 1 11
27 148 4 1 1 1 1 64 317 5 1 1 1 11

28 152 2 1 1 65 322 5 1 0010

29 155 3 1 1 1 66 327 9 0 1 1 1 01 101
30 160 2 1 1 67 336 2 1 0

31 164 5 1 1 0 0 1 68 338 4 0 1 0 1

32 169 5 1 0 0 1 1 69 342 2 1 1

33 174 3 1 0 1 70 351 2 1 1

34 178 7 1 0 1 0 1 0 1 71 353 2 1 1

35 18 2 1 1 72 356 2 1 1

36 192 4 1 1 1 1 73 358 2 1 1

37 196 2 1 1 74 367 13 1 1 1 1 1 1 1001001
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Step 3: Inference of the yi(j) Pin Values Whenever the inferred move indicator is
M, a value of (g;[ j]) is determined. The jth M block B;

. Starts when the inferred move indicator is equal to M, and
- Ends when the inferred indicator is equal to M?
Tables 6.35 and 6.36 list the ¢/,(q,[ j]) values in the jth block B;, the starting position P},
and the length L;. To carry out the inference of the ¢/,(¢,[ j]) pin-wheel values, the results
in Tables 6.35 and 6.36 are placed in a different tabular format. In Tables 6.37 to 6.43,
1. The first row lists the blocks By, B, ... separated by a ?;
2. The starting position P; of the jth block B; is in the second row;
3. The length L; of the jth block B; is in the third row;
4. The bound M; jy1) = Pjy1 + Ljyy — (Pj+L; — 1) is in row 4.

Note that mg. j+1) = C][ijrl +Lj+l] - q[p] +L]+ 1] < M(]‘! 1)
For example

z—lj‘lﬁ z—lj\lﬂ
meo,1) = -1 0010011 1011 meo,1) = 0 0010011 1011
e’ e’
B() BO
B,
—~ =
map) = -1 1011 10
By
B, By
—~ = ~ =
me2) = 0 1011 10 me2) = 1 1011? 10 e {0, 1}
B[ BI

TABLE 6.37

oo01ro0o01r1r=?2?1ro011r?» 10? 01010122 117? 11

0 7 12 14 20 22
7 4 2 6 2 2

0 1 0 0 0
TABLE 6.38

? 111 ? 1o0%? o01? 100122 10%? 0O01T1TQO0T1°O0?

27 54 58 60 67 70
3 2 2 4 2 6
3 24 2 0 3 1 2
TABLE 6.39

o1ro01r1r11r1r11r1vr?2 11? 111 1? 11172 1127
78 89 91 95 98
11 2 4 3 2
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TABLE 6.40

100 112 116 119 123 126
2 2 3 2 3 6
10 2 0 2 0 0
TABLE 6.41

132 136 146 148 152
3 10 2 4 2
1 0 0 0 0
TABLE 6.42

! 111 ?» 11? 110O0O1%? 1O0O1T12? 101 ?

155 160 164 169 174

4 2 5 5 3

1 2 0 0 1

TABLE 6.43

1 0 1 O0 1 O 1 ? 1 1 ? 11 1 1 ?
178 185 192

7 2 4

0 5

6.14.4 M-Block Concatenation: Finding ¢ (j)

The problem is to concatenate the M-blocks and by doing so to identify the unknown?
Y1(g1[j]) values. A brute-force program tests all possible values of the unknown bits?
in an attempt to find the best match between pairs of blocks. This matching program
yields the following results:

0-54: 001001110110101011 1111111111 111111111111111

54-115: 10010011101101010111111111111111111111111111001

115-150: 10011101101010111111111111111111111111

From these results, the values of i;(j) can be determined.
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Step 4: Inference of 7r(j) 1If the ¢ pin-wheel is determined, the values in the move
indicator column in Tables 6.31-6.34 are determined. Note that

wlUljD=1= MI(j))=M
wUD=0= MI(j))=N
Ulj] = U[j — 1]+ 7 (V[j]) (modulo 37).

Thus

MIG)=M and MIGj+1)=N = =(V[j]) =1
MI(j)=N and MIG+1)=M = =(V[j]) = 1.

The values of j for which 1 = 7 (j (modulo 41)), inferred by this algorithm for j = 0(1)65,
are listed in Table 6.44. Continuing this process, a sufficient number of steps will reveal all
valves 0 < j < 61 for which 77 (j) = 1; the remaining values of 7 (j) are 0. If a mistake is
made and Equtions (6.12) and (6.13) lead to the conclusion 7 (j) = 0, which is incorrect,
this will lead to a later inconsistency.

Step 5: Inference of u(j) We again start with the idea leading to Equations (6.12)
and (6.13); with complete (?) knowledge of 7 (V[ j]), inferences of the values of u(g[j])

TABLE 6.44
J MI(;) MI(j+ 1) Jj(mod 41) ( j(mod 61))
9 M N 9 1
11 N M 11 1
12 M N 12 1
13 N M 13 1
18 M N 18 1
19 N M 19 1
20 M N 20 1
21 N M 21 1
22 M N 22 1
26 N M 26 1
30 M N 30 1
31 N M 31 1
38 M N 38 1
40 N M 40 1
54 M N 54 1
57 M N 57 1
58 M N 58 1
59 M N 59 1
60 N M 60 1
62 M N 1 1
63 M N 2 1
65 M N 1
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TABLE 6.45

MI(j) MIGj+ D m(VI(D @b r@Lj+ 1D S()

M N 1 1 0 1
M N 0 Impossible

M M 1 1 1 1
M M 0 1 1 0
N M 1 0 1 1
N M 0 Impossible

N N 1 0 0 1
N N 0 0 0 0

and ¢[ j] may be made:
Wi =1= MI()=M
uljD=0= MI(j)=N
ulj] = (u[j — 1]+ 7 (@[j]) (modulo 37).

o
7

This leads to the u[j]-inference rules in which g[j+ 1] = (¢[j] + S[j]) (modulo 37)
(Table 6.45), which completes the analysis.
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CHAPTER/.

THE JAPANESE CIPHER MACHINES

TH E JAPANESE introduced a family of cipher machines implementing
polyalphabetic substitution early in the twentieth century. Assigned color codes by the
Army Signal Intelligence Service, the first machine in this family, RED, used a half-rotor
in place of the Hebern rotor. RED was soon followed by PURPLE, which derived
ciphertext using stepping switches. This chapter describes these cipher machines and
outlines their cryptanalysis.

7.1 JAPANESE SIGNALING CONVENTIONS

Although the spoken Japanese and Chinese languages differ, they share a common written
language. Written Japanese, which originated in the ninth century, was derived from
Chinese and uses ideographs. The written language was simplified by introducing the
kana phonetic system, containing 48 basic syllables. Of the two kana versions developed,
hirigana and katagana, the latter was favored for telegraphic communications due to the
ease of reproducing its kana symbols.

In order to write Japanese using the Roman alphabet &, B, ..., Z, each kana symbol is
assigned a Roman letter counterpart Romaji. The Hepburn Romaji system used by Japan
during World War II still remains in use today. The Hepburn-frequencies { f(¢)} of the letters
A,B, ..., Z derived from a sample of Romanized Japanese is given in Table 7.1. The
sample’s index of coincidence s, & Zfio f2(t) = 0.0819 is much larger than the value
s> ~ 0.06875 for English. The letters L, Q, and X do not occur in the Romanized Japanese text.

A new cipher machine was introduced by the Japanese Foreign Office in 1930. Desig-
nated RED by the United States, Angooki Taipu A would soon be followed by other colors
of the rainbow — PURPLE, CORAL, and JADE. The diagnosis and cryptanalysis of RED
by the Army Signal Intelligence Service started in 1935 and was completed in one year.

RED was replaced in 1940 by Angooki Taipu B, designated PURPLE; its cryptana-
lysis was completed just before the bombing of Pearl Harbor. Intelligence gleaned from
PURPLE traffic gave the United States a decisive edge in World War II.

7.2 HALF-ROTORS

The RED machine used a half-rotor invented by Swedish cryptographer Arvid G. Damm.
Figure 7.1 depicts a half-rotor cipher machine system with keyboard input and lamp
output. Twenty-six wires connect pairs of contacts; one on the the rotor’s left lateral
face (LLF) to one on the rotor’s right lateral face (RLF). Although a stationary output

Computer Security and Cryptography. By Alan G. Konheim
Copyright © 2007 John Wiley & Sons, Inc.
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TABLE 7.1 Japanese Hebern 1-Gram Frequencies

t S0 t S0 t f®
A 0.0900 J 0.0125 S 0.0000
B 0.0175 K 0.0850 T 0.0475
c 0.0075 L 0.0000 U 0.0800
D 0.0175 M 0.0000 \ 0.0000
E 0.0575 N 0.0225 w 0.0575
F 0.0075 ¢ 0.0750 X 0.0000
G 0.0175 P 0.1575 Y 0.0900
H 0.0525 Q 0.0000 Z 0.0000
I 0.1300 R 0.0075

contact plate (OCP) is still used to connect the rotor to the output, the input contact plate is
replaced by slip rings situated along a shaft attached to the rotor body. Each letter on the
(input) keyboard is connected to one of the half-rotor 26 slip rings. The slip rings rotate or
slip as the rotor and shaft turn. This mechanical linkage means that each letter is always

opposite the corresponding LLF letter in every rotor position.

Figure 7.2 shows the encipherment of the same plaintext letter Y by the half-rotor
system in two consecutive positions assuming that (1) the rotor’s internal wiring connects
LLF contact Y to RLF contact D and (2) the RLF contact D is opposite the OCP contact J in
the initial position. In the initial rotor position, depressing Y on the keyboard causes a

circuit to be completed composed of

1. A path from the keyboard Y to the slip ring Y contact;

2. A path from the slip ring Y contact to the LLF Y contact;
3. A rotor wire from the LLF Y contact to the RLF D contact;

Slip Ring
Connection
to Keyboard

Shaft

Slip Rings

5

- O —~ O X

WOV IV02277
4120202727
4112022777

o3)

Figure 7.1 A half-rotor cryptomachine schematic.

Rotor Axis
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LLF Rotor RLF
bv
W\ W
\ X
Initial Rotor Position Y\\k\ // * \\
ZY [ \
== 3
= '
C/ X €/
D/ D
E / E
Slip Rings GF Gr
!
!
QWE®OOOLOO
1
GOOOO®O®
HOO®OO®® MmO
\\\ LLF Rotor RLF
YW
X
Y
Z\
)
Bl
|
Cc]
51
27
HUF

Figure 7.2 Encipherment path with keyboard Y depressed.

4. A path from the RLF D contact to the OCP J contact; and finally
5. The path from the OCP J contact to lamp J.

These connections cause the half-rotor system to encipher plaintext Y to ciphertext J.
In the shifted rotor position, depressing the letter Y on the keyboard now results in a com-

pleted circuit composed of the steps 1—3 above but counterclockwise rotation by one position

means that the RLF D contact is opposite the OCP I contact so that the circuit includes

4. A path from the RLF D contact to the OCP I contact; and finally
5. The path from the OCP I contact to lamp I.

These connections cause the half-rotor system to encipher plaintext Y to ciphertext I.

If 6 is the internal wiring substitution in (benchmark) position i = 0, the half-rotor
substitution in position 7 is given by the formula y = (C_;60) (x). Table 7.2 gives the sub-
stitutions for the half-rotor system in each position. It exhibits the characteristic property
of a half-rotor substitution; namely, the letters in each column trace out the standard alpha-
bet in reverse order z,vy,... ,b, a.

7.3 COMPONENTS OF THE RED MACHINE

The components of the RED machine include

1. A 60-contact half-rotor wired so that it enciphers vowels to vowels and consonants
to consonants.
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TABLE 7.2 Half-Rotor Substitution Table for 6

()
=

i A B CDEVFGHTIUJI KULMMN P Q RS T UV W X Y Z

0 ugtgiwvnwod3Jj T fock z ahxD>Ddrpy s 1loenmn

1l t p s £fhumvmniweb ]y z gwawcadgoxorkdl1l

2 s or egtlumhdadixy £ vz bopnwadgdijeck

3 rngdf s k tl gocecz hwxeuyaom? vopdib j

4 gmpc er js k fby gvwdtx znlwuohai

5 p 1l obdagir jeaxf uveswymk<tngz h

6 ok nacphgidozwe¢tubrvxl1lgjsmm¢tygg

7 n jmz b o gphocyvdstaguwkdirzrllex f

8§ m i 1 vy anf ogbxucr s zptv jhagk d4dwe

91 h'k x zmenfawtbgr y o s uilgwpjoc v d

10 k g jwy l dme z v s apgxmnw rthf o ilibuc
1 j £ 1i v x k ¢ 1 dy ur z opwmg g s gemnhatb
12 i e h uw Jjbkocx tgynov1pr f dmgz s a
13 h d gt viagjbwspxmnukogqgevcl Tty rr z
14 g ¢ £f s uh z i avr owlm¢t jnpd>»kex gy
15 f b er t gy h z ugmnvwvXk 1 ws imoocajdwop X
16 e a dgs £f x gy tpmuj ko r hlmnbuzic v ow
17 d z ¢ p r e w £f x s ol t i1 j agag kmavy h Db umnv
18 ¢ v b ogdvewrnks hipif jl z x gatmu
199 b xanpcudvagmgjryrghoelilikyw £zs 1t
20 a w z m o bt ¢c upl igf gndhjx v ey r k s
21 z v y 1 n a s bt ok hpe f mocgiwwud=xg jTr
22 vy u x kmz r a s n j godwelDb f hv t cwp ig
23 x tw j 1 vy gz r mdifnoecdXkaegus b v o hop
w s v i k x pygql hembocjz df tr aumng o

v ruh jwoxpkgdlabliyoces gztmifn

N
W

2. A plugboard connecting typewriter (input) to the rotor slip rings, where the type-
writer keys for

(a) vowels A,E, I,0,U,and Y are connected to the six vowel slip rings, and
(b) consonants B,C,D,F, ..., X, Z are connected to the 20 consonant slip rings.

3. A 47-position breakwheel, depicted in Figure 7.3, containing as many as 47 pins
Pos P1s - - - » Pag, Where the ith pin is either active p; = 1, if present, or inactive
p; = 0, if missing.

The breakwheel (rotated) counterclockwise or stepped from the current active pin to the
next active pin causes the counterclockwise rotation of the RED’s half-rotor. Irregular
stepping of the RED results from the removal of some pins, at least four and at most
six. Only the 11 pins py, ps, P1o, P11 P16 P19> P29> P30s P33s P38» P39 are removable. The
rotor normally steps one position after the encipherment of a letter, but the breakwheel
causes it to step k 4 1 position if k consecutive pins are removed.

7.3.1 The Breakwheel and its Stepping Sequence

The rotor’s position P(i) for the encipherment of plaintext letter x; is an integer P(i) with
0 < P(i) < 47; it depends on the initial position P(0) of the rotor and the locations of the
active pins.
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Figure 7.3 The breakwheel with pins
P4, Ps, D16, P33 Missing.

The positions P(i) of the breakwheel and rotor changes just after the encipherment
of the (i — 1)st plaintext letter according to the following schedule:

1. If the pin at position P(i — 1) + 1 is active, then 8() =0 and P(i) = P(i — 1) +
1+ 68(3i);

2. If the pins at positions P(i — 1)+ 1, P(i — 2), ..., P(i — 1) + k + 1 are inactive and
the pin at position P(i— 1)+ k+2 is active for k>0, then () =k and
PO =P@i— 1)+ 1+ k).

The sequence of rotor positions {P(i)} is determined by the formulas

P()=Pli—D)+i+80), 0<i<o (7.1)
o, if i=0
A® = {A(i —D+80), ifl<i<o 72)

PG)=PO0)+i+AG), 0<i<oo. (7.3)

If N pins have been made inactive, then A(43) = N, 7= 47 — N and

AG) = NH +AG), O0<i<oo (7.4)
A,(i)) = A(i (modulo 7)), 0<i<oo (7.5)
Ai+D =A%), 0<i<o. (7.6)

The function A, (i) is periodic with period 7.
{6(i)} is the sequence of stepping shifts and {A(i)} is the stepping sequence. P(i) is
sum of two terms

P(i) = Q() + A, 0<i<oo 7.7
0(3) :P(0)+i+NH, 0<i<oo (7.8)
0@+ 7 = 0(i) + 47, 0<i<oo (7.9)
P(i + 1) = P(i) + 47, 0<i<oo (7.10)

where Q(i) depends only on the fotal number of inactive pins, but not their locations.
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TABLE 7.3 Stepping Sequence and Rotor Positions for Example 7.1

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
o(i) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
AG) 0 0 0 0 2 2 2 2 2 2 2 2 2 2 3
P(i) 0 1 2 3 6 7 8 9 10 11 12 13 14 15 17
i 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
() 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A®) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
P@) 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
i 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
o(i) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AG) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
PG 34 35 36 37 38 39 40 41 42 43 4 45 46 47 48
i 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
o) 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0
A(D) 4 4 6 6 6 6 6 6 6 6 6 6 7 7 7
P(i) 49 50 53 54 55 56 57 58 59 60 61 62 64 65 66
Example 7.1

P(0) = 0 and pins py, ps, P16, and p33 are removed. The breakwheel stepping shifts {8(i)},
stepping sequences {A(i)}, and the rotor positions {P(i)} are given in Table 7.3.

Example 7.2
P(0) =11 and pins p4, ps, P16, and ps33 are removed. The breakwheel stepping shifts
{8(i)}, stepping sequences {A(i)}, and rotor positions {P(i)} are given in Table 7.4.
Note that

« P(i+ 7) = P(i) + 47 with 7= 43 = 47 — 4 in both Examples 7.1 and 7.2; and

- The first inactive pin to the right of the initial position is pin p;¢ in Example 7.2, as

PO)=11.

TABLE 7.4 Stepping Sequence and Rotor Positions in Example 7.2

i o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
o(i) o o o o0 o0 1 o0 O O o o o o o o o0 o o0 o
Ay 0 O 0O 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PG 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30
i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
8(i) o o 1 o0 o0 o0 o0 o0 o0 o o o o o o o0 o0 o0 o
AG@) 1 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
P@) 31 32 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
i 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
6(i) 20 0 0 0 o0 o o0 o o0 1 O O O O o o0 o0 o0
AG) 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5
P@) 53 54 55 56 57 58 59 60 61 62 64 65 66 67 68 69 70 71 T2
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7.3.2 RED Encipherment Rules

The RED system initially defined the vowel set as VOW = {A,E,I,0,U,Y}. This
vowel-to-vowel and consonant-to-consonant paradigm could have been achieved with two
half-rotors; a six-slip-ring half-rotor for the vowels and a 20-slip-ring half-rotor for the con-
sonants. The designers of RED chose instead to use a single 60-position rotor, where
60 = lem{16, 20} is the least common multiple of 6 and 20. When undertaking the cryptana-
lysis of RED, the U.S. Signals Intelligence Service built a replica of the RED machine using
two half-rotors, one to encipher vowels and a second for consonants.

The RED encipherment of vowels to vowels and consonants to consonants may be
described using the two Vigenere-like substitution tableaux shown next as Tables 7.5 and
7.6. These tables show that if RED enciphers T — k in position P = 6

TABLE 7.5

T —> k= C_¢(6(T)) = C_¢(r)

RED Vowel Substitution 6,

A

E I 0] 8) Y

O SOOI R
K0 O F 0 ¢

©C £ K 9 0O b
e <K ® 0o kO
O P 0 & K o
O O H O £ K
-0 € K © 0

TABLE 7.6 RED Consonant Substitution 6c

i B C D F G H J K L M N P Q R S T v w X Z
0 g t g v n w J f ¢ k z h x b d r p s 1 m
1 p s f t m v h d4d b J X g w z ¢ g n r k 1
2 n r d s 1 t g c z h w £ v x b p m g 3 k
3 m g ¢ r k s f b x g v 4 t w z n 1 p h 3
4 1 p b g j r 4 z w £ t ¢ s v x m k n g h
5 k n z p h g ¢ x v 4 s b r t w 1 J m £ g
6 j m X n g p b w t ¢ r z g s v k h 1 a f¢£
7 h 1 w m £ n z v s b g x p r t ] g k ¢ d
8 g k v 1 4d m x t r z p w n g s h £ J b c
9 £f 3 t k ¢ 1 w s g x n v m p r g d h =z b
0 4 h s 3 b kX v r p w m t 1 n g £ ¢ g x =z
11 ¢ g r h =z 3 t g n v 1 s k m p d b f w x
12 b £f g g x h s p m t k r 3 1 n ¢ z d v w
I3 z 4 p £ w g r n 1 s j g h k m b x ¢ t v
4 x ¢ n 4 v £f g m kX r h p g J 1 z W b s t
5 w b m ¢ t 4 p 1 jJ g g n f h k x v z ¥ s
6 v z 1 b s ¢ n kXxk h p £ m 4 g Jj w t x g r
17 t x k z r b m J g n 4 1 c¢ f h v s w P g
18 s w 3 x g9 z 1 h f£f m ¢ kK b d4d g t r v n p
9 r v h w p x k g d 1 b 3 z ¢ f s g t m n
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then RED enciphers U — u
U—u= C(bv(U) =C(y)

in position P+ 1 =7 =1 (modulo 6). The equations defining the RED substitution
require some additional notation; define VOW ={A,E,I,0,U,Y} and

CON = {B,C,D,F,...,W,X,Z}.
The ordinal functions ordyow(x) with x € VOW and ordcon(x) with x € CON are
defined as

« ordyow(x) being the position of x in the vowel alphabet VOW;
« ordcon(x) being the position of x in the consonant alphabet CON.

The inverses of ord functions are

« chryow(j), the jth character in VOW with 0 < j < 6;
« chrcon(j), the jth character in CON with 0 < j < 20.

For example,

« If ordyow(I) = 2, then chryow(2) = I;
. If OrdCON(C) = 2, then ChrCON(Z) = C.

The rules for RED encipherment/decipherment with the breakwheel in position
P(i) are

- VOW:

If the ith plaintext letter x; is a vowel, it is enciphered to y; € VOW

x; = z; = (ordvow(Oy(x;))( — A-(i)) (modulo 6)
zi = yi = chryow((z; — (1)) (modulo 6)). (7.11)

If the ith ciphertext letter y; is a vowel, it is deciphered to x; € VOW

yi = zi = (ordyow(y;) + Q(i)) (modulo 6)
7 — x; = chryow((z + A1) (modulo 6)). (7.12)

. CON:

If the ith plaintext letter x; is a consonant, it is enciphered to y; € CON

X; = zi = (ordcon(0c(xi)) — Ar(i)) (modulo 20)
zi = yi = chrcon((z; — Q(i)) (modulo 20)). (7.13)

If the ith ciphertext letter y; is a consonant, it is deciphered to x; € CON

yi = zi = (ordcon(yi) + Q(i)) (modulo 20)
zi = x; = chrcon((z; + A(i)) (modulo 20)). (7.14)

The shifted ciphertext is the vector z of ordinals.
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7.3.3 Estimating the Number of Pins Removed

The coincidence z;, . = z; in the shifted ciphertext implies first that z;, . and z; are both
either vowels or consonants. As A(i) is periodic with period 7, Equations (7.12) and
(7.14) show z;,, = z; implies there is also a coincidence of plaintext values x;,, = x;.
How likely is the coincidence x; ., = x;? If the generation of plaintext is modeled by
the random process {X;} of independent and identically distributed random variables with
1-gram probability distribution {(¢)}, then 1-gram X-coincidence (or Z-coincidence)
occurs with probability equal to the index of coincidence o,; for English-language text

Pr{X; = Xiy,} = 0» = 0.0685.
This suggests that the k-value for English-language plaintext of length n should be
1 n—1—1

> Xgmany» T=4T-N. (7.15)
i=0

k(N) =

n—mT

Evaluating k(N) might be used to test if the number of inactive pins is N. We should expect
k(N) =~ 0.0685 when N is equal to the number of inactive pins, and a smaller value, otherwise.

Example 7.3
P(0)=0 and no pins are removed. Using the substitutions in Tables 7.5 and 7.6
the plaintext

The issue of performance evaluation and prediction has concerned users
throughout the history of computer evolution. In fact, as in any other
technological development, the issue is most acute when the technology is
young; the persistent pursuit of products with improved cost-performance
characteristics then constantly leads to untried uncertain features. From
the initial conception of a system architectural design to its daily
operation after installation. In the early planning phase of a new computer

system product, the manufacturer

is enciphered to

cipherEx7.3

rvaax wyeuk tolfu hpycv aymyw uijye mokpp hikev ruavr evlan hylji mohuc
dgtwi agnui fdhef ajvac yosga dziho nezok awiub yxsop laton iloez dafto
tvwow egike prixa jilme zgpsi ivteo optol xuxos urtet lpohe hjkek ysuyf
eyov]j lpewy npomz yfvku bceum ynxge sufbl zovza kgxyk yxlar fsukd ygnab
tersa tulhy nunbe bjvze zsivx lighg enaen kwyob rzoeb irlip feyjd eivec
icswi dknaa mucii jzecv agpua sumar epcyr ygxza rorno tasve gaxjz yevgh
uizui birig yekod xufob dgaxw okain olcgu ouffu hbuvt arfwl ipued ofyvv
ajim ostyr fotgj olaws rvugu somaj fulyj gyhti dauxw ucyte ffibe nahiw
hzacy nkiun fjife hjvta hyyzm ynogo honbz didis eziyqg ezxri hecua gjech
rvaxu jisso jpemz ypwac fbiyb wumhl ipaep nhiwe ruavx
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TABLE 7.7 Normalized «-Values in Example 7.3

N K(N) N K(N) N K(N)

0 0.07063 3 0.06654 6 0.05515
1 0.05792 4 0.04428 7 0.05422
2 0.04444 5 0.05893 8 0.04029

(Note, to encipher, (1) all plaintext characters other than letters are deleted and (2)
the RED substitutions 6y and 6c are applied to the plaintext translated to upper-case
letters. RED ciphertext is displayed using lower-case letters.) Table 7.7 lists the normal-
ized kappa values «(N) for N = 0(1)8; the entries are consistent with no pins being
removed.

Example 7.4
P(0) = 0 and pins py, ps, p1e, and p33 are removed. The same substitutions 6y, 6c and
plaintext as in Example 7.3 produce the ciphertext shown next.

cipherEx7.4

rvaav toyih rejce dlixr oijis eyfiu hyfkk cufog maigm ogdag zydbi foxos
thlne ywfoe vtxyt uxlur oejgu spawe bomyw ikuan akfub weguz owuil papfo
fghoh egite zcigu gasty hxwzy ycbua avbar fefax awzoz gtymo mnpop evuyh
eyoxl ngaxu pdinb ugwlo cdyim onxqgy sifbl zevzi hdveh evjin bpygz ackew
ginpe pugcy jujve vdgte tnang dajzj ygouf bniar jgaur yjcuf toexs oulor
urjmu gwbaa zupii tlanh yrboy foxyd azmoc ogjku cecxe fuddo xiggh eodmn
yogyo hoxom aiquj dukog jvadc opais onfji eihhi kcewv osgxm ygeuf agevv
ijfum yster fytgg ojatqg psudo pijyf bohuf mudge xuisr iwopy zzavy juzup
zrite gcoyf vzovi xzmle xaapc ydogo wodgp sisij ymaod ymlfa suneo rtuns
dhoke tuddy szowk ezhim pluyj futps iwaav tneda xoycf

Table 7.8 lists the normalized kappa values k(N) for N = 0(1)8; the entries are
consistent with N = 4 pins being removed.

7.4 CRIBBING RED CIPHERTEXT

We will describe the cryptanalysis of RED ciphertext using English-language text. The
vowel /consonant pattern of a (plaintext) crib u = (ug, uy, ..., upy—1) is

)=V, ifu; € VOW :
X@) = Orluo), x(wn), .. X)) {;;g;g;:g it € con, 0=i<M. (116)

TABLE 7.8 Normalized «-Values for Example 7.4

N Kk(N) N Kk(N) N K(N)

0 0.02230 3 0.05545 6 0.03676
1 0.03340 4 0.06273 7 0.05321
2 0.04815 5 0.04788 8 0.05495




7.4 CRIBBING RED CIPHERTEXT 201

A necessary condition that the RED ciphertext fragment yj; i yp) = (Vi ..., Yiym—1) be
the encipherment of the (plaintext) crib u = (ug, uy, ..., up—1) 18
U; € VOW & Yitj € VO, if U; is a vowel <
. . <M. .
{ u; € CON & y;; € CON, if u; is a consonant, O=j=M (7.17)
To crib RED ciphertext for the plaintext u = (ug, uy, ..., up—1), the RED ciphertext is

searched for fragments yp; ;1) that have the same the vowel/consonant pattern as that
of u.

Of course, Equation (7.17) is only a necessary condition that u — yp; ;4 and some
fragments fail to correspond to plaintext crib. Additional constraints need to be imposed
before concluding that yj; ;1) is the encipherment of the crib u.

7.4.1 Cribbing RED Cipherment: No Inactive Breakwheel Pins

If all pins on the breakwheel are active, then 7= 47 and P(i) = P(0) +i. As P(0) is
unknown, the recovery of 6y and 6c by cryptanalysis assuming P(0) = 0 will then be
related to Tables 7.5 and 7.6 by a shift in rows.

If yyivsy= (Yis Yixt> - - » Yiem—1) 1s the RED encipherment of the crib
u = (ug, Uy, ..., Upy—1), then Equations (7.11) to (7.14) are replaced by Equations (7.18)
to (7.21).

- VOW:

If the (i 4 j)th plaintext letter x;,; is a vowel, it is enciphered to y;y; e vow

Xiyj = Zivj = ordyow(Ov(xiy))
Zitj = Yiyj = chryow((ziy; — (i +)) (modulo 6)), 0 <j <M. (7.18)

If the (i + j)th ciphertext letter y;,; is a vowel, it is deciphered to x;{; € vow

Yitj = Zigj = (ordyow(yis;) + (i +j)) (modulo 6)
7i — x; = chryow(zij), 0=<j <M. (7.19)

« CON:

If the (i + j)th plaintext letter x;,; is a consonant, it is enciphered to y;; € CON

Xiyj = Zivj = ordcon(fc(xit)))
Ziyj = Yiyj = chrcon((zij — (i +)) (modulo 20)), 0=<;<M. (7.20)

If the (i + j)th ciphertext letter y;; is a consonant, it is deciphered to x;;; € CON

Yitj = Zitj = (ordcon(yitj) + (i +)) (modulo 20)

Ziyj —> Xiyj = chreon(zigy), 0 <j <M. (7.21)
If Viii+M) = (yi7 Vit1s o+ s YVieM— 1) is the RED Ciphertext of the crib
u = (ug, Uy, ..., upy—1), then Equations (7.19) and (7.21) determine the substitutions
u; = Ov(zity), }f G 15 8 vowel for0 <j <M.
0c(zit), if z;1j is a consonent,
Example 7.5

As the plaintext of cipherEx7. 3 describes aspects of performance evaluation, possible
cribs include
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1. PLANNINGPHASE

2. PERFORMANCE

3. EVALUATION

4. COMPUTERSYSTEM.
8(i) = A(i) = 0 and P(i) = Q(i) = i, because cipherEx7.3 resulted from RED enci-
pherment with all pins active.

We began by searching cipherEx7.3 for fragments y; ;3 with the vowel/
consonant pattern CCVCCVCCCCVCV of the longest crib PLANNINGPHASE =
u = (ug, Uy, ..., Up); one instance of this vowel/consonant pattern occurs at position
i = 400. The search results are displayed in Table 7.9, which contains

Row 0: the vowel /consonant pattern;

Row 1I: the crib (ug, uy, ..., upn);

Row 2: the ciphertext (y400, Y4015 - - - » Y412);

Rows 3—6: for indices j corresponding to the vowels

- the ordinals of the ciphertext ordvow(Y4o0+;) (modulo 6),
- the breakwheel positions (400 + j) (modulo 6),

- the shifted ciphertext z499-;, and

- the recovered letter-substitutions x400+; = Ov(Z400+)-

Rows 7—10: for indices j corresponding to the consonants

- the ordinals of the ciphertext ordyow(Ys00+;) (modulo 20),
. the breakwheel positions (400 + j) (modulo 20),
- the shifted ciphertext z400.,, and

- the recovered letter substitutions x400+; = 0c(Z400+)-

If we make the assumption PLANNINGPHASE — hbuvtarfwlipu, then several
entries in row O of Tables 7.5 and 7.6 are determined. These are shown in Tables 7.10
and 7.11. Next, we search cipherEx7.3 for fragments y; 10, wWith the vowel/conso-
nant pattern CVCCVCCVCCV of the crib PERFORMANCE = u = (ug, Uy, - . . , U1p). The

TABLE 7.9 Possible Ciphertext Fragment of the Crib PLANNINGPHASE in
cipherEx7.3

0. C c v ¢C Cc v C C C C v C

1. P L A N T N P A S
2 h b u v t r f 1 i u
3. 4 0 2 4
4. 0 3 2 4
5. 4 3 5 2
6. u o u i
7. 5 0 16 15 13 17 8 11
8. 0 1 3 4 6 9 11
9. 5 1 19 19 19 10 5 17 2
10. h ¢ Z z Z n h w d
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TABLE 7.10 Partial Reconstruction of Row 0
of 6y from the Cribs PLANNINGPHASE

A E T o U Y
| \: \: A | \:
u i o

TABLE 7.11 Partial Reconstruction of Row 0 of 6c from the Crib PLANNINGPHASE

B ¢ D F G H J K L M N P Q R S T V W X Z
N N N 2
n w c z h d

search finds six occurrences of this vowel/consonant pattern, which are listed in
Table 7.12. In each row we find

- The position in the ciphertext where this pattern occurs, and
- Assuming the fragment corresponds to the crib, the resulting recovered letter
substitutions
o { Oy (Ziv)) if u; is a vowel
T 0z if u; is a consonant.

It is not true that all of the entries found in the search correspond to the crib. An entry in

Table 7.12 will be rejected if it leads to a contradiction with values in Tables 7.10 and 7.11.
For example,

1. PERFORMANCE — wudtazgtibzi implies Oc(P) = w, inconsistent with
Table 7.11 entry 6c(P) = h.

2. PERFORMANCE — vabkuztitwu implies 6c(P) = v, inconsistent with
Table 7.11 entry 6c(P) = h.

3. PERFORMANCE — picdavdedrt implies 6c(P) = p, inconsistent with
Table 7.11 entry 6c(P) = h.

4. PERFORMANCE — davdedriksa implies 0c(P) = d, inconsistent with
Table 7.11 entry 6c(P) = h.

Only PERFORMANCE — hibvabkuzti, appearing at both positions 10 and 231, leads
to letter substitutions that are consistent with the current partial reconstruction of the

TABLE 7.12 Possible Ciphertext Fragments of the Crib
PERFORMANCE in cipherEx7.3

c v ¢ ¢ v Cc Cc v Cc cC
P E R F (0] R M A N C E
100 h 41 b v a b k u z t 1
4 w u d t a z t 1 b =z 1
231 h i b v a b k u =z t i
234 v a b k u z t 1 t w u
545 p i ¢ d4d s v 4 e 4 r i
548 4 a v 4 e 4 r i J s a
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TABLE 7.13 Partial Reconstruction of
Row 0 of 6y from the Cribs
PERFORMANCE and PLANNINGPHASE

E I o 8] Y

{ 1 \
a

S el

TABLE 7.14 Partial Reconstruction of Row 0 of 6c from the
Cribs PERFORMANCE and PLANNINGPHASE

<~ 0
<~ A4
«~ <
«~ =
<~ X
«~ N

B D J K
= ! Vo

4 <« 0
<« m
5« @
s <« o
Q <« B
A~ - R
N <« =
5« o
o <« 10
Q <«

substitution 6y and 6c. Accepting the cribs for PERFORMANCE at positions 10 and 231
allows us to further reconstruct the rotors, as shown in Tables 7.13 and 7.14.

Finally, we search cipherEx7. 3 for fragments y; ;19, with the vowel/consonant
pattern VCVCVVCVVC of the crib EVALUATION = u = (ug, Uy, . . . , Ug). The search finds
one occurrence of this vowel/consonant pattern, which is listed in Table 7.15 with
the same format as used in Table 7.12. All of the letter substitutions in Table 7.15 are
consistent with the entries in Tables 7.13 and 7.14. The crib of EVALUATION
augments the partial reconstruction of the rotors shown in Tables 7.16 and 7.17. The
search for additional words or a partial decipherment can be used to complete the
cryptanalysis.

7.4.2 Cribbing RED Ciphertext with Inactive Pins

We begin by computing the k(N )-scores and identifying the most likely number N of inac-
tive pins.
A stepping equation is an equation of the form

s = Cs,0(1), 0<k<m,

TABLE 7.15 Possible Cribs of EVALUATION in
cipherEx7.3

TABLE7.16 Partial Reconstruction of
Row 0 6c from Cribs PERFORMANCE,
PLANNINGPHASE, and EVALUATION

E I o U Y

!

<«
<«
<«
<«
<«
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TABLE 7.17 Partial Reconstruction of Row 0 of 6g from the
Cribs PERFORMANCE, PLANNINGPHASE, and EVALUATION

B CDFGHJIKILMNZPOQRS STVWIX Z
N S N 2 N S S e A
t v n w c k z h b drop

where ¢ is a letter in the crib and s a letter in the ciphertext fragment that has the same
vowel/consonant pattern as the crib.

If a search of the ciphertext has found a fragment y(; ;1ar) with the same vowel/con-
sonant pattern as a (plaintext) crib u = (ug, uy, . .., uy—1), Equations (7.19) and (7.21)
provide several stepping equations.

Example 7.6
As the ciphertext cipherEx7.4 has been enciphered with N = 4 inactive pins, the
sequence {A (i)} is periodic with period 43. As in the previous example, we search for
vowel/consonant patterns that are consistent with the cribs PLANNINGPHASE,
PERFORMANCE, EVALUATION, and COMPUTERSYSTEM.

We begin by searching cipherEx7.3 for fragments y ;.13 with the vowel/
consonant pattern CCVCCVCCCCVCV of the longest crib PLANNINGPHASE = u =
(ug, U1, ..., upn), one instance of this vowel/consonant pattern occurs at position
i = 400. The search results are displayed in Table 7.18. The entries are in Table 7.18
are organized as follows:

Row 0: the vowel/consonant pattern;
Row 1I: the crib (ug, uy, ..., u1»);
Row 2: the ciphertext (Y400, Y401» - - - s Y412);

Rows 3-7: for indices j corresponding to the vowels

- the ordinals of the ciphertext ordyow(Y4o0+;) (modulo 6),
- the breakwheel positions (400 + j) (modulo 6),
- the shifted ciphertext z4004

TABLE 7.18 Potential Cribs of PLANNINGPHASE in cipherEx7. 4

0. C C v C C v C C C C \ C v
1. P L A N N I G P H A S E
2. k c e w v o s g X m v a

3. 1 3 5 1
4. 0 3 2 4
5. 1 0 1 5
6. e a e v
7. 15 18 23 25
8 7 0 17 16 14 4 18 9 12

9. 16 17 19 0 2 3 4 5 7
10. 3 17 5 16 16 7 2 14 19
11. f x v v v k s z

12. 13 14 16 17 19 20 21 22 24
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« the character chryow(z4004)),
+ (i +j)(modulo 43).

Rows 8—12: for indices j corresponding to the consonants,

- the ordinals of the ciphertext ordyow(y400+,; (modulo 20)),
- the breakwheel positions Q(400 + j) (modulo 20),

- the shifted ciphertext z400.,

- the character chrcon(za00+))s

« (i +J) (modulo 43).

The stepping equations derived from Table 7.18 are listed in Table 7.19.

Analysis
As £ follows d in the consonant set, the stepping equations in Table 7.19

0c(P) = Cs,013)(£) 0c(P) = Csz21)(A) (7.22)
require
843(21) = 1 4 843(13).
The stepping equations in Table 7.19
bv(a) = Cs,5a5/(e) Ov(2) = Cs,503)(e) (7.23)
require
O13(15) = 843(23). (7.24)

We claim 043(25) = 043(23); for proof, use the stepping equations in Table 7.19:

Ov(I) = Cs,a8)(a) (7.25)
Ov(E) = Cs,05 (v). (7.26)

As 043(25) < 643(23) + 2, there are two possibilities; if 843(25) = 1 4+ 643(23), Equation
(7.26) gives

Ov(E) = C5,,(25)(y) = Cs,523)(a), (7.27)
which is inconsistent with Equation (7.23). If 6,3(25) = 2 4 643(23), Equation (7.26) gives
Oyv(E) = Cs,505 () = Cs,,03)(e), (7.28)

which is also inconsistent with Equation (7.23). Thus, 843(18) = 843(25).

TABLE 7.19 The Stepping Equations Derived from Table 7.18

0c(P) = Cs,513)(£)
Oc(M) = Cs,516)(V)
0c(N) = Cs,,19)(V)
Oc(H) = Cs,02)(s)
Ov(E) = Cs,,25)(v)

Oc(L) = Cay014)(x)
Oc(M) = Cs,,a7)(V)
0c(G) = Cs,,20)(k)
Ov(B) = Cs,,23)(e)

Ov(a) = Cs,55/(e)
Ov(I) = Cs,,a8)/(a)
0c(P) = Cs,521) (D)
0c(S) = Cs,,004)(2)
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TABLE 7.20 Letter Substitutions Implied by Table 7.19

i 6c(P) Oc(L) Ov(d) Oc(N) OW(I) 60c(G) Oc(H) 6c(S) 6v(E)

0 f 4 i w e 1 s b a
1 g b o x i m t c e
2 h c u z o n w d i
3 3 d v b u o) v f o
The stepping equations
Oc(L) = Cs,;014(%) (7.29)
0c(N) = Cs,,316(V) = Cs,,17(v) = Cs,519)(V) (7.30)
require d43(14) = 1 4+ 843(13). We conclude that
0413(13) =i, 643(14) = 643(15) = - - - = 643(25) =i+ 1 4.31)

for some i with 0 <i < 3. The solutions consistent with Equations (7.22) to (7.31) are
given in Table 7.20.

Searching the ciphertext for the cribs PERFORMANCE, EVALUATION, and
COMPUTERSYSTEM yields the results given in Tables 7.21 to 7.23, which list

Row 0: the vowel /consonant pattern,

Row 1I: the crib u = (ug, uy, ..., Up—1),
in row-pairs (2f, 2j + 1)

Row 2j: the position i in the ciphertext at which the ciphertext fragment y; ;4 ar)
occurs together with the characters of the shifted ciphertext z; ;1 as).

Row 2j + 1: the values of (i +j) (modulo 43).

The entry in Table 7.21 corresponding to the fragment at position 10 is the stepping
equation Cs, 1) (P) = £.

TABLE 7.21 Potential Cribs of PERFORMANCE in cipherEx7. 4

C v C C \Y% C C \Y% C C Y%
P E R F o] R M A N C E

10 f a X s o w g e v a v
10 11 12 13 14 15 16 17 18 19 20

44 w u d r u w r a x w a
1 2 3 4 5 6 7 8 9 10 11

231 d v w r o w g e v a v
16 17 18 19 20 21 22 23 24 25 26

234 r o w g e v a v a s e
19 20 21 22 23 24 25 26 27 28 29

545 1 u w x i a x o X m u
29 30 31 32 33 34 35 36 37 38 39

548 x i a X o x m u £ n i
32 33 34 35 36 37 38 39 40 41 42
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TABLE 7.22 Potential Cribs of EVALUATION in cipherEx7. 4

\% C \% C \ \ C \ \ C
E \% A L 8) A T I 0] N

21

v 1 e X i e n a o t
21 22 23 24 25 26 27 28 29 30

Analysis

We assume that PLANNINGPHASE occurs in cipherEx7.4 and that the entries in one
of the rows in Table 7.20 are correct. To identify which entries in Table 7.21 are truly the
cribs of PERFORMANCE, we look for contradictions in Tables 7.20.

1. If PERFORMANCE — wudruwraxwa at position 44 = 1 (modulo 43), then the

implied stepping equation 6y(E) = Cs )(u) is inconsistent with the entries in
Table 7.20.

. If PERFORMANCE — rowgevgydse at position 234 (modulo 43) = 19, then the

implied stepping equation 6c(P) = Cs,19y(r) is inconsistent with the entries in
Table 7.20.

. If PERFORMANCE — luwxigxoxmu at position 545 (modulo 43) = 29, then the

implied stepping equation 6c(P) = Cs,,20(1) is inconsistent with the entries in
Table 7.20.

. If PERFORMANCE — xigxoxmufni at position 548 (modulo 43) = 32, then the

implied stepping equation 6c(P) = Cs,,32)(%) is inconsistent with the entries in
Table 7.20.

. If PERFORMANCE — dywrowgevqy at position 231 (modulo 43) = 16, then the

implied stepping equation 6c(R) = Cs,18)(w) = z is inconsistent with the i =0
entries in Table 7.20.

. If PERFORMANCE — dywrowgevqy at position 231 (modulo 43) = 16, then the

implied stepping equation 6c(R) = Cs (15)(w) = b is inconsistent with the i =1
entries in Table 7.20.

. If PERFORMANCE — dywxowgevqy at position 231 (modulo 43) = 16, then the

implied stepping equation 6c(P) = Cs, 14y(w) = J is inconsistent with the i =3
entries in Table 7.20.

Asi=2,

faxsowgevqy

PERFORMANCE — {
dywrowgevqy

TABLE 7.23 Potential Cribs of COMPUTER SYSTEM in cipherEx7.4

C A\ C C \% C \% C C \% C C \ C

C (0] M P U T E R S Y S T E M
419 p i f c e m u v X o X r i

32 33 34 35 36 37 38 39 40 41 42 0 1 2
447

r e a n i w hY w g i z n i x
17 18 19 20 21 22 23 24 25 26 27 28 29 30




7.5 GENERALIZED VOWELS AND CONSONANTS 209

provides additional letter substitutions and stepping sequence values

2, if 10<i<13

du3(i) = { 3, ifl4<i<26 (7.32)

The crib ylexienaot of EVALUATION provides three additional stepping equations

Oc(V) = Cs,022)(1) (7.33)
Ov(U) = Cs,5025(1) (7.34)
0c(T) = Cs,,07)(n) (7.35)
and the stepping sequence value
. 3, if 27 <i <29
Bas() = {4, if i > 30. (7.36)

The partial reconstruction of the two rotors yields the six vowel substitutes and 13 of the
20 consonant substitutes.

7.5 GENERALIZED VOWELS AND CONSONANTS

Changes in RED were made after it was put into service; the letters were divided into two
sets VOW with six elements and CON with 20 elements. A plugboard connected the
VOW keyboard letters to the slip-ring vowels A, E, I, O, U, and Y, and the OCP vowels
A, E, I, O, U, and Y were connected to the lamps in VOW. The same process was
carried out with respect to the letters in CON.

The plugboard connections are part of the key and must be recovered. Fortunately,
the process is quite simple; Table 7.24 lists the frequencies of occurrence of the
(ciphertext) letters in cipherEx7.4. Note that the frequencies of the vowels A, E, T,
0, U, and Y are in excess of 0.0615, and those of consonants are bounded above by
0.0427. Thus, simple frequency counts negate the effect of using generalized vowels/
consonants.

TABLE 7.24 1-Gram Letter Counts and Frequencies in cipherEx7. 4

r N f t N1 f) r Ny f)

a 37 0.0632 J 21 0.0359 s 17 0.0291
b 12 0.0205 k 10 0.0171 t 19 0.0325
c 16 0.0274 1 12 0.0205 u 40 0.0684
d 22 0.0376 m 17 0.0291 v 18 0.0308
e 36 0.0615 n 17 0.0291 w 15 0.0256
£ 25 0.0427 o 50 0.0855 x 19 0.0325
g 17 0.0291 P 19 0.0325 Yy 37 0.0632
h 17 0.0291 aq 22 0.0376 z 20 0.0342
i 36 0.0615 r 14 0.0239
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“CLIMB MOUNT ITAKA” - WAR!

The following was included in a cable sent November 19, 1941, from the Japanese Foreign
Ministry to all Japanese foreign diplomatic posts:

...Consequently,we will include in the middle and at
the end of our Japanese language news programs beamed
to all points one or another or all of the following
code phrases:

1. HIGASHI NO KAZE AME (East Wind Rain) meaning relations with America are
not according to expectations.

2. KITANOKAZE KUMORI (North Wind Cloudy) meaning relations with Soviet
Union are not according to expectations.

3. NISHO NO KAZE HARE (West Wind Clear) meaning relations with England are
not according to expectations.

When you hear any or all of these phrases repeated twice in
the newscasts, destroy your codes and confidential papers.

A new Japanese machine ciphermachine (Fig. 7.4) went into service in March 1939
[Rowlett and Kahn, 1998], designated by the Japanese as 97-shiki O-bun In-ji-ki (Alpha-
betical Typewriter *97), the number 97 signaling the year 2597 of its creation in the Japa-
nese calendar [Kahn, 1967]. It was also referred to as Angooki taipu B (Cryptographic
system, type B) and PURPLE by the United States intelligence community.

PURPLE replaced the Type Number ’91 [Farago, 1967], also referred to as Angooki
taipu A (Cryptographic system, type A) and RED. Alphabetical Typewriter 97 was

Figure 7.4 Japanese PURPLE machine (Courtesy of NSA).
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developed by naval Captain Risaburo Ito, who had also helped design the Red code
machine. Ito was familiar with Yardley’s success in cryptanalyzing the Japanese codes
during the 1921 Admiralty Conference.

7.7 COMPONENTS OF THE PURPLE MACHINE

PURPLE had a typewriter input, lamp output, a plugboard, and an internal switch imple-
menting polyalphabetic substitutions. The rotor in the RED system was replaced by
25-position stepping switches or steppers, which were used as components in the automatic
dial telephone system in the United States in the 1930s. A stepper allows any input line to
be connected to any output line. The top and side views of a PURPLE stepper are depicted
in Figure 7.5. The wiper or (blade) moves horizontally; passing between a pair of com-
pressed contacts creates an electrical path from the input to output lines.

7.7.1 Encipherment of Letters in VOW

PURPLE continued the paradigm used in RED to encipher vowels to vowels and
consonants to consonants. The wipers on all levels pointed in each level to the same
output position and moved in unison, rotating (or stepping) one position for each letter
enciphered. The PURPLE vowel-stepper implemented 25 (different) permutations of
the vowels VOW = {A, E, I, O, U, Y} (Fig. 7.6).
To allow encipherment of generalized vowels as in RED, a plugboard connected
- The VOW keyboard letters to the six input contacts on the six levels, and
- From each of the 25 letter outputs on each level to the VOW output lamps.
The PURPLE vowel-stepper implemented a periodic polyphabetic substitution with
period 25. The vowel x is enciphered to the vowel y as a result of Three transformations
x = y(1) = y(2) > (3) =y = PURy(x). (7.37)
Transformation #1

x = y(1) = PLy(x)

Output lines

Compressed Contacts
23 Common Input Wiper j Output Line

o

<——— Compressed
Contacts

O <—— Common

input

Figure 7.5 Side and top view of stepping switch.
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Input ~ Output
Level 1 Position i
A [Z7] =—— 1 g~ Ila
Level 2
E 777 = 1 o "1lE
] Level 3 1
L — —— 1 g~ "I
L Level 4 1
SO —— —— 1 o-"Jo
L Level 5 1
U [ZZ] —— 1 4" "1vu
L Level 6 1
Y [IZ0 — 1 -1y

Figure 7.6 The PURPLE vowel-stepper.

where PLy(x) is the letter on the vowel-stepper to which vowel x is connected by the
vowel-plugboard.

Transformation #2
(1) = ¥(2) = VSvp((itis(v)) (modulo 25))( ¥(1))

where VSvp((itip(v)) (modulo 25)) 18 the vowel-stepper substitution in position VP((i 4 ip(V))
(modulo 25)) with ig(V') being the initial position of the vowel-stepper.

Transformation #3
¥(2) = y(3) = PLy'(y(2)) = y = PURy(x)

where y is the output lamp letter to which output vowel y(1) is connected by the inverse
vowel-plugboard PLy . The period of x — y = PURy is 25.

7.7.2 Encipherment of Letters in CON

The PURPLE encipherment of consonants used three banks, each consisting of four (six-
level) 25-position consonant-steppers (C-steppers), connected in tandem. Only 20 of the
24 contacts in each bank were used; the remaining contacts were used to control the
motion of the wipers. A permutation network II(i, i+ 1) connected the outputs of
the Bank i C-stepper to the inputs of the Bank i + 1 consonant-stepper for i =0, 1, 2
and from Bank 3 to the output consonant-plugboard. Each bank interconnection
I1(;, i + 1) used 20 x 25 wires. In each bank, the wipers pointed in each level to the
same position and moved in usison, as with the V-stepper.

The motion of the wipers, however, was different in each bank — either fast (F),
medium (M), or slow (S). Only one of the three C-stepper wipers moved (rotated) with
the encipherment of a letter. The position of the Bank k C-stepper for the encipherment
of the plaintext letter in the ith position is denoted by Cposaq,i+ic,ky Where M(k)
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denotes the motion type of Bank &

F, if Bank k wiper’s motion is fast
Mk)y=1{ M, if Bank k wiper’s motion is medium (7.38)
S, if Bank k wiper’s motion is slow

where ICy(k) is the initial position of the Bank k wiper.
Linkages were constructed so that the movement of the three banks could be set to
any of the six combinations:

F M S F S M M S F
(F,M,S) = ( ) (F,S,M) = < ) M, S,F) = < >

01 2 01 2 0 1 2
M F 8 S M F S F M
(M,F,S)E( ) (S,M,F)E( (S,F, M) = >
0 1 2 0 1 2 01 2

Figure 7.7 shows a PURPLE switch, and Figure 7.8 depicts the consonant banks
with the input/output contacts on each bank labeled c0, cl, ..., cl9.
The motion of the C-steppers is arranged according to the following recursions:

- The V-wiper of the V-stepper is stepped once for the encipherment of any letter:

VP(i) = VP(i — 1) (modulo 25). (7.39)

Figure 7.7 PURPLE switch (courtesy of NSA).
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Bank § Congonant-Steppers

Banks 1-2
Input Output Consenant-Stepper
-1 Levell —
0 [Z2] = IIlen
Level 2
el [I7] - —— --la
| __|. Level3 _ Connections
€2 [T1] —— | Clle2 to Output
Seid Plngboard
— w1 g ‘
board | __| LevelS _ P
Input Plug B e Tl odis Owpee Ploghousd

i

Level 2

Level 3

Level 4

Level 5

PRAREGPROPIBEROBEAOA®
2 & % & & &
HEH BRI
TN
T
%\\ 2 & 9
FRRRAPEIANERPICEBORDO®

cl0 [
cll
cl2 [CC] lowd =1 “lle2
gy |- peloeld =] S N
cl4 [~ tel S === --lcia
o LS gy 3=
cl5 ? Lovil S | ?
T i o - ——m—| B T
ol? 7] Lo? S} -2 1el7
cl® [--7 e =1 “lle18
el9 [ 0] Laetd . S
et S B

Figure 7.8 Consonant banks with consonant-plugboard connections from
CON = {B,C,D,...,W,X, Z}

« The M-wiper of a medium C-stepper bank (M) is stepped once each time the V-wiper
of the V-stepper moved from position 24 to position O:

(CPy(G@ — 1) + 1 (modulo 25), if VP(i—1)=24
CPy (i) = (7.40)
CPum(@i — 1), otherwise.
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« The S-wiper of a slow C-stepper bank (S) is stepped once just before the M-wiper of
the medium C-stepper bank is moved from position 24 to 0:

(CPg(i — 1)+ 1) (modulo 25), if VP(i—1)=23
CPs(i) = and CPy(i—1)=24 (7.41)
CPs(i— 1), otherwise.

- The F-wiper of the fast C-stepper bank (F) is stepped once for each letter unless the
S-wiper or M-wiper of either the slow or medium C-stepper bank is moved, in which
case the F-wiper did not move:

(CPg(1), if VP(i—1)=24 or VP(i— 1) =23
CPg(i) = and CPy(i—1)=24
(CPg(i — 1) + 1) (modulo 25), otherwise.

(7.42)

The encipherment of the consonant x to the consonant y is a result of seven transformations

x = y(1) = y(2) = y(3) = y(4) = ¥(5) = y(6) = y(7) =y =PURc(x). ~ (7.43)

Transformation #1
x — y(1) = PLc(x),
where PLc(x) is the letter on the C-stepper to which consonant x is connected by the
consonant-plugboard.
Transformation #2
0)
YD) = ¥(2) = CS G i410c0) modato 25 Y(D)s

where CS© is the Bank 0 C-stepper substitition whose position is CP? ((i + ig(CPy)
(modulo 25)) with io(C®) being the initial position of the Bank 0 C-stepper.

Transformation #3

¥2) = y3) =[O, D2,

where [T (0, 1) is the permutation network between Banks 0 and 1.

Transformation #4

y(3) g y(4) = CS(ClI))(U((i-‘rio(C(l))) (modulo 25))()’(3))9
where CS" is the Bank 1 C-stepper substitition whose position is cp? G+ io(C(”))
(modulo 25)) with io(C") being the initial position of the Bank 1 C-stepper.

Transformation #5

Y@ = y5) =[], 234,

where [T (1, 2) is the permutation network between Banks 1 and 2.
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Transformation #6
_ (2)
y(s) - y(6) - CSCP(Z)((i—HQ(C(Z’)) (modulo 25))( y(S))a

where CS® is the Bank 2 C-stepper substitition whose position is CP? ((i + ip(C?®Y)
(modulo 25)) with io(C®) being the initial position of the Bank 1 C-stepper.

Transformation #7

¥(6) = y(7) = PLc ™' (3(6)) = y = PURc(v),

where y is the output lamp letter whose output vowel y(6) is connected by the inverse
consonant-plugboard PL¢ .

7.7.3 The Period of x — y = PURc(x)

To calculate the period of the consonant encipherment, define the positional state of the F-,
M-, S-, and V-steppers for the encipherment of the ith plaintext letter x; by

CPg(i)

CPum(i)
CPs (i)
VP(i)

(i) =

Proposition 7.1:  w(i) is periodic with period 7¢ = 253,

Proof: We give the proof only for the case iy(V)= io(CO) = i(CV) =
iO(CQ)) = 0. Equation (7.39) shows that

VP(i) = VP(i + 25), i=0,1,.... (7.44)
Equation (7.40) shows that

CPy(i) = USJ (modulo 25), i=0,1,..., (7.45)

which implies
CPu(i) = CPw(i +25%), i=0,1,.... (7.46)
In order that the position i satisfy

VP(i—1)=24 VP@G) =0
CPy(i—1)=24 CPu(i)=0)

it is required that

i—
25

1
i—1=24+25k 24:{ J—>i—l:624+252j, j=0,1,.... (147)

In order that the position i satisfies

VP(i—-2)=22 VPi—-1)=23
CPu(i—2)=24 CPy(i—1)=24)
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it is required that

i — 1
i— 1 =23+ 25k, 24:\‘125J—>i—1:623+252', j=0,1,.... (7.48)
Using Equation (7.41) we conclude
. i+1 ,
CPs(i) = {WJ (modulo 25), i=0,1,.... (7.49)

Equation (7.42) shows that CPg(j — 1) increases by 1 modulo 25 except for those
positions j for which

(7.50)

(VP(j—1)=24) or (VP(J'—I)=23 )

CPy(j — 1) = 24

As the conditions in Equation (7.50) are mutually exclusive, the number of solutions of
Equation (7.50) with j <iis | 3| + |55}, which gives

CPr(i) = (i - USJ + Y;ZIJ) (modulo 25). (7.51)

Equations (7.44), (7.45), (7.49), and (7.51) show that the vowel- and consonant-stepper
positions are periodic with period 25°.

7.8 THE PURPLE KEYS

There are seven elements comprising the PURPLE key:

266> x 6! x 20!;

PK2. The VOW-stepper implementing 25 permutations of the six-letter input/output
pairs — #PK2 = (6!)%;

PK3. The initial position iy VOW of the vowel stepper — #PK3 = 25;

PK4. The 25 permutations in each of the four consonant-stepper banks -
#PK4 = (201%)%;

PKS. The initial positions (iO(C(O)), iO(C(D), iO(C(2)) of the consonant steppers —
#PK5 = 257

PK6. The interconnection permutations [[o,; and ][], betwecn Banks i and i + 1 for
i=0,1 - #PK6 = 20!*; and

PK7. The motions of the consonant steppers — #PK7 = 6.

PK1. The plugboard connections — #PK1 = (

Of course, not all of these #PK = #PK1 x #PK2 x #PK3 x #PK4 x #PK5 x #PK6 x
#PK7 keys are independent; for example, the composition of a consonant-stepper CS
and the interconnection permutation [] to the next bank is equivalent to just another
consonant-stepper. Even so, the PURPLE had a substantial key space.

The Ko codebook listed basic operating instructions for PURPLE; the Otsu code-
book listed plugboard settings, which were prescribed in advance and used throughout
the Japanese network. Some papers on PURPLE suggest initial wheel settings might
have been chosen randomly by the sender and included (in plaintext) in the message indi-
cator. Later, the Otsu codebook listed a set of values whose labels were included in the
message indicator.
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Why did PURPLE succumb to cryptanalysis with such a large key space? Although
the rotors of the Enigma machine were permanently wired, three of them could be selected
from some set and their order varied. In the PURPLE system, the stepper wiring and the
bank-to-bank interconnections were fixed; only the plugboard connections, the initial pos-
itions, and the motion of the steppers could be changed. If cryptanalysis recovered the
fixed hidden components of the key, the secrecy of future messages would rest only on
the three components of the key that could be set. Still, #PK1 x #PK5 x #PK7 is too
large for systematic key trial. The success in cryptanalyzing PURPLE is largely due to
the brilliance of the analysts, as related in the work of Rowlett and Kahn [1998]. Accord-
ing to Deavours and Kruh [1985], the PURPLE team included Frank Rowlett, Robert
Ferner, Albert Small, Sam Snyder, Genevive Grotjan, and Mary Jo Denning. The discov-
ery of internal relations in the consonant encipherment (described in Section 7.10) and
how they could be applied to unravel the mystery is part of the answer. Finally,
PURPLE, like the German cipher machines, appeared on the scene just as computers
were being developed. Rowlett and Kahn [1998, p. 147], while mentioning the availability
of the IBM accounting machines, concluded it was faster to build a PURPLE replica and
make tests with it.

Example 7.7
PURPLE Parameters are given as in the following tables, including Table 7.25, where
KB = keyboard, VS = vowel stepper, and CS = consonant stepper.

VOW CON
A C D E R U BFGHIJKLMNOPQSTVWIXYZ
PLy
KB A ¢ D E R U
O
VS E R A C D U
PLc
KB B FGHTIJEKILMDNOZPOQS STVWIXYZ
N e e e S S
BankOCS J KL M Z NOU&POQSTVWIXYUHGTITZBTF

Notation: The V- and C-Stepper tables shown above are examples of ciphertext
alphabets, with the position of the stepper in the left column. The entry in row 3 of the
Bank 1 C-Stepper ciphertext alphabet means that J — w when the position of the Bank
1 C-stepper is 3.

If the C-plugboards axe taken into account, then

R—>D=PLy(R) > e = VSVP(Q)(D)
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V-Stepper Bank 0 C-Stepper Bank 1 C-Stepper Bank 2 C-Stepper
ACDERU BFGHIJKLMNOPQSTVWXYZ BFGHIJKLMNOPQSTVWXYZ BFGHIJKLMNOPQSTVWXYZ
0. arudec 0. bsvpgjwzylokimtngxhf 0. fzgmbwskfiotivjnpxylg 0. jgftxhnigoskzpwvyblm
1. decuax 1. gnghfxisbkyovljmwtpz 1. hwynlvixgmjpikztosgb 1. yamsltviwzpbfjkhxngo
2. aurdce 2. mlgbvijgwnpzkfhxoyts 2. jopshyizblnwmgfkxvgt 2. gozpghjinxmytlsfkvwb
3. ucedar 3. wiofghympxlzsgvbnkjt 3. gtpfbwzxiovjyhsmgkln 3. gsfotgvhmnwybxjlzpik
4. arceud 4. tgznvoybjmfhwlxigskp 4. vkmtjihlgnsfoxbpwayz 4. klxvbjtzspofgmiynhvg
5. ducear 5. gktxgwsnoymipfvzlibjl 5. kxtymbwphvglnzjosfqgi 5. yknzphlvtxiwobjfmggs
6. cedura 6. gfkthlvpgijbzxowysnm 6. nwovpfjtkszymxigglhb 6. vmgfykwjbisnthlpzgox
7. rauced 7. xjmypbntzkiswfhlgvoq 7. xzglhotnkbfiwvymsjqgp 7. loimkxgyvfpztjnwsgbh
8. uraced 8. iomtykvxnjbspflhzwgg 8. bvwsjgitkoxlphnzgfmy 8. ivnphzlsojwkbmtgyxg
9. rcdaeu 9. jfslgbhtomkpwyznxigv 9. nmyifptzkgsbovgwlixh 9. ygpzwbxfnkovlhmtsiqgj
10. dcerua 10. wpnxztvglfkohmjsiybg 10. iplszvbmhwnxjytfkgog 10. hvygsjwifbkpxztognml
11. eraudc 11. vhyzsjbtinkwxgolmgpf 11. oglmtsynphgvkxibzjwf 11. jfomxwnblhpizygvsgkt
12. adcuer 12. bogmlxfywihvtpsjzkgn 12. nshxvfopbgjwiztgmlyk 12. pzvsoimfjnxlyhgvgbkt
13. urdace 13. vsinompjglzybtfxrigwk 13. kbjlpwyznhisogxftgvm 13. tkxigjhwbomsfvgpznly
14. uceadr 14. ifpkxhbzwomsngvtyqlj 14. sgfzkxmiyvljbgwntohp 14. wbtfksylnvgxhpzjoqgmi
15. creaud 15. yswlkvfjhxmpotbgignz 15. oinjhbkgwmfspxqgylztv 15. tjpkzyflwbnsggivhxom
16. daucer 16. xgknybplsizwvfgthmoj 16. xlpoknvzhgmgjfbywits 16. zsowmbthxkvigyjflgnp
17. ceudra 17. fmpohvwzkxigjyngltbs 17. tvyfzjlbsxkowginmghp 17. flgntjiomkshpgzwbxvy
18. rucaed 18. jzlimosfkbhggyvpwxnt 18. mtwgnhyfivgkploisxzb 18. hsiyxwpbtzvglfkmongj
19. duarce 19. gytibnxvlwpmkjogzfsh 19. vtmjxispgngbyzhwkfol 19. nivpzhjtysagxkgmolfwb
20. rcdeau 20. wtjfpyghszngklbmxovi 20. hpobitfwlzmgvgxknsjy 20. mgoxlfntvbwgyvhpikzjs
21. acdrue 21. nlotxzbvyfgwgjihkspm 21. zynvxtsohjgflmbpwkgi 21. vhbwmogslpjtaxzfinky
22. erudca 22. hmwjtosnligxpygfbkzv  22. kgbtywgpnoxvszkhimflj 22. nxjkypzimhoggvtbwlsf
23. dcuear 23. ykxgftipmhvbogzlnjsw 23. wmxkhpsvlftgzgjyionb 23. zlvkibwfnsyxgjmtohgp
24. aurdce 24. lvnpbkiysjzgtwxgmfoh 24. ojnzkmgitbhxlwfsgvyp 24. igjhklgpyvinztsmbwxo
and
G — L =PLc(G) > z =CS0,, (L) = a=CSL),, , (z) > z =CSE,, (@)
PO(0) CPY(0) CP?(0)
— £ =PL:'(2).
7.9 CRIBBING PURPLE: FINDING THE V-STEPPER

We will illustrate a possible way to crib PURPLE ciphertext. We use English-language
plaintext, the 1-gram English probabilities included in Chapter 3, and the PURPLE
parameters in Example 7.7.

Even if a message indicator containing identifiers of the initial stepper settings was
included in the clear in a message, the decipherment of intercepted PURPLE ciphertext
depends on a large number of parameters which must be recovered.

VS: 25 x 6 entries in the vowel-stepper ciphertext alphabet;
CS: 3 x 25 x 20 entries in the consonant-stepper ciphertext alphabet;
PL: the plugboard connections.

In our analysis the initial settings are all 0; this is of no consequence in recovering the
V-stepper. We indicate in Section 7.9.2 how the analysis of the C-steppers is effected
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and what changes must be made. We will sketch the ideas to find the V-stepper first and
then illustrate them with an example. The plan of attack is a follows:

1. Make letter-counts and, as indicated in Section 7.5, determine the likely division of
letters into vowels and consonants.

2. Construct crib tables whose entries are (u, v, i), consisting of

(a) acrib u,

(b) a corresponding ciphertext fragment v with the same vowel /consonant pattern
as u,

(c) the V-stepper position i at which ¥ — v occurs, and

(d) a score for entry.

3. Resolve contradictions of potential ciphertext fragments of cribs by a
pruning algorithm and recover as much of the vowel-stepped ciphertext alphabet
as possible.

Step 1: Determining the vowel/consonant subdivision and the vowel-stepper.
If {m(¢)} are the 1-gram plaintext frequencies, define

VoW = Z (1)
tEVOW
and
meon = Y, (). (7.52)
{ECON

If the sets VOW and CON are randomly selected

(25>
5) 6
mvow = ) = ~0.2308

— (26 26
6

Teon = 0.7692. (7.53)

and

The standard set of vowels — VOW = {A, E, I, O, U, Y} [Seberry and Pieprzyk, 1989] —
gives the values myow =~ 0.5225 and mcon = 0.4775.

Step 2: Construct crib tables whose entries (u, v, i) consist of
A crib u,
A corresponding ciphertext fragment v with the same vowel /consonant pattern as u,

The V-stepper position i at which ¥ — v occurs, and

B =

A score for entry.

Many PURPLE messages were intercepted and the combined traffic permitted
sharper conclusions to be made. We will use three examples of ciphertext all derived
with the parameters in Table 7.25 to recover the V-stepper.
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cipherEx7.8

wmukv mddjw vcesf afrxe eetaz eufjg yuluk acdwr ybsim avegs aachc rdvcr
ywhrz rglwa xzzeh wtple swxap imcze adhzi unmzt zgvru muomj cjvhp vduxu
dogln jnnda tedye wzfxe oxkgu sovcu phwnm huarm esnct wgawu dptln wwljg
ivrkz nnrle aottt ezbga umavx tvfda reazo Jjtfgp kmubh crell bwddx fdpdw
udclc rcehu upgtl dgzoe orlxg pefvy jjcad jojct yrfcc dfaca gefzb ecpcc
cslaz shhci syyjd jaixe ezklh 1lbjrk bzicn cdapw ydcta rclru bpymp bipzc
cklst gdudy ghzak nacjk kmekt clgpx szilu ecuyb zwrib kbhvp cwrfj doave
sitcv ceokx wajsr kacef iiakc gaiae iccee ndfpu neufl ziriu niyof jajxt
frdux upoif bfayg rnslg gapkp gozde uuyhz zdvdw urcjv rstwk dumvg kkuzu
wwaju meizf xhlhy uwnyr vhjdu mybpf ezcam nbida qgybxh scecqg 1ldzud innuk
ohruy uuvjx kvvro dkkkl germv enggx oauxh ucecq rzuuv epgbp nueed fjvwe
lvzye nyahm ahgeb rmvaa majpr ekzxi afhoc cukac rdnee ijekj vfyxx cazsh
flxeg vhwjo tdugg ejrek hrlyt elsmc crndk woyks ulmee anacqg tvkps cdjyvh
damcg kcrxd aafsg eubcc rhdev ggbem wcekd mhius ocsed yaqggre rzede cvdnk
kjpdd eycdb =zlwss mafvv ctlzg mkadk agsag wavls gaccx etvzw cysqu roiry
vigep xuibe rhlgg ckzud epiee ulyee kzmii lcncr ffxbt =ztoas vaerb fcmtm
xceyj awrke eguad cxhog kaeaa ddueg spnre xfued wdbgg irdzg gwndr kszjr
errlj cabzc tkjxh ddadx dvxgm itwws rmjsw nggcg edhfa legau dlrur azuac
fwbna gvxxx cwkfh ewejp xzfel vwiny vzbcz fdudg bnhbb cznej ugscr nnefd
faaax arrdf celgz ichxu wusord hwxdg spnnc fduur eawer eiwnb sdryk zkuao
hgyiw axedc fdncz gdlhc tlggi crkiu utycd arhzg calrd ahaee pyyfy gfese
gcris dradx cvveg szven rabpt fuouf ygbun eobat mtjhg argcc xnrlr sgabh
keuzv ugrgqu uwucc przts weveu pctcr pvvgm ucwle pkgre vpaal zyekl ryjyw
lamco mriis udmbv augmo cicza loieqg pinwh djilg oeiju uumxs jnoyx enhvp
rsxtd wcgrg gumre uxncv dnaix vykyft jvlcl dhcik wedlb ejyoe aecgqg lbhas
txzsm uslcr cstjx mnwfu puzoz pwuwo wutjn ayofm ffven jgndn crayb gbfds
uckgn agcku cayom vuguh lhunek ehuhd jdgquy fjdnh gaavd urqggs xaulu xlaod
eosee tlmst satcr pketd taaga Dbbxei uadvu vacik eiren nflru nakeq bekee
noupd zrrcz diddk tkgaz dgced tctgv hacri kvmwu ceyhj tukuj bybcz elods
vzwni akchc rfyey egmzy 1lpock dneac ludjr mmbgv zwrxk ecjdy vurtu gfmco
rllki dnzhd ahlvh ydzeu cwepu dxuas grwes ucpgz bnguc dodap rdhfc macwe
aglrh dkcug zgcgc czurb vwevb aarte ulgyf nscru pbtgf eaudb abxyk vdovx
weooc wpcrn kbgmi xmpgb vetor elgae aanjc ridjs ekgjd xzmup erwgc gquvdc
vrdul ukvsp dxeuz aldag fgmke becdnw eifzz xfewu awmwz cmcrh guufo toxcu
ckaxn bocgs coshe hgtpr =xezow rmnmu cebbt iuguj opycl epydz vinde ttxqgy
bax

cipherEx7.9

wmvld fcrse osdcp uuvqu gsjee lxzcp urjag ezacd grait kycec yygte acbve
cawfi yjxzu wcktu ukbju oayae rclre chfui euous auprz rcfth dlrre wgowu
erbsg ninbk ebgdd xonus ucvng peavb yycec taass xtyhl csrvv drdnu vukuh
fzhap epnze sehmd vrykc rfebr ezdeqg rzmgj uohwx sctry panrl bauwa fgkre
gdwmn oecvr kpnrg hhnev tkged ftmya nyfcg nmxho kayaf wvgurg lkheu wvazuu
kagvg hvuir cacdg chmrr pcbrn gbald gmkud suape wmujr ezneu xewsm usrhz
cnrgh fzcav gabec gdwek daagj tepca czkiz eeukg bateu hrkad ockzt tdaeb
hzlav yamrt xcgtr =zjxcg iiaeo dnczj fvvdd pfabn tnocw abndm aueuu dgged
gbgfx iekvp scgcu rwuad euweh eager cwzjg mcmzb xugcd cgkef sitwy gbnhf
xyclt tuglh eiuas dsdba erjsl rhaeu 1xzfu ceiwi awcjd hyrgd tvecgr azrni




222

CHAPTER 7 THE JAPANESE CIPHER MACHINES

cipherEx7.9

uceir eazeq rugfn atbsi tdzgk fufzy mpayn ymajb hsfbu frldz ogayc epgpo
elzda ultou dpduu suizc gugka pgueg zuprl ckkne xgwdk cedna cnaav rkxsb
ecuaw fabaa ubdje piurg jujhc yggtj futud wmade scgdi hdmdb tunov erumt
muchj moruk fgudr ucbeg julup zgtkg barvp uhape tesyk ieuya eunbi fyibo
fduuo wulued hlirt uugkr zpezd yddgr erjur dcrgc dgrdv ezwrd ecriu reevc
dawrb gbevt mkmre wateu ktyya rfypo ahjbe cgdse ajrvc ygzia darac eafry
acdyj aeefk zmogi bxuoz mcvde xcnom hsfyc hodas cuhyp hdccg embda cuama
brcrh wugsx xrdib fxwau csldg jlkdr vskfk ulilg jtmti uydeg exgas maaic
ryfve eqgdcs gabug dxcxm fcfuc enuec duvcw adfdd atksy bhzaa rdeve vkcue
fphyd ekruu rgfcd jozem jsgeb peynb jvctr oaahd urndd reule edmwe geqgdo
cirvd btjav crjye mdldv agvuo tesrz ugucd rjhzi uxgja beuge paldc abcaj
whcwe adsbv xecut otrkv ozruw pbuiw ycwjl ecwic lguug tkfca spgav cujan
eoeer prugx npder pbgba drddp eeamk bzclp cejoy cbpfd wmawl dicra xgteh
yyddv xcdct dubku vtbxe gjjcqg urfam ehacy ajyur exruy jaozp papca wdged
peyce kgvcm ceujy vidcr znfba drddt ettcd tabsf ouuud oucae afffe feqgduv
dazac unypj enfwd mpwlt digja bacxu pagae cbdcs xwsuu rxfxr uaruv kgngo
edruc traeu mviec onrpf noocay acbax adzai urkeo tejrf ruxje iboka mjrif
vikme jeufr brdfa geepe yyunc sdrdv fhceb umvgi ecpdv gvrhg ht
cipherEx7.10
vtcdg sirhf wuuplf komfn eevbu akboc mvdne xiuie wczov eapru unlgl rskcx
fmcre wyvsm xhrtg vyaceu ulncr iebzt cemvu zwezc uaelo wywoe axecp mtaku
zbrfu wjlog taveg ooymk beyeb eyabz ecyea lsuum mulbe buwiu ckcso wpbnz
vmich 1lvczd gdjmt dwmwa wkerx uekcd pkagnh roxip phhck fdscj amend hcgcv
cuxtf gpbhs zommk ttxrt gezuh aksds kmyfw esdee zbetc wwkwy dloud iltxu
ghasc xafte rvgcn dnaes atskk icerb pmide catdk dvaju socxu bwrfc ytbcd
vkbow cowwk bhdjb vsgre lhyyd uolzc vduiy evzee vvigp fxvdv cgofv wbcnm
ecynx zudrt aifpe ciumd ajpaa fcuib cadrt rgten cdxkr rwree zdcay dggvs
eoefx gnail clric chnnu uafps zaduj agvdu sozud etydl davsc zahge uvgie
uhxma tgeaqg omzba wxtpl ckrzl becuv keogqu uujou buuea hcebx tvcgo zcevg
lckyu aokfqg xnxse leuur etzzu dupuz ggnfe riyvh czkci ttacr ndzre acvcr
wxnsr gfsom esncc aamed hdjev rdree xxaei gesnw dytmg tmuzd lwjxh vpaah
fvecyu dojjc hejan cirsl xdlyt elszb feeeh uegrk cjdre udjnu rukav fvgzk
udxcc gfuev wzdlb dcbmb zokbv yawod ugxga thgxm kcbjc pacru nceza hvvcy
iyzrc zcirs icjug klvnr muzzo geika itxec rdujc duvte emgcv vduis eltgt
pgvce trlge arugg zdcdh kecsk rgeiqg hrbzw ejxew cgkdd etcac tbsbc duvte
efihm gtwwg errdu sctpc dunnx izocm gofug rcthi fihrd rlank rervv dpvpz
pcagyh xwnzs utedj trcsd aatwv ukkdr pwybs fstci znkfg odevt aazoc rxsru
zljrv edjda occnur phpaf dvubc vtinx vfbsa zdude enjpo bpfvy juzvl eaund
unvzi iwwyp ibzeu 1lsvrm bruzg yfzsy xepms cdmvg cbdda cnycqg tzjsb uukws
vagzs vajij ycgwo Dbboah ijugu vagmja gfnad frslm rnatg eparj rpdzj eytrn
hohgc upnzx eitmy rovoc wypfe akclu rdplc qgykxt rnpzm nhgge ugfpc txcdx
gxohp =zvuzz xXaajo sezca uevgj hwcxn ctgev uagpj zttdb hhcso aswsg wvmhoc
zddre hogci swusz verdf iapib 1lgxot prrnx damzx uwkdr kzjhk zxhke Jjzine
amaeu iucdr stedr eerdg blsxe iurzv gzwti fooaf daznd xamxe xdzfc oevaf
leave edlpe rulxh rasrt cehtc crdkt hdufd frris wzahb mbcji wdryf ueqvz
yculn wkbnt xnkes onrpc Jjseiw ddaci nyxpo eljah sgvee gauch fbvwd ufwgu
rgrxk inric ethwp nyeln pyxdb gjiei uyleu vxugl nghje gvjud seuyw hggfm
hjdxt geugx cxvdt eychz zgckw uctcc
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TABLE 7.26 Letter Frequencies in cipherEx7.8

t f t f® t f®
a 0.0557 3 0.0333 S 0.0343
b 0.0238 k 0.0371 t 0.0319
c 0.0628 1 0.0324 u 0.0661
d 0.0671 m 0.0304 v 0.0319
e 0.0742 n 0.0276 w 0.0285
£ 0.0281 o 0.0304 bd 0.0285
g 0.0319 P 0.0271 Yy 0.0304
h 0.0333 a 0.0295 z 0.0352
i 0.0309 r 0.0576

myow = 0.3835 and mcon = 0.6165

Tables 7.26 to 7.28 contains the letter frequencies in cipherEx7.8-10.
Table 7.28 contains the letter frequencies in cipherEx7.10, derived with the para-
meters in Table 7.25. The VOW /CON partition has the values myow = 0.3767 and
7con = 0.6233. The 1-gram frequencies in Tables 7.26 to 7.28 are consistent with
cipherEx7.8-10 using the the same VOW/CON subdivision. We plan to combine
cipherEx7.8-10 torecover the V-stepper ciphertext alphabets, as was done apparently
in the analysis of PURPLE [Deavours and Kruh, 1985, p. 236]. This combination of the
ciphertexts is possible if the same vowel-plugboard and initial V-stepper position are
used in the three examples.

We begin by searching the ciphertext for fragments that have the same
vowel/consonant pattern as the cribs. The subjects of the plaintext of
cipherEx7.8-10 are

plainEx7.8: performance analysis;

plainEx7.9: 1980 description of the graduate and undergraduate programs in the
UCSB Computer Science Department;

plainEx7.10: computer communication.

TABLE 7.27 Letter Frequencies in cipherEx7.9

t f0 t f t f

a 0.0618 J 0.0234 s 0.0209
b 0.0299 k 0.0239 t 0.0264
c 0.0598 1 0.0160 u 0.0673
d 0.0573 m 0.0214 v 0.0259
e 0.0703 n 0.0199 w 0.0204
£ 0.0284 o 0.0214 x 0.0179
g 0.0269 o) 0.0234 Yy 0.0264
h 0.0219 a 0.0254 b 0.0229
I 0.0209 r 0.0528

Tyow = 0.3693 and meon = 0.6107
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TABLE 7.28 Letter Frequencies in cipherEx7.10

~

f

~

f®

~

0

a 0.0515 3j 0.0251 s 0.0339
b 0.0298 k 0.0298 t 0.0392
c 0.0743 1 0.0263 u 0.0637
d 0.0585 m 0.0257 v 0.0444
e 0.0784 n 0.0316 w 0.0310
f 0.0281 o 0.0292 X 0.0345
g 0.0281 o) 0.0263 v 0.0269
h 0.0316 a 0.0263 z 0.0433
i 0.0322 r 0.0503
mvow = 0.3767 and meon = 0.6233
Likely cribs are
plainEx7.8
1. PERFORMANCE 2. PREDICTION 3. EVALUATION 4 . WOKLOAD

5. PROGRAMMING 6. PROCESSOR 7. OPERATINGSYSTEM 8. PERFORMANCEEVALUATION

plainEx7.9

1. COMPUTERSCIENCE 2. COMPUTERENGINEERING 3. DEPARTMENT
4. GRADUATE 5. ELECTRICALENGINEERING

plainEx7.10

1. COMPUTER 2. COMMUNICATION
3. INFORMATION 4. COMMUNICATIONSYSTEMS

We will modify the y*-test described in Chapter 3 to determine if a ciphertext fragment is
likely to correspond to the vowel /consonant pattern of a crib.

If we assume that plaintext is generated by a source process {X;} of independent and
identically distributed random variable with probabilities {m(¢)}, then

(1)

O @ O F 7O + 7@+ 7@ T 70

tEVOW  (7.54)

is the normalized probability of the vowel ¢. Table 7.29 lists the normalized vowel prob-
abilities corresponding to the standard 1-gram probabilities in English.

Letu = (ug, uy, ..., upy—1)beacriband ygyary = (¥is Vit 1,- - -» Yitss—1) @ ciphertext
fragment with the same vowel/consonant pattern as u. Let N(y;., k;) be the total number of
plaintext vowel y;; € VOW occurring in y; ;4ar) With k; = (i + j) (modulo 25); if

Ny =Y N(yij k). k= (i+}) (modulo 25),

Vi, EVOW
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TABLE 7.29 Normalized VOW Probabilities

t w(t) (1)

A 0.0856 0.2287
C 0.0279 0.0745
D 0.0378 0.1010
E 0.1304 0.3484
R 0.0667 0.1809
U 0.0249 0.0665

then the law of large numbers asserts
N(yijs k;)

T (Yigj) & NGy yirj € VOW, ki = (i+j) (modulo 25).
J

This suggests using the y>-score

Xz()’(i i) = Z N(yity k) — W*(xi+j)N(kj))2

s i € VOW,
7 (4N () i

Yir;EVOW

kj = (i +j) (modulo 25), (7.55)

to decide how likely it is that the ciphertext fragment y; ;1) is the PURPLE encipherment
of the crib u. It is understood in Equation (7.55) that if a vowel ¢ occurs more than once in the
crib, the corresponding N(y;;, k;)-terms are combined.

For example, an entry appears in Table 7.30 for the ciphertext fragment
vcesfafrxee at position 10 in cipherEx7.8 that has the same vowel/consonant
pattern as the crib PERFORMANCE. This fragment contains

- Two E’s at positions 11 = 104 1 and 20 = 10 + 10, and
- Two R’s at positions 12 =10+ 2 and 15 = 10435,

and the Equation (7.55) score of the ciphertext fragment vcesfafrxee occurring at
position 10 is given by

2
(N(yn,kl)"'N(yzo,klo))—W*(E)(N(k1)+N(k10))>

)(z(vcesfafrxee):

(&) (Nt +N ko)

2
(VORI +N1sk) = 7 RN o) +N (ks))

+ RN k) TN G) [}]
2 2
(WO k) =7 @NGD)) (V10,k0) =T (©N(hs)
BNk * T(ONKs) -[a.cl

Tables 7.30 to 7.37 contain the results of a search for ciphertext fragments that have
the same vowel/consonant patterns as the cribs in cipherEx7.8. The top row of
Table 7.30 contains

. The ciphertext fragment vcesfafrxee,

- The position of the ciphertext fragment,
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TABLE 7.30 Ciphertext Fragments in cipherEx7.8 for the Crib PERFORMANCE

vcesfafrxee 10 Il Ec 12Re 15Ra 17Aar 19Ce 20 E e 27.0828 ./
wddxfdpdwud 231 7Ed 8Rd4A Il R4 13A4d 15Cu 16 Ed 40.1840 ./
xceyjawrkee 960 11 Ec 12Re I5Ra 17Aar 19Ce 20 E e 27.0828 ./
gedhfalegau 1059 10 Ee 11 R4d 14Ra 16Aae 18Ca 19Eu 7489
hddzpdpdoud 1131 7Ed 8R4 11 R4 13Ad4d I15Cu 16 Ed 40.1840 ./
jeriscyuxdc 1319 20 E e 21 Rr 24 R ¢ laAau 3Ccd 4Ec 45806 .
oddxgdbdnud 1631 7EJ4d 8Rd Il RA 13Ad 15Cu 16 Ed 40.1840 ./
muasbrnewuc 1676 2 Eu 3 Ra 6Rr 8Ae I0Cu Il Ec 220248 /
kacshemejae 1825 Ea 2Rc 5Re 7Ae 9Ca I0Ee 89805
icryjekdsaa 1857 8 Ec 9Rr 12Re 14Ad 16Ca 17Ea 204440 ./
iurbxuxroee 1968 19 Eu 20Rr 23 Ru OAr 2Ce 3 Ee 119077

TABLE 7.31 Ciphertext Fragments in cipherEx7.8 for the Crib PREDICTION

kacdwrybsi 34 10Ra 1l Ec 12D4d 14Cr 56051
frduxupoif 480 6Rr 7EdJd 8Du 10 Cu 213161
mccrndkwoy 748 24 R c 0 Ec 1Dr 3Ccd 8.8003 ./
gaccxetvzw 880 6 R a 7 E ¢ 8 Dc 10 cC e 213161
fuedwdbggi 996 22 Ru 23 E e 24 D d 1 cad 8.2689 ./
hrduvuhgpx 1330 6 Rr 7 E d 8 Du 10 Ccu 213161
meuuvdbznf 1700 Re 2Eu Du 5cada 85911
peacfaonty 1979 S5 Re 6 E a D C 9 Cca 511305
yrueodlmlv 2036 12 Rr 13 Eu 14 De 16 C d 14.8865

. Triples (11, E, ¢) (12, R, e) --- (20, E, e) for each VOW-letter in the plaintext, con-
sisting of
— the position of the vowel,
— the plaintext vowel at the that position, and
— The ciphertext vowel at that position,

. The y*-score of the ciphertext fragment, and

« The information unknown to us as to whether the entry is correct (/) or not.
Tables 7.38 to 7.42 contain the results of a search for ciphertext fragments that have

the same vowel/consonant patterns as the cribs in cipherEx7.9.

Tables 7.43 to 7.46 contain the results of a search for ciphertext fragments that have
the same vowel/consonant patterns as the cribs in cipherEx7.10.

TABLE 7.32  Ciphertext Fragments in cipherEx7.8 for the Crib EVALUATION

etazeufjqy 21 21 Ee 23 A a 0U e 1 aAu 7.4816 4/
uyaodalnzw 1343 18 Eu 20A a 22U d 23 A a 9.2809 ./
rydjcrbzvz 1687 12 Er 14 A d 16 Uc 17 A« 7.0681 ./
emejaeskww 1830 S Ee 7 A e 9Ua 10A e 127854

afcxarslgy 1992 17 Ea 19 A c 2lua 222Ar 247920
cfrpucvibg 2014 14 Ec 16 A r 18 uu 19Ac 697911
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TABLE 7.33 Ciphertext Fragments in cipherEx7.8 Corresponding to the Crib PROCESSOR

ldzudinnu 590 16 R 4 18 C u 10 E 4 23 R u 7.9992
ocsedyqggr 820 21 R ¢ 23 C e 24 E d 3R 7.4952
wuvaehkxa 1556 7R u 9C a 10 E e 14 R a 5.2006 ./
kdsaamffe 1863 14 R d 16 C a 17 E a 21 R e 11.3083

TABLE 7.34 Ciphertext Fragments in cipherEx7.8 for the Crib PROGRAMMING

jaixeezklhl 315 16 R a 19 R e 20 A e 2.4987
tukserjngft 1922 23 R u 1R e 2 Ar 8.8106 ./

7.9.1 Does the Ciphertext Uniquely Determine
the V-Stepper and Plugboard?

The combined action of the vowel-plugboard and V-stepper in position i is given by the
equation

VSi(x) =y = PLy' (VSvp(PLy(x))),  xEVOW,  i=0,1,....  (7.56)

The combined vowel-plugboard/V-stepper for the parameters in Example 7.7 and
Table 7.25 is shown in Table 7.47. Does Equation (7.56) uniquely determine PLy for a
given VS? If vowel-plugboards PLy, and PLy, exist satisfying Equation (7.56) for
given VS, then

VS1i(x) = VS, i(x),  x € VOW, i=0,1,... (7.57)
VS, i(x) = PLy! (VSvpy(PLy,(¥)),  x € VOW,  i=0,1,... (7.58)
\F/VSZ ,'(.X) = PLGZl (VSVP(,')(PLVZ(X))), x € VOW, i= 0, 1, cvey (759)

TABLE 7.35 Ciphertext Fragments in cipherEx7.8 for the Crib WORKLOAD

wmukvmdd 0 2 Ru 6 A d 7D d 43.7902
kqusovcu 142 19 R u 23 A ¢ 24 D u 4.6232
ttezbgau 193 20 R e 24 A a 0Du 6.7812
nyrvhjdu 557 9R r 13 A 4d 14 D u 18.8191 ./
nnukohru 596 23 R u 2Ar 3Du 10.2210 4/
xiafhocc 688 I5R a 19 A ¢ 20 D ¢ 8.6394 /
ytelsmcc 743 20 R e 24 A ¢ 0D c 6.7812
zwcysqur 888 I5 R ¢ 19 A u 20D r 8.6394
gydhvijer 1314 16 R 4 20 A e 21 D r 3.5226
mtclftec 1356 8 R c 12 A e 13 D¢ 19.1043
vvumhlrc 1383 10 R u 14 A r 15D ¢ 4.3270
myewbmca 1482 9 R e 13 A ¢ 14 D a 18.8191
qggakhbcc 1594 21 R a 0ACc 1 Dc 2.2286
wtupjner 1802 4 Ru 8 A e 9D r 9.5336
shcgmtur 2062 14 R ¢ 18 A u 19 D r 3.5246
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TABLE 7.36 Ciphertext Fragments in cipherEx7.8 for the Crib OPERATINGSYSTEM

fwecrpghxzxhkej 1421 23 E e 24 R ¢ 0AT~r 9 E e 4.3457 /
kvdddgglghbgzub 1505 7 E4d 8§ R d 9ad 18 E u 9.7915

TABLE 7.37 Ciphertext Fragments in cipherEx7.8 for the Crib PERFORMANCEEVALUATION

vcesfafrxeeetazeufjqgy (10)

11 E ¢ 12 R e I5 R a 17 A r 19 C
20 E e 21 E e 23 A a 0U e 12au 34.5645 |/

D

muasbrnewucrydj crbzvz (1676)

2 E 3 R 6 R 8 A e 10 C
11 E ¢ 12 Er 14 a4 16 U ¢ 17 A 29.0929 /

c
@
c

TABLE 7.38 Ciphertext Fragments in cipherEx7.9 for the Crib
COMPUTERSCIENCE

elxzcpurjagezac (24)

24 C e 3UCc 5 Eu 6 R
8§ C a 10 E e 12 C a 13 E

K

Q

23.3246 |/
cnvgabecgdwekda (367)

17 ¢ ¢ 21 U a 23 E e 24 R
1 ca 3 Ee 5¢cad 6 E a 13.8825 ./

uglheiuasdsdbae (546)

Q

21 C u 0Ue 2 Eu 3R a

5c¢cad 7 E 4 9C a 10 E e 239789 /
uxqgjabeugepaldc (1240)

15 Ccu 19 U a 21 E e 22 R u

24 C e 1Ea 3 cd 4 E c 78.6649 |/
aspgavcujaneoee (1309)

9C a 13 U a 15 E ¢ 16 R u

18 C a 20 E e 22 C e 23 E e 30.0182 /

egjjcqurfamehac (1399)

24 C e 3Uc SEu 6 R
8 C a 10 E e 12 C a 13 E ¢ 23.3246 ./

=

digjabacxupagae (1520)

20 ¢ 4 24 U a 1 Ea 2 R c
4 Cu 6 E a 8 C a 9 E

(0]

60.7500 /
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TABLE 7.39 Ciphertext Fragments in cipherEx7.9 for the Crib
COMPUTERENGINEERING

cfthdlrrewgowuerbsqg (107)

6 C c 10 U 4 12 E r 13 R r
14 E e 19 E u 20 E e 21 R r 17.6025 ./

agjtepcaczkizeeukgb (382)

7C a 11 U e 13 E ¢ 14 R a
15 E ¢ 20 E e 21 E e 22 R u 23.9663 ./

rjslrhaeulxzfuceiwi (561)

11 C r 15U «r 17 E a 18 R e
19 E u 24 E u 0E c 1R e 58.3495 |/

ajwhcweadsbvxecutot (1258)

8§ C a 12 U ¢ 14 E e I5 R a
16 £ d 21 E e 22 E ¢ 23 R u 23.9022 ./

ekgvcmceujyvidcrznf (1444)

19 C e 23 U ¢ 0E c 1R e
2 Eu 7E d 8 E ¢ 9R r 38.2905

which implies
VSypip(x) = PLQ*' (VSypi)(PLy, (x))), x € VOW, i=0,1,..., (7.60)
where PLy,, = PLy, PLVFI. Equation (7.59) may be rewritten as
PLv, (VSvp(i)(x)) = VSvpq)(PLy, (%)), x € VOW, i=0,1,..., (7.61)
which implies that
VSypi(x) =x = (PLy,(x)) = x, x € VOW, i=0,1,..., (7.62)
From Table 7.25

VSvp(o) VSvpa) VSvee)
PLy,(A) — . PLy, @) PLy,(C) —  PLy,(C) PLy,(D) — . PLy, (D)

VP(4) VP(6) VP(9)

VS VS VS
PLy (E) — — PLy (E) PLy (R) — — PLy (R) PLy, (U) —— PLy (VU),

which shows that PLy_ is the identity connection for the PURPLE parameters in Example
7.7 and Table 7.25. More generally

TABLE 7.40 Ciphertext Fragments in cipherEx7.9 for the Crib DEPARTMENT

dcpuuvqugs 12 12 Dd 13 Ec 152 u 16 Ru 19 Eu 151413
dctdubkuvt 1387 12 Dd I3 Ec 15Ad 16 Ru 19 Eu 151413 |/
rexruyjaoz 1419 19 Dr 20E e 22 A r 23 R u 1 Ea 6.6907 ./
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TABLE 7.41

Ciphertext Fragments in cipherEx7.9 for the Crib GRADUATE

ircacdgc
wuadeuwe
gudrucbe
jurdcrgc
wrdecriu
bdacuama
nuecduvc
zaardeve
nddreule
badrddpe
badrddte
oedructr

308
496
791
872
887
1012
1106
1127
1182
1338
1463
1559

9
22
17
23
13
13

7

3

8
14
14
19

2o I s B VR« B S B R B s IS B B
o o 9 00 K e ¢ e B

19
23
18
24
14
14

8

15
15
11

L - i
Q0 Q9@ 09 R Q9 0

11
24
19

9
15
15

9

5
19
16
16
12

lvAnviNvElvENvEvAlvAR v v v R v/
R 8 R B B oo 0 K8 QO 9

12

9
29

1
16
16
19

6
11
17
17
13

d g dggaoaoaocacaaag

00 Qe a0 c 00

13

1
21

2
17
17
11

7
12
18
18
14

L A T

Qe 0 9 8 KRR Qc

15

3
23

4
19
19
13

9
14
29
29
16

M EEEH&E8 6860868 O 86
K ©®o ® O 0 QO 9 ¢ a O 0 Q

17.6702 /
8.6661 /
8.2767
333329 /
13.4968 ./
13.4968

13.7687 /
10.2515 /
93103 /
277128
277128
10.5894

Proposition 7.2:
position i, then

If every vowel x € VOW is a fixed point of VSyp(;(x) for some

x € VOW,

i=01,...

, = PLV* (X) =X,

VSve)(x) = PLy' (VSyp(i)(PLy, (%)),
x € VOW

7.9.2 Does the Ciphertext Uniquely Determine the Initial
Setting of the V-Stepper?

If io(V) =j and

VS i(x) =VSyi(x), xEVOW, i=0,1,... (7.63)
VS, i(x) = PLy! (VSyp@ (PLy(X))), xEVOW, i=0,1, (7.64)
VS, i(x) = PLy'(VSvpusp(PLy(x))),  xEVOW,  i=0,1,..., (7.65)
then
VSVP(,')()C) = VSVP(,-H)()C), X € VOW, 1= 0, 1, (766)
and by induction
VSVP(,')()C) = VSvp(i+kj)(x), X E VOW, = 0, 1, ey k= 1, 2, . (767)
TABLE 7.42 Ciphertext Fragments in cipherEx7.9 for the Crib ELECTRICAL
uieuousaup 93 I8 Eu 20E e 21 Cu 23 Ru O0Ca | Au 234340
usauprzrcf 98 23 Eu OEa 1 Cu 3Rr 5Cr 6Ac 52248
ateuhrkado 40l 1Ea 3Ee 4Cu 6Rr 8Ca 9Ad 332915
apcawdgedp 1431 6 Ea 8 Ec 9Ca Il R4 13Ce 14 A 4d 335265 .
dgedpeycek 1436 11 E4d I3 Ee 14 cd I6Re I8 Cc 192 e 11.0298
ayacbaxadz 1583 8 E a 10 Ea 11 Cc 13 Ra 15C a 16 A 4 39.4222
axadzaiurk 1588 13 Ea 15 E a 16 cd 18 Ra 20 C u 21 A r 214107
ejeufrbrdf 1624 24 Ee 1 Ee 2Cu 4Rr 6Cr 7Ad 133951
rbrdfageep 1629 4 Er 6 Er 7Cd 9Ra Il Ce 12Ae 39.5229
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TABLE 7.43 Ciphertext Fragments in cipherEx7.10 for the Crib COMMUNICATION

dgsirhfuuplfk 3 3 cd 7U0T«r 10 C u 11 Au 33.3797 /
uhxmatgeagomz 540 15 Cu 19 U a 22 C e 23 A a 73.7981 /
evglckyuaokfqg 597 22 C e 1Uc 4 Cu 52 a 93.7950 /
evwzdlbdcbmbz 788 13 C e 17 U 4 20 ¢ d 21 A ¢ 58.0507 ./
atwvukkdrpwyb 1041 16 C a 20 U u 23 ¢ 4 24 A r 5.0862 ./
ulsvrmbruzqgyf 1154 4 Cu 8 Ur 11 ¢ r 12 A u 60.9707 ./
ugfpctxcdxgxo 1310 10 C u 14 U c 17 C ¢ 18 A d 27.9789 ./
amzxuwkdrkzjh 1416 16 C a 20 U u 23 c d 24 A r 5.0862 ./

TABLE 7.44 Ciphertext Fragments in cipherEx7.10 for the Crib COMPUTER

uolzcvdu 385 10 C u 14 U ¢ 16 £ A 17 R u 17.8559
ahfveyud 718 8Cca 2Uc 24 Eu 0OR A 8.4388
uzljrved 1079 4 Cu 8Ur 10Ee 11 R d 59.2350 /

If j is relatively prime to 25, the rows of the combined vowel-plugboard/V-stepper are
generated by a single row. This is not the case for the combined vowel-plugboard/
V-stepper in Example 7.7 and Table 7.25.

Table 7.48 lists the number of vowels in each V-stepper position for
cipherEx7.8-10. A careful examination of the columns in which the maximum
counts appear suggests that the vowel-plugboards and V-stepper initial positions are the
same.

Step 3: Resolve contradictions of potential ciphertext fragments of cribs by a
pruning algorithm and recover as much of the vowel-stepper ciphertext alphabet as
possible.

From a collective crib table C using the entries in Table 7.30-7.37, 7.38-7.42, and
7.43-7.46, and from the set 7 of all triples (i, s, t) from C with s, t € VOW and
0 < i < 25. For example, the first row in Table 7.30 includes the six triples

I1 E ¢ 12 R e 15 R a 17 A r 19 C e 20 E e

TABLE 7.45 Ciphertext Fragments in cipherEx7.10 for the Crib INFORMATION

logtavegooy 127 6 R a 8 A e 5.3985
pfxvdvcgofv 404 8 R da 10 A c 1.0107 J
ggvseoefxgn 476 5 R e 7 A e 2.2519
mgtmuzdlwix 703 7 R u 9 A d 3.5908 J
klvnrmuzzog 855 9 R r 11 A u 2.9362 J

TABLE 7.46 Ciphertext Fragments in cipherEx7.10 for the Crib COMMUNICATIONSYSTEMS

atwvukkdrpwybsfstciz 1041 16 C a 20 U u 23 ¢ 4 24 A r 8 E c 87730
ulsvrmbruzgyfzsyxepm 1154 4 Cc u 8 U r 1l ¢ r 12 A u 21 E e 61.0924
ugfpctxcdxgxohpzvuzz 1310 10 ¢ u 14 U ¢ 17 ¢ ¢ 18 A 4 2 E u 281070 /
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TABLE 7.47 Combined Plugboard/
Vowel-Stepper for Table 7.25 Parameters

A c D E R 8]

—_ =
— O O 00 NN R W= O

—_
[\S)

[ O S TN O Y SO U U
N — O O 9 O A

[N
W
O B 0 e &0 ® Qo9 e 8 090 R & 09 9 0 e 0 Q9

o
R oK’ oo ool 0 e e Q0o 09 ® B8 K’ R
Q0 9 60 R Q0K 0 e c R ae 09 B8 0 e R Q
cc Qo0 0o e 9 0 008 00 000 B e 00 90
a0 e R 8 0 e 9 9K 0 QQ® K e 000 ® Q 0
9 0 0 £ O 0K QY Q0 Qe R B S OQOB8BQ® Q0

[\
=~

Next, count the number N(i, s, t) of entries in 7 with s, r € VOW and 0 < i < 25,
and

NG = Y N(.s. 1.
5, tEVOW
If no errors occurred in the cribbing tables, the matrix of frequencies F; = (f(i, s, 1))

: NG, s, 1)
fG, s, 1) = NGO

would be a 6x6 permutation matrix of 0’s and 1’s and if f(i, s, r) = 1, then

t = PLy' (VSvpp)(PLy(5))).

We prune entries from C and thereafter from 7 in order to maximize

1 & N3G, s, 1)

25 i=0 tEVOW Nz(l)

(7.68)



233

7.9 CRIBBING PURPLE: FINDING THE V-STEPPER

TABLE 7.48 Vowel Counts in cipherEx7.8-10

cipherEx7.9

cipherEx7.8

N(a) N(c) N(d) N(e) N(r) N(u)

i

N(c) N(Q) N(e) N(r) N(u)

N(a)

11

14

11

10

10

11

15

10

10

11
11

10

16

10

10

13

12
13
14
15
16
17
18
19
20
21

12
13
14
15
16
17
18
19
20
21

10

13

10

10

14

14

13
13

13

13

18

22

10

22
23

23

11

24

11

24

cipherEx7.10

N@@) Nc) Nd)  Ne) Nx) N

i

10

14

10

10

15

10

12
13

10

14
15
16
17
18
19
20
21

10

17

10

2
23
24
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TABLE 7.49 Trace of Hill Climbing

V—>V4+VV

k Crib

1 ejeufrbrdf
2 usauprzrcf
3 axadzaiurk
4 oedructr

5 rbrdfageep
6 ayacbaxadz
7 dgedpeycek
8 bdacuama

9 vvumhlrc
10 ocsedyqgr
11 kgqusovcu
12 zZwCcysqur
13 qggakhbcc
14 yrueodlmlv
15 myewbmca
16 gaccxetvzw
17 uyaodalnzw
18 ldzudinnu
19 kdsaamffe
20 shcagmtur
21 gedhfalegau
22 peacfaonty
23 nuecduvc
24 dcpuuvqugs
25 ttezbgau
26 ytelsmcc
27 logtavegooy

=l ol el =Nl el leleolele e e e e e o e ool o)

0.710185 — 0.725374
0.725374 — 0.739352
0.739352 — 0.752729
0.752729 — 0.764782
0.764782 — 0.775823
0.775823 — 0.786081
0.786081 — 0.795142
0.795142 — 0.804019
0.804019 — 0.812537
0.812537 — 0.820767
0.820767 — 0.828915
0.828915 — 0.836600
0.836600 — 0.844100
0.844100 — 0.850829
0.850829 — 0.857866
0.857866 — 0.864309
0.864309 — 0.870606
0.870606 — 0.874905
0.874905 — 0.879009
0.879009 — 0.882713
0.882713 — 0.886046
0.886046 — 0.889379
0.889379 — 0.892713
0.892713 — 0.894779
0.894779 — 0.896720
0.896720 — 0.905520
0.905520 — 0.906978

7.9.3 Hill Climbing Algorithm

1. Choose € > 0; set 7o = T and Cy = C.

2. Stepk=0,1,2,...

(a) Test every entry in 7; by computing V + VV with the entry removed from 7; and

all corresponding triples from Cy;

(b) Remove that entry from 7; and all corresponding triples from C; that maximize

V+ VYV,

(c) Terminate when V> 1 — €.

Table 7.49 shows the changes VV in the hill climbing algorithm; the format of the

entries are

Column 0: step number;

Columns 1-2: the crib removed and the unknown indication of whether the crib

entry was valid (1) or invalid (0);
Column 3: the change V — V4 VV.
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TABLE 7.50 V-Stepper Counts After Pruning

VSvr2)

VSvewy

VSveo)
A C D E R U

A C D E R U

A C D E R U

VSvres)

VSvpa)

VSVP(3)

A C D E R U A C D E R U

A C D E R U

VSves)

VSvem)

VSvpe)
A C D E R U

A C D E R U

A C D E R U

VSvpao)
A C D E R U

VSveo)

A C D E R U

(Continued)
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TABLE 7.50 Continued

VSvpas
A C D E R U

VSveaz)

A C D E R U

VSvean
A C D E R U

VSvrae)
A C D E R U

VSveas)

A C D E R U

VSvpaa)
A C D E R U

VSvpag)
A C D E R U

VSveas)

A C D E R U

VSveamn
A C D E R U

VSvren

VSVP(ZO)

A C D E R U

U

R

E

A C D

(Continued)
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TABLE 7.50 Continued

VSvp@2) VSvpes) VSveay

A C D E R U A C D E R U A C D E R U
a 0 0 O O 0 O a 4 0 0 0 0 O a 0 0 0 O 0 1
c 0 O O 1 0 1 c 0 O O 0 0 1 c 0 0O O O 4 O
a 0 0 0 0 0 O d 0 3 0 0 0 O a 0 0 2 0 0 O
e 0 3 0 0 0 O e 0 0 O 5 0 O e 0 3 0 0 0 O
r 2 0 0 0 0 O r 0 0 0 O 0 O r 4 0 0 0 0 O
u 0 0 0 0 4 O ua 0 0 O O 7 O a 0 0 O 2 0 O

The V-stepper in each position can be recovered from the residual set of triples 7 after
pruning. The first step is to enter the data for all triples in each V-stepper position. The
entries in Table 7.50 pertain to the combined V-stepper; for example, entry 3 in row c,
column E of the first subtable means that there were three surviving triples (E,c,0). By
reference to Table 7.47, we see that this is the correct value. Not all rows in the
V-stepper recovered; Table 7.51 lists our results.

TABLE 7.51 Partial Recovery of V-Stepper

i A C D E R U
0 a r u d e c
1 d e c u a r
2 * u r d c *
3 u c e d a r
4 * r * e u *
5 d u c e a r
6 * e d * r a
7 r a u c e d
8 u r a c e d
9 r c d a e c
10 d c e r u a
11 e r a u d c
12 a d c u e r
13 u r d a c e
14 u c e a el r
15 c r e a u d
16 d a u d e r
17 c e u d r a
18 d u c a e u
19 d u c r c a
20 r c d e a u
21 a c d r u e
22 c r u d c a
23 d c u e a r
24 a u r d c e
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CRIBBING PURPLE: FINDING THE C-STEPPERS

Recovery of the C-steppers is considerably more complicated, because the consonant sub-
stitution has the very large period of 25°. Rowlett [1998, p. 151] describes the excitement
when Genevieve Feinstein (née Grotjan) discovered the characteristic property of the
C-stepper alphabets that was crucial in the success of Magic, the United States codename
for intelligence derived from the cryptanalysis of PURPLE.

Table 7.52 lists the positions of the three banks of C-steppers for 0 <i < 78.

7.10.1 First Characteristic Property of C-Steppers
If

- The speed of the C-stepper banks is (S, M, F).

- The permutations [] (i,i + 1) (i = 0, 1) are factored into the C-stepper substitutions,
and

« The initial positions of the V-stepper and all C-steppers are 0, then

the ciphertext alphabets in positions [0, 23] and [26, 49] are related as follows:
PLy! (CS%, (St

, (€SO, (PLy(x)
o CPO() CP(])(1)< CcPO(1) ))) (7.69)

—1 @ ) ©)
PLy (CSCP‘Z)(H-%) (CSCP<‘>(i+26) (CSCP<“’(1'+26>(PLV OC»))) )

Table 7.52 shows

csW o csW) .
ACP‘ (i) — gpt)(O) , 0<i<23, i=0,1 (7.70)
Cs(]) . Cs(j) . - -
CPY)(i+26) CcPY(26)
() — S®
CSCP(Z)(i) - CSCP(Z)(H—Zﬁ) s 0 <1< 23. (7.71)

If x5, x, € CON and
(€)) 0) _ (€] ©)
CSCP“)(O) (CSCP<°>(0) (PLV (x1 ))) - CSCP(”(ZG) (CSCP(O) (26) (PLV (XZ)))

implies

PLV*I <CS£:211<2><1') <CS(Cl}1(,)(i) (ng“”(i) (PLV(XI )))>

= PLy"'(CS)

(e)) )
CP?(i+26) (CSCP"’(i+26) (CSCP(O)(iJrZé)(PLV()Q))))) (7.72)

for 0 < i < 23. That is, when
- the consonant x; is enciphered in position O to the same letter as the consonant x, is
enciphered in position 26, then

. x is enciphered to the same letter in position i to the same letter as the consonant x,
is enciphered in position i + 26.

For example,

- B in position 0 and O in position 26 are both enciphered to t;

- B in position 1 and 0 in position 27 are both enciphered to s;
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TABLE 7.53 (S, M, F) PURPLE Encipherment of CON for 0

10

11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28

29
30

31

32
33
34
35
36
37
38
39
40
41

4
43

44
45

46
47

48

49

50
51
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In other words, pairs of columns in rows [0,23] and [26,49] shown with a vertical
rule on-the-right are isomorphs.
Table 7.53 illustrates that
« Column B in rows 0-23 is identical to column 0 in rows 26-49.

« Column F in rows 0-23 is identical to column Q in rows 26-49.

« Column Z in rows 0-23 is identical to column G in rows 26-49.

The First Characteristic Property of the C-Stepper allows the consonant alphabets
(Table 7.53) to be filled in by partial data when their motion is (S,M,F).

When cribbing identifies the V-stepper as in Section 7.8, entries in the C-stepper
ciphertext alphabets (Table 7.53) are also determined. The characteristic property of the
C-steppers expressed in Equations (7.69) to (7.72) fills in additional entries.

7.10.2 Second Characteristic Property of C-Steppers
If

« The speed of the C-stepper banks is (F,M,S),

. The permutations [] (i, i+ 1) (i=0, 1) are factored into the C-stepper substi-
tutions, and

. The initial positions of the V-stepper and all C-steppers are 0, then Equations (7.70)
and (7.71) are replaced by

csY,.. csY,
CP( (i) — CP(./)O , 0<i<?23, =12 (1.73)
Cs(j) ) Cs(J) ‘ ==
CPY(i+26) CPY(26)
©  _ cg® .
CScpogy = CScpoipngy  0=i=23 (7.74)

If x € CON, then
(1) 0) _ ()} 0)
CSepny (CSCP(O)(i) (PLy(x)) ) = CScpuj (CSCP(U’( ) (PLv(x) )

if and only if

6] ©0) _ (1) 0
CS 26y (OS2 (PLVD) ) = OS2 (CS oy (PLV )  (7:75)

for 0 < i < 23. That is, when
- the consonant x is enciphered to the same (or different resp.) letter in positions i and
J, then
- the consonant x is enciphered to the same (or different resp.) letter in positions i 4- 26
and j 426 for 0 <i <j < 23.

For example

« B in rows [0,23] is enciphered to tgbwgyjmlm... gnxigk

« B in rows [26,49] is enciphered to plxkvnyomo ... vwibvh
which are isomorphs of one another.
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TABLE 7.54 (S, M, F) PURPLE Encipherment of CON for 0

10

11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28

29
30

31

32
33
34
35
36
37
38
39
40
41

4
43

44
45

46
47

48

49

50
51
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- Cin rows [0,23] is enciphered to ybtxxvfn ... vgzmvb

- Cin rows [26,49] is enciphered to nxpiijgw ... jlgojx
which are isomorphs of one another.

In other words, corresponding pairs of columns in rows [0,23] and [26,49] shown with a
vertical rule on-the-right are isomorphs of one another.
Table 7.54 illustrates that

« Column B in rows 0-23 is an isomorph of column B in rows 26-49.

- Column C in rows 0-23 is an isomorph of column C in rows 26-49.

« Column Z in rows 0-23 is an isomorph of column Z in rows 26-49.

The Second Characteristic Property of the C-Stepper allows the consonant alphabets
(Table 7.54) to be filled in by partial data when their motion is (F,M,S).

When cribbing identifies the V-stepper as in Section 7.8, entries in the C-stepper
ciphertext alphabets (Table 7.54) are also determined. The second characteristic property
of the C-steppers expressed in Equations (7.73) to (7.75) fills in additional entries.

Deavours and Kruh (1985) write that Rowlett discovered the pattern used by the
Japanese to select the daily keys thus making the process more efficient. Even so, the
cryptanalysis of PURPLE represented a monumental achievement.
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Massachusetts, 1985. J. SEBERRY and J. PIEPRZYK, Cryptography: An Introduction
L. FARAGO, The Broken Seal, Random House, 1967. to Computer Security, Prentice-Hall, 1989.
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CHAPTER 8

8.1

STREAM CIPHERS

TH EINVENTION of the transistor in the 1940s led to the development of
solid-state devices capable of generating (0, 1)-sequences with very large periods enjoying
many properties of randomly generated sequences. The resulting key stream would then
be combined character by character with plaintext. This chapter describes the properties
of linear feedback shift registers and their output sequences and illustrates the cribbing
of ciphertext resulting from the stream encipherment of ASCII character plaintext. Various
nonlinear extensions and their application to cell phone encipherment are discussed.

STREAM CIPHERS

Stream encipherment combines the plaintext xo, xy, ..., x,,— letter-by-letter with a key
stream of 0’s and 1’s. For ASCII plaintext, each letter x; might first be coded into its
7-bit ASCII ordinal value x;

an-xlv-"a-xnfl > XO&&hlZ"'-’En 1

and then enciphered by the exclusive-OR (XOR) with the key stream.

Several methods of generating the key stream are described in this chapter. Good
references for this material include Beker and Piper [1982] and Lidl and Niederrieter
[1997]. The original research on linear recurring (periodic) sequences is contained in
Selmer [1966] and Zierler [1959].

8.2 FEEDBACK SHIFT REGISTERS

244

A finite state machine (FSM) [Mealy, 1955] consists of finite sets of (internal) states {s},
input and output alphabets {a} and {b}, an output function T determining the output

T:(s,a) —> b,
and a state function 3, determining the successor state.
(s, a) = sF=2(s, a).

Given an initial internal state sy, and sequence of input states ao, ay, . . . , the functions T
and 3 determine the output sequence by, by, . .., according to the recursion

by =T(s;, a;) Sip1 = 2(8i, ap), i=01,....

Computer Security and Cryptography. By Alan G. Konheim
Copyright © 2007 John Wiley & Sons, Inc.
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fso(), 510, oy sy_1 ()
[ A A [

S()(t) S]O) SN_z(t) SN_l(t)

Stage 0 = Stage | f——— oo - Stage N— 2/t Stage N—1

Output

Figure 8.1 Feedback shift register.

Figure 8.1 depicts a feedback shift register (FSR) with feedback function f, an FSM
with null input consisting of N stages (each capable of storing one bit), a feedback register,
and a single output port, where

« The content of Stage i at time 7 is s;(f) =0 or 1,

- The output so(¢) is the content of Stage O at time ¢,

- The state of the FSR at time ¢ is the N-vector s(t) = (so(?), $1(2), . . ., sSy—1(1)) € Zn2
(where Zy, is the set of 2V vectors of length N with components O or 1), and
« The feedback value at time 7 is f(so(¢), 51(2), . .., Sy—1(2)).

The states of the FSR change only when a clocking signal is applied and then as follows:

- The content s,(¢) of Stage i + 1 at time ¢ is shifted to the left, meaning it becomes the
new content of Stage i at time r+ 1; s{(t+ 1) = s;,((t) for 0 <i <N — 1, and

« The value f(so(?), 51(2), . .., sy—1(¢)) in the feedback register at time ¢ becomes the

new content of Stage N — 1 at time ¢+ 1; sy—(z + 1) = f(so(?), 51(2), . . . , sy—1(2)).

Figure 8.2 depicts a linear feedback shift register (LFSR), the special case of a feed-
back shift register with linear feedback function f

N—1
F(s0(®), 5100, - sy-1(D) =D en-nsal),
n=0
where
. Co, C1, - - - , Cy are the feedback coefficients or taps [cy = 1],

« The output of the AND-gate A[;] is the (current) content of Stage j if cy—; = 1, and
0, otherwise, and

- The feedback bit entering Stage N — 1 when a clock pulse is applied is the
exclusive-OR (XOR) of the current outputs of the N AND-gates.

A[0] All]
A

N o) Cn-1 5,(1) so()

- Stage 0 Stage | |— - .- - Stage N-2 Stage N—1 jaa—
Output

Figure 8.2 Linear feedback shift register.



246

CHAPTER 8 STREAM CIPHERS

The state of the LFSR at times ¢ and 7 + 1 are related by

8(1) = (s0(1), s1(1), ..., sn-1(1))

(8.1)
s+ 1) =(sot+ 1), 51t + 1), ...,sy_1(z+ 1)).
As si(t+ 1) =5 () for 0 <i <N—1
s+ 1) = (510, 200, - .., sv—2(0), sy—1(0), sy—1(t + 1)) (8.2)
where
N—-1
sv-1t+ 1) =D enasald), (8.3)
n=0

the addition in Equation (8.3) being modulo 2. As so(t+ k) = si(t) for 0 <k <N,
Equations (8.2) and (8.3) give

N—1
so(t +N) = Z CN—n So(t + 1), 0<t< 0. (8.4)
n=0

Equation (8.4) is a forward recursion, because the future output so(f + N) is determined by
the most recent N outputs (so(t), So(t+1), ..., so(t+ N — 1)). When cy = 1, Equation
(8.4) may be rearranged such that

N
$0(t) = ) en-asolt +n). (8.5)
n=1

Equation (8.5) is a backward recursion, because the N outputs (so(t+ 1),
So(t+2), ..., s0(t+ N)) from time 7 4+ 1 on determine the past output so(?).

Remark: We may always assume that cy=1, for if cy=cy_1= -+ =
cn—-1y=0, cy—x =1, the LFSR essentially contains N — k active stages and the
output sequence

50(0), so(1),...,s0k — 1) so(k), so(k + 1), ...

prefix

consists of the k-bit prefix determined by the contents of the leftmost k-stages concatenated
with the output of a (N — k)-stage LFSR.

Proposition 8.1: An N-stage LFSR with feedback coefficients (co, ci, ..., cn)
enjoys the following properties:

8.1a If s(r) = s(7), then s(t + 1) = s(7+ 1) and s(t — 1) = s(7— 1);
8.1b If s(7) = (0)y = (0,0, ..., 0), the output remains null for t > 7;

8.1c The sequence of states s(0), s(1), ..., s(P — 1) are distinct and periodic with period P;
s(0) = s(P), with P satisfying | < P < N 1.

Proof of (8.1a): If s(r) = s(7),

« The forward recursion gives s(t 4+ 1) = s(7+ 1) and
- The backward recursion gives s(z — 1) = s(7 — 1).

Proof of (8.1b):  This follows immediately from (8.1a).



8.3 THE ALGEBRA OF POLYNOMIALS OVER Z, 247

TABLE 8.1 The States of the
Example 8.1 LFSR

t s(t) so(t)
0 1 0 0 1
1 0 0 1 0
2 0 1 1 0
3 1 1 1 1
4 1 1 0 1
5 1 0 1 1
6 0 1 0 0
7 1 0 0 1
0 0 0 0 0
1 0 0 0 0

Proof of (8.1c):  If s(0) = (0)y, then P = 1; otherwise, the transformation of states
s(t) — s(t+ 1) is invertible and as s(¢) # (0)y, there are only 2V -1 possible states, and

there exists a largest value P such that s(0), s(1), ..., s(P — 1) are distinct. (8.1a) proves
that s(0) = s(P) and P <2V — 1. [ ]
Example 8.1

The output syg(f) of the LFSR with N=3 and f(so(t), so(t+ 1), sot+2)) =
So(t) + so(t + 2) is listed in Table 8.1. The LFSR output is periodic with period 7 for
every initial state other than s(0) = (0)s.

8.3 THE ALGEBRA OF POLYNOMIALS OVER Z,

Plz] will denote the set of polynomials in the variable z whose coefficients { p;} are in
Z, ={0,1}:

p@) =po+piz+p+--+pad

Arithmetic operations on polynomials are the usual, except that the addition and multipli-
cation of coefficients is performed modulo 2. We write deg( p) for the degree of p € P[]
The subset of P[z] consisting of polynomials with deg(p) < n will be denoted by P,[z].
We next summarize several basic properties of P[z].

8.3.1 Properties of P[z]

1. f € Plz] has a factorization, if f(z) = g(2)h(z) with g, h € P[z]. If f(z) = g(2)h(2),
then g(z) and h(z) are factors of f(z)
(a) f(z) = g(2)h(z) is a non-trivial factorization of f(z) if both g(z) # 1 and # f(2)
(b) f(z) = g(2)h(z) is a trivial factorization of f(z) otherwise.

2. f(2) is reducible if f(z) has a nontrivial factorization f(z) = g(z2)h(z).

3. f(2) is irreducible if every factorization of f(z) = g(2)h(z) is trivial; f(2) = g(2)h(2)
implies either g(z) = f(z) or h(z) = f(2).

4. Division algorithm for polynomials: If f(z), g(z) € P|z], there exist polynomials g(z)
and r(z) such that f(2) = q(z)g(z) + r(z) with 0 < deg(r) < deg(g); g(z) is the quotient
and r(z) is the remainder of the division of f(z) by g(2).
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Remarks

1. (a) If p(1) =0 < (z+ 1) is a factor of p(z); p(0) =0 < zis a factor of p(2).
(b) If p(1) = 0, the division algorithm gives p(z) = (z + 1)q(z) + r(z), where the
remainder r(z) is a polynomial of degree O, that is, a constant (0 or 1), As
p(1) =0, it follows that r(z) = 0.

2. The factorization p(z)=14+z7"=1+2)(1+z+2°+ ---+2" ") shows that
p(z) = 1+ 7" is reducible for every n > 1.

3. The polynomial p(z) =1 +z+ Z° is irreducible. If p(z) is reducible, it must have a
factor of degree 1. As p(0) = p(1) = 1 and neither z or z 4 1 are factors of p(z), so
we conclude that p(z) is irreducible.

8.3.2 Modular Arithmetic for Polynomials
If f(z) € Plz] and p(z) € P,[z] with p(0) = 1, then by the division algorithm
f(@ = q(@p@) + r2), deg(r) < deg(p).
Analagous to integer modular arithmetic, we write
f (@) = r(z) (modulo p(2)).

Again by analogy with modular integer arithmetic, r(z) is referred to as the residue of f(z)
modulo p(z).

Remark: If p(0) = 1, the residue of z' (modulo p(z)) cannot be the zero polynomial
for i > 1; otherwise, z' = q(2)(1 + piz + p2z>+ ---), which requires g(z) =z + -,
leading to i = deg(q) + deg(p) > i, a contradiction.

Example 8.2
Table 8.2 expresses 7= qi{(2)p(z) +riz) using the division algorithm and the residues
z'(modulo p(z)) with p(z) = 1 +z+z° and 0 < i < 7. Table 8.2 illustrates two important
properties of polynomial modular arithmetic:

. If p(z) is of degree r, the residue z* (modulo p(z)) is a polynomial of degree < r — 1
for every value of k, and

« If p(1) = 0, then p(z) divides 1 + 7" for some integer m.
The following three statements are easily seen to be equivalent:

p(2) divides 1 4 " 0 = (147" (modulo p(z)) 1 = 2" (modulo p(z))

TABLE 8.2 The Residues z' (modulo p(?), p@) = 1 +z + 22

1 =1 (modulo p(z))
z = z (modulo p(z))
2=z (modulo p(z))

Z=p@+1+2) = 1 +z = z* (modulo p(z))

=@+ @+ &  z+7°=z" (modulo p(z))

=0+p@)+A+z7+7) < 1+z+7° =2 (modulo p(z))

L=0+z+2p@+(1+7D) = 1 4 2% = z° (modulo p(z))
7

d=+z+2 4+ +1 = 1 =z (modulo p(z))
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From Table 8.2
p(2)=1+z+2 divides (1+2z) 0= (1+z') (modulo p(z)) 1 =2z'(modulo p(z))
Proposition 8.2: If p(z) is of degree N and p(0) = 1, then

8.2a The residue z' (modulo p(2)) is a polynomial of degree at most N — 1,
8.2b There exists an integer m, the exponent of p(z), such that p(z) divides 1+ z",

8.2¢ The sequence of residues z° (modulo p(2)), z' (modulo p(z)), z* (modulo p(2)),. . . is
periodic with period m, and

8.2d The exponent m of p(z) satisfies 1 < m < 2" — 1.
Proof of (8.2a):  This follows directly from the division algorithm.

Proof of (8.2b-d): If p(0) = 1, then since z’ (modulo p(z)) #0, it follows that
there are only 2V—1 different values for the residues z' (modulo p(z)). The sequence of
residues

2% (modulo p(z)), z! (modulo p(z)), 22 (modulo p(z)), . ..

must therefore contain a repetition.
Suppose the first repetition occurs for the pair (i, j) with 0 < i < j <2V —1,

7' (modulo p(z)) = z/ (modulo p(z))

TABLE 8.3 Irreducible and Primitive Polynomials of Degree n = 2(1)9

Degree 2

’7*

Degree 3

13*

Degree 4

23* 37

Degree 5

45% 75* 67*

Degree 6

103* 127 147* 111 155*

Degree 7

211 217* 235% 367* 277* 325%
203* 313* 345%

Degree 8

435* 567 763 551* 675 747*
453* 727 545% 613 545% 613
543* 433 477 537* 703* 471
Degree 9

1021* 1131* 1461* 1231 1423* 1055*
1167* 1541* 1333* 1605* 1027* 1751*
1743* 1617* 1553* 1401 1157* 1715%
1563* 1713* 1175* 1725% 1225* 1275%

1773* 1511 1425* 1267*
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so that
0 = (¢ + z/) (modulo p(z)).

If

@ + 7)) = q@)p(2),

then z' divides q(z) as p(0) = 1 and therefore
0 = (1 4+ z/™") (modulo p(z)).

This shows i = 0 and m = j and completes the proof. |

Table 8.3 [Marsh, 1957] lists irreducible polynomials of degree n for n = 2(1)9.
(Note, the table-maker’s notation n = 2(1)9 indicates that n ranges from 2 to 9 steps
of 1.) The entries in Table 8.3 are in octal; for example; 217" =010001 111 corresponds
to the polynomial p(z) = 1 +z+42z° 42> +2'. An asterisk (*) signals the entry is a
primitive polynomial. The reciprocal of the polynomial

p(@) =po+piz+--- -+-1?1\/71ZN_1 +PNZN

is the polynomial with the coefficients written in the reverse order,

1 _
P = sz<Z) =pn+pnva12 T+ piz 4 pod.
p(2) is irreducible (resp. primitive) if and only if the same property holds for p*(z) and
Table 8.3 lists only one of the pair p(z), p*(2).

Table 8.4 gives the number N(n) of irreducible and the number N*(n) of primitive
polynomials of degree n for n = 1(1)12.

TABLE 8.4 The Number of Irreducible and
Primitive Polynomials of Degree n = 1(1)12

n N(n) N*(n)
1 2 1
2 1 1
3 2 2
4 3 2
5 6 6
6 9 6
7 18 18
8 30 16
9 56 48

10 99 60

11 186 176

\o)

335 144
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8.4 THE CHARACTERISTIC POLYNOMIAL OF
A LINEAR FEEDBACK SHIFT REGISTER

The characteristic polynomial of the N-stage LFSR with recursion

N—1
sot +N) =D cnasolt +n),  0<1< oo,
n=0

and feedback coefficients {c;} is

P(Z)ZCN+CN_1Z+~-~+CIZN71+COZN.

We will always assume ¢y = cy = 1.

Example 8.3
The LFSR with characteristic polynomial p(z) = 1 +z+z>+z° is shown in Figure 8.3.
As p(z) does not divide 1 +z* for k = 1,2, 3 and (1 4+ 2)p(z) = 1 + z*, the exponent of
p(z) is 4. Table 8.5 gives the output and states of this LFSR for three different initial
states. Table 8.5 illustrates that the period of the sequence so(0), so(1), so(2), ...
depends on the initial state s(0):

+ 5(0) = (0, 0, 1) produces a sequence of period 3,
+ 5(0) = (1, 0, 1) produces a sequence of period 2, and

« 5(0) = (1, 1, 1) produces a sequence of period 1.

Proposition  8.3: [Beker and  Piper, 1982, pp. 192-193] If
p@Q=cy+cen—1z+ - + oz Ty coZ" is the characteristic polynomial of the LFSR, then

8.3a The period of the output sequence sy(0), so(1), so(2), . .. is a divisor of the exponent
of p(z), and

8.3b If the initial state s(0) # (0)y, the period of the output sequence so(0), so(1),
50(2), ...is 2V — 1 if and only if p(z) is primitive.

Example 8.4
The LESR with characteristic polynomial p(z) = 1 4+ z+ z° is shown in Figure 8.4. The
exponent of p(z) was shown to be 7 in Example 8.2. Table 8.6 gives the output states of

A[0] All] Al2]

C3 o) C) s51(2) C1 (1)

Stage 0 (= Stage | (= Stage 2 (=

Output

Figure 8.3 The LFSR with characteristic polynomial p(z) = 1+ z + 2+ 22
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TABLE 8.5 The States and Output of the LFSR with Characteristic Polynomial pz) = 1 + z + 2> + 2°

s(0)
001 101 111
t So(r) s(1) So() s(t) So(?) s(t)
0 1 100 1 101 1 111
1 0 011 0 010 1 111
2 0 011 1 101 1 111
3 1 110 0 010 1 111
4 1 100 1 101 1 111
—(7)

A[0] All]
c3 So(1) c) s1(0)
3utput Stage 0 Stage 1 Stage 2 la—!

Figure 8.4 The LFSR with characteristic polynomial p(z) = 1 4+ z 4 z°.

TABLE 8.6 The States and Output of the LFSR
with Characteristic Polynomial p(z) =1 + z + 2°

~

so(1) (1)
1 100

001
0 010
1 101
0 011
1
1
1

111
110
100

~N N kR W= O

the LFSR with characteristic polynomial p(z). All initial states other than s(0) = (0)3
produces a sequence of period 7.

Example 8.5
The reciprocal of polynomial of p(z) = 1 + 2+ ts pPr@=14z+ z* The LFSRs that
have p(z) and p*(z) as characteristic polynomials are shown in Figures 8.5 and 8.6.
Table 8.7 lists the states of the LFSR having these characteristic polynomials. The
two sequences of output states are reversals of one another.

so(z) = 1111 0101 1001 000
sp(r) = 0001 0011 0101 111
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8.4 THE CHARACTERISTIC POLYNOMIAL OF A LINEAR FEEDBACK SHIFT REGISTER

So(t)

Stage 0

Output

Stage 1

¢

Stage 2

53(f)

Stage 3

a—

Figure 8.5 The LFSR with characteristic polynomial p(z) = 1 + z°+ z*.

Cyq

A[0]

so(0)

C3

Output

Stage 0

s51(0)

Stage 1

Stage 2

Figure 8.6 The LFSR with characteristic polynomial p*(z) = 1 + z+z*.

TABLE 8.7 States of the LFSR with p(2) = 1+z+z* and p*@ =1+ 2° + 2*

Stage 3

[-—

p(2)=1 +z+2*

P =1+2+7

t s(t) t s*(1)
0 1111 0 0001
1 1110 1 0011
2 1101 2 0111
3 1010 3 1111
4 0101 4 1110
5 1011 5 1101
6 0110 6 1010
7 1100 7 0101
8 1001 8 1011
9 0010 9 0110
10 0100 10 1100
11 1000 11 1001
12 0001 12 0010
13 0011 13 0100
14 0111 14 1000
15 1111 15 0001

253
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8.5 PROPERTIES OF MAXIMAL LENGTH LFSR
SEQUENCES

Proposition 8.4: If the characteristic polynomial p(z) = cy+cy—12+ -+ +
c12V '+ ¢ozV of an N-stage LFSR is primitive and the initial state is not null
5(0) # (O)y, then
8.4a The sequence of states s(0), s(1), ... are distinct and periodic with period 2V —1,

8.4b Every N-tuple v = (vg, vy, ..., v y—1) # (0)y is a state s(¢) of the LFSR for some ¢
with 0 <t <2V —1,

8.4c¢ The sum of two states s(¢;) and s(t;) of the LFSR with 0 <1, <1, < 2V — 1 is
another state of the LFSR, and

8.4d If 0 < 7 < 2" — 1, the sequence of sums of states

s(t)+st+7), s+ D+st+1+7,...,5¢+2" —D+s¢+2Y —1+7)

is a translate of the state sequence s(0), s(1), ..., that is s(t +s) = s(t) + st + 7)
for some s.

Proof of (8.4a): Suppose on the contrary that 0 <1, <1, <2V—1 and LFSR
states at these times are the same. If s(#;) =s(z,), then by Proposition 8.1b
s(0) = s(t, — t;), which contradicts the periodicity of the sequence of states s(z).

Proof of (8.4b): 1f the 2"-states s(0),s(1),...,s2Y —1) are distinct and
s(t) # (0)n, then every N-tuple v = (vo, Uy, ..., Uy—1) € Zy, other than (0)y must be a
state of the LFSR.

Proof of (8.4c): If
s(t1) = (so(t1), so(t1 + 1), ..., so(t1 + N — 1))
s(t2) = (so(12), so(t2 + 1), ..., so(t2 + N — 1))
with 0 < #; <1, <2V — 1, then
s(t) # () = (1) + s(t2) # Oy,
which implies s(t;) + s(t,) is a state of the LFSR by Proposition 8.4b.

Proof of (8.4d): This is a direct consequence of the forward recursion
and 8.4c. |

We described Bernoulli trials in Chapter 4 as a random process consisting of a
sequence of independent and identically distributed (0, 1)-valued random variables Ky,
Ki, .... Bernoulli trials are a mathematical model of the repeated and independent
trials of tossing a fair coin.

1
Pr{K; =0} =Pr{K; = 1} = 2 (8.6)
1
E{Ki} == (8.7)
2
More generally, for every k-tuple (ug, uy, ..., u—1) of 0’s and I’s with 1 <k <N

1
Pr{Kizuo,Ki+1=u1,...,Ki+k,1=uk71}=?, i=0,1,..., 1<k<N. (8.8)



8.5 PROPERTIES OF MAXIMAL LENGTH LFSR SEQUENCES 255

Finally, the autocorrelation function of a Bernoulli process in the difference between the
probabilities of an agreement and disagreement in the ith and (i 4+ 7)th outcomes of the
toss of the coin:

p(1) =Pr{K; = Kip ) —PrlK; # K ) =0, 0<7<2V_1. (8.9)

Chapter 4 described the one-time encipherment system, in which the outcomes of
Bernoulli trials were exclusive-ORed (XOR) to a sequence of (0, 1)-valued plaintext.
The resulting ciphertext statistically resembles the Bernoulli trials and therefore encryp-
tion completely hides the plaintext. The need to generate the output of Bernoulli limits
the one-time system. Can the output of a LESR s50(0), so(1), 59(2), ... serve as the outcomes
of Bernoulli trials?

The renowned mathematician John von Neumann once wrote

Anyone, who considers arithmetical methods of producing random digits is, of course, in a state
of sin.

D. H. Lehmer, a pioneer in random number generation methodology, wrote in 1951

A random sequence is a vague notion embodying the idea of a sequence in which each term
is unpredictable to the uninitiated and whose digits pass a certain number of tests, traditional
with statisticians and depending on the uses to which the sequence is to be put.

How closely does the output of an LFSR whose characteristic polynomial is p(z) =
cy+env—1z+ - + clszl + cozN with initial state s(0) # (0)y resemble a “random”
sequence?

A run of 0’s (resp. of I’s) of length k occurs in the LFSR output sequence so(0),
so(1), 50(2), ... starting at time ¢ if

(S0t — 1), so(8), S0t + 1), ..., so(t +k — 1)), so(t + k) = 1(0); 1

O—run

(s0(t = 1), so(8), S0t + 1),..., so(t + k — 1)), so(t +k) =0(1), 0

1—run

Proposition 8.5: If the polynomial p(z) = cy +cy_1z+ -+ + 12 ' 4 coz” of
an N-stage LFSR is primitive and the initial state satisfies s(0) # (0), the following prop-
erties hold in every period of 2V— 1 output states

c.50(0), so(t+ 1), so(t +2), ..., s0(t+2Y — 1) ...
cycle
8.5a It contains 2V ' I’s and 2V '—1 0’s;
8.5b It has one run of 1’s of length N and no runs of 0’s of length N;
8.5¢ It has one run of 0’s of length N — 1;

8.5d It does not have a run of 1’s of length N — 1;
IN=r =2

8.5e It contains pN=r=2

r1l<r<N-1.

runs of 1’s of length r and runs of 0’s of length r for every

Proof of (8.5): [Beker and Piper, 1982, p. 196] For each k-tuple
u = (up, Uy, ... ,ux—1) of 0’s and 1’s, with 1 < k < N, Proposition 8.5b implies

. There are 2% states s() with 0 <t < 2V—1 such that
(s0(®), sot+ 1), ..., 50t + (k= 1)) = u = (uo, uy, ..., 1)
if ] <k <Nandu # (0), and
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. There are 2% — 1 states s() with 0 <t < 2Y — 1 such that
(S()(t), So(t + 1)’ ey So(t + (k - 1))) =u= (MO’ ur, ..., Mk—l)
if 1 <k <N andu=(0).

In terms of the indicator function x;.. .,

Z X{(s0(®), sot+1), ..., so(t+k—1))=u} = Nk _ 1, if ] <k<N and ub # (O)k

= { Nk if 1 <k<Nandu # (O)
=0

The probability that k& bits of an LFSR state satisfy (so(2), soz+ 1), ...,
so(t + (k — 1))) = u is the fraction of times ¢ that this condition holds. Thus
Pr{(so(®), sot + 1), ..., so(t + (k — 1))) = u}
] =2
W _1 D X501 s+ G =]
=0
2N7k
| Tk

properties that are analogous to those in Equations (8.6) to (8.8).
The autocorrelation function of the output states of the LFSR is the average number
of agreements minus disagreements between sy(¢) and so(f + 7) computed over a cycle:

as N — oo,

2N_2

(D = 57— 2 Xamsatetn = Xiswo £suteim)-
t=0

To make the computation of p,(7), we need a connection between modulo 2 integer and
ordinary integer arithmetic. If u, v are O or 1, then

I, ifu=v

(2u—1)(2v—1)={_1 ifu#v

so that

Xso=soa+9) ~ Xsoy#sor+n) = (280(8) = D2so(t + 1) — 1),
leading to the formula

N _2

1
py(7) = Z 2so(t) — D@2so(t+7) — 1)

N _2 2V _2 2N _2 2N _2
4 1
12 so(1)so(t + 1) — 12 so(1) — 12 S0l +7)+ oy 1; 1.
\-,—z -
Term#l Term#2

Terms #1 and #2 are equal by Proposition 8.5b, so that

2V _2 N _2 2V _2

pg(T) 4 W1 Z so(t)so(t + 1) — W1 Z so(t) + 7 Z 1.
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If 7= 0, then
2V-2 2V W)
D sosot+ 1) =D s =Y so0),
=0 =0 =0

so that the first two summands above cancel, giving p,(0) = 1.
If 7 # 0, then s(¢) + s(t + 7) # (0); Proposition 8.5d shows a value of s exists such
that

s(t+s5)=s)+ s+ 1), t=0,1,...,
which gives
so(t + 5) = so(t) + so(t + 7), t=0,1,....
Next, if u, v = 0, 1, then (u 4 v) (modulo 2) is equal to the real number u + v — 2uw, so that
250(D)so(t + 1) = so(t) + so(t + 7) — so(t +5) [real].

Replacing the term so(?)so(f + 7) and summing over ¢ gives

V-2 )
D S0+ ) =Y 50(0) +s0(t + 1) = 2so(0)so(t + 1) [reall.
t=0 t=0
But
N _ 1 V-2 VN2 N2
=D st =) s =) sot+ ),
t=0 t=0 t=0

so we conclude

N o2N_2
7= 2 Sosot + 7).
r=0

proving Proposition 8.6.

Proposition 8.6:  The autocorrelation function of the sequence so(?), so(t + 1), .. .,
so(t + 2V — 2) of an N-stage LFSR generated by the primitive polynomial p(z) = cy +
1zt - Ty coz whose initial state is not (0)y is the real number

1, if 7=0
py(1) = 1

N1 if 7# 0.

Propositions 8.4 to 8.6 indicate that the output of an LFSR exhibits some characteristics of
a Bernoulli process; the output of an LFSR is an example of a pseudorandom sequence.

Menezes et al. [1996] define the next bit test on a binary sequence xo, X1, ..., X,—1 as
an algorithm for which

Given: Xg, X1, ... ,X/—1

Determine: x,
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They define a pseudorandom number generator (PRG) as a deterministic algorithm, which
starts with the seed, a sample of random binary values Xy, X, ..., X;— and outputs for
which it can be proved that no polynomial-time algorithm exists to solve the next bit test.

8.6 LINEAR EQUIVALENCE

The output of an LFSR 54(0), so(1), . .. may be generated by more than one characteristic
polynomial and initial state.

Example 8.6
The LFSRs with characteristic polynomials and initial states

P =14+z+2+2* s0)=(,1,0,1)
@ =0+z+2)A+z+2 +2Y, s0)=(,1,0,1,1,0, 1)

both generate the sequence s = (1, 1,0, 1, 1, 0, .. .). Note that an LFSR to generate a given
n-sequence of 0’sand 1I’s o = (0°(0), o(1), ..., o(n — 1)) always exists as g could be used
as the initial state of the n-stage LFSR with any coefficient vector.

More relevant are the questions

Q1. What is the minimum number of stages needed by an LFSR to generate o?

Q2. What is the minimal polynomial of g, the characteristic polynomial of the minimal-
length LFSR that generates g?

The linear equivalence L(ag) of the n-sequence o = (0(0), o(1), ..., o(n — 1)) is the
length of the shortest LFSR that generates o.

The principal properties of linear equivalence are summarized in the next
proposition.

Proposition 8.7: [Beker and Piper, 1982, p. 200; Menezes et al., 1996, p. 198]1 the
n-sequence g = (0(0), o(1), ..., on — 1))

0<L(s)<n
8.7a If o is of length n, then! { L(o) =0, if and only if o= (0),
L(o) =n, if and only if o = (0),_;,!

(Note, in analogy with the convention for a summation or product with an empty
index set, a 0-stage LFSR always outputs 0.)

8.7b The linear equivalence of o and v, possibly of different lengths, satisfies
L(o+v) < L(0) + L(v).

8.7¢ If L(0) = N, the characteristic polynomial p(z) of the LFSR that generates g has
degree N. If o is also generated by the LFSR with characteristic polynomial ¢(z),
then p(z) divides ¢(z).

The Berlekamp—Massey algorithm [Massey, 1969] solves the problem
Given: o= (0, O1,..., OnN—1)

Find: the minimal-length LFSR that generates o

'The linear equivalence L(0o) satisfies Menezes et al. use the term linear complexity instead of linear equivalence.
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8.7 COMBINING MULTIPLE LINEAR FEEDBACK
SHIFT REGISTERS

Figure 8.7 shows how linear feedback shift registers can be combined by XORing
their outputs. The XOR of periodic sequence with periods {P;} is periodic with period
equal to the least common multiple P = lcm{P;} of the individual periods. (Note, the
least common multiple of integers {n;} is the smallest integer n divisible by each of
the {n;}.)

When the characteristic polynomials are primitive, and their exponents 2™ — 1
(0 < i < k) which are relatively prime in pairs

1 =ged{2V — 1,2 — 1}, 0<i<j<k

the period of the combined generator is I—[f;ol 2V —1). (Note, the greatest common
divisor gcd{n,n,} is the largest integer n that divides both the n; and n,; if
1 = gcd{n,, n,}, the integers are relatively prime.) Just as Vernam additively combined
tapes of relatively prime lengths to produce a tape with a much longer period, the same

result is achieved by additively combining LFSRs of suitable total lengths ZN to
produce a LFSR with a much larger period. i=l

............... + h
Con, 50.0(t) €o.Ny-1 $0,1(1) o, Song-1(1) €og so.n, (1)
Stage 0 . Stage | |— ... - e— Stage No_g - e Stag NO_I le—
VT - "
ci, s10(t) CLN-1 s1a(0) ci St -10cn o si, (0
Output
+>4 i Sstage0 i | Stagel ja—n. oo - +—Stage N, -2 «—Stage N} -1 ft—
(1) B e -+ 1t
Ch-1,N, Cr=1,N;_—1 Cr-1,1 Cr-1,0
= Sg_1.0(0) See11(0) Ske1.N 1) Ske1.n (0
Stage 0 . Stage | fa—— oo «Stage N_-2 «—Stage N, | let—

Figure 8.7 The XOR of k linear feedback shift registers.
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8.8 MATRIX REPRESENTATION OF THE LFSR

In addition to the Berlekamp—Massey algorithm, there is another approach that will be
useful to calculate the minimal polynomial p(z) = cy+cy—1z2+ -+ + a1 T+ e of
an LFSR output sequence so(0), so(1), ... when the length N of the LFSR is known.
The forward recursion sy(t + N) = ZnN:_o] cn—nSo(t + n) provides a relationship between
consecutive N-blocks of LFSR output values:

s@¢+N)=Stt+N—-1)

so(t + N) CN
sot+N+1) CN—1
s@t+N) = . , c= .
so(t+2N — 1) Cq
so(t) sot+1) -+ so(t+N—1)
so(t+1) sot+2) - so(t +N)
St 1+ N —1) = , _ .
sot+N—1) so(t+N) --- sp(t+2N —2)

Proposition 8.8: If the LFSR has linear equivalence N, then

8.8a The row of the N x N matrix S(z, t + N — 1) are linearly independent, and
8.8b The 2N consecutive outputs so(f), So(t+ 1), ..., s0(t+2N — 1) determine the
characteristic polynomial of the LFSR.

Proof of (8.8a): 1If on the contrary, the rows of S are linearly dependent, there
exists a vector d # (0)y such that

N—1
Oy = Y dus(t + ).
n=0

This implies

N-1
Oy = Y dus(t + ).

n=0
Assuming without loss of generality that dy—; = 1, we have
N-2
sn-1(t+N = 1) =Y dus(t +n),

n=0

which contradicts the assumed linear equivalence.

Proof of (8.8b): Gaussian elimination and its application in cribbing Hill cipher-
text was described in Chapter 3. Applying Gaussian elimination to matrix Equations
(8.5) involves applying a sequence of operations of two types:

 R;x: Premultiplication of S(t,t+N —1) and s(t+N) by a matrix R;;. The
exclusive-OR (XOR) row j to row k of the N x N matrix S(z, t+ N — 1)
st+N)=S8@tt+N—1)c
s(t+N)— Rjis(t+N)
St,t+N—-1)—=>R;; S(t,t+N—-1)
Rjks(t+N)=R; St t+N —1)c.
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« E;;:  Postmultiplication of S(z, t+ N — 1) and premultiplication of s( +N) by a
matrix E;;. Interchanging rows j and row k of the N x N matrix S(¢, t+N — 1)
s(t+N)=S8(tt+N—1)
d—Ejid
St,t+N—1)— St t+N—DE;
st+N)=S8t,t+ N — 1),

where the last equations use E;; = E;kl.

The intent of a sequence of these operations is to transform S(z, t+ N — 1) into a
matrix with 1’s only on or above the diagonal. The coefficients of the LFSR’s characteristic
polynomial are determined when this is achieved. ]

8.9 CRIBBING OF STREAM ENCIPHERED ASCII
PLAINTEXT

The stream encipherment of ASCII character plaintext is performed in three steps:
Step 1: Each letter of the character plaintext xo, xy, ..., X,—; is replaced by its
ordinal value of x; in the ASCII character set, which is coded into 7 bits; for example

x;=A—ord(d) =65 —>x;=(1,0,0,0,0,0, 1)
xi=a—ordla)=97—-x;=(1,1,0,0,0,0, 1).

The ASCII character plaintext xo, X, ..., X,—; of n characters is transformed into a
sequence of n 7-bit vectors, the (0, 1)-plaintext

T : xO’xlv"'7-xn71_)£(]7£15"'7-5;1_1'
Step 2:  The LFSR with initial state s(0) = (so(0), so(1) , ..., so(N — 1)) generates
the key stream, a sequence of 7n-bits (so(0), so(1), - . . , so(7n — 1)), which are grouped into

n 7-bit blocks:

So = (50(0), so(1), ..., 50(6))
S = (S0(7), SO(S), o 7S0(13))

S,y = (o(T(n = 1)), so(T(n — 1) + 1),...,50(7Tn — 1))
Step 3:  The ciphertexty = (yo, Y1, - - - » Y,—1) consists of n 7-bit vectors where y; is
the XOR of the ith plaintext block x; and the block of key s;
Y, =X+ 8 0<i<n.
The key of an LFSR encipherment system has three components:

1. The number of stages N of the LFSR,
2. The characteristic polynomial p(z) = cy +cy—12+ -+ + ¢ lzN Ty cozN , and
3. The initial state s(0) = (s59(0), so(1), ..., so(N — 1)).
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We formulate the cribbing of ASCII character plaintext as:

Given: A plaintext crib of M characters, the ciphertext y and integers N, i;

Test: If y was generated by an LFSR of width N and if the crib starts as the rth
character in the plaintext.

If

« Nisthe correct width of the LFSR that has enciphered the plaintext crib of length M, and
- The crib starts as the rth character in the plaintext, then

XD, x@+ 1), ..., xC+M—1) = X, X150 Xy

crib (0,1)— plaintext of crib

@ Xpgps oo Xppr—1)
+ (§zv §z+1 LA ) §1+M_1)

= (Xt’ XI-H’ T X1+M—1)
Or equivalently

(Xt’XzH’ T ’Xr+M—1)

+ (&ta £t+l’ ceey £;+M71)
=Sy Spgts - e oo Spam—1)-
If 7M > 2N, the leftmost 2N bits of the output (s, S;1, - - - » Serpmr—11)
so(7t) so(7t + 1) - so(7t4+N—1)
so(7t+N) so(7t+N+1) --- so(7t+2N —1)
so(7t +N) so(7t+N+1) - so(7t+2N — 1)

satisfy
s(7t +N) = S8(7t, 71t + N — 1)c
where

sxo(7t + N)

so(7t + N + 1)
s(7t +N) =

so(7t +2N 4+ 1)

so(71) so(7Tt+1) - so(Tt+N—1)
soTt+1)  so(Tt+2) - so(Tt+N)
ST, Tt+N—1) =
so(7t+N — 1) so(7t+N) -+ so(Tt+2N —2)

c=(cn,CN=1,...,C1)



8.9 CRIBBING OF STREAM ENCIPHERED ASCII PLAINTEXT 263

Proposition 8.8 asserts that the matrix S(7¢, 7t 4+ N — 1) has an inverse and Gaussian
elimination determines the taps (cy, ¢z, ... , Cy—1, CN)-

Cribbing stream enciphered ASCII plaintext fests a value of N and a position ¢ in the
plaintext with two possible outcomes:

1. If N is correct and the crib starts as the tth character in the plaintext, then

(a) The matrix S(¢z, t + N — 1) is invertible determining taps (¢, ¢2, ..., Cn—1, Cn)
and

(b) Backward and forward recursion will determine the entire key stream and
plaintext.

2. If N is incorrect or if the crib does not start as the tth character in the plaintext, then
(a) The matrix S(z, t + N — 1) may fail to be invertible, or
(b) The matrix (¢, + N — 1) may be invertible determining taps (cy, ¢, - . . , CnN—1, CN)»
but backward and forward recursion will determine a large percentage of non-
printable plaintext ASCII characters.

The cribbing strategy is to test if S(7¢, 7t + N — 1) has an inverse for some interval of
N, t-values

Test [widths] for N := N, to N,;
Test [positions] for ¢ := t; to t,;

If S(7t, 7t + N — 1) has an inverse

If YES, compute ¢ and use the forward or backward recursions to compute a
segment of the key stream and plaintext

s(7(t+N—k)),s(1t+N—k+1)),...,s(7(t+ N — 1))

backward segment

sTt+N+1),...,5(7t+N+2)),...,5(7(t + N +k))

forward segment

and plaintext

x(7(t+N — k), x(7(t + N —k+ 1)), ..., x(7(t + N — 1))

backward segment

xT¢+N+1), ..., xTE+N+2),....,x(7(t+ N + k)

forward segment

for some k, and test if these 7-bit plaintext vectors above correspond to printable
ASCII characters;

for example, upper/lower-case letters, numerals, punctuation, blank space.

Example 8.7
The LFSR with (primitive) characteristic polynomial p(z) =1+ AP+ 8
enciphers
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plainEx8.7

The pre-major requirements for the B.A. and the B.S. degrees
in computer science are the same. Students intending to
major in computer science should declare a pre-major when
applying for admission to the university.

to the ciphertext of 214 7-grams.

cipherEx8.7

o oo oo
N e R ==
e
- —oc oo
OO = = O
R ==

B o R S S S

(=}
—
—
S
=
—_

We use the crib pre-major testing the widths 5 < N < 12 and positions 0 < ¢ < 4:

N=5t=0
Plaintext Ciphertext Key
o) 1110000 0110001 1000001
r 1110010 0010101 1100111
e 1100101 0010110 1110011
- 0101101 0011011 0110110
m 1101101 0111010 1010111
a 1100001 0111000 1011001
J 1101010 1110111 0011101
1) 1101111 1000101 0101010
r 1110010 0001010 1111000

S0,4) = 50(2) 53) so(4) s0(5) s0(6)
50(3)  s0(4)  s0(5) 50(6) s0(7)

50(0)  so(1)  s0(2) 503) s0(4)
so(1)  s0(2)  s0(3)  s0(4) S0(5)]
s0(4)  s0(5)  s0(6) s0(7)  50(8)
0
0
0
0
1

s50(5) cs 0 1 0 0 0\ [/cs
50(6) C4 0 0 0 0 c4
5o | =50, 8| e il=fo o000 1||e
50(8) 2 1 0 0 1 1] e
50(9) c 0 0 0 1 1)\
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N=51t=1
Plaintext Ciphertext Key
o) 1110000 0010101 1100101
r 1110010 0010110 1100100
e 1100101 0011011 1111110
- 0101101 0111010 0010111
m 1101101 0111000 1010101
a 1100001 1110111 0010110
J 1101010 1000101 0101111
o 1101111 0001010 1100101
r 1110010 1111111 0001101

Input: S(7, 11) to Gaussian elimination.

S(7,11) =

so(13)
so(13)
so(14)
so(15)
s0(16)

s0(7)
50(8)
50(9)
50(10)
so(11)

=57, 11)

Gaussian Elimination:

O === O

XOR row 0 with rows 1 and 4 of Sy(7, 11)

O = = = O
Il

50(8)  50(9)  s0(10)
50(9)  s0(10)  so(11)
S()(]O) So(ll) S0(12)
so(11)  s0(12)  s0(13)
so(12)  so(13) s0(14)
Cs 0 1
C4 1 1
C3 1 = 0
C 1 0
C1 0 1
1 1 0 0 1
1 0010
00 1 01
01 0 1 1
1 01 1 1
So(1,5)
I 1 0 0 1
01 0 1 1
001 01
01 0 1 1
01 1 10

$1(7, 11)

S = O O =

<5 linearly independent vectors!

so(11)
s0(12)
so(13)
so(14)
so(15)

Cs
C4
C3
2
C]

Cs
Cq
C3
2
C1

- O = O

_—= O = O

—_— e = O =

Cs
C4
3
(&)

C1

265
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XOR row 1 with rows 3 and 4 of S1(7, 11)

0 1 1 0 0 1 Cs
1 010 11 Ca
11=10 0 1 0 1 3
1 00 0 0O 13
0 001 01 i
57, 11)
<5 linearly independent vectors.
N=5t=2
Plaintext Ciphertext Key

P 1110000 0010110 1100110

r 1110010 0011011 1101001

e 1100101 0111010 1011111

- 0101101 0111000 0010101

m 1101101 1110111 0011010

a 1100001 1000101 0100100

3j 1101010 0001010 1100000

o 1101111 1111111 0010000

r 1110010 1110001 0000011

so(14)  50(15)  s0(16) so(17)  so(18)
so(15)  50(16)  so(17)  so(18) so(19)
S(14, 18) = | 50(16) 50(17) so(18) s0(19) 50(20)
so(17)  so(18)  s0(19) 50(20) so(21)
so(18)  50(19)  50(20) so(21)  s50(22)

s0(19) s 0 1 1 0
50(20) 4 1 1 00
so(2D) | =814, 18)] c3 1]=]0 0 1
50(22) o 1 0 1 1
50(23) c 0 1 1 0
Gaussian Elimination:

1 1 1 0 0 1 Cs

0 1 0 0 1 1 C4

11]=10 0 1 1 O c3

1 01 1 0 1 2

0 1 1 0 1 1 c

So(14, 18)

__m O =

Cs
C4
3
2

C1
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XOR row 0 to rows 1, 4 of Sy(14, 18)

1 1 1 0 0 1 Cs
1 01 0 10 C4
1]=10 01 1 O c3
1 01 1 01 c
1 00 010 c
S51(14, 18)
XOR row 1 to row 3 of §,(14, 18)
1 1 1 0 0 1 Cs
1 01 0 10 cy4
1]=10 01 1 0O c3
0 0 0 0 0 1 c
1 00 010 c
S5»(14, 18)
XOR row 2 to row 3 of S,(14, 18)
1 1 1 0 0 1 Cs
1 01 0 10 Cy4
1]=10 01 1 0 c3
1 0 0 0 0 1 c
1 00 010 c
S5(14, 18)
Interchange rows 3 and 4 of S5(14, 18)
1 1 1 0 0 1 Cs
1 01 0 1 0 N
1 00 1 10 3
1 00 010 c1
1 0 0 0 0 1 1)
S4(14, 18)

c=1lci=1l,cstci=1l,c4+ci=1,cs+cs+cer=1.
Decipherment Test:  Six nonprintable characters among the first nine deciphered
characters:

N=8,t=4
Plaintext Ciphertext Key
o) 1110000 0111010 1001010
r 1110010 0111000 1001010
e 1100101 1110111 0010010
- 0101101 1000101 1101000
m 1101101 0001010 1100111
a 1100001 1111111 0011110
J 1101010 1110001 0011011
o) 1101111 1101011 0000100
r 1110010 1011100 0101110
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Input:  S(4, 5) to Gaussian elimination:

S(28, 35) =

50(36)
s0(37)
50(38)
50(39)
50(40)
so(41)
50(42)
s0(43)

50(28)
50(29)
50(30)
s50(31)
50(32)
50(33)
s0(34)
50(35)

= 5(28, 35)

Gaussian Elimination:

S OO~ O —= OO

50(29)
50(30)
so(31)
50(32)
s0(33)
s0(34)
s0(35)
50(36)

cg
C7
Co
Cs
C4
c3

C2

C1

— O = O = OO =

50(30)
so(31)
50(32)
50(33)
50(34)
50(35)
50(36)
so(37)

S O O = O = O O

S, O = O =00
OO = O~ O = O

SO = OO~

1

so(31)
50(32)
s0(33)
s0(34)
s0(35)
50(36)
s0(37)
s0(38)

— o = O = O O =

—_ o O = O =0
[ T S o Bl e S S BT S

(=)

50(32)
50(33)
50(34)
50(35)
50(36)
so(37)
50(38)
50(39)

S = O = O = O O
S O = O = O = O

S~ O = OO =0
SO~ O~ OO~

—_ O O O =D =

S0(28, 35)

XOR row 0 to rows 3, 5, and 7 of Sy(28, 35)

S OO — O~ OO

eleoloBoNoBoNel S

S, O RO =00
SO = OO = O

O == = = O =

—_— OO = O =0
SO OO == O =

(=)

OS—= O = OO =0
—_— O oo oo o~

51(28, 35)

50(33)
s0(34)
50(35)
50(36)
s0(37)
50(38)
s0(39)
50(40)

S = O O = O = O
-0 = O O = O =

(&)
c7
(&3
Cs
Cq
C3
(&)
Ci

(&
C7
Ce
Cs
C4
C3
(&)
C1

s0(34)
50(35)
50(36)
50(37)
50(38)
50(39)
50(40)
so(41)

S = O = O O = O
S O = O = O O =

s0(35)
50(36)
s0(37)
50(38)
50(39)
50(40)
s0(41)
50(42)

(&
c7
Co
Cs
C4
c3

Co

Cl
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XOR row 2 to rows 4 and 6 of §;(28, 35)

&

Co

c7

Cs

C4

3

2

Cl

0

0 0

00 0

0

0 0 0O

1

0 0
00 00 O0O0TGO0

0

0

1

0

5-(28, 35)

Interchange rows 1 and 2 of S,(28, 35)

(&

C6

c7

Cs

c4

C3

C2

C1

0

00

1

0 0 0 0O

00 00

1
1

0 1
0 00
0 000 O0O0TO

1

0

55(28, 35)

XOR row 2 to rows 3 and 5 of S$3(28, 35)

&

Co

7

Cs

Cs

3

&)

C1

0

0 0

0

1
0 0 0 0O

0 0 0

1

1
1

0 00
0 0 O

1

0 000 O0O0TO0

54(28, 35)

XOR row 3 to rows 5 and 6 of S4(28, 35)

&

Ce

c7

Cs

c4

3

(&)

Cl

0

0 0

00010
0 00 0O
0 00O

1

1
1

0 0 0

00 0O

1

00 00 O0O0TO0

0

S5(28, 35)
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XOR row 5 to rows 6 of S5(28, 35)

0 1 001 01 01 cg

1 01 01 01 0O Co

0 001 01 0T1O0 c7

0] 100010110 Cs

ol ]J]o 00 O0OO0OT1T1FPO cy4

0 00 0 011 0O c3

1 00 0 0 O0T1TTO0TO0 c

0 00 0 00 O0O0 1 cy

S6(28, 35)
Interchange rows 5 and 6 of S¢(28, 35)

0 1 001 01 01 cg

1 01 01 01 0O Co

0 001 01 0T1O0 c7

01 100 O01O01 10 Cs

ol ]J]o o0 O0OT1T1O0O0 c3

0 00 0 O0O0OT1T1FO c4

1 00 00 O0OT1TTO0TO0 c

0 00 0 0 0 O0O0 1 c1

57(28, 35)
XOR row 5 to row 6 of S§5(28, 35)
0 1 001 01 01 cg O=cs+cs+cs+c
1 01 01 01 0O Ce l=c¢+cs+ca
0 001 01 010 Cc7 O=cr4+c3+c
0 _ 0 0 0 1 01 1 0 Cs O:C5+C4+62
0Ol Jo 00 01 1 00 c3 O=c3+cs
0 00 0 0 0 1 10 C4 O=cs+c
1 00 0 0O0O0OT1TTO c l=c
0 00 0 00 O0O0 1 c 0=rc;
S3(28, 35)

with solution cg =1, c;=cs=c¢c5=0,cs =c3=c,=1c¢; =0, cg= 1. Equation (8.4)
determines the key stream for all positions and the 8-stage LFSR shown Figure 8.8:

So(t + 8) = cgso(t) + c750(t + 1) + coSo(t + 2) + c550(t + 3) + ca50(t + 4) + c3s0(t + 5)

+ cos0(t + 6) + ciso(t + 7).

As cg =1, the backward recursion determines the states before time ¢ as shown in
Figure 8.9. Why has this form of stream encipherment failed to provide secrecy?

The culprit is linearity!

In order that stream encipherment truly hides the plaintext, the generation of the key
stream must involve some form of nonlinearity.
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o) o) o)

fro) () ) )

so(1) 84(1) s5(1) s6(1)

cg=1 cy=1 c =1 =1

+— Stage 0 Stage 1 Stage 2 Stage 3 o— Stage 4 o Stage o Stage 6 Stage 7

Output

Figure 8.8 The LFSR determined in Example 8.7 cribbing.

State at time ¢

D)
D)
D)

fao)

so(1) $4(1) s5(1) Se(1)

cg=1 cy=1 c3=1 =1

B
B
B

. ? 1 1 0 0 0 1 |
Output
(7 I o State at time ¢ + 1
o) S4(1) s5(1) s6(1)
cg=1 cy=1 =1 =1
. 1 1 0 0 ! 0 ! 1 ' | 0
Output

Figure 8.9 Backward recursion in Example 8.7 cribbing.

8.10 NONLINEAR FEEDBACK SHIFT REGISTERS

There are m™ mappings F of Z,, = {0, 1,2..., m — 1} into itself. The orbit of F for an
element z € Z,, is the sequence of images of z under F

orbit(z) : z > FP(2) - FPz) — - --
where

ifj=0

() I R
d (Z)_{F(F(j_l)(Z)), if 1 <)< oo.

There are m™ different mappings from Z,, to Z,,; of these, m! mappings are permutations
(one-to-one /invertible). The orbit of z under a permutation F is a cycle; z belongs to an
N-cycle if

20> 23 —> 22> "> 2IN-1 720
where

s lfj:O
zi =3 F(zj-1), if1<j<N-1
zZ, if j=N.
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Orbit of F is a Cycle Orbit of F with Tail

2 Zjy2

-1 Zp—1

\» ! K 2
/ 20 I —— s Zi | /

20

Figure 8.10 The orbits of a transformation under iteration.

The orbits of mappings that are not one-to-one are composed of cycles with fails.
Figure 8.10 depicts the two types of orbits.

An N-stage LFSR with feedback function f'is nonsingular if every state s(t) = (so(t),
so(t+ 1), ..., sSny,—1) has a unique successor

F:(so(®), sot+1),..., 50N+t —1)) = (sot + 1), so(t +2),..., so(N + 1)
and predecessor
F:(sot — 1), s0(@), ..., so(N +t—2)) = (s0(2), so(t + 1), ..., so(N + 1)).

This means that the orbits of the state transformation F' consist only of cycles. Conversely,
if the orbits of states contain only cycles, the F is invertible.

Remark: 1If the taps ¢ = (co, ¢1, - - . , cy) of an N-stage LFSR satisfy cy = ¢o = 1,
then its state transformation F is invertible. One of the cycles is

F:(0)y — (O)y.

. If the characteristic function p(z) of the LFSR is primitive, there is one additional
cycle containing 2V—1 states, and

« If the characteristic function p(z) of the LFSR is not primitive, every cycle has length
that is a divisor of the exponent of p(z).

These results generalize for the FSR with feedback function f.

Proposition 8.9: [Golomb, 1982] The state function of an N-stage FSR F(so(?),

So(t+ 1), ..., so(t+ N — 1)) with feedback function f(so(?), so(t+ 1), ..., sot+N— 1))

is nonsingular if and only if there exists a function g(so(?), so(t + 1), ..., so(t + N — 1))

such that

f(so(®), sott+ 1), ..., s0(t+ N — 1)) = g(so(t + 1), so(t +2),..., s0(t + N — 1)) + s0(2).
(8.10)

Proof. If F is nonsingular and sy = 0 and
SO, so(t+ 1), .... 50t +N = 1) =f(, 50+ 1),.... 50 +N—1))

the successor states of (0, so(t+1),...,s0¢+N—1)) and (1, sot+1),...,
so(t + N — 1)) are the same.
Therefore

fO, so(t+1),...,50¢+N—=1)=1+f(1, s0(t+1),...,50(+N—1)),
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which is equivalent to
f(o@®), st +1),..., s0(t + N — 1)) = 50(t) + g(s0(t + 1), so(t +2),..., so(t + N — 1))
with

g(so(t + 1), so(t +2),..., 50t + N — 1)) = f(0, so(t + 1), so(t +2), ..., so(t + N — 1)).

Conversely, suppose Equation (8.10) holds but not every orbit of F is a cycle. Thus,
there is some state (so(?), ..., so(t + N — 2), so(f + N — 1)) that has two predecessors

0, so(t), ..., s50(t +N —2))

(l,so(t),...,so(t—l—N—Z))} — (s0(®), ..., S0t +N —2), st + N — 1))

which is a contradiction.

NONLINEAR KEY STREAM GENERATION

We illustrate two ways for nonlinear key stream generation, using a read-only memory
ROM to implement a nonlinear mapping. A k-bit ROM is a table with k-bit input

-E: (XO,)C], .

.» Xxk—1) and output y = (yo, ¥1, - - -

Yi—1)

Figure 8.11 uses the outputs of k-LFSRs as the input of a k-bit ROM from which
either a single or k-bit output can be read:

(D e () )
Co,N, Co,Ny-1 Co2 Co,1
? So0(1) So,1(1) So.Ny-2(F) So.Ny-1(F)
. Stage 0 Stage | |——— .- o— Stage N2 o— Stage Nj-1 rt—
Stage 0 Output
R () ()
Ci, CLN-1 Cia cy
' s1.0(0) S0 s1.v,-2(1) s1-1(0)
Output R
(6] . Stage 0 Stage | |[—— oot ¢— Stage N|-2 ¢— Stage N\~ | fat—
M Stage 1 Output
(D e (+) (+)
Ch=1.N,, Ck-1.N; -1 Ck-1.2 Cr-1,1
Ske10(t) Ste1.1(0) Skt N -2(0) Skt N1 ()
Stage 0 Stage | |e— ..ot e— StageN,_-2 StageN, -1 j—
Stage k Output

Figure 8.11 XORing to a ROM.
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« A min-term for n Boolean variable s, 1, ..., s,—1 is a product in which either s; or
its complement s} occurs;

- An mth order product a product of m distinct Boolean variables;

- The algebraic normal form for a Boolean function f(sg, si,..., S,—1) is the
(modulo 2) sum of different mth products; and

- The nonlinear order of fis the maximum order of the terms appearing in its algebraic
normal form.

Example 8.8
1. so5)5,s354 is a min-term in the Boolean variables so, 51, ..., S,—1,
2. The Boolean function f(sg, S, - - . , S,—1) = §1 + 52 + 5,— and has nonlinear order 1,
3. The Boolean function f(sq, Sy, - .. , Sp—1) = S1 + $152 + Sp5153 has nonlinear order 3.

Proposition 8.10: [Menezes et al., 1996, p. 205]  If the lengths Ny, Ny, . .., Ny—;
of the k LFSRs are pairwise distinct and >2, the nonlinear order of the output is
ROM(Ny, Ny, ..., Ny—1;) evaluated as a function over the integers.

Nonlinearity can also be introduce by using the states s = (so(¢), s;(?), ...,
so(t +N — 1)) of an N-stage LPSR to address the ROM.

Proposition 8.11: [Key, 1976] If the ROM’s function f is nonlinear of order m,
then

8.11a The nonlinear order of the key stream is bounded by L,, = (17 >;
i=1

8.11b For a fixed maximum-length LFSR of length L, a prime, the fraction of

Boolean functions f that produce the maximum nonlinear order L, is

~ exp Lmuah > ¢ 1/L,

=) et N ()
Cy sot) ey s1(1) (&) sya() ¢ sy-1(0)
Stage 0 (e o Stage | (—— - - Stage N-2 (= o— Stage N—1 |a—
\
ROM
Output

Figure 8.12 Input to a ROM from the LFSR stages.
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IRREGULAR CLOCKING

Nonlinearity may also be introduced by irregular clocking, XORing several LFSRs but
shifting the LFSRs in a state- and key-dependent manner. One such scheme is described
by Giinther [1987]. The Global System for Mobile Communication (GSM) Users Associ-
ation is a consortium providing mobile communication services. GSM has established an
elaborate key exchange and encryption protocol to provide both secrecy (privacy) and
authentication. Each mobile (telephone) contains a SIM (Subscriber Identity Module)
card, and a processor with memory containing

- The caller’s telephone number, International Mobile Subscribers Identification
Number (MISDN) of up to 15 (BCD) coded decimal digits
— MCC, Mobile Country Code;
— MNC, Mobile Network Code;
— MSIN, Mobile Subscriber Number.

- Implementation of two algorithms — A38 and AS.
- A user-unique 128-bit secret key K.

It is assumed that the SIM may not be probed to reveal K, and that cloning is very difficult.
When a user wants to make a call, the mobile requests service from the network
providing its MISDN. The authentication process consists of several steps (Fig. 8.13).

8.12.1 Authentication

Al. The GSM Mobile Services Switching Center (MSC) generates and transmits to the
mobile a 128-bit random number RAND.

A2. The mobile’s SIM uses RAND and K, with the A38 one-way function to derive a
32-bit response SRES = A38{K;, RAND}[O0...3], which is returned to MSC.
(Note, the GSM standard allows GSM networks to implement different choices for
A38. One reference claims all networks use COMP128, which is described at the
Web site www.iol.ie/char126kooltek/ae8.txt. A38 uses arithmetic operations and
the input values Ky; a table of 990 bytes is accessed to construct SRES and Kg.)

A3. The MSC looks up the mobile’s MISDN and repeats the computation in Step A2,
comparing the result of its computation with the SRES returned by the mobile. If
there is agreement, the call is completed.

Ad4. Both the MSC and the mobile’s SIM use RAND and K, with the same A38 one-way
function to derive a 64-bit session key Ks = A8{Ky, RAND}[4..11] (Fig. 8.14). Ky
is used to initialize three LFSRs, which move irregularly.

><

Mobile
[6]
]

SIM RAND ©)
A38,A5 [ MSC
K, |@ SRES=A38{ K,,RAND} [0.3]

Figure 8.13 GSM authentication process: challenge and response.
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Mobile

023
@AEE
OB &
B0 @®

SIM
A38, A5

E-Data = A5] Ks,DataF
MSC

A

Ks=A38) K, ,RAND} [4..11]

Figure 8.14 Delivery of the session key to the mobile.

8.12.2 Secrecy

S1.

S2.

Voice data are sampled and formatted in 114-bit TDMA-frames. (Time division
multiple access (TDMA) allocates a transmission channel by dividing into time
slots and allocating them to users.) The GSM frames are stream-enciphered using
the output of the AS, nonlinear feedback shift-register algorithm.

A GSM conversation is transmitted in TDMA frames one every 4.6 ms; a 114-bit
frame from the mobile and a 114-bit frame fo the mobile. Frame #n is identified
by an accompanying frame counter Fn. The A5/1 registers are loaded with the
64-bit XOR of the session key K and frame counter. There are additional initializa-
tion steps about which we do not elaborate.

8.12.3 A5/1 and A5/2

GSM originally did not release the details of their encipherment algorithms, which were
reverse-engineered. There are four AS algorithms:

- The true vanilla A5/0 with no provided encryption,
- The original A5/1 used by ~130 x 10° GSM customers in the United States and

Europe, but not exportable to the Middle East,

« A5/2 used by ~100 x 10° GSM customers in other markets, and

- A5/3 algorithm, whose details can be found at gsmworld.com/using/algorithms/

index.shtml.

The A5/1 and A5/2 algorithms generate a key stream as the output of three irregularly
clocked linear feedback shift registers; A5/2 uses a 17-stage LFSR to control
clocking. Table 8.8 lists the characteristic polynomials, which are the same in A5/1
and A5/2 and the A5/2 LFSR clocking register characteristic polynomial depicted in
Figure 8.15.

TABLE 8.8 Characteristic Polynomials of A5/1,2

LFSRy(z) = 1 +z4+ 22 +2° +x"°
LFSR () =1 +z+ 2%
LFSR,(z) =1+ i+ 0+

LFSR4(z) = 1 4+ z° 4 z'7 [A5/2 Clocking /Register]
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S0.10(1) So.17(1)

Co.1

So,18(1)

Co.19 Co9 Co2

Stage 10 f——o .- .- Stage 17 Stage 18 fat—

s1()

s10(1) $1.20(1) s11(0)

€121 CiLn €12 €1 C

1

<—<+ Stage 0 Stage | fa—— .- Stage 11 fa——n .- .- Stage 20 Stage 21 |et— o
C

? k

.................. C

o

n

t

T

o

$20(1) $2.1(1) $2.12(0) $20(1) 1

€22 Can

Stage 0 Stage | fe——  ---- Stage 12 fe—— - -+

!

Stage 21 Stage 22 fat—!

Figure 8.15 A5/1.

The middle bit of each of the registers is the clock control bit determining if the
registers shift to the next state according to Table 8.9:

- Compute the majority of the three clocking bits shown in Figure 8.15;
- If the clocked bit of a register agrees with the majority bit, then this register is shifed.

If the bits in the middle cells of LFSR; (i = 0, 1, 2) are equally distributed and indepen-
dent, the registers are clocked (shifted) with probability 3 /4.

TABLE 8.9 Clocking of A5/1 Registers

Clock control bit Next clock state?
LFSR, LFSR, LFSR, LFSR, LFSR; LFSR,
0 0 0 ON ON ON
0 0 1 ON ON OFF
0 1 0 ON OFF ON
0 1 1 OFF ON ON
1 0 0 OFF ON ON
1 0 1 ON OFF ON
1 1 0 ON ON OFF
1 1 1 ON ON ON
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Even before an officially sanctioned description of the internal structure of AS was pub-
lished, Goli¢ [1997] published an analysis. As A5 uses a 64-bit key, Goli¢’s analysis is of com-
plexity 2*°, much less than key trial. It is also consistent with earlier work by Anderson [1995].
The paper by Biryukor et al. [2000] is based on the reverse-engineering of the A5 /2 alogrithm.
The paper by Barkan et al. [2003] contains an analysis of the A5/2 algorithm.

Apparently, there was a great deal of controversy surrounding the design of
the AS algorithm; it is not clear who the good guys were. Maybe, there were no good

guys.

RC4

Designed in 1987 by Ronald Rivest of RSA Data Security, RC4 is a member of the
suite of encipherment algorithms available in the Secure Socket Layer (Chapter 18).
It provides security for wireless communications in Wired Equivalent Privacy
(WEP), a protocol for wireless local area networks as defined in the IEEE 802.11b
Standard.

RC4 generates a pseudorandom key stream consisting of a sequence of (8-bit) bytes.
RC4 was a trade secret until 1994 and its name is still regarded as proprietary. RC4 has two
components:

KSA - akey scheduling algorithm, which loads a key register with a permutation on
integers 0 to 255; the key length varies from 40 to 128 bits;

PRGA - a pseudorandom number generator producing one 8-bit byte of key on
each call of the generator.

8.13.1 The RC4 Algorithm
Key Scheduling Algorithm (KSA)

1. Input
L bytes of key
k(1) = (k(0), ..., k(L — 1)) with k; € Z5¢ = {0, 1, ..., 255}.
2. Initialization
for i := 0 to 255 do
S[i] =1
3. Generation
j==0
for i == 0 to 255 do
j = (j+ S[i] + k(i(modulo L))) (modulo 256);
swap (S[j1, S[JD);
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TABLE 8.10 Key Register Cell Swapping in RC4

Entering Exiting
J i k; St/ S[i] J i S[J] S[i]
0 0 4 4 0 4 0 0 4
4 1 11 4 1 16 1 16 1
16 2 18 16 2 36 2 36 2
36 3 25 36 3 64 3 64 3
64 4 32 64 4 100 4 100 4
100 5 39 100 5 144 5 144 5
Example 8.9

If k= (4, 11, 18, 25, 32, .. .), the first six steps in KSA are given in Table 8.10. The con-
tents of cells in the key register change; for example, the contents of S[4] undergo three
changes during the KSA program execution.

S[0] = 4
(S[4] =0

S[0] =0
S[4] = 4

)

i=0

—

i=4

) =

(

S[96] = 0

S[4] = 96

Table 8.11 lists the complete values in the key register.

Pseudorandom Number Generator (PRGA)

1. Input
N :Number of bytes of key stream to be generated

2. Generation
ji=0

TABLE 8.11

S: Key Register.

Key Register in Example 8.9

i=186

) e

(

S[186] = 96
S[4] = 186

)

Key register

4
246
30
106
251
78
231
211
150
129
87
149
58
243
68

16
34
29
137
19
193
119
239
109
125
158
69
185
35
173
192

36
145
28
17
212
85

131
182
138

194
146
105
220
114

64
46
118
198
62
214
48
23
26
152
84
184
238
178
156
226

186
235
230
93
107
122
218
73
123
70
208
65
229
148
91
51

140
18
127

14
27
210
63
171
39
98
40
163
174
240
133

255
31
217
80
180
215
205
89
253
45
177
157
42
219
47
113

86
191
102
121
232
206
216

74
147
207
124
202
249
252
164

66

144
92
75
95
77

135
22

236
38
57

199

234
83

247

139
52

12
101
170

53
120

82
104
254
201
159
213
166

21
143

94

25

55
81
175
221
204
103
59
172
188
242
37
96
130
250
108
233

43
190

60
176
132
161
116
136

99
151
126
197
141
223
209
187

13
142
72
76
225
245
167
189
100
54
10
169
56
222
195

160
50
20

200

248

111

162

244

168
41

203
165

33
110

128
241
24
71
11
179
49
97
134
112

88
227
181
224

155
115
90
67
44
153
117
228
196
61
183
237

79
154
32
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TABLE 8.12 Key Register in Example 8.9

Key generation

255 109 201 105 195 98 192 165 188 46 141 179 53 118 235 225
13 64 228 20 129 59 48 242 72 5 113 20 237 242 165 251
135 199 89 141 113 157 203 46 227 110 1 160 196 246 234 220
82 169 11 65 134 26 106 207 237 178 167 87 56 19 217 16

fori: =0t N—1do

i:= (i+ 1) (modulo 256);

swap (S[i], S[j1);

Output S[(S[Z] + S[j]) (modulo 256)];

Example 8.9 (continued)
The first 64 bytes generated by PRGA are given in Table 8.12. Encryption of wireless
communications is a much greater security problem than transmission over other
media; electromagnetic radiation allows a third party to possibly monitor communications
without detection. The design of a wireless protocol involves an important tradeoff; either
users have a secret key as in GSM, or the keys are managed by the service provider. The
IEEE 802.11b protocol opted for the second approach. Until recently, export controls
limited the key length of cryptographic devices to 56 bits.

IEEE 802.11b employs various “enhancements” to RC4, including

« A 24-bit initialization vector (IV) and
« A 24-bit integrity check value (ICV).

The only secret is the 4-bit key.
Figure 8.16 shows the format of the IEEE 802.11b data packet. The steps of the
encipherment process depicted in Figure 8.17 are as follows:

IV, PARM [4] Enciphered

| [ oweven | e |

. N [n] Length (bytes)

‘ PARM [1] = pad [6 bits], Key_ID [2 bits]

Figure 8.16 IEEE 802.11b enciphered protocol data unit (PDU).

PARM —» | | - | | — y (ciphertext)
v >
(key) K. ——= | | RC4
(plaintext) x a —» | | b
L b — o || [ =
— Integ.ri ty - | | Concatenate On-The-Left
Algorithm IcV

Figure 8.17 IEEE 802.11b encipherment.
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1. The key K concatenated on the left by IV is input to RC4, which generates a key
stream s;

2. The integrity check value ICV is the 32-bit checksum of the plaintext x computed
(using an LFSR) with characteristic function CRC-32

CRC-2=1+z+2+ ++0 + 7+ 4+ + 0+ + 2+ + 2+ P
+ 220+ 2%

3. The plaintext x is concatenated on the right by the /CV and then XO Red with the key
stream to produce the ciphertext y = x + s; and

4. The transmitted packet consisting of the ciphertext is concatenated on the left by IV.

Various researchers have studied RC4; in 2004, Fluhrer and McGrew [2000] announced a
weakness in KSA; refinements were given in the subsequent paper Fluhrer et al., 2001

8.14 STREAM ENCIPHERMENT PROBLEMS

I have always included one cribbing problem each time I have taught. Until Spring 2005,
the plaintext was the Class_List in the format

Class_List

0. Bostrom, Eric

1. Isaac, Joshua

2. Piasecki, David
3. Bautista, Maria
57. Chang, Yao-Yin
58. Julian, Vincenzo
59. Riggs, David

with some permutation of the alphabetical order of the names. A N-stage LFSR
(7 <N <9), a primitive characteristic generating polynomial p(z), and an initial state
have been used to stream encipher the concatenated variable length records in Class_List.
In Spring 2005, I enciphered one of the 10 amendments forming the Bill of Rights and
challenged the students to identify which one.
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CHAPTER 9

BLOCK-CIPHERS: LUCIFER, DES,
AND AES

TH E IBM Corporation decided to offer data security functionality using
encryption for its customers in 1966. Horst Feistel (Fig. 9.1), who had previously worked
in the cryptographic area, had developed a block cipher that was implemented in the
IBM product for the Lloyd’s bank. LUCIFER and its successor DES, had a profound
effect on cryptographys; it led to public-key cryptography, the active involvement of
the university community, and changes in NSA. We review this development, the
controversy surrounding DES, the replacement of DES by Rijndael, and the design of
block ciphers.

9.1 LUCIFER

Horst Feistel’s paper [Feistel, 1973] described the role cryptography might play in provid-
ing privacy in computer systems. The importance of this paper cannot be underestimated;
first, it suggested a template for the design of cryptographic algorithms and second, it chal-
lenged the Government’s undisputed role as master in the area of cryptology. It initiated a
new era in cryptography that would lead to public-key cryptography. It was also of benefit
to NSA, forcing it to re-examine its relationship with universities and business
organizations.

Feistel’s paper described LUCIFER, a product block-cipher enciphering plaintext
data in blocks of M bits:

X0 X1 o XM
Xm XM+1 st XoM—1

X = (X0, X1y Xp_1) =
Xn—DM  X(n—1)M+1 s XpM—1

Feistel used the APL programming language to experiment with and test LUCIFER.
The program was stored in an APL-workspace, the analogue of a PC/MAC-folder
and a UNIX-directory. The APL implementation, available at this time, imposed a limit
on the number of letters in a workspace name. Feistel’s original choice of
DEMONSTRATION for the workspace name had to be shortened to DEMON; ultimately,
someone suggested the sexier name LUCIFER.

A description of one version of LUCIFER may be found in Sorkin’s paper [1984].
Outerbridge [1986] referred to LUCIFER as a Feistel-like block product cipher.

Computer Security and Cryptography. By Alan G. Konheim
Copyright © 2007 John Wiley & Sons, Inc.
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Figure 9.1 Horst Feistel (Courtesy of IBM).

In 1966, Lloyd’s Banking contracted with IBM to design a remote-terminal-oriented
banking system. The role of encipherment in ATM (Automated Teller Machine) trans-
actions will be described in greater detail in Chapter 18, but it was clear that some sort
of cryptographic capability would be needed. An algorithm proposed by another IBM div-
ision was rejected when it was recognized to be a variant of the Hill encipherment system
(see Chapter 3). A group in the Mathematical Sciences Department at the IBM Yorktown
Research Center including Roy Adler, Don Coppersmith, Horst Feistel, Edna Grossman,
Alan Hoffman, Bryant Tuckerman, and myself had started in the 1960s to investigate enci-
pherment. Feistel’s LUCIFER was in the right place at the right time. Although IBM
Research traditionally did not participate in product development, a good working relation-
ship was established with a development group at the IBM division in Kingston, New York.

There are several versions of LUCIFER; for example Sorkin [1984] describes
LUCIFER as it appears in a paper by Lynn Smith [1977]. I will describe the only commer-
cial implementation of LUCIFER, contained in the IBM 2984 Cash Issuing Terminal.

Plaintext data of length M = 32 bits was enciphered following the paradigm pro-
posed by Feistel, in which the plaintext x was viewed as consisting of equal length left
(L) and right (R) blocks

X = (.X(], Xlsenns -xM—l) = (L, R)

LUCIFER enciphered plaintext x in 16 rounds, each round using a key-dependent
transformation:

1. The two message halves (L, R) were transformed to 7: (L, R) — (F(R) + L, R),
where F(R) is a 16-bit to 16-bit mapping applied to the message right block R
composed of

L1. Modulo 16 addition of 16 bits of key to the block R,
L2. Transformation then of the 16 bits by a nonlinear substitution S-box,
L3. Transformation then of the 16 bits by a P-box,
L4. Finally the addition of the result F(R) to the 32-bit left block L.
2. Thetwo halves F(R) + Land R were interchanged ¥: (F(R) + L,R) — (R, F(R) + L).
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7 and 9 are involutions
T'=T
(L.R) —> (F(R)+L.R) —> (F(R)+ F(R) + L. R) = (L, R)
=29

(LR — (LR) —> (R.L)
where the round transformation R = 97 is invertible for every possible function F and

R =T

F is a nonlinear transformation on 32-bit data strings in the IBM 2984 Cash Issuing
Terminal.
The parameters of the 2984 implementation of LUCIFER [IBM, 1971] are:
2984-1: The block length M = 32 bits;
2984-2: Key length 64 bits; and

2984-3: 16 rounds in an encipherment.
16 x 36

a times:

A total of 36 bits are used on each round; each key bit is used 9 =

K1. 16 bits in Step L1;
K2. 4 bits in Step L2; and
K3. 16 bits in Step L3.

The 2984 LUCIFER-schedule specifies the 36 bits used in each round as follows:
KS0. The 64-bit LUCIFER-key is loaded into a key register and cyclically left-shifted
28 bit-positions;
KS1. The leftmost 36 bits used in a round are labeled as 4-bit nibbles a, b, c, ..., 1,
KS2. The 4 bits in nibble a are used in the S-box transformation;
KS3. The 16 bits in nibbles b, d, £, and h are used in key-dependent L1 addition with
carry;
KS4. The 16 bits in nibbles ¢, e, g, and i are used in the P-box transformation;
KS5. The key register is cyclically left-shifted 28 positions after each round.
The nibbles used in each round are shown in Table 9.1.
There are two different S-box mappings S, and S;:
So If a; = 0, then S-box S, transforms the input 4-bit data d;
S; If a; = 1, then S-box S, transforms the input 4-bit data d.
The nibble a = (aq, a;, a,, a3) determines which of the 24 =16 possible S-box combi-

nations is used to transform the 16 bits of data r in Step L2 as specified by the next equation
and Table 9.2.

d = (do, dy, d2, d3) = (S4,(d), Sa,(d), Sa,(d), Se;(d))
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TABLE 9.1 IBM 2984 Key Register Schedule
Round r Nibbles Used in Round r
a b c d e £ g h i

1 7 8 9 10 11 12 13 14 15

2 14 15 0 1 2 3 4 5 6

3 5 6 7 8 9 10 11 12 13

4 12 13 14 15 2 3 4

5 3 4 5 6 7 8 9 10 11

6 10 11 12 13 14 15 0 2

7 1 2 3 4 5 6 7 8 9

8 8 9 10 11 12 13 14 15 0

9 15 0 2 3 4 5 6 7
10 6 7 9 10 11 12 13 14

11 13 14 15 0 1 2 3 4 5
12 4 5 6 7 8 9 10 11 12
13 11 12 13 14 15 0 1 3
14 2 3 4 5 6 7 8 9 10
15 9 10 11 12 13 14 15 0 1
15 0 1 2 3 4 5 6 7 8
TABLE 9.2 IBM 2984 S-Box Output
d 0 1 3 4 5 6 7 9 A B C E F
Sod) 3 0 8 5 1 2 4 9 Cc E 6 A 7
Sd 8 D I 6 ¢ 4 F B 2 5 4 7 A

The 2984 LUCIFER P-box is a key-dependent mapping of 32 bits to 32 bits;The 2984
LUCIFER P-box is a key-dependent mapping of 32 bits to 32 bits; Table 9.3 specifies
how the nibbles ¢, e, g, and i are used in the P-box transformation where ' denotes
the complement operation:

T, = (Tio, T, Tip, Ti3)

P
(To,T1,T2,T3) —> (Po,P1, P>, P3)

Pi=(Pip, Pi1, Pi2, Pi3),

The input and output vectors to the P-box vectors,

TABLE 9.3

P = (Poo, Po1, Pop, Pog3, .-

T = (Too, To, Top, To3, - -

IBM 2984 P-Box Transformation

T30, T30, T35, T3 3)

0<i<4

. P3g, P31, P3p, P33)

Poo = Tooio~+ Tio90
Pio=Ti 090+ T20e0
Pso = Trpeo+ T3 0c0
P30 =Tz0c0+ Toplo

Py =T3¢t + 15
Py =To i1+ T30y
Py =Ti1191+Toais
P31 =Tl +Ti19:

Poy = Trre5T3,C,

P1y=T35ch + Tozis
Pys = To2is + 7129,
P35 =Ti,95 + Tazes

Pos =T 395+ To3is
Pi3=Tr3e5+T1393
Py3=Ts3cs+ Thze;
P33 =Tozis+ T33C3
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are related by

ipb, 00 0O g 00 0 00O OO0 OO0 0 O
0000 O OO0 O 0 e 0O0 0c¢ 00
0000 O 00 O 0 0 ¢ 0 0 0 c O
000 0 OO0 00 0O0OO0OO0O OO0
00 00O g 00 0 e 0O0O0O OO OO
04 00 O O0OO0OO0O O O0OO0O O 0 ¢ 00O
00 i, O 0 00O OO0OO0O OO0 O

P 00 00O O OO g O0O0O0CE€E 00 0O -
00 00O 0 0 0 0 ¢ 00 0 ¢ 0O0 0]
0i4 00 0Og, 00 O O0OO0OO OO0O0O
004 0 0 0 g 0O 0 0O0O0OC O O0O0 O
0000 0 0O 0 0 0 0O e 0 00
ih 000 00 00 00 0 O0 ¢ 00 O
0000 0 g 0O 0e€e 00 O0O0©O00O
000 0O O O g 0 0 0 e 0 0 000
00034 00 00 0 O0 0 0 0 00 c

The IBM 2984 P-box is an invertible key-dependent linear transformation but not a
permutation. Figure 9.2 is a block diagram of 7: (L, R) — (L + F(R), R).

Key Register Current Right-Half Data Register
r 1T 1
RD3 RD2 RD1 RDO R
a b ¢ d e f g h i

L+] L+] L+] t+] Modulo 16 Addition
a3 ) a4 4
E’] EH E“] sﬂ] Substitution

Permutation

Lo

Current
Left-Half
Data Register

Ly L, Ly
F(R)+L
Figure 9.2 1BM 2984

Y

Updated Left-Half Data Register round transformation 7.
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9.2 DES

DES (Fig. 9.3) is a block cipher where

. plaintext X = (X(), Xiyeons X63) S 264,2;
« ciphertext y = (0, Y1, - - -» Y63) € Z6a.2;
- key k= (ko, ki, ..., kss) € Zs65.

DES:x — y = DES;{x}

DES is the product (composition) of mappings

DES=1P ' x T4 x O0x Tisx -+ xO0xTrx0xT; xIP
Ti:(x,, xg) = (X, + Filxg), Xg)

with inverse
DES'=IP ' x 7T xO0xTax---x0xTisx0xTxIP.

- IP is the initial permutation (or wire-crossing, plugboard);

- a1, F; are the mappings performed on the left-x; and right-xg halves of the input on
the ith round;

« 0 is the interchange involution

0: (X0, X1,. .., X31, X32, X33, . . . , X63) —> (X32, X33, ..., X3, X05 X1, - - ., X31)
The operations involved in the mapping 7 are portrayed in Figure 9.4.
r--r-——"""""™""™""™"""™®"™""™">""™""™"™"™>"™""™"™""™""™""™>""™""™>™""™" T T T T T T T T T T T T T T ™ il
: (Input) (Input) :
: Left 32 Bit Right 32 Bit :
| Data Block Data Block |
| |
| XL XR |
| |
| |
| | I
T | Fi(xp) |i"-Round |
+ |
| F; |
| |
| |
| |
| |
| |
| |
| |
0 : XR xp+ Fi(xg) :
| Left 32 Bit Right 32 Bit |
: Data Block Data Block :
: (Output) (Output) :

Figure 9.3 DES.
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S[0]

S[1]

S[2]

S[3] c h | o

S[4] s L

S[5]

S[6]

S[7]

gt mtl et ratiianii| imt ratinily
|

Figure 9.4 The DES transformation 7.

9.3 THE DES S-BOXES, P-BOX, AND INITIAL
PERMUTATION (IP)

Tables 9.4 to 9.11 specify the seven DES S-boxes, each with a 6-bit input
(xo, X1, X2, X3, X4, X5, Xg) and a 4-bit output (yo, y1, ¥2, ¥3); each table contains 4 rows
and 15 columns, where

« Bits (xo, x¢) identify a row in the table, and

« bits (x1, x», X3, x4) identify a column in the table.
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TABLE 9.4 DES S-Box S[0]

S[0]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3
2 4 1 14 8 13 6 2. 11 15 12 9 7 3 10 5
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
S[0]: (xo, X1, X2, X3, X4, X5) = (Yo, Y1, Y25 ¥3)

column

(1,1,0,0,1, D:row 3, column 9, S[0](1, 1,0,0, 1, 1) = 11 = (1,0, 1, 1)

TABLE 9.5 DES S-Box S[1]

S[1]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
S[1] : (xo, X1, X2, X3, Xa, X5) = (Y0, V1, Y2, ¥3)
(1,1,0,0,0,0):row 2, column 8, S[1](1,1,0,0,0,0) =5=(0,1,0, 1)
TABLE 9.6 DES S-Box S[2]
S[2]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
2 13 6 9 8 15 3 0 11 1 2 12 5 10 14 7
3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
S[2] : (xo, X1, X2, X3, Xa, X5) = (Y0, V1, Y2, ¥3)
0,0,1,1, 1, 1):row 1, column 7, S[2]0,0,1,1,1,1) =10 = (1,0, 1, 0)
TABLE 9.7 DES S-Box S[3]
S[3]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S[3] : (xo, X1, X2, X3, Xa, X5) = (Yo, V1, Y2, ¥3)
S[3](0,0,1,1,0,00=9=(1,0,0, 1)

0,0,1,1,0,0):row 0, column 6,
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TABLE 9.8 DES S-Box S[4]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
2 4 2 1 11 10 13 7 8 15 9 12 5 3 0o 14
3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S[4] = (xo, X1, X2, X3, X4, X5) —> (Y0, Y15 Y2, ¥3)
(1,0,1,0, 1, 1) :row 3, column 5, S[4](1,0,1,0,1, ) =14=(1,1,1,0)

TABLE 9.9 DES S-Box S[5]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0o 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2 9 14 15 5 2 12 3 7 0 4 10 1 13 11 6
3 3 2 12 9 15 10 11 14 1 7 6 0 8§ 13

S[5] : (xo, X1, X2, X3, X4, X5) —> (Y0 Y1s Y25 ¥3)
(1,0, 1, 0,0, 0):row 2, column 4, S[5](1,0,1,0,0,0) =2 = (0,0, 1, 0)

TABLE 9.10 DES S-Box SI[6]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 11 2 14 15 0 8§ 13 312 9 7 5 10 6 1
1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 312

S[6] : (xo, X1, X2, X3, X4, X5) —> (Y0 Y15 Y2, ¥3)
(0,0,0, 1,1, 1):row 1, column 3, S[6](0,0,0,1,1, 1) =7=(0, 1,1, 1)

TABLE 9.11 DES S-Box S[7]

S[7]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

S[7] : (xo, X1, X2, X3, X4, X5) —> (Yo, Y1, Y2, ¥3)
(1,0,0, 1,0, 0): row 2, column 2, S[71(1,0,0,1,0,0) =4 = (0, 1, 0,0)

My description of DES differs slightly from that given in [FIPS, 1988] in two respects:

« Tuse 0-index origin labeling; for example, a 64-bit plaintext block is (xg, x1, . - . , X63)
instead of (xi, xo, ..., Xg4)-
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TABLE 9.12 DES P-Box

15 6 19 20 28 11 27 16 0 14 22 25 4 17 30 9
1 7 23 13 31 26 2 8 18 12 29 5 21 10 3 24

TABLE9.13 DESIP

57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7
56 48 40 32 24 16 8 0
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6

- FIPS 46 speaks of a 64-bit key, although only the first 7 bits in each byte play a role
in the encipherment process.

The P-box (Table 9.12) is a permutation of the 32-bit permutation (xg, Xy,..., X31) =
(x15, X6, ..., X3, X24) DES plaintext x is first permuted by the initial permutation IP
(Table 9.13) before the 16 round operations start:

IP: (xo, X1, ..., X63) —> (X57, X49, . .., X14, X6)

9.4 DES KEY SCHEDULE

Three arrays PC-1, PC-2, and KS specify the 48 key bits that are used on each round
(Tables 9.14-9.16). The DES key schedule starts with the 56-bit user key k = (ko,
ki,..., kss) and derives 16 internal keys k; = (kio, ki1, ..., kia7) with 0 <i <16, as
shown in Figure 9.5. The 48-bit internal key k; used on the ith round is derived as follows:

- KS-1: The user key k is inserted in two 28-bit registers [C, D] according to (PC-1).

Input Key Register C D
PC-1 : -
koski,... kyy kog koo ksg,. .. kss kag s kay s ... kag kay || kss o kag oo, k1o, ks

« KS-2: [Cy, Dy] is the initial state of the registers [C, D].

- KS-3: At the start of the ith round, the combined register-pair [C;—;, D;—{] is left-
circular shifted by KS[i] positions, producing [C;, D;]. For example,

[Co, Dol C, D,

KS[1]
kag s kay ... kag, kaykss kg, ... kg, k3 kap s k3s s kay s kss || kag, kar s ..., k3, kag

« KS-4: k; is derived from the 28 bits of the concatenation of [C;, D;] according to
PC-2).
[Ci6, Di6l ko

PC-2
k42,k35,...,k31,k55,k48,k41,---,k3’k49|—'| kg kags.. o ki, kiso kg kys. .., kag,kag

Each bit of the user key is used about 13.7 times in a DES-encipherment. The key schedule
is designed to use the key bits of k in as uniform a manner as possible.




TABLE 9.14 PC-1

pe-1
49 42 35 28 21 14 7
0 50 43 36 29 22 15
8 1 51 44 37 30 23
16 9 2 52 45 38 31
55 48 41 34 27 20 13
6 54 47 40 33 26 19
12 5 53 46 39 32 25
18 11 4 24 17 10 3
TABLE 9.15 PC-2

pc-2
13 16 10 23 0 4
2 27 14 5 20 9
22 18 11 3 25 7
15 6 26 19 12 1
40 51 30 36 46 54
29 39 50 44 32 47
43 48 38 55 33 52
45 41 49 35 28 31
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TABLE 9.16 DES Key Shifts

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

KS[i] 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

It is intended that the key be randomly chosen. If k has special characteristics, the
derived internal keys may fail to sufficiently disguise the plaintext. Of the 2°® possible
keys, there are a few with this property.

9.4.1 Weak Keys

It was observed quite early in 1973 that certain user keys will produce internal keys with
special regularity.

Example 9.1
The contents of the registers C; and D; contain a constant value so that DES is the 16th
power of a transformation. For such a key k

y = DES{k,x} «— x=DES;'{y}

There are four weak keys corresponding to the register contents C, D € {(0),g, (1)25},

where (0),5 = (0,0,...,0)and (1)og = (1, L,..., 1).
——— ——
28 bits 28 bits

Table 9.17 lists the weak keys written in hexadecimal notation, appending an odd
parity check bit on the right. (Note, NIST (formerly NBS) often describes the DES key
as a 64-bit key by appending a parity check bit on the right of each 7-bit block. Needless
to say, this bit plays no role in the encipherment process.)
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l 01 2 55 UserKey
@ Permuted Choice 1
| 494235 3 |
| 494235 31 | 554841 3 | [C0,DO] Registers
—} 423528 49 | 484134 55 | [C1,D1] Registers
Round #1 Shift
PC-2 Permuted Choice 2
[84420 27] Round #1 Key
—4 352821 42 [ 413427 48 | [C2,D2] Registers
Round #2 Shift
@;) Permuted Choice 2
[13722 20] Round #2 Key
_—{ 21147 28 | 272013 34 | [C3,D3] Registers

Round #3 Shift

Figure 9.5 DES key schedule.

Example 9.2
A semi-weak key results when the contents of the registers C; and D; result in at most two
internal keys. As the vector of key shifts in KS = (1, 1, (2)¢, 1, (2)6, 1), the only possible
register values for C and D are in the set {(0,1)14, (1,0)14, (0)2g, (1)2g}-

Table 9.18 lists the six pairs of semi-weak keys in hex (with an odd parity check digit
appended on the right).

9.5 SAMPLE DES ENCIPHERMENT

A trace of DES is shown next in Table 9.19 including

- The initialization, including the user key k, the contents of the registers [Cyp, Do], the
plaintext x, the result of the initial permutation IP[x], and the left and right data
registers (L[0], R[0]);

TABLE 9.17 Weak DES Keys

01 01 01 01 01 01 01 01  C=(@0)g D=2
1F 1F 1F 1F 1F 1F 1F 1IF  C=(0)g D= )y
EO EO EO EO EO EO E0O  EO C=()s D= (0)y
FE FE FE FE FE FE FE FE C=(1)g D = (1)yg




TABLE 9.18 Semi-Weak DES Keys
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01
FE
1F
EO
01
EO
1F
FE
01
1F
EO
FE

FE
01
EO
1F
EO
01
FE
1F
1F
01
FE
EO

01
FE
1F
EOQ
01
EO
1F
FE
01
1F
EO
FE

FE
01
EO
1F
EOQ
01
FE
1F
1F
01
FE
EO

01
FE
1F
EO
01
EO
1F
FE
01
1F
EO
FE

FE
01
EO
1F
EO
01
FE
1F
1F
01
FE
EO

01
FE
1F
EOQ
01
EO
1F
FE
01
1F
EO
FE

FE C=(0, 1)14
01 C=(,0)
EO C=(0,1)4
1F C=(1,0),
EO C=0, 1)y,
01 C=(,0)
FE  C=(0, 1)y,
1F C=(1,0)14
1F C=(0)2s
01 C=(0)
FE C=(1)x
EO C=(1)x

D=0, )4
D= (1,014
D=(1, 0)1a
D =(0, D14
D = (0)2s
D = (0)2
D = (1)
D = (1)zs
D= (0, Dia
D=(1,0)1a
D = (0, D14
D= (1, 0)4

9.6 CHAINING

The transformations on rounds 1, 2, and 16 displaying

— The entering contents of the left- and right-half-data registers (L[i — 1], R[i — 1]),

— The entering contents of the registers [C;—1, D;—1],

— The updated contents of the registers [C;, D;],
— The key KEY[i] used on Round i,

— The expanded right data block E[R[i — 1]],

— The XOR of KEY[i] and E[R[{]],
— The output of the S-boxes with input KEY[i] + E[R[i]],
— The output of the P-box,

— The entering left-half data register L[i — 1],
— The XOR of the P-box output and the contents of L[i — 1],

— The concatenation on the right of the P-BOX output + L[i — 1] with R[i — 1],

— The updated (L[i], R[i]), and

« The output.

The DES only specifies the encipherment a block of 64 bits. DES can be extended to

encipher plaintext of arbitrary length in two ways.

and enciphers each block separately

The Standard Extension of DES divides the plaintext x = (xq, X, ..., Xy—1) € Zn2
into 8-byte blocks

XD =

X0 =

1
xM = xg4, X655 - -

(X(), X1s .

., X63)

- X127

(X64(n—1)s X64(1—1)+15 - -

- X64(n—1))

DES : x? — y® = DES{x"}.
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TABLE 9.19 Trace of DES

Initialization

k 0001 0011 0011 0100 0101 0011 0111 1001 1001 1011 1011 1100 1101 1111 1111 0001

[Co, Do) 1111000011001100101010101111 * 0101010101100010011110001111

x 01010101 01010101 01010101 01010101 01010101 01010101 01010101 01010101

IP[x] TITT1110 11111111 11111111 11111111 00000000 00000000 00000000 00000000

(L[0], R[O]) 11111111 11111111 11111111 11111111~ 00000000 00000000 00000000 00000000
Round 1

(L[0], R[O]) T1111111 11111111 11111111 11111111~ 00000000 00000000 00000000 00000000

[Co, Do) 1111000011001100101010101111 * 0101010101100010011110001111

[C1, Dy] 1110000110011001010101011111 * 1010101011000100111100011110

KEY[1] 000110 110000 001011 101111 011111 000111 000001 110010

E[R[0]] 000000 000000 000000 000000 000000 000000 000000 000000

E[R[0]] + KEY[1] 000110 110000 001011 101111 011111 000111 000001 110010

S-BOX 0001 0101 0100 1000 0110 0010 1101 0110

P-BOX 0000 0010 0011 0111 0100 0000 1111 0011

L[0] 1111 1111 1110 1111 1111 1111 1111 1111

P-BOX + L[0] 1111 1101 1100 1000 1011 1111 0000 1100

(P-BOX + L[0], R[0]) 11111101 11001000 10111111 00001100 ~ 00000000 00000000 00000000 00000000

(L[1], R[1]) 00000000 00000000 00000000 00000000 ~ 11111101 11001000 10111111 00001100
Round 2

(L[1], R[1]) 00000000 00000000 00000000 00000000 ~ 11111101 11001000 10111111 0001100

[C1, Dq] 1110000110011001010101011111 * 1010101011000100111100011110

[Cs, D5] 1100001100110010101010111111 * 0101010110001001111000111101

KEY[2] 011110011010 111011 011001 110110 101100 100111 100101

E[R[1]] 011111 111011 111001 010001 010111 111110 100001 011001

E[R[1]] + KEY/[2] 000001 100001 000010 001000 100001 010010 000110 111100

S-BOX 0000 1101 0000 0000 1011 1101 1110 0101

P-BOX 0011 0001 0001 1000 0110 1100 1011 1001

L[1] 0000 0000 0000 0000 0000 0000 0000 0000

P-BOX + L[1] 0011 0001 0001 1000 0110 1100 1011 1001

(P-BOX + L[1], R[1]) 00110001 00011000 01101100 10111001 ~ 11111101 11001000 10111111 00001100

(L[2], R[2]) 11111101 11001000 10111111 00001100 *~ 00110001 00011000 01101100 10111001
Round 16

(L[15], R[15]) 00110101 10010111 11000000 00101100 ~ 11001110 10010001 00110001 01100100

[Cys, Dys] 111100001100110010101010111 ~ 1010101010110001001111000111

[Ci6, D16l 1111000011001100101010101111 * 0101010101100010011110001111

KEY[16] 110010 110011 110110 001011 000011 100001 011111 100101

E[R[15]] 011001 011101 010010 100010 100110 100010 101100 001001

E[R[15]] + KEY[16] 101011 101110 100100 101001 100101 000011 110011 101100

S-BOX 1001 0001 0100 1010 1100 1111 0101 1110

P-BOX 0001 1011 1111 0111 0110 0000 0110 1010

L[15] 0011 0101 1001 0111 1100 0000 0010 1100

P-BOX + L[15] 0010 1110 0110 0000 1010 0000 0100 0110

(P-BOX + L[15], 00101110 01100000 10100000 01000110 ~ 11001110 10010001 00110001 01100100

R[15])

(L[16], R[16]) 00101110 01100000 10100000 01000110 ~ 11001110 10010001 00110001 01100100

Output

00101000 11000001 11000011 11000000 00101000 01011110 10010011 10100100

I
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There remains the question of how to handle the encipherment of plaintext whose length is
not a multiple of 8n bytes. More importantly, there are instances in which the encipher-
ment as defined above reveals structure in the plaintext. For example, when we encipher
a file containing a picture, the outline of the picture might be detectable in the ciphertext.
Also, stereotyped preambles of plaintext messages, like Dear Mr./Ms. or To : may
be visible in the ciphertext. In order to hide the repetitive nature of plaintext and stereo-
typed preambles, chaining was introduced.

The record chained encipherment of plaintext x = (x'©, x'", ..., xX"7", x™) of
length 8n 4 k bytes with 0 < k < 8 by DES is defined as follows:

1. A nonsecret and randomly chosen 8-byte )_)(_ D

the ciphertext.

2. The XOR of the ith block of plaintext x”’, 0 < i < n, with the (i — I)st block of
ciphertext X(’_l), enciphered by DES, becomes the ith block of ciphertext:

initial chaining value (ICV) prefixes

Block Chained DES : x” — y = DES;{x? + (™}, 0<i<n.

3. If the length 8n + k of the plaintext is a multiple of 8 bytes (k = 0), the encipherment
is complete; otherwise, the final block x™ of k-bytes is enciphered by first
re-enciphering the (n — 1)st block of ciphertext

g(n—l) — DESk{X(n_l)}
and thereafter XORing the leftmost k bytes of the result with )_c("fl)

y(n) — E(n) + Leftklz("fl)]

where
Lefti[wo, w1, ..., we3] = (wo, w1, ..., Wer—1)

On pages 275-277 of Konheim [1981] it is verified that record chaining is reversible and
examples of chaining are given.

IS DES A RANDOM MAPPING?

In Section 10 of Chapter 8 the mappings of the set Z,, = {0, 1, ..., m— 1} were described.

Proposition 9.1:  If F is a randomly chosen one-to-one mapping of Z,, and Zis a
randomly chosen element of Z,,, then

1
9.1a The probability that Z belongs to an n-cycle in — and
m
9.1b The average length of the cycle containing Z is (m + 1)/2.

Proof: First an explanation of what is meant by “random”; there are m! permu-
tations of the elements of Z,,. By the phrase “choose a mapping F randomly”, we mean
that the permutation F is selected with probability 1/m!. Similarly, by the phrase
“choose Z € Z,, randomly”, we mean that a particular Z € Z,, is selected with probability
1/m.
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Let L denote the length of the cycle of F containing Z. As Z is to be any of m values,
there are (m — 1)! permutations of the remaining m — 1 elements so that

. The probability that F(Z)=Z (meaning Z belongs to a l-cycle) is
Pr{L=1}=m— 1!/m!' =1/m.

- The probability that the nth iterate of F satisfies F "(Z){ 72, ifn=1,

=7 ifn=2"
(m—1Dm—2)! 1

1
This argument can be extended yielding Pr{L = r} = —.
m

Next, we consider the analog of Proposition 9.1 when F is not necessarily a
one-to-one mapping of the elements of Z,,.

As observed in Chapter 8, the orbits of mappings that are not one-to-one are com-
posed of cycles with tails (Fig. 9.6). As the orbit of z must contain some repetition, we
have F™(z) = F'/)(z) with 0 < j < n, where n is the first such repetition.

Proposition 9.2: If F is a randomly chosen mapping of Z,, and Z is a randomly
chosen element of Z,,, then

9.2a The probability that the first repeated element in the orbit Z— F(Z) —
F®(Z) - --- occurs at position L = n, F™(Z) =FY(Z) for 0 <j<nis

n—1 .
Pr{L = n} :% H(l —’;>

i=0

n—1 .
PrL>n) =[] (1 —é)

i=0

9.2b The expected value of L is asymptotically ~/0.57m as m — oo.

Proof: If L=nthen Z, FP(Z),..., F" Y(Z) are all distinct elements of Z,,:

« There are m(m — 1) (m — 2) --- (m — (n — 1)) possible choices for these elements;
. As F() € {z, FP(2),..., F" Y(Z)}, it must be one of n values;

. Each of the values of F(Z) with Z & {Z, F"(2),..., F" Y(Z)} may be chosen in
m ways;

Zjs2

x /'Zjﬂ
2 gy — e — .

7

Figure 9.6 An orbit with a tail.
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which gives

Pr{L =n} = !

mm

mxm—-—1)x---xm—m—1) xnxm"™"],

proving Proposition 9.2a. The expectation of L is

m—1 m—1m—1 .
E(L)=Y PrL>n}=) H(l —n’)
n=1

n=1 n=0

i, L ; i
If — is small, so that the approximation 1 —-L ~ ¢7n.
m

n—1 i 2
H 1——) = cm.
m

i=1
This suggests that as m — oo

m—1 5
E{L} ~ 26_57 ~ /m Z meT,
n=1 sE{/m,/2m...}

The last summation approximates the Riemann integral f(;o e~ %dx, which gives
Proposition 9.2b. To prove that the approximation of the product by the exponential is
valid, the summation for E{L} is divided into two parts 2, and 3,; the terms with
n < B are included in 2,; and tail terms with n < B in 2,.

The approximation is valid for the terms in X; the second sum 3, converges to 0.

9.8 DES IN THE OUTPUT-FEEDBACK MODE (OFB)

DES may be used to generate a key stream to be XORed to plaintext. DES is the output
feedback mode (OFB) (Fig. 9.7) and starts with

1. A nonsecret initial seed g(0)= @, 29,...,. e Ze40;
2. A key ]_C = (ko, kl’ ey k55) S ZSG,Z; and
3. A feedback parameter m with 1 < m < 64.

The key stream {g(i): 1 <i < o0} is defined by
7% = Rightg,_,,(z™"), Left,,DES; {z/™"}
where Right,, and Left,, take the rightmost and leftmost m bits of w:
Right,, (wo, wi, ..., We3) = Wea—m> Wes—m» - - - s We3) E Zm2
Left,,(wo, wi, ..., we3) = (Wo, Wi, ..., Wp—1) € Zp
is XORed to plaintext to create the ciphertext.

When m = 64, the output-feedback mode mapping depicted in Fig. 9.7 is a one-to-
one mapping of Zg4, onto itself. The average cycle length is 293,
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y
Yo | N oo Ym=1| Ym | Ym+1 oo Y63
A
DES
/
Ym | Ym+1 s Y63 20 2 s Zm-1| Zm Zm+1 e 263

Figure 9.7 Output feedback mode.

When m < 64, the OFB mapping is not one to one and its cycle length is O(2*%), an
observation first made by Davies and Parkin [1982]. This means that in a large ciphertext
file with m = 1, we are likely to see the same key bit used to encipher different bits of the
plaintext. And why should any value of m < 64 be used?

9.9 CRYPTANALYSIS OF DES

The exportation of American technology is regulated by the Bureau of Export Adminis-
tration: Office of Strategic Trade and Foreign Policy, an agency within the U.S. Depart-
ment of Commerce. A list of products covered by 15 CFR chapter VII, subchapter C
may be found on the Web page www.bxa.gov; included are commercial encryption
devices.

The LUCIFER cryptographic facility was incorporated into the IBM Liberty
Banking System and a patent application protecting the technology was filed by IBM.
United States Patent Office rules require a patent to be first filed in the United States
and reviewed by the Patent Office before foreign patent coverage can be sought. In
cases where the publication of an application or the granting of a patent would be detri-
mental to national security, the Commissioner of Patents may issue a secrecy order to
stop the patent process. This

1. Requires that the invention be kept secret,

2. Withholds the publication of the application or the grant of the patent for such period
as the national interest requires,

3. Forbids the dissemination of material related to the patent by all parties, and

4. Restricts filing of foreign patent applications.
The owner of an application that has been placed under a secrecy order has a right to
appeal the order to the Secretary of Commerce, 35 U.S.C. 181. If no secrecy order is

issued in the six months after the submission of a U.S. patent application, patent appli-
cations may be filed outside the United States.
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IBM'’s patent application did not result, in a secrecy order, probably because it dealt
with a “banking system” and did not describe the encryption process in the terms NSA is
familiar with. IBM filed in France six months later and was granted a patent.

Up to this point, NSA had been the undisputed center of cryptographic competence
in the United States. As the cat was out of the bag, so to speak, NSA decided that it would
have to “influence” the direction of commercial cryptography rather than forbid it. The
IBM Corporation developed a follow-on to LUCIFER in response to encouragement
from NSA, and submitted the “improved” algorithm to NBS for certification as a national
standard.

During the design of DES, certain desirable properties of S-boxes were formulated.
With the exception of three criteria fisted below, they have never been made public at the
request of NSA.

C1. No S-box is either a linear or affine' function.
C2. S-box constraints

C2a. Changing one bit in the input of an S-box resulting in at least two output bits
changing;

C2b. If two inputs to an S-box differ in the middle two bits, their outputs must be
different by at least two bits [Coppersmith, 1993];

C2c. If two inputs to an S-box differ in their first two bits and agree on their last two,
their two outputs must differ;

C2d. For any nonzero 6-bit difference between S-box inputs, no more than 32 pairs
of inputs exhibiting that difference may result in the same output difference.
A twiddle of a vector x is a vector x + y that differs from x in at least one component.
If the length of the XOR is small, say [ROM[x] + ROM|[x + y]| < 2, a twiddle could
conceivably propagate in many rounds so that |7(x) + 7(x + y)| might also be small.
If many different twiddles are present, they might lead to a determination of several
key bits. During design of DES, twiddles were not excluded until it was discovered
that they could be used as indicated above.

Searching the block cipher parameters for good differential changes — the new
term for twiddles — and using them for cryptanalysis is the basic idea of Bilham’s
and Shamir’s differential cryptanalysis [Bilham and Shamir, 1993], the closely
related linear cryptanalysis of Matsui [1994], which searches for good linear
approximations to the ROMs, and the recent paper by Bilham [1995].

'An S-box F(x) is linear in X = (X0, X1, X2, X3, X4, Xs) if

X0

Yo €00 Coq1 Co2 Co3 Co4 Cos X1

c c c c c c X,

F(x) = DA 1,0 1,1 12 13 14 1,5 2

y2 €20 C21 C22 (€23 C24 C25 X3

3 €30 €31 C32 €33 C34 C35 X4

Xs

F is affine if
Xo
Yo bo €00 Co1 Co2 Co3 Cod4 Cos Xy
1 by Clo €11 Ci2 €13 Ci4 C15 X2
Fo=|7"]= +

Y2 by €20 €21 C2 (3 C24 C25 X3

y3 b3 €30 €31 €32 €33 (€34 C35 X4
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C3. The S-boxes were chosen to minimize the differences between the number of 1°s and
0’s when any single bit is held constant.

This is essentially the criterion discovered by Matsui and the basis for the measure of
nonlinearity.

As IBM did not reveal the design principles, there was the suspicion that Big-Blue and
NSA had conspired to put a trap into the system. DES has been analyzed over the past
25 years and no systemic weakness has been found [Schneier, 1996]. Biham and
Shamir [1992, 1993] wrote

The replacement of the order of the eight DES S-boxes (without changing their values) also
makes DBS much weaker: DES with 16 rounds of a particular order is breakable in about
238 steps. DES with random S-boxes is shown very easy to break. Even a minimal change of

one entry of one of the DES S-boxes can make DES easier to break.

Of course, Bilham and Shamir may be wrong and, in retrospect, the key length of 56 bits
seems to be inappropriate.

DES and the controversy stimulated a significant amount of research in the academic
community on cryptography. It has produced an extensive literature dealing with the
design of S-boxes, in particular with regarding the nonlinearity of an S-box [Nyberg,
1992; Seberry and Zheng, 1993; Charnes and Piepzryk, 1993; Detombe and Tavares,
1993; Seberry et al., 1994, 1995; O’Connor, 1995a, b].

DIFFERENTIAL CRYPTANALYSIS

Suppose two plaintexts are enciphered by S-box S[0] with the same key.
y, = S[0](x; + k), ¥y, = S[01(x; + k).
We conclude that
y, +¥, = S0](x; + k&) + S[0](x, + k)
and write this last relationship as
S[0]: Ax — Ay
where

(Input XOR) Ax=x; +x, = +k) + & +k)
(Output XOR) Ay = y, Y,

How much of the 6-bit key is revealed by corresponding pairs of plain- and cipher-
text (x;, ¥;) (i = 1, 2) enciphered by S-box S[0] with the same unknown key? That is, how
many solutions are there to

y, =80, +h), y, =S[016; +5)
given
Ax=x+x,  Ay=y +y,.

Define
D(Ax, Ay) = {(z), 2p) : Ax = z; + 25, Ay = S[0](z)) + S[0](z,)}-
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A pair (z;, 2) in D(Ax, Ay) determines a possible unknown key by setting
k = &1 + Zl

If the size of D(Ax, Ay) is much smaller than 64 = 2%, then the differentials (Ax, Ay) reveal
a great deal of the key. Of course, the encipherment process described above uses only one
S-box and it will be necessary to extend this to the full DES encipherment process. This is
the principle of differential cryptanalysis, a known corresponding plain/ciphertext attack
whose objective is to attempt to identify the unknown key from corresponding plain/
ciphertext differentials (Ax, Ay) enciphered with the same key.

Tables 9.20 and 9.21 list the size of the set |D(Ax, Ay)| for all pairs of Input/Output
XOR (Ax, Ay). A row is labeled by the 6-bit Input XOR A(x) (as two hex digits), a column

TABLE 9.20 |D(Ax, Ay)| for S-Box SI0]

Input XOR Output XOR of S[0]

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 64 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0
01 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4
02 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2
03 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0
04 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2
05 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6
06 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12
07 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4
08 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4
09 10 2 4 0 2 4 6 0 2 2 8 0 10 O 2 12
0A 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10
0B 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12
0oc 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2
0D 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2
OE 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8
OF 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8
10 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 6
11 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 0
12 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0
13 2 4 4 6 2 0 4 6 2 0 6 8 4 6 4 0
14 0 8 8 0 10 0 4 2 8 2 2 4 4 8 4 0
15 0 4 6 4 2 2 4 10 6 2 0 10 0 4 6 4
16 0 8 10 8 0 2 2 6 10 2 0 2 0 6 2 6
17 4 4 6 0 10 6 0 2 4 4 4 6 6 6 2 0
18 0 6 6 0 8 4 2 2 2 4 6 8 6 6 2 2
19 2 6 2 4 0 8 4 6 10 4 0 4 2 8 4 0
1A 0 6 4 0 4 6 6 6 6 2 2 0 4 4 6 8
1B 4 4 2 4 10 6 6 4 6 2 2 4 2 2 4 2
1c 0 10 10 6 6 0 0 12 6 4 0 0 2 4 4 0
1D 4 2 4 0 8 0 0 2 10 0 2 6 6 6 14 0
1E 0 2 6 0 14 2 0 0 6 4 10 8 2 2 6 2
1F 2 4 10 6 2 2 2 8 6 8 0 0 0 4 6 4
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by the Output XOR A(y) (as two hex digits) for the S-box S[0]; for example, the entry in
row 1A = (01 1010) and column C = (1100) is 4.
Note that
- The sum of the entries in a row is 64, the average is 4;
. The distribution of values in a row is not uniform; and
« If Ax # 0; then if (z;, zp) is in D(Ax, Ay), then so is the pair (zp, ;).
Example 9.3

Table 9.22 is derived from the row 34 data in Table 9.21 and the S-box description of S[0]
in Table 9.4; it lists the input pairs (z;, z2) (as two hex digits) that satisfy

Ax=2z+2=(1,1,0,1,0,00=34  (Input XOR)

TABLE 9.21 |D(Ax, A y)| for S-Box S[0]

Input XOR Output XOR of S[0]

o 1 2 3 4 5 6 7 8 9 A B C D E F
20 0 0 10 0 12 8 2 0 6 4 4 4 2 0 12
21 4 2 4 4 8 10 0 4 4 10 0 4 0 2 8
22 10 4 6 2 2 8 2 2 2 2 6 0 4 0 4 10
23 4 4 8 0 2 6 0 6 6 2 10 2 4 0 10
24 10 0 0 2 2 2 2 0 14 14 2 0 2 6 2 4
25 4 4 12 4 4 4 10 2 2 2 0 4 2 2 2
26 0 4 10 10 10 2 4 0 4 6 4 4 4 2 0
27 4 2 0 2 4 2 0 4 8 0 4 8 8 4 4
28 12 2 2 8 2 6 12 0 0 2 6 0 4 0 6 2
29 4 2 2 10 0 2 4 0 0 14 10 2 4 6 0 4
2A 4 2 4 6 0 2 8 2 2 14 2 6 2 6 2 2
2B 12 2 2 2 4 6 6 2 0 2 6 2 6 0 8 4
2C 4 2 2 4 0 2 10 4 2 2 4 8 8 4 2 6
2D 6 2 6 2 8 4 4 4 2 4 6 0 8 2 0 6
2E 6 6 2 2 0 2 4 6 4 0 6 2 12 2 6 4
2F 2 2 2 2 2 6 8 8 2 4 4 6 8 2 4 2
30 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4
31 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8
32 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0
33 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4
34 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6
35 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0
36 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0
37 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4
38 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10
39 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0
3A 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0
3B 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2
3C 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0
3D 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4
3E 4 8 2 2 2 4 4 14 4 2 0 0 8 4 4
3F 4 8 4 2 4 0 2 4 4 2 4 8 6 2 2
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for all S-box S[0] Output XORs Ay # (0, 0, 0, 0) (as two hex digits) and is constructed as
follows:

- For each pair of input values to S-box S[01, (2o, 21, 22, 23 24> 25) and (2o, 715 22, 23 Za»
z5) for which z; +2, = (1, 1, 0, 1, 0, 0) = (20 + 20, 21 + 21> 22 + 25, 23 + 25> 24 + 24
Z5 + 75), compute

« y1 = S[0](z0, 21, 22, 23, 24 25) and y, = S[0] (20, 21, 2, 23, 24, 25)-

There is an entry (in hex)

(Zo, 21, 225 235 245 zs>
20 21> Zhs Tys Ty 25

in Table 9.13C provided Ay = y, + y,. For example,

- Table 9.21 shows that there are 8 pairs (z; +z) if Ay =(0,0,0, 1) = 1;

- The entry <§3 ) in Table 9.22 corresponds to

z,=1(0,0,0,0,1,1),z, =(1, 1,0, 1, 1, 1) with sum (1, 1, 0, 1, 0, 0);

« Table 9.4 shows the (row 1, column 1) S-box S[0] entry for z; = (0,0, 0,0, 1, 1) is
15=(,1,1,1);

« Table 9.4 shows the (row 3, column 11) S-box S[0] entry forz, = (1,1,0, 1,1, 1) is
14=(,1,1,0);
« The sum of these two S-box S[0]-entriesis 1 = (1, 1, 1, 1)+ (1, 1, 1, 0).

leading to the entry (23 ) in the row corresponding to Ay = 1.

TABLE 9.22 Input Pairs (z,, z) Satisfyingz, + 2z, =(1,1,0,1, 0, 0)

Ay

Z+2=(1,1,01,00)

1

03 OF 1E 1F 2A 2B 37 3B

37 3B 2A 2B 1lE 1F 03 OF

04 05 OE 11 12 14 1A 1B 20 25 26 2E 2F 30 31 3A
30 31 3A 25 26 20 2E 2F 14 11 12 1A 1B 04 05 OE
01 02 15 21 35 36

35 36 25 15 11 10

13 27

27 13

00 08 OD 17 18 1D 23 29 2Cc 34 39 3cC

34 3¢ 39 23 2¢ 29 17 1D 18 00 OD 08

09 o0C 19 2D 38 3D

3D 38 2D 19 0C 09

06 10 16 1Cc 22 24 28 32

32 24 22 28 16 12 1C 06

07 0Aa OB 33 3E 3F

33 3E 3F 07 OA OB
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Example 9.3 (continued)
Suppose we have

c X1 = (1’ 19 15 1, 13 l)’ Xo = (07 09 1, 09 1’ 0), A-EZ (19 la O, 19 0’ O) and
« y1 = S8[01(x1 + k) = (0, 1, 1, 0), y> = S[0](x> + k) = (0, 0, 1, 0).
There is essentially one entry in Table 9.22 and it shows that

«21=10(0,1,0,0,1,1) = 13,2, =(1,0,0,1,1, 1) = 27 satisfies z; +z, = (1, 1, 0, 1,
0,0) =34 and

« There are only two possible keys k = (1,0, 1,1,0,0)=2Cand k= (0, 1, 1, 0, 0,
0)=18.

The inference of the key in Example 9.3 can be generalized to a one-round characteristic of
DES as shown in Figure 9.8 where

Ly)=R@&) R@)=L&)+FRE) i=1,2
Ax=x+x, Ay=y +y,

LAY =LG)+L&)  R@AD = RE) +RE)
LAy =Ly)+Ly,) R@Ay =Ry)+RQ,).

The inputs to the one-round DES characteristic are

« The XOR Ax of plaintext x; and x, and
- The XOR Ay of the ciphertext y; = DES{x,} and y, = DES;{x,}.

The probability of the one-round DES characteristic is the conditional probability
Prix;, x,y,,y,/Ax, Ay}

computed assuming a uniform distribution on plaintext and key.
Note that the difference R(Ay) depends on
. The key,
- The plaintext (R(x;), R(x;)) and
- The plaintext difference L(Ax).

L(Ax) R(Ax)
- D
L(Ay) | R(Ay) ‘

Figure 9.8 One-round DES generic characteristic.
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L 0000 00 00
00 00 00 00 B P
L <)
00 00 00 00 | L ‘

Figure 9.9 A one-round DES characteristic of probability 1.

Differential cryptanalysis infers the key by computing the probability of a specified pair of
XORs (Ax, Ay) assuming the undetermined variables are chosen independently with the
distribution.

Example 9.4
A one-round DES characteristic of probability 1 is shown in Figure 9.9. Table 9.20 shows
that if the input XOR is c, then the output XOR is E for 14 of the 64 possible keys.

Example 9.5
A one-round DES characteristic of probability 14/64 is shown in Figure 9.10. By combin-
ing the one-round characteristics in Examples 9.4 and 9.5, we obtain Example 9.6.

Example 9.6
A two-round DES characteristic of probability 14/64 is shown in Figure 9.11.

Example 9.7

A three-round DES characteristic of probability (14/ 64)? is shown in Figure 9.12. This is
as far as we will go in the exposition. The complete details are to be found in Bilham and
Shamir [1993]. Differential cryptanalysis would offer a significant improvement over
exhaustive key search for DES if there were fewer than 16 rounds. With 16 rounds, a
time complexity of 2%’ uses 2%¢ plain/ciphertext pairs pruned from larger pool of 2%’
pairs. Nevertheless, differential cryptanalysis is the first and only attack on DES with com-
plexity less than 2°°.

L | 60 00 00 00 ‘

00 82 80 00
= P(E0 00 00 00)

60 00 00 00 | L + 00828000 ‘

Figure 9.10 A one-round DES characteristic of probability 14/64.
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Differential cryptanalysis has been successfully applied against other cryptosystems
[Bilham and Shamir, 1991, 1992].

THE EFS DES-CRACKER

IBM’s submitted DES in response to the National Bureau of Standards request in the
Federal Register of August 27, 1974, for a national data encryption standard. After
the publication in DES in March 1975, two workshops on DES were organized,
the second to review the cryptanalysis effort on DES. There were three contentious
areas:

1. Did DES contain any hidden trap doors whose knowledge might permit the
decipherment of DES ciphertext without the key?

2. What design principles were used in DES?
3. Why was the key length chosen to be 56 bits?

Very few answers were forthcoming. IBM does business throughout the world and feels
itself required to abide by the wishes of the U.S. Government. In any event
256 = 72,057,594,037,927,936 seemed like to large a number of key trial and the cost
of building a machine required to perform key trial seemed to make the possibility
remote.

A practical architecture for a DES-cracker with custom chips was proposed in 1993
by Michael Wiener of Bell Northern Research [Wiener, 1993]. The Electronic Frontier
Foundation (EFF) founded in 1990 is a nonprofit public-interest group of “passionate
people lawyers, technologists, volunteers, and visionaries working to protect your
digital rights.” The EFF seeks to educate individuals, organizations, companies, and gov-
ernments about the issues that arise when computer and communications technologies
change. The EFF sponsored the design and assembling of a DES-cracker [EFF, 1998].

00 82 80 00 | 60 00 00 00 ‘

0082 8000 B A
- F D

60 00 00 00 00 00 00 00

0000 00 00 B A
- F o= S),

00 00 00 00 | 60 00 00 00 ‘

Figure 9.11 A two-round DES characteristic of probability 14/64.
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60 00 00 00

60 00 00 00

00 00 00 00

00000000

N
N\

00 00 00 00

00828000

60 00 00 00

N
N\

60 00 00 00

00 82 8000

Figure 9.12 A three-round DES characteristic of probability (14/ 64)>.

9.11.1 The Architecture

309

The basic component of the DES-cracker is the search unit, which has hardware including

two 64-bit ciphertext registers and a 56-bit key register. The DES-cracker contains

1. 24 search units contained within a custom chip;
2. 64 customer chips mounted on a board,
3. 64 boards in each chassis; and

4. two chassis.

9.11.2 Key Search Algorithm

The ciphertext registers contain two 64-bit ciphertext blocks

¥, = DES;e0 {x;}

whose plaintexts x;, x, and key k*’ are unknown.

¥, =DES;{x,},
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The DES-cracker tests a key k by deciphering y; and y, with it and deciding if the
resulting plaintext is determining if each of the 8 bytes is contained in the table INTER
of interesting (bytes). If it is only known that the plaintext consists only of alphanumeric
text, the INTER consists of the EBCIDIC (8-bit ASCII) coding of the following 69
characters:

1. The alphabetic charactersa b -+ z A B --- Z
2. The digits 0 1 --- 9

3. Blank space and nine punctuation symbols . , ? ; : ( ) 1 [.

9.11.3 Testing a Key

A key k is tested in two steps as follows.

S1. The first 64-bit ciphertext block y; is deciphered DES; I y1} and checked to see if all
of its 8 bytes are interesting:

(a) If the plaintext block is not interesting, a new key is tested;
(b) If the plaintext block is interesting, then S2.

S2. The second 64-bit ciphertext block y, is deciphered DES; '{ y,} and checked to see if
all of its 8 bytes are interesting:

(a) If the plaintext block is not interesting, a new key is tested.

The probability that a random 8-bit (0,1)-block of ciphertext will yield an interesting
byte upon decipherment is

o 1
256 4°

The probability that a random 64-bit ciphertexts will yield 8 interesting bytes upon
decipherment is approximately

The probability that two random 64-bit ciphertexts will yield 16 interesting bytes upon
decipherment is approximately

If we assume that only one of the 2°° keys will give the true plaintext; the number of keys
that will pass both steps S1 and S2 is about 2*°. These keys will require further testing
using additional ciphertext.

A search unit performs one decipherment in 16 clock cycles. Since the clock runs at
40 MHz (40 million cycles/second) a search unit can test 2.5 million keys/second. A
board therefore tests 4.8 billion keys/second and the DES-cracker tests 92,160,000,000
keys/second. On the average only half of the 2% = 72,057,594,037,927,936 keys need
to be tested before a match is discovered.

The cost to build of the DES-cracker was $220,000. Its proud parents announced on
July 17, 1998, that it had found a DES key in 3 days.
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WHAT NOW?

If the key length were 2% it would have taken the DES-cracker 768 days; if the key
length were 2 x 56, the DES-cracker would have to work a very long time to find the
key. This points out the power of exponentiation and the advantage enjoyed by the
designer of a cryptosystem over the cryptanalyst. Adding one bit to the key doubles
the time for exhaustive search. If the designers of DES had been careless and there
was some intrinsic weakness, or a trap-door, such a statement would not necessarily
be true.

Walter Tuchman of IBM’s Kingston Facility was a designer and implementor of
DES. He also proposed triple DES [FIPS PUB 46-3, 1999] defined by>

DES3:x — y = DES;, {DESEZI {DES; {x}}}.

If k; = k,, DES3 reduces to ordinary DES.

The U.S. Munitions List is part of the secondary regulations (the International
Traffic in Arms Regulations or ITAR) that defines which defence articles and services
are subject to licensing. Cryptographic products are included in the products (Category
XII — Auxiliary Military Equipment) regulated by ITAR.

Current export rules do not permit the export of DES3 to certain countries. An article
in the Wall Street Journal (September 17, 1998) entitled “Encryption Export Rules
Relaxed” claims that the current 56-bit limitation will be relaxed, asserting

U.S. vendors also won more freedom to export network-encryption products used primarily
by Internet-service provides and communication carriers.

In “Draft Encryption Export Regulations” (dated November 23, 1999) changes in the rules
were proposed. Included are:

1. Encryption commodities, software and technology for U.S. subsidiaries. You may
export and re-export any encryption item of any key length under ECCNs 5A002,
5D002, and 5E002 to foreign subsidiaries of U.S. firms (as defined in part 772).°
This includes source code and technology for internal company proprietary use,
including the development of new products. U.S. firms may also transfer encryption
technology (SE002) to a foreign national in the United States (except foreign nationals
from Cuba, Iran, Iraq, Libya, North Korea, Sudan, and Syria) for internal company
proprietary use, including the development of new products. All items developed
with U.S. encryption commodities, software, and technology are subject to the EAR.

2. Encryption commodities and software. You may export and re-export any encryp-
tion commodities and software including components of any key length under
ECCNs 5A002 and 5D002 to individuals, commercial firms, and other nongovern-
ment endusers.

Export controls were transferred from the Department of Commerce to the State
Department and a new policy was announced on December 9, 2004. It provides for a
review for cryptographic products with key length larger than 64 bits. Details can be
found at www.bis.doc.gov /encryption/default.htm.

2FIPS PUB 46-3, October 25, 1999, specifies what I refer to as DES3. It is also described in ANSI X9.52-1998,
“Triple Data Encryption Algorithm Modes of Operation”.

*ECCN is the the Export Control Classification Number.
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9.13 THE FUTURE ADVANCED DATA ENCRYPTION
STANDARD

9.14

DES was first approved as FIPS Standard 46-1 in 1977. It has been (reluctantly) reaffirmed
as a standard several times, most recently in 1993, and then only until December 1998. At
that time, the affirmation included the statement

At the next review (1998), the algorithm specified in this standard will be over twenty years
old. NIST will consider alternatives which offer a higher level of security. One of these
alternatives, may be proposed as a replacement standard at the 1998 review.

The National Institute of Standards (NIST) solicited proposals in the Federal Register
(January 1, 1997) for an Advanced Encryption Standard (AES). The rules included

R1. AES shall be publicly defined.
R2. AES shall be a symmetric block cipher.
R3. AES shall be designed so that its key length may be increased as needed.
R4. AES shall be implementable in both hardware and software.
RS. AES shall either be
(a) freely available, or
(b) available under terms consistent with the ANSI Patent Policy.
R6. Algorithms which meet the above requirements will be judged based on the following
factors:
(a) security (resistance to cryptanalysis),
(b) computational efficiency,
(c) memory requirements,
(d) hardware and software suitability,
(e) simplicity,
(f) flexibility, and
(g) licensing requirements.
A subsequent announcement in the Federal Register (September 12, 1997) specified
the (key, block) sizes to be supported by the AES; (128, 128) (192, 128) (256, 128).
The statistical tests to be applied to evaluate the strength of the AES standard are
described in Chapter 5 and specified in [FIPS, 1994, FIPS 140-1]. The selection process

has involved two rounds; 15 submissions were made in Round 1. Of these, five survived
in Round 2.

AND THE WINNER IS!

Rijndael was announced as the winning algorithm in October 2000 [Daemen and Rijmen,
1999] and is specified in [FIPS, 2001, FIPS-197]. Susan Landau [2004] wrote

Daemen and Rijmen sought simiplicity — simplicity of specification and simplicity of analysis.
Not every cryptographer sees simplicity as an important goal — two AES finalists,

MARS and Twofish, have far more complex designs. Some observers felt that this

complexity was part of the reason the two algorithms were not chosen as the Advanced
Encryption Standard, as their round functions were simply too difficult to analyze fully.
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Too difficult to analyze! Indeed!

Rijndael is a block cipher supporting a variety of plaintext block sizes and
cipher key lengths. The cipher key k is an array of dimension 4 x Nk (a total of Nk
4-byte words)

koo ko1 ... kowk—1
k= kio ki ... ki
- kao ka1 ... konkr
k3o kai ... kawk-

Each {k;;} is regarded as both

« An 8-bit byte, that is, an element in the set 2, g, and

« An integer in the set Z;s¢.

Rijndael supports the Nk values of 4, 6, and 8 words (128, 192, and 256 bits).
The cipher key k is read into and from the array by columns from left to right

k = (ko,1, k1,0, k2,0, k3,0, - - - » ko Nk—15 K1 Nk—15 K2, Nk—15 K3, Nk—1)-

Plaintext x is an array of dimension 4 x Nb (a total of Nb words)

X0,0 Xo,1 --- XO,Nb—1
X = X1,0 X1,1 ... X1,Nb-1
X20 X211 ... X2 Nb-1
X3,0 X31 ... X3Np—1

Each {x;;} is regarded as both

- An 8-bit byte, that is, an element in the set 2,5, and

- An integer in the set Z,s.

Rijndael supports the Nb values of 4, 6, and 8 words (128, 192, and 256 bits).
The plaintext x is read into and from the array by columns from left to right

X = (X(),], X1,05 X2,05 X3,05 - - - » XO,Nb—15 X1,Nb—15 X2,Nb—15 x3,Nb71)

A Rijndael state w = (w;;) is an array

wo,0 o1 ... WO NH—1
© = w0 W, ... O] Np—]
- w0 W1 ... WNp-I
w30 W3] ... W3Np—]

of dimension 4 x Nb whose entries are integers in Z,sg.

Like DES, the Rijndael encipherment process is the composition of transformations
on the state, also referred to as rounds by Rijndael:

RUX)=y= TN * Ty % ... xT1 % Tp)x).

where the * (asterisk) denotes composition of mappings.



314

9.15

CHAPTER 9 BLOCK-CIPHERS: LUCIFER, DES, AND AES

The number of rounds Nr depends on the values of Nb and Nk as shown in Table 9.23. The
domain and range of a round 7 is a state w with datatype array [0..3,0..Nb]of Z;s6.

The initial round Ty, is an exclusive XOR of 4Nb bytes of round key (R-key) to the
state (plaintext). As in DES, subsequent rounds modify the state w as a result of several
transformations, referred to by Rijndael as layers:

L1. Linear Mixing Layer — the transformations ShiftRow and MixColumn;

L2. Nonlinear Layer — the transformation ByteSub;

L3. Key Addition Layer — the transformation AddRoundKey.
In order to simplify the decipherment process, DES employed a Fiestel structure, each
round only modifying part of the data.

As 77 and 6 are involutions in the Feistel structure, the inverse of the transformation
0 + 77, on 64-bit blocks is 77, * 6. The Feistel structure was introduced to simplify com-
putation of the inverse transformation.

Rijndael does not follow this paradigm; each round modifies all of the bits in the
data. The inverse to Rijndael is the composition

R =x=(Ty" « Ty % - Ty, x TyHO)

of the necessarily invertible round transformations {7;}.

THE RIJINDAEL OPERATIONS

Rijndael uses a second interpretation for the components in abyte x = (xo, x1, ... , X6, %7) €
Z, 8, namely, as the coefficients of a polynomial of degree 7

X(DEX()§7 +X1§6+"'+X6f+x0 < X = (X0, X1, ..., Xg, X7).

The addition of bytes x + y is according to the usual rules for the addition of polynomials,
Rijndael refers to addition as EXOR rather than XOR.
Associating a byte with a polynomial provides a way to define the multiplication; if

) =x00 +x1+ -+ X6l +x7 < x = (X0, X1, ... ., X6, X7)
Y =yol + 0L+ vl +y7 <y =G0, Vis- -5 Yos ¥7)
then

(D=0l +ul’+ +wl+ < 2= 0.2 26 2) =X,

TABLE 9.23 Number of Rijndael Rounds Nr

Nb=4 Nb=6 Nb=38

Nk =4 10 12 14
Nk=6 12 12 14
Nk =8 14 14 14




9.15 THE RIJNDAEL OPERATIONS 315

where

2(¢) = x(£) y(£)(modulo m({))

and

m)=1+{++ 4+ 8

where m({) is a primitive (see Table 8.3) but not irreducible polynomial.
For fixed x = (xy, X1, ..., X¢, X7) € Z, g, the transformation

(&) = x(£) y(&)(modulo m({)) .1
with
Y=o Y15+ Y6, y7) # (0)g
is a transformation on Z,s5¢ — {0}.
Proposition 9.3: The transformation in Equation (9.1) is invertible; given

w = (Wo, Wi, ...,Ws, w7) # (0)g, there exists a unique y = (Yo, Y1,---, Y6 ¥7) 7# (05
such that

w({) = x(£) y(£) (modulo m({)).
Proof:  If y;({) and y,({) satisfy
x(&) = y1() (modulo m(¢)) = x({) y2({) (modulo m({))
then

0 =x({) = (1(&) + y2(£)) (modulo m(Z))

which contradicts the irreducibility of m({) unless y{({) = y»({).
It follows that y({) — x({) y({) (modulo m({)) is a 1-to-1 mapping on Z,s5¢ — {0}
for each fixed x.

Proposition 9.3 implies that foreach x # (0)g, there must be a unique byte x ' such that
x-x7h = (1, (0))
or equivalently, for each polynomial x({) # 0, there exists a polynomial x~'({) such that

x(Ox~'(¢) =1 (modulo m({)).

The computation of the (multiplicative) inverse of x uses the extended Euclidean algor-
ithm, which we will now describe.
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Using the notation in Chapter 8§,

. The polynomial r({) in P[z] is a divisor of polynomials p({) and p({) in P[z] if r({) is
a factor of both polynomials;

« 1({) is the greatest common divisor of p({) and g({) if it is a divisor and has the
maximum degree of all common divisors.

gcd{p({), q({)} denotes the greatest common divisor of p({) and g().

Proposition 9.4 (Extended Euclidean Algorithm for Polynomials with
Coefficients in Z,):
9.4a If p({) and g({) are polynomials in P[z], the sequence of remainders {r}({) : j > 2}

ro(&) = p(&)
ri(§) = q({)
ro(§) = ci(Hr(d) + r(d); 0 < deg(ry) < deg(r)
r(§) = c2(Hr(4) + r3(); 0 < deg(r3) < deg(r2)

rs—2({) = ¢s—1(rs—1(&) + r5({); 0 < deg(rs) < deg(rs—1)
rs—l(g) = Cs({)rs(g) + rs+l(§); 0< deg(rs-‘rl) < deg(rs)

is ultimately identically O.
9.4b If s is the first index for which ry1({) = 0, then ry({) = ged{ p({), q(O)}.

94c If deg(p) > deg(q), the time to compute gcd{p({), q(} is O ((log,
deg(p)).

Example 9.8

PO =1+ + 0+ 0+ 83+ 0+
qO=1+03+0+0+0+

ro($) = p({)

r() =q({)

ro(¢) = (1 +2)ri({) + (L) n)=z++22+7+2
r(&) = @+ Dra(d) + r3(d) n)=1+z+2+2
() =@ +2+z2+ D) + Q) m)=1+z+72

r3() = (@ + DraQ) + rs(0) rs(£) =0

ged{p({), ¢} =1+z+7

The Operations ByteSub and InvByteSub are defined first for bytes x as
follows:



0, if x = (0)g

BSI(K) =2 = { —1
X

x, ifx # (0)
BS)(z) =Az+ B
1 00 01 1 11
1 100 0 1 1 1
1 1100011
1111 00 0 1
A=
1 1111000
011 1 1100
00111110
00011111

BS(x) = BS»(BS1(x))

Remarks:

1. BS;' =BS,.
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B=(,1,0,0,1,1,0)

2. A simple computation shows that the transpose A’ of A is equal to A~' so that

BS, ' = BS..

The operation ByteSub is defined for a state

o, 0
w1, 0
w2, 0
w3 0

by
BS(wo, )
BS(w;,0)

BS(w;,0)
BS(w3,0)

BS(w) =

Wy, |
wi, |
w2, |
w3, |

BS(wo, 1)
BS(wi, 1)
BS(w, 1)
BS(ws, 1)

o, Nb—1
W1, Nb—1
W2, Nb—1
w3, Np—1

BS(wo, np—1)
BS(w1, np-1)
BS(w2, np-1)
BS(w3, np-1)

ByteSub plays the role of the S-box in DES and is the only nonlinear element in

Rijndael.

The Operations ShiftRow and InvShiftRow are cyclic left and right shifts of
the rows of a state w. SR cyclically left-shifts row i of w by C; bytes as listed in Table 9.24.

For example, when Nb = 4

o, 0 Wy, 1 @g,2
w0 W] 2
wy o Wy W2
w30 W31 W32

wo, 3
w1, 3
2,3
w3 3

wp,0 o, 1 wWo,2 Wo, 3
w1 W2 W3 W0
w22 W3 W0 W]
w33 W30 W31 W32

The inverse InvShiftRow is a cyclic right shift of the row i of a state w by C;

bytes.
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TABLE 9.24 Rijndael Row Shift Parameters

Nb Co o G G
4 0 1 2 3

0 1 2 3
8 0 1 3

The Operations MixColumn and InvMixColumn are defined in terms of multi-
plication of polynomials whose coefficients are bytes. We write x = (ab) to show that the
byte x is composed of the two hexadecimal digits a and b. Table 9.25 shows a coding
between x and {ab). To compute the product

c(§) = a(¢) x b(¢) (modulo (1 + ¢*)) 9.2)
Q)= +al*+ecl+ao
with
aQ) = a3 + @ l* + a1+ ag
b({) = b3 + b > + by L+ by

the sum of the products of the coefficient of z'in a({) and the coefficient of Z/ in b({) with
i +j = k (modulo 4) for fixed k with k =0, 1, 2, 3 is computed. This may be written as

Co ap dz d; ag b()
al_|a a a by 9.3)
C2 a a ay a3 by
Cc3 a a; ay bs
co = (ao - bo) + (a3 - by) + (az - by) + (a; - b3)
c1 = (ay - bo) + (ao - by) + (az - by) + (az - bs)
¢y = (az - bo) + (ay - by) + (ap - b2) + (asz - b3)
¢3 = (a3 - bg) + (az - by) + (a1 - by) + (ag - b3) 9.4

Example 9.9
We compute c({) = a({)x b({) (modulo (1 + §4)) with

a({) = (02) +(01)¢ +(01)¢* +(03)¢
b({) = (OE) + (09){ + (0D)Z* + (0B){

TABLE 9.25 Byte-to-Hex Coding Table

Bits Hex Bits Hex Bits Hex Bits Hex
0000 0 0100 4 1000 8 1100 c
0001 1 0101 5 1001 9 1101 D
0010 2 0110 6 1010 A 1110 E
0011 3 0111 7 1011 B 1111 F
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by adding the products of the coefficient of z' in a (£) and the coefficient of z/ in b(?)
with i + j = k (modulo 4) for fixed k with k = 0, 1, 2, 3.

1. The coefficient of ¢ in ¢() is the sum of the products of
(a) the coefficient of { "in a({) and
(b) the coefficient of £/ in b({) with i + j = 0 (modulo 4); that is,

(02) (E) « {+ P+ D)=+ +
(01)-(0B) & 11 + L+ ) =1++

(01)- (D, 0) < 1A+ + ) =1++
(03) (09 - 1+ DU+ ) =1+¢+ 0+

with value 1.
2. The coefficient of ' in ¢(¢) is the sum of the products of
(a) the coefficient of g’i in a({) and
(b) the coefficient of & in b({) with i + j =1 (modulo 4); that is,

(02)-(09) & A+ ) =¢+ "

(01) (0E) & W+ P+ D)=+ + 0
(01)-(0B) <> 11+ ¢+ ) =1+¢+ 8

(03) (D) & 1+ DA+ + ) =14+ +

with value 0.
3. The coefficient of £ in ¢({) is the sum of the products of
(a) the coefficient of ¢’ in a({) and
(b) the coefficient of & in b({) with i + j = 2 (modulo 4); that is,

(02) (D) > LA+ P+ )=+ 0+ ¢
(01)-{(09) x> 11+ =147

(01) - (0B) « 1+ P+ )=+ 0+
(03)-(0B) & 1+ DA +{+ ) =1+ 2+ + ¢

with value 0.
4. The coefficient of £* in ¢({) is the sum of the products of
(a) the coefficient of { "in a({) and
(b) the coefficient of £/ in b({) with i + j =3 (modulo 4); that is,
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(02) -(0B) & LA +{+ )=+ + ¢

01y (0D) <> 1A+ 2+ ) =14+ 2+ ¢

(01) (09 > 11+ ) =143

(03) (0B) & (1 + O+ P+ ) = ¢+ ¢
with value 0.

Example 9.9 shows that

c(¢) = a(¢) x b(¢) (modulo(1 + ¢*) = 1

when

a()=(02) +(01){+(01) £ +(03)¢*  b(¢) =(0E) +(09){ +(0D) {* +(0B)>.

This computation proves Proposition 9.5.

Proposition 9.5: Ifa({) = (02) + (01){+ (01)¢*+ (03)¢7, then the transformation
Ta: b({) = a({) b(¢) (modulo(l + ¢*))
is invertible with inverse
T, : b({) — a”'(£) b() (modulo(1 + £*))
with
a~'(¢) = (0E) +(09){ + (0D){* +(0B).

A column in the state

Wo,0 ®o,1 - W Np—1
= w0 ®,1 W Nb-1
w0 W21 - W2 Np-1
w30 W3] -+ W3 Np—I|

is identified with a polynomial of degree (at most) three, whose coefficients are bytes. The
linear transformation MixColumn (MC) consists of the application of MC to each of the
Nb columns of a state o (Fig. 9.13):

| Y

Wy @y, | e o |, | Oaes
W | O, Oy @9 O, | OpNp
Dy @] DoNp g W |y, | Doy
Dzo .. | D3| . O3Npg W39 - |3 | D3N

Figure 9.13 MixColumn applied to the rth column of the state.
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Cipher Key[Nk words]
Word1, Word Nk
KeyExpansion
Wordl Word Nk
|||| ....... ||||| ....... |||| ....... || ....... || ....... ||||
EK[O0] EK[1] EK[2] EK[Nr]

Expanded Key [Nk(Nr+1)Words]

Figure 9.14 Rijndael key expansion.

(é\)(), rs &)l, rs &)2, rs &’3, r) - MC(WO, rs W1, py W2, W3, r)

o, (02) (03) (01) (01)\ [ wo,
@ || €01) (02) (03) (01) || @i,
a, | | (01) (01) (02) (03) || w2
3, (03) (01) (01) (02)/ \ws,

The Operation AddRoundKey is the exclusive-OR of Nb words of R-key to a state
w. The Nb words of the R-key used in each round are derived from expanding the Nk words
of cipher key into Nb(Nr + 1) words of R-key (Fig. 9.14):

EK = (EK][0], EK[1], EK[2], ..., EK[N7]).
The algorithm for key expansion is different for Nk < 6 and Nk > 6.

Key Expansion Algorithm (Nk < 6)
1. fori:=0to Nk — 1

EK[i] = (ko> k1.i> k2,i> k3,7) kji is a word;
2. for i :== Nk to NkNr — 1
temp = EK[i — 1]
if 0 # (i mod Nk), then EK[i] = temp + EK[i — NkJ;
if 0 = (i mod Nk), then temp = BS(RB(temp)) + R_Con(|i/Nk)

where

- The transformation RotByte (RB) is the left-cyclic shift fay one byte of a word
((U(), wy, Wy, (1)3)

RB: (wp, @1, w2, @3) = (w1, @2, w3, @p).
- ByteSub (BS) is applied to each of bytes of RB(wy, w;, w,, @3)
BS(RB) : (wo, w1, @2, w3) = (BS(w;), BS(w), BS(w3), BS(wp)).
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| EK[(i-1)NK] EK[(i-l)Nk+l]| ....... | EK[(i-l)Nk+r]| ....... | EK[iNk-1] |

temp

RB(temp)

BS(RB(temp)

| BS(RB(temp))+R_Con(i) |

B

EK[(i-1)Nk] EK[(i-l)Nk+l]| ....... | EK[(i-l)Nk+r]| ....... | EK[iNk-1] | EK[iNk] |

EK[(i-1)Nk+1]

EK[(i-1)NK] | EK[(i-1)Nk+1] | ....... | EKJ[(i-1)Nk+1] | ....... | EK[iNk-1] EK[iNk] | ERINKH] |

Figure 9.15 Two intermediate steps in Rijndael key expansion.

« The round constants {R_Con(j)} of type array [0..3] of Z,5¢ are defined by
R _Con(, j) = (RC[,], {00}, (00), {00))
RC[1] =(01)
RC[2] = x =(02)
RC[i]] =x-RC[i — 1]

Key Expansion Algorithm (Nk > 6)
1. fori:=0toNk—1

EK[i] = (ko> k15> k2,i> k3,) kj; is a word;
2. for i ;== Nk to NkNr — 1

temp = EK[i — 1]

if 0 # (i mod Nk), then EK[i] = temp + EK[i — Nk];
if 4 = (i mod Nk), then temp = BS(temp);

Initial Round

AddRoundKey

Rounds 1-Nr
[ ByteSub —— ShiftRow—— MixColumn — AddRoundKey |

Final Round
| ByteSub—— ShiftRow—— AddRoundKey |

Figure 9.16 The order of operations in the Rijndael Cipher.
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Two intermediate steps in the Rijndael expansion for Nk < 6 are shown in Figure 9.15.
Any Nk consecutive word of R-key determine the complete R-key.

9.16 THE RIJNDAEL CIPHER
The order in which the transformations ByteSub, ShiftRow, MixColumn, and
AddRoundKey are to be applied is as shown in Figure 9.16.

9.17 RIJNDAEL’'S STRENGTH: PROPAGATION

OF PATTERNS

Although there is no proof that Rijndael can resist all cryptographic attacks

- The authors have tested whether several existing cryptanalytic techniques when
applied to Rijndael can recover die key with a work factor less than exhaustive
key trial, and

« Rijndael has been exposed to a careful scrutiny by outside cryptanalysts.

We summarize some of the unsuccessful attacks on Rijndael.

9.17.1 Differential Cryptanalysis

Define the byte weight of two states w; and w, as the number of nonzero bytes in w; @ w,.
Differential cryptanalysis has two phases:

1. A search for pairs of states (w;, w,) whose byte weight does not change significantly
over several rounds when the states w; are enciphered with the same key, and

2. An attempt to use such pairs to infer key bits.

The Rijndael round transformation on a state
T:w — AddRoundKey(MixColumn(ShiftRow(ByteSub(w))))

is a permutation on the states in Z4yp .
Nyberg [1993] and Beth and Ding [1993] introduced a measure of nonlinearity for
permutations F on Z,, , defining

Nr = max Np(a)
€ n,2

Np(a)=H{z € Z,2:Fz+a) —F(2) =b}|, a #0,

where |---| is the size of the set -... Note that if F is a linear transformation, then
F(z+ a) — F(z) = b has either 0 or 2 solution.

7
2

"

Figure 9.17 An Nk = 6 Rijndael Activity Pattern.
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l
AddRoundKey

!

ShiftRow

—

AddRoundKey
7

N

\
N

Figure 9.18 Effect of the round transformation the Nk = 6 Rijndael activity pattern.

Nyberg calls F differentially 6-uniform if Ny < 6 and proves Proposition 9.6.

Proposition 9.6:
9.6a Ny <?2.

9.6b If Fis differentially 6-uniform and A and B are linear transformations, then A = F = B
is differentially 6-uniform.

9.6¢ The permutation ByteSub is differentially 4-uniform.
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An active byte in a state is a nonzero byte. An activity pattern is a description of the active
bytes in a pair of states (w;, w»).

Example 9.10
An activity pattern for Nk = 6 is illustrated in Figure 9.17; bytes (0,2), (2,4), and (3,5) are
active. The effect of a Rijndael round transformation on an activity pattern uses the follow-
ing observations:

« An activity pattern remains unchanged under AddRoundKey, ByteSub, and
ShiftRow;

« MixColumn only alters the columns containing an active byte.

A possible effect of the Rijndael round transformation on the activity pattern in Example
9.10 is shown in Figure 9.18.

Example 9.10 shows that the number of active bytes depends on the number of active
columns; that is, columns with an active byte.

Daemen and Rijmen define an m-round differential trail as a sequence of state-pairs

T
W N w, n . o Wy,
w t+a o+t o, +a,

related by chaining

w; i Wiy

, 1=1,2,...m—1.
w; +a; Wi+ a4

The fraction of key values that are consistent for the ith segment is denoted by

R w; Ty Wit
re;+; Wi+ a;

Daemen and Rijmen argue in Daemen [1995] and in the supplementary annex [Daemen
and Rijmen, 1999a] that when the fractions of consistent keys

w: T; w; .
R( - — a >, i=1,2,....,m—1
w; + g Wi+

are small, the keys act independently and the fractions may be multiplied to give

w T, w T T ,
R =l — =2 — s — —m
w; +a w, +a, w, +a,
m—1
~ 1—[ R( w; T; Wiy )
1 \@tg Wiy T4y

In Daemen and Rijmen [1999b], the authors state Proposition 9.7.

Proposition 9.7

9.7a The number of active bytes after two rounds is at least 5.

9.7b The number of active bytes after four rounds is at least 25.
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Combining Proposition 9.7b with Nyberg’s result shows 2~ '*° to be the probability that a
four-round differential attack will be successful.

WHEN IS A PRODUCT BLOCK-CIPHER SECURE?

In LUCIFER, DES, and Rijndael, the substitution (S-box) provides the only nonlinear
element in the encipherment transformation. In the 16 years various authors have
studied the general design principles of strong product block-ciphers, which have been
investigated since the beginning of the 1980s. Susan Landau’s paper [Landau, 2004] is
a very fine summary of the concepts.

Z, , will continue to denote the set of all binary n-vectors. The Hamming distance

d(x, y) between two n-vectors x = (xp, X1, ..., X,—1) and y = (¥o, Y1, ..., Yn—1) 1S the
number of coordinates in which they differ.
It
0=0,0,...,0 1=1,1,...,1
—— ——
n copies n copies
(17 (O)n—l)7 lfl:()
_J,0,...,0,1, 0,0,...,0), fo<i<n-—1
u; = S—— ——
(i—1) terms (n—i) terms
(0),-1, D, ifi=n—1
x= (X, oo X, )

where, indicates complementation, then
n =d0,1 2=du,u), 0<i<j<n
n =dix,x) 1=4dQ0,u), 0<i<n
An S-box is Boolean function; that is, a mapping
fi2Z00— 2o m.
We use the notations

- B, for the set of all Boolean functions on Z,, with values in Z,,

. L, for the set of all linear Boolean functions f(x) = apxo + a1x1 + - -+ + adp—1%,—1

where the coefficient vector a = (ag, ay, . . ., a,—1) 1S in Z,_,, and
- A, for the set of all affine Boolean functions f(x) = b+ agxo+ aix; + -+ +
a,—1 x,—1 where the coefficient vector a = (ap, ay, . .., a,—1)isin 2, ,,and b € Z,.

Although Feistel’s paradigm
T:(L,R) > (FIR)+L,R)

does not require F to be invertible, some form of nonlinearity must be part of the design.
Pierpryzk’s paper [1990] proposed measuring the nonlinearity of f € B by

N(f) =d(f,B,) = mind(f, g)
gEL,

where the Hamming distance between two functions f(x) and g(x) is

d(f, g) = #{x: f@) # g}
and #{ - - - } is the cardinality of {---}.
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The nonlinearity N{ f) of a permutation f = (fy, fo, - - - , fu—1) Of 25, is
N(f) = olgi}ilnN(ﬁ)'

Another interpretation is possible where an element x = (xo, X1,..., X,—2, Xy—1)
of Z,, may be interpreted as the coefficient of the polynomial of degree at most
n—1

Px(2) =Xy +Xp 22+ + X122 4+ x02" © x = (00, X1s ey Xpe2s Xne1)

The vector space Z,, is then identified with the space of polynomials P,_[z] of
degree at most n — 1.

The addition and multiplication of integers in Z, is trivial; similarly, the addition
and multiplication of n-vectors in Z, ,, may be defined. The idea is central to understanding
Rijndael.

This identification of vectors with polynomials is fruitful; Pierpryzk proved that
p(2) = z¥ +1 for k > 2 has maximum nonlinearity.

Nyberg [1993] argues that a better definit